

Optimization Techniques for
Automated Software Test Data Generation

Ph.D. Thesis Dissertation in Computer Sciences

Author

Francisco Javier Ferrer Urbano

Supervisors

Dr. Enrique Alba
and

Dr. Francisco Chicano

Department of
Lenguajes y Ciencias de la Computación

UNIVERSITY OF MALAGA

January 2016

AUTOR: Francisco Javier Ferrer Urbano

 http://orcid.org/0000-0002-1074-0139

EDITA: Publicaciones y Divulgación Científica. Universidad de Málaga

Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-
SinObraDerivada 4.0 Internacional:
http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
Cualquier parte de esta obra se puede reproducir sin autorización
pero con el reconocimiento y atribución de los autores.
No se puede hacer uso comercial de la obra y no se puede alterar, transformar o hacer
obras derivadas.

Esta Tesis Doctoral está depositada en el Repositorio Institucional de la Universidad de
Málaga (RIUMA): riuma.uma.es

Departamento de Lenguajes y Ciencias de la Computación
Escuela Técnica Superior de Ingeniería Informática

Universidad de Málaga

El Dr. Enrique Alba Torres y el Dr. Francisco Chicano García pertenecientes al
Departamento de Lenguajes y Ciencias de la Computación de la Universidad de Málaga,

Certifican

que, D. Francisco Javier Ferrer Urbano, Ingeniero en Informática por la
Universidad de Málaga, ha realizado en el Departamento de Lenguajes y Ciencias de la
Computación de la Universidad de Málaga, bajo su dirección, el trabajo de investigación
correspondiente a su Tesis Doctoral titulada:

Optimization Techniques for
Automated Software Test Data Generation

Revisado el presente trabajo, estimamos que puede ser presentado al tribunal que ha

de juzgarlo. Y para que conste a efectos de lo establecido en la legislación vigente,
autorizamos la presentación de esta Tesis Doctoral en la Universidad de Málaga.

En Málaga, Enero de 2016

Fdo: Dr. Enrique Alba Torres y Dr. Francisco Chicano García

A mis padres, Virgilio y Maŕıa José,

por la educación y el cariño

que me han dado siempre

Agradecimientos

Para comenzar me gustaŕıa agradecer a todas las instituciones e investigadores que han con-
tribuido en mi desarrollo hasta ver plasmada esa evolución en este volumen de tesis doctoral.

Agradezco en primer lugar a mis directores Enrique y Francis, que me han guiado de la mejor
forma posible para conseguir este objetivo tan deseado. Me alegra mucho haber podido ser capaz
de devolver parte de lo que la sociedad me ha brindado en forma de conocimiento cient́ıfico. Han
sido muchos los momentos que he vivido junto a ellos en este periodo; por encima de todo me
gustaŕıa resaltar su faceta personal, ya que el trabajo siempre se ha realizado en el mejor ambiente
posible.

Durante este tiempo han sido muchos los compañeros que han pasado por el laboratorio desde
donde estoy escribiendo estas ĺıneas. Cada uno de ellos me ha aportado lo mejor, y sólo espero
haber podido captar lo máximo de ellos, puesto que no existen mejores compañeros que los que
he tenido. Agradezco a Gabriel, Paco, Guillermo, Juanjo y José Manuel, siempre dispuestos a
ayudarte y de los que he aprendido mucho. A los compañeros con los que empecé esta aventura
Briseida, Pablo, y Mart́ın, a los cuales les deseo lo mejor. También agradezco a los que nos hemos
unido durante este tiempo y compartimos nuestro laboratorio: Jamal, Yesnier, Daniel, Raúl y
recientemente Christian y Francisco. Con todos ellos este camino recorrido ha sido mucho mejor,
y espero que lo siga siendo en esta nueva etapa como doctor. Quisiera mencionar también a Juan
Miguel y Antonio, que me han prestado su ayuda con amabilidad siempre que lo he necesitado.

NEO es un grupo donde acogemos cada año a una gran cantidad de investigadores externos, lo
que me ha dado la posibilidad de conocer a Sergio, Franco, Mart́ın, Carolina, Andreas, Mauricio,
Javier, Sofiene, Karel, Roberto, Darrell, Manuel, Zakaria, David y muchos otros, todos excelentes
profesionales y grandes personas. A ellos les doy las gracias por abrirme las puertas de mundo
global desde un laboratorio de Málaga.

Mi más sincero agradecimiento a Joachim y Peter, que me acogieron en mi estancia en Berlin
en lo que ha sido una de las mejores experiencias de mi vida. Esta estancia supuso un crecimiento
profesional y sobre todo personal.

En estos momentos me acuerdo del sacrificio que hicieron mis padres, Virgilio y Maŕıa José,
para enviarme a estudiar a Málaga. Espero haber aprovechado bien la oportunidad y que estéis
orgullosos de mı́, porque yo no tengo palabras para agradeceros todo lo que habéis hecho. También
agradezco a mis queridos hermanos Eva, Fernando, Alejandro y Virginia, cuyo ejemplo me ha
servido desde el d́ıa en que naćı. A mis abuelos y t́ıos, en especial a mi abuela Maŕıa y mi t́ıa
Mercedes que son tan importantes para mı́, gracias por hacerme sentir tan querido.

Ahora que cierro una etapa, quiero agradecerle especialmente a una persona que ha estado a
mi lado desde que empecé esta aventura del doctorado, mi prometida Myriam. Voy a emprender
un nuevo camino lleno de incógnitas en la vida profesional, sin embargo no me preocupa, ya que
estando contigo ese camino estará lleno de felicidad.

Acknowledgements

This PhD thesis has been partially funded by the Spanish Ministry of Economy and Compet-
itiveness (MINECO) and the European Regional Development Fund (FEDER), under contract
TIN2014-57341-R moveON project (http://moveon.lcc.uma.es). It has been also partially funded
by the University of Malaga, under contract UMA/FEDER FC14-TIC36. Finally, the author is
supported by a FPI grant with code BES-2012-055967 from MINECO.

Contents

Acknowledgements iv

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives and Phases . 2

1.3 PhD Thesis Contributions . 3

1.4 PhD Thesis Organization . 4

I Fundamentals of Software Testing and Metaheuristics 7

2 Fundamentals of Software Testing 9

2.1 Structural Testing . 10

2.2 Structural Testing Problems Addressed in this Thesis 11

2.2.1 Test Data Generation Problem . 11

2.2.2 Multi-Objective Test Data Generation Problem 14

2.3 Functional Testing . 15

2.4 Functional Testing Problems Addressed in this Thesis 17

2.4.1 Prioritized Pairwise Test Data Generation Problem with Classification Tree
Method . 17

2.4.2 Test Sequence Generation Problem with Extended Classification Tree Method 20

2.4.3 Pairwise Test Data Generation Problem in SPL 23

2.4.4 Multi-Objective Test Data Generation Problem in SPL 26

2.5 Conclusions . 27

3 Fundamentals of Metaheuristics 29

3.1 Formal Definition . 29

3.2 Classification of Metaheuristics . 32

3.2.1 Trajectory Based Metaheuristics . 33

3.2.2 Population Based Metaheuristics . 34

3.3 A Methodology for Evaluating Results . 36

3.3.1 Quality Indicators . 36

3.3.2 Statistical Analysis Procedure . 41

v

4 Algorithms 45
4.1 Mono-objective Metaheuristics Used in this PhD Thesis 45

4.1.1 Genetic Algorithm . 45
4.1.2 Evolutionary Strategy . 47
4.1.3 Ant Colony Optimization . 48

4.2 Multi-objective Metaheuristics Used in this PhD Thesis 49
4.2.1 Non-dominated Sorting Genetic Algorithm II 49
4.2.2 Strength Pareto Evolutionary Algorithm 2 49
4.2.3 Multi-Objective Cellular Algorithm . 50
4.2.4 Pareto Archived Evolution Strategy . 51
4.2.5 Random Multi-Objective Algorithm . 52

II Structural Testing 55

5 Test Data Generation in Object-Oriented Software 57
5.1 Introduction . 57
5.2 Test Data Generator . 58

5.2.1 Objective Function . 59
5.2.2 Instrumentation Tool . 60

5.3 Distance for instanceof operator . 61
5.4 Experimental Setup . 63

5.4.1 Algorithm Details . 63
5.4.2 Mutation Operator . 63
5.4.3 Benchmark of Test Programs . 64

5.5 Experimental Analysis . 64
5.5.1 Preliminary Results . 65
5.5.2 Uniform vs. Distance-based Mutation . 66
5.5.3 Adaptive Mutation . 68

5.6 Conclusions . 69

6 Estimating Software Testing Complexity 71
6.1 Introduction . 71
6.2 Static Measures . 72
6.3 Branch Coverage Expectation . 76

6.3.1 Markov Chain . 76
6.3.2 Definition of the Branch Coverage Expectation 77

6.4 Validation of the Branch Coverage Expectation . 80
6.5 Empirical Validation Setup . 82

6.5.1 Algorithms Details . 82
6.5.2 Program Generator Tool . 83
6.5.3 Benchmark of Test Programs . 85

6.6 Empirical Results . 87
6.6.1 Analysis of the Correlation Between the Static Measures 87
6.6.2 Correlation Between Coverage and Static Measures 89
6.6.3 Another use of the Branch Coverage Expectation 92
6.6.4 Validation on Real Programs . 94

6.7 Conclusions . 96

7 Multi-Objective Test Data Generation 99

7.1 Introduction . 99

7.2 Experimental Methodology . 100

7.2.1 The MM Approach . 100

7.2.2 The mM Approach . 101

7.2.3 Benchmark of Test Programs . 103

7.3 Experimental Analysis . 103

7.3.1 Evaluation of the MM approach . 104

7.3.2 Evaluation of the mM approach . 107

7.3.3 MM vs. mM approaches . 110

7.3.4 Validation on Real Programs . 114

7.4 Conclusions . 115

III Functional Testing 119

8 Combinatorial Interaction Testing using Classification Tree Method 121

8.1 Introduction . 121

8.2 Prioritized Pairwise Test Data Generation using CTM 122

8.2.1 Solution Approaches . 123

8.2.2 Experimental Benchmark . 125

8.2.3 Comparison between GS, PPC and PPS . 127

8.2.4 Comparison between Genetic Solver and other existing algorithms 129

8.3 Test Sequence Generation using ECTM . 131

8.3.1 Algorithms Details . 132

8.3.2 Experimental Setup . 135

8.3.3 Test Sequences’ Quality . 137

8.3.4 Test Suite Coverage versus Test Suite Size 139

8.4 Conclusions . 141

9 Pairwise Testing in Software Product Lines 145

9.1 Introduction . 145

9.2 Parallel Prioritized Pairwise Testing . 146

9.2.1 Algorithm Description . 146

9.2.2 Weight Priority Assignment Methods . 147

9.2.3 Experimental Setup . 149

9.2.4 Experimental Analysis . 150

9.3 Seeding Strategies for Multi-Objective Pairwise Testing 152

9.3.1 Seeding Strategies . 153

9.3.2 Evaluation . 156

9.3.3 Experimental Analysis . 158

9.4 Optimal Multi-Objective Pairwise Testing . 160

9.4.1 Mathematical Linear Program . 161

9.4.2 Algorithm Details . 162

9.4.3 Experimental Setup and Analysis . 163

9.5 Conclusions . 164

IV Conclusions and Future Lines of Research 167

10 Conclusions and Future Work 169
10.1 Conclusions . 169
10.2 Future Work . 171

Appendices 173

A Publications Supporting this PhD Thesis Dissertation 177

B Resumen en Español 181
B.1 Introducción . 181
B.2 Organización de la Tesis . 182
B.3 Fundamentos . 184

B.3.1 Pruebas de software . 184
B.3.2 Metaheuŕısticas . 184

B.4 Problemas Abordados en esta Tesis . 185
B.5 Generación de Datos de Prueba en Programas Orientados a Objetos 186
B.6 Estimando la Complejidad de Probar un Programa 187
B.7 Generación de Datos de Pruebas Multi-objetivo . 188
B.8 Pruebas Combinatorias usando el Método de Clasificación de Árboles 189
B.9 Ĺıneas de Productos Software . 190
B.10 Conclusiones . 191

List of Tables 195

List of Figures 198

List of Algorithms 201

Index of Terms 202

References 205

Chapter 1

Introduction

1.1 Motivation

Most countries in the world depend on complex computer-based systems which govern the main
infrastructures and utilities, as well as most electrical devices used daily. Therefore, producing
and maintaining software is essential for the actual society and means always a major challenge
for computer scientists [220]. Research on computer science is an expanding field that involves the
understanding and design of computers and their software. The main objective in this field is the
study of automating algorithmic processes that scale to eliminate bottlenecks. One of the most
relevant aspects of research in computer science is the design and development of new efficient
algorithms able to solve complex problems decreasingly running times [160]. Moreover, researchers
are determined to tackle problems that were uncomputable in a reasonable amount of time in the
past, as their contribution to the field.

Real world problems are in general hard problems (NP-hard in most cases), what means in
practice that the computation time spent in finding the optimal solution is growing exponentially
with its size [105]. When exact techniques are used to solve these problems, they ensure to find
the optimal solution for relatively small problems, but they are extremely slow in medium to large
size problems. Most interesting real world problems have large solution spaces subject to a set of
restrictions and uncertainties, then difficult to solve for exact algorithms. With this aim in mind,
researchers have applied emerging techniques such as metaheuristic search techniques which have
been proven to be successful facing hard problems [2, 35]. Metaheuristic approaches are able to
provide a near-optimal solution in a moderate time lapse, so they offer a good trade-off between
quality and cost, what is in fact, the main goal of industrial companies.

Software Engineering is an engineering discipline that is concerned with all aspects of software
production, from the early stages of system specification to maintaining the system after it has
gone into use [192]. Developing trustworthy software is a key challenge for the Software Industry,
therefore the testing phase is very important in the software development process. In fact, it is
estimated that half the time spent on the software project development and more than half its
cost, is devoted to testing the product [158]. The automation of test generation could reduce the
cost of the whole project. This explains why both, Software Industry and Academia, are interested
in automatic tools for testing. As the generation of adequate tests implies a big computational
effort, search-based approaches are required to deal with this problem.

1

2 1.2. OBJECTIVES AND PHASES

In this thesis dissertation we apply metaheuristic search techniques to optimization problems
derived from the automation of the testing process, particularly the automatic generation of test
data for finding bugs in the source code [147]. Throughout this PhD thesis we try to encompass the
most important testing paradigms, white-box as well as black-box testing. In white-box, also called
structural testing, the testers require the source code of the implemented software. In contrast, in
black-box or functional testing the testers are focused on what the software does, instead of how
it does it.

Overall, we propose metaheuristic techniques to solve the different variants of the automated
software test data generation problem. We analyze several techniques with the aim of obtaining op-
timal results in quality and cost, both aspects very important in the software development because
of the lack of resources. Due to the intrinsic character of this problem, we have proposed single-
objective optimization techniques to maximize the quality of the test suite and multi-objective
techniques considering at the same time the quality and the cost of the test suite. The under-
standing of the insights of a problem is a very goal. In this particular problem, project managers
have to estimate the effort needed to perform this important task of the software development.
Hence we propose a new complexity measure to predict in a better way the difficulty to test a
piece of source code. In this way, this PhD thesis contributes with experimental and theoretical
proposals to the domain of modern software testing.

1.2 Objectives and Phases

The main objectives in this PhD thesis are the following: study the main problems in software
testing, apply metaheuristics for solving the software testing problems, analyze the results to
measure the quality of the proposed approaches, propose new approaches for the studied problems,
and contribute with novel ideas to the research field. These global objectives have been decomposed
in more concrete partial objectives:

1. Identification of the most interesting open testing problems in the related literature.

2. Formal definition of the selected testing problems.

3. Description of the algorithms used to solve these optimization problems.

4. Application of search-based techniques to the selected problems.

5. Demonstration of the effectiveness through statistical evaluation.

6. Analysis of the results and conclusions extracted from them.

In order to reach this PhD thesis’ goals we have followed the Scientific Method [79]. The first
step is the observation, and so we have studied software testing problems and identified techniques
that the scientific community is using to solve them. From this analysis, we have extracted the
main shortcomings found in literature. The second step is making a hypothesis : here we propose
new techniques to solve these shortcomings like different algorithms, operators, representations,
and static measures of the source code. The experimentation is the third step, we design and
perform fair experiments always comparing the techniques with the same number of evaluations.
The fourth step is the refute or support of the claim, we analyze the obtained results applying
statistical tests to know whether the proposed technique is better or worse than others. Then, we

CHAPTER 1. INTRODUCTION 3

extract conclusions after our research work and further research actions are outlined. In this PhD
thesis we have confirmed our hypotheses made about several software testing problems. After this
dissertation, the cross-fertilization between research fields have made it possible to solve problems
with techniques that were not applied before. In addition, all scientific work must be reproducible
by other scientists, this work is not an exception, so we provide all details of our proposals. We
must highlight that we show the results of our studies in a clear structured simple way to be
understandable by any other researcher of the scientific community.

1.3 PhD Thesis Contributions

The contributions of this PhD thesis are mainly related to the research in the software testing
field, both in structural and functional testing. We have addressed interesting issues that improve
the state-of-the-art techniques, meanwhile we provide new efficient solutions for open challenges.
These contributions can be summarized as follows:

• Definition of a new distance measure to compute the branch distance in the presence of
the instanceof operator in Object Oriented programs. Proposal of two mutation operators
based on this previous definition.

• Definition of a new complexity measure based on a Markov model of a program, the Branch
Coverage Expectation. This measure is aimed at providing some knowledge about the diffi-
culty of testing programs.

• Theoretical prediction of the number of test cases needed to cover a concrete percentage of
the program, computed from the control flow graph of the program.

• Proposal of a whole test suite approach for solving a multi-objective test data generation
problem and comparison with a mono-objective approach followed by a test case selection.

• Comparison of different prioritization strategies to first test the most important functionali-
ties in Software Product Lines and Classification Trees.

• Definition of the Extended Classification Tree Method to completely describe all aspects
needed to generate sequences of tests for testing a software system.

• Exploration of the effect of different seeding strategies in the computation of the Pareto fronts
considering test suite quality and oracle cost in Software Product Lines.

• Proposal of an exact technique for the computation of optimal Pareto fronts considering test
suite quality and oracle cost in Software Product Lines.

In addition, a number of scientific articles have been published during the years in which this
PhD thesis has been developed that support and validate the impact of these contributions on
the scientific community and literature. These publications have appeared in impact journals
and fora, summing up 21 research papers: 3 journal articles indexed by ISI JCR, 1 international
journal article (not in JCR), 1 book chapter and 1 conference paper published in LNCS Series,
12 conference papers and 2 technical papers available in CoRR repository (references to these
publications can be found in Appendix A).

4 1.4. PHD THESIS ORGANIZATION

1.4 PhD Thesis Organization

This PhD thesis document is structured in four parts and two appendices. The first part is devoted
to present the fundamentals and basis for the work: what is software testing and the software testing
problems tackled, an explanation of metaheuristics as resolution techniques, the algorithms used
(throughout this PhD dissertation), and the methodology that we have employed for assessing and
validate the numerical results. Second and third parts are devoted to the most important testing
paradigms that are structural and functional testing, respectively. In the second part we address
the automatic test data generation problem, we propose a new complexity measure for estimating
the difficulty to test a piece of code, and we solve the bi-objective test data generation problem
considering test suite quality and cost as equally important goals, in the context of white-box
testing. The third part is devoted to explore the black-box version of the test data generation
problem, that is without any information of the source code. In this part we deal with two
representations of the system under testing, classification tree method and feature models. The
fourth part recaps the main conclusions drawn throughout the work and outlines our future research
lines. Finally, the appendices contains the set our related works that have been published during
the years in which this PhD thesis has been carried out and a summary in Spanish language In
the following we detail the content of each forthcoming chapter:

• Part I. Fundamentals of Software Testing and Metaheuristics

– Chapter 2 introduces the main concepts of software testing, emphasizing structural and
functional testing, the two main paradigms of software testing. After that, the problems
addressed in this PhD thesis are formalized in order to provide the reader with the exact
details of the problems we are solving.

– Chapter 3 provides a generic description of the research field of Optimization and Meta-
heuristics, including a classification of the main techniques. The last part of this chapter
concentrates on how to properly evaluate their results, including quality indicators and
the standard statistical validation employed in all our experiments.

– Chapter 4 introduces the most important versions of the algorithms used throughout
this PhD thesis, including single-objective and multi-objective techniques. The specific
implementation details (like the operators for mutation or crossover) which are problem-
specific (or representation specific), are deferred to the corresponding chapters.

• Part II. Structural Testing

– Chapter 5 deals with inheritance for generating test data in Object Oriented source
code. This chapter proposes a distance measure to compute the branch distance in the
presence of the instanceof operator and two mutation operators that change the can-
didate solutions based on the distance measure defined. In addition to the proposals we
have performed a set of experiments to test our hypotheses comparing against uniform
mutation.

– Chapter 6 contains the definition of a new complexity measure based on a Markov model
of a program, the “Branch Coverage Expectation”. This measure is aimed at providing
some knowledge about the difficulty of testing programs. After that, the theoretical
and experimental validity of the measure is evaluated using the framework proposed by
Kitchenham et al. [120].

CHAPTER 1. INTRODUCTION 5

– Chapter 7 starts by describing two different approaches for tackling the multi-objective
test data generation problem. It analyzes the performance of a direct multi-objective
approach versus the application of mono-objective algorithms followed by a test case
selection. Our approaches consider test suite quality and oracle cost as optimization
goals. In contrast to previous results in the literature that have only focused on the
coverage of a program, while the oracle cost is a significant cost that has been ignored
in most of the previous studies.

• Part III. Functional Testing

– Chapter 8 explores a series of issues related to the Classification Tree Method. We
analyze the prioritization of test data to test first the most important functionalities.
After that, we define an entire model (Extended Classification Tree Method) which
both industry and academia could use to completely describe all aspects needed to
generate sequences of tests for testing a program. Our proposals have been successfully
implemented in the CTE XL professional tool, what adds value to our work.

– Chapter 9 addresses the application of metaheuristic techniques to Software Product
Lines testing. Throughout this chapter we fill several existent gaps in the SPL literature:
we compare a parallel genetic solver with an state-of-the-art algorithm with pairwise
coverage as adequacy criterion, explore the effect of different seeding strategies, propose
classical multi-objective algorithms and a new exact algorithm to compute the true
Pareto front considering test suite quality and oracle cost.

• Part IV. Conclusions

– Chapter 10 contains a global review of the PhD dissertation, and revisits the main
conclusions drawn. The research objectives and main contributions are then discussed
in view of the results obtained. Lastly, the future lines of research are briefly sketched
and discussed.

• Appendices

– Appendix A presents the set of related works that have been published during the years
in which this PhD thesis has been carried out.

– Appendix B is a summary of this volume in Spanish.

6 1.4. PHD THESIS ORGANIZATION

Part I

Fundamentals of Software Testing

and Metaheuristics

7

Chapter 2

Fundamentals of Software Testing

Software engineering is a computer science area whose focus is the cost-effective development of
high-quality software systems [177]. Contrary to other elements studied in other engineering fields,
software is abstract and intangible, which is, on the one hand positive because it is not constrained
by physical laws. But, on the other hand, the lack of physical limitations on the potential of the
software makes it extremely complex and hence very difficult to understand. Moreover, software
is never used on its own but always as a part of some broader system including hardware, people
and, often, organizations.

Software engineering focuses on the study and application of engineering to the design, devel-
opment, and maintenance of software. However, nowadays there are many companies that still do
not apply software engineering techniques effectively, too many projects produce software that is
unreliable. After codification, software products require a test phase with the aim of finding errors
and to ensure software correctness.

Software testing could be defined from two different points of view [215]. The first defines
software testing as the process of evaluating a system or its components with the intent to find
whether it satisfies the specified requirements or not - positive view. The second claims that
software testing consists in executing a system in order to identify any gaps, errors, or missing
requirements in contrast to the actual requirements - negative view. In practice, testing will
combine elements of positive and negative testing, not only checking that a system meets the
requirements, but also trying to find errors in the source code. Consequently, the testing phase
consists in creating a set of test cases to execute the software under test (SUT), then the tester
has to check whether the output of the execution is correct or not, follows the specification or not.

Testing is not a new concept at all, Romans had already used this concept when evaluating
the quality of precious metals in the first century. This concept is still valid, though it is evolving
from manual to automatic testing due to the software complexity. Let us draw an example of how
difficult is testing even a simple function that classifies triangles1. Suppose the arguments of the
function are three integers of 32 bits and the computation execution capacity is 1,000 tests per
second, then the exhaustive testing of this function will last 2.5 quintillion years (2.5 ∗ 1018 years).
Obviously, nobody would test such a function like that, but it is a good example to show that
brute force approaches are useless dealing with this problem. The importance of the testing phase
and the high economic impact of an inadequate testing infrastructure were detailed in a survey by

1This function uses the lengths of the triangle to classify triangles in types: equilateral, isosceles, scalene, and
no-triangle.

9

10 2.1. STRUCTURAL TESTING

Tassey [197]. In a software project it is estimated that roughly 60% of costs are development costs
and 40% are testing costs. Moreover, for custom software, evolution costs often exceed development
costs [192]. Therefore, the automation of test data generation is desirable and could reduce the
cost of the whole project.

Automatic test data generation (automatic software testing) consists in proposing an adequate
set of test data in an automatic way to test a program, thus preventing the engineer from the
task of selecting an adequate set of test data to test the SUT. Therefore, this automation of the
process requires the automatic selection of adequate test data. This is an optimization problem
where the algorithm has to pick the best solution (test suite) among a number of feasible ones,
and it can be formulated as a search problem [47] (see Section 3.1). In all types of engineering
there are a large number of optimization problems, software engineering is not an exception. In
fact, the term Search Based Software Engineering (SBSE) was coined by Harman and Jones [97]
to refer to this research field that combines search algorithms with software engineering problems.
The automatic generation of test data is the most widely studied topic [95, 147] among SBSE
problems and Evolutionary Algorithms (EAs) are the most popular search-based algorithms to
face this problem. Then, the research community use the term evolutionary testing to refer to this
approach.

There are two complementary paradigms for testing a piece of code that rely on the knowledge
the tester has of the internal structure of the software: structural testing (white box) and functional
testing (black box). On the one hand, structural paradigm uses information about how the SUT
is constructed for generating test cases [113]. This structural information generally comes from
the control flow graph of the SUT, in particular from the control structures (decisions) that lead
to the different branches of the program. This technique is typically used during the early stages
of the testing process where the programmer is in charge of executing the test suite [215]. On the
other hand, functional tests are designed without any information of the structure of the source
code [38,39]. In this paradigm the design of the test cases must be based on the external behavior
of the SUT. This technique is typically used when the SUT is implemented by 3rd-party developers,
the source code is unavailable, or the entire system is tested. Throughout this PhD thesis we deal
with the test data generation problem using structural and functional techniques, so in the rest of
this chapter we make a deeper analysis of these two testing paradigms.

2.1 Structural Testing

The most relevant techniques for the automatic generation of test data in structural testing include
symbolic execution [43], random testing [18], and search-based testing [99]. In symbolic execution
the program’s code is analyzed to automatically generate test data. Although this technique has
been proven to be useful, it suffers problems that limit its effectiveness on real-world software [14].
Random testing is a competitive testing option only under particular circumstances [18], but it
is definitely a good technique to compare with as a sanity check. The problem of automatically
generating test inputs is NP-hard [147], so researchers seek to identify test suites that obtain near
optimal coverage in reasonable time. For this reason, search-based testing is receiving more and
more attention in the last few years [99]. Search-based techniques have revealed that they are
the best option to automatically generate test data with a high trade-off between quality and
cost. The most popular search-based algorithms for generating test data are EAs [77,147] such as
genetic algorithms [8,12,89,168,195,222], evolutionary strategies [5,74], or genetic programming [1,
11, 40, 179, 214]. Other search-based techniques like Tabu Search [60–62], Scatter Search [34, 60,
184], Estimation of Distribution Algorithms [183], Particle Swarm Optimization [140], Simulated

CHAPTER 2. FUNDAMENTALS OF SOFTWARE TESTING 11

Annealing [223], and Hybrid algorithms [213] have been also applied to solve this problem.
In structural testing the internal structure of the source code is essential, so different ap-

proaches have been presented depending on the particularities of the programming paradigm el-
ements used to develop the SUT. In the related literature there are studies on procedural pro-
gramming [62,98,128,140], object-oriented programming [19,73,78,179], and even aspect-oriented
programming [9]. In particular, different elements of the structure of a program have been studied
in detail. Researchers have analyzed different transformations on the source code to make it more
testable, namely testability transformations [150]. Occasionally, there are source code elements
that may cause inefficiency in the generation of test data, so they require some transformation,
for example, the presence of flags in conditions [25], the coverage of loops [61], the existence of
internal states [231], the presence of exceptions’ treatment [201], the nesting problem [151], and
the use of inheritance [73].

A key idea behind structural testing is the instrumentation of the SUT to measure coverage of
some structural criteria. The most popular adequacy criterion for the quality of the generated test
suite is branch coverage [44], though other structural criteria have been proposed. For example,
loop coverage [61], control-flow coverage [209], data-flow coverage [83], statement coverage [170],
or decision coverage [223]. In addition, several objective functions have been suggested [26, 185,
206,224] including the use of penalties [180], normalization [16], approximation distance [216], and
branch distance [125] in the so-called fitness function.

The solution of the test data generation problem is a set of test data whose execution is
able to cover all possible software elements. Most works cited above follow this mono-objective
approach. However, real-world engineers deal with the tedious and costly task of checking the
system behavior for all the generated test cases. This significant and usually neglected cost is
called the oracle cost [152]. Therefore, a reformulation of the problem as multi-objective have been
proposed [98, 129] to take into account coverage and oracle cost as equally important objectives.
When trying to cover all branches of the SUT, every single branch is a goal. Traditionally, most
works focus on only one branch at a time, some others use an aggregated function to deal with all
at the same time, namely whole suite approach [77], and more recently, all single branches could
be considered as objectives at the same time [169], so it requires a multi-objective optimization
technique.

This great research effort has led to the development of automatic tools for the generation of
test data using a search-based engine. For example, CUTE [188] a concolic unit testing engine for
C, DART [87] a directed automated random testing tool, AUSTIN [128] an open source tool for
search based software testing of C programs, EvoSuite [80] an automatic test suite generator for
Java, and many others. Some of the proposed tools have succeeded in testing safety-critical [202]
and real time software [217].

2.2 Structural Testing Problems Addressed in this Thesis

In this section we formally define the structural testing problem addressed in this dissertation. We
tackle the Test Data Generation Problem and the Multi-objective Test Data Generation Problem,
the multi-objective version of the same problem.

2.2.1 Test Data Generation Problem

In software testing the engineer selects an initial set of configurations or inputs for the SUT, called
test suite, and s/he checks the SUT behavior with them. In order to ensure the correctness of

12 2.2. STRUCTURAL TESTING PROBLEMS ADDRESSED IN THIS THESIS

a program with this technique, it would be necessary to execute the SUT with all the possible
configurations, but in practice this is unfeasible. The alternative consists in testing the program
with a representative set of test data. Let us define some important concepts related to the test
data generation problem.

The Control Flow Graph (CFG) of a program P is a directed graph Gp = (I, L) in which I
is the set of program’s statements (nodes) and L is the set of pairs such as (i, j) ∈ L if after
the execution of statement i, statement j can be executed. We denote with in(i) and out(i) the
in-degree of the node i and the out-degree of the node i, respectively. In this graph there is only
one node with entry degree zero which is denoted by i0, in(i0) = 0. This is the initial node of the
graph, it represents the first statement of the program. There is also a special node i∗ ∈ I with
out-degree zero out(i∗) = 0, it represents the end of the program. We denote with VP the set of
variables of the program P . Each variable vi ∈ VP can take values in a particular domain Di with
i = 1, . . . , |VP |. There is a special variable pc ∈ VP that is the program counter, it takes values
from the set I. A state ρ of the program P is an application that maps variables to domains:

ρ : VP →

|VP |⋃

i=1

Di (2.1)

vi 7→ ρ(vi) ∈ Di (2.2)

We say that a state ρ is an end state if ρ(pc) = i∗ and ρ is an initial state if ρ(pc) = i0. Let εp
denote the set of all possible states of a program P . We assume the existence of a state converter
Sp : εp 9 εp. This function maps each state ρ to the state ρ′ obtained after executing statement
ρ(pc).

An execution of a program P with initial state ρ, denoted with ExecP (ρ), is a sequence of states
{ρn} where ρ = ρ1 and for all i ≥ 1, then ρi+1 = SP (ρi). Each execution {ρn} of the program
P determines a path in the control flow graph Gp. This path is formed by a succession of nodes
{sn} where each element si ∈ I is defined as si = ρi(pc). Let ProjP (ρn) denote the sequence of
nodes {sn} determined by the sequence of states {ρn}, that is the projection of the execution in
the control flow graph. We denote with StaP ({sn}) the set of elements in I that are part of the
sequence {sn}. Finally, a test datum for a program P is the initial state of the program and a test
suite is a set of test data.

Definition 2.2.1 (Statement Coverage). Given a test data set T for a program P , we define the
statement coverage of T , covStaP (T), as the ratio between the number of statements executed in
the executions of the program with initial states given by T and the total number of statements in
the program, that is,

covStaP (T) =
|
⋃

ρ∈T StaP (ProjP (ExecP (ρ)))/{i∗}|

|I/{i∗}|
(2.3)

Now, we can define the Statement Coverage adequacy criterion, which establish that a set of
test data T for a program P is adequate when covStaP (T) = 1.

Conditional statements (if-then, switch, for, and while) are characterized in the control flow
graph by having an out-degree greater than one. We call CCFP to the set of nodes of the control
flow graph that represents this kind of statements, that is, CCFP = {i ∈ I|out(i) > 1}. An arc of
the control flow graph (i, j) is a branch of the program P if the tail of the arc belongs to the set
CCFP . We denote with BP the set of branches of the program P, i.e.,

CHAPTER 2. FUNDAMENTALS OF SOFTWARE TESTING 13

BP = {(i, j) ∈ L|out(i) > 1}, (2.4)

and with BR({sn}) the set of branches that appear implicitly in the sequence of nodes {sn}:

BR({sn}) = {(i, j) ∈ BP |∃k ≥ 1, i = sk ∧ j = sk+1}. (2.5)

Definition 2.2.2 (Branch Coverage). Given a test data set T for a program P , we define the
branch coverage of T , covBrP (T), as the ratio between the number of branches taken in the execu-
tions of the program with initial states given by T and the total number of branches in the program,
that is,

covBrP (T) =
|
⋃

ρ∈T BRP (ProjP (ExecP (ρ)))|

|BP |
(2.6)

Therefore, the Branch Coverage adequacy criterion establish that a test data set T for a program
P is adequate when covBr(T) = 1. Finally, we remark a well-known proposition in the test data
generation domain, that is,

Proposition 2.2.3. Let P be a program and T a test data set for P . If covBrP (T) = 1 then
covStaP (T) = 1. A total branch coverage implies a total statement coverage2.

Before we can enunciate the test data generation problem as an optimization problem, we need
to formally define an optimization problem. Assuming, without loss of generality, a minimization
case, the formal definition of an optimization problem is as follows:

Definition 2.2.4 (Optimization problem). An optimization problem is defined as a pair (S, f),
where S 6= ∅ is called the solution space (or search space), and f is a function named objective
function or fitness function, defined as f : S → R .

Solving an optimization problem consists in finding a solution x∗ ∈ S such that:

f(x∗) ≤ f(x), ∀ x ∈ S . (2.7)

Note that assuming either maximization or minimization does not restrict the generality of the
results, since an equivalence can be made between the two cases in the following manner [22, 88]:

max{f(x)|x ∈ S} ≡ min{−f(x)|x ∈ S} . (2.8)

Depending on the domain S belongs to, we can speak of binary (S ⊆ B
∗), integer (S ⊆ Z

∗),
continuous (S ⊆ R

∗), or heterogeneous optimization problems (S ⊆ (B ∪ Z ∪R)∗).
After defining the most important concepts, we formalize the test data generation problem as

follows.

Definition 2.2.5 (Test data generation problem). Given a program P , the test data generation
problem consist in finding a test data set T which maximizes covBrP (T). Consequently, a solution3

for this problem is the data set T .

2The proof of this proposition is found in [45].
3In the testing field this solution is also called test suite.

14 2.2. STRUCTURAL TESTING PROBLEMS ADDRESSED IN THIS THESIS

2.2.2 Multi-Objective Test Data Generation Problem

Ideally we would generate and execute all possible tests, but this is practically impossible, as
we said before. Since the size of the test suite is an engineer’s decision, s/he can control the
effort devoted to this task. The incurred cost of checking whether the output of a program’s
execution is correct or not is called oracle cost. Thus, another objective for a software engineer
is the minimization of the oracle cost, which can be achieved if the test suite size is minimized.
Consequently, a balance between coverage and cost to achieve such coverage is mandatory. Since
the cost of the testing phase depends on the test suite size, minimizing the test suite size, denoted
with |T | (where T is the test suite), must be another goal. Prior to the definition of the Multi-
Objective Test Data Generation problem (MOTDGP), we need to define some important concepts
related to multi-objective optimization in general.

Mono-objective techniques focus on trying to minimize (or maximize) the values obtained with
one single fitness function f , so there is one single global optimum. But, most of the real-world
optimization problems require the optimization of more than one objective functions which are
usually in conflict with each other, i.e., if one objective is improved, some of the others will
be worsened. In the absence of any further information, all the objectives of a Multi-objective
Optimization Problem (MOP) are considered equally important.

Informally, a MOP can be defined as the problem consisting in finding a vector of decision
variables which satisfies a set of constraints and optimizes a number of objective functions. Those
functions define a set of performance criteria which are in conflict with each other. Thus, the term
optimization refers to the search of such a vector, which has acceptable values for all the objective
functions. The formulation of a MOP extends the classic definition of mono-objective optimization
by considering the existence of two or more objective functions. Consequently, there is not a single
solution, but a set of them. To choose the most accurate solutions we make use of the Pareto
Optimality theory. In the following we formally define the most important concepts related to
MOPs, assuming, without loss of generality, that all objectives have to be minimized.

Definition 2.2.6 (Pareto Dominance). Given a vectorial function f : S → R
k, a solution x1 ∈ S

is said to dominate a solution x2 ∈ S, denoted with x1 ≺ x2, if and only if fi(x
1) ≤ fi(x

2) for
i = 1, 2, ..., k, and there exists at least one j (1 ≤ j ≤ k) such that fj(x

1) < fj(x
2).

Definition 2.2.7 (Pareto Optimal Set). We say that a solution x is non-dominated with respect
to the solution space S, if there does not exist another solution x∗ ∈ S such that f(x∗) ≺ f(x).
Then, the set of non-dominated solutions X∗ with respect to the solution space S is called Pareto
Optimal Set.

Generating the Pareto Optimal Set of a problem is the main goal of multi-objective optimization
techniques.

Definition 2.2.8 (Pareto Optimal Front). The Pareto Optimal Front PF is the image by f of the
Pareto Optimal Set X∗ (in the objective space), that is, PF = f(X∗).

Figure 2.1 depicts some examples of dominated and non-dominated solutions. In this figure, A
dominates C because f1(A) < f1(C), and f2(A) < f2(C). Meanwhile, A and B are non-dominated
solutions because A is better than B in the first objective function (f1(A) < f1(B)), but B is
better than A in the other objective function (f2(A) > f2(B)).

Taking into account this definition of the Pareto dominance, a MOP is defined as follows:

CHAPTER 2. FUNDAMENTALS OF SOFTWARE TESTING 15

Figure 2.1: Examples of dominated and non-dominated solutions.

Definition 2.2.9 (MOP). A multi-objective optimization problem is defined as a 2-tuple (S, f),
where S 6= ∅ is called the solution space (or search space), and f is a vector function. A multi-
objective optimization problem consists in finding the Pareto Optimal Set X∗ with respect to the
solution space S considering the vector function f .

We formally define the Multi-Objective Test Data Generation problem (MOTDGP) with two
conflicting objectives as follows:

Definition 2.2.10 (MOTDGP). Given a program P , the multi-objective test data generation
problem consists in finding a set of non-dominated solutions (test suites) X∗ from the set S of all
possible test suites and considering the maximization of f1(x) = covBrP (x) and the minimization
of f2(x) = |x|, x ∈ S.

2.3 Functional Testing

In the paradigm of structural testing a lot of research has been carried out using EAs, but the use of
search-based techniques in functional testing is less frequent [210], the main cause being the implicit
nature of the specification, which is generally written in natural language. Functional testing is
used to confirm that the SUT meets its functional requirements. Typical functional approaches
are decision table testing [32], equivalence partitioning [42], boundary value analysis [215] and
category partition method [167]. Equivalent partitioning consists in performing a partition of the
input domain of a function being tested, and then to select test data from each class of the partition.
The idea is that all elements within an equivalence class are essentially the same for the purposes
of testing. Boundary analysis and category partition method are considered a type of equivalent
partitioning. In addition, there is no a standard representation of the system under test, so several
approaches are available to represent the SUT such as the Classification Tree Method [91] or the
Feature Models [115], a de facto standar for representing Software Product Lines (SPLs) [115].

Traditionally, the challenge has been to generate test suites to completely test the software.
However, complete testing is not feasible for arbitrarily large projects [114], so a good subset
of all possible test cases has to be selected. Combinatorial Interaction Testing (CIT) [53] is a
black box sampling technique to complement traditional testing method that tries to address this
problem. CIT is an effective testing approach for detecting failures caused by certain combinations
of components or input values. Generally, this task consists of generating, at least, all possible
combinations of the parameters’ values. The most common coverage criterion is 2-wise (or pairwise)

16 2.3. FUNCTIONAL TESTING

testing, that is fulfilled if all possible pairs of values are covered by at least one test case in the result
test set. Nearly all existing works investigate pairwise combination methods, but most of them
can be extended to arbitrary t-combinations [82]. A large number of CIT approaches have been
presented in the past [112, 173,202], particularly a good overview and classification of approaches
can be found in [127, 144], or more recently in [163]. A good survey that focuses on CIT with
constraints is given in [51].

Project managers usually have a limited time for testing the whole system, therefore the most
critical part of the software should be tested earlier than the non-critical. Prioritization of test
cases is essential for discovering critical errors in early stages of the testing phase. But, in contrast
the generation of minimal test suites that fulfill the demanded coverage criteria is an NP-hard
problem [219]. For this reason, we tackle in this PhD thesis the generation of prioritized test suites
in functional testing.

Nowadays software is present in critical applications as well as in practically all electronic
devices present in our daily life. These two very different kind of programs have one feature in
common, both could be represented by a state machine, defined by states and transitions. The
actions performed by the system under test to change states are represented as transitions, therefore
we generate sequences of tests using transitions. An isolated test datum does not describe which
transitions were executed to get that state, thus, the test cases must be executed in a sequence.
The benefits of using sequences of tests have been addressed by only a few works [33,126,165,205].
In this PhD thesis we present an extension of the Classification Tree Method to deal with the
generation of test sequences.

Although several search-based techniques have been applied to solve CIT problems, it remains
largely unexplored. Garvin et al. applied simulated annealing to combinatorial interaction testing
for computing n-wise coverage for SPLs. Ensan et al. [70] propose a genetic algorithm approach for
test case generation for SPLs. Scatter search was also used to generate test cases for transition-pair
coverage [33]. Recent work by Xu et al. uses a genetic algorithm for continuous test augmentation
[225]. Their CONTESA tool incrementally generates test cases employing static analysis techniques
for achieving coverage more effectively. None of these approaches use a multi-objective approach.

The work by Wang et al. presents an approach to minimize test suites using weights in the
fitness function [212], that is, it uses a scalarizing function that transforms a multi-objective prob-
lem to a single-objective one [233]. Recent work by Henard et al. [103] presents an ad-hoc multi-
objective algorithm whose fitness function is also scalarized. Incidentally we should point out there
is an extensive body of work on the downsides of scalarization in multi-objective optimization [142].
Among the shortcomings are the fact that weights may show a preference of one objective over
the other and, most importantly, the impossibility of reaching some parts of the Pareto front when
dealing with convex fronts. In this PhD thesis we formalize the multi-objective version of the
problem when the objectives are equally important (classical approach).

This great research effort has led to the development of automatic tools such as MoSo-PoLiTe
[166], an approach that translates feature models associated to SPL and their constraints into
binary constraint solver problems from which they compute pairwise covering arrays. Similarly,
Hervieu et al. developed a tool called PACOGEN that also relies on constraint programming for
computing pairwise coverage from feature models [104]. This tool has been recently included as
part of a framework for practical pairwise testing in industrial settings [141]. Johansen et. al
propose a greedy approach to generate n-wise test suites that adapts of Chvátal’s algorithm to
solve the set cover problem [110].

CHAPTER 2. FUNDAMENTALS OF SOFTWARE TESTING 17

2.4 Functional Testing Problems Addressed in this Thesis

In this section we define the functional testing problems we address in this dissertation. We face
the Prioritized Pairwise Test Data Generation Problem with Classification Tree Method, the Test
Sequence Generation Problem with Extended Classification Tree Method, the Pairwise Test Data
Generation Problem in SPL, and the Multi-Objective Test Data Generation Problem in SPL.

2.4.1 Prioritized Pairwise Test Data Generation Problem with Classifi-

cation Tree Method

Combinatorial Interaction Testing is an effective testing approach for detecting failures caused by
certain combinations of components or input values. Generally, this task consists of generating,
at least, all possible combinations of the parameters’ values (this task is NP-hard). There is
not a common abstract nor concrete language to express combinatorial problems, so then, the
formalization of this particular problem depending on how the combinatorial problem is expressed.
In this case the problem and the solutions are represented using the Classification Tree Method [91]
(CTM). This method aims at systematic and traceable test case identification for functional testing
over all test levels (for example, component test or system test). It is based on the category partition
method [167], which divides a test domain into disjoint classes representing important aspects of
the test object. Applying the CTM involves two steps; designing the classification tree and defining
test data.

Design of the classification tree: The classification tree is based on the functional speci-
fication of the test object. For each aspect of interest (called “classification”), the input domain
is divided into disjoint subsets (called classes). In the classification tree method, classifications
match parameters and classes match parameter values. Figure 2.2 shows a classification tree for
a video game system. Two aspects of interest (Game and Pause) have been identified for the
system under test. The classifications are partitioned into classes which represent the partitioning
of the concrete input values. In our example the refinement aspect Playing is identified for the
class runningGame and it is divided further into two classes startup and controlling. All classes
have been assigned values of importance. As the figure shows, running is the most probable class
in Pause classification. The weights of all classes at the same level in one classification sum 1
in the model. The class runningGame has an occurrence rate of 0.7 in Game. If the Game is
runningGame, statup has an occurrence rate of 0.9 and controlling has an occurrence rate of 0.1.
Refinements are interpreted as conditional probability in the occurrence model. The resulting oc-
currence probability for a runningGame with statup enabled is 0.63 (= 0.7 × 0.9), for controlling
it is 0.07, accordingly.

Definition of test data: Having composed the classification tree, test data can be defined by
combining classes from different classifications. Since classifications only contain disjoint values,
test data cannot contain several values of one classification. The length of the test data could
vary if a class is refined into several classifications. In the following we formalize these essential
concepts.

Throughout this section we formally define the CTM in order to describe all the aspects needed
to generate combinatorial testing data for testing a software artifact. The CTM model can be
totally defined by a tuple of three elements:

CTM = (C, V, w), (2.9)

18 2.4. FUNCTIONAL TESTING PROBLEMS ADDRESSED IN THIS THESIS

Figure 2.2: Video Game System test object.

where C is the set of Classes, V is the set of Classifications, and w is a word of the language L(G)
generated by the grammar G defined as follows:

G = (N,Σ, P, S) (2.10)

whereN is the set of nonterminal symbols: N = {Class, AtomicClass, RefinedClass, Classification}.
Σ is the set of terminal symbols: Σ = C ∪ V ∪ Punct, where Punct contains the squared brackets
and comma. P is the following set of production rules:

S → Class

Class → AtomicClass|RefinedClass

AtomicClass → β ∀β ∈ C

RefinedClass → β [Classification (, Classification)∗] ∀β ∈ C

Classification → [α, γ, [Class (, Class)∗]] ∀α ∈ V, ∀γ ∈ C

where γ in the last rule represent the initial (default) class of classification α. S is the axiom of
the grammar. The language L(G) generated by the grammar represents all the possible trees that
can be build using the same set of classes and classifications.

As an illustration, the CTM model shown in Figure 2.2 can be defined by the following triple:

CTMEx1 = ({V ideoGame, startingGame, runningGame, startup, controlling, gameOver,

running, paused},

{Game, P laying, Pause},

w})

where the word w for this example is:

CHAPTER 2. FUNDAMENTALS OF SOFTWARE TESTING 19

w:=VideoGame [

[Game, startingGame,

[startingGame,

runningGame [Playing, startup, [startup, controlling]],

gameOver]],

[Pause, running, [running, paused]]]

Let us define some relations between the elements e (classes and classifications) in the CTM
model. An element ep is parent of ed, if ed belongs to one of the classifications or classes defined by
ep. If ep is parent of ed, then we say that ed is a child of ep. The ascendant relation is the transitive
closure of the parent relation and the descendant relation is the transitive closure of the children
relation. In our running example, the class runningGame is the parent of the classification Playing
and is also the ascendant of the classes startup and controlling. On the other hand, Playing is child
of runningGame, meanwhile, the three elements (startup, controlling and Playing) are descendants
of runningGame.

An element es is sibling of another element es′ if they have the same parent. For example
the class startingGame is sibling of runningGame and gameOver. In addition, the classification
Game is sibling of the classification Pause and vice versa. The initial class γ of a classification v
is defined in the word w. Finally, the root class is the first element that appears in w and it does
not have a parent in the tree (it only has descendants). From these relations we define the related
functions that, given an element, return a set of elements: Parent(e), Ascendants(e), Children(e),
Descendants(e), Siblings(e) and InitialClass(v).

Definition 2.4.1 (Valid Test Datum). A valid test datum for a particular CTM model is a set of
classes:

Q := {c1, c2, ..., cn}

where the classes ci must fulfill the following rules:

1. ∀c ∈ Q\root, Ascendants(c) ∩ C ∈ Q.

2. ∀c ∈ Q, ∀s ∈ Children(c), ∃d ∈ Q, d ∈ Children(s).

3. ∀c, b ∈ Q, c 6= b =⇒ b /∈ Siblings(c).

Rule 1 says that if a class is in the test datum Q then all the classes in which it is included
(ascendant classes) must also be in the test datum. Rule 2 requires that all the classifications
under a class that is in Q must have a class in Q. Finally, Rule 3 prevents from having two classes
of the same classification in the test datum.

Definition 2.4.2 (Valid Pair). Given a valid test datum Q := {c1, c2, ..., cn}, a pair (ci, cj) is
valid if ci, cj ∈ Q

Given an CTM model, the objective in this problem is the generation of a set of test data
that maximizes a coverage criterion. In this study we use the pairwise coverage. This adequacy
criterion consist in generating a test suite that uses every class pair from disjunctive classifications
at least once in a test datum.

Definition 2.4.3 (Pairwise coverage). Given a test data set T for a model M, we define the
pairwise coverage of T, covPw(T), as the ratio between the number of valid pairs in T and the total
number of posible valid pairs extracted from all test data generated from the model M.

20 2.4. FUNCTIONAL TESTING PROBLEMS ADDRESSED IN THIS THESIS

Definition 2.4.4 (Pairwise Test Data Generation Problem). Given a CTM model M, the com-
binatorial test data generation problem consists in finding a test data set T which maximizes
covPw(T).

In order to define the Prioritized Pairwise Test Data Generation problem, we first detail how
the priorities are assigned to classification tree elements. These priorities are also called weights.
The higher the weight, the higher importance of the element. These weights can be used to guide
the test data generation in order to cover first the most important values. Once we have assigned
weights to each value (class), we need to define weights for the pair of classes.

Definition 2.4.5 (Prioritized Valid Pair). Given a valid pair vp = (ci, cj) with weighted values
(ci.w, cj .w), a prioritized valid pair is defined by a couple (vp, wp) where the pair weight wp =
ci.w ∗ cj .w.

We need to define a measure of the quality of a test suite in order to decide which test suite
is the best one. We use here a coverage measure which is based on the weights of the class pairs
covered.

Definition 2.4.6 (Prioritized Test Datum). A prioritized test datum is a tuple (Q,w), where
Q represent a valid test datum, and w its weight. Let VT be the set of all valid pairs in Q,
w =

∑
v∈V T v.w, that is the sum of all valid pairs of the test datum Q.

Definition 2.4.7 (Prioritized Test Suite). A prioritized test suite is a tuple (S,w), where TS is a
set of valid test data, and w its weight. Let VTS be the set of all test data in TS, w =

∑
t∈V TS t.w,

that is the sum of the weight of all tests in the test suite.

Definition 2.4.8 (Prioritized Pairwise coverage). Given a prioritized test suite PTS for a model
M, we define the prioritized pairwise coverage of PTS, covPPw(PTS), as the ratio between the
weight value of the test suite PTS and the total weight value of all coverable pairs extracted from
all test data generated from the model M.

Definition 2.4.9 (The Prioritized Pairwise Test Data Generation Problem). Given a CTM model
M, the prioritized combinatorial test data generation problem consists in finding a prioritized test
suite PTS which maximizes covPPw(PTS).

2.4.2 Test Sequence Generation Problem with Extended Classification

Tree Method

The Classification Tree defined above can be used to design test data in isolation. However, the
test object can have operations related to transitions between classes in the classification tree
and executing these transitions is the only way we can reach a given state (test datum) of the
object. Let us continue with the video game example to illustrate new concepts. Imagine we
need to execute some code when the user changes the state of the object from starting game to
running game. These operations can be modeled by extending the classification tree method with
transitions between classes (see Figure 2.3). In a real-world example, these transitions come from
the semantics of the software object. We also assume that each classification has a default class
that we highlight in the graphical representation by underlining its name. This extension of the
classification tree can be seen as a hierarchical concurrent state machine (HCSM) or statechart [94]
where classes match states, and classifications match orthogonal regions.

CHAPTER 2. FUNDAMENTALS OF SOFTWARE TESTING 21

Figure 2.3: Video game ECTM example.

When the transition information is available we are also interested in covering all the possible
transitions in the system. In this case, sequences of test data play a main role rather than the
isolated test data. In effect, an isolated test datum does not describe which transitions were
executed to get that test datum and, thus, does not determine the transitions executed. For this
reason, our goal in this work is to provide test suites composed of sequences of test data that cover
not only all the possible classes in the classification tree but also all the transitions by using the
minimal number of total test data.

In addition to the constraints defined by the classification-classes hierarchy, in the Test Sequence
Generation Problem (TSGP) we take dependency rules into account. These are constraints between
single test steps i.e., restrictions on the transitions between classes. Within each test sequence,
dependency rules must not be violated. Dealing with dependency rules is important since the
testing of several states could be combined, resulting in shorter test sequences. In this way, we
need fewer amount of resources to test all functionality. In the following we formally define the
extension of the CTM (ECTM).

Our approach for test sequence generation is based on an idea proposed by Conrad [54], who
suggests the interpretation of classification trees as parallel finite state machines. However, we need
to extend Conrad’s approach to interpret refined classes of the classification tree. This concept is
similar to the refinements of states in UML statecharts. Our approach can be seen as a statechart,
because we have concurrent states and we have added hierarchies to the model. The ECTM model
can be totally defined by a tuple of four elements, extending the definition of CTM that we made
previously (in Section 2.4.1) by adding a set of allowed transitions T:

ECTM = (C, V, w, T), (2.11)

where C is the set of Classes, V is the set of Classifications, w is a word of the language L(G)
generated by the grammar G and T is the set of allowed transitions between the classes T ⊆ C×C.
We will use either the notation cs → cd or (cs, cd) to represent a transition between classes cs and
cd.

22 2.4. FUNCTIONAL TESTING PROBLEMS ADDRESSED IN THIS THESIS

As an illustration, the ECTM model shown in Figure 2.3 can be defined by the following
quadruple:

ECTMEx1 = ({V ideoGame, startingGame, runningGame, startup, controlling, gameOver,

running, paused},

{Game, P laying, Pause},

w,

{startingGame→ runningGame, startup→ controlling,

controlling → gameOver, running → paused, paused→ running})

The transition set in an ECTMmodel can contain any transition except those connecting classes
of sibling classifications. Formally, any ECTM model must fulfill:

∀v1, v2 ∈ V, v1 ∈ Siblings(v2) =⇒ ∀c1 ∈ Descendants(v1) ∩ C, ∀c2 ∈ Descendants(v2) ∩C,

(c1, c2) /∈ T.

In order to build a sequence of test data we must define how to navigate from a source test
datum Q1 to a destination test datum Q2. The initial test datum in a sequence, Qini, is composed
by the initial classes of the children classifications under the root of the tree and all their ascendants.

Given a transition t = (cs, cd) ∈ T , the general rule to transit from Q1 to Q2 is as follows. We
must find the deepest common classification of cs and cd, say va. If there exists another common
classification, then that classification must be an ascendant of the deepest one va. Once we have
found va, we must remove from the source test datum Q1 all the classes under va, in other words,
any class that is descendant of va. Next, we have to add cd and its ascendants which are children
of va, and add the initial classes of the classifications of these ascendants, except the siblings of cd.
If cd is a refined class, then the initial classes of all classifications of cd and their descendants are
also added in order to build a valid test datum. Let us formally define all this procedure.

Let Q1 be the source test datum, first we must remove from Q1 the descendants of va:

Q′ = Q1 −Descendants(va)

where {cs, cd} ⊆ Descendants(va) and does not exist vd ∈ Descendants(va) such that {cs, cd} ⊆
Descendants(vd). Then, we must add some classes to Q′ in order to transit to the new test datum
Q2. In order to do this, let us define the function Incomplete(Q) as follows:

Incomplete(Q) = {v ∈ V |Parent(v) ∈ Q ∧ ∀c′ ∈ Children(v), c′ /∈ Q}.

Then, we compute Q2 iteratively using the next pseudocode:

Q2 = Q′ ∪ (Ascendants(cd) ∩Descendants(va)) ∩C
while Incomplete(Q2) 6= ∅ do
Q2 = Q2 ∪ InitialClass(Incomplete(Q2))

end while

We define a test sequence as a sequence of test data TS = (Qi) with 1 ≤ i ≤ n, where the first
test datum is the initial one, that is, Q1 = Qini. In this work we have chosen two coverage criteria:
class and transition coverage. The class coverage criterion consists of covering all the classes of

CHAPTER 2. FUNDAMENTALS OF SOFTWARE TESTING 23

the classification tree with the generated test suite. The transition coverage requires covering all
the transitions available between the classes of the ECTM. In our running example of Figure 2.3,
we have to cover eight classes for total class coverage (VideoGame, startingGame, runningGame,
startup, controlling, gameOver, running, and paused), and five transitions to obtain full transition
coverage ({startingGame → runningGame, startup → controlling, controlling → gameOver,
running → paused, paused → running})).

We formally define the coverage criteria used in this problem as follows:

ClassCoverage(sol) =

∣∣∣∣
n⋃

i=1

Qi

∣∣∣∣
|C|

(2.12)

TransitionCoverage(sol) =

∣∣∣∣
n−1⋃
i=1

Transitions(Qi, Qi+1)

∣∣∣∣
|T |

(2.13)

where Transitions is defined as:

Transitions(Qi, Qi+1) = (Qi ×Qi+1) ∩ T

Given an ECTM model, the objective of the TSGP is the generation of a set of test sequences
that maximizes any of the coverage criterion (one each time) defined above (class or transition).

Definition 2.4.10 (Test Sequence Generation Problem). Given an ECTM model M, the objective
of the TSGP is the generation of a test sequence TS that maximizes any of the coverage criterion
(one each time) defined above (ClassCoverage(TS) or TransitionCoverage(TS)).

2.4.3 Pairwise Test Data Generation Problem in SPL

A Software Product Line (SPL) is a family of related software systems, which provide different
feature combinations [175]. The effective management and realization of variability – the capacity
of software artifacts to vary – is crucial to reap the benefits of SPLs such as increased software
reuse, faster product customization, and reduced time to market. As we stated before, there is no
a common representation for combinatorial testing problem, so in this work we represent SPL with
feature models. Feature models have become the de facto standard for modelling the common and
variable features of an SPL and their relationships collectively forming a tree-like structure. The
nodes of the tree are the features which are depicted as labelled boxes, and the edges represent
the relationships among them. Feature models denote the set of feature combinations that the
products of an SPL can have [115].

Figure 2.4 shows the feature model of our running example for SPLs, the Graph Product Line
(GPL) [134], a standard SPL of basic graph algorithms that has been widely used as a case study
in the product line community. In GPL, a product is a collection of algorithms applied to directed
or undirected graphs. In a feature model, each feature (except the root) has one parent feature
and can have a set of child features. A child feature can only be included in a feature combination
of a valid product if its parent is included as well. The root feature is always included. There are
four kinds of feature relationships:

• Mandatory features are selected whenever their respective parent feature is selected. They
are depicted with a filled circle. For example, features Driver and Algorithms,

24 2.4. FUNCTIONAL TESTING PROBLEMS ADDRESSED IN THIS THESIS

Figure 2.4: Graph Product Line feature model.

• Optional features may or may not be selected if their respective parent feature is selected.
An example is feature Search,

• Exclusive-or relations indicate that exactly one of the features in the exclusive-or group must
be selected whenever the parent feature is selected. They are depicted as empty arcs crossing
over a set of lines connecting a parent feature with its child features. For instance, if feature
Search is selected, then either feature DFS or feature BFS must be selected,

• Inclusive-or relations indicate that at least one of the features in the inclusive-or group must
be selected if the parent is selected. They are depicted as filled arcs crossing over a set of lines
connecting a parent feature with its child features. As an example, when feature Algorithms
is selected then at least one of the features Num, CC, SCC, Cycle, Shortest, Prim, and
Kruskal must be selected.

Besides the parent-child relations, features can also relate across different branches of the feature
model with the so called Cross-Tree Constraints (CTC). Figure 2.4 shows the CTCs of our feature
model in textual form. For instance, Num requires Search means that whenever feature Num is
selected, feature Search must also be selected. These constraints as well as those implied by the
hierarchical relations between features are usually expressed and checked using propositional logic,
for further details refer to [29].

Combinatorial Interaction Testing (CIT) is a testing approach that constructs samples to drive
the systematic testing of software system configurations [52, 163]. When applied to SPL testing,
the idea is to select a representative subset of products where interaction errors are more likely to
occur rather than testing the complete product family [52]. In the following we provide the basic
terminology of CIT for SPLs4.

Definition 2.4.11 (Feature list). A feature list FL is the list of features in a feature model.

4Definitions based on [29] and [110].

CHAPTER 2. FUNDAMENTALS OF SOFTWARE TESTING 25

Table 2.1: Sample feature sets of GPL feature model.

Prod G D B GT DI U W S BF DF A N C SC CY P K SH

p0 X X X X X X X X

p1 X X X X X X X X X X X X X X

p2 X X X X X X X X X X X

p3 X X X X X X X

Definition 2.4.12 (Feature set). A feature set fs is a pair (sel, sel) where the first and second
components are respectively the set of selected and not-selected features of a SPL product. Let FL
be a feature list, thus sel, sel ⊆ FL, sel ∩ sel = ∅, and sel ∪ sel = FL. Wherever unambiguous we
use the term product as a synonym of feature set.

Definition 2.4.13 (Valid feature set). A feature set fs is valid with respect to a feature model fm
iff fs.sel and fs.sel do not violate any constraints described by fm. The set of all valid feature sets
represented by fm is denoted as FSfm.

An example of valid feature set fs1 is one that computes the algorithm Number, on Directed
graphs using BFS search. Thus, the selected features are fs1.sel={GPL, Driver, Benchmark,
GraphType, Directed, Search, BFS, Algorithms, Number}5. Consider now another feature set fs2
with selected features BFS and Cycle, meaning {BFS,Cycle} ⊆ fs2.sel. This feature set is invalid
because these two features violate the CTC that establishes that whenever Cycle feature is selected
then feature DFS must be selected, i.e. Cycle requires DFS. In our running example GPL, the
feature model denotes 73 distinct feature sets. Some of them are depicted in Table 2.1, where for
any given feature set its selected features are ticked (X) and its unselected features are empty. In
this table, we use as column labels the shortest distinguishable prefix of the feature names (e.g. G
for feature GPL).

The focus of our study is pairwise testing, thus our concern is on the combinations between
two features. The coming definitions are consequently presented with that perspective; however,
the generalization to combinations of any number of features is straightforward.

Definition 2.4.14 (Pair6). A pair ps is a 2-tuple (sel,sel) involving two features from a feature
list FL, that is, ps.sel ∪ ps.sel ⊆ FL ∧ ps.sel ∩ ps.sel = ∅ ∧ |ps.sel ∪ ps.sel| = 2. We say pair ps
is covered by feature set fs iff ps.sel ⊆ fs.sel ∧ ps.sel ⊆ fs.sel.

Definition 2.4.15 (Valid pair). A pair ps is valid in a feature model fm if there exists a valid
feature set fs that covers ps. The set of all valid pairs of a feature model fm is denoted with V PSfm.

Let us illustrate pairwise testing with the GPL running example. Some samples of pairs are:
GPL and Search selected, Weight and Undirected not selected, CC not selected and Driver se-
lected. An example of invalid pair, i.e. not denoted by the feature model, is features Directed and
Undirected both selected. Notice that this pair is not valid because they are part of an exclusive-or
relation.

Definition 2.4.16 (Pairwise test suite). A pairwise test suite pts for a feature model fm is a set of
valid feature sets of fm. A pairwise test suite is complete if it covers all the valid pairs in V PSfm,
that is: {fs|∀ps ∈ V PSfm ⇒ ∃fs ∈ FSfm such that fs covers ps}.

5Unselected features omitted for brevity.
6This definition of pair differs from the mathematical definition of the same term and is specific for SPLs. In

particular, it adds more constraints to the traditional definition of pair.

26 2.4. FUNCTIONAL TESTING PROBLEMS ADDRESSED IN THIS THESIS

In GPL there is a total of 418 valid pairs, so a complete pairwise test suite for GPL must have
all these pairs covered by at least one feature set. Henceforth, because of our focus and for sake of
brevity we will refer to pairwise test suites simply as test suites.

In the following we provide a formal definition of the priority scheme based on the sketched
description provided in [111].

Definition 2.4.17 (Prioritized product). A prioritized product pp is a 2-tuple (fs, w), where fs
represents a valid feature set in feature model fm and w ∈ R represents its weight. Let ppi and ppj
be two prioritized products. We say that ppi has higher priority than ppj for test-suite generation
iff ppi’s weight is greater than ppj’s weight, that is ppi.w >ppj.w.

As an example, let us say that we would like to prioritize product p0 with a weight of 17. This
would be denoted as pp0=(p1,17).

Definition 2.4.18 (Pairwise configuration). A pairwise configuration pc is a 2-tuple (sel, sel)
representing a partially configured product, defining the selection of 2 features of feature list FL,
i.e. pc.sel ∪ pc.sel ⊆ FL ∧ pc.sel ∩ pc.sel = ∅ ∧ |pc.sel ∪ pc.sel| = 2. We say a pairwise
configuration pc is covered by feature set fs iff pc.sel ⊆ fs.sel ∧ pc.sel ⊆ fs.sel.

Consider for example the pairwise configuration that indicates that feature Driver is selected
while feature Undirected is deselected pc1=({Driver},{Undirected}). Notice that pc1 is covered
by products p2 and p3 of Table 2.1. Another example is pairwise configuration pc2=({Directed,
Undirected},{}) with features Directed and Undirected selected and no feature unselected. This
configuration is covered by products p2 and p3 of Table 2.1.

Definition 2.4.19 (Weighted pairwise configuration). A weighted pairwise configuration wpc is
a 2-tuple (pc,w) where pc is a pairwise configuration and w ∈ R represents its weight computed as
follows. Let PP be a set of prioritized products and PPpc be a subset, PPpc ⊆ PP, such that PPpc

contains all prioritized products in PP that cover pc of wpc, i.e. PPpc = {pp ∈ PP |pp.fs covers
wpc.pc}. Then w =

∑
p∈PPpc

p.w

Let us consider the following set of prioritized products from Table 2.1. Let PP={(p0,17),
(p1,15), (p2,5), (p3,3)} with ppi = (fsi,wi), and assume that the remaining 69 products of our
feature model in Figure 2.4 (i.e. 73 minus 4 shown in the table) have priority weight values of 0. The
weight of pairwise configuration pc1=({Directed},{Undirected}) is then wpc1.w = pp2.w+pp3.w =
5+3 = 8, that is, the summation of the weights of the products whose feature sets cover pc1 with
weight greater than zero, namely p2 and p3. Similarly, the weight for pc2 (Directed and Undirected
selected) is wpc2.w = pp0.w + pp1.w = 17 + 15 = 32.

Definition 2.4.20 (Prioritized pairwise covering array). A prioritized pairwise covering array
ppCA for a feature model fm and a set of weighted pairwise configurations WPC is a set of valid
feature sets FS that covers all weighted pairwise configurations in WPC whose weight is greater
than zero: ∀wpc ∈ WPC (wpc.w > 0⇒ ∃fs ∈ ppCA such that fs covers wpc.pc).

The optimization problem we are interested in consists of finding a prioritized pairwise covering
array, ppCA, with the minimum number of feature sets, that is: find ppCA with minimum |ppCA|.
What makes the problem far from trivial is the constraints imposed to ppCA by Definition 2.4.20.

2.4.4 Multi-Objective Test Data Generation Problem in SPL

Most approaches for SPL pairwise testing have focused on achieving full coverage of all pairwise
feature combinations with the minimum number of products to test. Though useful in many

CHAPTER 2. FUNDAMENTALS OF SOFTWARE TESTING 27

contexts, this single-objective perspective does not reflect the prevailing scenario where software
engineers do face trade-offs between the objectives of maximizing the coverage or minimizing the
number of products to test. In contrast and to address this need, our work proposes a classical
multi-objective formalisation where both objectives are equally important. In Section 2.2.2 we
have defined the most important concepts related to multi-objective optimisation, then we only
highlight the particularities of the Multi-Objective Test Data Generation Problem in SPL, that is,
pairwise testing for two objectives.

The decision space or solution space is the set of possible solutions to an optimization problem,
in our context, it corresponds to the set of all possible sets of valid feature sets represented by a
feature model fm, denoted as DSfm = P (FSfm). A decision vector is an element of the decision
space, that is x ∈ DSfm. In our context we consider two objective functions:

• Coverage function. We want to maximize the number of pairs covered by a test suite. For
simplicity, we use the alternative of minimizing the number of pairs not covered which is
defined as follows:

ffm
1 : DSfm → N, ffm

1 (x) = |V PSfm\covers(x)|,
where covers computes the pairs covered by the feature sets of test suite x.

• Test suite size function. We want to minimize the number of feature sets in the test suite.
We define this function as follows:

ffm
2 : DSfm → N, ffm

2 (x) = |x|.

Definition 2.4.21 (Multi-Objective SPL pairwise testing problem). Given a feature model fm, a
multi-objective pairwise SPL testing problem consists in finding a set of non-dominated solutions
X∗ ⊂ DSfm such that it minimizes the objective functions ffm

1 and ffm
2 .

2.5 Conclusions

In this chapter we discuss the fundamentals of software testing from its beginning. Testing is not
a new concept at all since it was already used by the Romans to assess the quality of metals.
Nevertheless it is still valid since we want to assess the quality of software. In this chapter we
formally defined actual testing problems that are addressed in this PhD dissertation. First, we
defined the problems related to structural testing: Test Data Generation Problem and Multi-
objective Test Data Generation Problem. We are aware that there is a negligible cost not considered
in general, the oracle cost. For this reason we have taken into account the quality of the test suite
and the oracle cost in the formulation of problems. Second, we define the problems related to
functional testing. We can group the addressed problems in those related to Classification Tree
Method, that are the Prioritized Pairwise Test Data Generation Problem and the Test Sequence
Generation Problem with Extended Classification Tree Method. The other group are the problems
related to Software Product Lines, that are the Pairwise Test Data Generation Problem with and
without priorities and the Multi-Objective Test Data Generation Problem in SPL. We want to
claim the usefulness of this chapter to provide the reader with the exact version of the problems
we are going to solve throughout this PhD thesis.

28 2.5. CONCLUSIONS

Chapter 3

Fundamentals of Metaheuristics

A heuristic is a simple and intuitive technique that employs a practical methodology to produce
close to optimal solutions for a given complex problem using specific information of the problem,
not guaranteed to be optimal or perfect, but sufficient for the immediate goals [155]. When finding
an optimal solution is impossible or impractical, heuristic methods can be used to speed up the
process of finding a satisfactory solution. Heuristics can be seen as mental shortcuts that ease the
cognitive load of making a decision. Heuristics are adapted to the problem at hand and they try to
take full advantage of the particularities of the problem. However, they can get trapped in a local
optimum and thus fail, in general, to obtain the global optimum solution. In addition, they have
the drawback of being problem-specific techniques, thus a good heuristic for some given problem
will help little when solving a different problem. Consequently, a more general-purpose technique
was proposed: Metaheuristics [116].

Metaheuristics, in contrast, are more problem-independent techniques. They are generally
conceived as high level heuristics able to employ heuristics methods by guiding them over the
search space in order to exploit its best capabilities to achieve better solutions, especially with
incomplete or imperfect information or limited computation capacity. The main advantage with
respect to a simple heuristic is that they have mechanisms to avoid getting trapped in local optima.

This chapter serves as a presentation of metaheuristics, the main techniques used to solve the
different variants of the automatic test data generation problem tackled in this PhD thesis. We
formally define what is a metaheuristic, we classify the main metaheuristics and we present them
for their latter detailed description in the next chapter. Then, we explain the multi-objective
paradigm, used when we are interested in optimizing more than one objective at the same time.
Finally, we describe the quality indicators and the statistical methods used to measure the quality
of the solutions and the practical importance of the results of this research.

3.1 Formal Definition

In a first approach, the techniques can be classified into Exact and Approximate. Exact techniques,
which are based on the mathematical finding of the optimal solution, or an exhaustive search until
the optimum is found, guarantee the optimality of the obtained solution. However, these techniques
present some drawbacks. The time they require, though bounded, may be very large, especially for
NP-hard problems. Furthermore, it is not always possible to find such an exact technique for every
problem. This makes exact techniques not to be a good choice in many occasions, since both their

29

30 3.1. FORMAL DEFINITION

time and memory requirements can become unreasonably high for large scale problems. For this
reason, approximate techniques have been widely used by the international research community
in the last few decades. These methods sacrifice the guarantee of finding the optimum in favor of
providing some satisfactory solution within reasonable times [116].

Among approximate algorithms, we can find two types: ad hoc heuristics, and metaheuristics.
We focus this chapter on the latter, although we mention before ad hoc heuristics, which can in turn
be divided into constructive heuristics and local search methods [172]. Constructive heuristics are
usually the swiftest methods. They construct a solution from scratch by iteratively incorporating
components until a complete solution is obtained, which is returned as the algorithm output.
Finding some constructive heuristic can be easy in many cases, but the obtained solutions are of
low quality in general since they use simple rules for such construction. In fact, designing one such
method that actually produces high quality solutions is a nontrivial task, since it mainly depends
on the problem, and requires thorough understanding of it. For example, in problems with many
constraints it could happen that many partial solutions do not lead to any feasible solution.

Local search or gradient descent methods start from a complete solution. They rely on the
concept of neighbourhood to explore a part of the search space defined for the current solution
until they find a local optimum. The neighbourhood of a given solution s, denoted as N(s), is the
set of solutions (neighbours) that can be reached from s through the use of a specific modification
operator (generally referred to as amovement). A local optimum is a solution having equal or better
objective function value than any other solution in its own neighbourhood. The process of exploring
the neighbourhood, finding and keeping the best neighbour, is repeated in a process until the local
optimum is found. Complete exploration of a neighbourhood is often unapproachable, therefore
some modification of this generic scheme has to be adopted. Depending on the movement operator,
the neighbourhood varies and so does the manner of exploring the search space, simplifying or
complicating the search process as a result. Out of the many descriptions of metaheuristics that
can be found in the literature [35, 86], the following fundamental features can be highlighted:

• They are general strategies or templates that guide the search process.

• Their goal is to provide an efficient exploration of the search space to find (near) optimal
solutions.

• They are not exact algorithms and their behavior is generally non deterministic (stochastic).

• They may incorporate mechanisms to avoid visiting non promising (or already visited) regions
of the search space.

• Their basic scheme has a predefined structure.

• They may use specific problem knowledge for the problem at hand, by using some specific
heuristic controlled by the high level strategy.

In other words, a metaheuristic is a general template for a stochastic process that has to be
filled with specific data from the problem to be solved (solution representation, specific operators
to manipulate them, etc.), and that can tackle problems with high dimensional search spaces. In
these techniques, the success depends on the correct balance between diversification and intensifi-
cation. The term diversification refers to the evaluation of solutions in distant regions of the search
space (with some distance function previously defined for the solution space); it is also known as
exploration of the search space. The term intensification refers to the evaluation of solutions in
small bounded regions, or within a neighbourhood (exploitation of the search space). The bal-
ance between these two opposed aspects is of the utmost importance, since the algorithm has to

CHAPTER 3. FUNDAMENTALS OF METAHEURISTICS 31

quickly find the most promising regions (exploration), but also those promising regions have to be
thoroughly searched (exploitation).

We can distinguish two kinds of search strategy in metaheuristics. First, there are “intelligent”
extensions of local search methods (trajectory-based metaheuristics in Figure 3.1). These tech-
niques add some mechanism to escape from local optima to the basic local search method (which
would otherwise stick to it). Tabu Search (TS) [84], Iterated Local Search (ILS) [86], Variable
Neighbourhood Search (VNS) [157] or Simulated Annealing (SA) [119] are some techniques of this
kind. These metaheuristics operate with a single solution at a time, and one (or more) neigh-
bourhood structures. A different strategy is followed in Ant Colony Optimization (ACO) [64],
Particle Swarm Optimization (PSO) [48] or Evolutionary Algorithms (EAs) [86]. These techniques
operate with a set of solutions at any time (called colony, swarm or population, depending on
the case), and use a learning factor as they, implicitly or explicitly, try to grasp the correlation
between design variables in order to identify the regions of the search space with high-quality so-
lutions (population-based techniques in Figure 3.1). In this sense, these methods perform a biased
sampling of the search space.

A formal definition of metaheuristics can be found in [138], with an extension in [45]. A basic
formulation of a metaheuristic is presented in the following definition:

Definition 3.1.1 (Metaheuristic). A metaheuristic M is a tuple consisting of eight components
as follows:

M = 〈T ,Ξ, µ, λ,Φ, σ,U , τ〉 , (3.1)

where:

• T is the set of elements operated by the metaheuristic. This set contains the search space,
and in many cases they both coincide.

• Ξ = {(ξ1, D1), (ξ2, D2), . . . , (ξv, Dv)} is a collection of v pairs. Each pair is formed by a state
variable of the metaheuristic and the domain of said variable.

• µ is the number of solutions operated byM in a single step.

• λ is the number of new solutions generated in every iteration ofM.

• Φ : T µ ×
v∏

i=1

Di × T λ → [0, 1] represents the operator that produces new solutions from the

existing ones. The function must verify for all x ∈ T µ and for all t ∈
∏v

i=1 Di,

∑

y∈T λ

Φ(x, t, y) = 1 . (3.2)

• σ : T µ × T λ ×
v∏

i=1

Di × T µ → [0, 1] is a function that selects the solutions that will be

manipulated in the next iteration of M. This function must verify for all x ∈ T µ, z ∈ T λ

and t ∈
∏v

i=1 Di,

∑

y∈T µ

σ(x, z, t, y) = 1 , (3.3)

∀y ∈ T µ, σ(x, z, t, y) = 0 ∨ σ(x, z, t, y) > 0 ∧ (3.4)

(∀i ∈ {1, . . . , µ}, (∃j ∈ {1, . . . , µ}, yi = xj) ∨ (∃j ∈ {1, . . . , λ}, yi = zj)) .

32 3.2. CLASSIFICATION OF METAHEURISTICS

• U : T µ × T λ ×
v∏

i=1

Di ×
v∏

i=1

Di → [0, 1] represents the updating process for the state variables

of the metaheuristic. This function must verify for all x ∈ T µ, z ∈ T λ and t ∈
∏v

i=1 Di,

∑

u∈
∏v

i=1 Di

U(x, z, t, u) = 1 . (3.5)

• τ : T µ ×
v∏

i=1

Di → {false, true} is a function that decides the termination of the algorithm.

The previous definition represents the typical stochastic behavior of most metaheuristics. In
fact, the functions Φ, σ and U should be considered as conditional probabilities. For instance, the
value of Φ(x, t, y) is the probability to generate the offspring vector y ∈ T λ, since the current set
of individuals in the metaheuristic is x ∈ T µ, and its internal state is given by the state variables
t ∈

∏v
i=1 Di. One can notice that the constraints imposed over the functions Φ, σ and U enable

them to be considered as functions that return the conditional probabilities.

3.2 Classification of Metaheuristics

There are many ways to classify metaheuristics [35]. Depending on the chosen features we can ob-
tain different taxonomies: nature inspired vs. non nature inspired, memory-based vs. memory-less,
one or several neighbourhood structures, etc. One of the most popular classifications distinguishes
trajectory based metaheuristics from population based ones. Those of the first type handle a single
solution of the search space at a time, while those of the latter work on a set of solutions (the
population). This taxonomy is graphically represented in Figure 3.1, where the most representative
techniques are also included.

Figure 3.1: Classification of metaheuristics

CHAPTER 3. FUNDAMENTALS OF METAHEURISTICS 33

3.2.1 Trajectory Based Metaheuristics

This section serves as a brief introduction to trajectory based metaheuristics. The main feature of
these methods is the fact that they start from a single solution, and by successive neighbourhood
explorations, update that solution, describing a trajectory through the search space. Most of
these algorithms are extensions of the simple local search, which incorporate some additional
mechanism for escaping local optima. This results in a more complex stopping condition than the
simple detection of a local optimum. Widely used stopping criteria are completing some predefined
number of iterations, or finding some acceptable solution. Although trajectory metaheuristics are
not used in this PhD dissertation, we briefly draw up a generic description of the most representative
techniques since they could be applied in future works extending our present studies.

• Simulated Annealing

Simulated Annealing was introduced in [119], and is one of the oldest techniques among meta-
heuristics. It was the first algorithm with an explicit strategy for escaping local optima. The main
idea in SA is to simulate the annealing process of a metal or glass. To avoid getting stuck in a
local optimum, the algorithm always allows the selection of a solution with worse fitness value
than the current one with some probability. The mechanism works as follows: in each iteration a
solution s′ is extracted from the neighbourhood N(s) of current solution s; if s′ has better fitness
value than s, then s is discarded and s′ is kept instead, otherwise s is replaced by s′ only with a
given probability that depends on a dynamic parameter T called temperature, and the difference
between the fitness values of the two solutions, f(s′)− f(s).

• Tabu Search

Tabu Search [84] is one of the metaheuristics that has been most successfully used to solve combi-
natorial optimization problems. The main idea in TS is the use of an explicit search history (short
term memory), that serves both for escaping from local optima and for enhancing the diversity of
the search process. This short term memory is called the tabu list, and keeps record of the last
visited solutions, preventing the algorithm from visiting them again. At the end of each iteration,
the best solution among the allowed ones is included in the list.

• Greedy Randomized Adaptive Search Procedure

Greedy Randomized Adaptive Search Procedure (GRASP) [72] is a simple metaheuristic that com-
bines constructive heuristics with local search. GRASP is an iterative procedure with two phases:
first, a solution is constructed; second, the solution undergoes an improvement process. The im-
proved solution is the final result of the search process. A randomized heuristic is used for the
construction of the solution in the first phase. Step by step, different components c are added to
the partial solution, initially empty. Each added component is randomly selected from a restricted
list of candidates. The components of the solution are sorted according to some problem depen-
dent function in order to generate the list. The second phase of the algorithm consists in a local
search method to improve the previously generated solutions. A simple local search heuristic can
be employed, or some more complex technique like SA or TS.

34 3.2. CLASSIFICATION OF METAHEURISTICS

• Variable Neighbourhood Search

Variable Neighbourhood Search is a metaheuristic proposed in [157], that uses an explicit strategy to
switch among different neighbourhood structures during the search. It is a very generic algorithm
with many degrees of freedom to design variations or particular instances.

The first step is to define the set of neighbourhood descriptions. There are many ways this can
be done: from random selection up to complex mathematical equations deduced using problem
knowledge. Each iteration contains three phases: selection of a candidate, improvement phase,
and finally, the movement. During the first phase, a neighbour s′ is randomly chosen in the kth

neighbourhood of s. This solution s′ acts then as the starting point for the second phase. Once
the improvement process is over, the resulting solution s′′ is compared with the original, s. If s′′ is
better then it becomes the current solution and the neighbourhood counter is reset (k ← 1); if it
is not better, then the process is repeated for the next neighbourhood structure (k ← k + 1). The
local search can be considered as the intensity factor, whereas the switches among neighborhoods
can be considered as the diversity factor.

• Iterated Local Search

The Iterated Local Search metaheuristic [86] is based on a simple yet effective concept. At each
iteration, the current solution is perturbed and, to this new solution, a local search method is
applied, to improve it. An acceptance test is applied to the local optimum obtained from the local
search to determine whether it will be accepted or not. The perturbation method has an obvious
importance: if it is not disruptive enough, the algorithm may still be unable to escape the local
optimum; on the other side, if it is too disruptive, it can act as a random restarting mechanism.
Therefore, the perturbation method should generate a new solution that serves as the starting point
for the local search, but not so far away from the current solution as to be a random solution.
The acceptance criterion determines the relative balance of intensification and diversification, since
it filters new solutions to decide which can be accepted depending on the search history and the
characteristics of the local optimum.

3.2.2 Population Based Metaheuristics

Population based methods are characterized by working with a set of solutions at a time, usually
named the population, unlike trajectory based methods, which handle a single solution. We here
make a brief survey to some relevant techniques for this study; the interested reader can get more
information in [35, 86].

• Evolutionary Algorithms

Evolutionary Algorithms [23] are metaheuristic search techniques loosely based on the principles
of natural evolution, namely, adaptation, and survival of the fittest. These techniques have been
shown to be very effective in solving hard optimization tasks. They are based on a set of tentative
solutions (individuals) called population. The problem knowledge is usually enclosed in an objective
function, the so-called fitness function, which assigns a quality value to the individuals.

Initially, the algorithm creates, randomly or by using a seeding procedure, a population of µ
individuals. At each step, the algorithm applies stochastic operators such as selection, recombi-
nation, and mutation operators in order to compute a set of λ descendant individuals’ offspring.
The objective of the selection operator is to select some individuals from the population to which

CHAPTER 3. FUNDAMENTALS OF METAHEURISTICS 35

the other operators will be applied. Different kinds of selection strategies exist: roulette wheel,
tournament, random, (µ+ λ), or (µ, λ), where µ represents the number of parent solutions and λ
the number of generated children. The recombination operator generates a new individual from
several ones by combining their solution components. This operator is able to put together good
solution components that are scattered in the population. On the other hand, the mutation oper-
ator modifies one single individual and is the source of new different solution components in the
population. Recombination and mutation are the usual operations in genetic algorithms, having
the rest of EAs other variation operators like local search or ad hoc techniques.

The individuals created are evaluated according to the fitness function. The last step of the
loop is a replacement operation in which the individuals for the new population are selected from
the offspring and the old one. This process is repeated until a stop criterion is fulfilled, such as
reaching a pre-programmed number of iterations of the algorithm or finding an individual with
a preset target quality. Depending on the individual representation and on how these phases
are implemented, different instances of EAs arise such as Evolution Strategy (ES) and Genetic
Algorithm (GA), which are used in this thesis.

• Estimation of Distribution Algorithms

Estimation of Distribution Algorithms (EDAs) [136] have a similar behavior with respect to the
previously presented EAs, and many authors even consider EDAs as a special kind of EA. Like EAs,
EDAs operate on a population of candidate solutions, but, unlike them, do not use recombination
and mutation to generate the new solutions, but a probability distribution mechanism instead.
They try to overcome the drawbacks of usual recombination operators, which are likely to break
good building blocks. EDAs use probabilistic modelling of promising solutions to estimate a
distribution over the search space, which is then used to produce the next generation by sampling
the search space according to the estimated distribution. After every iteration the distribution is
re-estimated. Graphic probabilistic models are commonly used tools to represent in an efficient
manner the probability distributions when working with EDAs. Bayesian networks are usually
to represent the probability distributions in discrete domains, while Gaussian networks are most
often applied for continuous domains.

• Scatter Search

Scatter Search (SS) is a metaheuristic whose basic principles were presented in [85], and is cur-
rently receiving an increasing deal of attention from the research community. The algorithm’s
fundamental idea is to keep a relatively small set of candidate solutions (called the reference set),
characterized by hosting diverse (distant in the search space) high-quality solutions. Five compo-
nents are required for the complete definition of SS: initial population creation method, reference
set generation method, subsets of solutions generation method, solution combination method, and
improvement method. This algorithm is explicitly incorporating the exploration/exploitation idea
in concrete steps and operations of its improvement loop.

• Swarm Intelligence

The collective and social behavior of living creatures motivated researchers to undertake the study
of Swarm Intelligence [117]. Swarm intelligence techniques use the cooperation of large numbers of
homogeneous agents. Such intelligence is decentralized, self-organizing and distributed throughout
an environment. In nature, such systems are commonly used to solve problems such as effective

36 3.3. A METHODOLOGY FOR EVALUATING RESULTS

foraging for food, prey evading, or colony re-location. The information is typically stored through-
out the participating homogeneous agents, or is stored or communicated in the environment itself
such as through the use of pheromones in ants, dancing in bees, and proximity in fish and birds.

Swarm Intelligence systems are typically made up of a population of simple agents (an entity
capable of performing/executing certain operations) interacting locally with one another and with
their environment. Although there is normally no centralized control structure dictating how
individual agents should behave, local interactions between such agents often lead to the emergence
of global behavior. The paradigm consists of two dominant sub-fields: Ant Colony Optimization
and Particle Swarm Optimization. We use ACO which will be detailed in next chapter.

3.3 A Methodology for Evaluating Results

Metaheuristics are non-deterministic techniques, hence different executions of the same algorithm
over the same problem instance can produce different results. This can cause inconveniences
to researchers at the time of evaluating and assessing those results, and when comparing different
algorithms. Although there are works that tackle the theoretical analysis of many heuristic methods
and problems [92], this kind of theoretical analysis still involves a great deal of complexity, therefore
the most commonly adopted approach is to establish the comparisons on the basis of empirical
data. For this, some indicators have to be defined that enable such comparisons. In a wide
sense, there are two kinds of indicators. On the one hand, there are indicators that measure the
quality of the obtained solutions. Since both mono-objective and multi-objective problems are
solved in this PhD dissertation, specific indicators have to be defined for both approaches. On the
other hand, there are indicators that measure the performance of the algorithms in terms of their
required computation time or the amount of resources they use. Although the following discussion
comments the two types of indicator separately, they are closely related and are often used together
for the evaluation of metaheuristics, since the purpose of the latter is twofold: finding high quality
solutions within a reasonable time.

Once the indicators have been established, a given number of unrelated or independent ex-
ecutions of the experimental configuration (algorithmic configuration and problem instance) are
required to obtain statistically consistent results. A value of 30 executions is a commonly adopted
and accepted minimum. The mere use of mean value and standard deviation, albeit quite frequent
in the literature, is not sufficient and can lead to wrong conclusions. Thus, a global statistical
analysis should be applied on the results before stating whether the observed differences are mean-
ingful, and not just the result of the inherent randomness of the techniques. This section contains
the discussion of the indicators used in the first place (for quality and performance), then the
statistical tests that are used to assess the significance of the results.

3.3.1 Quality Indicators

Quality indicators or metrics are of paramount importance when evaluating a metaheuristic. They
are defined in many ways depending on whether the optimal solution is known or unknown for
the problem at hand (in a benchmark or a classic literature problem the optimum is often known,
but for real problems this is hardly the case). As stated before, there are specific indicators for
evaluating the solutions of mono-objective and multi-objective problems.

CHAPTER 3. FUNDAMENTALS OF METAHEURISTICS 37

Mono-objective Indicators

When the optimum is known beforehand, a simple and intuitive quality indicator for the meta-
heuristic is the expectancy of actually finding the optimum, or hit rate. This indicator is defined
as the ratio or percentage of the number of executions in which the optimum is found over the
total number of independent executions that have been performed. Unfortunately, knowing the
optimum is not the common case for real problems or, even if they were known, sometimes they
are so difficult to obtain that no execution of the experiment achieves it; in fact, experiments with
metaheuristics are normally tailored to finish after a given computational effort has been spent
(like visiting a maximum number of points of the search space, or running for a given time).

For these cases in which the optimum is not known in advance, or that the hit rate cannot be
used, other indicators are used. The most popular are the mean and median of the best fitness
value found in each independent execution. In general, other statistical data are required, such as
the standard deviation, and a corresponding statistical analysis, in order to assess the statistical
confidence on the observed results, should be performed.

In problems where the optimum is known, both metrics can be combined to offer a wider picture:
for instance, a low hit rate with a low mean value speaks for the robustness of the method, and
could be preferred over a higher hit rate but with higher median (assuming minimization).

Multi-objective Indicators

In theory, a Pareto front could contain a large number of points. In practice, a usable approximate
solution will only contain a limited number of them; thus, an important goal is that solutions
should be as close as possible to the exact Pareto front and uniformly spread, otherwise, they
would not be very useful to the decision maker. Besides, closeness to the Pareto front ensures that
we are dealing with optimal solutions, while a uniform spread of the solutions means that we have
made a good exploration of the objective space and no regions are left unexplored. There exist
some well-known density estimators in the literature [50]: niching, adaptive grid, crowding, and
the k-nearest neighbour distance.

Three different issues are normally considered for assessing the quality of the results computed
by a multi-objective optimization algorithm [234]:

1. To minimize the distance of the computed solution set by the proposed algorithm to the
optimal Pareto front (convergence towards the optimal Pareto front).

2. To maximize the spread of solutions found, so that we can have a distribution as smooth and
uniform as possible (diversity).

3. To maximize the number of elements of the Pareto optimal set found.

Figure 3.2 depicts these issues of convergence and diversity. The left front (a) depicts an example
of good convergence and bad diversity: the approximation set contains Pareto optimal solutions
but there are some unexplored regions of the objective space. The approximation set depicted on
the right (b) illustrates poor convergence but good diversity: it has a diverse set of solutions but
they are not Pareto optimal. Finally, the lowermost front (c) depicts an approximation front with
both good convergence and diversity.

A number of quality indicators have been proposed in the literature trying to capture the three
issues indicated above, but for the moment, there is not a single metric which captures all of
them. Consequently, researchers should use more than one to measure different aspects of the

38 3.3. A METHODOLOGY FOR EVALUATING RESULTS

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f
1

f 2

Approximation Set
Optimal Pareto Front

(a) good convergence and bad diversity.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

f
1

f 2

Approximation Set
Optimal Pareto Front

(b) bad convergence and good diversity.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

f
1

f 2

Approximation Set
Optimal Pareto Front

(c) good convergence and good diversity.

Figure 3.2: Examples of Pareto fronts with different behavior of convergence and diversity.

solutions generated by the multi-objective techniques. Among them, we can distinguish between
Pareto compliant and non Pareto compliant indicators [123]. Given two Pareto fronts, A and
B, if A dominates B, the value of a Pareto compliant quality indicator is higher for A than for
B; meanwhile, this condition is not fulfilled by the non–compliant indicators. Thus, the use of
Pareto compliant indicators should be preferable. To apply these quality indicators, it is usually
necessary to know the optimal Pareto front. However, the location of the optimal front is usually
unknown. Therefore, the front composed of all the non–dominated solutions computed by all
analyzed approaches is used to obtain a reference Pareto front. Many quality indicators have
proposed in the literature. Next, we highlight the advantages and disadvantages of some of the
most common ones:

• Number of Pareto optimal solutions. This non–compliant indicator is very simple, it
computes the number of solutions that are included in the optimal Pareto front. Its main
advantage lies in the fact that it is very easy to compute. In contrast, the disadvantages are
the lack of information about the diversity of solutions and the requirement of knowing the
optimal Pareto front.

CHAPTER 3. FUNDAMENTALS OF METAHEURISTICS 39

Figure 3.3: Example of hypervolume.

• Hypervolume (HV) [236]. This is a very popular indicator that calculates the volume (in
the objective space) covered by members of a non-dominated set of solutions Q (the region
enclosed into the discontinuous line in Figure 3.3, Q = {A,B,C}) for problems where all
objectives are to be minimized. Mathematically, for each solution i ∈ Q, a hypercube vi
is constructed with a reference point W and the solution i as the diagonal corners of the
hypercube. The reference point can simply be found by constructing a vector of the worst
objective function values. Thereafter, a union of all hypercubes is found and its hypervolume
(HV) is calculated:

HV = volume

|Q|⋃

i=1

vi

 . (3.6)

We apply this metric after a normalization of the objective function values to the range [0..1].
A Pareto front with a higher HV than another one could be due to: some solutions in the
better front dominate solutions in the other, or, solutions in the better front are more widely
distributed than in the other. Since both properties are considered to be good, algorithms
with larger values of HV are considered to be desirable. To apply this quality indicator, it
is usually necessary to know the optimal Pareto front (from normalization purposes). Of
course, typically, we do not know the location of the optimal front. Therefore, we employ as
a reference Pareto optimal front the front composed of all the non-dominated solutions out
of all the executions carried out (i.e., the best front known until now).

The main advantages of the hypervolume are that it considers the convergence as well as the
diversity of the solutions, and it doesn’t require the optimal Pareto front. A drawback is that
it depends on the reference point selected. Different reference points produce different results.
This could be critical to compare the results with existing approaches in the literature.

• Spread (SD) [57]. It is a diversity non–compliant quality indicator that measures the
distribution of individuals over the non-dominated region. This measure is based on the
distance between solutions, so Pareto fronts with a smaller value of Spread are more desirable.

40 3.3. A METHODOLOGY FOR EVALUATING RESULTS

It takes a zero value for an ideal distribution, denoting a perfect spread of the solutions in
the Pareto front. It is defined as follows:

∆ =
df + dl +

∑N−1
i=1 |di − d|

df + dl + (N − 1)d
, (3.7)

where di is the Euclidean distance between consecutive solutions, d is the mean of these
distances, and df and dl are the Euclidean distances of the extreme solutions of the optimal
Pareto front in the objective space. The main advantage of this measure is that it summarizes
the diversity of a Pareto front in one single scalar value. The main disadvantage is that it
does not consider the other quality aspect, i.e., the solution set could be very well distributed,
but the solutions could be far from the optimal Pareto front. Other quality indicators should
be used to complement the Spread.

• Generational Distance (GD) [207]. The generational distance is a non–compliant indica-
tor. It measures how far the elements in the approximated Pareto front are from those in the
optimal Pareto front. It considers the distance of the approximated Pareto front obtained to
the reference front. Pareto fronts with a smaller value of GD are more desirable, so it takes
a zero value for an ideal distribution where all the elements generated are in the reference
front; It is defined as:

GD =

√∑n
i=1 d

2
i

n
, (3.8)

where n is the number of solutions in the approximation front and di is the Euclidean distance
(measured in objective space) between each of these solutions and the nearest member in the
optimal Pareto front.

The advantages of the generational distance are the ease of understanding and calculation,
and the possibility to use different kinds of distance functions. In contrast, it does not take
into account the diversity of the solutions found, i.e., a front with only one solution in the
optimal Pareto front, will obtain an ideal value of generational distance.

• Epsilon (Multiplicative) [237]. This Pareto–compliant indicator measures, in one single
scalar value, how badly approximated the worst approximated solution of the Pareto front is.
The approximation quality of solutions is the ratio between the optimal value and the best
value found. This notion is extended to the multi-objective paradigm, resulting in a unary
version of the indicator if the optimal Pareto front is known, and a binary version when a
reference front is used instead. An approximated Pareto front is an ǫ-approximation if for
every point on the optimal Pareto front, the approximated Pareto front contains a point that
is at least as good approximately (within a factor ǫ) in all objectives. More formally, given
~z1 = (z1i , ..., z

1
n) and

~z2 = (z2i , ..., z
2
n), where n is the number of objectives:

Iǫ+(A) = inf

{
ǫ ∈ R|∀ ~z2 ∈ PF∗∃ ~z1 ∈ A : ~z1 ≺ǫ

~z2
}
, (3.9)

where, ~z1 ≺ǫ
~z2 if and only if ∀1 ≤ i ≤ n : z1i < ǫ ∗ z2i

The main advantage of this quality indicator is that it allows us to compare the quality of
solutions between different functions, different population sizes, and even different dimen-
sions. In addition, it measures convergence of the algorithm, but it does not depend on a

CHAPTER 3. FUNDAMENTALS OF METAHEURISTICS 41

chosen reference point like the hypervolume. In contrast, its main disadvantage is that it
only considers part of the front, namely the worst solution.

The previous indicators have the advantage of summarizing an entire front into one single
scalar value that allows the performance of different algorithms to be compared. However, from
the point of view of a decision maker, knowing about a single number is not enough, because it
gives no information about the shape of the front. In the related literature, the trade-off between
the different objectives is usually presented by showing one of the approximated Pareto fronts
obtained in one single run of a given algorithm. However, if the optimization algorithm used is
stochastic there is no warranty that the same result is obtained after a new run of the algorithm.
We need a way of representing the results of a multi-objective algorithm that allows us to observe
the expected performance and its variability, in the same way as the average and the standard
deviation are used in the single-objective case. For this reason, we use the concept of Empirical
Attainment Function (EAF) [121].

Empirical Attainment Function: EAF is a function α from the objective space Rn to the interval
[0, 1] that estimates for each vector in the objective space the probability of being dominated by
the approximated Pareto front of one single run of the multi-objective algorithm. Given the r
approximated Pareto fronts obtained in the different runs, the EAF is defined as:

α(z) =
1

r

r∑

i=1

I(Ai � {z}) (3.10)

where Ai is the i-th approximated Pareto front obtained with the multi-objective algorithm and
I is an indicator function that takes value 1 when the predicate inside it is true, and 0 otherwise.
The predicate Ai � {z} means Ai dominates solution z. Thanks to the attainment function,
it is possible to define the concept of k%-attainment surface [121]. The attainment function α
is a scalar field in R

n and the k%-attainment surface is the level curve with value k/100 for α.
Informally, the 50%-attainment surface in the multi-objective domain is analogous to the median
in the single-objective one. In a similar way, the 25%- and 75%-attainment surfaces can be used
as the first and third “quartile fronts” and the region between them could be considered a kind of
“interquartile region” (see Figure 3.4).

The attainment surfaces provide an engineer with a tool for evaluating the variability of an
algorithm for the problem at hand. The variability in the results of one multi-objective algorithm is
not reduced to a scalar (as in the single-objective case), so the main disadvantage is the visualization
of solution with more than three objectives [204]. Using attainment surfaces the engineer can
analyze and explore this range of possibilities. From a practical point of view, this tool helps the
engineer to decide the more suitable multi-objective algorithm for her/his requirements.

3.3.2 Statistical Analysis Procedure

Metaheuristics are stochastic based algorithms, so we always need to perform a series of indepen-
dent runs for each algorithm’s configuration in order to obtain a distribution of results and quality
indicators. Typically, a value of 30 independent executions for each algorithm’s configuration is an
accepted minimum. Once we have the results, we must compare the distributions by means of sta-
tistical tests, which are indispensable tools to validate and to provide confidence to our empirical
analysis.

A representation of the statistical procedure carried out in this PhD thesis, which is recom-
mended by the scientific community [81,189], can be seen in Figure 3.5. First, we choose the kind

42 3.3. A METHODOLOGY FOR EVALUATING RESULTS

f
1

f
2

75%-attainment surface

50%-attainment surface

25%-attainment surface

Figure 3.4: Examples of attainment surfaces.

of test to perform (non-parametric or parametric). To do so, we perform a Kolmogorov-Smirnov
test to check whether the samples are distributed according to a normal distribution (Gaussian)
or not. After this, the homoskedasticity (i.e., equality of variances) is then checked using the Lev-
ene test. If all distributions are normal and the Levene returns a positive value, then we use the
parametric procedure. In this case, a t-test for comparing two distributions, and an ANOVA test
for comparisons of three or more distributions.

Figure 3.5: Statistical validation procedure for experimental results

For non-parametric procedure, we use the Wiloxon test to check the significance of the dif-
ferences between two distributions, and the KruskalWallis test for multiple comparisons. Notice
that we use the Bonferroni correction for each particular comparison. If there are no statistical
differences, the procedure finishes without rejecting the null hypothesis (equality of distributions).
In this study, the tests have been set with a confidence level of 95% or 99%, meaning that sta-
tistical differences can be found in distributions when resulted tests are with a p-value< 0.05 or
p-value < 0.001, respectively.

CHAPTER 3. FUNDAMENTALS OF METAHEURISTICS 43

In order to properly interpret the results of statistical tests, it is always advisable to report ef-
fect size measures. For that purpose, we have also used the non-parametric effect size measure Â12

statistic proposed by Vargha and Delaney [208]. It tells us how often, on average, one technique
outperforms the other. It could be used to determine the probability of yielding higher perfor-
mance by different algorithms. Given a performance measure M , Â12 measures the probability
that running algorithm A yields higher M values than running another algorithm B. If the two
algorithms are equivalent, then Â12 = 0.5. If Â12 = 0.3 then one would obtain higher values for
M with algorithm A, 30% of the time.

44 3.3. A METHODOLOGY FOR EVALUATING RESULTS

Chapter 4

Algorithms

This chapter outlines the main metaheuristic techniques used throughout this PhD thesis. We focus
in the particular description of algorithms and operators used to solve the different testing problems
tackled here. The specific implementation details (like the operators for mutation or crossover)
which are problem specific (or representation specific) are delayed to the corresponding chapters,
where the application of the algorithms to solve the problems is discussed. The mono-objective
techniques are described in Section 4.1, then the multi-objective techniques in Section 4.2.

4.1 Mono-objective Metaheuristics Used in this PhD Thesis

The specific mono-objective algorithms used in this PhD dissertation are described in this sec-
tion: Genetic Algorithm (Section 4.1.1), Evolutionary Strategy (Section 4.1.2) and Ant Colony
Optimization (Section 4.1.3).

4.1.1 Genetic Algorithm

Genetic Algorithms [88] belong to the family of EAs (Section 3.2.2). They appear for the first
time as a widely recognized optimization method as a result of the work of John Holland in the
early 70s, and particularly his 1975 book [106]. Our implementation of the genetic algorithm in
this PhD thesis typically uses a ranking method for parent selection and elitist replacement for
the next population, that is, the best individual of the current population is included in the next
one. Should different operators or replacement policy is used, they will be explicitly described in
the corresponding section. In Algorithm 1 we show the general scheme followed by an EA such as
the Genetic Algorithm and the Evolutionary Strategy described in this chapter.

Initially, the algorithm creates a population of µ individuals randomly or by using a seeding
algorithm (Line 2). At each step, the algorithm applies stochastic operators such as selection,
recombination, and mutation in order to compute a set of λ descendant individuals Q. The
objective of the selection operator is to select some individuals from the population to which the
other operators will be applied. In this work the q-tournament method is used. It randomly selects
q individuals from the population, then the best is selected as parent (Line 6). Notice that this
method is applied twice to select both parents. The recombination operator generates two new
individual from two parents by combining their solution components (Line 7). This operator is able
to put together good solution components that are scattered in the population. On the other hand,

45

46 4.1. MONO-OBJECTIVE METAHEURISTICS USED IN THIS PHD THESIS

Algorithm 1 Pseudocode of Evolutionary Algorithms.

1: proc Input:(ea) //Algorithm parameters in ‘ea’
2: P ← initialize population(µ) // P = population
3: while not Termination Condition() do
4: Q ← ∅ // Q = auxiliary population
5: for i ← 1 to (popSize / 2) do
6: parents←selection(P)
7: offspring←recombination(parents)
8: offspring←mutation(offspring)
9: evaluate fitness(offspring)
10: insert(offspring,Q)
11: end for
12: R ← P ∪ Q
13: P’ ← replacement(R) // Select the best individuals
14: end while
15: end proc

the mutation operator modifies one single individual and is the source of new different solution
components in the population (Line 8). The new individuals created are evaluated according to
the fitness function (Line 9). The last step of the loop is an elitist replacement operation in which
the individuals for the new population P ′ are selected from the offspring Q and the old one P (Line
13). This process is repeated until a stop criterion is fulfilled, such as reaching a pre-programmed
number of iterations of the algorithm or finding an individual with a preset target quality.

Throughout this PhD dissertation we used two generic well-known recombination operators for
GAs among other specific ones, which are Single Point Crossover and Uniform Crossover. In the
following we detail how they work:

• Uniform Crossover (UX): each component of the new solution is randomly selected from the
two parents. The formal definition is the following:

xi =

{
x1
i if U(0, 1) < bias

x2
i otherwise

(4.1)

where U(0, 1) denotes a random sample of a uniform distribution in the interval [0, 1) and
bias is a predefined probability. The UX operator is used in algorithms in Chapters 6 and 7.

• Single Point Crossover (SPX): a point is chosen between two consecutive positions at random
in the solution encoding, then all genes beyond the chosen point are exchanged. The formal
definition is the following:

xi =

{
x1
i if i < crossover point

x2
i otherwise

(4.2)

where crossover point is an integer value randomly selected in the interval [0, length) and
length is the size of the individual. The SPX operator is used in algorithms in Chapters 5, 8
and 9.

As mutation operator, we have used the Uniform Mutation, when we deal with integer representa-
tion of the solution, the mutation operator adds a random value to the components of the vector.
That is,

CHAPTER 4. ALGORITHMS 47

xi = x1
i + U(−l, l)

where U(−l, l) denotes a random sample of a uniform distribution in the interval [−l, l]. How-
ever, not all the components of the individual are perturbed, they have a Pm probability of being
altered. The UM is used in algorithms in Chapters 6, 7 and 8.

Genetic algorithms are one of the most popular metaheuristic techniques, so we have used this
technique in most experiments performed throughout this PhD thesis. This technique is used in
Chapters 5, 6, 7, 8, and 9.

4.1.2 Evolutionary Strategy

Evolutionary Strategies (ESs) [31] also belong to the family of EAs (Section 3.2.2), so they follow
the same general scheme shown in Algorithm 1. It was created in the early 1960s and developed
further in the 1970s by Ingo Rechenberg and Hans-Paul Schwefel [178]. In an ES each individual is
composed of a vector of real numbers representing the problem variables (x), a vector of standard
deviations (σ) and a vector of angles (ω). These two last vectors are used as parameters for the main
operator of this technique: the Gaussian mutation. They are evolved together with the problem
variables themselves, thus allowing the algorithm to self-adapt the search to the landscape. The
mutation operator is governed by the three following equations:

σ′i = σi exp(τN(0, 1) + ηNi(0, 1)) (4.3)

ω′i = ωi + ϕNi(0, 1) (4.4)

x′ = x+N(0, C(σ′, ω′)) (4.5)

where C(σ′, ω′) is the covariance matrix associated to σ′ and ω′, N(0, 1) is the standard uni-
variate normal distribution, and N(0, C) is the multivariate normal distribution with mean 0 and
covariance matrix C. The subindex i in the standard normal distribution indicates that a new
random number is generated for each component of the vector. The notation N(0, 1) is used for
indicating that the same random number is used for all the components. The parameters τ , η, and
ϕ are set to (2n)−1/2, (4n)−1/4, and 5π/180, respectively, as suggested in [181].

For the recombination operator of an ES there are many alternatives: each of the three real
vectors of an individual can be recombined in a different way. In our particular implementation
in this PhD dissertation, we use discrete uniform recombination for the solution vector x, where
each component is selected from the best parent with a predefined probability, called bias. For the
vector of standard deviations and angles we use arithmetic recombination. The exact expressions
for the components of the vectors are:

xi =

{
x1
i if U(0, 1) < bias

x2
i otherwise

(4.6)

σi = (σ1
i + σ2

i)/2 (4.7)

ωi = (ω1
i + ω2

i)/2 (4.8)

where the subindices are used to denote the two parent solutions and U(0, 1) denotes a random
sample of a uniform distribution in the interval [0, 1). With respect to the replacement operator,
there is a special notation to indicate whether the old population is taken into account or not to

48 4.1. MONO-OBJECTIVE METAHEURISTICS USED IN THIS PHD THESIS

form the new population. When only the new individuals are used, we have a (µ, λ)-ES; otherwise,
we have a (µ + λ)-ES. Regarding the representation, if each component of the vector solution x
were an integer, they are rounded to the nearest integer. There is no limit in the input domain,
thus allowing the ES to explore the whole solution space. This technique is used in Chapters 5, 6,
and 7.

4.1.3 Ant Colony Optimization

Ant Colony Optimization [65] is a global optimization algorithm, which belongs to the family of
Swarm Intelligence algorithms (Section 3.2.2). They are inspired by the foraging behavior of real
ants in the search for food. The main idea consists of simulating the ants’ behavior in a graph,
called construction graph, in order to search for the shortest path from an initial set of nodes
to the objective ones. The cooperation between the different simulated ants is a key factor in
the search which is performed indirectly by means of pheromone trails, which is a model of the
chemicals real ants use for their communication. The main procedures of an ACO algorithm are
the construction phase and the pheromone update. These two procedures are scheduled during
the execution of ACO until a given stopping criterion is fulfilled. In the construction phase, each
artificial ant follows a path in the construction graph. In the pheromone update, the pheromone
trails of the arcs are modified.

In what follows we describe the algorithm, but prior to that we clarify some issues related to
the notation used in Algorithm 2. In the pseudocode, the path traversed by the k-th artificial ant
is denoted with ak. We use |ak| to refer to the length of the path, the j-th node of the path is
denoted with akj , and ak∗ is the last node of the path.

Algorithm 2 Pseudocode of ACO.

1: proc Input:(ACO) // Algorithm parameters in ACO
2: τ ← initialize pheromone(); // Pheromone trails are initialize by default
3: while not Termination Condition() do
4: for k = 1 to colsize do
5: while |ak| ≤ λant ∧ T (ak

∗
)− ak 6= ∅ do

6: node ← select successor(ak
∗
, T (ak

∗
), τ, η); // Selects the best succesor

7: ak ← ak + node;
8: end while
9: end for
10: τ ← pheromone evaporation(τ, ρ);
11: τ ← pheromone update(τ, abest);
12: end while
13: end proc

The algorithm works as follows. First, the pheromone trails are initialized in Line 2 with defaults
values. After the initialization, the algorithm enters a loop that is executed until a termination
condition is reached, typically a given maximum number of steps (Line 3). In Line 5, we use the
expression T (ak∗)− ak to refer to the elements of T (ak∗) that are not in the sequence ak. That is,
in that expression we interpret ak as a set of nodes. In the loop each ant k stochastically selects
the next node (Line 6) according to the pheromone (τij) and the heuristic value (ηij) associated
with each arc (i, j). Then, the next node is selected with probability

pkij =
[τij]

α[ηij]
β

∑
s∈T (i)[τis]

α[ηis]β
, for j ∈ T (i) , (4.9)

CHAPTER 4. ALGORITHMS 49

where α and β are two parameters of the algorithm determining the relative influence of the
pheromone trail and the heuristic value on the path construction, and T is the set of available
transitions from i.

The whole construction phase is iterated until the ant reaches the maximum length λant, or it
fulfills the coverage criterion. When all the ants have built their paths, a pheromone update phase
is performed. In Line 10, all the pheromone trails are reduced, simulating the real world evapora-
tion of pheromone trails, according to the expression τij ← (1− ρ)τij , where ρ is the pheromone
evaporation rate and it holds that 0 < ρ ≤ 1. Then, the pheromone trails associated with the arcs
traversed by the best-so-far ant (abest) are increased (Line 11). Once the termination condition
has been fulfilled, the algorithm return the best solution. This technique is used in Chapter 8.

4.2 Multi-objective Metaheuristics Used in this PhD Thesis

In this thesis work multi-objective algorithms are also used to deal with the bi-objective version
of different testing problems. The following algorithms are described: Non-dominated Sorting Ge-
netic Algorithm-II (NSGA-II, Section 4.2.1), Strength Pareto Evolutionary Algorithm 2 (SPEA2,
Section 4.2.2), Multi-Objective Cellular Algorithm (MOCell, Section 4.2.3), Pareto Archived Evo-
lution Strategy (PAES, Section 4.2.4), and Random Multi-Objective Algorithm (RNDMulti, Sec-
tion 4.2.5).

4.2.1 Non-dominated Sorting Genetic Algorithm II

Non-dominated Sorting Genetic Algorithm-II (NSGA-II), proposed by K. Deb et al. [58], is a
genetic algorithm which is the reference algorithm in multi-objective optimization (with over 14,494
citations at the time of writing1). Its pseudocode is presented in Algorithm 3. NSGA-II makes
use of a population (P) of candidate solutions (known as individuals). In each generation, it works
by creating new individuals after applying the genetic operators to P, in order to create a new
population Q (lines 5 to 8). Then, both the current (P) and the new population (Q) are joined;
the resulting population (R) is ordered according to a ranking procedure and a density estimator
known as crowding distance (Line 13). The crowding-distance computation requires sorting the
population according to each objective function value in ascending order of magnitude to get a
normalized distance among solutions. Then, the overall crowding-distance value is calculated as
the sum of individual distance values corresponding to each objective (for further details, please
see [58]). Finally, the population P is updated with the best individuals in R (Line 14). These
steps are repeated until the termination condition is fulfilled. This technique is used in Chapters 7
and 9.

4.2.2 Strength Pareto Evolutionary Algorithm 2

Strength Pareto Evolutionary Algorithm (SPEA2) is a multi-objective evolutionary algorithm pro-
posed by Zitler et al. in [235]. We show the algorithm’s pseudocode in Algorithm 4. SPEA2 uses
a population and an archive simultaneously in its operation. In it, each individual is assigned a
fitness value that is the sum of its strength raw fitness and a density estimation. The strength
value of a solution i represents the number of solutions (in either the population or the archive)
that are dominated by that solution, that is S(i) = |{j|j ∈ Pt ∪ Pt ∧ i > j}|. The strength raw

1Data from Google Scholar: 14,494 citations on July 1th 2015.

50 4.2. MULTI-OBJECTIVE METAHEURISTICS USED IN THIS PHD THESIS

Algorithm 3 Pseudocode of NSGA-II.

1: proc Input:(nsga-II) //Algorithm parameters in ‘nsga-II’
2: P ← initialize population() // P = population
3: while not termination condition() do
4: Q ← ∅ // Q = auxiliary population
5: for i ← 1 to (popSize / 2) do
6: parents←selection(P)
7: offspring←recombination(parents)
8: offspring←mutation(offspring)
9: evaluate fitness(offspring)

10: insert(offspring,Q)
11: end for
12: R ← P ∪ Q
13: ranking and crowding(nsga-II, R)
14: P ← select best individuals(nsga-II, R)
15: end while
16: end proc

fitness value of a given solution i, on the contrary, is the sum of strengths of all the solutions that
dominate it, and is subject to minimization, that is, R(i) =

∑
j∈Pt∪Pt,j>i S(j). The algorithm

applies the selection, crossover, and mutation operators to fill an archive of individuals; then, the
non-dominated individuals of both the original population and the archive are copied into a new
population. If the number of non-dominated individuals is greater than the population size, a
truncation operator based on calculating the distances to the k-th nearest neighbour is used (a
typical value is k = 1), D(i) = 1

σk
i +2

, where σk
i is the distance from solution i to its k-th nearest

neighbour. This way, the individuals having the minimum distance to any other individual are
chosen. This technique is used in Chapters 7 and 9.

Algorithm 4 Pseudocode of SPEA2.

1: proc
2: t← 0
3: Initialize(P0, P0)
4: while not termination condition() do
5: fitness assignment(Pt, Pt)
6: Pt+1 ← non dominated(Pt ∪ Pt+1)
7: if |Pt+1| > N then
8: Pt+1 ← truncate(Pt+1)
9: else

10: Pt+1 ← fill with dominated(Pt)
11: end if
12: parents ← selection(Pt+1)
13: offspring ← crossover(parents)
14: Pt+1 ← mutation(offspring)
15: t← t+ 1
16: end while
17: end proc

4.2.3 Multi-Objective Cellular Algorithm

Multi-Objective Cellular Genetic Algorithm (MOCell), introduced by Nebro et al. [162], is a cellular
genetic algorithm (cGA). In cGAs, the concept of (small) neighbourhood is paramount. This

CHAPTER 4. ALGORITHMS 51

means that an individual may only cooperate with its nearby neighbours in the breeding loop.
Overlapped small neighbourhoods of cGAs help in exploring the search space because they induce a
slow diffusion of solutions through the population, providing a kind of exploration (diversification).
Exploitation (intensification) takes place inside each neighbourhood by applying the typical genetic
operations (crossover, mutation, and replacement).

MOCell includes an external archive to store the non-dominated solutions found as the algo-
rithm progresses. This archive is limited in size and uses the crowding distance of NSGA-II to
maintain diversity. The pseudocode of MOCell is presented in Algorithm 5, which corresponds
with the version called aMOCell4, described in [161].

Algorithm 5 Pseudocode of MOCell.

1: proc Input:(MOCell) //Algorithm parameters in ‘MOCell’
2: archive ← ∅ //Creates an empty archive
3: while not termination condition() do
4: for individual ← 1 to MOCell.popSize do
5: n list←get neighbourhood(MOCell,position(individual))
6: parent1←selection(n list)
7: parent2←selection(archive)
8: offspring←recombination(MOCell.Pc,parent1, parent2)
9: offspring←mutation(MOCell.Pm,offspring)

10: evaluate fitness(offspring)
11: replacement(position(individual),offspring,MOCell)
12: insertParetoFront(offspring, archive)
13: end for
14: end while
15: end proc

We can observe that, in this version, for each individual we select one parent from its neigh-
bourhood and one from the archive, in order to guide the search towards the best solutions found
(Lines 5 to 8). Then a new solution is created by applying the genetic operators to these parents.
The new solution is used to replace the current solution (Line 11) and is considered for inclusion in
the archive (Line 12). This constitutes a single iteration of the algorithm. The overall algorithm
iterates until a termination condition is fulfilled. This technique is used in Chapters 7 and 9.

4.2.4 Pareto Archived Evolution Strategy

Pareto Archived Evolution Strategy (PAES) is a metaheuristic proposed by Knowles and Corne [122].
The algorithm is based on a simple (1+1) evolution strategy. To find diverse solutions in the Pareto
optimal set, PAES uses an external archive of non-dominated solutions, which is also used to make
decisions about new candidate solutions. An adaptive grid is used as a density estimator in the
archive. The most remarkable characteristic of PAES is that it does not make use of any recombi-
nation operators (crossover). New solutions are generated only by modifying the current solution.
The pseudocode of PAES is presented in Algorithm 6. It starts with a random solution (Line 3).
In each iteration, a new solution is produced by modifying the current solution (Line 5). This new
solution is included in the archive and it is considered as a potential replacement for the current
solution (lines 7 to 14). These steps are repeated until the maximum number of evaluations is
reached.

We have included PAES in this thesis work because of its simplicity. PAES does not use any
recombination operator, and its only parameter is the number of partitions of the adaptive grid
of the archive. Its relative simplicity makes it attractive since there is only one parameter that

52 4.2. MULTI-OBJECTIVE METAHEURISTICS USED IN THIS PHD THESIS

Algorithm 6 Pseudocode of PAES.

1: proc Input:(paes) //Algorithm parameters in ‘paes’
2: archive ← ∅
3: currentSolution ← createSolution(paes) // Creates an initial solution
4: while not termination condition() do
5: mutatedSolution←mutation(currentSolution)
6: evaluate fitness(mutatedSolution)
7: if isDominated(currentSolution, mutatedSolution) then
8: currentSolution ← mutatedSolution
9: else

10: if solutions are nondominated(currentSolution, mutatedSolution) then
11: insert(archive, mutatedSolution)
12: currentSolution ← select(paes, archive)
13: end if
14: end if
15: end while
16: end proc

require tuning in order to know that the algorithm is being applied properly (e.g., population size,
crossover probability, mutation probability). This technique is used in Chapters 7 and 9.

4.2.5 Random Multi-Objective Algorithm

In this thesis dissertation we also use a random search multi-objective algorithm (RNDMulti). We
want to check whether the metaheuristic algorithms are capable of outperform random search or
not in our proposed testing problems. The pseudocode of the RNDMulti is presented in Algorithm
7. The final result of this random search is the set of all the non-dominated solutions found. This
technique is used in Chapters 7 and 9.

Algorithm 7 Pseudocode of RNDMulti.

1: proc
2: archive ← ∅
3: currentSolution ← create solution() // Creates an initial solution
4: while not termination condition() do
5: newSolution ← create solution()
6: insert(archive, newSolution)
7: end while
8: extractParetoFront(archive)
9: end proc

CHAPTER 4. ALGORITHMS 53

54 4.2. MULTI-OBJECTIVE METAHEURISTICS USED IN THIS PHD THESIS

Part II

Structural Testing

55

Chapter 5

Test Data Generation in

Object-Oriented Software

5.1 Introduction

Most of the work found in the literature related to automatic software testing focuses on procedural
languages and programs. However, most of the software developed nowadays is object-oriented .
Object-Oriented (OO) languages are considered an evolution of procedural languages and they
allow developers to design and implement really large software applications more easily than using
procedural languages, thanks to their ability for abstracting and modularizing software compo-
nents. Most of the ideas used for testing procedural programs can be used with no change in the
OO software. However, we can find new features in OO languages that do not exist in procedural
ones. Some examples of these features are inheritance, polymorphism, overloading, generics, and
so on. No doubt these new features solve some common errors found in procedural languages but
they also trigger new kinds of errors. Thus, when dealing with OO programs, automatic software
testing techniques must include new ideas that are not present in procedural testing.

One of the first works in the literature related to OO software was the work by Tonella [199],
which used genetic algorithms. Later, Liu et al. [133] proposed the use of ant colony optimization.
The work by Wappler and Wegener [213, 214] using hybrid algorithms and strongly-typed genetic
programming focuses on container classes. More recently, the work by Arcuri and Yao [19] optimizes
test cases for covering all the branches at the same time and compares different search strategies.
None of the previous work explicitly deals with inheritance for generating test data. The objects
used as parameters are generated by calling the constructor and some methods of one class in order
to reach a given state of the object. However, no attention is paid to the position of the class in
the hierarchy, thus we wish to address this issue in this thesis chapter. We propose new approaches
to take into account the position in the class hierarchy of the classes used in the parameters of
methods being tested. In particular, this thesis focuses on the Java instanceof operator, which is
related to inheritance. It determines if the specified object ‘o’ is assignment-compatible with the
object represented by the class ‘c’ (o instanceof c). The operator returns true if the specified
object is non-null and can be cast to the reference type represented by the class ‘c’ without raising
a ClassCastException. It returns false otherwise.

The main and motivating research question addressed here is RQ1: what is the guidance for an
automatic test data generator if there is a method containing the code in Figure 5.1 and it needs

57

58 5.2. TEST DATA GENERATOR

to make the branch condition true? We can use an objective function for this branch that takes
value 1 if the condition is true and 0 otherwise. However, this objective function gives no clue on
how near a test datum is from making the condition true and an algorithm using this function
can behaves like a blind search. This is called the flag problem [96]. Consequently, the fitness
landscape consists of two plateaus, corresponding to the two possible values (true or false). One
of these plateaus will be super-fit and the other super-unfit. A search-based approach will not be
able to locate the super-fit plateau any better than a random search, because the fitness landscape
provides no guide to direct the search from unfit to fit regions of the landscape. Where the fit
plateau may be very small relative to the unfit plateau, this makes the program hard to test. This
issue has been studied by many researchers, however, previous work does not address the issue of
a special type of the flag problem that often occurs in the context of object-orientation related to
inheritance that occurs when instanceof operators are used.

void function (Collection c)

{
if (c instanceof Set)

{
...

}
}

Figure 5.1: Instanceof expression in a sentence.

The specific contributions in this thesis chapter are a new branch distance defined for the
instanceof operator, and two mutation operators taking into account the class hierarchy. The
proposal made in this thesis allows the algorithms to better guide the search for test data in the
presence of the instanceof operator. This operator appears in 2,700 of the 13,000 classes of the
JDK 1.6 class hierarchy and more than 850 classes include this operator in between 1% and 12% of
their source code lines. This means that this operator is used in real software and any contribution
that facilitates the testing process when it is present will have an important impact on the OO
software testing field.

5.2 Test Data Generator

Automatic generation of test data needs to be carried out using a tool to generate test data in
an intelligent way, following the global objective of covering all branches of the source code. This
problem is formalized in Section 2.2.1 to give the reader precise details of the problem we are
coping with. In that section we define the adequacy criterion used to formalize the objective of
the generator. In this thesis we use the branch coverage which is the most popular criterion in the
literature and was formalized in Eq. (2.6). In the following we describe our test data generator
and the complete process of the generation of test data.

Our test data generator breaks down the global objective (to cover all the branches) into several
partial objectives consisting of dealing with only one branch of the program. Then, each partial
objective can be treated as a separate optimization problem in which a solution to the problem
is a test datum and the function to be minimized is a distance between the current test datum
and one satisfying the partial objective. In order to solve such minimization problem optimization
algorithms such EAs are used. The main loop of the test data generator is shown in Figure 5.2.

CHAPTER 5. TEST DATA GENERATION IN OBJECT-ORIENTED SOFTWARE 59

Select a Partial

Objective

Optimization

Algorithm

End

Continue?
yes

no

Test Case Generator

Test case

Objective function

Program

Figure 5.2: The test data generation process.

In a loop, the test data generator selects a partial objective (a branch) and uses the optimization
algorithm to search for test data taking that branch. When a test datum covers a branch, the test
datum is stored in a set associated to that branch. The structure composed of the sets associated
to all the branches is called coverage table. After the optimization algorithm stops, the main loop
starts again and the test data generator selects a different branch. This scheme is repeated until
total branch coverage is obtained or a maximum number of evaluations or consecutive failures
of the optimization algorithm is reached. When this happens the test data generator exits the
main loop and returns the sets of test data associated to all the branches. In the following two
sections we describe two important issues related to the test data generator: the objective function
to minimize and the instrumentator used to generate an instrumented equivalent version of the
program under test.

5.2.1 Objective Function

We have to solve several minimization problems: one for each branch. Now we need to define an
objective function (for each branch) to be minimized. This function will be used for evaluating
each test datum, and its definition depends on the desired branch and whether the program flow
reaches the branching condition associated to the target branch or not. If the condition is reached
we can define the objective function on the basis of the logical expression of the branching condition
and the values of the program variables when the condition is reached. The resulting expression
is called branch distance and can be recursively defined on the structure of the logical expression.
That is, for an expression composed of other expressions joined by logical operators the branch
distance is computed as an aggregation of the branch distance applied to the component logical
expressions.

For the Java logical operators && and || we define the branch distance as:

bd(a&&b) = bd(a) + bd(b) (5.1)

bd(a||b) = min(bd(a), bd(b)) (5.2)

where a and b are logical expressions.

60 5.2. TEST DATA GENERATOR

In order to completely specify the branch distance we need to define its value in the base case of
the recursion, that is, for atomic conditions. The particular expression used for the branch distance
in this case depends on the operator of the atomic condition. The operands of the condition appear
in the expression. A lot of research has been devoted in the past to the study of appropriate branch
distances in software testing. An accurate branch distance considering the value of each atomic
condition and the value of its operands can better guide the search. In procedural software testing
these accurate functions are well-known and popular in the literature. They are based on distance
measures defined for relational operators like <, >, and so on [154]. We use here these distance
measures described in the literature.

When a test datum does not reach the branching condition of the target branch we cannot
use the branch distance as objective function. In this case, we identify the branching condition c
whose value must first change in order to cover the target branch (critical branching condition)
and we define the objective function as the branch distance of this branching condition plus the
approximation level. The approximation level, denoted here with ap(c, b), is defined as the number
of branching nodes lying between the critical one (c) and the target branch (b) [216].

We also add a real valued penalty in the objective function to those test data that do not reach
the branching condition of the target branch. With this penalty, denoted by p, the objective value
of any test datum that does not reach the target branching condition is higher than the one of any
test datum that reaches the target branching condition. The exact value of the penalty depends
on the target branching condition and it is always an upper bound of the target branch distance.
Finally, the expression for the objective function is as follows:

fb(x) =

{
bdb(x) if b is reached by x
bdc(x) + ap(c, b) ∗ p otherwise

(5.3)

where c is the critical branching condition, and bdb, bdc are the branch distances of branching
conditions b and c. The use of the penalty p could be avoided by normalizing the branch distance
to the interval [0, 1) (see [16] for example).

Nested branches pose a great challenge for the search. For example, if the condition associated
to a branch is nested within three conditional statements, all the conditions of these statements
must be true in order for the program flow to proceed onto the next one. Therefore, for the purpose
of computing the objective function, it is not possible to compute the branch distance for the
second and third nested conditions until the first one is true. This gradual release of information
might cause efficiency problems for the search (what McMinn calls the nesting problem [149]),
which forces us to concentrate on satisfying each predicate sequentially. In order to alleviate
the nesting problem, our test data generator selects as objective in each loop one branch whose
associated condition has been previously reached by other test data stored in the coverage table.
Some of these test data are inserted in the initial population of the algorithm used for solving the
optimization problem. The percentage of individuals introduced in this way in the population is
called the replacement factor and is denoted by Rf . At the beginning of the generation process
some random test data are generated in order to reach some branching conditions.

5.2.2 Instrumentation Tool

Instrumentation is the implementation of code instructions that monitors specific components of
a software system without modifying the behavior of the original program. In this thesis we are
interested in code tracing, that is, receiving information about the execution of an application.
Instrumentation approaches can be of two types: source instrumentation and binary instrumenta-

CHAPTER 5. TEST DATA GENERATION IN OBJECT-ORIENTED SOFTWARE 61

tion. Since we have access to the source code of the programs that we want to test, we decided to
use source instrumentation in this dissertation.

We have developed an instrumentator for Java source code using a Java CC grammar of the
Java language structures. The instrumentator adds instrumentation code and transforms the source
code to receive information of the program execution. For this purpose, we have implemented the
visitor design pattern, which is the best way to analyze and transform the source code related to
general structures, control structures, and assignation expressions. Particularly, our instrumentator
redefines conditions and decisions associated to control structures (If-then, while, switch, . . .).
We add some own instrumentation statements that give us the required information to be able
to know which branches were traversed in an execution of the program under test. After the
execution of our instrumentator over a source code, it returns a new version of the program with
the same functionality but annotated with some statements which provide us useful information
for computing the branch distance which guide the search to the optimal test data set.

5.3 Distance for instanceof operator

In this section we try to answer the main research question of this chapter (RQ1) by presenting
our proposal of distance measure for the instanceof operator. This distance will be used in the
base case of the branch distance definition (see Section 5.2.1) when the instanceof operator is
found. Since our distance is based on the class and interface hierarchy, first we need to present
the notation for referring to the classes, interfaces, and their relationship. In Java there is no
multiple inheritance among classes, that is, a class can only extend one class. However, this does
not hold for interfaces: one interface can extend several interfaces and one class can implement
several interfaces. The natural way of representing the class and interface hierarchy is by means
of a graph. Following the terminology proposed in the Java language specification [90], we use the
term reference type to refer to a class or an interface.

Let us denote with GR = (R,ER) the graph representing a hierarchy of reference types, where
R is the set of reference types considered and ER ⊆ R × R is the set of arcs. We call this graph
the hierarchical graph of R. The set R can be composed of all the classes and interfaces accessible
from a virtual machine or a subset of them. We will use the notation CR and IR to refer to the set
of classes and interfaces in R, respectively. The set of arcs ER is determined by the relationship
between classes and interfaces in R in the following way. Let r1, r2 ∈ R be two reference types,
then (r1, r2) ∈ ER if and only if:

• r1, r2 ∈ CR and class r1 is a direct superclass of r2

• r1 ∈ IR and interface r1 is a direct superinterface of reference type r2

We must recall here that there is only one class in Java with no superclass: Object. This
fact, together with the lack of multiple inheritance for classes, implies that the subgraph of GR

composed only by the set of classes CR is a directed tree with the Object class in the root. We
denote this subgraph GCR . At this point we can define the value returned by the instanceof

operator based on our definition of hierarchical graph. Let “o instanceof r” be an instanceof

expression where o is an object of class c and r a reference type. This expression evaluates to true
if and only if a walk exists in GR from r to c.

Once we have defined the hierarchical graph for a set of reference types R we present now the
definition of the distance d between one class c and a reference type r. This distance is the one used
for comparing the two arguments of an instanceof operator. In this operator, the first argument

62 5.3. DISTANCE FOR INSTANCEOF OPERATOR

is an object from which only its class c is used for the comparison. The second argument can be
any reference type r. We distinguish two cases: when r is a class and when r is an interface.

If r is a class then c and r belong to the directed tree GCR . Let us call c′ the deepest class in
the directed tree that is ascendant of both c and r at the same time. The class c′ could also be c
or r. Since GCR is a directed tree there exists a unique walk from c′ to c, denoted by wc′→c, and
a unique walk from c′ to r , wc′→r. We call the first walk hierarchical walk and the second one
approximation walk. The distance between c and r is defined as:

d(c, r) = h|wc′→c|+ a|wc′→r| , if r ∈ CR , (5.4)

where h and a are the hierarchical and approximation constants that weight the length of the
hierarchical and approximation walks, respectively. In order to satisfy an instanceof expression
the length of the approximation walk must be zero. However, in this last case, the length of the
hierarchical walk is irrelevant to the satisfaction of the instanceof expression. For this reason, in
order to reflect the real impact of each walk in the distance we should weight the approximation
walk with a higher value than the hierarchical walk. We will empirically analyze the weights in
the experimental section.

When r is an interface we consider the distance from c to the concrete classes of CR that
implement interface r. Let Sr ⊆ CR be the set of concrete (not abstract) classes implementing r
(a walk exists in GR from r to any class of Sr). Then the distance from c to r is defined as:

d(c, r) = min
t∈Sr

d(c, t) , (5.5)

where d(c, t) is the distance between two classes defined above in Eq. (5.4).

 c

 c’

r

Hierarchical

walk

Approximation

walks

Collection

List

Set

AbstractList

ArrayList

AbstractCollection

TreeSet HashSet

AbstractSet

 t1 t2

d=2a+2h

Figure 5.3: Example of distance between a class and an interface.

Figure 5.3 illustrates the computation of the distance between class ArrayList and interface
Set. There are two concrete classes that implement the Set interface in our example: TreeSet

and HashSet. The distance between class ArrayList and them is in both cases the same: 2a+2h.
Thus, the distance between interface Set and class ArrayList is d = 2a + 2h. If we set a = 50
and h = 10, then d = 120.

CHAPTER 5. TEST DATA GENERATION IN OBJECT-ORIENTED SOFTWARE 63

The computation of the distance defined in this section has complexity O(a + h) in the case
of two classes and O((a + h) ∗ i) in the case of a class and an interface, where a and h are
the approximation and hierarchical distances (maximum values in the case of the class and the
interface) and i is the size of the subset Sr. However, in order to reduce the cost of computing
these distances, these computations can be made prior to the test data generation and stored in a
table.

5.4 Experimental Setup

In this section, we describe the details of the EA used in this chapter. Then, we use the distance
presented throughout the chapter to design a mutation operator. We also present a benchmark set
of object-oriented test programs that are used in the experiments.

5.4.1 Algorithm Details

In section 4.1.1 we draw a general description of the GA used for solving the test data generation
problem for OO source code.

Regarding the representation, one solution is a vector ~o of objects (see Figure 5.4). These
objects are used in the order determined by the vector as actual parameters of the method under
test.

o1 o2 o3 o4 o5 o6 o7

Objects
o1 = neo.testing.C1@34b45

o2 = java.lang.String@56bfa

...

Figure 5.4: Representation of one solution vector ~o.

For the selection operator we use q-tournament selection and the recombination operator used is
a single point crossover. We defer the description of the mutation operator to Section 5.4.2 because
it is one of the contributions of this thesis. The replacement operator is an elitist procedure,
where any individual can potentially leave the pool and be replaced by a new one if the new
one has a better fitness value. The fitness function used in this dissertation is the one presented
in Eq. (5.3). Regarding the parameters of the EA, we use the values 0.1, 0.2, and 0.3 for the
probability of mutation PM , and the values 0.25, 0.50, 0.75 for the replacement factor Rf presented
in Section 5.2.1.

Since we are working with stochastic algorithms, we perform in all the cases a minimum of
30 independent runs of the algorithms (increased up to 200 in some cases) and Kruskal-Wallis’s
statistical tests for multiple comparison with a confidence of 95%. In order to obtain well-founded
conclusions we base all our claims on statistically significant differences.

5.4.2 Mutation Operator

The mutation operator decides whether or not to change a component of an individual according
to the probability of mutation PM . The mutation operator is usually designed to introduce small
variations in the tentative solutions. In this chapter we propose the use of the distance defined in
Section 5.3 for computing the probability to change one object of the solution to an instance of a
different class. We call this mutation operator distance-based mutation, denoted by MDn, and it

64 5.5. EXPERIMENTAL ANALYSIS

works as follows. For each component in the solution it decides whether to change it or not with
probability PM . If the object is changed, it selects the class of the new object from a universe U
of concrete classes. If the old object had class c, the probability of changing to an object of class
c′ is given by the following expression:

p(c, c′) =

1
d(c,c′)

∑

r∈U,r 6=c

1
d(c,r)

if c 6= c′,

0 if c = c′.

(5.6)

where d is the distance between classes defined in Eq. (5.4). This way, it is more probable to
mutate the object to a new one whose class is near the old one in the class hierarchy. This is how
a “small change” is interpreted (and implemented) in the mutation operator. In Section 5.5.3, we
will justify the use of an adaptive mutation MDα that evolves during the search. We defer its
definition to the next section because its mathematical expression can be better understood after
some results are shown.

Finally, the parameters for the proposed distance measure d are the following: a length for
the approximation walk greater than zero implies that the instanceof expression is false. Thus,
the approximation constant a must be large. The values used for a are 50, 100 and 200. The
hierarchical constant h appears in the distance expression even when the instanceof expression
is true. This distance helps the algorithm to search for test data that are in the boundary of the
satisfaction region of the logical expressions. It seems reasonable to think that this constant should
be smaller than a and, for this reason, we use the values 1, 25, 50, and 100 for it.

5.4.3 Benchmark of Test Programs

We use a benchmark set of nine test programs with different features1. Since we are interested
in studying our proposals for dealing with the instanceof operator, all the atomic conditions in
the test programs are instanceof expressions. This way we analyze the instanceof operator in
isolation, avoiding any influence on the results of the distance expressions used for other relational
operators. All the programs have the same number of branches and we use the name obji j to
refer to the program with i atomic conditions per logical expression (varying from 2 to 4) and
nesting degree j (varying from 1 to 3). Each program consists of one method with six decisions,
varying the number of atomic conditions that appear in each one. In addition to this benchmark
set, we use another program with only one condition composed of a conjunction of four instanceof
expressions that will be used in an experiment discussed in Section 5.5.2.

5.5 Experimental Analysis

In the next section we show some preliminary results and analyze the influence of some parameters
in order to set the best values for the parameters. Our main purpose is to study the measure of
distance defined in Section 5.3 for the instanceof operator and the specific mutation operator
designed. So, we compare the distance-based mutation MDn against a simpler mutation oper-
ator. Then, motivated with the obtained results we propose an adaptive mutation operator in
Section 5.5.3.

1They are available at http://neo.lcc.uma.es/staff/javi/resources.html

CHAPTER 5. TEST DATA GENERATION IN OBJECT-ORIENTED SOFTWARE 65

5.5.1 Preliminary Results

In this section we analyze the influence on the average coverage of the replacement factor Rf , the
mutation probability PM , the approximation constant a, and the hierarchical constant h. The
objective of this first study is to discover the best values for these parameters. The experiments
performed have a factorial design. That is, for each of the nine test programs and each of the 108
combinations of the four above mentioned factors we have performed 30 independent runs. This
means a total number of almost 30, 000 independent runs of the test data generator.

In this section we only show the average results of the most complex programs (obj4 3, obj4 2,
and obj3 3) because the others achieve 100% coverage in most cases and could inflate coverage
percentage. For each combination of Rf and PM we have computed the average value of the
coverage when the other parameters (a and h) change. In this way we have obtained Table 5.1.
If we focus on the parameter PM we can observe that the coverage is higher when PM is small.
The statistical tests confirm that the differences between the results obtained with PM = 0.1 and
the other two values are significant. Thus, we conclude that a small probability of mutation must
be used for programs with a high degree of nesting and a large number of atomic conditions in
each logical expression. Regarding the replacement factor Rf , we can observe that the coverage
increases with Rf when PM = 0.2 and PM = 0.3. However, the differences in the results are not
statistically significant.

Table 5.1: Average coverage obtained changing PM and Rf in the most complex programs.

PM = 0.1 PM = 0.2 PM = 0.3
Rf = 0.75 83.08 76.10 67.29
Rf = 0.50 83.43 75.43 67.20
Rf = 0.25 82.10 73.81 66.74

We have also studied the influence on the average coverage of the hierarchical and approximation
constants h and a. As in the previous tables, for each program and each combination of a and h
we have computed the average value of the coverage percentage when the other parameters (PM

and Rf) change. The results are shown in Table 5.2. On the basis of our previous intuition on
the behavior of the distance proposed for the instanceof operator we expected no significant
differences except in the case a < h. The results confirm our expectations; as we can observe in
Table 5.2, when a < h the average coverage is minimum (with statistically significant differences).
However, we cannot find a configuration that is better than all the rest. We can only conclude
that a should not be less than h.

Table 5.2: Average coverage obtained changing h and a in the most complex programs.

h = 1 h = 25 h = 50 h = 100
a = 200 75.45 75.33 74.93 75.68
a = 100 75.53 74.74 75.10 74.79
a = 50 74.86 75.81 74.44 73.57

According to the results shown in this section we fix the values of the four parameters studied
in the following experiments. The values chosen are PM = 0.1, Rf = 50%, a = 50 and h = 25. In
the rest of the experimental section we analyze the proposed mutation operators.

66 5.5. EXPERIMENTAL ANALYSIS

5.5.2 Uniform vs. Distance-based Mutation

In this section we compare the distance-based mutation MDn against a simpler mutation operator:
one that selects the class using a uniform distribution of probabilities. We will call this operator
uniform mutation (MU) in the following. The only difference between the distance-based and the
uniform mutation is the probability distribution used for selecting the new class c′. In MDn is
given by Eq. (5.6) and in MU is given by:

p(c, c′) =

1
|U|−1 if c 6= c′

0 if c = c′
(5.7)

where U is the universe of classes. One of the first questions we want to answer in this experi-
mental section is: which mutation operator is better? Before the empirical evaluation we present
a theoretical analysis that allows us to make some speculations. These speculations are based on
the probability of obtaining an objective vector ~t from a given vector ~o by one application of the
mutation operator. In the case of the uniform mutation this probability is

pu(~o,~t) = (1−M)lMn−l

(
1

|U | − 1

)n−l

(5.8)

where M is the mutation probability, n is the length of the vector ~o, and l is the number of objects
of ~o that are instances of the correct class (the class required by the objective vector ~t). In the
case of the distance-based mutation the expression is more complex:

pd(~o,~t) = (1 −M)lMn−l
∏

{i|oi 6=ti}

p(oi, ti) (5.9)

where p is the probability distribution defined in Eq. (5.6) and we have used oi and ti to denote
the classes of the corresponding objects.

At this point we must notice the following fact. If the classes of two objects oi and ti are near
in the hierarchy of classes we have p(oi, ti) > 1/(|U | − 1). Thus, pd(~o,~t) > pu(~o,~t) if solution ~o is
near the objective ~t. On the other hand, pd(~o,~t) < pu(~o,~t) if solution ~o is far from ~t.

In order to check this speculation we have performed an experiment in which we used one
program with one branch. The EA is used to search for a solution satisfying the condition. We
have performed 200 independent runs of the EA and we have registered the best fitness of the
population at each step of the EA in order to analyze the evolution of the search. In Figure 5.5
we show the average of the 200 independent runs at each step of the execution for MDn and MU.

We can observe in Figure 5.5 that, although the behavior is quite similar using the two mutation
operators, the MU curve is lower than the other one at the beginning. The advance produced by
MU to the objective solution is faster, since the initial population is far from this objective solution,
so using MDn provides no advantage. However, as the search progresses we can observe that MDn
is able to reach the objective solution before MU. When any individual of the population is near
the objective solution, MDn guides the individual to the objective solution better than MU. This
is the result expected from the speculations we made at the beginning of this section.

In order to confirm this behavior we perform a new experiment in which the initial population
is randomly generated using individuals that are near the objective solution. We want to check
if MDn is really faster than MU in this situation. In Figure 5.6 we show the average evolution
over 200 independent runs and we can observe that MDn has a clear advantage over MU when the

CHAPTER 5. TEST DATA GENERATION IN OBJECT-ORIENTED SOFTWARE 67

Figure 5.5: Fitness evolution with a uniformly initialized population.

population is near the optimum. Thus, our main conclusion in this section is that, in general, MDn
is better than MU. However, MU can advance faster to the objective than MDn at the beginning
of the search. Ideally, we would like to obtain a combination of the variability provided by the
behavior of MU at the beginning and the behavior of MDn at the middle stage of the search. One
way to achieve this is by means of an adaptive mutation operator. This is what we analyze in the
following section.

Figure 5.6: Fitness evolution with a population near the objective solution.

68 5.5. EXPERIMENTAL ANALYSIS

5.5.3 Adaptive Mutation

Motivated by the results of the previous section we present in this section a new mutation operator
that changes its behavior throughout the search. The difference between this adaptive operator,
denoted by MDα, and the ones studied in the previous section is the probability distribution used
for selecting a class. In MDα the probability distribution is:

p(c, c′) =

(

1
d(c,c′)

)α

∑

r∈U,r 6=c
(1

d(c,r))
α if c 6= c′

0 if c = c′

(5.10)

In this expression, if α = 0, we have the uniform mutation MU and if α = 1, we have the
distance-based mutation MDn. We can use values higher than 1 for α. If the value of α is high,
then the mutation only selects classes that are close to the ones in the individual. We can see α as
an exploitation-exploration parameter. A low value for α leads to an explorative search. A high
value leads to an exploitative search. In order to make it adaptive we must change the value of α
throughout the search. We use a linear increase for α, that is:

α = λ · step (5.11)

where λ is a parameter called adaptive speed. With this expression for α, the behavior of the
adaptive mutation is the same as the behavior of MU at the beginning and it switches to the
behavior of MDn as the search progresses. The higher the value of λ, the higher the speed of
this change in the behavior. If λ = 0 we have the uniform mutation, MU. On the other hand, if
λ = 1/T , then MDα behaves like MDn in T steps.

The adaptive speed λ is a new parameter and we must analyze the behavior of the algorithm
for different values of λ in order to give some guidelines for selecting its value. A low value for λ
means a very explorative search. A high value for λ makes the algorithm change very fast from the
explorative phase to a very exploitative one. It is well-known in the metaheuristic field that one
of the key points in the design of an algorithm is to select the exact balance between exploration
and exploitation. Thus, we expect the best value for λ to be not too high and not too low: it
should be something in between. In order to support this hypothesis we have applied our test data
generator using the adaptive mutation to the nine programs presented in Section 5.4.3. We used
nine different values for λ and performed 100 independent runs for each program and configuration.
In all the cases the generator was executed until 100% branch coverage was obtained and we use
the number of evaluations for comparison purposes. In Figure 5.7 we show the average number of
evaluations for all the programs and the nine values of λ. We have also included the results of MU
(λ = 0).

As expected, when extreme values for λ are used the effort required to reach the total coverage
is higher. In particular, when random mutation is used (λ = 0) the effort is higher than for
intermediate values of λ (there are statistically significant differences that confirm this observation).
On the other hand, when λ = 1/60, the higher value of λ, the effort required is again increased. The
reason is that the search reaches a very exploitative stage in a few steps, in which newly generated
solutions are similar to the parent solutions. In this situation it is difficult for the algorithm to
reach the objective. The best values for λ are between 1/100 and 1/200.

We have also compared our proposals against a random search. The random search proposes
random classes for the vector of objects that is used as test case. The random search is able to
reach 100% branch coverage only in obj2 1 with an average of 1302 evaluations. For the other

CHAPTER 5. TEST DATA GENERATION IN OBJECT-ORIENTED SOFTWARE 69

Figure 5.7: Average number of evaluations required for 100% branch coverage in all the test
programs for different values of λ.

(more complex) programs we stopped the random search after 50,000 evaluations and the average
coverage obtained varies from 21% in obj4 3 to 99% in obj3 1. In the results shown in Figure 5.7
the maximum number of average evaluations for a 100% branch coverage is around 8,000. Thus,
we conclude that our proposals are much better than a simple random search.

The results of Figure 5.7 also show the “difficulty” of the programs for the test data generator.
From the results we can sort the programs according to the effort required to reach 100% branch
coverage. We can observe that, except in a few cases, this ranking is independent of the value of
λ and is correlated with the value i + j where i is the number of atomic conditions per logical
expression, and j is the nesting degree. Furthermore, we can observe that the influence of λ on
the results is higher in the “most difficult” programs, as we could expect.

5.6 Conclusions

In this chapter we have studied one aspect of OO Software, inheritance, to propose some approaches
that can help to better guide the search of test data in the context of OO evolutionary testing.
In particular, we have answered the RQ1 providing a distance measure to compute the branch
distance in the presence of the instanceof operator in Java programs. We have also proposed two
mutation operators that change the solutions based on the distance measure defined. In addition
to the proposals we have performed a set of experiments to test our hypothesis. First, we have
analyzed the most important parameters of the algorithm in order to select the best configuration.
After that, we have analyzed and compared one of the proposed mutation operators against a
uniform mutation. Finally, we have proposed an adaptive mutation operator that is able to make
a better exploration and we have studied its main parameter.

One of the main conclusions of this work is that the difficulty to test a program depends on
the number of atomic conditions per logical expression, and the nesting degree. Since we are
interested in measuring the complexity of testing a program, in the next chapter we analyze the
most common static measures and define a testing complexity measure to estimate the effort
required to test software.

70 5.6. CONCLUSIONS

Chapter 6

Estimating Software Testing

Complexity

6.1 Introduction

Since the birth of Software Industry, there has been a high interest in measuring the effort in terms
of time and cost required by a task. Nowadays, software applications are essential for Industry,
thus software developers need to measure all sort of elements. Tom DeMarco stated [59]: “You can
not control what you cannot measure. Measurement is the prerequisite to management control”.
The importance of metrics have also been highlighted by the famous physicist Lord Kelvin [198]:
“When you can measure what you are speaking about, and express it in numbers, you know
something about it; but when you cannot measure it, when you cannot express it in numbers,
your knowledge is of a meagre and unsatisfactory kind: it may be the beginning of knowledge, but
you have scarcely, in your thoughts, advanced to the state of science”. For these reasons, in this
chapter we focus on complexity measures, which quantify the effort required to complete any kind
of task.

First, it is needed to define what program complexity means. Basili [27] defines complexity as
a measure of the resources used by a system while interacting with a piece of software to perform
a given task. If the interacting system is a computer, then complexity is defined by the execution
time and storage required to perform the computation described by the program. If the interacting
system is a programmer then complexity is defined by the difficulty of performing tasks such as
coding, debugging, testing or modifying the software. There exist metrics introduced as all-purpose
measures of software complexity, however these measures seem to be ineffective in order to measure
the testing complexity [107]. The absence of a metric to properly measure the difficulty to test
a piece of code encourage us to characterize the testing complexity, and drive us to the following
research question RQ1: how difficult is the automated testing of a piece of code?

Analyzing the testing complexity, it can be seen as the difficulty for a computer to create a test
suite for finding errors in the developed code. Finding errors in early stages of the development is
an important task that saves costs of the project. It is estimated that half the time spent on the
software project development and more than half its cost, is devoted to testing the product [158].
To this end, in recent years researchers have attempted to predict fault-prone software modules
using complexity metrics [228]. In addition, the overall experimental results show that complexity
metrics are able to predict fault-prone source code [232].

71

72 6.2. STATIC MEASURES

In most previous works they defined the testing complexity as the number of test cases re-
quired [130,227]. Some works try to compute the lower bound [30] of the test cases required, and
other works try to provide better understanding on the testing criterion used to generate those
test cases [139]. However, they do not focus on the effort to generate these test cases. In a recent
work, Nogueira focuses on the correlation between the complexity of the SUT and the complexity
of the test cases [164], but the work did not propose any estimation measure.

We propose in this thesis dissertation a new complexity measure with the aim of helping the
tester to find errors in the code. This measure will predict in a better way the behavior of an
automatic test data generator depending on the SUT. This original complexity measure, called
“Branch Coverage Expectation” (BCE), is the main contribution of this chapter. The definition
of the new measure lies on a Markov model that represents the program. Based on the model
of a program, we can also provide an estimation of the number of random test cases that must
be generated to obtain a concrete coverage. From these estimations, we can create a theoretical
prediction of the evolution of the coverage depending on the number of generated test cases. This
second contribution will help the testers to obtain some knowledge about the possible evolution of
the testing phase.

The validation of the proposed measure is also addressed in this work. For the theoretical
validation of the BCE complexity measure we have used the validation framework proposed by
Kitchenham et al. [120]. For the experimental validation we have used Evolutionary and Random
Testing techniques, which are the most popular search algorithms for automatically generating test
cases [10, 14, 74, 128], to compare our estimation with the real value obtained by several test data
generators.

Finally, we also analyze software complexity measures at program level and we discuss a number
of issues associated with these known measures. In addition, we have performed an experimental
study of correlations with the aim of highlighting the existing relationships among some static
measures. We are especially interested in the existing relationships between the static measures
and the branch coverage. In this experimental study we have used two large groups of automatically
generated programs and one group of real-world ones to serve as a benchmark.

6.2 Static Measures

Quantitative models are frequently used in different engineering disciplines for predicting situations,
due dates, required cost, and so on. These quantitative models are based on some kind of measure
made on project data or items. Software Engineering is not an exception. A lot of measures are
defined in Software Engineering in order to predict software quality [187], task effort [36], etc. We
are interested here in measures made on source code pieces. We distinguish two kinds of measures:
dynamic, which require the execution of the program, and static, which do not.

Some time ago, project managers began to worry about concepts like productivity and quality,
then the lines of code (LOC) metric was proposed. Nowadays, the LOC metric is still the primary
quantitative measure in use. An examination of the main metrics reveals that most of them confuse
the complexity of a programwith its size. The underlying idea of these measures are that a program
will be much more difficult to work with than a second one if, for example, it is twice the size,
has twice as many control paths leading through it, or contains twice as many logical decisions.
Unfortunately, these various ways in which a program may increase in complexity tend to move in
unison, making it difficult to identify the multiple dimensions of complexity.

In this section we present the measures used in this study. In a first group we select the main
measures that we selected from the literature:

CHAPTER 6. ESTIMATING SOFTWARE TESTING COMPLEXITY 73

• Lines of Code (LOC)

• Source Lines of Code (SLOC)

• Lines of Code Equivalent (LOCE)

• Total Number of Disjunctions (TNDj)

• Total Number of Conjunctions (TNCj)

• Total Number of Equalities (TNE)

• Total Number of Inequalities (TNI)

• Total Number of Decisions (TND)

• Number of Atomic Conditions per Decision (CpD)

• Nesting Degree (N)

• Halstead’s Complexity (HD)

• McCabe’s Cyclomatic Complexity (MC)

Let’s have a look at the measures that are directly based on source lines of code (in C-based
languages). The LOC measure is a count of the number of semicolons in a method, excluding
those within comments and string literals. The SLOC measure counts the source lines that contain
executable statements, declarations, and/or compiler directives. However, comments, and blank
lines are excluded. The LOCE measure [191] is based on the idea of weighing each source line of
code depending on how nested it is. The previous three measures based on the lines of code have
several disadvantages:

• Depend on the print length

• Depend of the programmer’s style for writing source code

• Depend on how many statements does one put in one line

We have analyzed several measures as the total number of disjunctions (OR operator) and con-
junctions (AND operator) that appear in the source code, these operators join atomic conditions.
The number of (in)equalities is the number of times that the operator (! =) == is found in atomic
conditions of a program. The total number of decisions and the number of atomic conditions
per decision do not require any comment. The nesting degree is the maximum number of control
flow statements that are nested one inside another. In the following paragraphs we describe the
McCabe’s cyclomatic complexity and the Halstead complexity measures in detail.

Halstead complexity measures are software metrics [93] introduced by Maurice Howard Halstead
in 1977. Halstead’s Metrics are based on arguments derived from common sense, information theory
and psychology. The metrics are based on four easily measurable properties of the program, which
are:

• n1 = the number of distinct operators

• n2 = the number of distinct operands

• N1 = the total number of operators

• N2 = the total number of operands

74 6.2. STATIC MEASURES

From these values, six measures can be defined:

• Halstead Length (HL): N = N1 +N2

• Halstead Vocabulary (HV): n = n1 + n2

• Halstead Volume (HVL): V = N ∗ log2 n

• Halstead Difficulty (HD): HD = n1

2 ∗
N2

n2

• Halstead Level (HLV): L = 1
HD

• Halstead Effort (HE): E = HD ∗ V

• Halstead Time (HT): T = E
β

• Halstead Bugs (HB): B = E2/3

3000

The most basic one is the Halstead Length, which simply totals the number of operators and
operands. A small number of statements with a high Halstead Volume would suggest that the
individual statements are quite complex. The Halstead Vocabulary gives a clue on the complexity
of the statements. For example, it highlights if a small number of operators are used repeatedly
(less complex) or if a large number of different operators are used, which will inevitably be more
complex. The Halstead Volume uses the length and the vocabulary to give a measure of the
amount of code written. The Halstead Difficulty uses a formula to assess the complexity based
on the number of unique operators and operands. It suggests how difficult the code is to write
and maintain. The Halstead Level is the inverse of the Halstead Difficulty: a low value means
the program is prone to errors. The Halstead Effort attempts to estimate the amount of work
that it would take to recode a particular method. The Halstead Time is the time to implement
or understand a program and it is proportional to the effort. The experiments were used for
calibrating this quantity (β = 18). Finally, the Halstead Bugs attempts to estimate the number of
bugs that exist in a particular piece of code.

McCabe’s cyclomatic complexity is a complexity measure related to the number of ways there
exists to traverse a piece of code. This measure determines the minimum number of test cases
needed to test all the paths using linearly independent circuits [146]. Cyclomatic complexity is
computed using the control flow graph of the program: the nodes of the graph correspond to in-
divisible groups of sentences of a program (basic blocks), and a directed edge connects two nodes
if the second group of sentences might be executed immediately after the first one. Cyclomatic
complexity may also be applied to individual functions, modules, methods or classes within a pro-
gram, and is formally defined as follows:

v(G) = E −N + 2P ; (6.1)

where E is the number of edges of the graph, N is the number of nodes of the graph and P is the
number of connected components.

In Figure 6.1, we show an example of control flow graph (G). It is assumed that each node can
be reached by the entry node and each node can reach the exit node. The maximum number of
linearly independent circuits in G is 9 − 6 + 2 ∗ 1 = 5, so 5 is the cyclomatic complexity of the
example.

The correlation between the cyclomatic complexity and the number of software faults has
been studied in some research articles [28,118]. Most such studies find a strong positive correlation
between the cyclomatic complexity and the errors: the higher the complexity the larger the number

CHAPTER 6. ESTIMATING SOFTWARE TESTING COMPLEXITY 75

Figure 6.1: The original graph of the McCabe’s article.

of faults. For example, a 2008 study by metric-monitoring software supplier Energy [63] analyzed
classes of open-source Java applications and divided them into two sets based on how common
mistakes were found in them. They found a strong correlation between the cyclomatic complexity
and their faultiness, with classes with a combined complexity of 11 having a probability of being
fault-prone of just 0.28, rising to 0.98 for classes with a complexity of 74.

In addition to this correlation between complexity and errors, a connection has been found
between complexity and difficulty to understand software. Nowadays, the subjective reliability of
software is expressed in statements such as “I understand this program well enough to know that
the tests I have executed are adequate to provide my desired level of confidence on it”. For that
reason, we make a close link between complexity and difficulty of discovering errors. Software
complexity metrics developed by Halstead and McCabe are related to the difficulty programmers
experience in locating errors in code [55]. They can be used in providing feedback to programmers
about the complexity of the code they have developed and to managers about the resources that
will be necessary to maintain particular sections of code.

Since McCabe proposed the cyclomatic complexity, it has received several criticisms. Weyuker
concluded that one of the obvious intuitive weaknesses of the cyclomatic complexity is that it
makes no provision for distinguishing between programs which perform very little computation
and those which perform massive amounts of computation, provided that they have the same
decision structure [218]. Piwarski noticed that cyclomatic complexity is the same for N nested
if statements and N sequential if statements [174]. Moreover, we find the same weaknesses in
the group of Halstead’s metrics. No notice is made for the nesting degree, which may increase the
effort required by the program severely. The solution of both McCabe’s and Halstead’s weakness
is a factor to consider that a nested statement is more complex. For example, we have also studied
the LOCE measure that takes into account whether a statement is nested or not.

The proposed existing measures of decision complexity tend to be based upon a graph theoreti-
cal analysis of a program control structure like McCabe’s complexity. Such measures are meaningful
at the program and subprogram level, but metrics computed at those levels will depend on program
or subprogram size. However, the values of these metrics primarily depend upon the number of
decision points within a program. This suggests that we can compute a size-independent measure
of decision complexity by measuring the density of decisions within a program. In addition we
have considered making the LOCE measure size-independent. The resulting expression takes into
account the nesting degree and the density of the sentences. Following this assumption, we consider
in this work two measures derived from some of the first group:

76 6.3. BRANCH COVERAGE EXPECTATION

• Density of Decisions (DD) = TND/LOC.

• Density of LOCE (DLOCE) = LOCE/LOC.

Finally, we use a dynamic measure called Branch Coverage, which is the percentage of branches
of the program that are traversed. This coverage measure is used in most of the related articles in
the literature and was formally defined in Section 2.2.1 (Definition 2.6).

6.3 Branch Coverage Expectation

This section is aimed at presenting our main contribution in this chapter, a new complexity measure
that might help testers to estimate the difficulty of testing a piece of code. The definition of the
new measure lies on a Markov chain that represents the program. In this section we briefly explain
the characteristics of a Markov chain and the way we generate a model of a given program. The
Markov model of the program can be used not only to compute the BCE, but also to estimate
the number of random test cases that must be generated to achieve a concrete value of branch
coverage. We first introduce the required concepts of Markov chains [124].

6.3.1 Markov Chain

A first order Markov chain is a random sequence of states Xt where each state depends only on
the previous one. That is, P (Xt+1 = j|Xk; 0 ≤ k < t) = P (Xt+1 = j|Xt) for all t ∈ N. We
consider here that the set of possible states is finite and, without loss of generality, we label the
states using elements of the set [n] = {1, ..., n}. The conditional probabilities of a first order
Markov chain P (Xt+1 = j|Xt = i) = Pij(t) are called one-step transition probabilities and the
matrix P (t) = [Pij(t)] is the so-called transition probability matrix. We will assume here that
these probabilities do not depend on the step t, and thus, Pij(t) = Pij for all t. The Markov
chains fulfilling this property are called homogeneous. Two properties of the transition probability
matrices are:

Pij ≥ 0, (6.2)
n∑

j=1

Pij = 1. (6.3)

Matrices fulfilling the above equations are called stochastic. Let us denote with the column
vector q(t) the probability distribution of the states at step t. The component qi(t) is the probability
of having state i at step t. A state which is reached infinitely often in a finite Markov chain is
called positive-recurrent. If every state in a Markov chain can be reached from every other state,
then we say that the Markov chain is irreducible. For irreducible Markov chains having only
positive-recurrent states the probability distribution of the states q(t) tends to a given probability
distribution π as the time tends to infinite. This probability distribution π is called the stationary
distribution and can be computed solving the following linear equations:

πTP = πT , (6.4)

πT 1 = 1. (6.5)

CHAPTER 6. ESTIMATING SOFTWARE TESTING COMPLEXITY 77

6.3.2 Definition of the Branch Coverage Expectation

In our case the Markov model is built from the control flow graph of the program, where the
states of the Markov chain are the basic blocks of the program. A Basic Block (BB) is a portion
of the code that is executed sequentially with no interruption. It has one entry point and one
exit point, meaning that only the last instruction can be a jump. Whenever the first instruction
in a basic block is executed, the rest of the instructions are necessarily executed exactly once, in
order. In order to completely characterize a Markov chain we must assign a value to the edges
among vertices. The transition probabilities of all branches are computed according to the logical
expressions that appear in each condition. We recursively define this probability as follows:

P (c1&&c2) = P (c1) ∗ P (c2), (6.6)

P (c1||c2) = P (c1) + P (c2)− P (c1) ∗ P (c2), (6.7)

P (¬c1) = 1− P (c1), (6.8)

P (a < b) =
1

2
, (6.9)

P (a ≤ b) =
1

2
, (6.10)

P (a > b) =
1

2
, (6.11)

P (a ≥ b) =
1

2
, (6.12)

P (a == b) = q, (6.13)

P (a! = b) = 1− q, (6.14)

where c1, c2 are conditions and a, b are integers.
We establish a 1/2 probability when the operators are ordering relational operators (<,≤, >,≥).

Despite that the actual probability in a random situation is not always 1/2, we have selected the
value with the lowest error rate. In the case of equalities and inequalities the probabilities are q
and 1 − q, respectively, where q is a parameter of the measure and its value should be adjusted
based on the experience. Satisfying an equality is, in general, a hard task and, thus, q should be
close to zero. This parameter could be highly dependent on the data dependencies of the program.
The quality of the complexity measure depends on a good election for q. Based on a previous
phase for setting parameters, we use q = 1/16 for the experimental analysis.

Then, once we have the CFG completed with the transition probabilities, the generation of the
transition matrix is automatic. This matrix relates the states and the probability to move from
one to another. We assume, without loss of generality, that there is only one entry and exit basic
block in the code. Then, in order to obtain a positive-recurrent irreducible Markov chain we add
a fictional link from the exit to the entry basic block (labelled as BB1) having probability 1. We
then compute the stationary probability π and the frequency of appearance of each basic block
in one single execution of the program (E[BBi]). The stationary probability of a basic block is
the probability of appearance in infinite program executions starting in any state. On the other
hand, the frequency of appearance of a basic block is the mathematical expectation of traversing
the basic block in one single execution and is computed as:

E[BBi] =
πi

π1
, (6.15)

where π1 is the stationary probability of the entry basic block, BB1.

78 6.3. BRANCH COVERAGE EXPECTATION

Thus, the expectation of traversing a branch (i, j) is computed from the frequency of appearance
of the previous basic block and the probability to take the concrete branch from the previous basic
block as:

E[BBi, BBj] = E[BBi] ∗ Pij (6.16)

Finally, we define the Branch Coverage Expectation as the average of the values E[BBi, BBj]
with a value lower than 1/2. If a program has a low value of BCE then a random test data generator
is supposed to require a large number of test cases to obtain full branch coverage. The BCE is
bounded in the interval (0, 1/2]. Formally, let A be the set of edges with E[BBi, BBj] < 1/2:

A =

{
(i, j)

∣∣∣∣E[BBi, BBj] <
1

2

}
. (6.17)

Then, the BCE is defined as:

BCE =
1

|A|

∑

(i,j)∈A

E[BBi, BBj]. (6.18)

In the experimental section we analyze the new complexity measure over program artifacts and
we shed light on the RQ1 by providing a testing complexity measure to quantify the difficulty of
testing a piece of code. But first, we illustrate here its computation based on the piece of code
shown in Figure 6.2. First, we compute the Control Flow Graph (CFG) of the piece of code, which
can be seen in Figure 6.3. This CFG is composed of BBs and transitions among the BBs. Inter-
preted as a Markov chain, the basic blocks are the states, and the transitions are defined by the
probabilities to move from one basic block to another. These probabilities depend on the condition
associated to a concrete branch. For example, to move from BB1 to BB2 in our example, the con-
dition (x < 0)||(y < 2) must be true, then according to Equations (6.7) to (6.14) the probability
of this transition is:

P ((x < 0)||(y < 2)) = P (x < 0) + P (y < 2)− P (x < 0) ∗ P (y < 2) = 1
2 + 1

2 −
1
2 ∗

1
2 = 3

4 = 0.75.

Once we have computed all the transition probabilities, we build the transition matrix that
represents the Markov chain.

P =

0.0 0.75 0.25 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 1
0.0 0.0 0.0 0.75 0.25 0.0
0.0 0.0 0.0 0.75 0.25 0.0
0.0 0.0 0.0 0.0 0.0 1
1 0.0 0.0 0.0 0.0 0.0

We can now compute the stationary probabilities π and the frequency of appearance E[BBi]
of the basic blocks in one execution of the program (see Table 6.1). It is sure that the control
flow of the program traverses exactly once the BB1 and BB6 in one run. In this way, the start
and the end of the program always have a E[BBi] = 1. An example of the computation of the
mathematical expectation is:

E(BB2) =
π2

π1
= 0.1875

0.2500 = 0.75.

CHAPTER 6. ESTIMATING SOFTWARE TESTING COMPLEXITY 79

/* BB1 */

if (x < 0) || (y < 2)

{
/* BB2 */

y=5;

}
else

{
/* BB3 */

x=y-3;

while (y > 5) || (x > 5)

{
/* BB4 */

y=x-5;

}
/* BB5 */

x=x-3;

}
/* BB6 */

Figure 6.2: A piece of code to illustrate the computation of Branch Coverage Expectation.

Table 6.1: Stationary probabilities and the frequency of appearance of the basic blocks of the piece
of code shown In Figure 6.2.

Stationary Probabilities πi Frequency of Appearance E[BBi]
BB1 0.2500 1.00
BB2 0.1875 0.75
BB3 0.0625 0.25
BB4 0.1875 0.75
BB5 0.0625 0.25
BB6 0.2500 1.00

Now, we are able to compute the probability of appearance of a branch in one single run. For
example the expectation of traversing the branch (BB3, BB4) is:

E[BB3, BB4] = E(BB3) ∗ P34 = 1
4 ∗

3
4 = 3

16 = 0.1875.

In Figure 6.4 we show the mathematical expectations of traversing all the branches of the CFG
of our example in one single execution. So, finally we can compute the BCE by averaging the
expectations of traversing the branches which have a value lower than 1/2. We have excluded
those values equals to 1/2 because both branches have the same value. In case all branches have
the expectation of 1/2, then the BCE is 1/2. In addition, a program with a Branch Coverage Ex-
pectation value of 1/2 would be the easiest one to be tested. In this example the value of Branch

80 6.4. VALIDATION OF THE BRANCH COVERAGE EXPECTATION

BB1

BB2 BB3

BB5

BB6

BB4

P(BB6,BB1)=1

P(BB2,BB6)=1

P(BB5,BB6)=1

P(BB3,BB5)=0.25
P(BB3,BB4)=0.75

P(BB4,BB4)=0.75

P(BB4,BB5)=0.25

P(BB1,BB3)=0.25

P(BB1,BB2)=0.75

Figure 6.3: The CFG and the probabilities used to build a Markov Chain of the piece of code of
Figure 6.2.

Coverage Expectation is:

BCE = E[BB1,BB3]+E[BB3,BB4]+E[BB3,BB5]+E[BB4,BB5]+E[BB5,BB6]
5 =

1
4+

3
16+

1
16+

3
16+

1
4

5 = 0.1875.

Based on the model of a program, we can also provide an estimation of the number of random
test cases that must be generated to obtain a concrete coverage. Following with the example, exe-
cuting the branch (BB3, BB5) is more difficult according to the expectations than the others. The
inverse of this expectation, is the expected number of random test cases that must be generated
to execute the branch. In this example, the number of expected test cases needed to traverse the
branch between BB3 and BB5 is:

Number of test cases (BB3,BB5)= 1
1
16

= 16.

From these estimations, we can create a theoretical prediction of the evolution of the coverage
depending on the number of generated test cases. This contribution could help the testers to obtain
some knowledge about the possible evolution of the testing phase. In Section 6.6.3 we compare
our theoretical prediction with the results obtained by a test data generator.

6.4 Validation of the Branch Coverage Expectation

Software applications are essential for Industry and software measurement is a key factor in under-
standing and controlling software development practices. Consequently, measures must represent
accurately those attributes which they quantify. Thus, validation is critical when a new measure
is introduced. The software measurement validation implies two basic methods, theoretical and

CHAPTER 6. ESTIMATING SOFTWARE TESTING COMPLEXITY 81

BB1

BB2 BB3

BB5

BB6

E(BB1,BB2) = 0.75

E(BB1,BB3) = 0.25

E(BB3,BB5)= 0.0625

E(BB4,BB4)= 0.5625

E(BB2,BB6) = 0.75 E(BB4,BB5) = 0.1875

E(BB5,BB6) = 0.25E(BB6,BB1) = 1

BB4

E(BB3,BB4) =0.1875

Figure 6.4: The CFG and the expectations of traversing each branch in the piece of code of
Figure 6.2.

empirical validation. Theoretical methods allow us to say that a measure is valid with respect to
certain criteria, meanwhile empirical methods only provide evidence of validity or invalidity. In
the experimental section we obtain evidences of the validity of the proposed measure, but first,
in this section we focus on theoretical validity using the framework proposed by Kitchenham et
al. [120]. The requirements defined when validating a measure are attribute validity, unit validity,
instrument validity, and protocol validity:

• Attribute validity: Attributes are the properties that an entity possesses. For a given
attribute, there is a relationship of interest in the empirical world that we want to capture
formally in the mathematical world. The attribute we consider for our measure is the testing
complexity of a piece of software. Two measures are defined to estimate testing complexity:
“branch coverage expectation”(BCE) and “number of expected test cases”(related to the
inverse of BCE). And both are estimated by capturing transition probabilities at each edge
among vertices (decisions and conditions of branches). The measure is able to satisfy the
proposed criteria. There could be two different programs for which the measure results in
different values. Our measure also obeys the Representation Condition. The BCE value of
two programs is the same, when they are the same except they have different labels. So,
different programs can have the same BCE value.

• Unit validity: A measure maps an empirical attribute to the formal, mathematical world.
A measurement unit determines how we measure an attribute. We define the unit of BCE
by reference to a wider theory explained in the previous Subsection 6.3.1 (Markov Chain).
We must highlight that the inverse of the BCE measure is related to the number of test cases
needed to achieve full coverage by a random test data generator. Then, the measurement
unit used by the BCE is number of test cases−1. In conclusion, we use an alternative unit

82 6.5. EMPIRICAL VALIDATION SETUP

that is valid because is an admissible transformation from an original unit (number of test
cases).

• Instrument validity: Our instrument model defines how to capture the data, and it is also
theory based. The validity again depends on the validity of the underlying theory. It can be
defined by reference to properties of the control flow graph. Our instrument model is valid
because the underlying theory-based model is valid.

• Protocol validity: Measurement protocols let us measure a specific attribute on a specific
entity consistently and repeatedly. We can measure a specific attribute of a program consis-
tently, repeatable, and the measurement is independent of the measurer. Our measurement
protocols are unambiguous, self-consistent, and prevent problems such as double counting.
The same measurement could be done with a different measurer obtaining the same results.
A protocol that does not violate these criteria is usually validated by peer acceptance rather
than logical or empirical studies.

Empirical validation of our proposed measure is also required, so we are using a tool for generat-
ing test data described in Section 5.2, a tool for generating synthetic programs that we introduce in
Section 6.5.2, and a benchmark of real and synthetic programs also described in next Section 6.5.3,
which will help us to compare our estimation of BCE with the result of branch coverage obtained
by the execution of our testing tool. Branch Coverage is the dynamic measure used in this work
to measure the difficulty of testing a program. The test data generator goal is generating a test
suite that covers all the source code, with the aim of helping the tester to find errors in the code.

Finally, we claim that our measure is valid because we are unable to invalidate it using the
Kitchenham et al. framework.

6.5 Empirical Validation Setup

In this section we outline the configuration of the optimization algorithms used as core of the test
data generation tool (Section 5.2) used for empirical validation of our proposed measure. Then,
we outline the main characteristics of the used benchmark of test programs.

6.5.1 Algorithms Details

In the following we focus on the details of the specific EAs used in this work to perform the test
data generation. In this work we applied a GA described in Section 4.1.1 and an ES introduced in
Section 4.1.2.

In our GA the individuals are vectors of integer values. As the recombination operator we use
the uniform crossover (UX), in which each component of the new solution is randomly selected
from the two parents. The formal definition is the same as equation (4.6) with bias = 0.5. The
mutation operator adds a random value to the components of the vector. That is,

xi = xi + U(−500, 500)

where the probability distribution of these random values is a uniform distribution in the range
[−500, 500]. However, not all the components of the individual are perturbed, only half of them
are, randomly selected.

As we said when we explained the test data generator (Section 5.2) the generator breaks down
the global objective (to cover all the branches) into several partial objectives consisting of dealing

CHAPTER 6. ESTIMATING SOFTWARE TESTING COMPLEXITY 83

with only one branch of the program. Thus, two stopping conditions exist: one for partial objectives
and the other one for the whole test data generation process. The search for one partial objective
stops when 1,000 evaluations are performed while the test data generation process ends after
150,000 evaluations. For comparison purposes we also use a random algorithm (RND) for the
generation of test inputs. We use the same evaluations than the evolutionary approaches (150,000
evaluations in total). To finish this section, we show in Table 6.2 a summary of the parameters
used by the two EAs in the experimental section. Note that the ES algorithm uses the standard
operators described previously in Section 4.1.2.

Table 6.2: Parameters of the two EAs used in the experimental section.

ES GA
Population 25 indivs. 25 indivs.
Selection Random, 5 indivs. Random, 5 indivs.
Mutation Gaussian Add U(−500, 500)

Crossover
discrete (bias = 0.6)

Uniform
+ arith. + arith.

Replacement Elitist Elitist
Stopping cond. 1,000 evals. 1,000 evals.
Total Evals. 150,000 evals. 150,000 evals.

6.5.2 Program Generator Tool

We have designed an automatic program generator that generates programs with values for the
“static measures” like nesting degree, number of atomic conditions, number of (in)equalities, that
are similar to the ones of the real-world software, but the generated programs do not solve any
concrete problem. Our program generator is able to create programs for which total branch
coverage is possible. We propose this generator with the aim of generating a big benchmark of
programs with certain characteristics chosen by the user.

The automatic program generation raises a non-trivial research question: are the generated
programs “realistic”? That is, could them be found in real-world? Using automatic program
generation it is not likely to find programs that are similar to the ones who a programmer would
make. This is especially true if the program generation is not driven by a specification. However,
this is not a drawback for us, since we are only interested in some static measures of the programs
and branch coverage. In this situation, “realistic programs” means programs that have similar
values for the considered static measures as the ones found in real-world; and we can easily fulfil
this requirement.

In a first approximation we could create a program using a representation based on a general
tree and a table of variables. The tree stores the sentences that are generated and the table of
variables stores basic information about the variables declared and their possible use. With these
structures, we are able to generate programs, but we can not ensure that all the branches of
the generated programs are reachable. The unreachability of all the branches is a quite common
feature of real-world programs, so we could stop the design for the generator at this stage. However,
another objective of the program generator is to be able of creating programs that can be used to
compare the performance of different algorithms, programs for which total coverage is reachable
are desirable. With this goal in mind we introduce logic predicates in the program generation
process.

84 6.5. EMPIRICAL VALIDATION SETUP

The program generator is parameterizable, the user can set several parameters of the program
under construction (PUC). Thus, we can assign through several probability distributions the num-
ber of sentences of the PUC, the number of variables, the maximum number of atomic conditions
in a decision, and the maximum nesting degree by setting these parameters. The user can define
the structure of the PUC and, thus, its complexity. Another parameter the user can tune is the
percentage of control structures or assignment sentences that will appear in the code. By tuning
this parameter the program will contain the desired density of decisions.

Once the parameters are set, the program generator builds the general scheme of the PUC. It
stores in the used data structure (a general tree) the program structure, the visibility, the modifiers
of the program, and creates a main method where the local variables are first declared. Then, the
program is built through a sequence of basic blocks of sentences where, according to a probability,
the program generator decides which sentence will be added to the program. The creation of the
entire program is done in a recursive way. The user can decide whether all the branches of the
generated program are reachable (using logic predicates).

If total reachability is desired, logic predicates are used to represent the set of possible values
that the variables can take at a given point of the PUC. Using these predicates the range of values
that a variable can take is known. This range of values is useful to build a new condition that can
be true or false. For example, if at a given point of the program we have the predicate x ≤ 100 we
know that a forthcoming condition x ≤ 3 will be always true and if this condition appears in an
if statement, the else branch will not be reachable. Thus, the predicates are used to guide the
program construction to obtain a 100% coverable program.

In general, at each point of the program the predicate is different. During the program con-
struction, when a sentence is added to the program, we need to compute the predicate at the point
after the new sentence. For this computation we distinguish two cases. First, if the new sentence
is an assignment then the new predicate CP ′ is computed after the previous one CP by updating
the values that the assigned variable can take. For example, if the new sentence is x = x+ 7 and
CP ≡ x ≤ 3, then we have CP ′ ≡ x ≤ 10.

Second, if the new sentence is a control statement, an if statement for example, then the
program generator creates two new predicates called True-predicate (TP) and False-predicate
(FP). The TP is obtained as the result of the AND operation between CP and the generated
condition related to the control statement. The FP is obtained as the result of the AND operation
between the CP and the negated condition. In order to ensure that all the branches can be
traversed, we check that both, TP and FP are not equivalent to false. If any of them were false,
this new predicate is not valid and a new control structure would be generated.

Once these predicates are checked, the last control statement is correct and new sentences are
generated for the two branches, the predicates are computed inside the branches in the same way.
After the control structure is completed, the last predicates of the two branches are combined
using the OR operator and the result is the predicate after the control structure. In Figure 6.5 we
illustrate the previous explanation with one example. At a certain point of the program’s execution
our current predicate (CP1) is x ≤ 3. The new sentence is an if statement with an associated
decision x < 0. Then, the program generator creates two new predicates. The first one (CP2) is
CP1 ∧ x < 0 ≡ x < 0. The second one is the AND operation between CP1 and the negation of
x < 0, which is x ≥ 0. The resulting expression is CP4 ≡ 0 ≤ x ≤ 3. Next, the program generator
modifies the predicates according to the assignment sentences. Finally, the resulting expression
after the execution of the if statement is CP6 ≡ x < 0 ∧ y = 5 ∨ −3 ≤ x ≤ 0. This expression is
the OR operation between CP3 (true branch) and CP5 (false branch). Those values that satisfy
the logic predicate may participate in the following generated sentences.

CHAPTER 6. ESTIMATING SOFTWARE TESTING COMPLEXITY 85

/* CP1 ≡ x ≤ 3 */

if (x < 0)

{
/* CP2 ≡ TP1 ≡ x ≤ 3 ∧ x < 0 ≡ x < 0 */

y=5;

/* CP3 ≡ x < 0 ∧ y = 5 */

}
else

{
/* CP4 ≡ FP1 ≡ x ≤ 3 ∧ x ≥ 0 ≡ 0 ≤ x ≤ 3 */

x=x-3;

/* CP5 ≡ −3 ≤ x ≤ 0 */

}
/* CP6 ≡ x < 0 ∧ y = 5 ∨ −3 ≤ x ≤ 0 */

Figure 6.5: Illustration of the predicates transformation.

6.5.3 Benchmark of Test Programs

The empirical validation is carried out using synthetic programs and real programs. In the following
we describe the main characteristics of the programs generated by our program generator and a
set of real programs extracted from the literature.

Synthetic Programs

The program generator can create programs having the same value for the static measures, as well
as programs having different values for the measures. The programs we generated for this work can
be separated in two groups. One group is characterized by being 100% coverable (called 100%CP),
thus all the branches are reachable. The main advantage of these programs is that algorithms can
be tested and analyzed on fair way. This kind of programs is not easy to find in the literature. On
the other hand, the other group of programs does not guarantee a 100% branch coverage, called
¬100%CP, this fact makes them similar to the real world programs.

The methodology applied for the program generation was the following. First, we analyzed a
set of Java source files from the JDK 1.6 (java.util.*, java.io.*, java.sql.*, etc.) and we computed
the static measures on these files. Next, we used the ranges of the most interesting measures,
obtained in this previous analysis as a guide to generate Java source files having values in the same
range for the static measures. These values are realistic with respect to the static measures, making
the following study meaningful. Our program generator takes into account the desired values for
the number of atomic conditions, the nesting degree, the number of sentences and the number of
variables. With these parameters our program generator creates a program with a defined control
flow graph containing several decisions. The main features of the generated programs are: they
deal with integer input parameters, their conditions are joined by whichever logical operator and
they are randomly generated. This way, we generated programs with the values in the ranges
shown in Table 6.3.

86 6.5. EMPIRICAL VALIDATION SETUP

Table 6.3: Range of values for some static measures from the two benchmarks of programs.

100% CP ¬100%CP
SLOC 33-150 33-235
Nesting 1-4 1-7
Conditions 1-4 1-7
Decisions 3-50 1-37
McCabe 5-125 3-127

Finally, we generated a total of 2600 (800 in 100%CP and 1800 in ¬100%CP) Java programs1

using our program generator. With the aim of studying the BCE, we applied our test data generator
using a GA and an ES as optimization algorithms and a random test data generator (RND). The
test data generators proceed by generating test data until total coverage is obtained or a maximum
of 150,000 test cases are generated. Since we are working with stochastic algorithms, we perform
in all the cases 30 independent runs of the algorithms to obtain a very stable average of the
branch coverage. The experimental study requires a total of 2600× 30× 3 = 234, 000 independent
runs of the test data generators. We have followed the statistical analysis procedure described in
Section 3.3.2 to analyze the obtained results to compare them with a certain level of confidence.
The statistical test that we have carried out is the non-parametric Kruskal-Wallis test used to
compare the average of the algorithms. We always consider in this work a confidence level of 95%
(i.e., p-value under 0.05) in the statistical tests, which means that the differences are unlikely to
have occurred by chance with a confidence of 95%.

Real Programs

In order to improve the interest of our work we propose an additional benchmark of real programs.
It is composed of 10 real programs extracted from the literature [15,113,145]. Some of them have
been extracted from the book C Numerical Recipes, available on-line at http://www.nr.com/.
They deal with real and integer input values and some of them also contain loops. The programs
are listed in Table 6.4, where we inform on the maximum nesting degree, the lines of code (LOC),
the number of branches, and the number and type of input arguments.

Table 6.4: Characteristics of the real programs.

Name ND LOC Branches Arguments Description

calday 2 47 22 3 Integer Calculate the day of the week
gcd 2 28 8 2 Integer Greatest common denominator
line 8 92 36 8 Integer Check if two rectangles overlap
numbers 3 71 28 1 Integer Parse a big number from integer to string
qformula 2 24 4 3 Double Solve Real Equations
qformulas 2 22 6 3 Integer Solve Integer Equations
tmichael 5 69 20 3 Integer Classify triangles in 4 types: Michael
triangle 4 53 28 3 Integer Classify triangles in 4 types: Our implementation
tsthamer 3 76 26 3 Integer Classify triangles in 5 types: Sthamer
twegener 3 46 26 3 Double Classify triangles in 5 types: Wegener

1They are available at http://neo.lcc.uma.es/staff/javi/resources.html

CHAPTER 6. ESTIMATING SOFTWARE TESTING COMPLEXITY 87

6.6 Empirical Results

In this section we describe the experimental analysis performed and we interpret the relationship
of the studied measures. We divide the main study in four subsections. In the first one, we analyze
the static measures in order to reveal their correlations. In the second subsection, we highlight
the existing relationship between the static measures and the code coverage. We analyze which of
them are more appropriate for estimating the difficulty for a computer to generate an adequate test
suite. In the third subsection, we use the Markov model of programs to predict the relationship
between coverage and the number of required test cases. We analyze if our theoretical prediction
is similar to a real execution of an automatic test data generator. Finally, we perform the study
on the real-world programs. For computing correlations among measures we use the Spearman’s
correlation coefficient ρ. This coefficient takes into account the rank of the values of the samples
instead of the samples themselves.

6.6.1 Analysis of the Correlation Between the Static Measures

In this section we analyze the existing relationship among the static measures of the generated
programs. With this previous study we want to clarify the possible similarities and differences of
the analyzed static measures in this work.

In this study there are three different measures that try to rate the complexity of a program:
McCabe’s complexity, the Halstead Difficulty and LOCE. In Tables 6.7 and 6.8 we show a compar-
ison of correlation between these measures, the nesting degree and the group of measures derived
from some of the first group (density of decisions and density of LOCE). We show these measures
because they are higher correlated with the branch coverage among a number of them. In Ta-
bles 6.5 and 6.6 the reader could check all the correlations coefficients for the 100%CP benchmark
and the ¬100%CP benchmark, respectively. In addition, we include the BCE measure in order to
compare it with the other studied measures.

As we can see, the three measures that rate the complexity (MC, HD and LOCE) are highly
correlated among them in the 100%CP benchmark and less correlated in the ¬100%CP one. This
gives us a clue about the similarities that the complexity measures have among them. On the other
hand, the nesting degree is lowly correlated with McCabe’s complexity and Halstead Difficulty.
In the case of LOCE, the correlations with the nesting degree are 0.344 in 100%CP and 0.692
in ¬100%CP. This was expected because the LOCE measure weighs the nested statements. In
addition, we can remark that the Halstead Difficulty does not correlate with the density of decisions
in 100%CP and ¬100%CP (0.052 and 0.023, respectively).

We can also observe that the static measures that are highly correlated in one benchmark are
highly correlated in the other one too. This is the case of the relationship between nesting, density
of decisions and density of LOCE that must be emphasized. All of them are highly correlated,
being the correlation between nesting degree and density of LOCE 0.877 in 100%CP and 0.870 in
¬100%CP, nesting degree and density of decisions 0.765 in 100%CP and 0.708 in ¬100%CP and
density of decisions and density of LOCE 0.912 in 100%CP and 0.774 in ¬100%CP.

Once we have analyzed the other static measures, we report the correlation coefficients of our
proposal and the most important static measures studied in this work. The nesting degree must be
emphasized because it is the most correlated static measure with the BCE, -0.540 in 100%CP and
-0.575 in ¬100%CP, what means that the nesting degree is the most similar measure. In addition,
we can see that our proposal is not correlated with McCabe’s and Halstead’s complexities.

This analysis of the three rates of complexity is not complete if we do not highlight the static

8
8

6
.6
.

E
M
P
IR

IC
A
L
R
E
S
U
L
T
S

Table 6.5: The correlation coefficients among all the measures analyzed in the benchmark 100%CP
HD MC LOCE N DD DLOCE BCE LOC SLOCTNDj TNCj TNE TNI TND CpD HL HV HVL HLV HE HT HB ES GA RND

HD - 0.796 0.786 -0.108 0.052 -0.035 0.285 0.932 0.853 0.742 0.731 0.644 0.639 0.799 0.454 0.870 0.842 0.864 1.0 0.920 0.920 0.864 0.070 -0.101 0.077
MC 0.796 - 0.965 0.266 0.519 0.408 0.025 0.805 0.962 0.925 0.934 0.829 0.811 0.985 0.524 0.976 0.969 0.977 -0.796 0.954 0.954 0.977 -0.150-0.226-0.074
LOCE 0.786 0.965 - 0.344 0.515 0.474 -0.038 0.796 0.974 0.884 0.882 0.822 0.789 0.976 0.501 0.945 0.938 0.945 -0.786 0.921 0.921 0.945 -0.186-0.251-0.133
N -0.108 0.266 0.344 - 0.765 0.877 -0.540 -0.207 0.180 0.235 0.240 0.311 0.234 0.276 0.136 0.138 0.127 0.139 0.108 0.089 0.089 0.139 -0.543-0.381-0.434
DD 0.052 0.519 0.515 0.765 - 0.912 -0.377 -0.043 0.405 0.449 0.489 0.485 0.437 0.538 0.283 0.368 0.367 0.372 -0.052 0.302 0.302 0.372 -0.439-0.304-0.311
DLOCE-0.035 0.408 0.474 0.877 0.912 - -0.485 -0.132 0.336 0.352 0.380 0.410 0.353 0.418 0.217 0.270 0.258 0.271 0.035 0.208 0.208 0.271 -0.504-0.345-0.397
BCE 0.285 0.025 -0.038-0.540-0.377 -0.485 - 0.307 0.081 0.065 0.008 -0.124 0.009 0.017 0.078 0.121 0.129 0.120 -0.285 0.159 0.159 0.120 0.510 0.375 0.534

LOC 0.932 0.805 0.796 -0.207-0.043 -0.132 0.307 - 0.879 0.753 0.730 0.634 0.646 0.810 0.419 0.891 0.892 0.890 -0.932 0.910 0.910 0.890 0.136 -0.053 0.120
SLOC 0.853 0.962 0.974 0.180 0.405 0.336 0.081 0.879 - 0.884 0.878 0.794 0.778 0.973 0.492 0.975 0.970 0.975 -0.853 0.960 0.960 0.975 -0.091-0.194-0.050
TNDj 0.742 0.925 0.884 0.235 0.449 0.352 0.065 0.753 0.884 - 0.773 0.813 0.719 0.897 0.515 0.919 0.908 0.919 -0.742 0.900 0.900 0.919 -0.119-0.175-0.036
TNCj 0.731 0.934 0.882 0.240 0.489 0.380 0.008 0.730 0.878 0.773 - 0.734 0.806 0.905 0.497 0.913 0.901 0.913 -0.731 0.895 0.895 0.913 -0.158-0.235-0.072
TNE 0.644 0.829 0.822 0.311 0.485 0.410 -0.124 0.634 0.794 0.813 0.734 - 0.618 0.822 0.435 0.798 0.785 0.797 -0.644 0.779 0.779 0.797 -0.272-0.279-0.207
TNI 0.639 0.811 0.789 0.234 0.437 0.353 0.009 0.646 0.778 0.719 0.806 0.618 - 0.799 0.439 0.794 0.791 0.795 -0.639 0.774 0.774 0.795 -0.121-0.201-0.095
TND 0.799 0.985 0.976 0.276 0.538 0.418 0.017 0.810 0.973 0.897 0.905 0.822 0.799 - 0.503 0.961 0.959 0.962 -0.799 0.935 0.935 0.962 -0.147-0.226-0.082
CpD 0.454 0.524 0.501 0.136 0.283 0.217 0.078 0.419 0.492 0.515 0.497 0.435 0.439 0.503 - 0.524 0.518 0.523 -0.454 0.514 0.514 0.523 -0.089-0.132 0.035

HL 0.870 0.976 0.945 0.138 0.368 0.270 0.121 0.891 0.975 0.919 0.913 0.798 0.794 0.961 0.524 - 0.991 1.0 -0.870 0.989 0.989 1.0 -0.071-0.180-0.012
HV 0.842 0.969 0.938 0.127 0.367 0.258 0.129 0.892 0.970 0.908 0.901 0.785 0.791 0.959 0.518 0.991 - 0.994 -0.842 0.971 0.971 0.994 -0.061-0.172-0.003
HVL 0.864 0.977 0.945 0.139 0.372 0.271 0.120 0.890 0.975 0.919 0.913 0.797 0.795 0.962 0.523 1.0 0.994 - -0.864 0.987 0.987 1.0 -0.072-0.181-0.011
HLV -1.0 -0.796-0.786 0.108 -0.052 0.035 -0.285 -0.932-0.853-0.742-0.731-0.644-0.639-0.799-0.454 -0.870-0.842-0.864 - -0.920-0.920-0.864 -0.070 0.101 -0.077
HE 0.920 0.954 0.921 0.089 0.302 0.208 0.159 0.910 0.960 0.900 0.895 0.779 0.774 0.935 0.514 0.989 0.971 0.987 -0.920 - 1.0 0.987 -0.046-0.168 0.006
HT 0.920 0.954 0.921 0.089 0.302 0.208 0.159 0.910 0.960 0.900 0.895 0.779 0.774 0.935 0.514 0.989 0.971 0.987 -0.920 1.0 - 0.987 -0.046-0.168 0.006
HB 0.864 0.977 0.945 0.139 0.372 0.271 0.120 0.890 0.975 0.919 0.913 0.797 0.795 0.962 0.523 1.0 0.994 1.0 -0.864 0.987 0.987 - -0.072-0.181-0.011

ES 0.070 -0.150-0.186-0.543-0.439 -0.504 0.510 0.136 -0.091-0.119-0.158-0.272-0.121-0.147-0.089 -0.071-0.061-0.072-0.070-0.046-0.046-0.072 - 0.365 0.445
GA -0.101-0.226-0.251-0.381-0.304 -0.345 0.375 -0.053-0.194-0.175-0.235-0.279-0.201-0.226-0.132 -0.180-0.172-0.181 0.101 -0.168-0.168-0.181 0.365 - 0.403
RND 0.077 -0.074-0.133-0.434-0.311 -0.397 0.534 0.120 -0.050-0.036-0.072-0.207-0.095-0.082 0.035 -0.012-0.003-0.011-0.077 0.006 0.006 -0.011 0.445 0.403 -

Table 6.6: The correlation coefficients among all the measures analyzed in the benchmark ¬100%CP
HD MC LOCE N DD DLOCE BCE LOC SLOCTNDj TNCj TNE TNI TND CpD HL HV HVL HLV HE HT HB ES GA RND

HD - 0.698 0.359 -0.062 0.023 0.014 0.051 0.664 0.648 0.653 0.651 0.557 0.569 0.463 0.441 0.764 0.576 0.747 -1.0 0.872 0.872 0.747 0.069 0.067 0.079
MC 0.698 - 0.571 0.257 0.432 0.351 -0.142 0.472 0.667 0.936 0.937 0.803 0.827 0.718 0.671 0.782 0.762 0.786 -0.698 0.803 0.803 0.786 -0.177-0.168-0.173
LOCE 0.359 0.571 - 0.692 0.590 0.833 -0.461 0.414 0.717 0.435 0.432 0.479 0.485 0.814 0.086 0.564 0.503 0.560 -0.359 0.524 0.524 0.560 -0.461-0.452-0.476
N -0.062 0.257 0.692 - 0.708 0.870 -0.575 -0.160 0.190 0.163 0.161 0.229 0.220 0.502 -0.031 0.020 0.009 0.019 0.062 -0.007-0.007 0.019 -0.563-0.554-0.589
DD 0.023 0.432 0.590 0.708 - 0.774 -0.426 -0.178 0.280 0.306 0.304 0.385 0.372 0.723 0.026 0.089 0.056 0.087 -0.023 0.070 0.070 0.087 -0.476-0.473-0.497
DLOCE 0.014 0.351 0.833 0.870 0.774 - -0.556 -0.113 0.284 0.247 0.243 0.308 0.291 0.593 0.013 0.096 0.076 0.095 -0.014 0.073 0.073 0.095 -0.577-0.564-0.602
BCE 0.051 -0.142-0.461-0.575-0.426 -0.556 - 0.075 -0.143-0.078-0.079-0.200-0.138-0.318 0.080 -0.021-0.006-0.020-0.051 0.001 0.001 -0.020 0.714 0.698 0.732

LOC 0.664 0.472 0.414 -0.160-0.178 -0.113 0.075 - 0.857 0.398 0.397 0.386 0.406 0.494 0.144 0.906 0.821 0.901 -0.664 0.874 0.874 0.901 0.102 0.099 0.116
SLOC 0.648 0.667 0.717 0.190 0.280 0.284 -0.143 0.857 - 0.533 0.532 0.549 0.572 0.834 0.152 0.916 0.813 0.910 -0.648 0.875 0.875 0.910 -0.137-0.137-0.137
TNDj 0.653 0.936 0.435 0.163 0.306 0.247 -0.078 0.398 0.533 - 0.849 0.753 0.781 0.555 0.747 0.702 0.697 0.707 -0.653 0.731 0.731 0.707 -0.110-0.101-0.102
TNCj 0.651 0.937 0.432 0.161 0.304 0.243 -0.079 0.397 0.532 0.849 - 0.753 0.771 0.551 0.746 0.702 0.697 0.707 -0.651 0.731 0.731 0.707 -0.116-0.107-0.111
TNE 0.557 0.803 0.479 0.229 0.385 0.308 -0.200 0.386 0.549 0.753 0.753 - 0.623 0.600 0.544 0.633 0.619 0.636 -0.557 0.646 0.646 0.636 -0.278-0.270-0.270
TNI 0.569 0.827 0.485 0.220 0.372 0.291 -0.138 0.406 0.572 0.781 0.771 0.623 - 0.619 0.559 0.658 0.645 0.662 -0.569 0.671 0.671 0.662 -0.207-0.198-0.204
TND 0.463 0.718 0.814 0.502 0.723 0.593 -0.318 0.494 0.834 0.555 0.551 0.600 0.619 - 0.132 0.688 0.605 0.683 -0.463 0.648 0.648 0.683 -0.338-0.336-0.348
CpD 0.441 0.671 0.086 -0.031 0.026 0.013 0.080 0.144 0.152 0.747 0.746 0.544 0.559 0.132 - 0.394 0.436 0.402 -0.441 0.437 0.437 0.402 0.026 0.026 0.031

HL 0.764 0.782 0.564 0.020 0.089 0.096 -0.021 0.906 0.916 0.702 0.702 0.633 0.658 0.688 0.394 - 0.932 0.999 -0.764 0.980 0.980 0.999 -0.021-0.018-0.010
HV 0.576 0.762 0.503 0.009 0.056 0.076 -0.006 0.821 0.813 0.697 0.697 0.619 0.645 0.605 0.436 0.932 - 0.946 -0.576 0.874 0.874 0.946 -0.040-0.030-0.022
HVL 0.747 0.786 0.560 0.019 0.087 0.095 -0.020 0.901 0.910 0.707 0.707 0.636 0.662 0.683 0.402 0.999 0.946 - -0.747 0.974 0.974 1.0 -0.023-0.020-0.011
HLV -1.0 -0.698-0.359 0.062 -0.023 -0.014 -0.051 -0.664-0.648-0.653-0.651-0.557-0.569-0.463-0.441 -0.764-0.576-0.747 - -0.872-0.872-0.747 -0.069-0.067-0.079
HE 0.872 0.803 0.524 -0.007 0.070 0.073 0.001 0.874 0.875 0.731 0.731 0.646 0.671 0.648 0.437 0.980 0.874 0.974 -0.872 - 1.0 0.974 0.004 0.005 0.016
HT 0.872 0.803 0.524 -0.007 0.070 0.073 0.001 0.874 0.875 0.731 0.731 0.646 0.671 0.648 0.437 0.980 0.874 0.974 -0.872 1.0 - 0.974 0.004 0.005 0.016
HB 0.747 0.786 0.560 0.019 0.087 0.095 -0.020 0.901 0.910 0.707 0.707 0.636 0.662 0.683 0.402 0.999 0.946 1.0 -0.747 0.974 0.974 1.0 -0.023-0.020-0.011

ES 0.069 -0.177-0.461-0.563-0.476 -0.577 0.714 0.102 -0.137-0.110-0.116-0.278-0.207-0.338 0.026 -0.021-0.040-0.023-0.069 0.004 0.004 -0.023 - 0.954 0.940
GA 0.067 -0.168-0.452-0.554-0.473 -0.564 0.698 0.099 -0.137-0.101-0.107-0.270-0.198-0.336 0.026 -0.018-0.030-0.020-0.067 0.005 0.005 -0.020 0.954 - 0.950
RND 0.079 -0.173-0.476-0.589-0.497 -0.602 0.732 0.116 -0.137-0.102-0.111-0.270-0.204-0.348 0.031 -0.010-0.022-0.011-0.079 0.016 0.016 -0.011 0.940 0.950 -

CHAPTER 6. ESTIMATING SOFTWARE TESTING COMPLEXITY 89

Table 6.7: Correlation coefficient of the most interesting static measures in the 100%CP benchmark.
We highlight the highest value per row.

100%CP

MC HD LOCE N DD DLOCE BCE

MC • 0.796 0.965 0.266 0.519 0.408 0.025
HD 0.796 • 0.786 −0.108 0.052 −0.035 0.284

LOCE 0.965 0.786 • 0.344 0.515 0.474 -0.038

N 0.266 −0.108 0.344 • 0.765 0.877 -0.540
DD 0.519 0.052 0.515 0.765 • 0.912 -0.377

DLOCE 0.408 −0.035 0.474 0.877 0.912 • -0.485

BCE 0.025 0.284 −0.038 −0.540 −0.377 −0.485 •

Table 6.8: Correlation coefficient of the most interesting static measures in the ¬100%CP bench-
mark. We highlight the highest value per row.

¬100%CP

MC H LOCE N DD DLOCE BCE

MC • 0.698 0.571 0.257 0.432 0.351 -0.142
HD 0.698 • 0.359 0.062 0.023 0.014 0.051

LOCE 0.571 0.359 • 0.692 0.590 0.833 -0.461

N 0.257 0.062 0.692 • 0.708 0.870 -0.575
DD 0.432 0.023 0.590 0.708 • 0.774 -0.426

DLOCE 0.351 0.014 0.833 0.870 0.774 • −0.556

BCE −0.142 0.051 −0.461 −0.575 −0.426 −0.556 •

measures that are more correlated with these complexity measures (remember that all correlation
coefficients can be seen in Tables 6.5 and 6.6. McCabe’s complexity is highly correlated with the
number of conjunctions, disjunctions, equalities and inequalities (0.934, 0.925, 0.829 and 0.811 in
100%CP and 0.937, 0.936, 0.803 and 0.827 in ¬100%CP, respectively). These high coefficients were
expected because McCabe’s complexity depends on the CFG of the program. Halstead Difficulty
is highly correlated with the other Halstead measures. In addition, it is highly correlated with
McCabe’s complexity (0.796 in 100%CP and 0.698 in ¬100%CP). LOCE is highly correlated with
the total number of decisions and SLOC (0.976 and 0.974) in 100%CP and in ¬100%CP (0.814
and 0.717). These results were expected because SLOC and LOCE are very similar measures and
the total number of decisions gives us an idea of the length of the code. The Halstead Length is
highly correlated with LOC and SLOC, with a minimum value of correlation of 0.906. Moreover,
the other Halstead measures are highly correlated too, except Halstead Difficulty and Level. This
indicates that several Halstead measures are similar to a simple count of lines of code.

In this subsection we have provided an overview of static measures that are part of our study.
Now, we know the measures that are similar and those that are different. In the next section we
show the measures that are more correlated with the branch coverage, which is the way we measure
the difficulty of testing a program.

6.6.2 Correlation Between Coverage and Static Measures

In the previous section we showed the basic relationship among the static measures, in this section
we include the branch coverage in the study. The existing correlations between the branch coverage
and the static measures studied give us an idea of which static measures are useful to determine

90 6.6. EMPIRICAL RESULTS

a priori the complexity of the automatic test data generation task. In this study we have applied
three different test data generators, two based on evolutionary techniques (ES, GA) and one based
on random testing (RND).

Table 6.9: Relationship between the most important static measures and the average branch
coverage for all the algorithms. We highlight the highest value of correlation for each algorithm
and benchmark.

100%CP ¬100%CP
ES GA RND ES GA RND

MC -0.150 -0.226 -0.074 -0.177 -0.168 -0.173
HD 0.070 -0.101 0.077 0.069 0.067 0.079

LOCE -0.186 -0.251 -0.133 -0.461 -0.452 -0.476
N -0.543 -0.381 -0.434 -0.563 -0.554 -0.589
DD -0.439 -0.304 -0.311 -0.476 -0.473 -0.497

DLOCE -0.504 -0.345 -0.397 -0.577 -0.564 -0.602
BCE 0.510 0.375 0.534 0.714 0.698 0.732

The first question we should answer is if there exists a link between the coverage and the
traditional measures of code complexity: McCabe’s, Halstead’s, and LOCE. In Table 6.9 we show
the correlation coefficients for the most important static measures and the branch coverage obtained
with three automatic test data generators. The correlations between Halstead’s Difficulty and the
coverage are very low, so the answer is no in this case. The correlation coefficients of McCabe’s
complexity are higher than Halstead Difficulty but too low. This result was expected because, as we
showed in the previous section, Halstead Difficulty is highly correlated with McCabe’s complexity.
Finally, the correlation coefficients of LOCE indicate that it is more correlated with the branch
coverage because this measure takes into account the nested statements. After analyzing these
results, we realise that the traditional complexity measures (MC, HD, and LOCE) are not useful
to measure the difficulty of testing a program.

In the second group of measures, there exist higher correlations with branch coverage. The
nesting degree is the static measure with the highest correlation coefficient with branch coverage
in the 100%CP benchmark for the evolutionary test case generators. On the other hand, DLOCE
is more correlated than the nesting degree in the ¬100%CP benchmark. Despite that the total
number of decisions is not correlated with coverage, as can be seen in Tables 6.5 and 6.6 in the
Appendix, the density of decisions correlates with the obtained coverage, as we show in Table 6.9.
Moreover, the density of decisions is also more correlated than the traditional complexity measures.
In Figure 6.6 the trend indicates that the programs with a high density of decisions are more difficult
to test because a lower coverage is obtained.

After analyzing the LOCE measure, we supposed that if the influence of the LOC were removed
by dividing LOCE by LOC, it could be obtained a measure with a high influence of the nested level
(DLOCE) (recall that that the LOCE measure weighs those nested statements). As the nesting
degree is highly correlated with the branch coverage, the DLOCE would have high correlation too.
After doing the correlation test, our expectations were true, as one can see in Table 6.9. These
results are similar to the results obtained with the nesting degree. In the case of the benchmark
¬100%CP, DLOCE has more influence than nesting (N) in general. In Figure 6.7, we can see that
the coverage clearly increases as the DLOCE decreases with the exception of the programs with
DLOCE between 7 and 8.

CHAPTER 6. ESTIMATING SOFTWARE TESTING COMPLEXITY 91

Figure 6.6: Boxplots showing the branch coverage against the Density of Decisions for GA in
¬100%CP.

Figure 6.7: Boxplots showing the branch coverage against the DLOCE for GA in ¬100%CP.

92 6.6. EMPIRICAL RESULTS

Let us analyze the nesting degree. In Table 6.10, we summarize the obtained coverage in
programs with different nesting degree in the two benchmarks of programs. If the nesting degree
is increased, the branch coverage decreases and vice versa. It is clear that there is an inverse
correlation between these variables. These correlation values are the highest ones obtained in the
study of the different static measures, so we can say that the nesting degree is the feature with the
highest influence on the coverage that evolutionary and random testing techniques can achieve.
Nested branches pose a great challenge for the search. The high correlation value of the nesting
degree supports that claim.

Table 6.10: Relationship between the nesting degree and the average coverage for all the algorithms.
The standard deviation is shown in subscript. We highlight the highest values of branch coverage
for each algorithm and benchmark.

100%CP ¬100%CP
Nesting degree ES GA RND ES GA RND

1 96.30 4.83 96.67 5.78 86.13 10.81 82.32 8.16 82.51 7.89 81.36 7.97

2 92.28 7.66 95.33 7.11 79.87 13.06 73.43 11.70 73.92 11.58 71.86 11.66

3 83.92 12.06 92.68 10.28 73.46 13.99 69.85 15.35 70.33 15.46 68.20 15.23

4 81.44 14.32 85.41 13.96 68.67 16.03 62.55 17.93 62.37 18.07 59.83 17.82

5 - - - 53.81 21.09 54.48 21.57 51.83 20.80

6 - - - 50.32 21.14 50.78 21.90 46.33 20.93

7 - - - 44.31 20.57 45.33 20.77 42.77 19.68

ρ -0.543 -0.381 -0.434 -0.563 -0.554 -0.589

Finally, we analyze the BCE measure, the new measure proposed to estimate the difficulty
to generate an adequate test suite. In the 100%CP benchmark the correlation between this new
measure and the coverage was 0.510 for ES, 0.375 for GA and 0.534 for RND, as we can see in
Table 6.9. The obtained correlation coefficients when an RND generator is used are higher because
the Markov model is inspired on it. In addition, in the ¬100%CP the correlations are even higher:
0.714 for ES, 0.698 for GA and 0.732 for RND. This promising measure is more correlated with the
coverage (especially in the RND generator) than the nesting degree and the other static measures.
This suggests that it is the best static complexity measure for measuring the difficulty of testing a
program by an automatic test data generator.

In Figure 6.8 we show the obtained average branch coverage with the random test data generator
against the BCE measure. The trend is clear: the lower the value of Branch Coverage Expectation,
the lower the coverage. We have opened a way to estimate the difficulty to test a program that is
better than using the existing complexity measures or other known static measures like the nesting
degree.

6.6.3 Another use of the Branch Coverage Expectation

As we detailed in Section 6.3 for each branch (BBi, BBj) the expected number of test cases
required to traverse it is 1/E[BBi, BBj]. Then, given a number of test cases x, we can compute
the number of branches that would be theoretically traversed if the tester execute x random test
cases, according to this equation:

CHAPTER 6. ESTIMATING SOFTWARE TESTING COMPLEXITY 93

Figure 6.8: Average Branch Coverage of RND against the BCE measure.

f(x) =

∣∣∣∣
{
(i, j)

∣∣∣∣
1

E[BBi, BBj]
< x

}∣∣∣∣ . (6.19)

Thanks to this estimation, we propose a theoretical prediction about the behavior of an auto-
matic test data generator based on random testing.

In Figure 6.9 we show a plot for a particular program with the expected theoretical behavior
together with the experimental data obtained using the average branch coverage of the 30 inde-
pendent executions of an RND generator for that program. The features of this test program are
shown in Table 6.11. The resulting curves show that our theoretical prediction and the experimen-
tal data are very similar. The theoretical prediction is more optimistic because it does not take into
account data dependencies. At the first steps of the algorithm, the experimental behavior is better
than the theoretical prediction, but in the region of high coverage (close to 90%), the behavior
of the RND test data generator is worse than expected. One explanation for this behavior could
be the presence of data dependencies in the program, which is not considered in the theoretical
approach in order to keep it simple.

This new proposal is useful to decide which is the best way of generating a test suite for a piece
of code. It could be useful to decide the parameters of an evolutionary test data generator prior to
its execution, for example, the stopping condition. It is also a way to simulate the Multi-objective
approach, so you know the expected branch coverage using a particular number of test cases, for
any number of them.

94 6.6. EMPIRICAL RESULTS

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

Number of Test Cases

B
ra

nc
h

C
ov

er
ag

e

Random Generator
Theoretical Prediction

Figure 6.9: Coverage against the number of test cases of the random generator and the theoretical
model.

6.6.4 Validation on Real Programs

In this section we want to make some validation of our proposed measure on real programs. We
study 10 real programs extracted from the literature with characteristics similar to the artificial
programs used in the previous sections. The reader must take into account that the number of
programs used in the previous sections gives us the chance to average among 2,600 programs and
extract statistically more reliable results. Despite the fact that in this section we only analyze the
proposed testing measure over 10 programs, most of the conclusions are similar to the ones we
have obtained with the synthetic programs.

In Figure 6.10 we show the average coverage obtained with the GA against the BCE. Once again
we can see that the higher the Branch Coverage Expectation the higher the coverage. Relying on
this figure we can state that there is a strong correlation between the obtained coverage and the
BCE. Besides showing the figure, we have computed the Spearman’s correlation coefficient. The
coefficients are 0.770 and 0.758 for GA and RND, respectively. These values of correlation are
even higher than the values obtained with the synthetic programs. Thanks to the experiments on
real programs we can state that the proposed measure (BCE) is useful in order to measure the
difficulty to automatically generate an adequate test suite.

When we have analyzed the behavior of the ES algorithm, we obtained that the correlation does
not exist (-0.013). We can try to justify this unexpected result because the ES has problems when
it deals with a few complex branches. This algorithm achieves high coverage in most programs,
but in a few, it obtains less coverage than expected. It is not able to cover some complex branches.
This statement is supported by the value of correlation between the coverage obtained with ES
and the estimation of test cases needed introduced in the previous section. They are correlated

CHAPTER 6. ESTIMATING SOFTWARE TESTING COMPLEXITY 95

Table 6.11: Static measures for a representative program.

Features Value
Nesting 1
Atomic Conditions 4
Total Decisions 26
Equalities 3
Inequalities 8
McCabe 62
Halstead Difficulty 32.53
LOCE 107
Density of Decisions 0.37
Density of LOCE 1.51

Figure 6.10: Average Branch Coverage of GA against the Branch Coverage Expectation for the
real programs.

96 6.7. CONCLUSIONS

with a value of -0.582. This means that the most complex branch to cover in a program has high
influence in the computation of the coverage.

6.7 Conclusions

In this chapter we dealt with the testing complexity from an original point of view: a program is
more complex if it is more difficult to be automatically tested. With the intention of answering the
RQ1, we defined the “Branch Coverage Expectation” in order to provide some knowledge about
the difficulty of testing programs. The foundation of this measure is based on a Markov model of
the program. The Markov model provides a theoretical background. The analysis of this measure
indicates that it is more correlated with branch coverage than the other studied static measures.
This means that this is a good way of estimating the difficulty of testing a program. We think,
supported by the results, that this measure is useful for predicting the behavior of an automatic
test data generator.

In this study, we also analyzed the static features and the most common complexity measures
in Software Engineering. This analysis was performed in two automatically generated benchmarks
of programs. We studied the correlations among static measures of a program and we determined
which of them can be useful to estimate the complexity of a program. Summing up, the studied
complexity measures like McCabe’s and Halstead’s seemed to be useless for this task. Instead, the
nesting degree, the density of decisions and the density of LOCE were the static measures more
correlated with branch coverage, although none of them is so correlated as the “Branch Coverage
Expectation”.

The Markov model of the program can also be used to provide an estimation of the number of
test cases needed to cover a concrete percentage of the program. We have compared our theoretical
prediction with an average of real executions of a test data generator. The results show that our
prediction is very similar to the evolution of a real execution of the test data generator. This
model can help to predict the evolution of the testing phase, which consequently can save time and
cost of the entire project. This theoretical prediction could be also very useful to determine the
coverage percentage using a particular number of test cases, despite it could be a good estimation,
the multi-objective approach could be better helping testers to pick an adequate test suite when
the resources are limited. In the next chapter we compare mono and multi-objective approaches
solving the test data generation problem.

CHAPTER 6. ESTIMATING SOFTWARE TESTING COMPLEXITY 97

98 6.7. CONCLUSIONS

Chapter 7

Multi-Objective Test Data

Generation

7.1 Introduction

Traditionally, the solution of the Test Data Generation Problem (TDGP) is a set of test cases whose
execution is able to cover all the software elements. Indeed, branch coverage is usually the most
popular goal. Despite most previous work have only considered coverage, real-world engineers deal
with the tedious and costly task of checking the system behavior for all the generated test cases.
This significant and usually neglected cost is called the oracle cost [98]. Thus, a reformulation of
the TDGP to deal with real-world problems is a need, taking into account the oracle cost as another
important objective to minimize. The oracle cost can be reduced by minimizing the test suite size.
The ideal scenario is to reduce the test suite size without any loss of coverage. However, in certain
situations the two objectives are in conflict: minimizing the oracle cost implies minimizing the
coverage. When there are multiple conflicting objectives the optimization literature recommends
the consideration of a Pareto optimal optimization approach that is able to take into account the
need to balance the conflicting objectives. Hence, the TDGP has been reformulated into a multi-
objective problem (MOTDGP) in the work by Lakhotia et al. [129] and more recently, in 2010, in
a work by Harman et al. [98].

Our main goal in this chapter is the comparison between two approaches to deal with the MOT-
DGP: a direct multi-objective approach (MM) and a combination of a mono-objective algorithm
followed by a multi-objective test case selection optimization (mM). The general scheme of the
proposed approaches can be seen in Figure 7.1. On the one hand, the MM approach considers the
conflicting objectives during the entire test data generation process, thus a priori it focuses both
on the test suite size minimization and the coverage maximization. On the other hand, the mM
approach only considers the branch coverage during the test data generation process, thus a priori
it focuses only on the branch coverage maximization. In order to deal with the optimization of
the test suite size, in this second approach an additional second phase of multi-objective test case
selection is performed. As nobody has previously compared these approaches yet, we can raise the
following research questions and try to answer them in an extensive experimental study.

• RQ1: How does MM perform for MOTDGP?

• RQ2: Is the MM approach good enough in maximizing the coverage?

99

100 7.2. EXPERIMENTAL METHODOLOGY

Figure 7.1: The general scheme of the two proposed approaches.

• RQ3: How good is the mM approach performance in optimizing the coverage and the test
suite size?

• RQ4: Which approach is the best?

In order to completely answer the questions we should use all the possible automatic test data
generators both in multi and mono-objective or, at least, a large number of them. We can also
focus on some test data generators and answer the previous questions on them, taking into account
that in this case the results will be valid for the test data generators considered. This is what we
do in this thesis. In particular, we study the MOTDGP with two objectives, maximizing the
branch coverage and minimizing the oracle cost. Among our contributions, we generate the test
data and we also minimize the number of tests needed to achieve different values of coverage of the
program. The solutions are provided as Pareto fronts. For the MM approach, we use five test data
generators: four of them based on evolutionary testing and an additional one based on random
search. In the mM approach we use three mono-objective test data generators with a second phase
of multi-objective test data selection.

7.2 Experimental Methodology

This section is aimed at presenting the two approaches proposed to solve the MOTDGP that we
have already defined formally in Section 2.2.2. It outlines the indicators used to measure the
quality of the obtained results and the benchmark programs we have used. In this section we also
describe how the solutions of the problem have been encoded and the genetic operators employed,
the configuration of the algorithms, and the methodology we have followed.

7.2.1 The MM Approach

The MM approach considers the conflicting objectives during all the test data generation process,
thus a priori, it focuses on both objectives during all the process. In this approach a solution to
the problem is a test suite, that is, a set of test data. These test suites are evaluated according to
both objectives. The evaluation of the first objective (coverage) requires, in general, the execution
of the test suite over the SUT. The evaluation of the second objective is a simple count of the
number of test data in the set.

CHAPTER 7. MULTI-OBJECTIVE TEST DATA GENERATION 101

Details of the Multi-objective algorithms

Here we detail the configuration of the operators and the encoding of the solutions used in the
multi-objective algorithms. In the multi-objective approach, each individual is encoded as a set
of test data. Table 7.1 shows the parameters of the multi-objective EAs used in the experimental
section (all of them were previously described in Section 4.2). As genetic operators, we have used
2-tournament (binary tournament) as the selection scheme. This operator works by randomly
choosing two individuals from the population and the one dominating the other is selected; if both
solutions are non-dominated one of them is randomly selected.

Table 7.1: Parameters of the multi-objective EAs used in the experimental section.

NSGA-II MOCell SPEA2 PAES

Population 20 indivs. 20 indivs. 20 indivs. 20 indivs.
Selection BT, 2 indivs. BT, 2 indivs. BT, 2 indivs. BT, 2 indivs.
Mutation Adaptive Mutation Adaptive Mutation Adaptive Mutation Adaptive Mutation
Crossover Union Crossover Union Crossover Union Crossover -
Replacement Elitist Elitist Elitist Elitist
Total Evals. 150000 evals. 150000 evals. 150000 evals. 150000 evals.

The best results were obtained with the union crossover that takes two solutions, C1 and C2,
and creates a new one C that is the union of both, that is: C = C1 ∪ C2. If the resulting solution
C has more coverage than C1 and C2 then C is the new offspring. Otherwise, the solution with
more coverage (C1 or C2) is the new child.

Finally, the mutation operator adds new test data to the solution with probability 0.6, deletes
one test datum with probability 0.2 and keeps the individual unchanged with probability 0.2. In
the case of adding test data, the number of new test data is 30% of the test data present in the
solution. If the resulting individual has the same coverage and more test data, at the end of the
iteration, the algorithm deletes it from the population because this solution is dominated.

All the multi-objective algorithms have been implemented using jMetal [66], a Java framework
aimed at the development, experimentation, and study of metaheuristics for solving multi-objective
optimization problems.

7.2.2 The mM Approach

In this section we present the second approach. In this approach we use a mono-objective test data
generator to obtain a set of test data with the highest coverage. The mono-objective test data
generator deals with only one branch of the program at the same time. This is a beneficial feature
to obtain high coverage because the search can focus on covering the most complex branches of
the program. However, the resulting test suite is usually large, redundant and inefficient because
these algorithms do not try to minimize the test suite size. One way to reduce the number of
test cases in a test suite, and still test the same functionality, is by solving a Multi Objective Test
Case Selection Problem (MOTCSP) on the given test suite. This problem was recently formalized
by Yoo and Harman in [226] as follows: Given a test suite T and several objective functions Fi,
we must find a subset T ′ ⊆ T such that T ′ is a Pareto optimal set with respect to the objective
functions. The resulting subset of the test suite, T ′, is composed of the non-dominated solutions
considering the objectives as equally important.

In order to solve the MOTCSP we always use in these experiments the multi-objective algorithm
NSGA-II. Our implementation is able to generate a Pareto front from thousands of test cases

102 7.2. EXPERIMENTAL METHODOLOGY

previously generated by the mono-objective algorithms. But first, we delete repeated test cases
from the obtained test suite in order to reduce from thousands of test cases to hundreds of them.
Two test cases are repeated when both of them traverse the same branches. We have compared
the results obtained with and without this reduction phase, and the results are better when this
reduction is applied. Finally, for the mono-objective algorithm involved in the first phase of test
data generation, we use three different algorithms: a genetic algorithm, an evolutionary strategy
and a random search, described in Section 4.1.

Details of the Mono-objective algorithms

In this work, each solution is encoded as an integer/real vector of length n (the number of argu-
ments). As we said when we explained the test data generator (Section 5.2) the generator breaks
down the global objective (to cover all the branches) into several partial objectives consisting of
dealing with only one branch of the program. Thus, two stopping conditions exist: one for partial
objectives and the other one for the whole test data generation process. The search for one partial
objective stops when 1,000 evaluations are performed while the test data generation process ends
after 150,000 evaluations.

In our GA we use as recombination operator the uniform crossover (UX), in which each com-
ponent of the new solution is randomly selected from the two parents. The formal definition is
the same as equation (4.1) with bias = 0.5. The mutation operator adds a random value to the
components of the vector. That is,

xi = xi + U(−500, 500) (7.1)

where the probability distribution of these random values is a uniform distribution in the range
[−500, 500]. However, not all the components of the individual are perturbed, only half of them are.
In our ES, we use a discrete crossover operator and a Gaussian mutation. We show in Table 7.2 a
summary of the parameters used by the two EAs in the experimental section.

Table 7.2: Parameters of the two mono-objective EAs used in the experimental section.

ES GA
Population 25 indivs. 25 indivs.
Selection Random, 5 indivs. Random, 5 indivs.
Mutation Gaussian Add U(−500, 500)

Crossover
discrete (bias = 0.6)

Uniform
+ arith. + arith.

Replacement Elitist Elitist
Stopping cond. 1,000 evals. 1,000 evals.
Total Evals. 150,000 evals. 150,000 evals.

After the execution of the test data generator, we obtain a huge table of coverage where the
test data that satisfy a concrete branch during the execution are saved. Then, a test data selection
is performed over this set using a standard NSGA-II.

CHAPTER 7. MULTI-OBJECTIVE TEST DATA GENERATION 103

7.2.3 Benchmark of Test Programs

In the experimental section we use two benchmarks. The first one is composed of 800 synthetic
programs and the second one is composed of 13 real-world programs1.

Synthetic Programs

Our program generator (Section 6.5.2) can create programs having the same value for the static
measures, as well as programs having different values for the measures. In addition, the generated
programs are characterized by having a 100% coverage, thus all possible branches are reachable.

Our program generator takes into account the desired values of some static measures. The
static measures selected are: the number of atomic conditions, the nesting degree, the number of
sentences and the number of variables. The main features of the generated programs are: they
deal with integer input parameters, their conditions are joined by whichever logical operator, they
are randomly generated and all their branches are reachable.

The methodology applied for the program generation was the following. First, we analyzed a
set of Java source files from the JDK 1.6 (java.util.*, java.io.*, java.sql.*, etc.) and we computed
the static measures on these files. Next, we used the ranges of the most interesting values, obtained
in this previous analysis as a guide to generate Java source files having values in the same range
for the static measures. This way, we generated programs with the values in these ranges, e.g.,
nesting degree in 1-4 (25% for each value), atomic conditions per condition in 1-4 (68.43% with 4
conditions per decision), and statements in 25, 50, 75 or 100 (25% for each value). The percentage
of control flow statements is 32.23% (in this work we use IF statements), this means that the test
case generator should cover around 64 different branches (32 true and 32 false) in programs with
100 statements. The previous values are realistic with respect to the static measures, making our
study meaningful. Besides, we generated 50 programs for each size and nesting degree (50 x 4 sizes
x 4 nesting degrees = 800), which is a total of 800 Java programs.

Real Programs

In order to improve the interest of our work we propose an additional benchmark of real programs.
It is composed of the ten real programs used in the previous chapter (Table 6.4) and three additional
programs extracted from the literature. The main features of the new programs are listed below.

Table 7.3: Characteristics of the real programs.

Name ND LOC Branches Arguments Description

complex 3 74 24 6 Integer Calculate complex arithmetic functions
remainder 6 49 18 2 Integer Calculate the remainder of an integer division
tmyers 6 54 12 3 Integer Classify triangles in 4 types: Myers

7.3 Experimental Analysis

In this section we present the results of the two proposed approaches. In the first subsection we
analyze the MM approach and we compare the performance of the multi-objective algorithms. In
the second subsection we study the mM approach and we compare the performance of the mono-
objective algorithms used as the base for the approach. Then, in a third subsection we compare

1They are available at http://neo.lcc.uma.es/staff/javi/resources.html

104 7.3. EXPERIMENTAL ANALYSIS

the two proposed approaches for the academic benchmark, and finally, in the last subsection, we
compare both approaches with a benchmark of real programs.

The benchmarks used were described in Section 7.2.3. We performed 30 independent runs of
each algorithm and program, in order to obtain a very stable average of the measures. All test
data generators used in this work proceed by generating test data until a maximum of 150,000
test data are generated. We also perform a multiple comparison statistical test for each program
on the obtained results to compare the algorithms among them. We set a confidence level of 95%
(p-value under 0.05) for the whole comparison (all the algorithms acting on a program) and we
used the Bonferroni correction for each particular comparison.

7.3.1 Evaluation of the MM approach

In this section, we analyze the behavior of the multi-objective algorithms with the aim of be able
to answer RQ1. We have analyzed 800 programs, so we cannot represent all HV values for all the
programs. For this reason, we summarize in Table 7.4 the times one algorithm has better median
HV than the others. We have classified the results according to the nesting degree and the size of the
SUT. For this indicator, the higher the value, the better the quality of the obtained results. Thus,
by looking at the tables, we can see that MOCell was usually the algorithm computing clearly the
best results regarding HV. However, when the programs are small (25-50 statements) and complex
(nesting degree four), the NSGA-II algorithm has a better behavior. We must highlight the big
difference between MOCell (443), NSGA-II (198) and the others altogether (43).

Then, we compare the HV values of all the programs and independent executions with the
Kruskal-Wallis test. In each cell of a table of statistics we have a pair (number, triangle). The
number indicates how many programs are significantly different, and the triangle indicates that
the program in the row is significantly better (N) or worse (▽) than the program in the column.
The results are summarized in Table 7.5. Although the previous values set a clear tendency, the
absence of significant differences between MOCell, NSGA-II and SPEA2, does not allow us to say
that MOCell is better than the other two. However, we can mention that RNDMulti is the worst
algorithm in all the programs (800) and PAES is worse than MOCell in 18 programs, NSGA-II in
9 programs, and SPEA2 in only 2 programs.

With the aim of showing an example of the computed fronts for the instances, we selected
one program for each nesting degree, which can represent the typical behavior of the different
algorithms in this kind of instance. In Figure 7.2 are depicted the 50%-attainment surfaces of
these selected programs. In the instance with low nesting degree, MOCell dominates the others
and has a good performance because it reaches almost the same or better coverage with the same
test data. NSGA-II has a similar behavior except in the right extreme of the figure where it is not
able to reach the same maximum coverage as MOCell. On the other hand, in the program with
nesting degree 4, NSGA-II is the algorithm that is able to reach the best coverage and dominates
all the other fronts. The other two multi-objective algorithms (SPEA2 and PAES) have problems
finding the solutions with high coverage, in the upper-right bound of the figure, and are worse
than MOCell and NSGA-II. RNDMulti is always the worst. MOCell has been able to find non-
dominated solutions in the right area where SPEA2, PAES and RNDMulti have not found any of
them (solutions in the extremes of the front). This is related to a better exploration of the search
space by MOCell. Specifically, this is one of the properties of the cellular GA model, on which
MOCell is based. This fact has been reported in many studies on single-objective optimization
(see [6]). There is only one exception, when a program has nesting degree 4 and it is more difficult
to obtain high coverage, NSGA-II has the best performance.

CHAPTER 7. MULTI-OBJECTIVE TEST DATA GENERATION 105

Table 7.4: Programs in which the median hypervolume of one algorithm is better than the others.

Nesting degree Statements MOCell NSGA-II SPEA2 PAES RNDMulti

1

25 10 1 0 0 0
50 24 9 0 2 2
75 34 6 1 1 0
100 38 4 0 1 0
Total 106 20 1 4 2

2

25 13 5 1 2 3
50 35 13 0 0 0
75 37 12 0 0 0
100 40 10 0 0 0
Total 125 40 1 2 3

3

25 18 11 3 1 2
50 33 15 0 0 0
75 32 16 1 0 0
100 30 19 0 0 0
Total 116 61 4 1 2

4

25 17 20 3 2 2
50 23 25 2 1 0
75 27 19 2 0 1
100 29 13 10 0 0
Total 96 77 17 3 3

Total 443 198 23 10 10

Table 7.5: Number of programs where there exists significant difference among the HV obtained.

RNDMulti PAES SPEA2 NSGA-II MOCell
MOCell 800N 18N 0 0 −
NSGA-II 800N 9N 0 − 0
SPEA2 798N 2N − 0 0
PAES 750N − 2▽ 9▽ 18▽

RNDMulti − 750▽ 798▽ 800▽ 800▽

We have also analyzed the reduction obtained in the number of test cases, since one of our
goals is to minimize the number of test cases. We analyze the reduction experienced using our
approaches compared with the use of all the generated test cases. It is very difficult to analyze
this reduction because not all the algorithms achieve a 100% coverage in all the programs. For
this reason, we cannot simply average the number of test cases, but we must take into account
the maximum obtained coverage in order to give the real reduction made by the multi-objective
algorithm. The total reduction is from thousands of test cases generated to around ten, but this
reduction could also be easily computed based in the table of coverage of the algorithms by choosing
one test case per branch. The drawback of the latter approach is that the minimization of the
test suite would be far from optimal. For this reason, we establish a theoretical upper bound of

106 7.3. EXPERIMENTAL ANALYSIS

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12

B
ra

nc
h

C
ov

er
ag

e

Number of Test Cases

Nesting 1

MOCell
NSGA-II
SPEA2

PAES
RNDMulti

(a) Program with nesting degree 1

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12

B
ra

nc
h

C
ov

er
ag

e

Number of Test Cases

Nesting 2

MOCell
NSGA-II
SPEA2

PAES
RNDMulti

(b) Program with nesting degree 2

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12

B
ra

nc
h

C
ov

er
ag

e

Number of Test Cases

Nesting 3

MOCell
NSGA-II
SPEA2

PAES
RNDMulti

(c) Program with nesting degree 3

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12

B
ra

nc
h

C
ov

er
ag

e

Number of Test Cases

Nesting 4

MOCell
NSGA-II
SPEA2

PAES
RNDMulti

(d) Program with nesting degree 4

Figure 7.2: 50%-attainment surfaces: coverage against the number of test cases.

the required number of test cases needed. This upper bound is the number of branches that were
achieved by the algorithm. We compute the real oracle cost of the test suites generated by any
algorithm according to the next expression:

upper bound(P,A) = BP ∗MaxCov(P,A)

oracle cost(P,A) = tc(P,A)
upper bound(P,A)

(7.2)

where P is a program, A is an algorithm, BP is the number of branches of the program P ,
MaxCov(P,A) is the maximum coverage obtained by the algorithm A in the program P , and
tc(P,A) is the number of test cases needed by the algorithm A to obtain the maximum coverage
in program P .

We can state that the oracle cost of the test suite generated by all the multi-objectives algo-
rithms can be reduced by our approach, only 15.12% of the test cases are needed in comparison
with the computed upper bound. This reduction is computed in the case of the maximum cover-
age, and hence the largest number of computed test cases. But we must bear in mind that our
solution is a complete Pareto front offered to the expert to make a decision about the test suite that
best fits his/her needs, therefore a similar percentage of reduction is carried out for each couple
coverage-number of test cases that appears in the Pareto front.

CHAPTER 7. MULTI-OBJECTIVE TEST DATA GENERATION 107

In the TDGP, it is particularly hard to achieve a 100% branch coverage, especially if one uses
a multi-objective algorithm because its execution is not entirely guided to obtain a total coverage.
The multi-objective approach deals with all the branches at the same time, this provokes a lack of
information. In addition, the search does not spend most of its effort to cover the most complex
branches. In Table 7.6 we show the average of maximum coverage (among the solutions in the front)
obtained with the solutions for all the programs with different nesting degree in order to answer
RQ2. We highlight the maximum values in the table for each nesting degree. As we expected,
MOCell’s performance is the best on nesting degree 1, 2 and 3. On the other hand, NSGA-II
obtains the best coverage with nesting degree 4. Since the differences are low, we compared the
coverage values of all the programs and independent executions with the Kruskal-Wallis test. The
results are summarized in Table 7.7. As we expected, MOCell obtains significant differences in
more programs with respect to PAES and RNDMulti, than NSGA-II and SPEA2.

Table 7.6: Relationship between the nesting degree and the average maximum coverage for the
multi-objective algorithms. The standard deviation is shown in subscript.

Nesting degree MOCell NSGA-II SPEAII PAES RNDMulti
1 98.102.08 97.902.22 97.532.34 93.085.30 81.3612.74
2 94.773.44 94.423.49 93.563.75 87.596.31 75.0414.00
3 90.665.83 90.415.46 89.295.65 81.557.68 69.7713.87
4 85.509.45 85.778.18 84.618.12 75.879.22 63.8715.95

Total 92.267.54 92.126.99 91.247.24 84.529.72 72.5115.57

Table 7.7: Number of programs where there exists a significant difference among the coverage
values obtained.

RNDMulti PAES SPEA2 NSGA-II MOCell
MOCell 800N 800N 2N 0 −
NSGA-II 800N 799N 0 − 0
SPEA2 800N 782N − 0 2▽
PAES 711N − 782▽ 799▽ 800▽

RNDMulti − 711▽ 800▽ 800▽ 800▽

If we consider the HV obtained (Table 7.4), the significant HV differences (Table 7.5), the
attainment surfaces and the average maximum coverage achieved showed in Table 7.6, it is clear
that the ranking of the performance of the algorithms is: MOCell is the best, second NSGA-II,
third SPEA2, fourth PAES, and finally RNDMulti, the worst one, as expected.

7.3.2 Evaluation of the mM approach

In this section we analyze the mM approach and try to answer RQ3. First of all, we study the
values of HV. We show in Table 7.8 the programs in which one algorithm has a better value of HV.

It is noteworthy that when the nesting degree is the smallest (1) the ES obtains better results
and when the nesting degree is large (3 and 4) the GA is better than the others. In other words,
when the program is more complex, the GA is clearly the best. The ES is better in large programs
(100 statements) except when the program has nesting degree four. Then, we compared the HV

108 7.3. EXPERIMENTAL ANALYSIS

Table 7.8: Programs in which the median hypervolume of one algorithm is better than the others.

Nesting degree Statements GA ES RNDMono

1

25 3 3 0
50 7 18 1
75 7 26 3
100 9 33 3
Total 26 80 7

2

25 13 8 1
50 23 17 0
75 23 22 1
100 18 29 1
Total 77 76 3

3

25 23 6 0
50 31 16 0
75 30 16 0
100 21 29 0
Total 105 67 0

4

25 37 3 0
50 41 6 0
75 39 11 0
100 34 14 0
Total 151 34 0

Total 359 257 10

values of all the programs and independent executions with the Kruskal-Wallis test. The results
indicate that there is no significant difference between GA and ES (Table 7.9). As we expected,
the results of RNDMono are worse than ES in 786 programs and GA in 765 programs.

Table 7.9: Programs where a significant difference exists among the HV obtained.

RNDMono ES GA
GA 765N 0 −
ES 786N − 0

RNDMono − 786▽ 765▽

Second, we show the 50%-attainment surfaces of four representative programs with different
nesting degree in Figure 7.3. In the instance with nesting degree 1, the attainment surfaces are very
similar between GA and ES. RNDMono is far from the behavior of the others. In the instance with
nesting degree 2, the three algorithms obtain similar results. The instances with nesting degree 3
and 4, represent the general behavior of the algorithms in most of the programs. The RNDMono
is far from the others, the ES obtains similar values of coverage to the GA with the same number
of test cases, but GA can achieve the best value of coverage. The GA is the best algorithm in
maximum obtained coverage. This is related to a better exploitation of the search space by GA.

CHAPTER 7. MULTI-OBJECTIVE TEST DATA GENERATION 109

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18

B
ra

nc
h

C
ov

er
ag

e

Number of Test Cases

Nesting 1

GA
ES

RNDMono

(a) Program with nesting degree 1

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18

B
ra

nc
h

C
ov

er
ag

e

Number of Test Cases

Nesting 2

GA
ES

RNDMono

(b) Program with nesting degree 2

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18

B
ra

nc
h

C
ov

er
ag

e

Number of Test Cases

Nesting 3

GA
ES

RNDMono

(c) Program with nesting degree 3

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14 16 18

B
ra

nc
h

C
ov

er
ag

e

Number of Test Cases

Nesting 4

GA
ES

RNDMono

(d) Program with nesting degree 4

Figure 7.3: 50%-attainment surfaces: coverage against the number of test cases.

In order to highlight the reduction of the test cases needed to achieve the maximum coverage,
we have applied Equation (7.2). We can state that the oracle cost of the test suite generated by
the three studied mono-objective algorithms can be reduced by our approach, only 19.32% of the
test cases are needed in comparison with the computed upper bound. This percentage of test
cases needed to achieve a concrete coverage is larger than the one obtained with the MM approach
(15.12%).

Now, let us analyze the best value of coverage obtained with the three algorithms. In Table 7.10
we show the average of maximum coverage of the three algorithms. As is known, achieving a total
coverage is a great challenge for the search, for this reason, we consider that an algorithm must
focus on obtaining a high value of coverage. In this sense, the GA and ES obtain very good values
of coverage, both above 90% in all the cases. However, the average coverage obtained by the GA is
always the best. This advantage of the GA increases in programs with higher nesting degree where
high values of coverage are very difficult to obtain. We performed a statistical test (Table 7.11),
but, although the GA obtains the best results, significant differences only exist in 23 programs
between GA and ES. Thus, it seems that GA is the best in obtaining a high value of coverage,
specifically in more complex programs.

110 7.3. EXPERIMENTAL ANALYSIS

Table 7.10: Relationship between the nesting degree and the average maximum coverage for the
mono-objective algorithms. The standard deviation is shown in subscript.

Nesting degree GA ES RNDMono
1 99.192.20 98.702.63 85.3310.51
2 98.852.02 97.872.44 79.2012.14
3 98.522.09 95.664.54 71.9413.36
4 96.894.80 93.196.66 66.4214.80

Total 98.363.13 96.364.90 75.7214.65

Table 7.11: Number of programs where there exists a significant difference between the coverage
obtained.

RNDMono ES GA
GA 800N 23N −
ES 800N − 23▽

RNDMono − 800▽ 800▽

7.3.3 MM vs. mM approaches

In the previous sections we have performed a comparison between the algorithms used in each of
the approaches. In the mM approach, GA seems to be the best algorithm in most of the programs
and ES is the best algorithm in programs with the lowest nesting degree. Regarding the MM
approach, MOCell was the best in most of the programs, except in a few programs with high
nesting degree. In this section we compare all the algorithms together, with the aim of showing
what technique is the overall best (RQ4).

First of all, we analyze the HV quality indicator. In Table 7.12 we summarize the number
of times where the median HV value of an algorithm is better than the rest. The results show
that, on the one hand, MOCell is better for programs with low nesting degree (1-2). On the
other hand, the GA is better for programs with high nesting degree (3-4). The performance of the
MOCell algorithm and the GA is similar but they work better in different kind of programs. This
performance depends on the maximum nesting degree of the program. NSGA-II and the ES have
similar performances among them; however they are clearly worse than MOCell and GA. Finally,
the performance of SPEA2, PAES, RNDMono, and RNDMulti is clearly worse than the previous
algorithms (MOCell, GA, NSGA-II and ES).

In order to clarify the obtained results, we have performed the statistical test to check if there
exist significant differences among the HV values. In Table 7.13, we can see that there is just a
small significant difference among the main evolutionary algorithms. However, there are significant
differences between the worst algorithms (the two random algorithms and PAES), and the rest. In
Table 7.13 we show that the HV values of GA are significantly better than the others, except the
ES. The same observation can be made on ES: it is significantly better than the others (except
the GA). NSGA-II, MOCell and SPEA2 are worse than GA and ES, but for most of the programs
their HV values are better than the random algorithms. In some programs, there are significant
differences between MOCell and PAES and also between NSGA-II and PAES.

CHAPTER 7. MULTI-OBJECTIVE TEST DATA GENERATION 111

Table 7.12: Programs in which the median hypervolume of one algorithm is better than the others.

ND Statements MOCell NSGA-II SPEA2 PAES RNDMulti GA ES RNDMono

1

25 1 0 0 0 0 0 0 0
50 5 0 0 0 0 0 0 0
75 16 2 0 1 0 0 0 0
100 14 2 0 0 0 0 2 0
Total 36 4 0 1 0 0 2 0

2

25 4 1 0 0 0 0 0 0
50 16 4 0 0 0 4 2 0
75 24 6 0 0 0 4 1 0
100 26 8 0 0 0 6 4 0
Total 70 19 0 0 0 14 7 0

3

25 4 0 1 0 0 6 1 0
50 10 1 0 0 0 18 4 0
75 14 4 0 0 0 20 9 0
100 13 10 0 0 0 13 11 0
Total 41 15 1 0 0 57 25 0

4

25 2 1 1 0 0 19 1 0
50 6 5 0 0 0 34 0 0
75 7 2 0 0 0 33 6 0
100 3 6 4 0 0 27 7 0
Total 18 14 5 0 0 113 14 0

Total 165 52 6 1 0 184 48 0

In summary, the mM approach using the evolutionary algorithms (GA and ES) always achieves
good HV values. We observed that MOCell, NSGA-II and SPEA2 are significantly better than
PAES in more programs than GA and ES. In this case, the HV values of the mM approach are
worse, concretely they do not get a good diversity because the Pareto fronts are computed from a
finite subset of test cases obtained by the mono-objective algorithms. However, the MM approach
takes better care of the convergence as well as the diversity of the Pareto front, consequently
their HV values will be better. For the purpose of illustrating this issue we plot in Figure 7.4 the
50%-attainment surfaces for the best algorithms: MOCell, NSGA-II, GA, and ES.

Table 7.13: Programs where a significant difference exists among the HV obtained.

RNDMulti PAES SPEA2 NSGA-II MOCell RNDMono GA ES
MOCell 800N 235N 0 0 − 800N 39▽ 7▽
NSGA-II 800N 197N 0 − 0 800N 29▽ 5▽
SPEA2 800N 61N − 0 0 800N 13▽ 2▽
PAES 799N − 61▽ 197▽ 235▽ 645N 36▽ 18▽

RNDMulti − 799▽ 800▽ 800▽ 800▽ 24▽ 782▽ 795▽
ES 795N 18N 2N 5N 7N 737N 0 −
GA 782N 36N 13N 29N 39N 689N − 0

RNDMono 24N 645▽ 800▽ 800▽ 800▽ − 689▽ 737▽

We focus on the most interesting area (80%-100% coverage) of the plots in Figure 7.4. In
all the pictures, we appreciate that MOCell and NSGA-II have the best fronts in the programs
with nesting degree 1, 2 and 3, although they do not obtain the best coverage in all cases. In
addition, we must highlight that the fronts of GA and ES are dominated in this case. We find
the exception when the program has nesting degree four, where the GA is the best algorithm be-
cause its solutions dominate the others. The second in performance is the ES; close to the values
of GA. The other algorithms only find solutions with middle values of coverage and more test cases.

112 7.3. EXPERIMENTAL ANALYSIS

80

85

90

95

100

0 2 4 6 8 10 12 14 16 18

B
ra

nc
h

C
ov

er
ag

e

Number of Test Cases

Nesting 1

GA
ES

MOCell
NSGA-II

(a) Program with nesting degree 1

80

85

90

95

100

0 2 4 6 8 10 12 14 16 18

B
ra

nc
h

C
ov

er
ag

e

Number of Test Cases

Nesting 2

GA
ES

MOCell
NSGA-II

(b) Program with nesting degree 2

80

85

90

95

100

0 2 4 6 8 10 12 14 16 18

B
ra

nc
h

C
ov

er
ag

e

Number of Test Cases

Nesting 3

GA
ES

MOCell
NSGA-II

(c) Program with nesting degree 3

80

85

90

95

100

0 2 4 6 8 10 12 14 16 18

B
ra

nc
h

C
ov

er
ag

e

Number of Test Cases

Nesting 4

GA
ES

MOCell
NSGA-II

(d) Program with nesting degree 4

Figure 7.4: 50%-attainment surfaces: coverage against the number of test cases of all the algo-
rithms.

At this stage of the study, we know that the MM approach provides more diversity in the
solutions. In other words, it is able to find a test suite with few test cases, but the obtained
coverage is not very large. On the other hand, the mM approach is able to better explore the
search space to find solutions with a high coverage, but it needs more test cases than the MM
approach. The MM approach obtains worse average coverage because nested statements pose a
great challenge for the search. We think that the main reason for this fact is that the multi-
objective algorithms deal with all the branches at the same time and less information is obtained
to guide the search.

As we previously said, automatically generating a test suite that covers the entire program is a
hard task. When a program has high nesting degree and the decisions are very complex, the task
of covering all the program code requires a lot of effort. It is important for an algorithm to be able
to find test cases to cover all the program’s branches. We show in Table 7.14 a comparison of the
average maximum coverage obtained for all the algorithms and all the programs. It is clear that
the best algorithm, if coverage is the main objective, is GA. It obtains the best results in all the
groups of programs with different nesting degree, and therefore in the complete benchmark. The

CHAPTER 7. MULTI-OBJECTIVE TEST DATA GENERATION 113

performance of ES is also very good because it is always better than the multi-objective algorithms.
If the nesting degree increases, the distance between the average coverage of GA and ES increases.
In other words, the ES has a similar performance to GA in low complexity programs and it is worse
than GA in complex programs. On the other hand, MOCell and NSGA-II have almost the same
coverage; it only varies at the decimal level. SPEA2 is only 1% worse in the entire benchmark with
respect to MOCell and NSGA-II. The results of the PAES algorithm are in the middle between
the best (GA) and the worst (RNDMulti).

Table 7.14: Relationship between the nesting degree and the average coverage for all the algorithms.
The standard deviation is shown in subscript.

ND GA ES RNDMono MOCell NSGA-II SPEA2 PAES RNDMulti
1 99.192.20 98.702.63 85.3310.51 98.102.08 97.902.22 97.532.34 93.085.30 81.3612.74
2 98.852.02 97.872.44 79.2012.14 94.773.44 94.423.49 93.563.75 87.596.31 75.0414.00
3 98.522.09 95.664.54 71.9413.36 90.665.83 90.415.46 89.295.65 81.557.68 69.7713.87
4 96.894.80 93.196.66 66.4214.80 85.509.45 85.778.18 84.618.12 75.879.22 63.8715.95

Total 98.363.13 96.364.90 75.7214.65 92.267.54 92.126.99 91.247.24 84.529.72 72.5115.57

In order to provide a high level of confidence to these results, we have performed statistical
tests. The results are shown in Table 7.15. There are some differences among the best algorithms;
we can take as a reference the column of the GA values. This column can be seen as a ranking
of performance of all algorithms. The GA has the best results and outperforms the rest of the
algorithms in average maximum coverage. ES is the second in average maximum coverage (with
significant difference), next MOCell, then NSGA-II, and finally SPEA2. As we expected, the
statistical test does not show significant differences among MOCell, NSGA-II and SPEA2, but if
the number of independent runs were higher, the significant differences would appear. We should
highlight that PAES is not much better than the random algorithms. The differences in average
maximum coverage shown in Table 7.14 have been confirmed by the statistical tests: using a GA
is the best way to obtain high branch coverage.

Table 7.15: Number of programs where a significant difference exists among the coverage obtained.

RNDMulti PAES SPEA2 NSGA-II MOCell RNDMono GA ES

MOCell 800N 797N 0 0 − 800N 350▽ 30▽
NSGA-II 800N 786N 0 − 0 800N 438▽ 87▽
SPEA2 800N 691N − 0 0 800N 613▽ 322▽
PAES 503N − 691▽ 786▽ 797▽ 85N 800▽ 800▽

RNDMulti − 503▽ 800▽ 800▽ 800▽ 7▽ 800▽ 800▽

ES 800N 800N 322N 87N 30N 800N 1▽ −
GA 800N 800N 613N 438N 350N 800N − 1N

RNDMono 7N 85▽ 800▽ 800▽ 800▽ − 800▽ 800▽

Finally, we have considered in this experimental study the obtained HV, the significant differ-
ences, the attainment surfaces and the average maximum coverage achieved with all the algorithms
and the benchmark of 800 programs. After analyzing the experimental results we can state that
the GA is the best mono-objective algorithm and MOCell is the best multi-objective algorithm.
We expected that an algorithm like MOCell would be clearly superior to all the mono-objective
ones in the MOTDGP, but in fact this is not true. In addition, the GA is clearly superior in HV
and average maximum coverage when we are testing programs with high nesting degree. This fact

114 7.3. EXPERIMENTAL ANALYSIS

is due to a better exploration of the search space because this algorithm is able to find solutions
for the most complex branches that appear in the code. It uses most of its evaluations in most
complex branches, in order to achieve a high coverage. However, the multi-objective algorithms
deal with all the branches at the same time, for this reason they do not use most of its evaluations
trying to cover a concrete complex branch. This fact suggests that if there exist hard requirements
of coverage and the program has high nesting degree, we should use the GA as search engine of an
automatic test data generator. Nevertheless, a second phase of multi-objective test case selection
must be performed in order to minimize the oracle cost. On the other hand, if there are cost
requirements, we highly recommend the use of MOCell algorithm.

7.3.4 Validation on Real Programs

In this section we analyze the two proposed approaches using some real-world programs. We study
13 real programs extracted from the literature and with characteristics similar to the artificial
programs used in the previous sections. The reader must take into account that the number of
programs used in the previous sections gives us the chance to average among 800 programs and
extract statistically more reliable results. Despite the fact that in this section we only analyze the
performance of the proposed approaches and algorithms over 13 programs, most of the conclusions
are similar to the ones we have been obtained with the synthetic programs.

Once again we start the analysis with the HV indicator. In Table 7.16 we summarize the
number of programs where the HV value of an algorithm is better than the others. There are
six programs where an algorithm is the best. The GA outperforms the other algorithms in four
programs, then the ES in two programs, and the MOCell in only one program. In the previous
results these three algorithms also obtain the best results.

Table 7.16: Real programs in which the median hypervolume of one algorithm is better than the
others and average maximum coverage of all the real programs.

- MOCell NSGA-II SPEA2 PAES RNDMulti GA ES RNDMono

HV Better 1 0 0 0 0 4 2 0
Avg.Max.Cov. 87.26 91.35 89.31 72.43 76.84 94.14 92.27 80.09

In order to validate these previous results we compared the HV values of all the real programs
using the multiple comparison statistical test. In Table 7.17 we show the existing differences among
the HV value of all the algorithms. We can observe that the GA outperforms the other algorithms
in at least one program. Then, there is a group of algorithms composed by ES, NSGA-II, SPEA2,
MOCell and RNDMono that are better than PAES and RNDMulti, but the statistical test does
not show significant differences among them. In addition, we can analyze the PAES column in
order to obtain an informal ranking of algorithms according to the HV indicator.

Let us analyze the average maximum coverage obtained by the algorithms when are applied to
real programs (Table 7.16). We must highlight that the GA and the ES are the best algorithms
in coverage for the real programs. In contrast, PAES has obtained the worst results, even worse
than the random algorithms. In Table 7.18, we show the results of a statistical test to compare the
maximum coverage. Once again the GA is the best algorithm: it obtains significant differences in
40 comparisons. NSGA-II obtains significant differences in 30 comparisons. Next, SPEA2 and ES
are better than the others in 18 comparisons. Most of these significant differences are obtained in

CHAPTER 7. MULTI-OBJECTIVE TEST DATA GENERATION 115

Table 7.17: Real programs where a significant difference exists among the HV obtained.

RNDMulti PAES SPEA2 NSGA-II MOCell RNDMono GA ES
MOCell 1N 1N 0 0 − 0 2▽ 0
NSGA-II 3N 3N 0 − 0 0 1▽ 0
SPEA2 3N 2N − 0 0 0 1▽ 0
PAES 0 − 2▽ 3▽ 1▽ 1▽ 7▽ 6▽

RNDMulti − 0 3▽ 3▽ 1▽ 1▽ 7▽ 4▽
ES 4N 6N 0 0 0 0 1▽ −
GA 7N 7N 1N 1N 2N 3N − 1N

RNDMono 1N 1N 0 0 0 − 3▽ 0

comparison with PAES or the random algorithms. Only a few differences exist between the best
algorithms. Nevertheless, the performance of GA seems to be better than the other algorithms. On
the other hand, PAES has obtained the worst results. We think that these results are due to the
absence of crossover operator and the nature of the selected programs (i.e., number of equalities
in the code).

Table 7.18: Number of real programs where a significant difference exists among the coverage
obtained.

RNDMulti PAES SPEA2 NSGA-II MOCell RNDMono GA ES
MOCell 6N 12N 0 0 − 0 2▽ 0
NSGA-II 12N 13N 1N − 0 4N 0 0
SPEA2 7N 13N − 0 1N 0 3▽ 0
PAES 0 − 13▽ 13▽ 12▽ 4N 13▽ 12▽

RNDMulti − 0 7▽ 12▽ 6▽ 3▽ 12▽ 9▽
ES 9N 12N 0 0 0 0 3▽ −
GA 12N 13N 3N 0 2N 7N − 3N

RNDMono 3N 4▽ 0 4▽ 0 − 7▽ 0

Finally, with the aim of showing an example of the computed fronts for the instances, we selected
the line program. This program can represent the typical behavior of the different algorithms in
this kind of instance. In Figure 7.5 the 50%-attainment surfaces of the best algorithms are depicted.
In this instance, GA dominates the others and has a good performance because it always reaches
the best coverage with the same test data. MOCell is the only algorithm able to obtain all the
points of the front. This is a desirable property for a solution of a multi-objective problem.

7.4 Conclusions

In this chapter we have studied the Multi-Objective Test Data Generation Problem with the aim
of analyzing the performance of a direct multi-objective approach (MM) versus the application of
mono-objective algorithms followed by a test case selection (mM). Previous results in the literature
have only focused on the coverage of a program while the oracle cost is a significant cost that has

116 7.4. CONCLUSIONS

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18

B
ra

nc
h

C
ov

er
ag

e

Number of Test Cases

GA
ES

MOCell
NSGA-II

Figure 7.5: 50%-attainment surfaces: coverage against the number of test cases for the program
line.

been ignored in most of the previous studies. For this reason, in this work we have dealt with the
coverage and the oracle cost as equally important targets.

Our study has been performed on 800 synthetic programs. We used our program generator able
to produce programs ensuring a 100% of branch coverage. This kind of programs is very useful
because all the branches are reachable and we can compare the algorithms in a fair way using
coverage. In addition, we have also analyzed the two proposed approaches with a benchmark of 13
real and popular programs in the literature. We have evaluated four state-of-the-art multi-objective
optimization algorithms: MOCell, NSGA-II, SPEA2, and PAES, two mono-objective algorithms
GA, ES, and two random algorithms as merely a ‘sanity check’. This comparison has been done
on the basis of three quality indicators: the hypervolume, the 50%-empirical attainment surface,
and the average maximum coverage obtained by those algorithms. We can see a final ranking of
algorithms in Table B.1.

In terms of convergence towards the optimal Pareto front, GA and MOCell have been the best
solvers in our comparison. On the one hand, MOCell has obtained the best fronts in programs
with nesting degree 1 and 2, values commonly found in practice. On the other hand, GA is
the best algorithm for facing programs with high nesting degree and it is the algorithm which is
significantly better in most of the programs, attending to the HV indicator and to the average
maximum coverage. This fact indicates that GA is the best alternative if the tested program has
a high nesting degree or we need a high coverage. But, if we have time restrictions, we highly
recommend the use of MOCell as a search engine for an automatic test data generator. Although
the multi-objective approach is working very well in most of the programs, we realized that dealing
with only one branch at the same time (mono-objective approach) can be more effective when the
program under test has high nesting degree. In addition, we must highlight that both approaches
(MM and mM) are quite good at reducing the number of test cases needed to obtain a given

CHAPTER 7. MULTI-OBJECTIVE TEST DATA GENERATION 117

Table 7.19: Ranking of algorithms according to maximum coverage and hypervolume grouped by
nesting degree.

Coverage
Rank ND 1 ND 2 ND 3 ND 4 All

1 GA GA GA GA GA
2 ES ES ES ES ES
3 MOCell MOCell MOCell NSGA-II MOCell
4 NSGA-II NSGA-II NSGA-II MOCell NSGA-II
5 SPEA2 SPEA2 SPEA2 SPEA2 SPEA2
6 PAES PAES PAES PAES PAES
7 RNDMono RNDMono RNDMono RNDMono RNDMono
8 RNDMulti RNDMulti RNDMulti RNDMulti RNDMulti

Hypervolume
Rank ND 1 ND 2 ND 3 ND 4 All

1 MOCell MOCell GA GA GA
2 NSGA-II GA MOCell MOCell MOCell
3 ES NSGA-II NSGA-II ES ES
4 GA ES ES NSGA-II NSGA-II
5 PAES SPEA2 SPEA2 SPEA2 SPEA2
6 SPEA2 PAES PAES PAES PAES
7 RNDMono RNDMono RNDMono RNDMono RNDMono
8 RNDMulti RNDMulti RNDMulti RNDMulti RNDMulti

coverage. The oracle cost can be greatly reduced because the mM approach only needs 19.32% of
the upper bound of test cases needed for obtaining the maximum value of coverage, and the MM
approach is even better, only needing a 15.12% of the test cases. This improvement justifies the
use of our approaches to deal with the MOTDGP.

118 7.4. CONCLUSIONS

Part III

Functional Testing

119

Chapter 8

Combinatorial Interaction Testing

using Classification Tree Method

8.1 Introduction

Software product specifications provide fundamental information of the software, meanwhile struc-
tural information is omitted. Software product specifications can be used as a guide for designing
functional tests for the software product. However, there is no standard representation of the SUT.
The Classification Tree Method [91] is a particular representation of the SUT, which is based on
the category partition method [167]. It decomposes a test domain into disjoint classes representing
important aspects of the test object.

Frequently, the systems under test tend to be large and exhaustive testing is generally im-
practical. Therefore, we should use an adequacy criterion less exhaustive but with certain level
of confidence, one widely used technique is Combinatorial Interaction Testing. CIT is a black
box sampling technique derived from the statistical field of design of experiments. It is used to
determine the smallest possible subset of tests that covers all combinations of values specified by a
coverage criterion with at least one test case. A coverage criterion is defined by its strength t that
determines the degree of parameter interaction and assumes that all parameters are considered.
The most common coverage criterion is 2-wise (or pairwise, t = 2) testing, that is fulfilled if all
possible pairs of values are covered by at least one test case in the result test set. Hence, this
criterion is the chosen one in this thesis dissertation.

In addition, when the resources are limited in time or cost, important test cases should be
executed earlier, then the prioritization of test cases is a must. The prioritization of test cases may
reveal faults in early stages of the testing phase. Prioritization can be computed in two ways: (1)
reorder an existing test suite based on a prioritization criteria; and (2) generate an ordered test
suite, taking into account the importance of combinations. Consequently, we study here the Pri-
oritized Pairwise Test Data Generation Problem (PPTDP) previously defined in Section 2.4.1. We
evaluate the performance of metaheuristic techniques and compare the two different prioritization
approaches. In order to achieve this objective we perform a comparison among five algorithms on
a set of benchmarks found in the literature.

Although combinatorial testing has been widely studied, we still find two main issues that
have not been addressed by the traditional generation of test suites: the dependencies between
individual test cases and the state of the SUT. Sometimes software is required to be in a particular

121

122 8.2. PRIORITIZED PAIRWISE TEST DATA GENERATION USING CTM

state to test a given functionality. This is the case of most software artifacts. Actually, in very
large software systems, the cost incurred to place the system in a certain state can be an issue.
For example, testing the anti-lock braking system (ABS) of a car requires that the car reaches
a certain speed before the system can be tested. So it makes sense to consider the generation
of test sequences that allow us to test a particular functionality (acceleration of the car) while
we change the state of the SUT (considering the dependency rules in the test cases) to test the
next functionality (ABS). The implicit cost savings of using this technique is the reason why the
generation of test sequences is relevant and deserves more research effort.

In this sense, we have extended the CTM (ECTM) in Section 2.4.2 to be able to automatically
generate test sequences, since it cannot be done automatically by means of the CTE XL profes-
sional tool1. We study the Test Sequence Generation Problem (TSGP), previously formulated in
Section 2.4.2. We have compared the behavior of two metaheuristic techniques with an existing
greedy algorithm [126]. The first proposed approach is a GA called Genetic Test Sequence Gen-
erator (GTSG). We have improved a GTSG with the addition of a Memory Operator (MemO),
which is based on the operator proposed by Alba et al. [4]. It is used to reduce the amount of
resources needed to compute a solution. The other proposed algorithm is based on the ACO,
described in Section 4.1.3. Specifically, we propose a new technique based on ACO that is able
to deal with large construction graphs. It is able to find near-optimal solutions in separated areas
of the search space for the Test Sequence Generation Problem (TSGP). It is called ACO for test
sequence generation (ACOts). Both proposed metaheuristics are used to generate test sequences
to obtain full class and transition coverage of 12 different programs extracted from the literature.

Overall, we can raise the following research questions and try to answer them in an extensive
experimental study.

• RQ1: Is our evolutionary approach effective when dealing with prioritization?

• RQ2: Do the test sequences generated by evolutionary approaches save resources?

The Classification Tree Editor (CTE) [132] is a commercial tool supporting the CTM (Fig-
ure 8.1). This tool is able to automatically generate test data, therefore we have followed its
specification to integrate our proposals in this tool.

8.2 Prioritized Pairwise Test Data Generation using CTM

Software testers are faced with situations in which there is not enough time for testing, since
the software under test must be finished on time for the release date not to be delayed. Hence,
software testers have to deal with limited resources, unfinished systems, and not much time to test
the software. Although a tester aims at executing as many test cases as possible, often a test case
selection has to be done. The prioritization of test cases is a re-ordering of tests to find faults in
early stages. But, if the time run-out, this technique also allows the tester to specify the desired
level of coverage and failure-detection. The result of the prioritization is then a schedule of test
cases so that those with the highest priority, according to some criterion, are executed earlier.

In this study, priorities are assigned to the classification tree elements (see Section 2.4.1) in
order to indicate the importance of the element. These weights can be used to guide the test case
generation in order to cover first the most important values.

There exist different prioritization techniques. Elbaum et al. provide good overviews of existing
approaches [67, 68]. The following three models were selected to provide a basis for prioritization:

1This is a commercial tool developed by Berner & Mattner company. It was recently renamed as TESTONA

CHAPTER 8. COMBINATORIAL INTERACTION TESTING USING CTM 123

Figure 8.1: CTE XL professional tool.

• Prioritization based on a usage model [211] tries to reflect usage distribution of all classes
in terms of usage scenarios. Classes with a high occurrence have higher weights than classes
with a low occurrence.

• Prioritization based on an error model [67] aims to reflect distribution of error probabilities
of all classes. Classes with a high probability of revealing an error have higher weights than
classes with a low probability.

• Prioritization based on a risk model [13] is similar to prioritization based on an error model
but also takes error costs into account. Classes with a high risk have higher weights than
classes with a low risk.

Since we are facing here the Prioritized Pairwise Test Data Generation problem, we need to
define weights for each pair of classes. This is done by multiplying the weight of each class involved
in the pair. Following the Video Game example (Figure 2.2) the pair weight for (Startup (Playing),
running) is 0.63 * 0.52 = 0.3276 .

8.2.1 Solution Approaches

This study aimed to evaluate the performance of metaheuristic techniques for dealing with the
PPTDGP. In order to achieve this objective we perform a comparison among five algorithms on
a set of benchmarks found in the literature. We first introduce the details of our evolutionary
approach, a genetic algorithm. To the best of our knowledge the author of this thesis was the
first to apply an evolutionary approach to the target problem [75]. Then, we briefly describe
two deterministic algorithms that we have implemented for comparison purposes, the Prioritized

124 8.2. PRIORITIZED PAIRWISE TEST DATA GENERATION USING CTM

Pairwise Combination algorithm (PPC) and the Plain Pairwise Sorting (PPS). We finally present
the Deterministic Density Algorithm (DDA) developed in [37] and an algorithm based on Binary
Decision Diagrams (BDD) introduced by Lee [131].

Prioritized Genetic Solver

The Prioritized Genetic Solver (GS) is an evolutionary approach that constructs an entire test
suite taking into account priorities in the generation. It is a constructive algorithm that adds
one new test datum to the partial solution in each iteration until all pairwise combinations are
covered. In each iteration the algorithm tries to find the test datum that adds more coverage to
the partial solution. Overall, our algorithm aims at generating an entire test suite (to cover all
pairwise combinations) by generating the best test datum at a time until all pairwise combinations
are covered. The best test datum is the one that most reduce the weighted value of the set of
remaining pairs to cover.

In this particular implementation we have used a single point crossover with probability 1 of
recombining the two selected individuals. This operator is able to put together good solution com-
ponents that are scattered in the small population used of 4 individuals. Regarding the mutation
operator, it iterates over all the components in the solution vector changing its value by a random
one of the same classification with probability 0.05. The maximum number of evaluations used as
stopping criterion in the internal loop is 5, 000 while the stopping condition of the external loop is
to achieve full pairwise coverage.

The computation of the fitness value for each solution is done through the following process:
The algorithm computes the combined class pairs of the partial solution (the next test datum).
After that, it removes these pairs from the set of remaining pairs. Finally, the fitness value of
a solution is computed as the sum of the weights of the remaining pairs. That is, the objective
value of a proposed test datum is the sum of the weights of the class pairs that are not covered
yet after adding the test datum to the suite. This objective function must be minimized in order
to take first the test datum covering the class pairs with higher weights. As the search progresses
the computational cost of computing the fitness function is reduced, since less class pairs remain
uncovered.

Prioritized Pairwise Combination

In this algorithm, the class pair with the highest weight from the set of uncovered class pairs is
chosen for the new test datum. We determine all candidate test data containing this class pair
and calculate the index values for these candidates. This index value includes the weights and the
number of newly covered class pairs. PPC then selects the test datum with the highest assigned
index value. This way, we can guarantee that the n first test data cover the n more important
class pairs. The generation process using PPC is deterministic: the same test suite is generated
for identical classification trees.

Plain Pairwise Sorting

This algorithm first applies a plain pairwise algorithm (the one integrated in CTE XL professional
tool), which computes a set of test data covering all the class pairs. Then it sorts the test data tak-
ing into account their absolute weight at first. Then, it applies as many discriminatory reorderings
as test data. Note that this approach does not guarantee coverage of any n most important class
pairs by the n first test data. However, the generated test suite will have exactly the same size

CHAPTER 8. COMBINATORIAL INTERACTION TESTING USING CTM 125

as the plain pairwise combination, as the suite does not grow by sorting. The generation process
using sorting is deterministic, however its results differ from the PPC results.

Deterministic Density Algorithm

In the Deterministic Density Algorithm [37] one test datum is constructed at a time and new test
data are generated until all t-tuples are covered. Each classification is assigned a class value one-
at-a-time. A classification that has been assigned a class value is referred to as fixed; one that has
not, as free. For each classification, the class value that covers the largest density is selected. Then,
a density formula calculates the likelihood of covering future tuples. To modify DDA to account
for prioritization, the density formula is modified. Instead of computing the ratio of uncovered
pairs to be covered, the amount of weight to be covered is computed.

Binary Decision Diagrams Algorithm

Binary Decision Diagrams [131] are acyclic directed graphs used to represent propositional logical
formulas. In [186] the authors introduced an approach based on the modeling of the combinatorial
interaction test problem as a single propositional logic formula. They constructed the formula such
that the set of satisfying interpretations of the formula corresponds to the set of valid test cases
and such that a one-to-one relation between a satisfying interpretation of the formula and a valid
test case of the CIT problem exists. The formula is the conjunction of a subformula representing
the set of all test cases and a subformula representing the set of constraints. They have used this
formula in a greedy algorithm, in the following BDD, to select test cases until the desired coverage
criterion is fulfilled.

8.2.2 Experimental Benchmark

The experimental benchmark used for the comparison among algorithms was proposed in [37]. The
scenarios S1 − S8 are given in Table 8.12. The number of classes of each scenario are given in a
shorthand notation, where for example S5 with 82726224 consists of 2 classifications with 8 classes,
2 classifications with 7 classes, 2 classifications with 6 classes, and 4 classifications with 2 classes.

Table 8.1: Scenarios and number of factors.

Scenarios #Classes

S1 34

S2 1020

S3 3100

S4 1019181716151413121

S5 82726224

S6 1511055141

S7 350250

S8 2021023100

The given benchmark uses four different weight distributions applied to the eight scenarios.
The distributions are:

2They are available at http://neo.lcc.uma.es/staff/javi/resources.html

126 8.2. PRIORITIZED PAIRWISE TEST DATA GENERATION USING CTM

• d1 (equal weights): All classes have the same weight,

• d2 (50/50 split): Half of the weights for each classification are set to 0.9 the other half to
0.1,

• d3 ((1/vmax)2 split): All weights of classes for a classification are equal to (1/vmax)2, where
vmax is the number of classes associated with the classification,

• d4 (random): Weights are randomly distributed.

Table 8.2: Number of test cases needed for the GA, PPC, and PPS algorithms in eight scenarios
and for four distributions. When significant differences exist between the GS and other algorithm
we add an asterisk.

Scenario Coverage d1 d2 d3 d4

GS PPC PPS GS PPC PPS GS PPC PPS GS PPC PPS

S1

25% 3 3 3 1 1 1 3 3 3 2 2 2
50% 5 5 5 1 1 2 5 5 5 3 3 3
66% 6.29 7* 6* 1 1 3* 6.29 7* 6* 5 5 5
75% 7.48 8* 7* 3 3 4* 7.35 8* 7* 6 6 5*
90% 9.3 9* 9* 6.29 7* 5* 9.18 9* 9* 8 8 7*
95% 9.93 10 9* 8 8 7* 9.88 10 9* 9 10* 8*
99% 10.42 10 9* 10.28 11* 8* 10.19 10 9* 11 11 9*

S2

25% 26 27* 27* 8.23 9* 12* 26 27* 27* 12 12 19*
50% 56.1 56 60* 19 18* 36* 56.11 56 60* 31 31 47*
66% 80.05 79* 89* 29 27* 60* 80.04 79* 89* 49.83 50 74*
75% 96,75 95* 110* 38.13 36* 79* 96.78 95* 110* 64.02 65* 95*
90% 134.48 132* 162* 89.69 87* 131* 134.48 132* 162* 102.33 104* 150*
95% 154.84 152* 190* 122.77 121* 163* 154.76 152* 190* 125.59 129* 181*
99% 182.94 180* 228* 169.9 169* 212* 182.93 180* 228* 163.14 169* 223*

S3

25% 3 3 3 1 1 2* 3 3 3 1 1 3*
50% 6 6 6 1 1 4* 6 6 6 3 3 5*
66% 8 8 8 1.76 1* 7* 8 8 8 5 5 8*
75% 9.02 9 10* 3.64 4* 8* 9.03 9 10* 7 7 10*
90% 14 15* 16* 8 9* 13* 14 15* 16* 12 12 15*
95% 17.9 20* 20* 11.84 12 16* 17.91 20* 20* 15 15 19*
99% 24.13 37* 26* 19 19 23* 24.07 37* 26* 21 21 26*

S4

25% 9.41 11* 10* 3 3 4* 5 4* 4* 7 6* 7
50% 21.02 24* 22* 7 8* 11* 9 8* 8* 15.09 15 18*
66% 31.95 36* 34* 11.62 12* 17* 13.03 12* 14* 23.12 23 28*
75% 39.67 45* 42* 15.46 16* 23* 17 16* 19* 29.09 29 36*
90% 59.12 64* 63* 32.7 36* 38* 30.84 30* 35* 45.02 46* 56*
95% 70.57 74* 74* 49.4 53* 51* 43.28 42* 46* 55.37 59* 67*
99% 88.24 86* 88 77.41 76* 77* 72.17 72 70* 75.76 82* 82*

S5

25% 8 8 7* 2.46 2* 3* 2 2 2 3 3 4*
50% 16.97 18* 17 5.46 6* 8* 4 4 4 8 8 10*
66% 27.09 28* 27 9.46 10* 15* 7 7 7 13.12 14* 17*
75% 34.65 35* 34* 12.52 13* 21* 9 9 10* 18.05 19* 24*
90% 50.04 50* 51* 26.89 28* 37* 14.01 15* 19* 32.13 33* 41*
95% 58 57* 59* 42.06 43* 46* 25.22 23* 25* 41.32 44* 50*
99% 69.5 66* 68* 60.86 61 62* 52.54 52* 54* 56.61 60* 65*

S6

25% 22 23* 22 7 7 9* 12 12 12 10.04 11* 14*
50% 45,98 52* 49* 16 17* 24* 25 26* 26* 25.98 27* 36*
66% 67.17 74* 74* 24.53 25* 39* 36 38* 41* 40.51 43* 57*
75% 82.48 89* 92* 31.33 31 53* 44.1 46* 53* 52.1 56* 73*
90% 117.65 123* 131* 71.71 73* 92* 81.15 83* 92* 84.32 90* 111*
95% 136.98 139* 149* 105.23 106* 114* 105.4 107* 120* 104.83 112* 131*
99% 158.19 159* 169* 146.44 148* 153* 146.43 149* 158* 139.87 148* 160*

S7

25% 2 2 2 1 1 2* 2 2 2 1 1 2*
50% 4 4 4 1 1 3* 3 3 4* 2 2 4*
66% 6 6 6 1 1 4* 5 5 5 4 4 6*
75% 7 7 8* 2 2 5* 6 6 7* 5 5 7*
90% 11 11 12* 6 6 9* 9 10* 10* 8.81 9 11*
95% 14 14 15* 8.06 9* 12* 12 13* 13* 11 11 14*
99% 20.99 20* 21 14.65 14* 18* 19 21* 19 16.99 17 21*

S8

25% 3 3 - 1 1 - 2.82 3 - 2 3* -
50% 8 8 - 3 3 - 5.64 6 - 5 6* -
66% 12 13* - 6 7* - 7.52 8 - 9 8* -
75% 16.38 18* - 9 12* - 9.39 9* - 14 9* -
90% 37.86 64* - 20.37 30* - 14.1 15 - 31.66 15* -
95% 52.97 92* - 35.06 56* - 17.71 19* - 46.62 19* -
99% 130.87 145* - 97.32 114* - 25.94 28* - 118.22 28* -

Times 22 12 7 26 11 3 19 14 5 24 8 4

CHAPTER 8. COMBINATORIAL INTERACTION TESTING USING CTM 127

8.2.3 Comparison between GS, PPC and PPS

In this comparison we are evaluating first three algorithms (GS, PPC and PPS) in order to analyze
their behavior for the computation of minimal test suites when we use weight coverage as adequacy
criterion (Definition 2.4.8). In general the GS performs better than the PPC and the PPS algorithm
in most cases, nevertheless we want to highlight the weaknesses and strengths of each algorithm.
The detailed results for all the scenarios, distributions, and weight coverage are given in Table 8.2.
We should take into account that the observations of the number of test cases needed to achieve the
different values of coverage are taken in the same execution of the algorithm. We execute the GS
100 times for a particular scenario-distribution combination, then we have done 3, 200 executions
of the GS algorithm. In order to validate the experimental results we compared the 100 samples
of the GS with the values of the deterministic algorithms using the Wilcoxon rank-sum test with
95% of statistical confidence. In Table 8.2 we marked with an asterisk (∗) the values that are
statistically different with respect to the GS’s value.

Let us first analyze the results obtained by distribution. If all the weights of the interactions are
the same (distribution d1), the GS performs better than the other algorithms. In particular, the
GS is the best 22 times, while the PPC algorithm is the best 12 times, and the PPS algorithm only
7 times. Although the GS is the best algorithm, it is worse than the PPC algorithm when 99% of
coverage is required. Besides, the PPS algorithm obtains its better results with this distribution.
This behavior was expected because solving the problem with d1 is the same as the pairwise
combination problem without priorities as we commented in Section 8.2.2. Particularly, the sorting
in PPS is carried out after executing of a plain pairwise algorithm, which do not use the weight,
since it only tries to cover as many class pairs as possible in each test datum. This is the reason
why the PPS algorithm works well with the distribution d1.

In d2, when extreme values are used, GS obtains the best results. It is the best algorithm in
26 scenarios, while the PPC is the best in 11 and the PPS in 3. The GS performs quite well for
all target weights and it is specially good with 95% of weight coverage, where it is the best in 6
out of 8 scenarios (with statistically significant differences in most of the cases). In d3, the GS
is slightly better than the PPC algorithm. The GS obtains the minimum number of test cases in
19 scenarios while the PPC algorithm is the best in 14. Thus, the GS and the PPC algorithm
obtain similar results. When the target weight is 75%, the PPC algorithm is better in 5 out of the
8 scenarios, but when high coverage is required (90%) the GS is better in the same proportion (5
out of 8). When random weights are used (distribution d4), the PPC and PPS algorithms obtain
the worse results of all the distributions, whilst the GS behaves very well. The GS is the best in
24 scenarios, the PPC algorithm in 8 and the PPS only in 4. At the beginning of the search, when
the target weights are less than 75%, the differences among the algorithms are not very large, but
for weights larger than 75% the GS is much better than the others.

The GS is the best algorithm for all the studied distributions as we have commented in the
previous paragraphs. However, if we analyze the results by considering each scenario independently,
some weaknesses of the GS appear. Let us analyze the influence of the benchmark scenarios in
the obtained results. In Table 8.3 we summarize the number of scenarios in which one algorithm
is better than the others.

In S1, the GS is not the best in any combination distribution/scenario. In this small scenario,
the PPS algorithm is the best (18 times out of 28), while the other algorithms cannot outperform
PPS. Since it is a small scenario, there is no reason to use a prioritized test case generation, but at
least these bad results should be taken into account as a disadvantage of the prioritized generation.
In S2, the PPC algorithm is the best. It is the best in 18 observations, the GS is the best in 8 and
the PPS algorithm never outperforms the previous algorithms in this scenario. In d1, d2 and d3

128 8.2. PRIORITIZED PAIRWISE TEST DATA GENERATION USING CTM

Table 8.3: Number of times that one algorithm is better than the other two for each instance.

Scenario GS PPC PPS
S1 0 0 18
S2 8 18 0
S3 9 3 0
S4 14 9 1
S5 13 6 3
S6 24 1 0
S7 5 2 0
S8 19 6 -

distributions the GS is the best for 25% target weight, which means that the algorithm is able to
combine high weight pairs in early test cases. For the rest of target weights, the PPC algorithm
is the best. In the other six scenarios we can observe that GS is usually the algorithm computing
the best results. In particular, in S6 it is the best in 24 observations out of 28, while the PPC
algorithm is the best only in 1 observation, and the PPS algorithm is never the best.

We also show in Table 8.4 the number of observations where there exists significant difference
between the GS, the PPC and PPS algorithms. The number in front of a triangle up (N) is the
number of times that the results of GS are better than the ones of the other algorithms with
statistically significant difference. The number in front of a triangle down (▽) is the number of
times GS is worse with statistically significant difference. According to the results of Table 8.4,
the GS is better than the other two algorithms in all the distributions. In the comparison between
GS and PPC, the best distributions for the GS are d1 and d2 where the GS outperforms the PPC
algorithm in 28 and 26 times, respectively. If we compare the GS and the PPS algorithm, the
differences between the algorithms are even larger. In d2 and d4 the GS outperforms in 42 and
41 times, respectively. Thus, based on the statistical tests, we can state that the GS is clearly the
best algorithm.

Table 8.4: Number of observations where there exists significant difference among the GS, the PPC
and PPS algorithms.

Algorithm-Distribution PPC PPS
GS-d1 28N10▽ 29N8▽
GS-d2 26N9▽ 42N3▽
GS-d3 19N10▽ 29N8▽
GS-d4 22N6▽ 41N4▽

In conclusion, we can partially answer RQ1: the GS obtains better test suite size for all the
distributions compared with PPC and PPS. There is not much difference among the distributions,
thus the good performance of the GS does not depend on the distribution itself. According to
the target weights, the GS is always the best except when the target weight is 75%. Under
that circumstances the PPC algorithm and the GS obtain similar results. PPC is better in 12
observations while the GS is better in 11. Thus, we consider that GS is better in most target
weights as well. Despite the optimization solver is the best in most cases, there are two scenarios,
S1 and S2, where the GS is not the best. In the first one, S1 (the smallest), sorting is clearly the
best option. In the second one, S2, GS is not the best but for the firsts weight coverage it obtains
the best results. This behavior is desirable when we are computing prioritized test data.

CHAPTER 8. COMBINATORIAL INTERACTION TESTING USING CTM 129

8.2.4 Comparison between Genetic Solver and other existing algorithms

In this section we compare the results of our evolutionary algorithm with the ones of other ap-
proaches found in the literature. We show in Table 8.5 the results of three approaches (GS, DDA
and BDD), with eight scenarios, four distributions and three values of weight coverage 50%, 75%
and 100%. We have chosen these values according to the information available on these approaches
extracted from the literature.

Table 8.5: Number of test cases needed for the GA, DDA, and BDD algorithms in eight scenarios
and for four distributions. When significant differences exist between the GS and other algorithm
we add an asterisk.

50% 75% 100%
GS DDA BDD GS DDA BDD GS DDA BDD

d1

S1 5 5 5 7,48 7* 7* 10,42 9* 10
S2 56,1 57* 62* 96,76 97 112* 203,29 220* 251*
S3 6 6 6 9,02 9 11* 31,91 32 33*
S4 21,02 22* 26* 39,67 40* 47* 97,53 95* 94*
S5 15,97 16 19* 33,65 33* 37* 75,16 72* 74*
S6 45,98 47* 62* 82,48 84* 105* 171,38 175* 184*
S7 4 4 4 7 7 8* 29,47 29* 28*
S8 8 8 13* 16,38 16* 35* 437,81 400* 400*

d2

S1 1 1 1 3 3 3 11,98 14* 14*
S2 19 19 21* 38,13 39* 49* 221,53 256* 278*
S3 1 1 1 3,64 4* 4* 31,45 35* 35*
S4 7 7 10* 15,46 16* 22* 103,39 203* 100*
S5 5 5 7* 12,06 12 15* 79,21 83* 83*
S6 16 16 28* 31,33 32* 55* 185,94 192* 207*
S7 1 1 1 2 2 2 28,81 31* 29
S8 3 3 3 9 9 16* 438,4 400* 400*

d3

S1 5 5 5 7,35 8* 7* 10,19 13* 10
S2 56,09 60* 62* 96,78 112* 112* 203,2 325* 249*
S3 6 6 6 9,03 10* 11* 31,9 37* 33*
S4 8 8 8 16 19* 18* 113,24 115* 137*
S5 4 4 5* 9 10* 10* 84,66 94* 101*
S6 25 26* 27* 44,1 51* 53* 179,63 208* 222*
S7 3 3 4* 6 6 7* 30,81 33* 33*
S8 5,76 6 6 9,59 10 11* 407,47 417* 463*

d4

S1 3 3 4* 6 5* 6 12 13* 13*
S2 31 32* 44* 64,02 67* 94* 220,59 265* 286*
S3 3 3 5* 7 7 11* 31,28 34* 47*
S4 14,09 25* 17* 28,09 29* 33* 99,95 100 108*
S5 8 9* 10* 18,05 19* 24* 76,96 82* 88*
S6 25,98 27* 35* 52,1 56* 70* 178,44 192* 208*
S7 2 2 3* 5 5 7* 28,05 32* 42*
S8 5 5 8* 14 15* 26* 418,77 406* 406*

11 0 0 18 5 1 23 2 4

130 8.2. PRIORITIZED PAIRWISE TEST DATA GENERATION USING CTM

Let us analyze the obtained results by weight coverage. If we focus on 50% of weight coverage,
we can see that the GS is the unique algorithm that is able to outperform the others. The GS is
the best in 11 observations. The GS is even better in the first measures of coverage, when it is
more difficult to generate differences. For 50% of weight coverage the DDA algorithm needs 5.24%
more test cases and the BBD algorithm needs 23.34% more test cases than the GS. Thus, we can
state that our algorithm is clearly the best for 50% of weight coverage.

For 75% of weight coverage, the GS is the best again. Our algorithm is better than the other
algorithms in 18 observations, while the DDA algorithm is the best in 5 observations and the BDD
algorithm is the best in only one. For this value of weight coverage, the DDA and BDD algorithms
need 4.98% and 28.63% more test cases, respectively. Once again the GS obtains better results
than the DDA and BDD algorithms.

For total coverage, the GS is better than the other algorithms in 23 observations, the DDA in 2
and the BDD in 4. The difference between the GS and the others here is the largest one. This is a
very interesting property of our GS algorithm, since it is not usual that an algorithm which is good
for low/medium values of weight coverage is also good for total coverage. It is noteworthy that we
do not configure the algorithm to obtain good test suite size for a particular value of coverage, but
we just try to achieve all values of coverage with the minimum number of test data.

Regarding the different distributions, the GS maintains a good behavior in all the distributions.
The GS algorithm is the best in 10 observations with distributions d1 and d2. In addition, the
GS is even better in the distributions d3 and d4, since it is the best in 16 observations. Besides,
if we focus on the other algorithms, the differences appear. The d1 is clearly the best distribution
for them. We should highlight that d1 (equal weights) is the distribution where the priority is not
used, the same weight is used for all the classes.

In order to provide a high level of confidence to these results, we have performed statistical
tests. The results are shown in Table 8.6. There are some differences among the algorithms; we
again take as a reference the GS values. Despite the GS and the DDA are both statistically better
in 7 times for the d1 distribution, in the rest of values of the table we can see that the GS is clearly
the best algorithm. In the comparison between GS and DDA, the GS is significantly better in
49 observations while the DDA is only significantly better in 10 observations. In the comparison
between GS and BDD, the GS is significantly better in 71 observations while the BDD is only
significantly better in 9 observations. Answering RQ1, we can state again that the GS is the best
overall algorithm for the Prioritized Pairwise Test Data Generation problem.

Table 8.6: Number of observations where there exists significant difference among the GS, the
DDA, and BDD algorithms.

Algorithm-Distribution DDA BDD
GS-d1 7N7▽ 15N5▽
GS-d2 10N1▽ 16N2▽
GS-d3 16N0▽ 18N1▽
GS-d4 16N2▽ 22N1▽

CHAPTER 8. COMBINATORIAL INTERACTION TESTING USING CTM 131

8.3 Test Sequence Generation using ECTM

The problem of generating test sequences has received little attention in the existing literature,
much less than the traditional generation of test data. In addition to the constraints defined
by the classification-classes hierarchy, in the Test Sequence Generation Problem (TSGP) we take
dependency rules associated to the transitions among classes. In addition, optimal sequences of
test could reduce the cost to test all functionality. For example, testing a car at high speed implies
using the accelerator pedal, but it is not possible to use the brake at the same time, so after it is
necessary to test the brake. We could plan a sequence of test cases to check several functionalities
instead of one. We could reduce the cost by testing the functionalities in a sequence. Since it would
be more costly to test one functionality, then putting the system into an initial state to test the next
functionality, than testing all the functionalities sequentially. In addition, it is desirable that the
set of generated test sequences as a whole fulfills predefined coverage levels. So, it could be useful to
generate a test suite with test sequences covering all possible classes or transitions between classes
of the classification tree. We now describe in plain text the Test Sequence Generation Problem.

One test case for an ECTM is a set of classes that fulfills some rules. In particular, it is not
possible to have two classes that belong to the same classification and if a refined class is in the
test case then there must be one class for each classification in which the parent class is refined.
In addition, if a class is in the test case, all the ascendant classes in the ECTM must be also
included in the test case. For example, the set Q = {startingGame, running} is a test case, but
the set Q = {runningGame} is not a test case because there is no class of the Pause and Playing
classifications.

We can transit from one test case to another one by taking one of the transitions between
classes. The test case we reach excludes the source class of the transition and includes the des-
tination class of the transition. In order to fulfill the rules described for the test cases, some
classes in the starting test case could also go out of the set and additional classes could enter
the new test case. For example, if we take transition startingGame → runningGame from
test case Q1 = {startingGame, running} in our video game example, we reach the test case
Q2 = {runningGame, startup, running}. We observe that class startingGame was removed from
Q1 and class runningGame was added to Q2, but we also need to add class startup because
runningGame is a refined class. A test sequence is a list of test cases in which all except the
first one are obtained by applying a transition from the previous one. A sequence of length
three for our running example could be composed of test cases (Q1 = {startingGame, running},
Q2 = {runningGame, startup, running} and Q3 = {runningGame, startup, paused}).

If two different transitions can be used to transit in a given state and they affect different sets
of classes it is possible to group them and consider one single step transition with the joint effect
of both. In our example the transitions startingGame → runningGame and running → paused
affect different sets of states since they belong to sibling classifications. Then, we can compose
the transitions and build the test sequence of length two (Q1,Q3). This sequence covers the same
transitions as the sequence (Q1, Q2, Q3).

Given a test sequence we define the class coverage as the number of classes appearing in the test
cases of the sequence divided by the total number of classes in the ECTM. We define the transition
coverage as the number of transitions covered by the sequence divided by the total number of
transitions. The problem we are interested in solving consists in finding a set of test sequences
such that the coverage (class or transition, one each time) is maximized. For a more precise and
formal definition of the concepts presented in this section the reader should refer to Section 2.4.2.

132 8.3. TEST SEQUENCE GENERATION USING ECTM

8.3.1 Algorithms Details

In this section we describe three different approaches used to solve the TSGP. We first introduce an
evolutionary approach, a Genetic Algorithm. Second, we describe our algorithmic proposal based
on ACO. Finally, we briefly describe a state of the art technique from the literature for comparison
purposes. We would like to highlight that the size of the test cases that compose a test sequence
can vary from one to another. This fact is due to the hierarchical structure of the model. One
class could be refined in several sub-classes, then the length of the test cases would be different.
Consequently, we have to deal with the dynamic size of test cases in the ECTM.

Genetic Test Sequence Generator

The Genetic Test Sequence Generator (GTSG) constructs an entire test suite taking into account
the dependencies between test data in the generation of the sequence. GTSG is an algorithm that
evolves a population of solutions in each iteration until a given coverage criterion is fulfilled. The
algorithm tries to find the tests that maximize the coverage, then it sequentially adds them to the
solution (test sequence).

In this particular algorithm the representation of a solution sol (test sequence) is a vector of
integers of length l. We determine the length of the chromosome as a parameter of the memory
operator (see next subsection).

sol = [I1, I2, I3, ..., Il].

The outgoing transitions from a class of the current test case can be enumerated, thus each
number (Ii) can be seen as the next transition chosen from the actual class to the next one.

The evaluation of a solution is done by sequentially taking every single transition (class to class)
of the solution and generating a sequence of test data with a particular coverage. The evaluation
function selects one leaf class (from left to right) and one gene in the solution is consumed to select
the next transition ti. Then, ti is added to the set of selected transitions, T ′. In order to transit
from one test case to another, the evaluation function consumes, at most, as many genes as the
number of leaf classes present in the source test case. We may need to consume a variable number
of integer numbers of the solution to transit to the next test case. It depends on the source test
case. We use the following expression to select the next transition:

ti = Ii mod |Transitions(c)|. (8.1)

where Ii is the i−th component of the Solution and Transitions(c) is the list of possible outgoing
transitions from class c.

For example, if the evaluation function is considering class ci and that class has 4 outgoing
transitions, we consume the next gene (integer), e.g. 6, in the solution to determine the next
transition. In this example, we take the second possible transition (ti = 6 mod 4 = 2).

The fitness value of a solution is the class or transition coverage, Equations (2.12) and (2.13)
in Section 2.4.2, obtained by the solution when all genes have been consumed in the evaluation.
In this algorithm we wish to maximize the fitness function given by Equation (2.12) for Class
Coverage and Equation (2.13) for Transition Coverage.

The recombination operator is not used because the exchange of genes between two individuals
could generate sequences of meaningless transitions. Since we interpret each gene in the chromo-
some as the transition to take from among all those possible, the interpretation of each number
depends on the previously consumed numbers. Let us explain this issue in detail.

CHAPTER 8. COMBINATORIAL INTERACTION TESTING USING CTM 133

Let us say we obtain, after using the single point crossover and from the initial individuals
I1 = {1, 1, 1, 2, 1, 1} and I2 = {1, 2, 1, 2, 1, 2}, two mixed individuals I1′ = {1, 1, 1, 2, 1, 2} and
I2′ = {1, 2, 1, 2, 1, 1}. Since the interpretation of each number depends on the state where they are
consumed, the number indicates which transition must be taken from the source state. When we
evaluate I1′ , the first part of the individual is properly optimized. However, when the second part
of the individual is being consumed, the actual test case (source state) is not the same as in the
I2 individual, because we have taken other transitions regarding to the first part of the individual.
If we focus on the position 2 of the vector, in the I2 individual it indicates to take the second
transition, but in I1 individual it indicates to take the first one. Consequently, now the rest of the
transitions of the second part of the individual I1′ are not properly optimized so as to cover all
states and transitions, because the source class of the next transition is different.

Regarding the mutation operator, it iterates over all the components in the solution vector
uniformly changing their value by±1. It linearly increases the probability to mutate a component in
order to give a low probability to the first components of the chromosome, and a larger probability
to the genes at the end of the chromosome. We aim to maintain the first part of the individual
with fewer changes because a change in a gene could affect the rest of the sequence. We increase
the probability from pm1 to pm2. So here, pm1 = 0.05 and pm2 = 0.25.

In this particular implementation, the best individuals of the population are kept for the next
generation using a memory operator. As the population evolves, the first transitions in the individ-
ual tend to stabilize, but the algorithm still has to evaluate them at each generation. We propose
saving the resulting stable first transitions in a memory slot to use them as the starting point
for following optimization steps. We use the memory operator (MemO) to allow the algorithm to
search in stages. This operator was first proposed by Alba et al. [4] in the context of software ver-
ification. The algorithm can optimize the whole sequence of numbers (transitions) in stages, step
by step, at the same time saving the memory required to evaluate complete individuals. Instead,
we only have to evaluate a shorter sequence in each individual evaluation. This operator is based
on the so-called missionary technique used in [3] for reaching deep graph regions in an ACO.

We use the memory operator as follows: the GTSG is executed using a relatively small chromo-
some length (in this approach we use a chromosome length of 20 integers). After a predetermined
number of evaluations (100, 000), the memory operator selects the best individual and stores its
transitions to use them as the starting points for the next optimization steps. The MemO could
store more than one individual as the starting point for the next generation, but in accordance
with previous experimentation performed in the early stages of this study and the small population
we used, the best choice is to select only the best individual. All the other transitions are removed
from the memory.

The internal loop of the algorithm is executed until a maximum number of evaluations is
reached. Then, the best individual (partial sequence) found is added to the test suite list and the
Coverage set is updated by removing the classes or transitions which are going to be covered by
the new best partial sequence. Then, the memory operator stores the last test case of the best
sequence to be the initial test case for the next generation. Finally, the external loop starts again
with a new population until there is no class or transition left in the Coverage set or the algorithm
reach a predefined number of evaluations.

The advantages of using the memory operator are obvious: less memory and time are required
to evaluate an individual, and thus the path can maintain a constant growth without requiring
more time and memory. There are, of course, disadvantages. In particular, part of the search
space is discarded and that part might in fact contain a good solution, but this is common in any
non-exhaustive search algorithm.

134 8.3. TEST SEQUENCE GENERATION USING ECTM

ACO Test Sequence

Our ACO Test Sequence (ACOts) algorithm is an adaptation of the ACOhg algorithm proposed
by Alba and Chicano [3] that can deal with the construction of huge graphs of unknown size.
This new model was proposed for applying an ACO-like algorithm to the problem of searching
for counterexamples of safety properties in very large concurrent models. We have adapted the
algorithm with the intention of solving the TSGP.

In short, two main differences between ACOts and the original ACO [65] model are as follows.
First, the traditional ACO searches for the shortest path from an initial set of nodes to the objective
ones. Since our objective in TSGP is to cover all classes or transitions, so we are also interested in
visiting all classes and using all possible transitions between the first test case and the final test
case. Second, ACOts cannot define final classes or test cases, the algorithm adds new test cases
until the coverage criterion is fulfilled.

In this particular implementation, the heuristic function η depends on each arc of the construc-
tion graph and is defined in the context of ACO algorithms. It is a non-negative function used
by ACO algorithms for guiding the search. The higher the value of ηij , the higher the probability
of selecting arc (i, j) during the construction phase of the ants. We use the same heuristic rate
algorithm based on coverage of the greedy deterministic algorithm (Section 8.3.1) that will be
presented in the following section.

Another particularity of our ACO-based approach is that the algorithm applies a compact
function in order to minimize the steps of the best solution (abest), resulting in the minimum
number of different test cases. The compaction is as follows: since we only apply single transitions
between classes, we can apply several transitions at the same time provided that the source class
of the transitions is not the same or it is not an ascendant or descendant of the source class of
any already selected transition. Then, we compact some of the single transitions in a complete
transition that save some test cases in the resulting test suite. Continuing with the Video Game
example shown in Figure 2.2, if the actual test case is Q1 = {controlling, running}, the following
selected transitions are controlling → gameOver and running → paused. Then, we can compact
the two transitions into a complete transition to obtain directly Q2 = {gameOver, paused} in only
one test step.

Greedy Deterministic Approach

This approach was first introduced in [126], it will be used here for validation of our results. This
algorithm uses a multi-agent system with two kinds of agents to traverse the classification tree: the
walker agent and the coverage agent. Both agents will cooperatively traverse the ECTM. Travelling
is done in such a way that only valid paths are taken and that all traversed paths together result
in the desired coverage. A full description of the algorithm has been given in [126], so we will only
outline it here.

For any classification in the classification tree, a walker agent is introduced at the initial class.
The initial test case is interpreted as a test step and taken into account for coverage calculation
(e.g. class coverage, transition coverage). All walker agents are then moved one after another. The
path of movement is calculated by coverage agents. When all agents have been considered once,
the actual position of all agents is again interpreted as a test step, and is taken into account for
coverage calculation, then added to the resulting test sequence. This is repeated until the desired
coverage level has been reached. When there are no more valid paths to take, walker agents are
stuck. In this case, the whole ECTM is reset to its initial state and a new, additional sequence, is
created. When the algorithm has finished a test suite with all test steps is returned.

CHAPTER 8. COMBINATORIAL INTERACTION TESTING USING CTM 135

Algorithm 8 Pseudocode of the Heuristic Rate algorithm.

1: proc Input:candidate (Class or Transition)
2: if classcoverage && selfTransition then

3: return 0
4: end if

5: weight=1.0 ; rating=0
6: queue ← φ
7: queue += (candidate, weight)
8: while !queue.empty() do

9: (item, weight)= queue.poll()
10: if (item==candidate && rating> 0) then

11: rating+=100 ; continue
12: end if

13: if (ratedItems contains item) then

14: continue
15: end if

16: ratedItems+=item
17: if (targetNodes contains item) then

18: rating+=10*weight
19: end if

20: if (item has (outgoing transitions ‖ childnodes ‖ classifications)) then

21: weight= weight*0.95;
22: end if

23: for all (item has (outgoing transitions && childnodes && classifications) of item) do

24: queue+=(item, weight)
25: end for

26: end while

27: return rating
28: end proc

The Heuristic Rate algorithm is run by the aforementioned coverage agent. This agent guides
the main algorithm to achieve full class and/or transition coverage. The Heuristic Rate algorithm
is outlined in Algorithm 8. Its main goal is to rate the candidate transitions or classes in order
to decide which is going to add more coverage to the current solution. The heuristic algorithm
gets a candidate class or transition as input. For class coverage, self transitions are ignored and
then zero is returned. A self-transition does not increase class coverage because the origin and
the end of the transition is the same class. Otherwise, it then adds this candidate to a queue
together with a weight factor, with an initial weight factor of one. A weight factor is needed to
give more weight to the closest uncovered classes than those farthest away. The initial rating is
set to zero. The candidate is added to the list of rated items. Then, while the queue is not empty
the algorithm polls (FIFO) the next class and weight factor from the queue. If the polled node is
the original candidate and if the rating is larger than zero, the algorithm has found a loop path
with new items. This loop path is weighed by adding the value of 100 to the rating because we
found a promising candidate. In this case or when the current item is on the list of rated items,
the while loop passes to its next cycle. Otherwise this node is added to the list of rated items. If
the node is on the list of target classes (it has not been used in any test step before), the algorithm
adds 10 times the weight factor to the result rating. Then, if there are outgoing transitions, child
nodes or classifications, the weight factor is multiplied with a punishment value. Target classes of
outgoing transitions and child classes are then added to the queue together with the new weight
factor. When the queue is empty the rating is returned.

8.3.2 Experimental Setup

ACOts and GTSG are non-deterministic algorithms, so we performed 30 independent runs per
program/coverage criterion for a meaningful statistical analysis. All the executions were run in a

136 8.3. TEST SEQUENCE GENERATION USING ECTM

cluster of 16 machines with Intel Core2 Quad processors Q9400 (4 cores per processor) at 2.66 GHz
and 4 GB memory running Ubuntu 12.04.1 LTS and managed by the HT Condor 7.8.4 cluster man-
ager. In order to check whether the differences between the algorithms are statistically significant
or just a matter of chance, we applied the Wilcoxon rank-sum [189] test and highlight in the tables,
the differences that are statistically significant. We set a confidence level of 99.9% (p-value under
0.001) for the entire comparison (both metaheuristics acting on a program/coverage).

We have marked a result in dark grey when it is the best and in light grey when it is the
second best in performance. When the result of one algorithm is significantly better than the
result of another algorithm (typically the one whose results is farthest), we have added an asterisk.
Two asterisks are added if the algorithm is significantly better than the other two algorithms. In
addition, with the aim of properly interpreting the results of statistical tests, it is always advisable
to report effect size measures. For that purpose, we have also used the non-parametric effect size
measure Â12 statistic proposed by Vargha and Delaney [208]. Effect size provides information
about the magnitude of an effect, which can be useful in determining whether it is of practical
significance or not.

For the experiments we use a benchmark with 12 different models of programs/artifacts listed in
Table 8.73. We use a Keyboard instance [156], a Microwave [137], an Autoradio [101], and Harel’s
Citizen watch [94] which is relevant in the literature. From the IBM Rhapsody instances, we
took the Coffee Machine, the Communication example, the Elevator, and the Tetris game [108]. In
Matlab Simulink Stateflow, we found Mealy Moore, Fuel Control, Transmission, and Aircraft [143].
In this table the second and third columns list some statistics of the resulting artifacts. Both the
number of classes and number of transitions are given. The fourth and fifth column list the results
for conventional test case generation computed by the CTE tool with the greedy algorithm for
minimal and complete combination. Numbers indicate the size of the generated test suite. Even
though the details of the case studies are given in Table 8.7, we highlight here that most instances
are hierarchical and concurrent. This means that we are going to deal with test cases of different
lengths. In other words, there are test cases of different lengths in the same sequence.

Let us explain the notation used in the Tables 8.9 and 8.11. A single number n indicates the size
of the unique test sequence: it is the number of generated test steps n needed for 100% coverage.
In the case of the metaheuristic algorithms, we provide the mean over the 30 executions. A number
n followed by a percentage value (p%) indicates the number of generated test steps n together with
a coverage level p% below 100%. When the number n is followed by another number (m), the
first number n indicates the total number of test steps while the second number m in parentheses
indicates the number of sequences needed. We have implemented a re-boot mechanism in all the
algorithms in case they reach a class with no exit transition.

Parameter Settings

A possible threat to internal validity is that we have experimented with only one set of algorithms’
parameters. Nevertheless, we have performed a previous experiment in order to select the best
parameters for the GTSG and ACOts algorithms. We have tried all combinations of values shown
in Table 8.8. Note that the parameters used in the final experimentation are the ones highlighted
in bold.

3They are available at http://neo.lcc.uma.es/staff/javi/resources.html

CHAPTER 8. COMBINATORIAL INTERACTION TESTING USING CTM 137

Table 8.7: General characteristics of the benchmark of programs.

Name C
la
ss
es

T
ra
n
si
ti
o
n
s

M
in
im

a
l

C
o
m
p
le
te

Keyboard [156] 5 8 2 4
Microwave [137] 19 23 7 56
Autoradio [101] 20 35 11 66
Citizen [94] 62 74 31 3121

Coffee Machine 21 28 9 81
Communication 10 12 7 7
Elevator 13 18 5 80
Tetris 11 18 10 10

Mealy Moore 5 11 5 5
Fuel Control 5 27 5 600
Transmission 7 12 4 12
Aircraft 24 20 5 625

Table 8.8: Parameters setting for our proposals. The parameter’s values used in the experimenta-
tion are highlighted in bold.

Algorithm Parameter Value

GTSG

Population Size 4, 8, 10
Crossover No, Yes (1.0 , 0.9, 0.8)
Mutation Prob. 0.05, 0.1, 0.2, Dynamic (0.05-0.25)
Memory Operator No , Yes
Memory Slots 1, 2, 5
Chromosome length 10, 20, 50, 100

ACOts

α 1, 2, 5
β 1, 2, 5
ρ 0.1, 0.5, 0.9
maxsteps 10, 20, 50, 100
colSize 2, 5, 10
λant 400

8.3.3 Test Sequences’ Quality

In this section, we analyze the behavior of the proposed approaches with the aim of analyzing the
computed best solutions and highlighting the algorithm that behaves the best. The main results of
the executions of the algorithms for class coverage and transition coverage can be seen in Table 8.9
and Table 8.11, respectively.

For class coverage, 100% coverage was reached for 11 out of 12 programs. Achieving full
coverage is the main objective for test case generation. The Aircraft program was the only one
resulting in below 100%, having an 86.2% coverage, as there are unreachable or orphaned classes
in the model. In all 12 programs, the highest possible class coverage was reached in a single
test sequence, which is a desirable result. Regarding class coverage, differences appear in four
programs (Microwave, Autoradio, Citizen, and Tetris). The greedy approach obtains better results

138 8.3. TEST SEQUENCE GENERATION USING ECTM

Table 8.9: Results for test sequence generation for class coverage.

Name GTSG ACOts Greedy
Keyboard [156] 2 2 2
Microwave [137] 8* 8* 9
Autoradio [101] 13.30* 14 13*
Citizen [94] 39.47* 36** 47
Coffee Machine 9 9 9
Communication 7 7 7
Elevator 6 6 6
Tetris 12* 12* 15
Mealy Moore 5 5 5
Fuel Control 5 5 5
Transmission 4 4 4
Aircraft 4 (86.2%) 4 (86.2%) 4 (86.2%)

in the Autoradio program, where the difference with GTSG is not significant. For the other three
programs the metaheuristic algorithms achieve total coverage using fewer test steps. For instance,
both metaheuristic algorithms reduced the test suite size by more than 20% for the Tetris program.

Let us analyze the Citizen program for class coverage. The analysis of this program is especially
interesting because this is the most complex program. Furthermore, the differences between the
algorithms are the largest. ACOts obtains the best results in this program. ACOts reduces the
test suite size by more than 23% with respect to the Greedy algorithm, moreover it is 9% better
than GTSG. In addition, GTSG is 15% better than the Greedy algorithm. The ACOts approach
is more effective and accurate for the largest model used in this study. Regarding RQ1, it is true
that the evolutionary algorithms save costs because they generate shorter test sequences than the
greedy algorithm.

Table 8.10: Vargha and Delaney’s statistical test results (Â12) for class coverage. A represents
algorithms in rows and B represents algorithms in columns.

GTSG ACOts Greedy
GTSG - 0.5139 0.3889
ACOts 0.4861 - 0.4167
Greedy 0.6111 0.5833 -

In light of these results and with the intention of determining whether the results are of practical
significance or not, we analyze the Â12 statistic. In Table 8.10 we summarize the average of the
Â12 statistic values for class coverage and all programs. The differences between algorithms are
not very large due to we have selected small, medium, and large programs. Consequently, it is very
difficult to obtain large differences in small and medium models. Numerically, the results of the
ACOts are going to be better than the ones provided by GTSG and Greedy in 51.39% and 58.33%
times, respectively. In addition, the results of GTSG are going to be better than the Greedy ones
in 61.11% times, which is a big difference.

For transition coverage (Table 8.11), only ACOts is able to obtain 100% coverage in all the
programs. The other two algorithms fail to obtain total coverage in the one program (Citizen). In
11 of the 12 programs, the result only consisted of one test sequence, while in the Aircraft program
two sequences were generated. The differences appear in five programs (Autoradio, Citizen, Coffee,

CHAPTER 8. COMBINATORIAL INTERACTION TESTING USING CTM 139

Table 8.11: Results for test sequence generation for transition coverage

Name GTSG ACOts Greedy
Keyboard [156] 5 5 5
Microwave [137] 17 17 17
Autoradio [101] 36.30 36 36
Citizen [94] 75.27* (99.9%) 64.17** 51 (92.7%)
Coffee Machine 19 19 18**
Communication 16* 16* 17
Elevator 9 9 9
Tetris 31 31 31
Mealy Moore 24 24 24
Fuel Control 11* 11* 12
Transmission 9 9 9
Aircraft 7 (2) 7 (2) 7 (2)

Communication, and Fuel Control). In this case the Greedy algorithm is only better than the others
in the Coffee Machine program, the Greedy algorithm reduces the test suite size, in this program,
in one test case compared to the metaheuristic approaches. The existing differences are low in
most cases except in the Citizen program where ACOts is clearly the best. It is the only algorithm
that always achieves 100% transition coverage for all the programs. In the Citizen program the
Greedy algorithm does not achieve full transition coverage while GTSG obtains total coverage in
most executions. ACOts is better than GTSG in coverage and test suite size. ACOts is able to
reduce the test suite size by 14.7% (with respect to GTSG).

Table 8.12: Vargha and Delaney’s statistical test results (Â12) for transition coverage. A represents
algorithms in rows and B represents algorithms in columns.

GTSG ACOts Greedy
GTSG - 0.5125 0.4670
ACOts 0.4875 - 0.4545
Greedy 0.5329 0.5455 -

Table 8.12 shows the Â12 statistical results for measuring the effect size for transition coverage.
We have considered all programs, with the exception of the Citizen program where the results are
not comparable. This fact is because neither GTSG nor the Greedy algorithm are able to reach full
transition coverage, so the test suite is shorter but it is quite worse in quality (coverage). Although
we have not included the Citizen results, where the ACOts algorithm is clearly superior, ACOts
is still better than GTSG and Greedy by 51.25% and 54.55%, respectively. Furthermore, GTSG
obtains smaller test suites than Greedy by 53.29%. Regarding the solution quality (coverage level),
the metaheuristic approaches (ACOts and GTSG) seem to be competitive. They are both capable
of generating test sequences with maximum levels of coverage, and obtain better results than the
Greedy algorithm with a high probability.

8.3.4 Test Suite Coverage versus Test Suite Size

Another aspect that we must take into account is the increase in the test suite size with the coverage
in order to obtain total coverage. This behavior requires a further analysis to evaluate the tradeoff

140 8.3. TEST SEQUENCE GENERATION USING ECTM

between coverage and test suite size because this is a key aspect when you are generating test
suites [159]. We illustrate this tradeoff for the Citizen program in Figure 8.2 and 8.3 for class and
transition coverage. In the figures, we show the deterministic solution of the Greedy algorithm and
the median and interquartile range of the 30 executions of the metaheuristic algorithms in order
to capture the average behavior of the approaches. We would like to stress that this analysis is
performed on the solutions, already computed.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40 45 50

C
la

ss
 C

ov
er

ag
e

Number of Test Cases

Greedy
GTSG
ACOts

Figure 8.2: Median solutions and interquartile range of ACOts, GTSG and Greedy algorithms for
the Citizen example for Class Coverage. Coverage versus number of test cases in the solution.

Let us start with the analysis of the solution where we want to cover all the classes (class
coverage) of the Citizen program. In Figure 8.2 we show that the obtained coverage is similar
for the first test steps. The Greedy algorithm is slightly better with up to 54% coverage. Then,
both metaheuristic algorithms continue adding coverage with the same ratio in contrast with the
Greedy algorithm, which is worse in the middle stage of the sequence. GTSG obtains its maximum
advantage when it achieves 80% coverage, while ACOts only achieves 72% with the same test steps
(24). When only a few classes remain unvisited, ACOts is able to visit them in fewer test steps.
Thus, it achieves full class coverage in only 36 test cases, three test cases less than GTSG and 11
test cases less than the Greedy algorithm. ACOts obtains total coverage with only 64 test cases
in median, meanwhile GTSG has achieved 94.12% and the Greedy algorithm has achieved only
89.04% coverage with the same number of test cases.

In certain regions of the graph (Figure 8.2) we observe that the same coverage is repeated in
consecutive test steps. The reason is that not every class can be reached from any other class, but
requires additional traversal of other covered classes and, therefore, additional test steps. We see
this behavior, in particular, in the solution of the Greedy algorithm for the class coverage. This
implies that we are not adding any coverage in these traversal test steps, so our algorithm should
minimize them.

In Figure 8.3 we show the median transition coverage and the interquartile range of the proposed

CHAPTER 8. COMBINATORIAL INTERACTION TESTING USING CTM 141

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80

T
ra

ns
iti

on
 C

ov
er

ag
e

Number of Test Cases

Greedy
GTSG
ACOts

Figure 8.3: Median solutions and interquartile range of ACOts, GTSG and Greedy algorithms for
the Citizen example for Transition Coverage. Coverage versus number of test cases in the solution.

algorithms achieved with each test case of all test sequences (average of 30 executions of non-
deterministic algorithms). In this case, GTSG is better at the beginning because it first explores
an area with a higher density of transitions (i.e. the algorithm does not have to visit an already
visited node to reach a non-visited node). Besides, the Greedy algorithm obtains better coverage
using the same number of test cases from 12 test cases onwards, but it is not able to achieve more
than 92.7% coverage. Although the Greedy algorithm has achieved 11.59% more coverage than
GTSG and 10.14% more than ACOts with 51 test cases, both metaheuristic algorithms are able
to reach full coverage. In this case, ACOts is better because it achieves full transition coverage in
fewer test cases and it adds coverage in each test case, progressively. This great effort in reducing
traversal test steps makes the algorithm reasonably predictable. This behavior is desirable because
the obtained coverage is proportional to the test cases needed to reach certain levels of coverage.

For the goal of test suite minimization we have tried to optimize the test suite sizes while
still achieving high levels of coverage. We have used GTSG and ACOts to search for the optimal
solution but we need to evaluate the minimal test suite size using an exact approach, allowing
us to know if we have reach the optimal one. Regarding computation times, we can say that the
generation times for GTSG is less than 10 minutes in average, for ACOts is less than a minute
in average, while the deterministic algorithm takes around 10 seconds in average. If we take into
account the performance and the quality of the obtained results, it seems that ACOts is the best
option, at least for the largest instances.

8.4 Conclusions

In this chapter we have studied the prioritized pairwise test data generation problem with the aim of
analyzing the performance of several approaches. We have compared five different approaches, three

142 8.4. CONCLUSIONS

of them proposed by us. We have performed some experiments on 32 different scenario/distribution
combinations and for different values of weight coverage, which makes our study meaningful. The
genetic algorithm outperforms the other algorithms in most scenarios and distributions, it is the
best choice when one has some time restrictions or the execution of a test case is quite costly.

After analyzing the results obtained by all the algorithms we can draw some advices about
which technique should be used. If the results of a particular technique like PPS are good for equal
weight distribution (d1) but are not good enough for the other distributions, then the technique
is designed to be used without priorities. If one really needs some values of weight coverage for
different scale scenarios and non-uniform distributions, the genetic solver is the best choice. But,
if the GS does not achieve a satisfactory result for a particular configuration, one should use the
PPC algorithm. Finally, if the test suites have already been computed, the PPS algorithm should
be used in order to give a better ordering of the test data.

Our three approaches for the PPTDGP have been successfully implemented in the CTE XL
tool using CTM, but for the generation of test sequences we needed to define an extension of the
CTM. We have defined an entire model (ECTM) which both industry and academia could use to
completely describe all aspects needed to generate sequences of tests for testing a program. Its
benefits are clear, we can save costs and time executing all test steps sequentially because the
previous test step puts the software in the adequate state to test the next functionality.

We have presented two different metaheuristic approaches to optimize the automatic generation
of test sequences for the CTM. The first is a genetic algorithm with memory operator (GTSG),
which is able to preserve the memory required to evaluate individuals, while also allowing the
algorithm to compute a solution faster than without the operator. The second is an ACO algorithm,
concretely, we propose ACOts, a variation of the ACOhg implementation that is able to obtain
good quality solutions, using little memory.

We have also compared our results with the ones of an existing greedy deterministic algorithm.
We have used the algorithms to find test sequences for 12 different programs extracted from the
literature. After analyzing the solutions obtained by the three approaches, we can conclude that
the metaheuristic approaches are significantly better than the greedy deterministic approach for
the largest model of program, specially the ACOts algorithm. The Greedy algorithm is only better
than GTSG and ACOts in, respectively, 1 and 2 out of 8 scenarios where statistical differences
exist. GSTG is statistically better than the Greedy algorithm in 4 out of 8 scenarios. Finally,
ACOts is better than the Greedy algorithm in 6 out of 8 scenarios where statistical differences
exist. Therefore ACOts is the best algorithm in the comparison. It has a good tradeoff between
test suite size and coverage.

CHAPTER 8. COMBINATORIAL INTERACTION TESTING USING CTM 143

144 8.4. CONCLUSIONS

Chapter 9

Pairwise Testing in Software

Product Lines

9.1 Introduction

Software Product Lines are families of related software products, where each product provides a
unique combination of features – increments in program functionality [229]. Some of the proven
benefits of SPLs are increased software reuse, faster product customization, and reduced time to
market [175]. Feature Models (FMs) are the de facto standard to represent all the valid feature
combinations of an SPL [115]. The typically large number of feature combinations in a SPL poses
a unique set of challenges for software testing because testing each individual product may not be
technically or economically feasible.

Recent surveys and mapping studies on SPL testing [56, 69], attest the increasing relevance
of the topic within the research and industrial SPL communities. Salient among the existing
approaches are those based on CIT, whose premise is to select a group of products where faults
due to feature interactions are more likely to occur [163]. In the SPL context, most of the focus
has been on pairwise testing, that is, on the four possible combinations between any two features1.
The pairwise feature combinations of a product determine its coverage. Thus, pairwise SPL testing
aims to select a set of products, referred to as test suite, such that their combined coverage contains
all the possible pairwise feature combinations of the SPL.

Because of the large number of feature combinations in typical SPLs, variability modelling
poses a unique set of challenging problems for software testing. In recent years many verification
and testing SPL approaches, which rely on different techniques, have been proposed (e.g. [46,111]).
However, and despite the extensive and successful use of evolutionary computation techniques for
software testing [99, 148], their potential application to SPL testing remains largely unexplored,
in particular regarding test prioritization. For this reason, first, we present a parallel genetic
algorithm for the generation of prioritized pairwise testing suites for SPLs. The experimentation
carried out will help us with our first research question (RQ1) in this chapter: Is our evolutionary
proposal competitive in the computation of prioritized test suite in SPL?

Many SPL pairwise testing approaches have been proposed (e.g. [70, 82, 102, 104, 110, 166, 173,
225]) that tackle SPL pairwise testing as an optimization problem where either coverage (maximize)

1For A and B features: both selected, both not selected, A selected and B not, A not selected and B selected.

145

146 9.2. PARALLEL PRIORITIZED PAIRWISE TESTING

or test suite size (minimize) are considered the main optimization objective. While this single-
objective perspective might be enough for certain limited contexts, it does not capture the more
prevailing scenario where, for instance, it might not be feasible or desirable to test all the products
of a test suite, or for example when both coverage and test suite size are of equal importance. Thus,
the multi-objective perspective enables software developers to analyse the trade-offs between their
objectives (sometimes conflicting) and select the test suites that best match their technical and
economical constraints. Unfortunately, those pieces of work that have explored a multi-objective
perspective in the realm of SPL testing (i.e. [103] and [212]) do use a scalarization technique that
flattens all objectives into a single objective by assigning them weights; an approach with proven
limitations [142]. Therefore, a second contribution is the application to SPL pairwise testing of
four classical multi-objective evolutionary algorithms. This fact leads us to the second research
question RQ2: What is the best algorithm among these four for multi-objective SPL pairwise
testing? Additionally, we want to explore the impact of seeding techniques in MO techniques and
we will answer this research question (RQ3) in this chapter.

Finally, in the same sense, we present a zero-one mathematical linear program for solving the
multi-objective problem and an algorithm that computes the true Pareto front of a feature model
using SAT solvers. The computed fronts are the optimal solution for both objectives. However, we
want to measure the scalability of our exact approach. This leads us to the last reserach question
of this chapter (RQ4). Does the execution time grow with the number of features of the FM or
with the number of products denoted by the FM ?

9.2 Parallel Prioritized Pairwise Testing

In this study we present the Parallel Prioritized product line Genetic Solver (PPGS), a genetic
algorithm for the generation of prioritized pairwise testing suites for SPLs. PPGS receives as
input a feature model that denotes a set of valid feature combinations and computes a set of
products that covers the desired pairs of feature combinations according to a priority scheme that
assigns different priority weights to a set of products. This scheme has been sketched in [111]
and it is currently successfully applied in an industrial setting. We performed a comprehensive
evaluation of PPGS with 235 feature models with a wide range of number of features and number
of products, using 3 different weight priority assignment methods and 5 product prioritization
selection strategies. In addition, we compared PPGS with prioritized-ICPL [111], an alternative
greedy algorithm implementation. For the statistical comparison analysis both algorithms were
executed 30 times for each feature model and combinations of priority assignment and product
prioritization which yielded a total of 79,800 independent runs that required about two weeks of
computation on a 64-core dedicated cluster. Our study revealed that overall PPGS obtains smaller
covering arrays with an acceptable performance difference with prioritized-ICPL. However, the
performance difference tends to decrease as the number of products of the feature models increase.
We believe these results shed light on the potential benefits that evolutionary algorithms and other
search based techniques can bring for variability modeling problems such as testing.

9.2.1 Algorithm Description

The Parallel Prioritized product line Genetic Solver is a novel constructive genetic algorithm which
follows the master-slave model to parallelize the evaluation of the individuals [7]. It computes a
test suite (a list of products to test) taking into account priorities during the generation. In each
iteration, PPGS adds one new product to a partial solution until all pairwise combinations are

CHAPTER 9. PAIRWISE TESTING IN SOFTWARE PRODUCT LINES 147

covered. It uses as inputs a feature model FM and the set of prioritized products for the test
suite generation. At the beginning, the test suite is initialized with an empty list and the set of
remaining pairs is initialized with the weighted pairwise configurations present in at least one of
the given prioritized products. PPGS represents a product by only the list of selected features, so
the operators only affect the selected features. If a generated offspring individual is not a valid
product (i.e., it violates any constraint derived from the feature model), it is transformed into a
valid product by applying a Fix operation provided by the FAMA tool [203].

Since the evaluation is performed in parallel in this algorithm, the fixed individuals are stored in
a structure for later evaluation of them. After we leave the inner loop, the evaluation is performed
in parallel, and finally the individuals are inserted in the offspring population Q. The fitness value
of an offspring individual is the sum of the weights of the weighted pairwise configurations that
would remain to be covered after adding the offspring solution to the test suite. Thus, this fitness
function must be minimized in order to first select the product that covers weighted pairwise
configurations with higher weights. Notice that, as the search progresses, the cost of computing
the fitness function is reduced because every time less weighted pairwise configurations remain
uncovered. The internal loop is executed until a maximum of 1,000 evaluations is reached. Then,
the best individual (product) found is included in the test suite and RP is updated by removing
the weighted pairwise configurations covered by the selected best solution. Then, the external loop
starts again until there is no weighted pair left in the RP set.

We set the configuration parameters of PPGS with values frequently observed in the literature
for genetic algorithms: crossover strategy single point with a probability of 0.8, selection strat-
egy binary tournament, population size of 10 individuals, mutation that iterates over all selected
features of an individual and replaces a feature by another randomly chosen feature with a proba-
bility of 0.1, and termination condition of 1,000 fitness evaluations and full weight coverage in the
external loop.

9.2.2 Weight Priority Assignment Methods

We considered three methods to assign weight values to prioritized products: measured values,
ranked based values, and random values.

Measured values

Measured values weights were derived from non-functional properties values obtained from 16
real SPL systems, from different problem domains and implemented using different technologies,
that were measured with the SPL Conqueror approach [190]. This approach aims at providing
reliable estimates of measurable non-functional properties such as performance, main memory
consumption, and footprint. It works by performing a set of actual property measurements on
different products (usually a proper subset of all the feature combinations denoted by a feature
model) with different feature interaction types. The measured values are then used to compute
the estimated property values for the feature combinations that were not measured. This choice of
weight priority assignment allows us to emulate more realistic scenarios whereby software testers
need to schedule their testing effort giving priority, for instance, to products or feature combinations
that exhibit higher footprint or performance.

For our work, we use the actual values taken on the measured products considering pairwise
feature interactions. Table 9.1 summarizes the SPL systems evaluated, their measured property
(Prop), number of features (NF), number of products (NP), number of configurations measured (NC),
and the percentage of prioritized products (PP%) used in our comparison as explained shortly.

148 9.2. PARALLEL PRIORITIZED PAIRWISE TESTING

Table 9.1: Summary of the case studies measured values.

SPL Name Prop NF NP NC PP%
Prevayler F 6 32 24 75.0
LinkedList F 27 1,344 204 14.1
ZipMe F 8 64 64 100.0
PKJab F 12 72 72 100.0
SensorNetwork F 27 16,704 3,240 19.4
BerkeleyDBF F 9 256 256 100.0
Violet F 101 ≈ 1E20 101 ≈ 0.0
Linux subset F 25 ≈ 3E24 100 ≈ 0.0
LLVM M 12 1,024 53 5.1
Curl M 14 1,024 68 6.6
x264 M 17 2,048 77 3.7
Wget M 17 8,192 94 1.15
BerkeleyDBM M 19 3,840 1,280 33.3
SQLite M 40 ≈ 5E7 418 ≈ 0.0
BerkeleyDBP P 27 1,440 180 12.50
Apache P 10 256 192 75.0

Footprint, Main memory consumption, Performance, Number of Features, Number of
Products, Number of Configurations, Percentage of Prioritized products.

For this assignment method, all the measured products were used as our prioritization products.
In three cases this meant including all the products of the product line. Please refer to Table 9.1
for further details.

Rank based values

For this second type of weight values, we selected the products to prioritize based on how dissimilar
they are when compared to all other products of an SPL, and assigned them priority weights based
on their rank values. The intuition behind this assignment choice is that by giving the same weight
value to two of the most SPL-wide dissimilar products, the weight values will be more likely spread
among a larger number of pairwise configurations making the covering array harder to compute. In
addition, this enables us to select different percentages of the number of products for prioritization.
For this assignment method,the selected percentages are: 5%, 10%, 20%, 30%, and 50%.

Random Values

For this type of weight values, we randomly generate weights between the minimum and maximum
values obtained with the ranked based values approach. For this assignment method, a percentage
of the products denoted by each individual feature model was used for product prioritization. The
selected percentages are: 5%, 10%, 20%, 30%, and 50%.

CHAPTER 9. PAIRWISE TESTING IN SOFTWARE PRODUCT LINES 149

9.2.3 Experimental Setup

This section describes how our evaluation was carried out. We start with the algorithm used
to compare and contrast PPGS, followed by the experimental corpus of feature models, and the
software and hardware infrastructure used. Throughout this chapter, in order to check if the
differences between the algorithms are statistically significant or just a matter of chance, we applied
the non-parametric Wilcoxon rank-sum test [189]. The confidence level used is 95% (p-value under
0.05). Statistical difference is measured with the Wilcoxon test. In order to properly interpret the
results of statistical tests, it is always advisable to report effect size measures. For that purpose, we
have also used the non-parametric effect size measure Â12 statistic. These tests and our statistical
procedure have been described in Section 3.3.2.

Prioritized-ICPL (pICPL) Algorithm

In our experimental comparison we employed prioritized-ICPL, a greedy algorithm to generate
n-wise covering arrays developed by Johansen et al. [111]. Prioritized-ICPL does not compute
covering arrays with full coverage but rather covers only those n-wise combinations among features
that are present in at least one of the prioritized products, as was described in the formalization
of the problem in Section 2.4.3. We must highlight here that the pICPL algorithm uses data
parallel execution, supporting any number of processors. Their parallelism comes from simultaneous
operations across large sets of data.

We should remark that an earlier and better well-known version of a greedy algorithm for
SPL pairwise testing by the same authors (Johansen et al.) is also called ICPL [110]. However
that version did not consider prioritization. To avoid any confusions and as a short hand nota-
tion, henceforth we will use the term pICPL to refer to prioritized-ICPL. For further details on
prioritized-ICPL please refer to [111].

Experimental Corpus

We created three groups based on both the number of products denoted by the feature models
and how their priority was assigned as shown in Table 9.2. Group G1 was formed with 160 feature
models, whose number of products ranges from 16 to 1000 products, and that were evaluated with
rank based and random values. Group G2 was formed with 59 feature models, whose number
of products ranged from 1000 to 80000 that were also evaluated with rank based and random
values. The threshold value to divide groups G1 and G2, and the selected percentages were chosen
to provide an ample variety of number of products to prioritize. Group G3 was formed with 16
feature models, with number of products ranging from 16 to ≈3E24 that were evaluated with
measured values.

We obtained 16 feature models from SPL Conqueror, 5 from Johansen et al. [111], and 201
from the SPLOT website [194] (a repository for the feature model analysis research community).
Thus in total we employed 222 distinct feature models. Please notice that we also incorporated
5 SPL Conqueror feature models to G1 and 8 to G2. This yields a grand total of 235 feature
models to analyze2. For G1 and G2 the problem instances are computed considering that for each
feature model two priority assignment methods are used with three different prioritization selection
percentages. For example, this yields for G1 160× 2 × 3 = 960 instances. In total 1,330 problem
instances were analyzed, with two algorithms PPGS and pICPL, with 30 independent executions.
This means that the data of a total of 79,800 independent runs was generated and analyzed.

2They are available at http://neo.lcc.uma.es/staff/javi/resources.html

150 9.2. PARALLEL PRIORITIZED PAIRWISE TESTING

Table 9.2: Evaluation case studies summary.

G1 G2 G3 Summary
NFM 160 59 16 235
NP 16-1K 1K-80K 32- ≈3E24 16- ≈3E24
NF 10-56 14-67 6-101 6-101

WPA RK,RD RK, RD M
PP% 20,30,50 5,10,20 ≈0.0 – 100
PI 960 354 16 1330

NFM: Number Feature Models, NP: Number Products, NF: Number Features, WPA: Weight
Priority Assignment, RK: Rank based, RN: Random, M: Measured, PP%: Prioritized Products

Percentage, PI: Problem Instances

PPGS and pICPL are non-deterministic algorithms, that is why we performed 30 independent
runs for a fair comparison between them. As performance measures we analyzed both the number
of products required to test the SPL and the time required to run the algorithm. In both cases,
the lower the value the better the performance, since we want a small number of products to
test the SPL and we want the algorithm to be as fast as possible. All the executions were run
in a cluster of 16 machines with Intel Core2 Quad processors Q9400 (4 cores per processor) at
2.66 GHz and 4 GB memory running Ubuntu 12.04.1 LTS and managed by the HT Condor 7.8.4
cluster manager. Since we have four cores available per processor, we have executed only one task
per single processor, so we have used four parallel threads in each independent execution of the
analyzed algorithms.

9.2.4 Experimental Analysis

In Table 9.3 we summarize the results obtained for group G1, feature models with up to 1,000
products. Each column corresponds to one algorithm and in the rows we show the number of
products required to reach 50% up to 100% of total weighted coverage. The data shown in each
cell is the mean and the standard deviation of the 30 independent runs. We highlight with a light
gray background those values that are better with respect to the other algorithm with a statistically
significant difference. We can observe that PPGS requires a smaller number of products to test the
SPL with a significant difference when we consider a coverage level of 80% up to 99%. In the rest
of the cases the differences are not statistically significant, so we cannot claim that one algorithm
is better than the other. Regarding the time, pICPL is around 6 times faster than PPGS with a
statistically significant difference. The time is given in milliseconds in the tables.

Table 9.4 shows the results for group G2: feature models with 1,000 to 80,000 products. We
use the same legend and notation as for Table 9.3. In this case the advantage of PPGS over
pICPL is larger than in the previous case. First, we can observe that PPGS is better than pICPL
with statistically significant difference in all the coverage percentages except 100%. Regarding
the computation time, PPGS is faster than pICPL but without statistically significant difference.
From these results, the trend we can observe is that as the number of products of the SPL grows
PPGS is still better in quality than pICPL while it is also better in runtime. Part of our future
work is to verify if this trend holds for feature models with a larger number of products.

Let us now focus on group G3, feature models with measured weight values. Table 9.5 shows

CHAPTER 9. PAIRWISE TESTING IN SOFTWARE PRODUCT LINES 151

Table 9.3: Mean and standard deviation of 30 independent runs for G1 (significant differences are
highlighted).

Cov. PPGS pICPL Cov. PPGS pICPL
50% 1.200.40 1.200.40 96% 4.001.23 4.371.42
75% 1.920.51 1.980.58 97% 4.381.32 4.711.54
80% 2.150.59 2.250.68 98% 4.831.46 5.181.74
85% 2.470.72 2.580.81 99% 5.581.71 5.871.99
90% 2.880.86 3.131.03 100% 7.562.85 7.563.03
95% 3.721.14 4.061.33 TIME 2389728669 1011618842

Table 9.4: Mean and standard deviation of 30 independent runs for G2 (significant differences are
highlighted).

Cov. PPGS pICPL Cov. PPGS pICPL
50% 1.160.36 1.360.83 96% 4.980.97 5.833.14
75% 2.090.42 2.471.65 97% 5.551.10 6.433.27
80% 2.390.52 2.861.79 98% 6.341.34 7.233.48
85% 2.730.59 3.272.08 99% 7.661.88 8.594.11
90% 3.360.76 3.982.38 100% 14.5710.65 13.799.98
95% 4.590.90 5.423.12 TIME 2737287.2E+5 6381642.1E+6

the average number of products required to cover each SPL and the time for both pICPL and
PPGS over the 16 models. According to the statistically significant differences the conclusions
in this group of models are similar to the conclusions in the previous ones: PPGS is better in
quality (lower number of products) while pICPL is faster. In detail, regarding the quality of the
solutions, PPGS is better than pICPL in 68 model-coverage combinations with statistical significant
difference, while pICPL is better than PPGS only in 19 model-coverage combinations. Regarding
the time, pICPL is usually faster than PPGS with a statistically significant difference, with the
only exception of the SensorNetwork model, in which they do not have statistically significant
difference.

If we take a closer look at the data in the table and taking into account the statistical significant
differences, we can observe that PPGS is overall better than pICPL in 8 out of the 16 models,
namely: Apache, BerkeleyDBF, BerkeleyDBP, LLVM, PkJab, SensorNetwork, Violet and Wget. On
the other hand, pICPL is better only for 2 models when all coverage percentages are considered:
Prevayler and ZipMe. In the remaining 6 models pICPL is better for some percentages while
PPGS is better for others.

As a general conclusion of this first analysis we can say that if the number of products to test
is a critical aspect for the testing engineer, PPGS should be applied to generate these products
instead of pICPL. The time required by PPGS is usually no longer than a few minutes, which
is a reasonable time to generate a better quality test suite. We argue this is the most common
scenario in software companies with SPLs, where carrying on each product test can require hours
if not days to perform, specially if they involve complex software and hardware setups [111]. On
the other hand, pICPL could be employed when the number of products to test is not a critical
issue and a slightly faster generation of the test suite is preferable. Nevertheless, PPGS seems to
be a competitive technique for dealing with this problem (RQ1).

In order to properly interpret the results of statistical tests, it is always advisable to report

152 9.3. SEEDING STRATEGIES FOR MULTI-OBJECTIVE PAIRWISE TESTING

Table 9.5: Group G3. When considering array sizes PPGS is statistically better than pICPL in 69
cases, and pICPL is better in 18 cases.

Model Alg. 50% 75% 80% 85% 90% 95% 96% 97% 98% 99% 100% TIME

Apache
PPGS 2 3 3 4 4 6 6 6 7 7 7 10394
pICPL 2 3 3 4 5 6 7 7 7 8 8 7582

Berk.DBF
PPGS 2 4 4 5 5.97 6.97 6.97 6.97 7.97 8 8.17 11213
pICPL 2 4 5 6 7 8 8 8 8 9 9 8152

Berk.DBM
PPGS 2 3 3 4 4.73 6.87 7.80 8.77 9.97 11.90 23.33 117607
pICPL 2 3 3 4 6 7 8 8 10 11 21 94512

Berk.DBP
PPGS 1 2 2 3 3 4 4.83 5 5.93 7 10.60 47361
pICPL 1 2 3 3 4 6 6 6 6 7 12 57291

Curl
PPGS 2 3 3 3.97 4.03 5.83 6 6.50 7.37 8.07 9.63 17454
pICPL 2 3 3 4 4 6 6 6 7 7 8 6382

LinkedList
PPGS 1 2 2 2 3 4.23 5 5 6.13 7.79 13.37 60684
pICPL 1 2 2 3 3 4 4 5 7 11 14 71151

Linux
PPGS 2 4 4 5 6 7 7.67 8 8.37 9.40 11.10 49385
pICPL 2 4 5 5 6 8 8 8 8 9 10 30522

LLVM
PPGS 2 3 3.03 4 5 6 6 6.07 7 8 8.17 12805
pICPL 2 3 4 4 5 6 7 7 7 8 8 9032

PKJab
PPGS 1 2 2 3 3.07 4 5 5 5 6 7 11439
pICPL 1 2 3 3 3 5 5 6 7 8 8 4661

Prevayler
PPGS 2 3 3 3 4 5 5 5.60 6 6 6 8091
pICPL 2 3 3 3 4 5 5 5 6 6 6 2412

S.Network
PPGS 1 3 3 3 4 5.03 5.47 6 6.97 7.87 13.97 71971
pICPL 1 3 4 5 6 8 9 9 10 11 17 74181

SQL.Mem
PPGS 1 2.17 2.90 3.23 4.07 6.14 6.97 7.93 9.23 11.70 31.53 903118
pICPL 1 3 4 4 5 8 8 9 11 14 28 407991

Violet
PPGS 1 1 1 2 2 2.93 3 3.07 3.30 4.53 12.83 31376054
pICPL 1 1 1 2 2 3 3 4 4 6 15 2471691

Wget
PPGS 2 2.13 3 3.07 4 5.43 6 6.40 7 8.03 11.37 31525
pICPL 2 3 3 4 4 6 6 7 7 9 11 19612

x264
PPGS 1.23 2.23 3 3.07 4 5.30 6 6.50 7.23 8.47 12.10 37368
pICPL 1 2 3 3 4 5 6 7 7 9 13 13441

ZipMe
PPGS 2 3 3 4 5 6 6 7 7 7 7.03 13035
pICPL 2 3 3 4 5 6 6 6 7 7 7 6142

effect size measures. For that purpose, we have also used the non-parametric effect size measure
Â12 statistic as recommended by Arcuri and Briand [17]. Table 9.6 shows the Â12 statistic to
assess the practical significance of the results. In this table a value lower than 0.5 means that
PPGS is better than pICPL, a value greater than 0.5 means pICPL is better than PPGS and 0.5
means a draw. At a first glance, we can see that most of the times (31), PPGS obtains smaller
test suites for all percentages of coverage, meanwhile pICPL is only better than PPGS twice. We
have highlighted with dark and light gray background the lowest and highest values of the table
(0.2497 and 0.5157). The lowest value indicates that PPGS obtains a better test suite than pICPL
for 98% of coverage in a model of G2 in more than 75% of the cases. The highest value indicates
that pICPL obtains a better test suite for 100% coverage in a model of G1 with a probability near
0.5. In general, this statistic reconfirms that PPGS gets better test suites than pICPL in terms of
the number of products when priorities are considered.

9.3 Seeding Strategies for Multi-Objective Pairwise Testing

There exists a wealth of literature in the context of Evolutionary Multi-Objective Optimization [49]
and the application of SBSE to software testing [230]. In this study we cast CIT SPL pairwise
testing as a multi-objective optimization problem and use multi-objective classical algorithms. In
this chapter we study the application to SPL pairwise testing of four classical multi-objective

CHAPTER 9. PAIRWISE TESTING IN SOFTWARE PRODUCT LINES 153

Table 9.6: Â12 statistical test results for all groups. PPGS yields better test suite size values.

Group 50% 75% 80% 85% 90% 95%

G1 0.4985 0.4729 0.4511 0.4473 0.3785 0.3501
G2 0.4529 0.4193 0.3760 0.3726 0.3436 0.2887
G3 0.5104 0.4562 0.2844 0.3563 0.3198 0.3239

Group 96% 97% 98% 99% 100%
G1 0.3410 0.3703 0.3634 0.4000 0.5157
G2 0.2847 0.2647 0.2497 0.2595 0.4945
G3 0.3312 0.3135 0.3927 0.3068 0.4166

evolutionary algorithms: NSGA-II, MOCell, SPEA2, and PAES. These four algorithms have been
extensively and successfully applied to a large number of problem domains and include a diverse
set of techniques and concepts of multi-objective evolutionary algorithms. The experimentation
with these four MO algorithms will allow us to answer RQ2.

Furthermore, we analyze the impact of seeding, defined as any technique that exploits previous
related knowledge to help the testing problem at hand [76], on the performance of these algorithms.
We developed three different seeding strategies that respectively exploit the knowledge of: i) the
size of test suites, ii) greedily-generated tests suites, and iii) the actual test suites obtained using
an existing single-objective pairwise testing approach. Hence, our second research question is
stated as follows: How does seeding impact the quality of the solutions obtained by the four
algorithms?(RQ3)

For this evaluation we selected 19 feature models, from diverse problem domains, from different
provenance sources, and with different structural characteristics. We compared the performance of
the four algorithms on the selected models with the three seeding strategies using two well-known
quality indicator measures commonly employed in the multi-objective community, Hypervolume
and Generational Distance. In short, our statistical analysis reveals that the third seeding strategy,
the one that exploits more domain knowledge, performs better for both of the comparison measures,
and identifies the performance differences among the algorithms.

9.3.1 Seeding Strategies

The impact that seeding strategies have on the performance of evolutionary algorithms has been
documented for instance in Paul et al. [171]. Recall that the ultimate goal of a seeding strategy
is to embed domain knowledge into the individuals of the population such that this knowledge is
exploited when searching for solutions. Consequently, the strategies are also domain dependent.
There are seeding strategies for engineering problems [176], positioning problems [182], timetabling
problems [41], to cite a few examples.

In the field of software testing, seeding has also been used. In a recent work, Fraser and
Arcuri [76] compare different seeding strategies and conclude that an improvement in the perfor-
mance is achieved with statistical significance when a seeding strategies is used. It should be noted
though that none of these pieces of work addresses seeding in the realm of SPL testing. Our focus
is on measuring the impact of seeding the initial population (the first solution in PAES) of the
four algorithms. Next we explain the three seeding strategies that we study: Size-Based Random
Seeding, Greedy Seeding and Single-objective Based Seeding.

154 9.3. SEEDING STRATEGIES FOR MULTI-OBJECTIVE PAIRWISE TESTING

Size-Based Random Seeding

The size-based random seeding strategy (SB) leverages the knowledge of the size of known complete
test suites. In our case, we used solutions generated by the algorithm CASA [82], at the core of the
third seeding strategy which we explain shortly in Section 9.3.1. We must stress that this strategy
uses from the known complete test suites only their size. We summarize this strategy with the
following code snippet, where fm is a feature model and n is the size of the population to seed:

seed := CASA(fm)

population := sizeBasedRandom(size(seed), n, fm)

Algorithm 9 sketches how this strategy works. It receives as input the size of the test suite
to generate as seed (the number of features sets of a known complete test suite), the size of the
population to generate, and a feature model. The core of the algorithm is a loop (Lines 5-8) that
constructs a seed test suite (of the size of a known test suite) by randomly selecting valid feature
sets from a feature model (Line 6). Once the seed test suite is computed, it is passed to algorithm
seedPopulation (Line 9), sketched on Algorithm 10, to generate a population of the desired size
which is returned.

Algorithm 9 Size-Based Random Seeding Strategy.

1: proc sizeBasedRandom
2: Input: seedSize:int, populationSize:int, fm:feature model
3: Output: population: set of test suites
4: seed← ∅
5: for i ← 1 ... seedSize do
6: featureSet←RandomFeatureSets(fm)
7: seed←seed ∪ featureSet
8: end for
9: population←seedPopulation(seed, populationSize)

10: return population

Algorithm 10 uses the seed test suite that it receives as input to generate a population of a
given size. It creates the new test suites by randomly removing feature sets from the population
seed (Line 6). This algorithm is also used by the other two seeding strategies.

Algorithm 10 Seed Population.

1: proc seedPopulation
2: Input: seed:test suite, populationSize:int
3: Output: population:set of test suite
4: population← ∅
5: for i ← 1 ... populationSize do
6: testSuite← RemoveFeatureSets(seed)
7: population← population ∪ testSuite
8: end for
9: return population

CHAPTER 9. PAIRWISE TESTING IN SOFTWARE PRODUCT LINES 155

Greedy Seeding

The greedy seeding strategy (GS), Algorithm 11, generates of a single seed test suite with complete
coverage from which it seeds a population. Thus, this strategy leverages the knowledge of the
feature sets that are part of a complete test suite. To create a seed, we use a constructive approach
that selects on each iteration the best feature set (Line 9) out of 100 randomly generated ones
(Lines 7-10) until complete coverage is reached (Line 6). Once the seed test suite is computed, it
is passed to algorithm seedPopulation (Line 13), sketched on Algorithm 10, to generate a population
of the desired size which is then returned. We summarize this strategy with the following code
snippet, where fm is a feature model and n is the size of the population to seed:

population := greedySeeding(n, fm)

Algorithm 11 Greedy Seeding Strategy.

1: proc greedySeeding
2: Input: populationSize:int, fm:feature model
3: Output: population:set of test suite
4: seed← ∅
5: bestFS← ∅
6: while not Total Coverage(seed) do
7: for i ← 1 100 do
8: newFS←RandomFeatureSets(fm)
9: bestFS← ChooseBest(bestFS, newFS)

10: end for
11: seed← seed ∪ bestFS
12: end while
13: population←seedPopulation(seed, populationSize)
14: return population

Single-objective Based Seeding

The single-objective based seeding strategy (SO) consists in using a complete test suite computed by
a single-objective algorithm to seed a population. Thus, this strategy leverages knowledge of test
suites computed by existing single-objective SPL testing approaches. For the task of generating
test suites we chose CASA, a simulated annealing algorithm that was designed to generate n-wise
covering arrays for SPLs [82]. CASA relies on three nested search strategies. The outermost search
performs one-sided narrowing, pruning the potential size of the test suite to be generated by only
decreasing the upper bound. The mid-level search performs a binary search for the test suite size.
The innermost search strategy is the actual simulated annealing procedure, which tries to find
a pairwise test suite of size N for feature model FM. We selected CASA because in our previous
work it performed better than other techniques and it is well-known in both search-based and SPL
research communities. For more details on CASA and its comparison with other approaches please
refer to [82].

First, we performed 30 independent runs per feature model because CASA is a non-deterministic
algorithm. Then, we randomly chose one of the solutions for seeding the population. Do notice
that we used the same solution of CASA for seeding all the multi-objective algorithms in order to

156 9.3. SEEDING STRATEGIES FOR MULTI-OBJECTIVE PAIRWISE TESTING

make a fair comparison among them. We summarize this strategy with the following code snippet,
where fm is a feature model and n is the size of the population to seed:

population := seedPopulation(CASA(fm), n)

9.3.2 Evaluation

In this section we give some details of the particular configuration of the algorithms, the study
corpus, and how the evaluation was carried out.

Algorithms Details

We selected the following four algorithms because they have been extensively and successfully
applied to a large number of problem domains and represent a diverse set of techniques and
concepts of multi-objective evolutionary algorithms: NSGA-II, MO-Cell, SPEA2 and PAES. Since
all of them were described in Section 4.2, we outline here some details of the particular configuration
of the algorithms.

All algorithms use the same representation for an individual, which is a set of products, and
also the same variation operators. We have used binary tournament as the selection scheme. This
operator works by randomly choosing two individuals from the population and the one dominating
the other is selected; if both solutions are non-dominated one of them is randomly selected. The
crossover operator, which is executed with probability 0.8, takes two solutions, S1 and S2, then one
cross-point is randomly selected in both solutions generating two parts per solution S1a - S1b and
S2a - S2b. Finally, two new individuals are created S1′(S1a−S2b) and S2′(S2a−S1b). The mutation
operator is executed with probability 0.1. It generates ten valid products, then the product that
adds more coverage to the solution is added. The product that adds more coverage to the solution
is known because we apply the mutation before applying the recombination. This order of the
variation operators allow us to take advantage of the information collected in the evaluation of the
individual. If the resulting individual has the same coverage and more test products, at the end
of the iteration, the algorithms delete it from the population because this solution is dominated.

Feature Models Corpus

The experimental corpus of our evaluation is formed with 19 feature models3. These models have
two important characteristics to make our results directly applicable by software engineers. First,
that the feature models are associated to actual SPLs whose code is publicly available or can
be made accessible by request to the corresponding authors. This is important so that testing
can be carried out on the SPL code. Second, that the feature models are explicitly and directly
provided by the SPL authors, rather than, for instance, reverse-engineered from other artefacts.
This is important because it guarantees that all the feature combinations are correctly captured
in the feature models. We searched into three main SPL related websites: SPL Conqueror [190],
FeatureHouse [71], and SPL2go [193]. In addition, we looked at recently published articles within
the SPL community. For the management and analysis of feature models, we relied on three
frameworks: SPLAR [153], FAMA [203], and SPLCA [109]. These tools in turn, imposed additional
constraints to the selection of our corpus4. Table 9.7 summarizes the feature models used in our
evaluation. It shows the number of features, number of products, and their application domain

3They are available at http://neo.lcc.uma.es/staff/javi/resources.html
4For example, the type of CTCs that FAMA can analyze.

CHAPTER 9. PAIRWISE TESTING IN SOFTWARE PRODUCT LINES 157

Table 9.7: Feature models summary.

Feature Model NF NP PF Domain
Apache 10 256 6 web server [190]
ArgoUmlSpl 11 192 6 UML tool [20]
BDB* 117 32 NA database [71]
BDBFootprint 9 256 6 database [190]
BDBMemory 19 3,840 NA database [190]
BDBPerformance 27 1,440 NA database [190]
Curl 14 1024 NA data trasfer [190]
DesktopSearcher 22 462 8 file search [193]
FameDbmsFm 20 320 6 database [193]
GPL 18 73 12 graph algorithms [134]
LinkedList 27 1,344 NA data structures [190]
LLVM 12 1,024 NA compiler library [190]
PKJab 12 72 6 messenger [190]
Prevayler 6 32 6 object persistence [190]
SensorNetwork 27 16,704 NA networking [190]
TankWar 37 1,741,824 NA game [71]
Wget 17 8,192 NA file retrieval [190]
x264 17 2,048 NA video encoding [190]
ZipMe 8 64 6 data compression [190]

NF: Number of Features, NP:Number of Products,
PF: Pareto Front size, NA if not available.
*BDB prefix stands for Berkeley database.

with the source where we obtained them from. Additionally, we provide the size of the Pareto
front5, if known. Note that here we extend the previous group of feature models G3 used for the
prioritization analysis.

Experimental Setting

Here we describe how the evaluation was carried out. The four algorithms we analyzed are non-
deterministic, thus we performed 30 independent runs for a meaningful statistical analysis. In
order to measure the performance of the multi-objective algorithms used here, the quality of their
resulting nondominated set of solutions has to be considered. Besides the two objective functions
defined in Section 2.4.4, coverage and products, we selected two well-known quality indicators
that are commonly used in the multi-objective community to compare the approximated Pareto
fronts of several algorithms6, Hypervolume and Generational Distance, described in Section 3.3.1.
In addition to these quality measures, we have also analyzed the time required to run the multi-
objective algorithms and obtain the Pareto front, since we want the algorithms to be as fast as
possible. Since we have 4 algorithms, 3 different seeding strategies, and 19 feature models the
total number of independent runs is 4 × 3 × 19 × 30 = 6, 840. The stopping criterion was 1,000
evaluations.

5Computed with algorithm presented in [135].
6We used a reference front whenever the true Pareto front was unknown.

158 9.3. SEEDING STRATEGIES FOR MULTI-OBJECTIVE PAIRWISE TESTING

9.3.3 Experimental Analysis

We first analyze the behavior of the multi-objective algorithms with the aim of highlighting which
algorithm works better. In Table 9.8 we show the average values of the quality indicators grouped
by algorithm and the execution time. Regarding the significant differences, they exist only between
PAES and the rest of the algorithms for both quality indicators and performance measure. We
must point out that even though PAES seems to be the worst algorithm, the average generational
distance value obtained by PAES is better than the obtained by NSGA-II. This high value of
generational distance requires a further analysis (addressed shortly) because NSGA-II obtains the
best values for the rest of the indicators, HV and time. SPEA2 is the best in generational distance.
Our evaluation indicates there is not an algorithm which is the best for all quality indicators,
nonetheless NSGA-II performs best in 2 out of 3 indicators.

Table 9.8: Comparison of multi-objective algorithms using the proposed quality indicators and
performance time.

Algorithms HV GD Time(ms)
NSGA-II 0.6583 0.0396 70523
MOCell 0.6553 0.0293 74325
SPEA2 0.6533 0.0289 71349
PAES 0.6390 0.0351 101246

In Table 9.9 we summarize the average results obtained grouped by seeding strategy. In this
case there are clear significant differences among all the seeding strategies. We have highlighted
the best value per quality indicator and performance measure, which is always obtained with the
SO seeding strategy. First, we analyze the hypervolume, the higher the value, the better the
quality of the obtained results. The best value is obtained with the SO seeding strategy. There
are statistical significant differences between SB and GS, and also between SB and SO. Thus, it
can be concluded that the quality of solutions obtained with SB are worse than those obtained
with the other strategies. Second, we analyze the generational distance, the lower the value, the
better the quality of the results. The best value is obtained with the SO seeding strategy again.
In addition, there are significant differences with the other seeding strategies for the generational
distance indicator. Finally, we analyze the time spent in the generation of the Pareto front. The
results are clear, the SO strategy is the fastest. Recall that the execution of the CASA algorithm
for seeding is included, which on average is 2905 milliseconds.

Table 9.9: Comparison of seeding strategies using hypervolume, generational distance, and perfor-
mance time.

Seeding Strategy HV GD Time(ms)
SizeBased Random (SB) 0.6421 0.0427 138404
Greedy (GS) 0.6556 0.0447 76783
SingleObjective (SO) 0.6568 0.0123 25800

Table 9.10 shows the Â12 statistic to assess the practical significance of the results. We have
highlighted the largest distance from 0.5 (equality) per quality indicator, note that 0.5 indicates no
difference in the comparison. Regarding HV, there are no big differences between the algorithms.
The highest difference occurs between NSGA-II and PAES. Regarding GD, the highest difference

CHAPTER 9. PAIRWISE TESTING IN SOFTWARE PRODUCT LINES 159

is between MOCell and PAES. There, the generational distance is larger in 41.94% of the times. In
addition, notice that NSGA-II obtains smaller values than PAES with probability 0.544 (1-0.4560).

This result indicates a tendency contrary to the deduced from the previous average value of
GD of NSGA-II, in most of the comparisons it achieves a lower value than PAES. Regarding
time, NSGA-II is faster with more probability than the other algorithms. In general, this statistic
confirms again that NSGA-II obtains better Pareto fronts than the other algorithms, according to
the selected quality indicators, and faster.

Table 9.10: Â12 statistical test results for all algorithms. NSGA-II yields better results for HV and
time measures.

Algorithms HV GD Time
NSGAII-SPEA2 0.5182 0.5172 0.4904
NSGAII-MOCell 0.5112 0.5202 0.4816
NSGAII-PAES 0.5626 0.4560 0.2839
SPEA2-MOCell 0.4932 0.5039 0.4910
SPEA2-PAES 0.5447 0.4205 0.3019
MOCell-PAES 0.5521 0.4194 0.3027

We now comment on the Â12 statistic values shown in Table 9.11 that compares the seeding
strategies. The SO strategy obtains higher values of HV than the other strategies, it obtains
better values of HV than SB and GS strategies in a 54.42% (probability 1-0.4558) and a 50.23%
(probability 1-0.4977), respectively. For GD, the SO strategy obtains better values (lower values)
than SB and GS in a 85.62% and in a 78.39%, respectively. Therefore, SO is widely best for
the generational distance indicator. Finally, SO spends less time than SB and GS in 86.19% and
82.27%, respectively. Thus, the SO strategy is the fastest without any doubt.

Table 9.11: Â12 statistical test results for seeding strategies. SO yields better quality indicators
and time values.

Seeding Strategy HV GD Time
SizedBased(SB) – Greedy(GS) 0.4568 0.4795 0.6377
SizedBased(SB) – SingleObjective(SO) 0.4558 0.8562 0.8619
Greedy(GS) – SingleObjective(SO) 0.4977 0.7839 0.8227

With the results presented here we are now able to answer our research questions. Regarding
RQ2, we didn’t observe in our results a clear winner algorithm. We can claim, however, that
PAES seems to provide approximated Pareto fronts of lower quality than the ones of the other
algorithms. PAES is a trajectory-based algorithm (works with one solution and not a population),
and probably this makes it less competitive in this problem, in which having a diverse population
seems to be beneficial.

From the point of view of the testing engineer that faces this problem, our recommendation
is to use any of the three best algorithms, NSGA-II, SPEA2 or MOCell, with the SO seeding
strategy.The results obtained are approximated Pareto fronts like the one in Figure 9.1. Each
point in that front represents a test suite for the SPL, that is, a set of products. The number of
products and the coverage are given by the coordinates of the point. Thus, the multi-objective
approach offers the engineer a set of test suites of different size having (almost) optimal coverage.

160 9.4. OPTIMAL MULTI-OBJECTIVE PAIRWISE TESTING

The engineer can, then, select the most appropriate test suite depending on the resources s/he has
to test the SPL or the level of coverage s/he has to satisfy. It is important to note that this selection
of the most appropriate test suite can be done after the algorithms did their job. This contrasts
with the scalarization technique used in the related work (i.e. [103] and [212]) that transform the
multi-objective problem in a single-objective one. In that case, only one solution is provided and
the testing engineer has to provide a weight for each objective function to indicate the relative
importance of the objectives. Thus, s/he is somehow selecting the solution beforehand, without
the possibility of taking a look to all other, probably interesting, solutions.

Regarding RQ3, we can say that the seeding strategy has an impact on the performance of
the search algorithm. Seeding the multi-objective algorithm with good quality solutions obtained
using CASA reduces the time required in the search and finds the approximated Pareto front that
is nearer to the Pareto front. These initial “seeds” include some desirable building blocks (i.e.
feature sets) of the optimal solutions that help the algorithm in its search.

ææ

ææ

ææ

ææ

ææ

ææ

ææ

ææ

ææ

ææ

ææ

ææ

ææ

0 200 400 600 800 1000 1200 1400
0

2

4

6

8

10

12

14

Uncovered pairs

N
um

be
r

of
pr

od
uc

ts

Figure 9.1: Approximated Pareto front obtained by NSGA-II in TankWar.

9.4 Optimal Multi-Objective Pairwise Testing

With our previous MO approach, we are able to compute near-optimal Pareto fronts in a reasonable
amount of time. However, here we present an exact method, a zero-one mathematical linear
program, for solving the multi-objective problem and an algorithm that computes the true Pareto
front of a feature model using SAT solvers. This front is the optimal solution for both objectives.
We are interested in minimizing the number of test products and maximizing the pairwise coverage.
Since we want to compute the Pareto front of the multi-objective optimization problem we proceed
by fixing the number of test products and defining a zero-one mathematical program that maximizes
coverage. The approach presented here relates to the work by Arito et al. [21] for solving a multi-
objective test suite minimization problem in regression testing.

Our evaluation found a correlation between runtime and number of products in the feature
model and revealed a trade-off between reducing the number of constraints in the mathematical
linear program and runtime that we plan to explore as future work.

CHAPTER 9. PAIRWISE TESTING IN SOFTWARE PRODUCT LINES 161

9.4.1 Mathematical Linear Program

A zero-one program is an integer program in which the variables can only take values 0 or 1 [221].
The details of the algorithm applied are explained in Section 9.4.2. In this section we describe the
zero-one program. Let us call n to the number of test products (that is fixed) and f to the number
of features of the FM. We will use the set of decision variables xi,j ∈ {0, 1} where i ∈ {1, 2, . . . , n}
and j ∈ {1, 2, . . . , f}. Variable xi,j is 1 if product i has feature j and 0 otherwise. Not all the
combinations of features form valid products. Following [29], we can express the validity of any
product in an FM as a boolean formula. These boolean formulas can be expressed in Conjunctive
Normal Form (CNF) as a conjunction of clauses, which in turn can be expressed as constraints in
a zero-one program. The way to do it is by adding one constraint for each clause in the CNF. Let
us focus on one clause and let us define the Boolean vectors v and u as follows [196]:

vj =

{
1 if feature j appears in the clause,
0 otherwise,

uj =

{
1 if feature j appears negated in the clause,
0 otherwise.

With the help of u and v we can write the constraint that corresponds to one CNF clause for the
i-th product as:

f∑

j=1

vj(uj(1− xi,j) + (1− uj)xi,j) ≥ 1 (9.1)

As an illustration, in the GPL model let us suppose that Search is the 8-th feature and Num is
the 12-th one. The cross-tree constraint “Num requires Search” can be written in CNF with the
clause ¬Num ∨ Search and translated to a zero-one constraint as: 1− xi,12 + xi,8 ≥ 1.

Our focus is pairwise coverage. This means that we want for each pair of features to cover
4 cases: both unselected, both selected, first selected and second unselected and vice versa. We
introduce one variable in our program for each product, each pair of features and each of these
four possibilities. The variables, called ci,j,k,l, take value 1 if product i covers the pair of features
j and k with the combination l. The combination l is a number between 0 and 3 representing
the selection configuration of the features according to the next mapping: l = 0, both unselected;
l = 1, second selected and first unselected; l = 2, first selected and second unselected; and l = 3
both selected. The values of the variables ci,j,k,l depend on the values of xi,j . In order to reflect
this dependence in the mathematical program we need to add the following constraints for all
i ∈ {1, . . . , n} and all 1 ≤ j < k ≤ f :

2ci,j,k,0 ≤ (1− xi,j) + (1− xi,k) ≤ 1 + ci,j,k,0 (9.2)

2ci,j,k,1 ≤ (1− xi,j) + xi,k ≤ 1 + ci,j,k,1 (9.3)

2ci,j,k,2 ≤ xi,j + (1 − xi,k) ≤ 1 + ci,j,k,2 (9.4)

2ci,j,k,3 ≤ xi,j + xi,k ≤ 1 + ci,j,k,3 (9.5)

Variables ci,j,k,l inform about the coverage in one product. We need new variables to count
the pairs covered when all the products are considered. These variables are called dj,k,l, and take
value 1 when the pair of features j and k with combination l is covered by some product and 0
otherwise. This dependence between the ci,j,k,l variables and the dj,k,l variables is represented by

162 9.4. OPTIMAL MULTI-OBJECTIVE PAIRWISE TESTING

the following set of inequalities for all 1 ≤ j < k ≤ f and 0 ≤ l ≤ 3:

dj,k,l ≤
n∑

i=1

ci,j,k,l ≤ n · dj,k,l (9.6)

Finally, the goal of our program is to maximize the pairwise coverage, which is given by the
number of variables dj,k,l that are 1. We can write this as:

max

f−1∑

j=1

f∑

k=j+1

3∑

l=0

dj,k,l (9.7)

The mathematical program is composed of the goal Equation (9.7) subject to the 4(n+1)f(f−1)
constraints given by Equation (9.2) to Equation (9.6) plus the constraints of the FM expressed
with the inequalities Equation (9.1) for each product. The number of variables of the program
is nf + 2(n + 1)f(f − 1). The solution to this zero-one linear program is a test suite with the
maximum coverage that can be obtained with n products.

9.4.2 Algorithm Details

The algorithm we use for obtaining the optimal Pareto set is given in Algorithm 12. This algorithm
takes as input the FM and provides the optimal Pareto set. It starts by adding to the set two
solutions that are always in the set: the empty solution (with zero coverage) and one arbitrary
solution (with coverage

(
f
2

)
, number 2-combinations of the set of features). After that it enters a

loop in which successive zero-one linear programs are generated for an increasing number of prod-
ucts starting at 2. Each mathematical model is solved using an extended SAT solver: MiniSat+7.
This solver provides a test suite with the maximum coverage. This solution is stored in the optimal
Pareto set. The algorithm stops when adding a new product to the test suite does not increase
the coverage. The result is the optimal Pareto set.

Algorithm 12 Algorithm for obtaining the optimal Pareto set.

optimal set← {∅};
cov[0]← 0;
cov[1]←

(
f
2

)
;

sol ←arbitraryValidSolution(fm);
i← 1;
while cov[i] 6= cov[i − 1] do
optimal set← optimal set ∪ {sol};
i← i+ 1;
m←prepareMathModel(fm,i);
sol ←solveMathModel(m);
cov[i]← |sol|;

end while

7Available at URL: http://minisat.se/MiniSat+.html

CHAPTER 9. PAIRWISE TESTING IN SOFTWARE PRODUCT LINES 163

Figure 9.2: Pareto optimal front for our running example (GPL).

9.4.3 Experimental Setup and Analysis

The experimental corpus of our evaluation is composed by a benchmark of 118 feature models8,
whose number of products ranges from 16 to 640 products, that are publicly available from the SPL
Conqueror [190] and the SPLOT [194] repositories. The objectives to optimize are the number of
products required to test the SPL and the achieved coverage. Additionally, as performance measure
we have also analyzed the time required to run the algorithm, since we want the algorithm to be
as fast as possible.

We computed the Pareto optimal front for each model. Figure 9.2 shows this front for our
running example GPL, where the total coverage is obtained with 12 products, and for every test
suite size the obtained coverage is also optimal. As our approach is able to compute the Pareto
optimal front for every feature model in our corpus, it makes no sense to analyze the quality of
the solutions. Instead, we consider more interesting to study the scalability of our approach. For
that, we analyzed the execution time of the algorithm as a function of the number of products
represented by the feature model as shown in Figure 9.3. In this figure we can observe a tendency:
the higher the number of products, the higher the execution time. Although it cannot be clearly
appreciated in the figure, the execution time does not grow linearly with the number of products,
the growth is faster than linear.

In order to check our intuition, we have performed a Spearman’s rank correlation test. This
test’s coefficient ρ takes into account the rank of the samples instead of the samples themselves.
The correlation coefficient between the execution time and the number of products denoted by
a feature model is 0.831. This is a very high value that confirms our expectations, the higher
the number of products, the higher the execution time of the algorithm. We also computed the
Spearman’s rank correlation for the execution time against the number of features of the feature
models which was quite lower (0.407). This is because two feature models with the same number
of features could denote significantly different number of products depending on the constraints
derived from the relationships between the features. In summary, the answer of the RQ4 is that

8They are available at http://neo.lcc.uma.es/staff/javi/resources.html

164 9.5. CONCLUSIONS

Figure 9.3: Time (log scale) required to find optimal Pareto set against the number of products of
the feature models.

the best indicator of the execution time of our approach is the number of products denoted by a
feature model.

9.5 Conclusions

Throughout this chapter we have filled several existent gaps in the SPL literature. We have tackled
the pairwise test data generation problem in SPL, then we have successfully applied classical MO
techniques to SPL, and finally we have presented an exact approach for computing the optimal
Pareto front. Let us draw some conclusions separately for each of them.

First, we have formalized a SPL testing prioritization scheme (in Section 2.4.3) and presented
its implementation with PPGS. We evaluated PPGS with 235 feature models of different character-
istics using different selection criteria for product prioritization. Furthermore, we compared PPGS
with greedy algorithm pICPL, a comparison that totalled 79,800 independent runs. Our analysis
showed that while PPGS obtains overall shorter covering arrays it exhibits a performance difference
with pICPL that tends to decrease for the feature models with larger number of products.

Second, we study the behavior of classical multi-objective evolutionary techniques applied to
SPL pairwise testing. The group of algorithms were selected to cover a diverse array of techniques
and concepts of multi-objective evolutionary computing. In addition, we study the impact of
seeding in performance. Our evaluation unequivocally showed that seeding with knowledge from
a single-objective technique produces significantly better results in less time. It also suggests that
using this seeding strategy with either of NSGA-II, SPEA2 or MOCell yields results of similar
quality. Our findings enable software engineers facing SPL combinatorial testing challenges to
select not just one solution (as in the case of single-objective techniques) but instead to select
from an array of test suite possibilities that can better match their economical or technological
constraints.

Finally, we have proposed an approach to exactly obtain the optimal Pareto set of the multi-
objective SPL pairwise testing problem. We defined a zero-one linear mathematical program and

CHAPTER 9. PAIRWISE TESTING IN SOFTWARE PRODUCT LINES 165

an algorithm based on SAT solvers for obtaining the optimal Pareto set. By construction the
solution obtained using this approach is optimal and could serve as reference for measuring the
quality of the solutions proposed by approximated methods. The evaluation revealed a generally
large runtime for our feature models. This fact prompted us to analyze the impact of the number
of products and number of features in runtime. We found a high correlation in the first case and
a low correlation in the second case. As a result of this finding our future work is twofold. First,
we want to streamline the mathematical program representation in order to reduce the runtime of
the algorithm. We observed that some of the constraints can be redundant. For instance, features
that are selected in all the products of the product line do not need a variable since they are valid
for any product. Similarly, there are pairs of feature combinations, that is ci,j,k,l variables, that
are not valid according to the feature model and hence can be eliminated [100]. We also noticed
that removing some of the redundant constraints can increase the runtime, while adding more
constraints could help the SAT solver search for a solution. We plan to study the right balance
of both reducing and augmenting constraints. Second, we will look at larger feature models to
further study the scalability of our approach.

166 9.5. CONCLUSIONS

Part IV

Conclusions and Future Lines of

Research

167

Chapter 10

Conclusions and Future Work

This thesis proposes a variety of contributions to the software testing field, mainly using meta-
heuristic techniques. We have encompassed a wide range of aspects related to testing a program:
procedural and object-oriented source code, structural and functional paradigms, single-objective
and multi-objective problems, isolated test cases and test sequences, and theoretical and experi-
mental work. Regarding the analysis carried out, we have put more stress in the statistical analysis
to assess the practical significance of the results. This thesis dissertation is the beginning of a re-
search work which should be continued. For this reason, in this chapter we also describe some
open issues we think are interesting to tackle in the near future.

10.1 Conclusions

Summarizing, we draw here the conclusions we have extracted from the main contributions of this
thesis dissertation:

1. Definition of a new distance measure for the instanceof operator in Object Ori-
ented programs. In this work we have focused on one aspect of OO Software, inheritance,
to propose some approaches that can help to better guide the search of test data in the
context of OO evolutionary testing. In particular, we have proposed a distance measure to
compute the branch distance in the presence of the instanceof operator in Java programs.
We have also proposed two mutation operators that change the solutions based on the dis-
tance measure defined. One of them is an adaptive mutation operator that is able to make a
better search. Its main parameter λ controls the velocity the search changes from exploration
to exploitation behavior. The experimentation confirms that the search works worse with
extremme values of λ. Finally, one of the main conclusions of this work is that the difficulty
to test a program depends on the number of atomic conditions per logical expression and the
nesting degree, since we are interested in measuring the complexity of testing a program.

2. Definition of a new complexity measure called “Branch Coverage Expectation”.
In this work we dealt with the testing complexity from an original point of view: a program
is more complex if it is more difficult to be automatically tested. Therefore, we defined the
“Branch Coverage Expectation” in order to provide some knowledge about the difficulty of
testing programs. The foundation of this measure is based on a Markov model of the program.
The Markov model provides a theoretical background. The analysis of this measure indicates

169

170 10.1. CONCLUSIONS

that it is more correlated with branch coverage than the other studied static measures. This
means that this is a good way of estimating the difficulty of testing a program. We think,
supported by the results, that this measure is useful for predicting the behaviour of an
automatic test data generator.

3. Theoretical prediction of the number of test cases needed to cover a concrete
percentage of the program computed. Our Markov model of a program can be used to
provide an estimation of the number of test cases needed to cover a concrete percentage of
the program. We have compared our theoretical prediction with an average of real executions
of a test data generator. The results show that our prediction is very similar to the evolution
of a real execution of the test data generator. This model can help project managers to
predict the evolution of the testing phase, which consequently can save time and cost of the
entire project. This theoretical prediction could be also very useful to determine the coverage
percentage using a particular number of test cases.

4. Proposal of a whole test suite approach for solving multi-objective test data gen-
eration problem. We have studied the Multi-Objective Test Data Generation Problem
with the aim of analyzing the performance of a direct whole test suite multi-objective ap-
proach versus the application of mono-objective algorithms followed by a test case selection.
Previous results in the literature have only focused on the coverage of a program while the
oracle cost is a significant cost that has been ignored. We have evaluated four state-of-the-art
multi-objective optimization algorithms: MOCell, NSGA-II, SPEA2, and PAES, two mono-
objective algorithms GA, ES, and two random algorithms. In terms of convergence towards
the optimal Pareto front, GA and MOCell have been the best solvers in our comparison.
Although the multi-objective approach is working very well in most of the programs, we
realized that dealing with only one branch at the same time (mono-objective approach) can
be more effective when the program under test has high nesting degree. However, we highly
recommend the direct approach if we have time restrictions.

5. Comparison of different prioritization strategies in Software Product Lines and
Classification Trees. We have studied the Prioritized Pairwise Test Data Generation Prob-
lem with the aim of analyzing the performance of several approaches. We have compared five
different approaches related to the CTM, and two related to SPL, four of them proposed by
us. We have performed some experiments on a great number of different scenario/distribution
combinations and for different values of weight coverage, which makes our study meaningful.
The genetic algorithm outperforms the other algorithms in most scenarios and distributions,
it is the best choice when one has some time restrictions or the execution of a test case is
quite costly. In the SPL experimentation, our analysis also showed that while our parallel
genetic approach obtains overall shorter covering arrays it exhibits a performance difference
with the parallel version of ICPL that tends to decrease for the feature models with larger
number of products.

6. Definition of the Extended Classification Tree Method to generate test sequences.
We have defined an entire model (ECTM) which both industry and academia could use to
completely describe all aspects needed to generate sequences of tests for testing a program.
We have presented two different metaheuristic approaches to optimize the automatic gener-
ation of test sequences for the CTM. The first is a genetic algorithm with memory operator
(GTSG), which is able to preserve the memory required to evaluate individuals, while also
allowing the algorithm to compute a solution faster than without the operator. The second

CHAPTER 10. CONCLUSIONS AND FUTURE WORK 171

is an ACO algorithm that is able to obtain good quality solutions using little memory. Our
comparison shows that ACOts is the best algorithm in the comparison (with an state-of-
the-art greedy algorithm and the GTSG). It has a good tradeoff between test suite size and
coverage. Its benefits are clear, we can save costs and time executing all test steps sequen-
tially because the previous test step puts the software in the adequate state to test the next
functionality.

7. Exploration of the effect of different seeding strategies in the computation of the
Pareto fronts in SPL. We study the behaviour of classical multi-objective evolutionary
techniques applied to SPL pairwise testing. In addition, we study the impact of seeding in
performance. The group of algorithms were selected to cover a diverse array of techniques and
concepts of multi-objective evolutionary computing. Our evaluation unequivocally showed
that seeding with knowledge from a single-objective technique produces significantly better
results in less time. It also suggests that using this seeding strategy with either of NSGA-II,
SPEA2 or MOCell yields results of similar quality. Our findings enable software engineers
facing SPL combinatorial testing challenges to select not just one solution (as in the case of
single-objective techniques) but instead to select from an array of test suite possibilities that
can better match their economical or technological constraints.

8. Proposal of an exact technique for the computation of optimal Pareto fronts
in SPL. We have proposed an approach to exactly obtain the optimal Pareto set of the
multi-objective SPL pairwise testing problem. We defined a zero-one linear mathematical
program and an algorithm based on SAT solvers for obtaining the optimal Pareto set. Since
the solution obtained using this approach is optimal, it could serve as reference for measuring
the quality of the solutions proposed by approximated methods. The evaluation revealed a
generally large runtime for the feature models. This fact prompted us to analyze the impact
of the number of products and number of features in runtime. We found a high correlation
in the first case and a low correlation in the second one. This means that the computation
time of the optimal Pareto front depends on the number of products defined by the feature
model.

One of the topics that we found of particular interest in this thesis is the proposal of a new
complexity measure to provide some knowledge about the difficulty of testing programs. Actu-
ally, the University of Malaga have considered to register this work as an international patent
(PCT/ES2015/000100).

10.2 Future Work

There are different future lines possible after the work contained in the thesis. Broadly speaking,
these lines are the continuation with the design of the Markov model of a program, the extension
of the feature model corpus and the group of multi-objective algorithms analyzed, the proposition
of trajectory search-based algorithm for the generation of test sequences, and a validation strategy
based on software testing techniques for the traffic light programs. Our future proposals in them
are as follows.

As to the continuation with the design of the Markov model of a program, we plan to improve
the representation of a program, but without losing its simplicity. We plan to advance in the
knowledge of the features of a program that occurs in a condition. The computation of the
probabilities associated to a concrete decision is a great challenge to improve our measure. In

172 10.2. FUTURE WORK

addition, we will take into account the data dependencies in the probabilities computed for the
Markov model. This fact will provide more precision in the transition probabilities. Besides that,
we plan to consider the amount of resources needed to execute different test cases, in particular
when loops are involved in the execution of a test case. We would also like to apply our complexity
measure to real-world software and compare the results with the real difficulty of testing the
program by an expert.

Our work opens up several research venues, which we plan to address as part of our future
work. One of them is the extension of the feature model corpus and the group of multi-objective
algorithms analyzed. Besides these objectives, our goal is to expand our study beyond pairwise
coverage (t ≥ 2), to integrate domain knowledge such as control flow information as an optimization
objective for test code generation, and to characterize when a particular multi-objective algorithm
performs better based, for example, on structural metrics of the feature models [24].

Moreover, an interesting research topic nowadays is the generation of test sequences. We have
proposed different approaches for the automatic generation of test sequences to be integrated in
the CTE XL professional tool. We need to collect more real scenarios for comparison purposes, this
is absolutely necessary when you are adding functionality to a professional tool. Although we have
obtained great results with the ACOts algorithm, we plan to propose a trajectory search-based
algorithm such as Simulated Annealing that has obtained great results in Combinatorial Testing
(Covering Arrays [200]) and might suit this problem.

Regarding the evaluation of the exact approach for the computation of the true Pareto front
in SPL, we found a high correlation with the number of products defined by the feature model of
a program. As a result of this finding our future work, we wants to streamline the mathematical
program representation in order to reduce the runtime of the algorithm. We observed that some
of the constraints can be redundant. For instance, features that are selected in all the products of
the product line do not need a variable since they are valid for any product. Similarly, there are
pairs of feature combinations, that are not valid according to the feature model and hence can be
eliminated [100]. We also noticed that removing some of the redundant constraints can increase
the runtime, while adding more constraints could help the SAT solver search for a solution. We
plan to study the right balance of both by reducing and augmenting constraints.

Finally, we also plan to apply the algorithms proposed in this thesis for solving real-world
instance problems. In concrete, we are interested in applying them for solving problems related
to the scheduling of traffic lights. We plan to propose a validation strategy for the traffic light
programs to be used by the human experts of Smart Mobility. We will propose the use of a traffic
feature model with priorities, which allows us not only to reduce the number of traffic scenarios
to test the available cycle programs, but also to generate the most important scenarios. A first
journal article following this research line is under review at the moment of writing.

Appendices

173

175

176

Appendix A

Publications Supporting this PhD

Thesis Dissertation

In this appendix, we present the set of scientific articles that have been published during the years
in which this thesis has been developed. These publications speak for the interest, validity, and
impact on the scientific community and literature of the work contained in this thesis, since they
have appeared in impact fora, and have been subjected to peer review by expert researchers.

International Journals indexed by ISI-JCR

[1] Ferrer, J., Kruse P. M., Chicano F., and Alba E. (2014). Search based algorithms for test
sequence generation in functional testing. Information and Software Technology.

[2] Ferrer, J., Chicano F., and Alba E. (2013). Estimating software testing complexity. Informa-
tion and Software Technology. 55, 2125 − 2139.

[3] Ferrer, J., Chicano F., and Alba E. (2012). Evolutionary algorithms for the multi-objective
test data generation problem. Software Practice and Experience 42, 1331 − 1362.

International Journals indexed by ISI-JCR under review

[4] Ferrer J. ,Garćıa-Nieto J., Chicano F., and Alba E. (2015). Intelligent Testing of Traffic Light
Programs: Validation in Smart Mobility Scenarios. Submitted to Mathematical Problems in
Engineering.

International Journals

[5] Ferrer, J., Chicano F., and Alba E. (2010). Correlation between static measures and code
coverage in evolutionary test data generation. International Journal of Software Engineering
and its Applications. 4, 57−79.

Book Chapters and LNCS Series

[6] R. Lopez-Herrejon, J. Ferrer, F. Chicano, A.Egyed, and E.Alba Evolutionary Computation
for Software Product Line Testing: An Overview and Open Challenges (to appear)- Book
chapter.

177

178

[7] Chicano, F., Ferrer J., and Alba E. (2011). Elementary Landscape Decomposition of the
Test Suite Minimization Problem. Third International Symposium, SSBSE 2011, Szeged,
Hungary, September 10−12, 2011, p.48−63.

International Conferences (Core A)

[8] Garca-Nieto J., Ferrer, J., and Alba E. (2014). Optimising Traffic Lights with Metaheuristics:
Reduction of Car Emissions and Consumption. Proceedings of the IEEE International Joint
Conference on Neural Networks (IJCNN 2014), Beijing, China, July 6−11, 2014, 48−54.

[9] Lopez-Herrejon, R. Erick, Ferrer J., Chicano F., Haslinger E. Nicole, Egyed A., and Alba E.
(2014). A parallel evolutionary algorithm for prioritized pairwise testing of software product
lines. Genetic and Evolutionary Computation Conference, GECCO ’14, Vancouver, BC,
Canada, July 12−16, 2014. p. 1255−1262.

[10] Lopez-Herrejon, R. E., Chicano F., Ferrer J., Egyed A., and Alba E. (2013). Multi-objective
Optimal Test Suite Computation for Software Product Line Pairwise Testing. IEEE Interna-
tional Conference on Software Maintenance, Eindhoven, The Netherlands, September 22−28,
2013. p. 404−407.

[11] Ferrer, J., Kruse P. M., Chicano F., and Alba E. (2012). Evolutionary algorithm for pri-
oritized pairwise test data generation. Genetic and Evolutionary Computation Conference,
GECCO ’12, Philadelphia, PA, USA, July 7−11, 2012. p. 1213−1220.

[12] Ferrer, J., Chicano F., and Alba E. (2009). Dealing with inheritance in OO evolutionary
testing. Genetic and Evolutionary Computation Conference, GECCO 2009, Proceedings,
Montreal, Qubec, Canada, July 8−12, 2009. p.1665−1672.

International Conferences (Core B, Core C, and non-Core)

[13] Lopez-Herrejon, R. Erick, Ferrer J., Chicano F., Egyed A., and Alba E. (2014). Comparative
analysis of classical multi-objective evolutionary algorithms and seeding strategies for pair-
wise testing of Software Product Lines. Proceedings of the IEEE Congress on Evolutionary
Computation, CEC 2014, Beijing, China, July 6−11, 2014. p. 387−396.

[14] Ferrer, J., Chicano F., and Alba E. (2011). Benchmark Generator for Software Testers.
Artificial Intelligence Applications and Innovations - 12th INNS EANN-SIG International
Conference, EANN 2011 and 7th IFIP WG 12.5 International Conference, AIAI 2011, Corfu,
Greece, September 15−18, 2011, Proceedings, Part II. p. 378−388.

[15] Ferrer, J., Chicano F., and Alba E. (2010). Measuring Testing Complexity. 2nd International
Symposium on Search Based Software Engineering, Benevento, Italy (Short paper online
URL: http://ssbse.org/2010/fastabstracts/ssbse2010 fastabstract 02.pdf)

National Conferences

[16] Ferrer, J., Alba, E., and Chicano F. (2015) Sistema Inteligente para la Recogida de Residuos
en las Ciudades basado en Predicciones de Llenado. Proceedings of the I Congreso Ciudades
Inteligentes, Madrid, March 24−25, 2015, p. 319−324

[17] Ferrer, J., Kruse P. M., Chicano F., and Alba E. (2015) Generación de secuencias de pruebas
funcionales con algoritmos bio-inspirados. X Congreso Español de Metaheursticas, Algorit-
mos Evolutivos y Bioinspirados (MAEB), Merida, February 4−6, 2015, p. 59−66.

APPENDIX A. PUBLICATIONS SUPPORTING THIS PHD THESIS DISSERTATION 179

[18] Ferrer, J., Garca-Nieto J., Alba E., and Chicano F. (2013). Validación Inteligente para la Sin-
cronización de Semáforos Basada en Feature Models. IX Congreso Espaol de Metaheursticas,
Algoritmos Evolutivos y Bioinspirados (MAEB), Albacete, September 17−20, p. 812−821.

[19] Ferrer, J., Chicano F., and Alba E. (2009). On the Correlation between Static Measures
and Code Coverage using Evolutionary Test Case Generation. Actas de los Talleres de las
JISBD, San Sebastián, September 8−9, vol 3, n 1, p.50−61.

Articles in CoRR - not reviewed

[20] Roberto E. Lopez-Herrejon, Javier Ferrer, Francisco Chicano, Evelyn Nicole Haslinger, Alexan-
der Egyed, and Enrique Alba. (2014) Towards a Benchmark and a Comparison Framework
for Combinatorial Interaction Testing of Software Product Lines. CoRR abs/1401.5367

[21] Roberto E. Lopez-Herrejon, Javier Ferrer, Francisco Chicano, Lukas Linsbauer, Alexander
Egyed, and Enrique Alba. (2014) A Hitchhiker’s Guide to Search-Based Software Engineering
for Software Product Lines. CoRR abs/1406.2823

180

Appendix B

Resumen en Español

B.1 Introducción

La mayoŕıa de los páıses dependen de sistemas complejos basados en computadores que gobiernan
las principales infraestructuras y servicios, aśı como la mayoŕıa de dispositivos electrónicos usados
diariamente. Consecuentemente, producir y mantener software es esencial para la sociedad actual,
lo que significa un importante desaf́ıo para la comunidad cient́ıfica. La ciencia de la computación
es un campo de investigación en expansión que involucra el entendimiento y diseño de los computa-
dores y su software. El principal objetivo de este campo es el estudio de los procesos algoŕıtmicos
automáticos que escalan para eliminar cuellos de botella. Uno de los más relevantes aspectos de
la investigación en computadores es el diseño y desarrollo de nuevos algoritmos eficientes capaces
de resolver problemas complejos en cada vez menos tiempo. Adicionalmente, la comunidad de
investigadores en este campo está determinada a enfrentar estos problemas que no pudieron ser
resueltos previamente.

Los problemas del mundo real son duros (en la mayoŕıa de casos NP-duros), que significa que
la complejidad del problema crece de forma exponencial con su tamaño. Cuando se usan técnicas
exactas, estas aseguran encontrar la solución óptima en problemas relativamente pequeños, pero
son extremadamente lentos en problemas medios y grandes. La mayoŕıa de los problemas del
mundo real tiene un espacio de búsqueda grande, a la vez que esátn sujetos a restricciones e
incertidumbres, aśı que son dif́ıciles de resolver por los algoritmos exactos. Con este objetivo en
mente, los investigadores han aplicado técnicas emergentes como las metaheuŕısticas, las cuales han
probado su utilidad enfrentando problemas duros. Los enfoques metaheuŕısticos son capaces de
proporcionar soluciones cuasi-óptimas en un tiempo moderado, aśı que ofrecen un buen compromiso
entre calidad de las soluciones y el ahorro de recursos, que es de hecho, el principal objetivo de las
compañ́ıas industriales.

La Ingenieŕıa del Software es una de las disciplinas de ingenieŕıa que se preocupa de todos los
aspectos de la producción de software, desde las etapas más tempranas de la especificación hasta
el mantenimiento cuando el software ya está en uso [192]. El desarrollo de software confiable es
un desaf́ıo clave para la industria del software, de hecho, se estima que alrededor de la mitad del
tiempo empleado en el desarrollo del proyecto software y más de la mitad de su coste se debe a
las pruebas del producto. La automatización de la generación de pruebas podŕıa reducir el coste
de todo el proyecto, esto explica porque tanto la industria del software como la academia están
interesados en las herramientas de pruebas automáticas. Como la generación de pruebas adecuadas

181

182 B.2. ORGANIZACIÓN DE LA TESIS

implica un coste computacional grande, los enfoques basados en búsqueda son esenciales para lidiar
con este problema.

En esta tesis aplicamos técnicas de búsqueda metaheuŕısticas para la optimización de proble-
mas derivados del proceso de automatización de pruebas, particularmente el problema de auto-
matización de la generación de datos de prueba para encontrar errores en el código fuente. Hay un
rango amplio de problemas de generación de datos de prueba, en este trabajo intentamos abarcar
ambos tipos de pruebas de software, de caja blanca aśı como de caja negra. En pruebas de caja
blanca, también llamadas pruebas estructurales, los ingenieros de pruebas requieren conocimiento
de cómo está implementado el software, en contraste en pruebas de caja negra o pruebas fun-
cionales, donde los ingenieros de pruebas se concentran en qué hace el software, en vez de cómo lo
hace.

Este es el contexto de este trabajo de tesis. Estamos determinados a proponer técnicas meta-
heuŕısticas para resolver las diferentes variantes de la generación de datos automatizada para soft-
ware. Analizamos las diferentes técnicas con el objetivo de obtener resultados óptimos en calidad
y coste, ambos aspectos muy importantes en el desarrollo software debido a la falta de recursos.
Debido al carácter intŕınseco hemos propuesto técnicas de optimización mono-objetivo para ma-
ximizar la calidad del conjunto de pruebas y técnicas multi-objetivo que consideran adicionalmente
el coste de las pruebas. Además, pensamos que para comprender y resolver un problema necesi-
tamos extraer todo el conocimiento posible. Consecuentemente proponemos una medida nueva de
complejidad para predecir, de una mejor manera, la dificultad de probar una pieza de código con
el objetivo de ayudar a los gestores de los proyectos a estimar el esfuerzo necesario para llevar a
cabo esta importante tarea del desarrollo del software.

B.2 Organización de la Tesis

Este documento de tesis se estructura en cuatro partes y varios apéndices. La primera parte se
dedica a la presentación de los fundamentos de este trabajo, se describen las pruebas de software,
los problemas que afrontamos, las técnicas de optimización metaheuŕısticas, los algoritmos concre-
tos usados, y la metodoloǵıa empleada para validar los resultados numéricos. La segunda y tercera
parte se dedican a los paradigmas de pruebas de software, que son las pruebas estructurales y
funcionales. En la segunda parte trabajamos el problema de generación de pruebas automáticas,
proponemos una mediad de complejidad nueva para estimar la dificultad de probar una pieza
de código y para finalizar tratamos el problema de generación de pruebas con dos objetivos, con-
siderando la calidad del conjunto de pruebas y el coste de las mismas como igualmente importantes.
La tercera parte explora las versiones de pruebas de caja negra del problema de la generación de
pruebas, donde no tenemos información estructural del código. En esta parte lidiamos con dos
representaciones diferentes de los modelos de programa, los árboles de clasificación y los modelos
de caracteŕısticas asociados a las ĺıneas de productos software. La cuarta parte resume las princi-
pales conclusiones arrojadas a lo largo de este disertación. Al final del volumen se encuentran los
apéndices.

• Parte I. Fundamentos de las Pruebas de Software y las Técnicas Metaheuŕısticas

– El Caṕıtulo 2 presenta los principales conceptos de las pruebas de software, enfatizando
las pruebas estructurales y funcionales, los dos paradigmas principales de las pruebas
de software. Después de eso, los problemas enfrentados en esta tesis son formalizados
para proveer al lector los detalles exactos del problemas que se está resolviendo.

APPENDIX B. RESUMEN EN ESPAÑOL 183

– El Caṕıtulo 3 contiene una descripción general del campo de investigación de la opti-
mización con metaheuŕısticas, incluyendo una clasificación de las principales técnicas.
La última parte de esta caṕıtulo se concentra en el procedimiento de evaluación de
los resultados, incluyendo indicadores de calidad y la validación estad́ıstica estándar
empleada en los experimentos.

– El Caṕıtulo 4 presenta la versión de los algoritmos usados a lo largo de este trabajo
de tesis, incluyendo técnicas mono-objetivo y multi-objetivo. Los detalles de imple-
mentación espećıficos (como los operadores de mutación o recombinación) de cada pro-
blema (o representación), se posponen a los caṕıtulos correspondientes.

• Parte II. Pruebas Estructurales

– El Caṕıtulo 5 se enfrenta a la herencia para la generación de datos de prueba en código
orientado a objetos. Este caṕıtulo propone una medida de distancia para el calculo
de la distancia de rama en la presencia del operador instanceof y dos operadores de
mutación basados en esta distancia. Además de estas propuestas, hemos llevado a cabo
un conjunto de experimentos para contrastar nuestra hipótesis comparando contra una
mutación uniforme.

– El Caṕıtulo 6 contiene una de las investigaciones más interesantes llevadas a cabo en
esta tesis, la definición de una nueva medida de complejidad llamada “Branch Coverage
Expectation”. Esta medida, basada en un modelo de Markov del programa, tiene como
objetivo proporcionar conocimiento sobre la dificultad de probar programas. Después
de esto, se evalúa con una validación teórica y experimental de la medida usando el
marco de trabajo propuesto por Kitchenham et al. [120].

– El Caṕıtulo 7 comienza describiendo dos enfoques para abordar el problema de la ge-
neración de datos de prueba multi-objetivo. Se analiza el rendimiento de un enfoque
directo multi-objetivo frente a la aplicación de un algoritmo mono-objetivo seguido de
una selección de pruebas. Los resultados previos de la literatura sólo se centran en
la cobertura del programa mientras que el coste de oráculo ha sido ignorado en los
principales estudios previos, por eso nosotros śı que lo consideramos en este trabajo.

• Parte III. Pruebas Funcionales

– El Caṕıtulo 8 explora una serie de cuestiones relacionadas con el método de clasificación
con árbol. Analizamos la priorización de datos de prueba para probar primero las
funcionalidades más importantes. Después, definimos un modelo completo (método de
clasificación con árbol extendido) que puede ser usado para la descripción de todos los
aspectos necesarios para la generación de secuencia de pruebas. Nuestras propuestas
han sido implementadas exitosamente en la herramienta profesional CTE XL, cuestión
que da valor adicional a este trabajo.

– El Caṕıtulo 9 aplica las técnicas metaheuŕısticas a las ĺıneas de productos software. A
lo largo de este caṕıtulo completamos varios huecos existentes en la literatura de ĺıneas
de productos software: comparamos un algoritmos genético paralelo con un algoritmo
del estado del arte con criterio de cobertura de pares como criterio de adecuación, ex-
ploramos el efecto de diferentes estrategias de seeding y proponemos algoritmos clásicos
multi-objetivo y un algoritmo exacto, para computar el frente de Pareto verdadero con-
siderando la calidad del conjunto de pruebas y el coste de oráculo.

184 B.3. FUNDAMENTOS

• Parte IV. Conclusiones

– El Caṕıtulo 10 contiene una revisión global de este trabajo de tesis y revisita las prin-
cipales conclusiones extráıdas. Los objetivos de la tesis y las principales contribuciones
son discutidas en vista de los resultados obtenidos. Finalmente, las lines de trabajo de
investigación futura son discutidas someramente.

• Apéndices

– Apéndice A presenta el conjunto de trabajos publicados durante los años en que esta
tesis se ha llevado a cabo.

– Apéndice B es este resumen del volumen en español.

B.3 Fundamentos

En esta sección se explican unas breves nociones fundamentales de las pruebas de software y sobre
las técnicas metaheuŕısticas.

B.3.1 Pruebas de software

La generación automática de datos de prueba consiste en obtener un conjunto de pruebas adecuadas
sin intervención, por tanto se descarga al ingeniero de la labor de la selección de este conjunto de
pruebas. En consecuencia, esta automatización del proceso requiere la selección de esos datos de
prueba adecuados por parte de un algoritmo. Esta decisión es un problema de optimización donde
el algoritmo tiene que escoger la mejor solución (conjunto de pruebas) de entre un número elevado
de soluciones posibles, y que puede ser formulado como un problema de búsqueda [47].

Existen dos paradigmas de pruebas complementarios que se basan en el conocimiento que
el ingeniero de pruebas tiene de la estructura interna del programa: pruebas estructurales (caja
blanca) y pruebas funcionales (caja negra). El paradigma estructural usa la información sobre cómo
esta construido el software para la generación de las pruebas [113]. Esta información estructural
generalmente viene desde el grafo de control de flujo del programa, en particular de las estructuras
de control (decisiones) que dan lugar a las diferentes ramas del programa. Esta técnica se usa
t́ıpicamente durante las etapas tempranas de la fase de pruebas donde el programador esta a cargo
de la ejecución del conjunto de pruebas [215]. Por otro lado, las pruebas funcionales estan diseñadas
sin información de la estructura del código fuente [38,39]. En este paradigma el diseño de los casos
de pruebas se basa en el comportamiento externo del software. Esta técnica se usa generalmente
cuando el software fue implementado de forma externa, el código fuente no está disponible, o se
está probando el sistema completo.

B.3.2 Metaheuŕısticas

Las metaheuŕısticas son estrategias de alto nivel que combinan distintos métodos para explorar
el espacio de búsqueda correspondiente a un problema de optimización. Suelen definirse a modo
de plantillas que se deben rellenar empleando información espećıfica del problema sobre el cual
han de aplicarse (representación de las soluciones, operadores, etc.) y son capaces de abordar
problemas cuyos espacios de búsqueda son muy extensos, para los cuales, la utilización de otro tipo
de técnicas como las exactas, son inabordables por el coste computacional. Las metaheuŕısticas
pueden clasificarse dentro de dos categoŕıas, según el número de soluciones que manejan de forma

APPENDIX B. RESUMEN EN ESPAÑOL 185

simultánea: las basadas en trayectoria, que tienen una única solución y las basadas en población,
que manejan un conjunto de soluciones, o población, de forma simultánea. Algunas metaheuŕısticas
conocidas del primer tipo son el recocido simulado (SA), la búsqueda tabú (TS), búsqueda greedy
aleatoria adaptativa (GRASP), la búsqueda de vecindario variable (VNS), o la búsqueda local
iterada (ILS). Algunos ejemplos conocidos del segundo tipo son los algoritmos evolutivos (EA),
los algoritmos de estimación de distribuciones (EDA), la búsqueda dispersa (SS), la optimización
por colonia de hormigas (ACO) y la optimización por cúmulos de part́ıculas (PSO). En esta tesis
nos hemos centrado en el diseño y análisis de técnicas metaheuŕıstica poblacionales para optimizar
problemas con uno o múltiples objetivos.

En optimización multi-objetivo se busca optimizar varios objetivos. Usualmente, dichas fun-
ciones están en conflicto entre śı, es decir, una mejora en uno de los objetivos supone un em-
peoramiento en alguno de los otros. Por esto, y a diferencia de la optimización mono-objetivo,
el óptimo no es una única solución, sino un conjunto de soluciones conocido como el óptimo de
Pareto, el cual al ser representado en el espacio de objetivos da lugar al llamado frente de Pareto.
Cada solución de este conjunto es óptima en el sentido de que no es posible mejorar ninguno de
sus objetivos sin empeorar alguno de los demás. A las soluciones pertenecientes al mismo se les
suele conocer como soluciones no-dominadas. El objetivo de la optimización multi-objetivo es, por
tanto, la obtención del conjunto de soluciones Pareto óptimas. No obstante, esto no siempre es
factible; en ese caso el objetivo pasa a ser el obtener una aproximación suficientemente buena del
conjunto, es decir, un conjunto de soluciones tal que se cumplen dos propiedades: cercańıa al ver-
dadero frente de Pareto, y diversidad de las soluciones a lo largo del frente. Una de las formas de
medir la calidad de los frentes generados es mediante el uso de indicadores de calidad, tales como
el Hypervolume [236], Spread [57], Generational Distance [207], Epsilon (Multiplicative) [237] o
empirical attainment function [121].

B.4 Problemas Abordados en esta Tesis

En las pruebas de software el ingeniero selecciona un conjunto de configuraciones iniciales para
probar un programa, y a continuación se comprueba el comportamiento del software con estas.
Para asegurar la corrección de un programa con esta técnica, seŕıa necesario ejecutar el programa
con todas las posibles configuraciones, pero esto es inviable en la práctica. La alternativa consiste
en probar un programa con un conjunto representativo y adecuado de datos o configuraciones de
prueba. El problema de la generación de datos de prueba consiste entonces en la generación de este
subconjunto de pruebas que para ser adecuado debe maximizar el criterio de cobertura escogido.
En este trabajo nos hemos centrado en la cobertura de ramas, que es el criterio más popular en
las pruebas estructurales.

Como hemos comentado, el ingeniero debe comprobar si el comportamiento del sistema software
en pruebas es correcto o no, a este esfuerzo se denomina coste de oráculo. Por tanto, otro objetivo
importante es la minimización de este coste, que se puede llevar a cabo si minimizamos el tamaño
del conjunto de pruebas. Consecuentemente, es obligatorio el balance entre cobertura y el coste de
obtener esa cobertura. Como el coste de la fase de pruebas depende del tamaño del conjunto de
pruebas, podemos definir la versión multi-objetivo del problema de generación de datos de prueba
como un problema donde queremos maximizar la cobertura y minimizar el tamaño del conjunto
de pruebas.

En cuanto a las pruebas funcionales, vamos a utilizar el enfoque de pruebas combinatorias de
interacción [53]. Este es un enfoque efectivo para la detección de fallos causados por combinaciones
concretas de componentes o entradas del sistema. Generalmente esta tarea consiste en generar,

186
B.5. GENERACIÓN DE DATOS DE PRUEBA EN PROGRAMAS ORIENTADOS A

OBJETOS

como poco, todas las posibles combinaciones de los valores de los parámetros o caracteŕısticas (este
problema es NP-duro). El criterio de cobertura más popular utilizado en pruebas combinatorias
es de pares (pairwise), donde todas las parejas de valores de diferentes parámetros debe estar
presentes en al menos un caso de prueba.

La priorización de los casos de prueba pueden revelar fallos en etapas tempranas de la fase
de pruebas, lo que es muy importante para reducir el coste de una detección tard́ıa de un fallo.
Para obtener un conjunto de pruebas ordenado por prioridades, asignamos a las diferentes carac-
teŕısticas o valores de parámetros un peso según su importancia. A mayor peso, mayor importancia
del elemento. Estos pesos nos van a servir para guiar la generación, para cubrir los elementos más
importantes en primer lugar. Además, ya que utilizamos el criterio de cobertura de pares, debere-
mos asignar un peso a cada par, que es calculado como el producto de los respectivos pesos de los
elementos. Por tanto, el problema de la generación de un conjunto de pruebas priorizado consiste
en encontrar el conjunto de prueba que maximice la cobertura obtenida teniendo en cuenta los
pesos de los pares de elementos.

Finalmente, durante esta tesis también hemos abordado el problema de la generación de secuen-
cias de pruebas. Tradicionalmente las pruebas se ejecutan aisladamente, sin embargo, puede haber
operaciones asociadas con transiciones en los sistemas software, y ejecutando esas transiciones es
la única manera de comprobar el correcto funcionamiento del sistema. Por tanto, estamos intere-
sados en comprobar los diferentes estados del sistema software pero también todas las posibles
transiciones. En el problema de generación de secuencias de pruebas utilizamos dos criterios de
cobertura a maximizar, la cobertura de estados y la cobertura de transiciones. En ambos casos,
intentamos también que el conjunto de pruebas generadas en la secuencia tenga el tamaño mı́nimo
posible.

La generación automática de datos de prueba es uno de los temas más estudiados en la ingenieŕıa
del software [95, 147], y los algoritmos evolutivos son las técnicas más utilizadas, por ello a esta
unión se la denominan pruebas evolutivas.

B.5 Generación de Datos de Prueba en Programas Orien-

tados a Objetos

En este trabajo nos hemos centrado en un aspecto esencial del software orientado a objetos, la
herencia. Proponemos un enfoque para guiar mejor la búsqueda de datos de prueba en el contexto
de las pruebas evolutivas sobre software orientado a objetos. Particularmente, proponemos una
medida de distancia para calcular la distancia de rama en presencia del operador instanceof del
lenguaje Java. En la Figura B.1 ilustramos el cálculo de la distancia entre las clases ArrayList y
TreeSet o HashSet. En este caso tenemos dos pasos de jerarqúıa (hierarchical walk) y otros dos
pasos de aproximación (approximation walk). De esta manera podemos medir la distancia entre la
clase propuesta y la clase objetivo del operador instanceof.

Adicionalmente hemos propuesto dos operadores de mutación basados en esta distancia definida,
uno de ellos adaptativo. En los experimentos comparamos la mutación uniforme, la mutación
basada en esta distancia, y un operador adaptativo cuyo comportamiento es un caso intermedio
de los otros dos. Los resultados obtenidos en los experimentos nos indican que el ranking no
depende del factor de adaptación de la mutación, sino del grado de anidamiento máximo que
tienen los programas y el número de condiciones atómicas por decisión. Este parámetro que
modifica el comportamiento del operador adaptativo si influye en los programas más complejos,
como esperábamos.

APPENDIX B. RESUMEN EN ESPAÑOL 187

 c

 c’

r

Hierarchical

walk

Approximation

walks

Collection

List

Set

AbstractList

ArrayList

AbstractCollection

TreeSet HashSet

AbstractSet

 t1 t2

d=2a+2h

Figure B.1: Ejemplo de distancia entre una clase y un interfaz.

B.6 Estimando la Complejidad de Probar un Programa

Estudiamos la complejidad de probar un programa desde un punto de vista original: un programa
es más complejo si es más dif́ıcil probarlo automáticamente. Aśı que, definimos una medida para
calcular la cobertura de ramas esperada, en inglés “Branch Coverage Expectation” (BCE), que
proporciona conocimientos sobre la dificultad de probar programas. Los cimientos de esta medida
están basados en el modelo de Markov del programa. Este modelo nos proporciona la base teórica
que necesitamos. En nuestro caso construimos este modelo de Markov a partir del grafo de control
de flujo del programa, donde los estados del modelo de Markov son los bloques básicos (BB) del
código del programa.

Definimos BCE como la media de los valores de la esperanza matemática de atravesar de un
bloque básico a otro E[BBi, BBj] con un valor inferior a 1/2. Si un programa tiene un valor
bajo de BCE, entonces un generador de pruebas aleatorio requeriŕıa un número grande de casos
de prueba para obtener cobertura total. La medida BCE esta delimitada en el intervalo (0, 1/2].
Formalmente, sea A un conjunto de ejes con E[BBi, BBj] < 1/2:

A =

{
(i, j)

∣∣∣∣E[BBi, BBj] <
1

2

}
. (B.1)

Entonces, BCE se define como:

BCE =
1

|A|

∑

(i,j)∈A

E[BBi, BBj]. (B.2)

Basado en este modelo del programa, también podemos proporcionar una estimación del número

188 B.7. GENERACIÓN DE DATOS DE PRUEBAS MULTI-OBJETIVO

de casos de prueba aleatorios que deben ser generados para obtener un porcentaje de cobertura
concreta. Este resultado se obtiene como la inversa del valor de BCE.

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

Number of Test Cases

B
ra

nc
h

C
ov

er
ag

e

Random Generator
Theoretical Prediction

Figure B.2: Cobertura frente a número de casos de prueba de un generador aleatorio y nuestra
modelo de estimación

En la Figura B.2 mostramos la cobertura teórica esperada calculada con nuestro enfoque junto
con la cobertura real obtenida en 30 ejecuciones independientes de un generador de pruebas aleato-
rio. Podemos comprobar en la figura que nuestra estimación teórica es similar a los resultados
reales.

El análisis de los experimentos indican que esta medida propuesta esta más correlacionada con
la cobertura que las otras medidas de código estáticas estudiadas. Esto significa que este es un
buen método para estimar la dificultad de probar un programa. Pensamos que, apoyado por los
resultados, esta media es también útil para predecir el comportamiento de cualquier generador de
datos de prueba automático.

B.7 Generación de Datos de Pruebas Multi-objetivo

Los trabajos previos en la literatura se han centrado sólo en la cobertura del código, mientras que
el coste de oráculo es un coste significativo que ha sido ignorado en la mayoŕıa de los estudios.
Nosotros proponemos dos enfoques diferentes para la resolución de este problema teniendo en
cuenta estos dos objetivos. El primero es un enfoque multi-objetivo directo y la segunda es la
aplicación de un algoritmo mono-objetivo seguido de la selección de casos de prueba.

Nuestro estudio abarca cinco algoritmos multi-objetivo (MOCell, NSGA-II, SPEA2, PAES, y
un algoritmo aleatorio multi-objetivo) y tres algoritmos mono-objetivo (GA, ES , y un algoritmo

APPENDIX B. RESUMEN EN ESPAÑOL 189

aleatorio mono-objetivo). Los experimentos se han realizado con 800 programas sintéticos genera-
dos por nuestro generador de programas que es totalmente parametrizable para obtener programas
realistas, asegurando que el 100% de cobertura es posible. Adicionalmente los resultados son
validados con 13 programas reales extráıdos de la literatura relacionada.

Table B.1: Ranking de algoritmos acorde a la cobertura e hypervolume máximo agrupados por
grado de anidamiento.

Cobertura
Rank ND 1 ND 2 ND 3 ND 4 All

1 GA GA GA GA GA
2 ES ES ES ES ES
3 MOCell MOCell MOCell NSGA-II MOCell
4 NSGA-II NSGA-II NSGA-II MOCell NSGA-II
5 SPEA2 SPEA2 SPEA2 SPEA2 SPEA2
6 PAES PAES PAES PAES PAES
7 RNDMono RNDMono RNDMono RNDMono RNDMono
8 RNDMulti RNDMulti RNDMulti RNDMulti RNDMulti

Hypervolume
Rank ND 1 ND 2 ND 3 ND 4 All

1 MOCell MOCell GA GA GA
2 NSGA-II GA MOCell MOCell MOCell
3 ES NSGA-II NSGA-II ES ES
4 GA ES ES NSGA-II NSGA-II
5 PAES SPEA2 SPEA2 SPEA2 SPEA2
6 SPEA2 PAES PAES PAES PAES
7 RNDMono RNDMono RNDMono RNDMono RNDMono
8 RNDMulti RNDMulti RNDMulti RNDMulti RNDMulti

En términos de convergencia hacia el frente de Pareto óptimo, el GA y MOCell han sido los
mejores resolutores en la comparación. MOCell ha obtenido los mejores frentes para programas
con grado de anidamiento 1 y 2, valores muy comunes en la práctica. Por otro lado, el GA es
el mejor algoritmo para enfrentar programas con alto grado de anidamiento, atendiendo a los
indicadores hypervolume y media de cobertura máxima. Adicionalmente, queremos destacar que
ambos enfoques son buenos reduciendo el número de casos de prueba necesarios para obtener cierta
cobertura. El coste de oráculo puede ser reducido significativamente ya que el enfoque mono-
objetivo sólo necesita el 19.32% del ĺımite superior de casos de prueba necesarios para obtener
la cobertura máxima, mientras que el enfoque totalmente multi-objetivo es incluso mejor, sólo
necesitando un 15.12% de los casos de prueba. Esta mejora justifica el uso de nuestro enfoque para
lidiar con el problema de la generación de datos de prueba multi-objetivo.

B.8 Pruebas Combinatorias usando el Método de Clasifi-

cación de Árboles

En las pruebas funcionales no existe una representación estándar del programa a probar. Una de
ellas es la clasificación con árboles, cuyo método asociado se basa en el método de particionado
en categoŕıas [167]. Este enfoque para pruebas combinatorias particiona el sistema bajo pruebas
en parámetros y estos a su vez se separan con valores disjuntos. En este trabajo enfrentamos el
problema de priorización de la generación de datos de prueba con criterio pairwise. Comparamos
cinco enfoques diferentes, tres de ellos propuestos por nosotros. Hemos realizado experimentos en 32
escenarios diferentes y para distintos pesos, lo que hace nuestro estudio significativo. Tras analizar

190 B.9. LÍNEAS DE PRODUCTOS SOFTWARE

estos experimentos, el algoritmo genético propuesto mejora a los demás algoritmos en la mayoŕıa
de escenarios, es la mejor opción cuando tenemos restricciones de tiempo o la ejecución de los
casos de prueba es costosa. Pero, si el enfoque genético no consigue unos resultados satisfactorios,
podŕıamos usar el algoritmo ávido ya que obtiene buenos resultados en poco tiempo. Finalmente,
si el conjunto de pruebas ya se ha calculado, podŕıamos usar el enfoque que re-ordena las pruebas
para ejecutar en primer lugar los casos de prueba más importantes.

Un valor añadido de nuestro trabajo es que hemos implementado nuestras propuestas siguiendo
las especificaciones de una herramienta de pruebas funcionales profesional llamada CTE XL. Sin
embargo, la generación de secuencias no estaba disponible en la herramienta. Por esto, una de
nuestras contribuciones es la definición de una extensión del método de clasificación por árbol para
añadir transiciones al modelo. Omitimos de este resumen la definición formal del modelo completo
por su extensión. Podemos asegurar que los beneficios del uso de secuencias de pruebas son claros,
podemos ahorrar costes y tiempo por ejecutar todos las pruebas secuencialmente ya que la prueba
anterior sitúa el sistema software en el estado adecuado para probar la siguiente funcionalidad.
Presentamos dos metaheuŕısticas diferentes para la optimización de la generación de secuencias de
pruebas. El primero es un algoritmo genético (GTSG) con operador de memoria, el cual nos permite
ahorrar memoria al evaluar las soluciones candidatas, mientras que también permite calcular las
soluciones más rápidamente que sin el operador. La segunda propuesta es un algoritmo de colonias
de hormigas (ACOts), particularmente proponemos una variante del algoritmo ACOhg [3]. En
los experimentos comparamos nuestras propuestas con un algoritmo ávido determinista del estado
del arte en 12 modelos de programas diferentes extráıdos de la literatura. Después de analizar las
soluciones obtenidas por los tres algoritmos, podemos concluir que los enfoques metaheuŕısticos
son significativamente mejores que el algoritmos determinista para los programas más grandes,
especialmente el algoritmos ACOts.

B.9 Ĺıneas de Productos Software

A lo largo de esta tesis hemos completado huecos en la literatura de pruebas funcionales, particu-
larmente podemos destacar nuestras contribuciones en la literatura de ĺıneas de productos software.
Nos hemos enfrentado al problema de generación de datos de pruebas priorizados por pares, des-
pués hemos utilizado técnicas multi-objetivo aplicadas a las pruebas de ĺıneas de productos, y
finalmente presentamos un algoritmo exacto para computar frentes óptimos de Pareto.

Las ĺıneas de productos software se pueden representar por medio de un modelo de carac-
teŕısticas (feature model) el conjunto total de productos viables. Por tanto, queremos probar
los productos más representativos en primer lugar, siguiendo un criterio de adecuación de pares.
Hemos evaluado el comportamiento de un algoritmo genético para la generación de pruebas en
un total de 235 modelos de caracteŕısticas usando diferentes tipos de priorización de productos.
En nuestra comparación evaluamos nuestra propuesta contra el algoritmo pICPL, un algoritmo
ávido, en un total de 79,800 ejecuciones independientes. Nuestro análisis muestra que el algoritmo
genético genera conjuntos de pruebas de menor tamaño.

También estudiamos el uso de algoritmos evolutivos multi-objetivo aplicados a las pruebas
pairwise de ĺıneas de productos. Seleccionamos un conjunto amplio de algoritmos multi-objetivo
(NSGA-II, SPEA2, MOCell, PAES, y un algoritmo aleatorio) para estudiar el impacto de las
estrategias de seeding. Nuestra evaluación muestra uńıvocamente que el seeding con conocimiento
del problema produce una mejora significativa en resultados y en tiempo. Conseguimos resultados
similares en calidad con NSGA-II, SPEA2 y MOCell, mientras que PAES y el algoritmo aleatorio
son significativamente peores.

APPENDIX B. RESUMEN EN ESPAÑOL 191

Figure B.3: Tiempo (escala logaŕıtmica) requerido para encontrar el frente óptimo de Pareto frente
al número de productos definidos por los modelos de caracteŕısticas.

Finalmente hemos propuesto un algoritmo exacto para computar el frente óptimo de Pareto
para el problema de generación de datos de pruebas por pares en ĺıneas de productos. Definimos
un programa 0-1 lineal, que junto con un algoritmo basado en resolutores SAT, es capaz de obtener
frentes óptimos de Pareto. Construir una solución óptima nos permita tener una referencia para
medir la calidad de las soluciones obtenidas por los métodos aproximados. La evaluación revela que
nuestro enfoque exacto tiene un tiempo de ejecución bastante alto. Este hecho nos lleva a analizar
el impacto del número de productos y caracteŕısticas definidas por el modelo de caracteŕısticas en
el tiempo de ejecución del algoritmo. Como resultado, en la Figura B.3 ilustramos que existe una
alta correlación del tiempo de ejecución con el número de productos.

B.10 Conclusiones

Esta tesis propone una variedad de contribuciones al campo de pruebas evolutivas. Hemos abar-
cados un amplio rango de aspectos relativos a las pruebas de programas: código fuente proced-
imental y orientado a objetos, paradigmas estructural y funcional, problemas mono-objetivo y
multi-objetivo, casos de prueba aislados y secuencias de pruebas, y trabajos teóricos y experimen-
tales. En relación a los análisis llevados a cabo, hemos puesto énfasis en el análisis estad́ıstico de
los resultados para evaluar la significancia práctica de los resultados. En resumen, las principales
contribuciones de la tesis son:

1. Definición de una nueva medida de distancia para el operador instanceof en
programas orientados a objetos. En este trabajo nos hemos centrado en un aspecto rela-
cionado con el software orientado a objetos, la herencia, para proponer algunos enfoques que
pueden ayudar a guiar la búsqueda de datos de prueba en el contexto de las pruebas evoluti-
vas. En particular, hemos propuesto una medida de distancia para computar la distancia de
ramas en presencia del operador instanceof en programas Java. También hemos propuesto
dos operadores de mutación que modifican las soluciones candidatas basadas en la medida

192 B.10. CONCLUSIONES

de distancia definida. Adicionalmente a las propuestas algoŕıtmicas, hemos llevado a cabo
un conjunto de experimentos para chequear nuestra hipótesis. Primero, hemos analizado los
parámetros del algoritmo para seleccionar la mejor configuración. Después de eso, compara-
mos nuestros operadores con la mutación uniforme. Una de las principales conclusiones de
este trabajo es que la dificultad de probar un programa depende del número de condiciones
atómicas y del grado de anidamiento.

2. Definición de una nueva medida de complejidad llamada “Branch Coverage Ex-
pectation”. En este trabajo nos enfrentamos a la complejidad de pruebas desde un punto
de vista original: un programa es más complejo si es más dif́ıcil de probar de forma au-
tomática. Consecuentemente, definimos la “Branch Coverage Expectation” para propor-
cionar conocimiento sobre la dificultad de probar programas. La fundación de esta medida se
basa en el modelo de Markov del programa. El modelo de Markov proporciona fundamentos
teóricos. El análisis de esta medida indica que esta más correlacionada con la cobertura de
rama que las otras medidas de código estáticas. Esto significa que esto es un buen modo de
estimar la dificultad de probar un programa.

3. Predicción teórica del número de casos de prueba necesarios para cubrir un
porcentaje concreto de un programa. Nuestro modelo de Markov del programa puede
ser usado para proporcionar una estimación del número de casos de prueba necesarios para
cubrir un porcentaje concreto del programa. Hemos comparado nuestra predicción teórica
con la media de las ejecuciones reales de un generador de datos de prueba. Este modelo
puede ayudar a predecir la evolución de la fase de pruebas, la cual consecuentemente puede
ahorrar tiempo y coste del proyecto completo. Esta predicción teórica podŕıa ser también
muy útil para determinar el porcentaje del programa cubierto dados un número de casos de
prueba.

4. Propuesta de enfoques para resolver el problema de generación de datos de
prueba multi-objetivo. En ese caṕıtulo estudiamos el problema de la generación multi-
objetivo con el fin de analizar el rendimiento de un enfoque directo multi-objetivo frente a
la aplicación de un algoritmo mono-objetivo seguido de una selección de casos de prueba.
La fase experimental se desarrolla utilizando 800 programas sintéticos en los cuales se puede
conseguir cobertura total, junto con una validación con 13 programas reales. Hemos evalu-
ado cuatro algoritmos multi-objetivo (MOCell, NSGA-II, SPEA2, y PAES) y dos algoritmos
mono-objetivo (GA y ES), y dos algoritmos aleatorios. En términos de convergencia haćıa
el frente de Pareto óptimo, GA y MOCell han sido los mejores resolutores en nuestra com-
paración. Queremos destacar que el enfoque mono-objetivo, donde se ataca cada rama por
separado, es más efectivo cuando el programa tiene un grado de anidamiento alto.

5. Comparativa de diferentes estrategias de priorización en ĺıneas de productos y
árboles de clasificación. En el contexto de pruebas funcionales hemos tratado el tema
de la priorización de casos de prueba con dos representaciones diferentes, modelos de ca-
racteŕısticas que representan ĺıneas de productos software y árboles de clasificación. Hemos
comparado cinco enfoques relativos al método de clasificación con árboles y dos relativos a
ĺıneas de productos, cuatro de ellos propuestos por nosotros. Los resultados nos indican que
las propuestas para ambas representaciones basadas en un algoritmo genético son mejores
que el resto en la mayoŕıa de escenarios experimentales, es la mejor opción cuando tenemos
restricciones de tiempo o coste.

APPENDIX B. RESUMEN EN ESPAÑOL 193

6. Definición de la extensión del método de clasificación con árbol para la generación
de secuencias de pruebas. Hemos definido formalmente esta extensión para la generación
de secuencias de pruebas que puede ser útil para la industria y para la comunidad investi-
gadora. Sus beneficios son claros ya que indudablemente el coste de situar el artefacto bajo
pruebas en el siguiente estado no es necesario, a la vez que reducimos significativamente el
tamaño de la secuencia utilizando técnicas metaheuŕısticas. Particularmente nuestra propu-
esta basada en colonias de hormigas es el mejor algoritmo de la comparativa, siendo el único
algoritmo que alcanza la cobertura máxima para todos los modelos y tipos de cobertura.

7. Exploración del efecto de diferentes estrategias de seeding en el cálculo de frentes
de Pareto óptimos en ĺıneas de productos. Estudiamos el comportamiento de algorit-
mos clásicos multi-objetivo evolutivos aplicados a las pruebas por pares de ĺıneas de pro-
ductos. El grupo de algoritmos fue seleccionado para cubrir una amplia y diversa gama
de técnicas. Nuestra evaluación indica claramente que las estrategias de seeding ayudan
al proceso de búsqueda de forma determinante. Cuanta más información se disponga para
crear esta población inicial, mejores serán los resultados obtenidos. Además, gracias al uso
de técnicas multi-objetivo podemos proporcionar un conjunto de pruebas adecuado mayor o
menor, en resumen, que mejor se adapte a sus restricciones económicas o tecnológicas.

8. Propuesta de técnica exacta para la computación del frente de Pareto óptimo en
ĺıneas de productos software. Hemos propuesto un enfoque exacto para este cálculo en el
caso multi-objetivo con cobertura paiwise. Definimos un programa lineal 0-1 y un algoritmo
basado en resolutores SAT para obtener el frente de Pareto verdadero. La evaluación de los
resultados nos indica que, a pesar de ser un fantástico método para el cálculo de soluciones
óptimas, tiene el inconveniente de la escalabilidad, ya que para modelos grandes el tiempo
de ejecución sube considerablemente. Tras realizar un estudio de correlaciones, confirmamos
nuestras sospechas, existe una alta correlación entre el tiempo de ejecución y el número de
productos denotado por el modelo de caracteŕısticas del programa.

Uno de los temas que encontramos de mayor interés en esta tesis doctoral es la propuesta de una
nueva medida de complejidad para proporcionar cierto conocimiento sobre la dificultad de probar
un programa. En realidad, la Universidad de Málaga ha considerado este trabajo como susceptible
de ser protegido con el registro de una patente internacional provisional (PCT/ES2015/000100).
Como trabajo futuro planeamos avanzar en el diseño del modelo de Markov de un programa, pero
sin perder su simplicidad. Además pensamos mejorar la estimación que realizamos cuando los
bucles se ejecutan un número indeterminado de veces.

Nuestro trabajo ha abierto varias v́ıas de investigación, las cuales planteamos abordar en un
futuro próximo. Una de ellas es la generación de secuencias, donde hemos propuesto diferentes
enfoques susceptibles de integrarse en una herramienta de pruebas funcionales comercial llamada
CTE XL. Vamos a recabar más modelos reales para mejorar las comparaciones, ya que esta va-
lidación es esencial cuando se trabaja con un producto comercial. Aunque hemos obtenido muy
buenos resultados con nuestro algoritmo de colonias de hormigas, queremos proponer un algoritmo
basado en trayectoria como el SA, que ha obtenido buenos resultados en el contexto de pruebas
combinatorias [200].

En relación al algoritmo exacto para el cálculo del frente de Pareto, queremos modificar el
programa lineal matemático para reducir el tiempo de ejecución del algoritmo. Hemos observado
que algunas restricciones pueden ser redundantes. Por ejemplo, las caracteŕısticas esenciales (core
features) presentes obligatoriamente en todos los productos, no necesitan variables, pues son válidas

194 B.10. CONCLUSIONES

en todos los productos. De la misma forma, hay pares de caracteŕısticas no válidas por definición
que se podŕıan eliminar [100]. Sin embargo, en pruebas preliminares hemos notado que eliminando
restricciones el tiempo de ejecución aumenta, mientras que el aumento de las restricciones podŕıa
ayudar al resolutor SAT a ser más rápido. En nuestro trabajo futuro queremos estudiar el balance
adecuado de restricciones para reducir el tiempo de ejecución.

Finalmente, planeamos aplicar las técnicas propuestas en estas tesis doctoral a la resolución
de problemas asociados a la movilidad inteligente (Smart Mobility). Concretamente, estamos
interesados en aplicarlos a la resolución del problema de configuraciones de la red semafórica.
Vamos a representar el tráfico como un sistema de alta variabilidad (con modelos de caracteŕısticas
software) y proponer una estrategia de pruebas y validación para los planes de semáforos. Queremos
introducir también el concepto de prioridad, para que se prueben primero las configuraciones
semafóricas más utilizadas. Por ejemplo, condiciones de seco en algunas ciudades y condiciones
más adversas en otras. De esta forma vamos a proporcionar una herramienta para los expertos en
movilidad de la ciudad. Un primer art́ıculo siguiendo esta ĺınea de investigación se encuentra en
revisión en el momento de esta escritura.

List of Tables

2.1 Sample feature sets of GPL feature model. 25

5.1 Average coverage obtained changing PM and Rf in the most complex programs. . 65
5.2 Average coverage obtained changing h and a in the most complex programs. 65

6.1 Stationary probabilities and the frequency of appearance of the basic blocks of the
piece of code shown In Figure 6.2. 79

6.2 Parameters of the two EAs used in the experimental section. 83
6.3 Range of values for some static measures from the two benchmarks of programs. . 86
6.4 Characteristics of the real programs. 86
6.5 The correlation coefficients among all the measures analyzed in the benchmark

100%CP . 88
6.6 The correlation coefficients among all the measures analyzed in the benchmark

¬100%CP . 88
6.7 Correlation coefficient of the most interesting static measures in the 100%CP bench-

mark. We highlight the highest value per row. 89
6.8 Correlation coefficient of the most interesting static measures in the ¬100%CP

benchmark. We highlight the highest value per row. 89
6.9 Relationship between the most important static measures and the average branch

coverage for all the algorithms. We highlight the highest value of correlation for
each algorithm and benchmark. 90

6.10 Relationship between the nesting degree and the average coverage for all the algo-
rithms. The standard deviation is shown in subscript. We highlight the highest
values of branch coverage for each algorithm and benchmark. 92

6.11 Static measures for a representative program. 95

7.1 Parameters of the multi-objective EAs used in the experimental section. 101
7.2 Parameters of the two mono-objective EAs used in the experimental section. . . . 102
7.3 Characteristics of the real programs. 103
7.4 Programs in which the median hypervolume of one algorithm is better than the others.105
7.5 Number of programs where there exists significant difference among the HV obtained.105
7.6 Relationship between the nesting degree and the average maximum coverage for the

multi-objective algorithms. The standard deviation is shown in subscript. 107
7.7 Number of programs where there exists a significant difference among the coverage

values obtained. 107
7.8 Programs in which the median hypervolume of one algorithm is better than the others.108

195

196 LIST OF TABLES

7.9 Programs where a significant difference exists among the HV obtained. 108

7.10 Relationship between the nesting degree and the average maximum coverage for the
mono-objective algorithms. The standard deviation is shown in subscript. 110

7.11 Number of programs where there exists a significant difference between the coverage
obtained. 110

7.12 Programs in which the median hypervolume of one algorithm is better than the others.111

7.13 Programs where a significant difference exists among the HV obtained. 111

7.14 Relationship between the nesting degree and the average coverage for all the algo-
rithms. The standard deviation is shown in subscript. 113

7.15 Number of programs where a significant difference exists among the coverage obtained.113

7.16 Real programs in which the median hypervolume of one algorithm is better than
the others and average maximum coverage of all the real programs. 114

7.17 Real programs where a significant difference exists among the HV obtained. 115

7.18 Number of real programs where a significant difference exists among the coverage
obtained. 115

7.19 Ranking of algorithms according to maximum coverage and hypervolume grouped
by nesting degree. 117

8.1 Scenarios and number of factors. 125

8.2 Number of test cases needed for the GA, PPC, and PPS algorithms in eight scenarios
and for four distributions. When significant differences exist between the GS and
other algorithm we add an asterisk. 126

8.3 Number of times that one algorithm is better than the other two for each instance. 128

8.4 Number of observations where there exists significant difference among the GS, the
PPC and PPS algorithms. 128

8.5 Number of test cases needed for the GA, DDA, and BDD algorithms in eight sce-
narios and for four distributions. When significant differences exist between the GS
and other algorithm we add an asterisk. 129

8.6 Number of observations where there exists significant difference among the GS, the
DDA, and BDD algorithms. 130

8.7 General characteristics of the benchmark of programs. 137

8.8 Parameters setting for our proposals. The parameter’s values used in the experi-
mentation are highlighted in bold. 137

8.9 Results for test sequence generation for class coverage. 138

8.10 Vargha and Delaney’s statistical test results (Â12) for class coverage. A represents
algorithms in rows and B represents algorithms in columns. 138

8.11 Results for test sequence generation for transition coverage 139

8.12 Vargha and Delaney’s statistical test results (Â12) for transition coverage. A repre-
sents algorithms in rows and B represents algorithms in columns. 139

9.1 Summary of the case studies measured values. 148

9.2 Evaluation case studies summary. 150

9.3 Mean and standard deviation of 30 independent runs for G1 (significant differences
are highlighted). 151

9.4 Mean and standard deviation of 30 independent runs for G2 (significant differences
are highlighted). 151

LIST OF TABLES 197

9.5 Group G3. When considering array sizes PPGS is statistically better than pICPL
in 69 cases, and pICPL is better in 18 cases. 152

9.6 Â12 statistical test results for all groups. PPGS yields better test suite size values. 153
9.7 Feature models summary. 157
9.8 Comparison of multi-objective algorithms using the proposed quality indicators and

performance time. 158
9.9 Comparison of seeding strategies using hypervolume, generational distance, and

performance time. 158
9.10 Â12 statistical test results for all algorithms. NSGA-II yields better results for HV

and time measures. 159
9.11 Â12 statistical test results for seeding strategies. SO yields better quality indicators

and time values. 159

B.1 Ranking de algoritmos acorde a la cobertura e hypervolume máximo agrupados por
grado de anidamiento. 189

198 LIST OF TABLES

List of Figures

2.1 Examples of dominated and non-dominated solutions. 15

2.2 Video Game System test object. 18

2.3 Video game ECTM example. 21

2.4 Graph Product Line feature model. 24

3.1 Classification of metaheuristics . 32

3.2 Examples of Pareto fronts with different behavior of convergence and diversity. . . 38

3.3 Example of hypervolume. 39

3.4 Examples of attainment surfaces. 42

3.5 Statistical validation procedure for experimental results 42

5.1 Instanceof expression in a sentence. 58

5.2 The test data generation process. 59

5.3 Example of distance between a class and an interface. 62

5.4 Representation of one solution vector ~o. 63

5.5 Fitness evolution with a uniformly initialized population. 67

5.6 Fitness evolution with a population near the objective solution. 67

5.7 Average number of evaluations required for 100% branch coverage in all the test
programs for different values of λ. 69

6.1 The original graph of the McCabe’s article. 75

6.2 A piece of code to illustrate the computation of Branch Coverage Expectation. . . 79

6.3 The CFG and the probabilities used to build a Markov Chain of the piece of code
of Figure 6.2. 80

6.4 The CFG and the expectations of traversing each branch in the piece of code of
Figure 6.2. 81

6.5 Illustration of the predicates transformation. 85

6.6 Boxplots showing the branch coverage against the Density of Decisions for GA in
¬100%CP. 91

6.7 Boxplots showing the branch coverage against the DLOCE for GA in ¬100%CP. . 91

6.8 Average Branch Coverage of RND against the BCE measure. 93

6.9 Coverage against the number of test cases of the random generator and the theoret-
ical model. 94

6.10 Average Branch Coverage of GA against the Branch Coverage Expectation for the
real programs. 95

199

200 LIST OF FIGURES

7.1 The general scheme of the two proposed approaches. 100
7.2 50%-attainment surfaces: coverage against the number of test cases. 106
7.3 50%-attainment surfaces: coverage against the number of test cases. 109
7.4 50%-attainment surfaces: coverage against the number of test cases of all the algo-

rithms. 112
7.5 50%-attainment surfaces: coverage against the number of test cases for the program

line. 116

8.1 CTE XL professional tool. 123
8.2 Median solutions and interquartile range of ACOts, GTSG and Greedy algorithms

for the Citizen example for Class Coverage. Coverage versus number of test cases
in the solution. 140

8.3 Median solutions and interquartile range of ACOts, GTSG and Greedy algorithms
for the Citizen example for Transition Coverage. Coverage versus number of test
cases in the solution. 141

9.1 Approximated Pareto front obtained by NSGA-II in TankWar. 160
9.2 Pareto optimal front for our running example (GPL). 163
9.3 Time (log scale) required to find optimal Pareto set against the number of products

of the feature models. 164

B.1 Ejemplo de distancia entre una clase y un interfaz. 187
B.2 Cobertura frente a número de casos de prueba de un generador aleatorio y nuestra

modelo de estimación . 188
B.3 Tiempo (escala logaŕıtmica) requerido para encontrar el frente óptimo de Pareto

frente al número de productos definidos por los modelos de caracteŕısticas. 191

List of Algorithms

1 Pseudocode of Evolutionary Algorithms. 46
2 Pseudocode of ACO. 48
3 Pseudocode of NSGA-II. 50
4 Pseudocode of SPEA2. 50
5 Pseudocode of MOCell. 51
6 Pseudocode of PAES. 52
7 Pseudocode of RNDMulti. 52
8 Pseudocode of the Heuristic Rate algorithm. 135
9 Size-Based Random Seeding Strategy. 154
10 Seed Population. 154
11 Greedy Seeding Strategy. 155
12 Algorithm for obtaining the optimal Pareto set. 162

201

202 LIST OF ALGORITHMS

Index

ACO Test Sequence, 134
Adequacy Criterion, 11
Ant Colony Optimization, 31

Branch Coverage, 13
Branch Coverage Expectation, 72

Class Coverage, 22
Classification Tree Method, 17
Combinatorial Interaction Testing, 17

Diversity, 30

Empirical Attainment Function, 41
Estimation of Distribution Algorithms, 35
Evolutionary Algorithms, 31, 34
Exploitation, 30
Exploration, 30
Extended Classification Tree Method, 20

Feature Model, 23
Flag Problem, 58
Function

Fitness function, 13
Objective function, 13

Functional Testing, 15

Generational Distance, 40
Genetic Test Sequence Generator, 132
GRASP, 33

Heuristics
ad hoc, 30
constructive, 30

Hypervolume, 39

InstanceOf Operator, 57
Intensity, 30

Iterated Local Search, 31, 34

Local optimum, 30
Local search, 30

Mathematical Linear Program, 161
Metaheuristic, 30
Metaheuristics

formal definition, 31
population based, 32, 34
trajectory based, 32, 33

MM Aproach, 100
mM Aproach, 101
Mono-objective Algorithms

Ant Colony Optimization, 48
Evolutionary Strategies, 47
Genetic Algorithms, 45

Multi-objective Algorithms
Multi-Objective Cellular Genetic

Algorithm, 50
Non-dominated Sorting Genetic

Algorithm-II, 49
Pareto Archived Evolution Strategy, 51
Random Search Multi-Objective

Algorithm, 52
Strength Pareto Evolutionary

Algorithm, 49
Multi-objective Problem, 14

Neighbourhood
in a local search method, 30

Object-Oriented, 57
Optimization problem

binary, 13
continuous, 13
definition, 13

203

204 INDEX OF TERMS

heterogeneous, 13
integer, 13

Optimization techniques
approximate, 30
exact, 29

Pairwise Coverage, 19
Pairwise Testing, 15
Parallel Prioritized product line Genetic

Solver, 146
Particle Swarm Optimization, 31
Prioritized Genetic Solver, 124
Prioritized Pairwise Coverage, 20
Problems

Multi-Objective Test Data Generation
Problem, 14

Multi-Objective Test Data Generation
Problem in SPL, 26

Pairwise Test Data Generation Problem
in SPL, 23

Prioritized Pairwise Test Data
Generation Problem with
Classification Tree Method, 17

Test Data Generation Problem, 11
Test Sequence Generation Problem, 20

Scatter Search, 35
Seeding Strategies, 153

Greedy Seeding, 155
Single-objective Based Seeding, 155
Size-Based Random Seeding, 154

Simulated Annealing, 31, 33
Single Point Crossover, 46
Software Product Line, 23
Spread, 39
Statement Coverage, 12
Statistical Tests, 41

Â12 statistic, 43
ANOVA Test, 42
Homoskedasticity, 42
Kolmogorov-Smirnov Test, 42
KruskalWallis Test, 42
Levene Test, 42
T-Test, 42
Wilkoxon Test, 42

Structural Testing, 10
Swarm Intelligence, 35

Tabu Search, 31, 33
Transition Coverage, 22

Uniform Crossover, 46
Uniform Mutation, 46

Variable Neighbourhood Search, 31, 34

References

[1] M. A. Ahmed and I. Hermadi. GA-based Multiple Paths Test Data Generator. Computers
& Operations Research, 35(10):3107–3124, 2008.

[2] E. Alba, C. Blum, P. Isasi, C. León, and J. A. Gómez. Optimization techniques for solving
complex problems. Wiley, New Jersey, USA, May 2009.

[3] E. Alba and F. Chicano. Finding Safety Errors with ACO. In Proceedings of the annual
Conference on Genetic and Evolutionary Computation, pages 1066–1073, London, UK, July
2007. ACM Press.

[4] E. Alba, F. Chicano, M. Ferreira, and J. Gomez-Pulido. Finding deadlocks in large concurrent
java programs using genetic algorithms. In Proceedings of the annual Conference on Genetic
and Evolutionary Computation, pages 1735–1742, New York, NY, USA, 2008. ACM.

[5] E. Alba and J. F. Chicano. Software Testing with Evolutionary Strategies. In Rapid In-
tegration of Software Engineering Techniques, volume 3943, pages 50–65. Springer Berlin
Heidelberg, 2006.

[6] E. Alba and B. Dorronsoro. Cellular Genetic Algorithms, volume 42 of Operations Re-
search/Computer Science Interfaces. Springer-Verlag Heidelberg, 2008.

[7] E. Alba and G. Luque. Parallel genetic algorithms, volume 367 of Studies in Computational
Intelligence. Springer-Verlag, 2011.

[8] N. Aleb and S. Kechid. Automatic Test Data Generation using a Genetic Algorithm. In
Proceedings of the International Conference on Computational Science and Its Applications,
volume 7972, pages 574–586, Ho Chi Minh City, Vietnam, 24-27 June 2013. Springer.

[9] S. Ali, L. Briand, A. Arcuri, and S. Walawege. An Industrial Application of Robustness
Testing Using Aspect-Oriented Modeling, UML/MARTE, and Search Algorithms. In Inter-
national Conference on Model Driven Engineering Languages and Systems, volume 6981 of
Lecture Notes in Computer Science, pages 108–122. Springer, 2011.

[10] S. Ali, L. Briand, H. Hemmati, and R. K. Panesar-Walawege. A Systematic Review of
the Application and Empirical Investigation of Search-Based Test Case Generation. IEEE
Transactions on Software Engineering, 36(6):742–762, Nov. 2010.

[11] M. Alshraideh and L. Bottaci. Search-based software test data generation for string data
using program-specific search operators: Research Articles. Software Testing, Verification
and Reliability, 16(3):175–203, 2006.

205

206 REFERENCES

[12] M. A. Alshraideh, B. A. Mahafzah, H. S. E. Salman, and I. Salah. Using Genetic Algorithm
as Test Data Generator for Stored PL/SQL Program Units. Journal of Software Engineering
and Applications, 6:65–73, 2013.

[13] S. Amland. Risk-based testing: Risk analysis fundamentals and metrics for software testing
including a financial application case study. Journal of Systems and Software, 53(3):287–295,
2000.

[14] S. Anand, E. Burke, T. Y. Chen, J. Clark, M. Cohen, W. Grieskamp, M. Harman, M. J.
Harrold, and P. McMinn. An orchestrated survey of methodologies for automated software
test case generation. Journal of Systems and Software, 86(8):1978–2001, 2013.

[15] A. Arcuri. Evolutionary repair of faulty software. Applied Soft Computing, 11:3494–3514,
2011.

[16] A. Arcuri. It really does matter how you normalize the branch distance in search-based
software testing. Software Testing, Verification and Reliability, 23(2):119–147, 2011.

[17] A. Arcuri and L. Briand. A Hitchhiker’s guide to statistical tests for assessing randomized
algorithms in software engineering. Software Testing, Verification and Reliability, 24:219–250,
Nov. 2012.

[18] A. Arcuri, M. Z. Iqbal, and L. Briand. Random Testing: Theoretical Results and Practical
Implications. IEEE Transactions on Software Engineering, 38(2):258–277, 2012.

[19] A. Arcuri and X. Yao. Search based software testing of object-oriented containers. Informa-
tion Sciences, 178(15):3075–3095, 2008.

[20] ArgoUML-SPL Project - URL: http://argouml-spl.stage.tigris.org/, 2015.

[21] F. Arito, F. Chicano, and E. Alba. On the Application of SAT Solvers to the Test Suite
Minimization Problem. In Symposium on Search-based Software Engineering, volume 7515
of Lecture Notes in Computer Science, pages 45–59. Springer, 2012.

[22] T. Bäck. Evolutionary algorithms in theory and practice: evolution strategies, evolutionary
programming, genetic algorithms. Oxford University Press, Oxford, UK, 1996.

[23] T. Bäck, D. B. Fogel, and Z. Michalewicz. Handbook of Evolutionary Computation. Oxford
University Press, New York NY, 1997.

[24] E. Bagheri and D. Gasevic. Assessing the maintainability of software product line feature
models using structural metrics. Software Quality Journal, 19(3):579–612, 2011.

[25] A. Baresel, D. Binkley, M. Harman, and B. Korel. Evolutionary Testing in the Presence of
Loop–Assigned Flags: A Testability Transformation Approach. In International Symposium
on Software Testing and Analysis, pages 108–118, 2004.

[26] A. Baresel, H. Sthamer, and M. Schmidt. Fitness function design to improve evolutionary
structural testing. In Proceedings of the annual Conference on Genetic and Evolutionary
Computation, pages 1–8, 2002.

REFERENCES 207

[27] V. Basili. Quantitative software complexity models: A panel summary. Tutorial on Models
and methods for software Management and Engineering. IEEE Computer society press, pages
243—245, 1980.

[28] V. Basili and B. Perricone. Software errors and complexity: an empirical investigation. ACM
commun, 27(1):42–52, 1984.

[29] D. Benavides, S. Segura, and A. Ruiz-Cortés. Automated analysis of feature models 20 years
later: A literature review. Information Systems, 35(6):615–636, 2010.

[30] A. Bertolino and M. Marré. How many paths are needed for branch testing? Journal of
Systems and Software, 35(2):95–106, 1996.

[31] H.-G. Beyer, H.-G. Beyer, H.-P. Schwefel, and H.-P. Schwefel. Evolution strategies A com-
prehensive introduction. Natural Computing, 1(1):3 – 52, 2002.

[32] R. Black. Advanced Software Testing - Vol. 1: Guide to the ISTQB Advanced Certification
As an Advanced Test Analyst (Rockynook Computing). Rocky Nook, 2008.

[33] R. Blanco, J. Fanjul, and J. Tuya. Test case generation for transition-pair coverage using
Scatter Search. Journal of Software Engineering and Its Applications, 4(4):37–56, 2010.

[34] R. Blanco, J. Tuya, and B. Adenso-Dı́az. Automated test data generation using a Scatter
Search approach. Information and Software Technology, 51(4):708–720, 2009.

[35] C. Blum and A. Roli. Metaheuristics in Combinatorial Optimization: Overview and Con-
ceptual Comparison. ACM Computing Surveys, 35(3):268–308, 2003.

[36] B. Boehm, C. Abts, A. W. Brown, S. Chulani, B. K. Clark, E. Horowitz, R. Madachy, D. J.
Reifer, and B. Steece. Software cost estimation with COCOMO II. Prentice-Hall, 2000.

[37] R. C. Bryce and C. J. Colbourn. Prioritized interaction testing for pair-wise coverage with
seeding and constraints. Information and Software Technology, 48(10):960–970, 2006.

[38] O. Buehler and J. Wegener. Evolutionary Functional Testing of an Automated Parking
System. In Proceedings of the International Conference on Computer, Communication and
Control Technologies, pages 1–8, Orlando, Florida, 2003.

[39] O. Buehler and J. Wegener. Evolutionary Functional Testing of a Vehicle Brake Assistant
System. In Proceedings of the Metaheuristic International Conference, pages 157–162, Vi-
enna, Austria, 2005.

[40] C. J. Burgess and M. Lefley. Can Genetic Programming Improve Software Effort Estimation?
A Comparative Evaluation. Information and Software Technology, 43(14):863–873, 2001.

[41] E. Burke, J. P. Newall, and R. F. Weare. Initialization strategies and diversity in evolutionary
timetabling. Evolutionary Computation, 6(1):81–103, 1998.

[42] I. Burnstein. Practical software testing: a process-oriented approach, volume XLIX. Springer,
2003.

[43] C. Cadar and K. Sen. Symbolic execution for software testing: three decades later. Commu-
nications of the ACM, 56(2):82–90, 2013.

208 REFERENCES

[44] K. Chang, J. Cross, W. Carlisle, and S. Liao. A Performance Evaluation of Heuristics-
based Test Case Generation Methods for Software Branch Coverage. International Journal
of Software Engineering and Knowledge Engineering, 6(4):585–608, 1996.

[45] F. Chicano. Metaheuŕısticas e Ingenieŕıa del Software. PhD thesis, University of Malaga,
2007.

[46] H. Cichos, S. Oster, M. Lochau, and A. Schürr. Model-Based Coverage-Driven Test Suite
Generation for Software Product Lines. In MoDELS, volume 6981 of Lecture Notes in Com-
puter Science, pages 425–439. Springer, 2011.

[47] J. Clarke, J. J. Dolado, M. Harman, R. M. Hierons, B. Jones, M. Lumkin, B. Mitchell,
S. Mancoridis, K. Rees, M. Roper, and M. Shepperd. Reformulating Software Engineering
as a Search Problem. IEEE Proceedings of Software Engineering, 150(3):161–175, 2003.

[48] M. Clerc. Particle Swarm Optimization. Wiley, 2010.

[49] C. Coello Coello. Evolutionary Multi-Objective Optimization Website. URL:
http://delta.cs.cinvestav.mx/˜ccoello/EMOO/.

[50] C. Coello Coello, G. B. Lamont, and D. Veldhuizen. Evolutionary Algorithms for Solving
Multi-Objective Problems. Springer Series, 2007.

[51] D. Cohen and J. Shi. Interaction testing of highly-configurable systems in the presence of
constraints. In Proceedings of the International Symposium on Software Testing and Analysis,
pages 129–139, New York, USA, 2007. ACM.

[52] M. Cohen, M. B. Dwyer, and J. Shi. Constructing Interaction Test Suites for Highly-
Configurable Systems in the Presence of Constraints: A Greedy Approach. IEEE Trans-
actions on Software Engineering, 34(5):633–650, 2008.

[53] M. Cohen, J. Snyder, and G. Rothermel. Testing across configurations: implications for
combinatorial testing. SIGSOFT Software Engineering Notes, 31(6):1–9, 2006.

[54] M. Conrad. Systematic Testing of Embedded Automotive Software - The Classification-Tree
Method for Embedded Systems. In Perspectives of Model-Based Testing, pages 1–12. In-
ternationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl,
Germany, 2005.

[55] B. Curtis, S. B. Sheppard, and P. Milliman. Third time charm: Stronger prediction of
programmer performance by software complexity metrics. IEEE Press, Piscataway, NJ, USA,
1979.

[56] P. A. da Mota Silveira Neto, I. do Carmo Machado, J. D. McGregor, E. S. de Almeida,
and S. R. de Lemos Meira. A systematic mapping study of software product lines testing.
Information & Software Technology, 53(5):407–423, 2011.

[57] K. Deb. Multi-objective optimization using evolutionary algorithms. John Wiley & Sons,
Inc., Aug. 2001.

[58] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic
algorithm : NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):182–197, 2002.

REFERENCES 209

[59] T. DeMarco. Controlling Software Projects: Management, Measurement, and Estimates.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 1986.

[60] E. Dı́az, R. Blanco, and J. Tuya. Applying Tabu and Scatter Search to automated software
test case generation. In Proceedings of the Metaheuristic International Conference, pages
290–297, Vienna, Austria, 2005.

[61] E. Dı́az, R. Blanco, and J. Tuya. Tabu search for automated loop coverage in software test-
ing. In Proceedings of the International Conference on Knowledge Engineering and Decision
Support, pages 229–234, Porto, 2006.

[62] E. Dı́az, J. Tuya, R. Blanco, and J. J. Dolado. A Tabu Search algorithm for structural
software testing. Computers & Operations Research, 35(10):3052–3072, 2008.

[63] M. Dixon. An Objective Measure of Code Quality. Technical Report, pages 1–6, 2008.

[64] M. Dorigo. Optimization, Learning and Natural Algorithms. PhD thesis, Politecnico di
Milano, Italy, 1992.

[65] M. Dorigo and T. Stützle. Ant Colony Optimization. The MIT Press, 2004.

[66] J. J. Durillo, A. J. Nebro, F. Luna, B. Dorronsoro, and E. Alba. jMetal: A Java Framework
for Developing Multi-Objective Optimization Metaheuristics. Technical Report ITI-2006-10,
Departamento de Lenguajes y Ciencias de la Computación, University of Málaga, E.T.S.I.
Informática, Campus de Teatinos, 2006.

[67] S. Elbaum, A. G. Malishevsky, and G. Rothermel. Test case prioritization: a family of
empirical studies. IEEE Transactions on Software Engineering, 28(2):159–182, Feb. 2002.

[68] S. Elbaum, G. Rothermel, S. Kanduri, and A. G. Malishevsky. Selecting a Cost-Effective
Test Case Prioritization Technique. Software Quality Control, 12(3):185–210, 2004.

[69] E. Engström and P. Runeson. Software product line testing - A systematic mapping study.
Information & Software Technology, 53(1):2–13, 2011.

[70] F. Ensan, E. Bagheri, and D. Gasevic. Evolutionary Search-Based Test Generation for
Software Product Line Feature Models. In CAiSE, volume 7328 of Lecture Notes in Computer
Science, pages 613–628. Springer, 2012.

[71] FeatureHouse website - URL: http://fosd.de/fh, 2015.

[72] T. A. Feo and M. G. Resende. Greedy Randomized Adaptive Search Procedures. Journal of
Global Optimization, 6:109–133, 1995.

[73] J. Ferrer, F. Chicano, and E. Alba. Dealing with inheritance in OO evolutionary testing.
In Proceedings of the annual Conference on Genetic and Evolutionary Computation, pages
1665–1672, New York, USA, July 2009. ACM Press.

[74] J. Ferrer, F. Chicano, and E. Alba. Evolutionary algorithms for the multi-objective test data
generation problem. Software Practice and Experience, 42(11):1331–1362, 2012.

[75] J. Ferrer, P. M. Kruse, F. Chicano, and E. Alba. Evolutionary algorithm for prioritized
pairwise test data generation. In Proceedings of the annual Conference on Genetic and
Evolutionary Computation, pages 1213–1220, New York, USA, July 2012. ACM.

210 REFERENCES

[76] G. Fraser and A. Arcuri. The Seed is Strong: Seeding Strategies in Search-Based Software
Testing. In Proceedings of the IEEE International Conference on Software Testing, Verifica-
tion and Validation, pages 121–130, Washington, DC, USA, 2012. IEEE Computer Society.

[77] G. Fraser and A. Arcuri. Whole Test Suite Generation. IEEE Transactions on Software
Engineering, 39(2):276–291, 2013.

[78] G. Fraser and A. Zeller. Mutation-Driven Generation of Unit Tests and Oracles. IEEE
Transactions on Software Engineering, 38(2):278–292, 2012.

[79] G. Fryer. Scientific Method in Practice. EOS Transactions, 84:357, 2003.

[80] J. P. Galeotti, G. Fraser, and A. Arcuri. Extending a Search-Based Test Generator with
Adaptive Dynamic Symbolic Execution (Tool paper). In Proceedings of the International
Symposium on Software Testing and Analysis, pages 421–424, New York, USA, 2014. ACM.

[81] S. Garćıa, D. Molina, M. Lozano, and F. Herrera. A study on the use of non-parametric
tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005.
Journal of Heuristics, 15(6):617–644, 2009.

[82] B. J. Garvin, M. Cohen, and M. B. Dwyer. Evaluating improvements to a meta-heuristic
search for constrained interaction testing. Empirical Software Engineering, 16(1):61–102,
2011.

[83] M. R. Girgis. Automatic Test Data Generation for Data Flow Testing Using a Genetic
Algorithm. Computer, 11(6):898–915, 2005.

[84] F. Glover. Future paths for integer programming and links to artificial intelligence. Com-
puters & Operations Research, 13(5):533–549, May 1986.

[85] F. Glover. A Template for Scatter Search and Path Relinking. In Selected Papers from the
European Conference on Artificial Evolution, pages 3–54, London, UK, 1998. Springer-Verlag.

[86] F. Glover. Handbook of Metaheuristics. Kluwer, 2003.

[87] P. Godefroid, N. Klarlund, and K. Sen. DART: directed automated random testing. In
Proceedings of the ACM SIGPLAN conference on Programming language design and imple-
mentation, pages 213–223, New York, NY, USA, 2005. ACM Press.

[88] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley Longman Publishing Co, Boston, MA, USA, 1st edition, 1989.

[89] D. Gong and Y. Zhang. Generating Test Data for Both Path Coverage and Fault Detection
using Genetic Algorithms. Frontiers of Computer Science, 7(6):822–837, December 2013.

[90] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java language specification. Addison
Wesley, third edition, 2005.

[91] M. Grochtmann and K. Grimm. Classification trees for partition testing. Software Testing,
Verification and Reliability, 3(2):63–82, 1993.

[92] W. J. Gutjahr. First steps to the runtime complexity analysis of ant colony optimization.
Computers and Operations Research, 35:2711–2727, 2008.

REFERENCES 211

[93] M. H. Halstead. Elements of Software Science (Operating and Programming Systems Series).
Elsevier Science Inc., New York, NY, USA, 1977.

[94] D. Harel. Statecharts: a visual formalism for complex systems. Science of Computer Pro-
gramming, 8:231–274, 1987.

[95] M. Harman. The Current State and Future of Search Based Software Engineering. In Proceed-
ings of International Conference on Software Engineering / Future of Software Engineering,
pages 342–357, Minnesota, USA, 2007. IEEE Computer Society.

[96] M. Harman and L. Hu. Improving evolutionary testing by flag removal. In Proceedings of
the Genetic and Evolutionary Computation Conference, pages 1359–1366. Morgan Kaufmann
Publishers, 2002.

[97] M. Harman and B. Jones. Search-based Software Engineering. Information & Software
Technology, 43(14):833–839, 2001.

[98] M. Harman, S. G. Kim, K. Lakhotia, P. McMinn, and S. Yoo. Optimizing for the Number
of Tests Generated in Search Based Test Data Generation with an Application to the Ora-
cle Cost Problem. In Proceedings of the International Workshop on Search-Based Software
Testing, pages 182–191, Paris, France, 2010. IEEE.

[99] M. Harman, S. A. Mansouri, and Y. Zhang. Search-based software engineering: Trends,
techniques and applications. ACM Computing Surveys, 45(1):11, 2012.

[100] E. Haslinger, R. E. Lopez-Herrejon, and A. Egyed. Using feature model knowledge to speed
up the generation of covering arrays. In Proceedings of the International Workshop on Vari-
ability Modelling of Software-intensive Systems, page 16. ACM, 2013.

[101] S. Helke. Verifikation von Statecharts durch struktur- und eigenschaftserhaltende Datenab-
straktion. PhD thesis, Technische Universitt Berlin, 2007.

[102] C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Heymans, and Y. L. Traon. Bypassing
the Combinatorial Explosion: Using Similarity to Generate and Prioritize T-wise Test Suites
for Large Software Product Lines. CoRR, abs/1211.5, 2012.

[103] C. Henard, M. Papadakis, G. Perrouin, J. Klein, and Y. L. Traon. Multi-objective test
generation for software product lines. In Proceedings of the International Software Product
Lines conference, pages 62–71. ACM, 2013.

[104] A. Hervieu, B. Baudry, and A. Gotlieb. PACOGEN: Automatic Generation of Pairwise Test
Configurations from Feature Models. In Proceeding of the IEEE International Symposium
on Software Reliability Engineering, pages 120–129, 2011.

[105] D. S. Hochbaum, editor. Approximation Algorithms for NP-hard Problems. PWS Publishing
Co., Boston, MA, USA, 1997.

[106] J. H. Holland. Adaptation in Natural and Artificial Systems: An Introductory Analysis with
Applications to Biology, Control, and Artificial Intelligence, volume 1. MIT Press, 1975.

[107] T. Honglei, S. Wei, and Z. Yanan. The Research on Software Metrics and Software Com-
plexity Metrics. In International Forum on Computer Science-Technology and Applications,
volume 1, pages 131–136, 2009.

212 REFERENCES

[108] IBM. Rhapsody examples - URL: https://www.ibm.com, 2013.

[109] M. F. Johansen. SPLCA Tool - URL: http://martinfjohansen.com/splcatool/, 2012.

[110] M. F. Johansen, Ø. Haugen, and F. Fleurey. An algorithm for generating t-wise covering
arrays from large feature models. In Proceedings of the International Software Product Lines
conference, pages 46–55, 2012.

[111] M. F. Johansen, O. Haugen, F. Fleurey, A. G. Eldegard, and T. Syversen. Generating Better
Partial Covering Arrays by Modeling Weights on Sub-product Lines. In Proceedings of the
International Conference on Model Driven Engineering Languages and Systems, volume 7590
of Lecture Notes in Computer Science, pages 269–284. Springer, 2012.

[112] B. Jones and H. Sthamer. The automatic generation of software test data sets using adaptive
search techniques. In IEEE Transactions on Information and Communication Technologies,
pages 435–444, 1995.

[113] B. Jones, H. Sthamer, and D. E. Eyres. Automatic structural testing using genetic algorithms.
Software Engineering Journal, 11(5):299–306, 1996.

[114] C. Kaner, C. Cem, and K. All. The Impossibility of Complete Testing, 1997.

[115] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson. Feature-Oriented Domain Analysis
(FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21, Software Engineering
Institute, Carnegie Mellon University, 1990.

[116] J. P. Kelly. Meta-Heuristics: Theory and Applications. Kluwer Academic Publishers, Norwell,
MA, USA, 1996.

[117] J. Kennedy and R. Eberhart. Swarm Intelligence. Morgan Kaufmann Publishers, San Fran-
cisco, California, 2001.

[118] T. M. Khoshgoftaar and J. C. Munson. Predicting Software Development Errors Using
Software Complexity Metrics. IEEE Journal on Selected Areas in Communications, 8(2):253–
261, 1990.

[119] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by Simulated Annealing.
Science, 220, 4598(4598):671–680, May 1983.

[120] B. Kitchenham, S. L. Pfleeger, and Z. C. Society. Towards a Framework for Software Mea-
surement Validation. IEEE Transactions on Software Engineering, 21:929–944, 1995.

[121] J. Knowles. A summary-attainment-surface plotting method for visualizing the performance
of stochastic multiobjective optimizers. In The International Conference on Intelligent Sys-
tems Design and Applications, pages 552–557. IEEE Computer Society, 2005.

[122] J. Knowles and D. Corne. The Pareto archived evolution strategy: A new baseline algorithm
for Pareto multiobjective optimisation. In Evolutionary Computation, 1999, volume 1, pages
98–105, Mayflower Hotel, Washington D.C., USA, 1999.

[123] J. Knowles, L. Thiele, and E. Zitzler. A Tutorial on the Performance Assessment of Stochastic
Multiobjective Optimizers. TIK Report 214, Computer Engineering and Networks Labora-
tory (TIK), ETH Zurich, 2006.

REFERENCES 213

[124] H. Kobayash, B. L. Mark, and W. Turin. Probability, Random Processes, and Statistical
Analysis. Cambridge University Press, 2011.

[125] B. Korel. Automated Software Test Data Generation. IEEE Transactions on Software
Engineering, 16(8):870–879, 1990.

[126] P. M. Kruse and J. Wegener. Test Sequence Generation from Classification Trees. In IEEE
International Conference on Software Testing, Verification and Validation, pages 539–548.
IEEE, 2012.

[127] R. Kuhn, Y. Lei, and R. Kacker. Practical Combinatorial Testing: Beyond Pairwise. IT
Professional, 10(3):19–23, May 2008.

[128] K. Lakhotia, M. Harman, and H. Gross. AUSTIN: An open source tool for search based
software testing of C programs. Information and Software Technology, 55(1):112–125, 2013.

[129] K. Lakhotia, M. Harman, and P. McMinn. A multi-objective approach to search-based
test data generation. In Proceeding of the annual Conference on Genetic and Evolutionary
Computation, pages 1098–1105, New York, NY, USA, 2007. ACM.

[130] S. Lam, M. Raju, U. M, S. Ch, and P. Srivastav. Automated Generation of Independent Paths
and Test Suite Optimization Using Artificial Bee Colony. Procedia Engineering, 30:191–200,
2012.

[131] C. Y. Lee. Representation of switching circuits by binary-decision programs. Bell System
Technical Journal, 38:985–999, 1959.

[132] E. Lehmann and J. Wegener. Test Case Design by Means of the CTE XL. In EuroSTAR
2000, pages 1–10, Kopenhagen, Denmark, 2000.

[133] X. Liu, B. Wang, and H. Liu. Evolutionary search in the context of object oriented programs.
In Proceedings of the Metaheuristics International Conference, Vienna, 2005.

[134] R. E. Lopez-Herrejon and D. S. Batory. A Standard Problem for Evaluating Product-Line
Methodologies. In International Conference on Generative and Component-Based Software
Engineering, volume 2186 of Lecture Notes in Computer Science, pages 10–24. Springer, 2001.

[135] R. E. Lopez-Herrejon, F. Chicano, J. Ferrer, A. Egyed, and E. Alba. Multi-objective Optimal
Test Suite Computation for Software Product Line Pairwise Testing. In IEEE International
Conference on Software Maintenance, pages 404–407, Sept. 2013.

[136] J. Lozano, P. Larrañaga, P. Inza, and E. Bengoetxea. Towards a New Evolutionary Compu-
tation. Advances in Estimation of Distribution Algorithms. Springer Verlag, 2006.

[137] P. J. Lucas. An Object-Oriented Language System For Implementing Concurrent, Hierar-
chical, Finite State Machines. PhD thesis, Graduate College of the University of Illinois at
Urbana-Champaign, 1989.

[138] G. Luque. Resolución de Problemas Combinatorios con Aplicación Real en Sistemas Dis-
tribuidos. PhD thesis, University of Malaga, 2006.

[139] N. Malevris and D. F. Yates. The collateral coverage of data flow criteria when branch
testing. Information and Software Technology, 48(8):676–686, 2006.

214 REFERENCES

[140] C. Mao. Generating Test Data for Software Structural Testing Based on Particle Swarm
Optimization. Arabian Journal for Science and Engineering, 39(6):4593–4607, June 2014.

[141] D. Marijan, A. Gotlieb, S. Sen, and A. Hervieu. Practical pairwise testing for software
product lines. In T. Kishi, S. Jarzabek, and S. Gnesi, editors, Proceedings of the International
Software Product Lines conference, pages 227–235. ACM, 2013.

[142] R. T. Marler and J. S. Arora. Survey of multi-objective optimization methods for engineering.
Structural and Multidisciplinary Optimization, 26(6):369–395, 2004.

[143] T. MathWorks. Matlab Simulink Stateflow - URL:
http://es.mathworks.com/products/stateflow/.

[144] S. F. A. Mats Grindal, Jeff Offutt, M. Grindal, J. Offutt, and S. F. Andler. Combination
testing strategies: a survey. Software Testing, Verification, and Reliability, 15:167–199, 2005.

[145] P. S. May. Test Data Generation: Two Evolutionary Approaches to Mutation Testing. PhD
thesis, Computing Laboratory, 2007.

[146] T. J. McCabe. A Complexity Measure. IEEE Transactions on Software Engineering,
2(4):308–320, 1976.

[147] P. McMinn. Search-based Software Test Data Generation: a Survey. Software Testing,
Verification and Reliability, 14(2):105–156, 2004.

[148] P. McMinn. Search-Based Software Testing: Past, Present and Future. In IEEE International
Conference on Software Testing, Verification and Validation, pages 153–163, 2011.

[149] P. McMinn, D. Binkley, and M. Harman. Testability Transformation for Efficient Automated
Test Data Search in the Presence of Nesting. In Proceedings of the UK Software Testing
Workshop, pages 165–182, 2005.

[150] P. McMinn, D. Binkley, and M. Harman. Empirical evaluation of a nesting testability trans-
formation for evolutionary testing. ACM Transactions on Software Engineering and Method-
ology, 18(3):1–27, May 2009.

[151] P. McMinn and M. Holcombe. The State Problem for Evolutionary Testing. In Proceedings
of the Genetic and Evolutionary Computation Conference, volume 2724, pages 2488–2498,
Chicano, Illinois, USA, 2003. Springer-Verlag.

[152] P. McMinn, M. Stevenson, and M. Harman. Reducing qualitative human oracle costs as-
sociated with automatically generated test data. In Proceedings of the First International
Workshop on Software Test Output Validation, pages 1–4, New York, New York, USA, July
2010. ACM Press.

[153] M. Mendoza. SPLAR library - URL: https://code.google.com/p/splar, 2013.

[154] C. C. Michael, G. McGraw, and M. A. Schatz. Generating Software Test Data by Evolution.
IEEE Transactions on Software Engineering, 27(12):1085–1110, 2001.

[155] Z. Michalewicz and D. B. Fogel. How to Solve It: Modern Heuristics. Springer-Verlag New
York, Inc., New York, NY, USA, 2004.

REFERENCES 215

[156] U. Mirosamek. Two orthogonal regions (main keypad and numeric keypad) of a computer
keyboard., 2009.

[157] N. Mladenovic and P. Hansen. Variable Neighborhood Search. Computers And Operations
Research, 24(11):1097–1100, 1997.

[158] G. Myers, T. Badgett, and C. Sandler. The Art of Software Testing. John Wiley and Sons,
New York, 2011.

[159] A. S. Namin and J. H. Andrews. The Influence of Size and Coverage on Test Suite Effec-
tiveness. In Proceedings of the International Symposium on Software Testing and Analysis,
pages 57–68, New York, NY, USA, 2009. ACM.

[160] U. Naumann and O. Schenk. Combinatorial Scientific Computing. Chapman & Hall/CRC,
1st edition, 2012.

[161] A. J. Nebro, J. J. Durillo, F. Luna, B. Dorronsoro, and E. Alba. Design Issues in a Multiobjec-
tive Cellular Genetic Algorithm. In Proceedings of International Conference on Evolutionary
Multi-Criterion Optimization, volume 4403 of Lecture Notes in Computer Science, pages
126–140. Springer, Mar. 2007.

[162] A. J. Nebro, J. J. Durillo, F. Luna, B. Dorronsoro, and E. Alba. MOCell: A cellular ge-
netic algorithm for multiobjective optimization. International Journal of Intelligent Systems,
24(7):726–746, 2009.

[163] C. Nie and H. Leung. A survey of combinatorial testing. ACM Computing Surveys,
43(2):11:1–11:29, Feb. 2011.

[164] A. F. Nogueira. Predicting software complexity by means of evolutionary testing. In Pro-
ceeding of International Conference on Automated Software Engineering, pages 402–405, New
York, NY, USA, 2012. ACM.

[165] J. Oh, M. Harman, and S. Yoo. Transition coverage testing for simulink/stateflow models
using messy genetic algorithms. In Proceedings of the annual Conference on Genetic and
Evolutionary Computation, pages 1851–1858, 2011.

[166] S. Oster, F. Markert, and P. Ritter. Automated Incremental Pairwise Testing of Software
Product Lines. In J. Bosch and J. Lee, editors, Proceedings of the International Software
Product Lines conference, volume 6287 of Lecture Notes in Computer Science, pages 196–210.
Springer, 2010.

[167] T. J. Ostrand and M. J. Balcer. The category-partition method for specifying and generating
fuctional tests. Communications of the ACM, 31(6):676–686, 1988.

[168] A. Pachauri and G. Srivastava. Automated Test Data Generation for Branch Testing using
Genetic Algorithm: An Improved Approach using Branch Ordering, Memory and Elitism.
Journal of Systems and Software, 86(5):1191–1208, May 2013.

[169] A. Panichella, F. M. Kifetew, and P. Tonella. Reformulating Branch Coverage as a Many-
Objective Optimization Problem. In IEEE International Conference on Software Testing,
Verification and Validation, pages 1–10. IEEE, Apr. 2015.

216 REFERENCES

[170] S. Park, B. M. M. Hossain, I. Hussain, C. Csallner, M. Grechanik, K. Taneja, C. Fu, and
Q. Xie. CarFast: Achieving Higher Statement Coverage Faster. In Proceedings of the ACM
SIGSOFT International Symposium on the Foundations of Software Engineering, pages 1–11,
2012.

[171] P. V. Paul, A. Ramalingam, R. Baskaran, P. Dhavachelvan, K.Vivekanandan, R. Subra-
manian, and V. S. K. Venkatachalapathy. Performance Analyses on Population Seeding
Techniques for Genetic Algorithms. International Journal of Engineering and Technology,
5(3):2993–3000, 2013.

[172] J. Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1984.

[173] G. Perrouin, S. Sen, J. Klein, B. Baudry, and Y. L. Traon. Automated and Scalable T-
wise Test Case Generation Strategies for Software Product Lines. In IEEE International
Conference on Software Testing, Verification and Validation, pages 459–468. IEEE Computer
Society, 2010.

[174] P. Piwarski. A nesting level complexity measure. Special Interest Group on Programming
Languages, 17(9):44–50, 1982.

[175] K. Pohl, G. Bockle, and F. J. van der Linden. Software Product Line Engineering: Founda-
tions, Principles and Techniques. Springer, 2005.

[176] P. Ponterosso and D. S. J. Fox. Heuristically Seeded Genetic Algorithms Applied to Truss
Optimisation. Engineering with Computers, 15(4):345–355, 1999.

[177] R. Pressman. Software Engineering: A Practitioner’s Approach. McGraw-Hill, Inc., New
York, NY, USA, 8 edition, 2014.

[178] I. Rechenberg. Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der
biologischen Evolution. Fromman-Holzboog Verlag, Stuttgart, 1973.

[179] J. C. B. Ribeiro. Search-based test case generation for object-oriented java software using
strongly-typed genetic programming. In Proceedings of the annual Conference on Genetic
and Evolutionary Computation, pages 1819–1822, 2008.

[180] J. T. Richardson, M. R. Palmer, G. E. Liepins, and M. Hilliard. Some Guidelines for Ge-
netic Algorithms with Penalty Functions. In Proceedings of the International Conference
on Genetic Algorithms, pages 191–197, San Francisco, CA, USA, 1989. Morgan Kaufmann
Publishers Inc.

[181] G. Rudolph. Evolutionary Computation 1. Basic Algorithms and Operators, volume 1, chap-
ter 9, Evolution Strategies, pages 81–88. IOP Publishing Lt, 2000.

[182] B. Saavedra-Moreno, S. Salcedo-Sanz, A. Paniagua-Tineo, L. Prieto, and A. Portilla-
Figueras. Seeding evolutionary algorithms with heuristics for optimal wind turbines po-
sitioning in wind farms. Renewable Energy, 36(11):2838–2844, 2011.

[183] R. Sagarna and J. A. Lozano. On the Performance of Estimation of Distribution Algorithms
Applied to Software Testing. Applied Artificial Intelligence, 19(5):457–489, 2005.

REFERENCES 217

[184] R. Sagarna and J. A. Lozano. Scatter Search in software testing, comparison and collabora-
tion with Estimation of Distribution Algorithms. European Journal of Operational Research,
169(2):392–412, 2006.

[185] A. Sakti, Y.-G. Guhneuc, and G. Pesant. Constraint-Based Fitness Function for Search-
Based Software Testing. In Proceedings of the International Conference on Integration of AI,
volume 7874, pages 378–385, Yorktown Heights, NY, USA, 18-22 May 2013. Springer.

[186] E. Salecker, R. Reicherdt, and S. Glesner. Calculating Prioritized Interaction Test Sets
with Constraints Using Binary Decision Diagrams. In International Conference on Software
Testing, Verification and Validation Workshops, pages 278–285,Washington, DC, USA, 2011.
IEEE Computer Society.

[187] I. Samoladas, G. Gousios, D. Spinellis, and I. Stamelos. Open Source Development, Com-
munities and Quality, volume 275 of International Federation for Information Processing,
chapter The SQO-OS, pages 237–248. Springer, 2008.

[188] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit testing engine for C. In Proceedings
of the European software engineering conference, pages 263–272, New York, NY, USA, 2005.

[189] D. J. Sheskin. Handbook of Parametric and Nonparametric Statistical Procedures. Chapman
& Hall/CRC, UK, 2007.

[190] N. Siegmund, M. Rosenmüller, C. Kästner, P. G. Giarrusso, S. Apel, and S. S. Kolesnikov.
Scalable prediction of non-functional properties in software product lines: Footprint and
memory consumption. Information & Software Technology, 55(3):491–507, 2013.

[191] C. Software. Source Monitor - URL: http://www.campwoodsw.com/sourcemonitor.html,
2012.

[192] I. Sommerville. Software Engineering. Pearson Addison Wesley, April 2015.

[193] SPL2go - URL: http://spl2go.cs.ovgu.de, 2013.

[194] Software Product Line Online Tools(SPLOT) - URL: http://www.splot-research.org, 2013.

[195] H. Sthamer. The Automatic Generation of Software Test Data Using Genetic Algorithms.
PhD thesis, University of Glamorgan, 1995.

[196] A. M. Sutton, D. Whitley, and A. E. Howe. A polynomial time computation of the exact
correlation structure of k-satisfiability landscapes. In Proceedings of the annual Conference
on Genetic and Evolutionary Computation, pages 365–372, 2009.

[197] G. Tassey. The economic impacts of inadequate infrastructure for software testing. Technical
report, NIST, May 2002.

[198] W. Thomson. Mathematical and Physical Papers. Cambridge University Press, 1882.

[199] P. Tonella. Evolutionary testing of classes. SIGSOFT Software Engineering Notes, 29(4):119–
128, 2004.

[200] J. Torres-Jimenez and E. Rodriguez-Tello. New bounds for binary covering arrays using
simulated annealing. Information Sciences, 185:137–152, 2012.

218 REFERENCES

[201] N. Tracey, J. Clark, K. Mander, and J. McDermid. Automated test-data generation for
exception conditions. Software Practice and Experience, 30(1):61–79, 2000.

[202] N. Tracey and T. N. A search-based automated test-data generation framework for safety-
critical software. PhD thesis, University of York, 2000.

[203] P. Trinidad and D. Benavides. Fama framework. In Proceedings of the International Software
Product Lines conference, page 359, 2008.

[204] T. Tusar and B. Filipic. Visualization of Pareto Front Approximations in Evolutionary Mul-
tiobjective Optimization: A Critical Review and the Prosection Method. IEEE Transactions
on Evolutionary Computation, 19(2):225–245, 2015.

[205] H. Ural. Formal methods for test sequence generation. Computation Communications,
15(5):311–325, 1992.

[206] H. T. Uyar, A. c. Uyar, and E. Harmanci. Pairwise Sequence Comparison for Fitness Evalu-
ation in Evolutionary Structural Software Testing. In Proceedings of the annual Conference
on Genetic and Evolutionary Computation, pages 1959–1960, New York, USA, 2006. ACM.

[207] D. A. Van Veldhuizen. Multiobjective evolutionary algorithms: classifications, analyses, and
new innovations. PhD thesis, Air Force Institute of Technology, USA, 1999.

[208] A. Vargha and H. D. Delaney. A critique and improvement of the CL common language
effect size statistics of McGraw and Wong. Journal of Educational and Behavioral Statistics,
25(2):101–132, 2000.

[209] S. A. Vilkomir and J. P. Bowen. Formalization of Control-flow Criteria of Software Testing.
Technical Report SBU-CISM-01-01, South Bank University, SCISM, London, UK, 2001.

[210] T. Vos, F. Lindlar, B. Wilmes, A. Windisch, A. Baars, P. M. Kruse, H. Gross, and J. Wegener.
Evolutionary functional black-box testing in an industrial setting. Software Quality Changes,
2012.

[211] G. H. Walton, J. H. Poore, and C. J. Trammell. Statistical testing of software based on a
usage model. Software Practice and Experience, 25(1):97–108, 1995.

[212] S. Wang, S. Ali, and A. Gotlieb. Minimizing test suites in software product lines using
weight-based genetic algorithms. In Proceedings of the annual Conference on Genetic and
Evolutionary Computation, pages 1493–1500, 2013.

[213] S. Wappler and J. Wegener. Evolutionary unit testing of object-oriented software using
a hybrid evolutionary algorithm. In IEEE Congress on Evolutionary Computation, pages
851–858, 2006.

[214] S. Wappler and J. Wegener. Evolutionary unit testing of object-oriented software using
strongly-typed genetic programming. In Proceedings of the annual Conference on Genetic
and Evolutionary Computation, pages 1925–1932, 2006.

[215] J. Watkins and S. Mills. Testing IT: An Off-the-shelf Software Testing Process, volume 36.
ACM, New York, NY, USA, May 2011.

REFERENCES 219

[216] J. Wegener, A. Baresel, and H. Sthamer. Evolutionary test environment for automatic
structural testing. Information and Software Technology, 43(14):841–854, 2001.

[217] J. Wegener, H. Sthamer, B. Jones, and D. E. Eyres. Testing real-time systems using genetic
algorithms. Software Quality Journal, 6:127–135, 1997.

[218] E. J. Weyuker. Evaluating Software Complexity Measures. IEEE Transactions on Software
Engineering, 14(9):1357–1365, 1988.

[219] A. W. Williams and R. L. Probert. A measure for component interaction test coverage.
In IEEE International. Conference on Computer Systems and Applications, pages 304–311,
2001.

[220] C. Wohlin, P. Runeson, M. Hst, M. C. Ohlsson, B. Regnell, and A. Wessln. Experimentation
in Software Engineering. Springer Publishing Company, Incorporated, 2012.

[221] L. A. Wolsey. Integer Programming. Wiley, 1998.

[222] S. Xanthakis, C. Ellis, C. Skourlas, A. Le Gall, S. Katsikas, and K. Karapoulios. Application
of Genetic Algorithms to Software Testing. In Proceedings of the International Conference
on Software Engineering and its Applications, pages 625–636, Toulouse, France, 1992.

[223] M. Xiao, M. El-Attar, M. Reformat, and J. Miller. Empirical evaluation of optimization
algorithms when used in goal-oriented automated test data generation techniques. Empirical
Software Engineering, 12(2):183–239, 2007.

[224] T. Xie, N. Tillmann, J. de Halleux, and W. Schulte. Fitness-Guided Path Exploration in
Dynamic Symbolic Execution. In Proceedings of the Annual IEEE International Conference
on Dependable Systems and Networks, pages 359–368, Lisbon, Portugal, June-July 2009.
IEEE.

[225] Z. Xu, M. Cohen, W. Motycka, and G. Rothermel. Continuous test suite augmentation in
software product lines. In Proceedings of the International Software Product Lines conference,
pages 52–61. ACM, 2013.

[226] S. Yoo and M. Harman. Pareto Efficient Multi-Objective Test Case Selection. Proceedings
of the International Symposium on Software Testing and Analysis, pages 140–150, 2007.

[227] S. Yoo and M. Harman. Regression testing minimization, selection and prioritization: a
survey. Software Testing, Verification and Reliability, 22(2):67–120, 2012.

[228] L. Yu and A. Mishra. Experience in predicting fault-prone software modules using complexity
metrics. Quality Technology and Quantitative Management, 9(4):421–433, 2012.

[229] P. Zave. FAQ sheet on feature interaction - URL:
http://www.research.att.com/pamela/faq.html, 1999.

[230] Y. Zhang. Search Based Software Engineering Repository.
http://crestweb.cs.ucl.ac.uk/resources/sbse repository/.

[231] Y. Zhang and J. Clark. The state problem for test generation in Simulink. In Proceedings of
the annual Conference on Genetic and Evolutionary Computation, pages 1941–1948. ACM
Press, 2006.

220 REFERENCES

[232] Y. Zhou, B. Xu, and H. Leung. On the ability of complexity metrics to predict fault-prone
classes in object-oriented systems. Journal of Systems and Software, 83(4):660–674, 2010.

[233] E. Zitzler. Evolutionary Multiobjective Optimization. In G. Rozenberg, T. Bäck, and J. N.
Kok, editors, Handbook of Natural Computing, pages 871–904. Springer, 2012.

[234] E. Zitzler, K. Deb, and L. Thiele. Comparison of multiobjective evolutionary algorithms:
empirical results. Evolutionary computation, 8(2):173–95, Jan. 2000.

[235] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the Strength Pareto Evolutionary
Algorithm. In Evolutionary Methods for Design Optimization and Control with Applications
to Industrial Problems, number 103 in 1, pages 95–100, 2001.

[236] E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: a comparative case
study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation,
3(4):257–271, 1999.

[237] E. Zitzler, L. Thiele, M. Laumanns, F. C., and d. F. V. Performance assessment of multiobjec-
tive optimizers: an analysis and review. IEEE, Transactions on Evolutionary Computation,
7:117–132, 2003.

	portada
	thesis
	Acknowledgements
	Introduction
	Motivation
	Objectives and Phases
	PhD Thesis Contributions
	PhD Thesis Organization

	I Fundamentals of Software Testing and Metaheuristics
	Fundamentals of Software Testing
	Structural Testing
	Structural Testing Problems Addressed in this Thesis
	Test Data Generation Problem
	Multi-Objective Test Data Generation Problem

	Functional Testing
	Functional Testing Problems Addressed in this Thesis
	Prioritized Pairwise Test Data Generation Problem with Classification Tree Method
	Test Sequence Generation Problem with Extended Classification Tree Method
	Pairwise Test Data Generation Problem in SPL
	Multi-Objective Test Data Generation Problem in SPL

	Conclusions

	Fundamentals of Metaheuristics
	Formal Definition
	Classification of Metaheuristics
	Trajectory Based Metaheuristics
	Population Based Metaheuristics

	A Methodology for Evaluating Results
	Quality Indicators
	Statistical Analysis Procedure

	Algorithms
	Mono-objective Metaheuristics Used in this PhD Thesis
	Genetic Algorithm
	Evolutionary Strategy
	Ant Colony Optimization

	Multi-objective Metaheuristics Used in this PhD Thesis
	Non-dominated Sorting Genetic Algorithm II
	Strength Pareto Evolutionary Algorithm 2
	Multi-Objective Cellular Algorithm
	Pareto Archived Evolution Strategy
	Random Multi-Objective Algorithm

	II Structural Testing
	Test Data Generation in Object-Oriented Software
	Introduction
	Test Data Generator
	Objective Function
	Instrumentation Tool

	Distance for instanceof operator
	Experimental Setup
	Algorithm Details
	Mutation Operator
	Benchmark of Test Programs

	Experimental Analysis
	Preliminary Results
	Uniform vs. Distance-based Mutation
	Adaptive Mutation

	Conclusions

	Estimating Software Testing Complexity
	Introduction
	Static Measures
	Branch Coverage Expectation
	Markov Chain
	Definition of the Branch Coverage Expectation

	Validation of the Branch Coverage Expectation
	Empirical Validation Setup
	Algorithms Details
	Program Generator Tool
	Benchmark of Test Programs

	Empirical Results
	Analysis of the Correlation Between the Static Measures
	Correlation Between Coverage and Static Measures
	Another use of the Branch Coverage Expectation
	Validation on Real Programs

	Conclusions

	Multi-Objective Test Data Generation
	Introduction
	Experimental Methodology
	The MM Approach
	The mM Approach
	Benchmark of Test Programs

	Experimental Analysis
	Evaluation of the MM approach
	Evaluation of the mM approach
	MM vs. mM approaches
	Validation on Real Programs

	Conclusions

	III Functional Testing
	Combinatorial Interaction Testing using Classification Tree Method
	Introduction
	Prioritized Pairwise Test Data Generation using CTM
	Solution Approaches
	Experimental Benchmark
	Comparison between GS, PPC and PPS
	Comparison between Genetic Solver and other existing algorithms

	Test Sequence Generation using ECTM
	Algorithms Details
	Experimental Setup
	Test Sequences' Quality
	Test Suite Coverage versus Test Suite Size

	Conclusions

	Pairwise Testing in Software Product Lines
	Introduction
	Parallel Prioritized Pairwise Testing
	Algorithm Description
	Weight Priority Assignment Methods
	Experimental Setup
	Experimental Analysis

	Seeding Strategies for Multi-Objective Pairwise Testing
	Seeding Strategies
	Evaluation
	Experimental Analysis

	Optimal Multi-Objective Pairwise Testing
	Mathematical Linear Program
	Algorithm Details
	Experimental Setup and Analysis

	Conclusions

	IV Conclusions and Future Lines of Research
	Conclusions and Future Work
	Conclusions
	Future Work

	Appendices
	Publications Supporting this PhD Thesis Dissertation
	Resumen en Español
	Introducción
	Organización de la Tesis
	Fundamentos
	Pruebas de software
	Metaheurísticas

	Problemas Abordados en esta Tesis
	Generación de Datos de Prueba en Programas Orientados a Objetos
	Estimando la Complejidad de Probar un Programa
	Generación de Datos de Pruebas Multi-objetivo
	Pruebas Combinatorias usando el Método de Clasificación de Árboles
	Líneas de Productos Software
	Conclusiones

	List of Tables
	List of Figures
	List of Algorithms
	Index of Terms
	References

