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Novel tuffite/Fe-Cu oxides nanocomposite with functionality for dye
removal in aqueous solution
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A B S T R A C T

Fe-Cu oxides nanoparticles were embedded on tuffite (TUF) mineral by means of a simple immersion-ion
impregnation, followed by a reduction reaction, methodology. TUF/Fe-Cu nanocomposite characteristics
were investigated by XRD, TEM, BET, SEM, FT-IR spectroscopy and pHzpc method. Fe-Cu nanostructures
with mean sizes between 10 and 20 nm were effectively supported on TUF. Because of its functional
properties, the nanocomposite was studied as adsorbent material for the degradation of malachite green
(MG) organic dye in aqueous solution. The adsorption kinetic data was well-fitted to pseudo first-order
model, indicating physisorption as the main mechanism of adsorption. High pH and temperature of the
solution favored malachite green adsorption. The adsorption process was spontaneous and endothermic.
In comparative sorption experiments with different dyes, the nanocomposite showed better removal
capacities for cationic and basic than for anionic and acid dyes. Langmuir, Freundlich, Langmuir-
Freundlich and Temkin models were applied to evaluate the isotherms, resulting in an adsorption
capacity of 376.66 mg/g, which is above most of the adsorbent materials so far employed for malachite
green degradation in aqueous solution. Therefore, this novel, easy to prepare and low-cost
nanocomposite proved to have synergic functionality as an efficient adsorbent material for cationic
organic dyes.
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1. Introduction

The presence of many contaminants in surface water is a real
worldwide problem, due to growth population and increase of
industrial activities. In this sense, it is necessary to control the
water pollution and negative effects of organic and inorganic
contaminant [1]. This could be achieved through efficient
wastewater treatments, which include the adsorption process.
Implementation of adsorption process is generally cheap providing
that adsorbent materials are low cost and abundant, like natural
minerals such as: zeolites, tuffs and clays, among others [2].
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Recently, nanoparticles have been suggested as efficient, cost-
effective and environmental friendly alternative specifically
metallic nanoparticles, which have relatively higher chemical
activity and specificity of interaction [3]. In general, the nano-
particles work in two-fold ways: like adsorbent material and as
reducing agent of organic compound, such as dyes. Among other
characteristics, they have a high specific surface area. All these
aspects could help to improve the technology of actual methods of
wastewater treatment. However, these nanomaterials have a
disadvantage related to the industrial application since usually
they cannot be used by themselves. They can be injected directly
into the effluent, however, their separation and recovery after the
process is as difficult as expensive. This is the main reason why
they should therefore be supported [4]. Researchers have proposed
to support nanoparticles on porous, natural or synthetic, materials.
This ensures that the separation process will be simple and more
easily performed through a filtration operation [5]. Besides,
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researchers have found that an heterogeneous composite has
better efficiency than single nanoparticles; in some cases they even
develop new synergic properties. Natural materials that have been
recently used as low cost effective supports for nanoscale are
pillared clays and zeolites such as montmorillonite [6], clinopti-
lolite [7] and MCM-41 [8] or sewage sludge converted in
carbonaceous material [9]. Another low cost adsorbent material
is tuff, which is a mineral rich in calcium carbonate. CaCO3

precipitation in tuff produces a vast array of crystal forms; calcite
predominates in most instances, followed by aragonite, and to a
lesser extent MgCO3. The SiO2 and MgO are the next most
abundant compounds and minor levels of Al2O3 and Fe2O3 are also
found [10]. These characteristics, which include their availability
and abundance, make them low cost adsorbent materials that can
be used as templates for nanoparticles.

It is well known that zero-valent iron and iron oxides are
effective for organic dyes degradation and improves of biodegrad-
ability [11]. The addition of other transition metal, such as copper,
may enhance the reactivity of nanoparticles and degradation rates
of aquatic contaminants acting through the synergistic effect
between bimetallic system and composite [12]. According to this
idea, iron-copper oxides nanocomposites have been synthesized to
enhance dyes removal [3,7,13,14], but the degradation of organic
dyes using Fe-Cu nanocomposites remains a scarcely explored
area.

Previously, we have studied that the combination between
porous materials and metal nanoparticles is one of the most
interesting areas of interdisciplinary research in water treatments
[7]. The aims of our present study are to synthesize and
characterize TUF/Fe-Cu 95/5 wt.% composite and to evaluate its
sorption properties to remove organic dyes, particularly malachite
green, from aqueous solution.

2. Experimental

2.1. Materials and reagents

The tufa (TUF) samples used in this work were collected from
the east province Holguín in Cuba. TUF was ground and sieved with
a 60 mesh (0.25 mm) particle size sieve. Malachite green chloride
(MG), a basic dye, (CI = 42000, molecular formula: C23H25N2Cl,
pKa: 6.9 and molecular weight = 365 g/mol). Acid green 25 (AG), an
acid dye, (CI = 61570, molecular formula: C23H18C1N4Na2O7S2, pKa:
6.5 and molecular weight = 622.58 g/mol) and congo red (CR)
(CI = 22120, molecular formula: C32H22N6Na2O6S2, pKa: 5.5 and
molecular weight = 696.7 g/mol) (Hycel, México) were used
without further treatment. Dyes solutions were prepared by
dissolving an appropriate amount of dye in distilled water to obtain
a range of concentrations corresponding to 30–120 mg/L for
successive dilutions.

2.2. Synthesis

TUF/Fe-Cu(95–5 wt.%) nanocomposite was obtained by impreg-
nation-chemical reduction synthesis according to the method
reported in the literature [13]. FeSO4�7H2O and CuSO4�5H2O
(Fermont, México) were dissolved in distilled water and TUF was
added to the reaction medium. The mixture was stirred at room
temperature for a fixed contact time. Later the pH was adjusted
(pH = 7) and NaBH4 was added quickly into the mixture.
Subsequently, it was filtrated and the composite was washed
with distilled water followed by acetone. The product was dried in
an oven at 40 �C and stored in a closed container until further use.
After several trials, the best experimental conditions to obtain this
composite were: a volume of bimetallic aqueous solution of
100 mL and a contact time of 60 min.
2.3. Characterization

The surface morphology analyses of the composite were
performed by scanning electron microscope (SEM) using a JEOL
JSM-6510LV SEM microscope operated at 20 kV. Samples were
fixed on a support with a carbon film and sputter-coated with gold
to a thickness of �200 Å. Transmission electron microscopy (TEM)
observations were carried out using a JEOL 2100 microscope
operated at 200 kV accelerating voltage. For TEM observations, the
composite was dispersed by ultrasound in 2-propanol at room
temperature (25 �C). A drop of the suspension was then placed on a
carbon-coated Cu grid. In order to obtain statistically consistent
information on the particle size distribution, the length of about
200 particles was measured, employing ImageJTM software. The
composite phases analysis were investigated by X-ray powder
diffraction (XRD) analysis. The XRD analysis was performed in a
Bruker D8 Advance diffractometer with a Cu Ka radiation source
operating at 30 kV and a tube current of 25 mA. XRD diagrams were
acquired with values of 2u from 5 to 80, with a step size of 0.03. The
surface properties and surface area of the composite, were
characterized by N2 adsorption measurements at 77 K using a
surface area analyzer (Micromeritics Gemini 2360 instrument).
The BET specific surface areas were determined by standard
multipoint techniques of nitrogen adsorption. The determination
of pore size was carried out by the method of BJH according to
implemented software routines. Fourier transform infrared (FT-IR)
spectroscopy analyses were performed using a spectrometer
Nicolet Magna IRTM 550 FTIR. The determination of pHzpc of
TUF/Fe-Cu nanocomposite was performed by applying the method
reported on the literature [15], using a pH meter Conductronic pH
120.

2.4. Kinetic adsorption experiments

The influence of the contact time over an amount of organic dye
removal by the TUF/Fe-Cu nanocomposite was studied through
batch experiments, at a dye initial concentration of 50 mg/L,
adding 10 mL of dye solution to 10 mg of nanocomposite. The
mixture was shaken at different times at 120 rpm, and the
adsorbent was separated by centrifugation and after decanted. The
experiments were performed in duplicate.

To analyze the effect of dye structure three kind of dye were
studied: basic dye (malachite green), acid dye (acid green 25) and
azo dye (congo red). To study the effect of pH and temperature on
MG adsorption process, the dye solutions pH were adjust from 2 to
12 using 0.1 M HCl and 0.1 M NaOH solutions and the temperature
values were 293, 303 and 313 K respectively.

2.5. Adsorption isotherms

10 mg of TUF/Fe-Cu nanocomposite was put in contact with
10 mL at different initial concentration of dye (30–120 mg/L)
stirring during equilibrium time at room temperature. The mixture
was centrifuged and decanted. The malachite green dye concen-
trations in the solutions were determined using a UV/Vis Perking
Elmer Lambda 10 ultraviolet–visible spectrophotometer to 620 nm
as maximum wavelength. The pH of each solution was measured
before and after the treatments. The kinetic and adsorption data of
the adsorbed amount of dye at time, qt (mg/g of adsorbent), were
obtained by Eq. (1):

ðCo � CtÞ � V
m

¼ qt ð1Þ

Where, Co (mg/L) is the initial dye concentration, Ct (mg/L) is the
concentration of the solution at time t, V (L) is the volume of



Fig. 2. TEM images of the Fe-Cu nanostructures formed in the TUF/Fe-Cu
nanocomposite.
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treated solution, and m (g) is the mass of TUF/Fe-Cu nano-
composite.

3. Results and discussion

3.1. Synthesis of TUF/Fe-Cu nanocomposite

The TUF/Fe-Cu nanocomposite was prepared by synthesizing
Fe-Cu nanostructures in-situ in an aqueous solution containing a
certain amount of TUF mineral. Thus, Fe2+ and Cu2+ are sorbed or
attached in TUF mineral micrometric particles (contact time), then,
the main chemical reaction proceeds through reduction of iron and
copper ions with sodium borohydride, according to the following
stoichiometric equation

4Fe2þ þ 4Cu2þ þ 3BH�
4 þ 12H2O ! 4Fe0Cu0 þ 3BðOHÞ4 þ 24Hþ

The physicochemical structure (pores, voids, chemical moie-
ties) of TUF should work as nanoreactors, as have been
demonstrated for several materials [5], where the nucleation,
growth, coarsening, and some times agglomeration, processes of
nanostructures occur. In addition, the presence of oxygen and
stirring condition in the reaction allowed the zerovalent metals
became mainly Fe and Cu oxides [16] and also, under the actual
reaction conditions, to generate a Fe-Cu oxides nanoparticles [13].

3.2. TUF/Fe-Cu nanocomposite characterization

In Fig. 1 different diffraction patterns can be seen for TUF
mineral and TUF/Fe-Cu nanocomposite, which are mainly the
characteristic peaks related to the basic minerals found in TUF,
calcite and clinoptilolite. Besides these peaks, there are others less
intense peaks corresponding to iron oxides nanoparticles. Peaks
found related to copper have the lowest intensity, this may have
two explanations, the first one is because the amount of copper in
the bymetallic system is very low, and the second one is associated
to the plausible formation of a Fe-Cu oxide nanoparticles, in which
it has already been studied by XRD that copper peaks usually do
not appear [17].

TEM images of nanoparticles formed in the TUF/Fe-Cu nano-
composite, and extracted as mentioned in the experimental
section, are shown in Fig. 2. As can be observed, at least two
different nanostructures shapes were found, some of the particles
are spherical (a), connected in chain-like structure and other have
Fig. 1. XRD analysis of the TUF mineral and TUF/Fe-Cu nanocomposite.
elongated form or needle-shape (b). Also, it can be noticed that the
nanoparticles tend to form agglomerates.

The size of spherical nanoparticles oscillates between 10 and
20 nm (Fig. 3a). For needle-like nanoparticles the dispersion of size
was higher, with an the average size of 15 nm of length (Fig. 3b).
These results are consistent with those reported in works forming
similar nanocomposites using different support materials [3,18].
These relatively small mean sizes of the thus obtained nano-
particles can be associated to the fast way of adding to the mixture
solution of the reducing agent (NaBH4), which causes the rapid
reduction rate of both metal ions to form nanoparticles fixed on
TUF mineral.

The chemical composition of the TUF/Fe-Cu nanocomposite
was obtained through mapping chemical and lineal profile of
chemical composition from STEM analysis.

As observed in EDS maps, copper and iron moieties (Fig. 4)
show similar distributions along the support material which can be
associate to an homogenous distribution of the both nanoparticles
on the mineral; although, iron nanostructures, accordingly to their
higher concentration.

Lineal profile of chemical composition of the TUF/Fe-Cu
nanocomposite (Fig. 5a and b) confirm the results obtained by
TEM and EDS mapping. The intensity profiles of signals indicate the



Fig. 3. Distribution of sizes for spherical (a) and needle-shape (b) Fe-Cu nanostructures in the TUF/Fe-Cu nanocomposite.
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presence of iron moieties in higher concentration in contrast with
the copper. These results are confirming the proportion 75–25 wt.%
of Fe-Cu employed to synthetized to obtain the composite. The
mixture of both species also can suggest the formation of Fe-Cu
oxides nanoparticles dispersed on the TUF/Fe-Cu nanocomposite
in different proportions.

The nitrogen adsorption-desorption isotherm profile of the
nanocomposite can be classified as type II isotherm and type H3
hysteresis loop according to BDDT classification [19]. This
isotherm, and its hysteresis, is usually found on mesopore solids
forming slit pores with nonuniform size. The plot of the pore size
distribution from adsorption-desorption isotherm by BJH method
confirms this idea, since the average pore diameter is 9.50 nm for
adsorption and 1.94 nm for desorption. The calculated BET surface
area is 9.45 m2/g.

The TUF/Fe-Cu nanocomposite has a pHpzc of 9.30. Same
determination for TUF only yielded a value of 9.04. Therefore,
accordingly to these results, it seems that the surface of the
support material was modified due to the incorporation of the Fe-
Cu oxides nanoparticles.

The composite has a rough and heterogeneous surface, with
particles agglomerated of different shape and size, as can be
observed in the SEM micrograph shown in Fig. 6a. The white points
denoted by ellipse could be associated to metallic nanoparticles.

The micrograph after malachite green adsorption (TUF/Fe-Cu/
MG) shows a smoother surface (Fig. 6b). In comparison with the



Fig. 4. EDS mapping of the TUF/Fe-Cu nanocomposite. STEM – Bright Field (BF)
micrograph (a); Fe Ka signal (b); C) Cu La signal (c).
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TUF/Fe-Cu nanocomposite micrographs, luminous points are not
visible, which could be due to the interaction with dye molecules
that can remain attached to the composite surface.

For the nanocomposite, the EDS analysis (Table 1, Fig. 6c)
indicates a heterogeneous composition of alkaline, alkaline-earths
and transition elements. In this case the major element is oxygen,
followed by calcium, carbon, silicon, iron and copper. The biggest
proportion of oxygen is due to the main phase of support material
(TUF), (calcite like CaCO3) and the nanoparticles oxides, according
to synthesis method selected in absence of inert atmosphere. The
calcium, carbon and silicon are related to chemical composition of
main phase in support material. The iron and copper are related
with nanoparticles added to the support material.

IR spectra of TUF mineral, TUF/Fe-Cu nanocomposite and TUF/
Fe-Cu/MG, are shown in Fig. 7. TUF exhibits main bands at 1500–
700 cm�1 region. These bands evidence the presence of CaCO3 [20],
confirming the material’s main phase. For the TUF/Fe-Cu nano-
composite, the appearance of new absorption bands about
1211.78 cm�1, 1740.29 cm�1 and 2930–3010 cm�1 can be observed.
Also, characteristic bands intensity of support material decrease
and other disappear. All these confirm, to some extent, the
chemical transformation of TUF material by the combination of
surface groups with different chemical species of Fe and Cu that
could be forming onto the nanostructures surface. When MG dye is
adsorbed, the band intensities in the TUF/Fe-Cu nanocomposite
decrease; in addition to the appearance of new bands in this
spectrum, which corresponds to MG molecule, as observed in
Fig. 7(b), confirms the removal of dye molecules by the TUF/Fe-Cu
nanocomposite.

3.3. Adsorption kinetics

Adsorption kinetic is the relationship of adsorption capacity
versus time; in this case, it refers to the quantification of the organic
dye adsorbed in the adsorbent material from different contacting
time. Fig. 8a shows the adsorption kinetic behavior for the Fe-Cu
nanostructures and for the TUF/Fe-Cu nanocomposite. For the
nanostructures alone, the equilibrium time was reached at 70 min,
meanwhile for the composite the equilibrium time was reached at
160 min. This latest time is twice higher than TUF material (80 min)
and nanostructures alone. It seems that the incorporation of
nanoparticles in TUF interferes in the diffusion process, making the
access to surface sites more difficult, which slows down the dye-
adsorption process.

In order to elucidate the adsorption mechanism and potential
rate controlling step of TUF/Fe-Cu nanocomposite, three kinetic
models including the pseudo-first order, pseudo-second order, and
intraparticle diffusion model [21] were used. These models give
support information about occurrence and mechanism of adsorp-
tion on the composite. Values of correlation coefficient R2 for the
TUF/Fe-Cu nanocomposite were closer to one. The value of qt
experimental (qexp) was closer to the value obtained for pseudo-
first order model (qcal). Therefore, the process was better described
by pseudo-first order model (Table 2). It is, therefore, suggested
that the removal of MG was carried by physisorption process,
although we cannot rule out that chemical adsorption processes
can occur simultaneously.

The dye adsorption process by composite particles occurs in
several steps, this situation can be study using the intraparticle
diffusion model. Since the intraparticle diffusion model does not
satisfies the linear relationship with the experimental data, then
the adsorption process may occur by two or more steps (Fig. 8b). In
this case the plot gave three linear regions, attributed to the
diffusion of dye molecule through the solution to the external
surface of composite (I), to intraparticle diffusion with gradual
equilibrium stage (II) and final equilibrium stage (III). In the graph,
the plots are not linear over the whole time range, implying that
more than one process is controlling the adsorption process [22].
Zones I and II can be identify as mesopores and micropores
diffusion, respectively; also, zone I is similar in time range than II,
indicating that the diffusion in mesopores is similar in extent to
that in micropores diffusion. This agrees with the mesopores found
in the composite, or mesopores close to micropores, which is
confirmed by BET surface area obtained (vide supra).



Fig. 5. STEM analysis of the TUF/Fe-Cu nanocomposite.
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The results of applying kinetics models to natural material
(TUF) and the TUF/Fe-Cu nanocomposite imply that incorporation
of nanostructures did not modify the kinetic process. In addition,
the kinetic rate constant was higher for TUF (k2 = 0.13 g/mg min)
than for the composite (k2 = 0.03 g/mg min).

3.4. Effect of pH

pH of the aqueous solution plays an important role in the
characteristics of adsorbate and the adsorbents efficiency [23]. The
removal of MG dye by the TUF/Fe-Cu nanocomposite from aqueous
solutions increases with pH of the solutions because there is an
increase in the adsorption capacity (Fig. 9a). The Fig. 9b indicate
that the adsorption of MG dye is weak in acidic conditions. It is
posibly that the removal occur through electrostatic interaction at
basic pH or a chemical reaction between the dye molecules and the
TUF/Fe-Cu nanocomposite adsorbent.
One of the components of TUF is CaCO3, in aqueous solution,
carbonate ions (CO3

2�) are present. Under low pH conditions,
hydrogen ions (H+) should interact with CO3

2� to perhaps generate
H2CO3, avoiding thus the interaction with MG molecules and
decreasing the dye adsorption.

CO2�
3 þ Hþ

@HCO�
3

HCO�
3 þ Hþ

@H2CO3

At a basic medium, with the presence of hydroxyl ions (OH�),
the interaction between CO3

2� with OH� is not posible, then the
species present in aqueous solution could attract electrostatically
the MG molecules promoting the removal of dye.

CO2�
3 þ H2O@HCO�

3 þ OH�



Fig. 6. SEM micrographs of TUF/Fe-Cu nanocomposite (a) and composite after
malachite green dye adsorption (b; c), SEI, 20 kV, �5000. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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Besides, the transformation of MG molecule to MG-carbinol
molecule under basic conditions is possible (Fig. 9b) and this can
promote other processes of removal like electrostatic atraction,
hydrogen bond interaction and/or chemical reaction.

3.5. Effect of temperature

The experimental results shown in Fig. 10 demonstrates that
the adsorption capacity increases when the solution temperature
also augments, which indicates that the adsorption of MG dye by
the TUF/Fe-Cu nanocomposite is endothermic in nature.
The process is favored for higher temperatures perhaps due to a
higher mobility of the dye molecules, accordingly to the increase of
the rate constant of pseudo-second order model kinetics (k2,
Table 3) as well as of the diffusive movement.

The thermodynamic parameters were determined using Eqs.
(3)–(6) (Table 4). The values of DH� (change in enthalpy, kJ/mol),
DS� (change in entropy, kJ/molK) and Ea (energy of activation, kJ/
mol) were obtained from slope and intercept of DG� vs. T and lnk1
vs. 1/T plot respectively [24].

Kc ¼ Ca

Ce
ð3Þ

DG
� ¼ �RTlnKc ð4Þ

DG
� ¼ DH

� � TDS
� ð5Þ

lnk1 ¼ lnA � Ea
RT

ð6Þ

Where Kc is the equilibrium constant, Ce and Ca is the liquid and
solid phase concentration at equilibrium (mg/L), T is the
temperature (K), DG� is the change in free energy (kJ/mol) and
R is the gas constant (8.31 J/mol).

Generally, the adsorption process is assigned to physisorption
in nature when the DG� value is in the range of �20 to 0 kJ/mol,
while values ranging from �400 to �80 kJ/mol suggests a
chemisorption process [25]. The negative value of DG� for the
intervals of solutions temperature confirms the spontaneous
nature of adsorption and the adsorption efficiency of MG dye by
the TUF/Fe-Cu nanocomposite with the increase in temperature.
The endothermic nature of process is confirmed by the positive
value of DH�. Moreover, the enthalpy value for an adsorption
process can also be used to distinguish between chemical and
physical adsorption. For chemical adsorption, values of enthalpy
change range from 83 to 830 kJ/mol, while for physical adsorption
they range from 8 to 40 kJ/mol. Since this value is lower than 40 kJ/
mol, this adsorption process can be considered as a physisorption
process [26]. The value of Ea is between 5 and 40 kJ/mol (low
values) thus, the adsorption is confirmed that occur through
physisorption process [27]. The positive value of DS� show that the
randomness increases at the solid-solution interface during the
adsorption process of MG dye.

3.6. Effect of dye chemical structure

In order to study the adsorption capacity of the TUF/Fe-Cu
nanocomposite against other organic dyes with evident chemical
differences to MG dye, we decided to perform batch experiments
with red congo (CR) and acid green 25 (AG25) dyes. The
equilibrium time was different in all three cases. It is highest for
MG adsorption, followed by CR and the lower for AG25 (Fig. 11a).
The same behavior was observed for equilibrium time.

The composite removed greater amount of the cationic dye
(MG) than anionic dyes (CR and AG25). The three structures are
different regarding the number of functional groups, geometry and
arrangement of molecules, and also the presence of acid (SO3

�) and
basic (CH3N�) groups (Fig. 11b–d). Probably the molecular size of
the dyes influence the efficiency of the composite dye-adsorption
capacity, because the TUF/Fe-Cu nanocomposite pores are narrow,
then smaller compounds that should be better adsorbed tha larger
ones. In addition, cationic dyes, such as MG, can be removed more
easilly using this composite because the cationic group may



Table 1
EDS analyses of TUF mineral, TUF/Fe-Cu nanocomposite and TUF/Fe-Cu/MG.

Elements Weight percent (%)

TUF TUF/Fe-Cu TUF/Fe-Cu/MG

C 14.70 � 11.72 8.69 � 5.23 18.10 � 6.41
O 48.46 � 13.46 49.08 � 6.69 48.71 � 4.93
Na 0.01 � 0.04 – –

Mg 0.12 � 0.10 0.11 � 0.38 0.19 � 0.31
Al 1.09 � 1.06 0.87 � 1.45 1.42 � 0.64
Si 9.97 � 8.51 5.80 � 6.74 10.42 � 10.20
Ca 25.18 � 21.58 27.34 � 11.75 15.36 � 11.25
Fe 0.47 � 0.46 5.74 � 5.01 4.54 � 2.03
K – 0.53 � 1.22 –

Ti – 0.08 � 0.26 –

Cu – 1.76 � 1.56 1.28 � 1.12

Fig. 7. FT-IR spectra of TUF (a), TUF/Fe-Cu nan
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interact electrostatically with surface groups of the nanocompo-
site, this also has concordance with the results of the kinetic
analysis for MG dye.

3.7. Adsorption isotherms

The adsorption experimental data were fittted with Langmuir,
Freundlich, Langmuir-Freundlich and Temkin adsorption models
[28,29] (Table 5).

The best fit to experimental data was obtained with Langmuir-
Freundlich model, which indicates the adsorption process occurs
by combined mechanisms on a heterogeneous surface. The value of
Freundlich parameter (1/n) was less than one, indicating a
favorable adsorption [30].

Comparing the value of maximum adsorption capacity for the
TUF/Fe-Cu nanocomposite (376.66 mg/g) to the value of TUF
ocomposite (a; b) and TUF/Fe-Cu/MG (b).



Fig. 8. Adsorption kinetics of nanostructures and TUF/Fe-Cu nanocomposite (a) and intraparticle diffusion plots for MG removal with the TUF/Fe-Cu nanocomposite (b).

Table 2
Kinetic parameters of the MG dye adsorption on TUF/Fe-Cu nanocomposite.

Parameters TUF/Fe-Cu
qexp = 48.00 mg/g

Pseudo-first order model
qcal (mg/g) 47.84
k1 (min�1) 0.42
R2 0.9928

Pseudo-second order model
qcal (mg/g) 48.47
k2 (g/mg min) 0.03
R2 0.9979

Intraparticle diffusion model
Kd (mg/g min0.5) 0.22
R2 0.9887
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(212.75 mg/g), the former is almost twice higher than the latter.
Therefore, the presence of nanostructures favored the removal
process of MG dye. The use of Fe-Cu nanostructures supported on
natural material or waste material has been reported for removal of
azo dye [3]. However triphenylmethane dyes (MG) have not been
studied that much with nanostructures adsorbents. The results
obtained from this investigation prove the effective action of TUF/
Fe-Cu nanocomposite for removal of basic dyes, such as malachite
green. In fact, the adsorption capacity of 376.66 mg/g, is greater
than the adsorption capacity in several systems studied for MG dye
removal reported so far (Table 6).

Thus, under the same experimental conditions, the adsorption
capacities of MG dye obtained for TUF, Fe-Cu nanostructures and
the TUF/Fe-Cu nanocomposite are 212.75, 184.47 and 376.66 mg/g,
respectively. Therefore, it seems that the presence of several



Fig. 9. Effect of pH on the adsorption of MG dye by the TUF/Fe-Cu nanocomposite: C0=50 mg/L, m=10 mg, teq = 300 min, T = 298 K, stirring speed = 120 rpm (a) and equilibrium
structures of MG related to pH (b).

Fig. 10. Effect of temperature on the adsorption of MG dye by the TUF/Fe-Cu
nanocomposite: C0=50 mg/L, m=10 mg, T = 293, 303 y 313 K, stirring speed = 120
rpm.
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phases in the mineral support, TUF, and the Fe-Cu oxides
nanostructures embedded, generate synergic effects increasing
the removal efficiency of MG dye with this novel composite and
performing the dye removal through different processes, mainly
physisorption.
Table 3
Kinetic parameters of the MG dye adsorbed on TUF/Fe-Cu nanocomposite at
different temperatures.

Kinetic parameters T=298 K T=303 K T=313 K

Pseudo-first order model
qcal (mg/g) 47.84 48.09 49.05
k1 (min�1) 0.42 0.63 0.79
R2 0.9928 0.9981 0.9997

Pseudo-second order model
qcal (mg/g) 48.47 48.38 49.19
k2 (g/mg min) 0.03 0.08 0.16
R2 0.9979 0.9994 0.9999



Table 4
Thermodynamic parameters for adsorption of MG dye on the TUF/Fe-Cu nanocomposite.

Temperature (K) DG� (kJ/mol) DH� (kJ/mol) DS� (kJ/molK) Ea (kJ/mol) k1 (min�1)

298 �7.78 36.23 0.15 29.41 0.42
303 �9.72 0.63
313 �10.79 0.79

Fig. 11. Effect of dye chemical structures in their removal by the TUF/Fe-Cu nanocomposite: C0=50 mg/L, m=10 mg, T = 293 K, stirring speed = 120 rpm (a); chemical structures
of AG25 (b), MG (c) and CR (d) dyes.

Table 5
Adsorption parameters of MG dye on TUF/Fe-Cu nanocomposite.

Langmuir Freundlich Langmuir-Freundlich Temkin

qmax (mg/g) 376.66 KF (mg/g)(L/mg)1/n 126.85 K (mg/g) 113.86 a (mg/g) 1.07
b (L/mg) 0.54 1/n 0.67 a (L/mg)n 0.095 b(mg/g) 176.32
R2 0.9830 R2 0.9955 1/n 0.61 R2 0.9940

R2 0.9954
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In addition, ICP-OES analysis indicated that 0.5 ppm of copper
ion were desorbed. This allowed to infer that the amount of copper
desorbed was fewer than the minimum value reported in the norm
you referred [43].

4. Conclusion

Preparation of Fe-Cu nanostructures and novel TUF/Fe-Cu
nanocomposite was achieved by a simple and inexpensive
chemical reduction method. SEM, TEM, XRD and FT-IR results
indicated the presence of Fe-Cu oxides nanoparticles supported or
embedded on TUF material. The values of pHzpc compared to the
value corresponding to TUF natural material showed the transfor-
mation of surface. TUF/Fe-Cu nanocomposite removed MG dye
from aqueous solution in an efficent way. The adsorption kinetics
of MG on this nanocomposite was better described by pseudo-first
order model and, therefore, more than one process controlled the
dye adsorption. The adsorption capacity was 376.66 mg/g, which is
greater than the adsorption capacity in several systems studied for
MG dye removal so far. The best removal conditions were basic pH
and higher temperature. The nanocomposite exhibited more
afinity for cationic and basic dye (MG) than anionic and acid dyes
(CR and AG25). According to thermodynamic results, the adsorp-
tion method is better described by a physisorption process. The low
cost and the ease synthetic methodology of this novel nano-
composite, as well as its high adsorption capacity of the MG
organic dye, make this composite a potential large-scale efficient
material to remove organic dyes and compounds.



Table 6
Adsorption capacity of MG dye by several adsorbents materials.

Adsorbents Initial concentration (mg/L) qo (mg/g) References

NiO nanoflakes 50 142.08 [31]
Sodium alginate-Fe3O4 nanoparticles 10–70 47.84 [32]
ZnO��NP-AC 5–30 322.58 [30]
AC from pine sawdust – 370.37
CAC Merck – 222.22
Oil palm trunk fiber – 149.35
Organically modified clay 10–500 40.48 [33]
ZnO��NP 10–40 310.50 [34]
SnO2��NP 216.90
Spent tea leaves – 256 [35]
Cattail – 196
Tetraethylenepentamine-functionalized Rosa canina-L fruits activated carbon – 333.3 [36]
Organically modified hydroxyapatite – 188.18 [37]
Montmorillonite clay – 262.49 [38]
carboxylate 2 functionalized multi-walled carbon nanotubes 50–200 49.45 [39]
Tamarix aphylla leaves 100–1000 303.03 [40]
Mesoporous aluminophosphate 100–500 24.51 [41]
Activated Carbon from Date Palm Leaf Wastes – 47 mg/g [42]
TUF 30–200 212.75 Previous work
TUF/Fe-Cu 30–200 376.66 This work
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