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Abstract 21 

 Histones (H1 to H4) are the primary proteins which mediate the folding of DNA 22 

into chromatin; however, and in addition to this function, histones have been also 23 

related to antimicrobial peptides (AMPs) activity in vertebrates, in fact, mammalian H1 24 

is mobilized as part as the anti-viral immune response. In fish, histones with AMP 25 

activity have been isolated and characterized mainly from skin and gonads. One of most 26 

threatening pathogens for wild and cultured fish species nowadays is nodavirus (NNV), 27 

which target tissues are the brain and retina, but it is also able to colonize the gonad and 28 

display vertical transmission. Taking all this into account we have identified the h1 and 29 

h2b coding sequences in European sea bass (Dicentrarchus labrax) and gilthead 30 

seabream (Sparus aurata) fish species and studied their pattern of expression under 31 

naïve conditions and NNV in vivo infection. The data obtained prompted us to study 32 

their role on the immune response of gonad and head-kidney leucocytes upon viral 33 

(NNV), bacteria (Vibrio anguillarum or Photobacterium damselae), pathogen-34 

associated molecular patterns (PAMPs) or mitogens stimulation. The h1 and h2b genes  35 

are expressed in a wide range of tissues and their expression is modify by infection or 36 

other immune stimuli, but further studies will be needed to determine the significance of 37 

these changes. These results suggest that h1 expression is related to the immune 38 

response against NNV in the brain, while h2b transcription  seems to be more important 39 

in the head-kidney. Moreover, the potential role of histones as anti-viral agents is 40 

suggested and further characterization is in progress. 41 
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1. Introduction 46 

 Histones are usually classified as core (H2A, H2B, H3 and H4) and linker 47 

histones (H1) due to their localization forming the basic units of the chromatin, the 48 

nucleosome. Thus, the nucleosome is formed by 146 base pairs of DNA wrapped 49 

around a protein octamer of two molecules of core histones. The linker H1 binds the 50 

DNA at the union sites whether it enters or exits the core nucleosome [1]. Histones, 51 

mainly core ones, are greatly conserved in eukaryotic organisms along evolution and 52 

therefore their functions might be also conserved. In addition to this function, they are 53 

also involved in other cellular functions and their implication in the epigenetic control 54 

of gene expression is nowadays in fashion. However, they have been also linked to 55 

immunity being their role as antimicrobial peptides (AMPs) the most described, which 56 

were first characterized in mammals long time ago [2]. Thus, histones and histone-57 

derived fragments act as physiological barriers of cells exerting a variety of 58 

antimicrobial actions and functions, including bacterial cell membrane permeabilization, 59 

penetration into the membrane followed by binding to bacterial DNA and/or RNA, 60 

binding to bacterial lipopolysaccharide (LPS) in the membrane, neutralizing the toxicity 61 

of bacterial LPS, and entrapping pathogens as a component of neutrophil extracellular 62 

traps (NETs) [3].  63 

In fish, the connections between histones and immunity have been established. 64 

First characterized was a catfish (Ictalurus punctatus) AMP isolated from the skin 65 

closely related to the H2B [4]. Since then, proteins highly homologous to histones or 66 

fragments derived by cleavage processes from histones (eg. Parasin I, hipposin) have 67 

been defined as histone-like proteins (HLPs) and identified in some fish species [5-9]. 68 

Most studies in fish have focused on the antimicrobial function of HLP-1 and HLP-2 69 

proteins homologous to H2B and H1, respectively; and usually isolated from skin or 70 

gills [4, 10-14]. However, other AMPs have been widely distributed among several 71 

tissues including immune-privileged tissues such as brain or gonads [15]. Recently, a 72 

H1-like protein has been isolated from acidified testis extracts (fH1LP) of olive 73 

flounder (Paralichthys olivaceus) and shown to be constitutively expressed in ovary and 74 

testis and to have antibacterial (Gram+ and Gram-) and antifungal activity [16]. In 75 

European sea bass (Dicentrarchus labrax), H2B and H1 coding genes were cloned and 76 

their expression levels have been reported to be altered under stress conditions [14], and 77 

also after Vibrio anguillarum infection [17].  78 



 Nodavirus (NNV) is a naked bipartite single stranded RNA virus which severely 79 

affects European sea bass larvae and juveniles provoking high mortality rates [18, 19]. 80 

Nevertheless, other species such as the gilthead seabream (Sparus aurata) are infected 81 

without showing disease symptoms, acting as a natural reservoir for most of the virus 82 

strains [20]. NNV has demonstrated vertical transmission [21] and is able to colonize 83 

and replicate in very low levels into the European sea bass and gilthead seabream testis 84 

in order to not being detected by the immune response [22], altering the antimicrobial 85 

activities and pattern of expression of several AMPs [23].  86 

 In this study, we identify the complete sequences of H1 and H2B coding genes 87 

in European sea bass and gilthead seabream and study their pattern of expression in 88 

immune, reproductive and other important tissues in naïve specimens and under NNV 89 

infection. The results obtained, prompted us to analyse the modulation of both genes 90 

upon in vitro viral, bacterial infection, pathogen-associated molecular patterns (PAMPs) 91 

or mitogens stimulation of the immune response in gonad and/or head-kidney 92 

leucocytes (HKLs) in order to determine whether these two genes might have a role in 93 

the immune response of fish.  94 

2. Material and methods 95 

 2.1. Animals   96 

Healthy specimens of European sea bass (Dicentrarchus labrax L.) and gilthead 97 

seabream (Sparus aurata L.) were bred and kept at the Centro Oceanográfico de 98 

Murcia (IEO, Mazarrón, Murcia) in 14 m3 tanks with the water temperature ranging 99 

from 14.6 to 17.8 °C, flow-through circuit, suitable aeration, filtration systems and 100 

natural photoperiod. The environmental parameters, mortality and food intake, were 101 

recorded daily. Juvenile specimens of both species with a mean body weight (bw) of 102 

325 ± 37.5 g were used for the analysis of constitutive gene expression in naïve 103 

conditions (see below). Adult specimens of both species with a bw of 774 ± 93 g were 104 

used for in vitro treatments of the gonads (see below). Juvenile specimens of European 105 

sea bass (n = 50) or gilthead seabream (n = 50) with a mean bw of 200 ± 15 g, were 106 

transported to the University of Murcia (Spain) aquaria in order to perform in vivo 107 

infections (see below). The experiments described comply with the Guidelines of the 108 

European Union Council (2010/63/UE). The protocol was approved by the Committee 109 

on the Ethics of Animal Experiments of the Instituto Español de Oceanografía (IEO) 110 



(Permit Number: 2010/02) and of the University of Murcia (Permit Number: 111 

A13150104). 112 

 2.2. Fish sampling 113 

All specimens were anesthetized with 40 µl/l of clove oil before sampling, then 114 

weighed, completely bled and immediately decapitated. Blood was obtained from the 115 

caudal peduncle and the serum samples, obtained by centrifugation (10,000 xg, 1 min, 4 116 

°C), were immediately frozen in liquid nitrogen and stored at −80 °C until use. 117 

In order to analyse the constitutive expression in naïve conditions, brain, gill, 118 

liver, skin, gonad, gut, head-kidney, spleen and thymus fragments from 6 independent 119 

fish were removed and immediately frozen in TRIzol® Reagent (Life Technologies) at -120 

80 ºC until used for RNA isolation. HKL suspensions were obtained as previously 121 

described [24]. In brief, fragments of head-kidney tissue were transferred to 7 ml of 122 

sRPMI [RPMI-1640 culture medium (Life Technologies) supplemented with 0.35 % 123 

sodium chloride, 100 IU/ml penicillin (Life Technologies), 100 mg/ml streptomycin 124 

(Life Technologies) and 5 % fetal bovine serum (FBS; Life Technologies)] under sterile 125 

conditions. Cell suspensions were obtained by forcing fragments of the organ through a 126 

100 µm nylon mesh, washed twice by centrifugation [400 xg, 10 min, room temperature 127 

(RT)], counted and adjusted to 107 cells/ml in sRPMI. In all cases, leucocyte viability 128 

was determined by the trypan blue exclusion test and resulted higher than 98 %. 129 

 2.3. Viruses and bacteria 130 

NNV (strain 411/96, genotype RGNNV) was propagated in the SSN-1 cell line 131 

[19]. The SSN-1 cells were grown in Leibovitz's L-15 medium (Gibco) supplemented 132 

with 10 % FBS, 2 mM L-glutamine (Life Technologies), 100 IU/ml penicillin, 100 133 

µg/ml streptomycin and 50 μg/ml gentamicin (Gibco) at 25 °C using Falcon Primaria 134 

cell culture flasks (Becton Dickinson). Inoculated cells were incubated at 25 ºC until the 135 

cytopathic effect (CPE) was extensive. Supernatants were harvested and centrifuged to 136 

eliminate cell debris. Virus stock was titrated in 96-well plates and expressed as the 137 

viral dilution infecting 50 % of the cell cultures (TCID50), following a methodology 138 

previously described [25]. 139 

Pathogenic bacteria Vibrio anguillarum (Va) R-82 and Photobacterium 140 

damselae subsp. piscicida (Pd) were grown in sTSB [tryptic soy broth (Laboratorios 141 



Conda) supplemented with 1.5 % NaCl] at 22 °C for 24 h. Absorbance at 600 nm was 142 

measured and used to know the concentration based on growth curves. Both bacterial 143 

cell cultures were washed in sterile 0.01 M phosphate-buffered saline (PBS, pH 7.4) by 144 

centrifugation (6,000 xg, 15 min, 4 °C) and adjusted to 1010 bacteria/ml. For heat-145 

killing, cultures were washed with PBS, incubated at 60 ºC for 30 min, washed and 146 

adjusted to 1010 bacteria/ml with 0.01 M PBS.  147 

 2.4. In vivo infection 148 

Once at the University of Murcia (Spain) facilities, juvenile specimens (n= 50) 149 

of both species were randomly divided into two tanks, kept in 450–500 L running 150 

seawater (28 ‰ salinity) aquaria at 25 °C and with a 12 h light: 12 h dark photoperiod 151 

and acclimatised for 15 days prior to the infection. The infection was performed by 152 

intramuscular injection of 100 µl containing 106 TCID50/fish of NNV in SSN-1 culture 153 

medium, a mock-infected group was injected with 100 µl of SSN-1 culture medium 154 

since this route of infection has been proven to be the most effective [26]. Fish (n = 5 155 

fish/group and time) were sampled 1, 7 or 15 days upon infection and gonad and brain 156 

were removed and immediately frozen in TRIzol® Reagent and stored at -80 ºC for later 157 

RNA isolation as described below.  158 

 2.5. In vitro treatments 159 

Fragments of European sea bass ovaries (n = 6) or testis (n = 6) or gilthead 160 

seabream gonads (n = 6) were removed, weighted and chopped into 1 mm2 to culture 161 

them in Leibovitz’s L-15 medium supplemented with 2 mM L-glutamine, 100 IU./ml 162 

penicillin, 100 µg/ml streptomycin, 2 µg/ml fungizone (Life Technologies) and 2 % 163 

FBS. Six fragments of each tissue from independent fish specimens were incubated in 164 

flat-bottomed 96-well microtiter plates (Nunc) with 200 µl of: culture medium alone 165 

(control), NNV (107 TCID50/ml), Va (4 x 107 bacteria/ml) or polyinosinic:polycytidic 166 

acid (pI:C; 62,5 µg/ml; Sigma) at 25 ºC during 24 h. Afterwards, the fragments of tissue 167 

were washed in 0.01 M PBS and stored in TRIzol® Reagent at -80 ºC for later isolation 168 

of RNA as described below. 169 

HKLs from healthy fish (n = 5) were isolated and maintained in Leibovitz's L-170 

15-medium supplemented with 10 % FBS, 2 mM L-glutamine, 100 IU/ml penicillin, 171 

100 µg/ml streptomycin and 20 mM HEPES (Gibco). Aliquots of 107 HKLs/ml were 172 



incubated in flat-bottomed 48-well microtiter plates (Nunc) at 22 ºC during 24 h with: 173 

culture medium alone (control), 106 TCID50 NNV/ml, 108 live bacteria/ml (Va or Pd), 174 

50 µg/ml synthetic unmethylated cytosine-phosphodiester-guanosine 175 

oligodeoxynucleotide 1668 (CpG ODN 1668; sequence 5’-176 

TCCATGACGTTCCTGATGCT-3’; Eurogentec), 25 µg/ml pI:C, 5 µg/ml 177 

lipopolysaccharide (LPS; Sigma), 10 µg/ml phytohemagglutinin (PHA; Sigma) or 5 178 

µg/ml concanavalin A (ConA; Sigma). Afterwards, leucocytes were washed with 0.01M 179 

PBS and stored in TRIzol® Reagent at -80 ºC for later isolation of RNA as mentioned 180 

below. 181 

 2.6. Gene sequences search and bioinformatics analysis 182 

Complete sequences of European sea bass h1 and h2b genes were obtained from 183 

the European sea bass genome (http://seabass.mpipz.mpg.de/) and analysed for 184 

similarity with known orthologue sequences using the BLAST program [27] within the 185 

ExPASy Molecular Biology server (http://blast.ncbi.nlm.nih.gov/Blast.cgi). This 186 

program was also used to compare European sea bass sequences with the gilthead 187 

seabream expressed sequence tags (ESTs) databases. Phylogenetic and molecular 188 

evolutionary analyses were conducted using MEGA version 6 [28] to confirm that they 189 

are bona fide gilthead seabream sequences.  190 

The evolutionary history was inferred using the Neighbor-Joining method [29] 191 

and the optimal tree was obtained. The percentage of replicate trees in which the 192 

associated taxa clustered together in the bootstrap test (1,000 replicates) is shown next 193 

to the branches [30]. The tree was drawn to scale, with branch lengths in the same units 194 

as those of the evolutionary distances used to infer the phylogenetic tree. The 195 

evolutionary distances were computed using the Poisson correction method [31] and are 196 

in the units of the number of amino acid substitutions per site.  197 

 2.7. Analysis of gene expression by real-time PCR 198 

Total RNA was isolated from TRIzol® Reagent frozen samples following the 199 

manufacturer’s instructions. One µg of total RNA was treated with DNAse I (Promega) 200 

to remove genomic DNA and the first strand of cDNA synthesized by reverse 201 

transcription using the Superscript III (Life Technologies) with an oligo-dT12-18 202 

primer (Life Technologies) followed by RNAse H (Life Technologies) treatment. Real-203 



time PCR was performed with an ABI PRISM 7500 instrument (Applied Biosystems) 204 

using SYBR Green PCR Core Reagents (Applied Biosystems). Reaction mixtures were 205 

incubated at 95 ºC for 10 min, followed by 40 cycles of 15 s at 95 ºC, 1 min at 60 ºC , 206 

and finally 15 s at 95 ºC, 1 min at 60 ºC and 15 s at 95 ºC. For each mRNA, gene 207 

expression was corrected by the elongation factor 1 alpha (ef1a) expression in each 208 

sample and expressed as 2-ΔCt, where ΔCt is determined by subtracting the ef1a Ct value 209 

from the target Ct. The primers used, specific for the histone forms studied herein and 210 

described in section 2.6., were designed using the Oligo Perfect software tool (Thermo 211 

Fisher Scientific) and are shown in Table 1. Before the experiments, the specificity of 212 

each primer pair was studied using positive and negative samples. A melting curve 213 

analysis of the amplified products validated the primer for specificity. All 214 

amplifications were performed in duplicate cDNAs and repeated once to confirm the 215 

results. Negative controls with no template were always included in the reactions. 216 

2.8. Statistical analysis 217 

Data were analysed by one-way ANOVA to denote statistical differences among 218 

groups, followed by Tukey’s post-hoc tests, except in the in vivo experiment in which a 219 

t-Student test was used to determine statistical differences between infected and control 220 

groups. A non-parametric Kruskal–Wallis test, followed by a multiple comparison test, 221 

was used when data did not meet parametric assumptions. Statistical analyses were 222 

conducted using SPSS 20 software. All data are presented as mean ± standard error of 223 

the mean (SEM). Minimum level of significance was fixed in 0.1. 224 

3. Results 225 

 3.1 Identification of European sea bass and gilthead seabream h1 and h2b gene 226 

sequences  227 

Complete cDNA sequences coding for European sea bass proteins H1 and H2B 228 

were available at the European sea bass genome database 229 

(http://seabass.mpipz.mpg.de/). We found one uncharacterized clone containing the 230 

entire open reading frame (ORF) coding for each gilthead seabream proteins H1 and 231 

H2B at the EST databases available at the NCBI GenBank database [GenBank 232 

accession number h1: FM151953 (unpublished); h2b: AM953780 [32]]. The predicted 233 



length, homology and e-values obtained from the gene sequences were compared with 234 

their human orthologues (Table 2) resulting in bona fide sequences. 235 

Phylogenetic tree showed two distinct clades for H1 and H2B proteins (Fig. 1). 236 

The clustering provides evidences of high bootstrap support in the lineage of European 237 

sea bass and gilthead seabream. Moreover, the teleost H1 proteins form an exclusive 238 

clade opposed to human H1 sequences. Human H3 proteins were used as outgroup.  239 

3.2. Expression of h1 and h2b under naïve conditions 240 

We found h1 mRNA transcripts in brain, gills, liver, skin, gonad, gut, head-241 

kidney, spleen, thymus and blood tissues from both species (Fig. 2), although some 242 

differences between species were observed. Thus, in European sea bass (Fig. 2a), the 243 

tissues with the highest expression of h1 gene were in thymus and blood followed by 244 

brain and liver. Gills and gonad were the tissues with the lowest h1 expression levels 245 

(10,000 fold lower than thymus). However, in the gilthead seabream (Fig. 2b), the blood 246 

showed the highest h1 gene expression levels, followed by head-kidney and spleen 247 

whereas liver, gut and gonad showed the lowest expression (100,000-fold lower than 248 

blood). 249 

Regarding the expression of H2B encoding gene (Fig. 3), no constitutive 250 

expression were observed in brain, skin and spleen of European sea bass (Fig. 3a), 251 

whilst the highest transcription levels were found in thymus. In contrast, in gilthead 252 

seabream (Fig. 3b), all tissues constitutively expressed this gene. The highest level of 253 

expression was found in gonad and blood while thymus has a medium level of 254 

expression and the lowest expression was observed in liver (10,000-fold lower than in 255 

blood). Overall, h2b transcription was lower than the expression of h1 gene. 256 

3.3. The expression of h2b but not of h1 was increased in head-kidney upon 257 

NNV infection in both species 258 

Transcription of both h1 and h2b genes was significantly regulated by NNV 259 

infection (Fig. 4 and 5, supplementary table 1). The expression levels of h1 were down-260 

regulated in brain but up-regulated in testis of European sea bass after 7 days of NNV 261 

infection (Fig. 4a). In contrast, in gilthead seabream, the transcription levels of h1 were 262 

down- and up-regulated in brain after 7 and 15 days post-infection, respectively, and 263 

down-regulated in gonad at day 15 post-infection (Fig. 4b). 264 



In European sea bass (Fig. 5a), the h2b gene expression was down-regulated in 265 

brain at day 1 and in testis at day 15 post-infection whilst it was down-regulated in 266 

gilthead seabream gonad after 7 days (Fig. 5b). Interestingly, in both species the h2b 267 

transcription was up-regulated in head-kidney at different time post-infection (7 days in 268 

European sea bass or 15 days in gilthead seabream). 269 

3.4. The expression of h1 in European sea bass ovary and of h2b in the gilthead 270 

seabream testis were inhibited after some in vitro treatments  271 

When we analysed the pattern of expression of h1 in the gonad of European sea 272 

bass and gilthead seabream after 24 hours of in vitro treatment, we found that only 273 

European sea bass ovaries showed down-regulated h1 gene expression levels after NNV 274 

infection, whilst in European sea bass testis and gilthead seabream gonad was 275 

unchanged (Fig. 6a). However, the pattern of expression of h2b gene in European sea 276 

bass gonads was unaltered by any treatment while was down-regulated after the 277 

challenge with Va and pI:C in gilthead seabream gonad (Fig. 6b). 278 

3.5. The expression of h2b gene was exclusively up-regulated in gilthead 279 

seabream HKLs 280 

 Finally, we studied the pattern of expression of h1 (Fig. 7) and h2b (Fig. 8) 281 

genes in HKLs after 24 hours of treatment with known immune stimuli and our data 282 

showed that h1 gene expression was down-regulated after NNV, Va or Pd treatment in 283 

European sea bass HKLs (Fig. 7a), and after NNV, Va, LPS, PHA or ConA treatment in 284 

gilthead seabream HKLs (Fig. 7b). 285 

Similarly, the h2b gene expression in HKLs of European sea bass was down-286 

regulated upon NNV, Va, Pd, pI:C or ConA treatments (Fig. 8a). In contrast to this and 287 

what happened with h1 gene expression, in gilthead seabream HKLs the h2b gene 288 

expression was up-regulated after all immune stimuli assayed except with PHA (Fig. 289 

8b). 290 

4. Discussion  291 

Histones, as chromatin structure proteins, were thought to be confined to the 292 

nucleus. However, different studies have detected various histones and their fragments 293 

in the cytoplasm of several cell types including leucocytes from mammals, bird, frogs, 294 



fish and shrimps, showing those proteins a broad spectrum of antimicrobial activities 295 

[33]. In fact, upon immune stimulation, leucocyte histones, mainly from macrophages 296 

and neutrophils, are mobilized from the nucleus to the cytoplasm, the membrane and 297 

even secreted to form the extracellular NETs [33] but no information exists at gene 298 

level. In mammals, regarding to this, histones not only appear on the surface of 299 

apoptotic cells but also on viable cell such as T-lymphocytes, macrophages or intestine 300 

epithelial cells [33],  whilst in fish they have been described on the cell surface of 301 

macrophages, natural cytotoxic cells (NCC) [34, 35]  and in the mucosa of gill and skin 302 

tissues [6, 36]. In addition, histones are demonstrated to be innate immune effectors in a 303 

wide range of tissues, being involved in the interaction with pathogens showing both 304 

lytic activity and helping in their internalization through endocytic vesicles [33]. 305 

Although the mechanism of action of these histones is not completely known yet, a 306 

specific conformation of histones and histone fragments is needed, suggesting that their 307 

immune function is not only a consequence of their high amount of basic residues [37].  308 

Both, core (H2A, H2B) and the linker (H1) histones showed antimicrobial 309 

activity in several fish species [4, 6, 11, 13, 15, 33]. Concretely, in the European sea 310 

bass, partial cDNA sequences coding for H1 and H2B proteins were isolated and their 311 

pattern of expression analysed under stress conditions, resulted on a similar pattern of 312 

expression in gills and epidermis than haemoglobin-like protein [14], a known 313 

antimicrobial peptide [38]. In the present work we used the complete sequences coding 314 

for these proteins for searching the gilthead seabream orthologue sequences. Thus, we 315 

found two sequences annotated but not characterized in the GenBank database. Though 316 

several histone forms are probably present in seabream and sea bass we only focused on 317 

those previously documented [14, 32], which in addition showed good relation with 318 

their zebrafish and human orthologues as evidenced by the phylogenetic tree, 319 

suggesting that their function could be also conserved. 320 

Since histones with antimicrobial activity were firstly identified in fish skin, 321 

most studies in fish have avoided the study of the constitutive expression of histones in 322 

other tissues apart from skin or liver [4, 8, 13], but other AMPs have been localized in a 323 

wide range of tissues including immune-privileged tissues as brain or gonads [15, 23]. 324 

Our data showed that h1 was constitutively expressed in all the tissues analysed in both, 325 

European sea bass and gilthead seabream, as also occurred in the olive flounder [16]. 326 

Interestingly, in the olive flounder the highest expression of h1 gene was found in gonad 327 



[16], however, our data showed the highest h1 gene expression in immune tissues of 328 

both species. As far as we are concern, our study is the first analysing the pattern of 329 

expression of h2b gene covering most of the tissues in fish. Therefore, we found that in 330 

European sea bass, h2b gene transcription was not detected in brain, skin or spleen but, 331 

was highly expressed in thymus. In contrast, in gilthead seabream h2b gene was highly 332 

expressed in peripheral blood and gonad.  333 

We next analysed the pattern of expression of h1 and h2b upon NNV infection, a 334 

virus which target tissues are the retina and brain [39] and colonizes the gonad to be 335 

vertically transmitted [22]. Our data showed that upon in vivo infections with NNV, h1 336 

is up-regulated in the gonad of European sea bass and in the brain of gilthead seabream, 337 

which is greatly correlated to the increased immunity in seabream brain and sea bass 338 

gonad as determined by the transcription levels of interferon, AMPs and leucocyte 339 

markers [22, 23, 40], while h2b is up-regulated in the head-kidney of both species. 340 

However, whether this is related to inflammation, immune response or tissue damage or 341 

reparation merits further investigation. Interestingly, in Rohu (Labeo rohita), LHH1M 342 

protein, that corresponds with the linker histone H1, is up-regulated in the brain of 343 

specimens resistant to gram negative bacteria Aeromonas hydrophila [41] as occurred 344 

with gilthead seabream, which is an asymptomatic carrier species of the NNV strain 345 

used to perform the experiment [20]. On the other hand, European sea bass is very 346 

susceptible to NNV [18] and our data showed that h1 expression was down-regulated in 347 

the virus target tissue, the brain, which is suffering great damage and no reparation is 348 

performed. These data could suggest that histones are mobilized from the nucleus to 349 

other cellular locations and this might lead to the down-regulation of histone genes. 350 

Taking into account the high expression of h2b gene in the gonad of gilthead 351 

seabream, the immune-privileged status of the gonad [42, 43] and the ability of NNV to 352 

colonize the testis [22], we have analysed the expression of h1 and h2b genes in mature 353 

European sea bass male and females and gilthead seabream male gonads upon in vitro 354 

treatment with alive NNV or Va or pI:C, and found slight down-regulations of h1 355 

expression in the European sea bass ovary upon NNV infection and of h2b expression 356 

in the gilthead seabream gonad upon Va and pI:C treatment. These data suggest that the 357 

transcriptional changes observed on both genes upon in vivo infections were 358 

orchestrated by the systemic immune response. However, it has been recently 359 

demonstrated the presence of NNV in the testis of both species upon an infection [22]. 360 



Probably, the existence of other specific AMPs in the gonad together with the high 361 

proliferative rates that this tissue showed during gametogenesis, avoids the use of H1 362 

and H2B as antimicrobial proteins, whilst in other tissue such as HKLs or brain, this 363 

function is enhanced and needed.  364 

Histones are well known to be shed out of the cells in mammalian neutrophils 365 

extracellular traps (NETs) and recently these NETs have been described to be produced 366 

by some leucocytes of mainly cyprinid fish species [44-47]. In that sense and taking into 367 

account the high expression of h1 and of h1 and h2b observed in European sea bass and 368 

gilthead seabream blood, respectively, we next analysed the transcription levels of these 369 

genes in HKLs stimulated with different immune stimuli. Thus, we observed that h1 370 

gene expression was down-regulated in European sea bass upon challenge with live 371 

virus and bacteria, while in gilthead seabream this down-regulation was also observed 372 

upon LPS, PHA and ConA treatments. In human monocytes, and upon LPS stimulation, 373 

H1 is able to bind LPS [48]. In contrast to what happened to h1 expression, the 374 

transcription of h2b gene was up-regulated in gilthead seabream HKLs and down-375 

regulated in European sea bass HKLs upon NNV and other immune stimuli. Although 376 

further studies are needed, this study clearly suggests that the ability to use histones as 377 

AMPs, either in traps or not, might be a clear difference in the susceptibility to 378 

infections of each fish species.   379 

5. Conclusions 380 

In conclusion, this is the first study analysing the pattern of expression of H1 381 

and H2B coding sequences in a broad spectrum of tissues of European sea bass and 382 

gilthead seabream fish species. Moreover, both genes are regulated in different tissues 383 

by pathogens, PAMPs and mitogens pointing to an important role in fish immunity. 384 

Thus, our data suggest that H1 might have a role in the immune response against NNV 385 

in the brain of both species, due to the fact that h1 expression pattern is similar to that 386 

found for other AMPs and several IFN pathway genes and correlated well with the 387 

different susceptibility to infection of both species [23, 40]. In the other hand, h2b 388 

expression seems to be more important in the head-kidney and HKLs immune response. 389 

Nevertheless, further functional studies are needed to understand histones implication in 390 

fish immunity, and concretely in antimicrobial responses upon NNV infection, and 391 

several studies are in progress in our laboratory. 392 
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Appendix A. Suplementary data 400 

Supplementary table 1: Mean values of h1 and h2b transcription in European sea bass 401 

and gilthead seabream brain, gonad and head-kidney tissues after 1, 7 and 15 days of 402 

infection with NNV. Data were corrected with ef1a gene expression levels and 403 

normalized with the mean of control group (mock-infected). Asterisks denote statistical 404 

differences (t Student test; *P<0.1, **P < 0.05) with control group.  405 

 h1 gene expression 
 days European sea bass Gilthead seabream 

Brain 
1 0.55±0.19 0.63±0.24 
7 0.12±0.02* 0.39±0.10* 
15 0.95±0.34 2.75±0.64** 

Gonad 
1 1.10±0.34 0.84±0.40 
7 2.28±0.92* 0.26±0.10 
15 1.06±0.39 0.32±0.11* 

Head-kidney 
1 0.04±0.03 1.04±0.20 
7 0.38±0.16 0.43±0.10 
15 0.34±0.14 1.69±1.10 

 406 

 h2b gene expression  
 days European sea bass Gilthead seabream 

Brain 
1 0.14±0.03** 0.94±0.43 
7 0.30±0.07 0.83±0.29 
15 2.44±0.75 1.34±0.30 

Gonad 
1 1.27±0.67 0.95±0.34  
7 1.22±0.43 0.53±0.19 * 
15 0.21±0.11** 0.65±0.24 

Head-kidney 
1 0.16±0.07 1.15±0.27 
7 4.57±1.88** 0.72±0.27 
15 3.31±1.86 2.72±0.93* 

 407 

 408 
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 544 

Figure 1: Phylogenetic analysis of the H1 and H2B proteins of European sea bass and 545 

gilthead seabream with related sequences of fish and mammalian histone proteins. The 546 

phylogenetic tree was drawn following the Neighbor-Joining method for the analysis of 547 

evolutionary relationship. Genbank accession numbers are shown in parentheses. 548 

Histones with “t” are thymus isolated histones. 549 

 550 

Figure 2: Levels of expression of h1 gene in European sea bass (a) and gilthead 551 

seabream (b) tissues: brain (Br), gills (Gi), liver (Li), skin (Sk), gonad (Go), gut, head-552 

kidney (Hk), spleen (Sp), thymus (Th) and blood (Blo) studied by real-time PCR. Data 553 

represent mean relative expression to the expression of endogenous control ef1a gene ± 554 

SEM (n = 6). Letters denote statistical differences among tissues according to ANOVA 555 

and Tukey’s post-hoc test (P < 0.05). 556 

 557 

Figure 3: Levels of expression of h2b gene in European sea bass (a) and gilthead 558 

seabream (b) tissues: brain (Br), gills (Gi), liver (Li), skin (Sk), gonad (Go), gut, head-559 

kidney (Hk), spleen (Sp), thymus (Th) and blood (Blo) studied by real-time PCR. Data 560 

represent mean relative expression to the expression of endogenous control ef1a gene ± 561 

SEM (n = 6). Letters denote statistical differences among tissues according to ANOVA 562 

and Tukey’s post-hoc test (P < 0.05). ND, non detected.  563 

 564 

Figure 4: Expression levels of h1 gene in European sea bass (a) and gilthead seabream 565 

(b) brain, gonad and head-kidney after 1, 7 and 15 days of in vivo NNV infection (106 566 

TCID50 per fish) studied by real-time PCR. Data are expressed as the mean ± SEM (n = 567 

5) of mRNA fold increase respect to control samples. Asterisks denote significant 568 

differences with the controls at each sampling time (t Student test; *P<0.1, **P < 0.05). 569 

 570 

Figure 5: Expression levels of h2b gene in European sea bass (a) and gilthead seabream 571 

(b) brain, gonad and head-kidney after 1, 7 and 15 days of in vivo NNV infection (106 572 

TCID50 per fish) studied by real-time PCR. Data are expressed as the mean ± SEM (n = 573 

5) of mRNA fold increase respect to control samples. Asterisk denote significant 574 



differences with controls at each sampling time (t Student test; *P<0.1, **P < 0.05).575 

  576 

Figure 6: Expression levels of h1 (a) and h2b (b) genes in European sea bass testis and 577 

ovaries and gilthead seabream gonad after 24 h of in vitro challenge with NNV (107 578 

TCID50/ml), Va (4 × 107 bacteria/ml) and poly I:C (pI:C 62,5 µg/ml) studied by real-579 

time PCR. Data are expressed as the mean ± SEM (n = 6) of mRNA transcripts relative 580 

to ef1a gene expression. Letters denote statistical differences among tissues according to 581 

ANOVA and Tukey’s post-hoc test (P < 0.05). 582 

 583 

Figure 7: The expression of h1 gene in HKLs of European sea bass (a) and gilthead 584 

seabream (b) after 24 h of in vitro challenge with culture medium alone (control), 106 585 

TCID50 NNV/ml, 108 live bacteria/ml (Va or Pd), 50 µg/ml CpG ODN 1668, 25 µg/ml 586 

pI:C, 5 µg/ml LPS, 10 µg/ml PHA or 5 µg/ml ConA studied by real-time PCR. Data are 587 

expressed as the mean ± SEM (n = 5) of mRNA transcripts relative to ef1a gene 588 

expression. ). Letters denote statistical differences among tissues according to ANOVA 589 

and Tukey’s post-hoc test (P < 0.05).  590 

 591 

Figure 8: The expression of h2b gene in HKLs of European sea bass (a) or gilthead 592 

seabream (b) after 24 h of in vitro challenge with culture medium alone (control), 106 593 

TCID50 NNV/ml, 108 live bacteria/ml (Va or Pd), 50 µg/ml CpG ODN 1668, 25 µg/ml 594 

pI:C, 5 µg/ml LPS, 10 µg/ml PHA or 5 µg/ml ConA studied by real-time PCR. Data are 595 

expressed as the mean ± SEM (n = 5) of mRNA transcripts relative to ef1a gene 596 

expression. ). Letters denote statistical differences among tissues according to ANOVA 597 

and Tukey’s post-hoc test (P < 0.05).  598 

  599 



Table 1: Primers used for analysis of gene expression by real-time PCR. 600 

 601 

Species Molecule 

Gene 

Abbrev. 

Accession 

number Primer sequence 

European 

sea bass 

Histone 1 h1 DLAgn00119260 
AAGAAGACGGGTCCCTCAGT 

CTTGACCTTCTTCGCTTTGG 

Histone 2B h2b DLAgn00179560 
GGAGAGCTACGCCATCTACG 

GCTCAAAGATGTCGCTCACA 

Elongation 

factor 1 alpha 
ef1a AJ866727 

CGTTGGCTTCAACATCAAGA 

GAAGTTGTCTGCTCCCTTGG 

Gilthead 

seabream 

Histone 1 h1 FM151953 
CGTGGTGAAGAACAGAGCAA 

TTGACCCTTTTCGTCTTTGG 

Histone 2B h2b AM953480 
AGACGGTCAAAGCACCAAAG 

AGTTCATGATGCCCATAGCC 

Elongation 

factor 1 alpha 
ef1a AF184170 

CTGTCAAGGAAATCCGTCGT 

TGACCTGAGCGTTGAAGTTG 

 602 

 603 

  604 



Table 2: Identity (in %; a) and e-value (b) of the predicted proteins respect to the human 605 

orthologues. Asterisk denotes the sequences with predicted full length. 606 

 607 

Predicted 

protein 
Fish species 

Gene accession 

number 

Protein 

length 
Identitya e-valueb 

H1 

Sea bass 

Seabream 

Zebrafish 

Human 

DLAgn_0011926 

FM151953 

XP_017209709 

NP_005313 

188* 

192* 

199* 

226* 

71 

67 

63 

 

1e-25 

9e-23 

1e-31 

 

H2B 

Sea bass 

Seabream 

Zebrafish 

Human 

DLAgn_00179560 

AM953480 

NP_001013481 

AAH98112 

121* 

134* 

124* 

124* 

92 

95 

98 

 

6e-67 

5e-67 

2e-72 
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Figure 3
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Figure 6
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Figure 8
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Highlights 

 Histones H1 and H2b are characterized in European sea bass and gilthead 

seabream 

 The transcription of h1 gene may be related with immune response against NNV  

 The transcription of h2b gene may be relevant in HKLs immune response 

against NNV  

 The transcription of h1 and h2b are differently regulated in HKLs 
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