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Abstract

In [Lie Algebra on the Transverse Bundle of a Decreasing Family of Foliations, J.

Geom. Phys., 60 (2010) 122-133], we defined the transverse bundle Vkto a

decreasing family of k foliations /; on a manifold M. We have shown that there

exists a (1,1) tensor J of V¥ such that J* %0, J*1 =0 and we defined by

L, (Vk) the Lie Algebra of vector fields X on ¥* such that, for each vector field
Y on V¥, [X,JY]:J[X,Y].
In this note, we study the first Chevalley-Eilenberg Cohomology Group i.e. the

quotient space of derivations of L (Vk) by the subspace of inner derivations,

denoted by H' (LJ(Vk)) .
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1. Introduction

Let M be a differentiable manifold of dimension m endowed with k foliations F|,F,,...,F},
k>1, of respective codimensions DisDy+ Doreres Py + Py et Dy such that ;o F, ..o F,
(m=p +py+.tp+pey> >0, p;20,2<i<k+1).

In [1], we defined a so-called "order & bundle V¥ transverse to the foliations F; " and we proved

that there exists a (1,1) tensor J of vk such that J* 20, J**!

vector fields X ,Y on V*:
[Jx,JY]-J[ux,Y]-J[x, 07|+ J?[x,Y]=0.
Q being an open set of V*, we denote by L ;(Q) the Lie Algebra of vector fields X defined on
Q such that the Lie derivative L(X)J is equal to zero i.e., for each vector field ¥ on Q:
[x,Jv]=J[x,7].

=0 and for every pair of


https://core.ac.uk/display/80525417?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

We define by L; a subset of L J(Vk) constituted by the vector field X on V¥ such that
X € KerJ . The purpose of this paper is to study the first Chevalley-Eilenberg Cohomology

Group of L,, denoted by H ! (L J(Vk)). In [2], J.Lehmann-Lejeune studied the Cohomology

on the Transverse Bundle of a Foliation. This paper is organized as follows.
In section 2, we recall some relevant results and notations (cf [1]), more precisely, we define the

order & bundle ¥*and the (L1) tensor J of V¥ and we remind the most important result
showed in [1]: for every X € L;(V'*), we can write X = Zi [Y;,Z;] where Zi is a finite
sumand Y;,Z; belongs to Ll(Vk).

In section 3, we study the derivations of L, (Vk). We prove that every derivation of L; (Vk)

restricted to L, (Vk) is a derivation of L; (Vk) and also every derivation of L; (Vk) is local.

Moreover, we construct three derivations of L;(U) witch are not inner derivations, where U is

an open set of adapted local coordinates of V¥ . On the other hand we show that, for every
x eV there exists an open set U containing x such that dim A ! (LI(U )) is infinite.

In section 4, we study the case of foliations defined by submersions and then we show that the
dimension of H' (LJ(Vk)) isequal to k.

In section 5, we study an example on 7° with k =2 foliations where dim H' (L J(Vk)) >k.

In section 6, we compute H' (Ll(Vk)) in the case of the 3- sphere.

2. Preliminaries

Let M be a differentiable manifold of dimension m endowed with k foliations F|,F,,...,F,,
k>1, of respective codimensions p,, p, + py,...,p; + p, +...+ p, such that 5 F, 5..oF,
(m=p +py+.tp+pey> >0, p;20,2<i<k+1).

Notation: we set:  g(h) =p +pyt.tp, for 1<h<k+1,
a(h)=0 for h<0,
ct)y=alk+D)+ak)+...+alk—t+2) for 1<¢t<k+1,
c(t)=0 for (<0

We define a so-called "order & bundle ¥ transverse to the foliations ;" (cf [1], p. 123) in the
following way. The order k£ tangent bundle of M is the manifold of dimension (k+1)m of the

k —jets of origin 0 of differentiable mappings from IR to M denoted T kM (ctf. [3D.
Let s and /4 be two integers such that 0<s<hZ<k, h>1 . On the set of & —jets of
differentiable mappings of origin 0 from IR to M, we define an equivalence relation. Let ¢ and

w be two differentiable mappings from IR to M such that ¢{(0)=y/(0).

Denote by (u;,u,,...,u,,) the local coordinates of an open set UcM, adapted to the &
foliations (i.e. Up,Uy,..slly(yy are constants on the leaves of F,, 1<h<k), such that

9(0) =y (0)=x, €U .
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We say that the /& —jets of ¢ and y are equivalent if: d (0),
12

1</<a(k+1-b) and s+1<b<h, 1<I<a(k+1-s). This equlvalence relation is

independent of the open set U of coordinates adapted to the & foliations containing x;, .

We denote by (Vs)h the quotient space of the & — jets of differentiable mappings from IR to M
endowed with this equivalence relation.
This is a manifold of dimension 20<t<s alk+1-t)+ (h—s)a(k+1-s).

For s =h, (V*)® will be denoted, for simplicity, by V*.

We have the following diagram, where the arrows are the natural projections:

vE e hhE «rFHE e« Y « T'm

b R

« (Vk DL e H 11/1)"‘1 « THF'um

\ S (_(iz)k—z <—(V1)k_2 «— %“k_zM
U

V'* is called order k bundle transverse to the k foliations Fy, F, ..., F}, .
The dimension of V* is n= ZOstk t+Dpr, = Zog;gk alk+1-1).
T*M (which can be considered as a (V*)" with s=0) is equipped with an order k nearly

tangent structure J|, of constant range km (cf. [3] ). In [1] p. 124, we show that there exists a

(L1) tensor J of V¥ which is the projection on ¥* of the nearly tangent operator J, of order k
on T¥M . Its rank is constant and equal toz a(k +1—1): it verifies J* #0, J*"' =0 and

I<t<k
for every pair of vector fields X ,Y on V*:
[Jx,J7]-J[ux,Y]-J[x, 07|+ J?[x,Y]=0.
Q being an open set of V*, we denote by L ;(Q) the Lie Algebra of vector fields X defined on
Q such that the Lie derivative L(X)J is equal to zero i.e., for each vector field ¥ on Q:
[x,J7]=J[X,7]

Let U be an open set of adapted local coordinates (u,....,u,) and X a vector field on U .



X belongs to L,(Q) if and only if, for every open set U of adapted local coordinates
Uy yenestt)) such that QNU =7, X\QmU is a vector field finite sum

Als,hl) = Zogng Xetheqyratkrios—hy+1 Oc(hrqyra(ksios—hy+1 , where I<s<k+1,
0

0<h<k+l-s,1<I<p,, .., (we set O; :8_) )
Uj

c

X o hyrath—s—n+n+r ONly depends on (uy,....,u, 1)) and for 1<g<s—1,

. b;
o'x, (et )”
_ (h)y+a(k+1—s—h)+l c(t)+]j
Xc(h+q)+a(k+1—s—h)+l - Z i i: i H ) (Cf [1]’ Lemma 1)
ou'..ouj ..0u, 1sjsr | 1sisq b;!

A(s,h,1) is hence completely determined by its non zero first component X, ). ock—s—n+1)+ 5

if s=1,itwill be its only one non zero component.
Weset: A'(U)=). L A(s.hD) - where 1<s<k+1, 0<h<k+l-s.

II<pg_p—s+

Then, for 1<s<k+1, we construct the set L () =L,(Q)N (Ker.]‘“gz) (cf[1], p. 126-127).
We recall the following results (cf [1]):

Theorem 1. For every Xelq(Vk), we can write Xzz[ [Yi,Z,.] where zi is a finite

sum and Y;,Z; belongs to Ll(Vk).

Lemma 1. Let U be an open set of adapted local coordinates of VK and s an integer such that
2<s<k+1 (suppose p;_ ., #0). Every element of L (U)is a bracket finite sum of elements

of L, (U) which means that: [LS U), L (U)] =L, (U).

3. General study of Derivations

In this section, we suppose that p, ; # 0.

Proposition 1. Let D be a derivation of L, (Vk). Then D(L1 (Vk)) c L (Vk) and D‘ is a

Lk

derivation of L, )

Proof. From theorem 1, for every X € L, (V") , we can write X = Zi [Y;,Z;] where Zi isa
finite sum and ¥;,Z; belongs to L,(V*). Thus D(X) =" ([D(Y)).Z,]+[¥;.D(Z,)]).
Furthermore, D(Y;) and D(Z,) e L,(V*). Since L, (V") is an ideal of L,(¥*) (cf[1], lemma

4), we deduce that [D(Y;),Z;] and [Y;,D(Z;)] belong to Ll(Vk)and thus D(X) e LI(Vk).
This completes the proof. O

Proposition 2. For every derivation D of Ll(Vk) and for every X e Li(V'*),
supp D(X) < supp X ; every derivation D of Ll(Vk) is local.



Proof. Let X € L, (Vk) be a vector field on V¥ and @ an open set of V¥ such that X‘w =0;
setting Q=7 (7(w)), we also have X‘Q =0. For each x € ), there exist open sets €,

and Q, of V*suchthat Q NQ, =D, Q =7 (7(Q,)),i=1,2, supp X =Q,, x€Q,.
According to theorem 2 (cf [1], p.128), we can write X = z[ [7:, Y,] , where T},Y; belongs to
L, (V*)and whose supports are in Q,. Since D(X) = z,<[D(Tz)’ Yl]+ [Tl,D(YZ)]) , wWe
deduce that D(X)\Qz =0, then D(X)‘Q = (. This completes the proof. O

Proposition 3. Let U be an open set of adapted local coordinates of V¥ and s an integer such
that 2<s<k+1. Suppose p;_o.»#0. Let D be a derivation of L, (U). Then

D(Ls—l v )) cL,(U) and D‘ L,_y(U) 18 aderivation of L, 4(U).

Proof. In fact, according to theorem 1 for s = 2 and lemma 6 (cf [1], p. 128) for 3<s <k +1,
for every X € L, ;(U), we can write X = Zi [Yi,Zi] where Zi is a finite sum and

Y;,,Z, belong to L., (U). From lemma 4 (cf [1]), we deduce that

1 1

D(X) = Zi([D(Yl-),ZZ-]+ [¥;,D(Z;))) belongs to L, ;(U). This completes the proof. O

Lemma 2. Let U be an open set of adapted local coordinates of VE and s an integer such that
1<s<k+1. Suppose p;_s,» #0. Let D be a derivation of L,(U), X € Ly(U)and x €U

such that j>(X)(x)=0. Then D(X)(x)=0.
Proof. This results from lemma 7 (cf[1], p. 128). O

From now on and until the section ends, U is an open set of adapted local coordinates of vk,

Define a mapping A:L;(U) = L;(U) by:

A(zlglgpk_H Xy Uy s ua(k+1))aa(k)+l) =

Z Qa1 X agiysi z Acmyrat—hyri Ochyratk—yri
1<I<ppa 1<h<k
I<i<ppy1-n

A > X o (tyrati—tye j U5 Ug (k1)) Oc(tyratk-t)+j | =0
1<k
1</<pl+1-¢

where  A.pyiqh—nyi » 1Sh<k, 1<i<p,_, are C” mappings from U to IR only

depending on uy,..., 44y -



Lemma 3 : A is a derivation of Li(U), which is not an inner derivation.

Pl‘OOf: In faCt, we take X = Z Xa(k)+l 8a(k)+l and Y = Z YCl(k)+t 8a(k)+t

I<I<pyiq 1<1<ppy

[X.Y]= zlgtspkﬂ (zl(Xa(k)Haa(k)HYa(k)H Yo e19atioy 1 X aey )) Quhy e

A([X, Y]) = (z/,t(Xa(k)+laa(k)+taa(k)+ly;(k)+t - a(k)+laa(k)+taa(k)+lXa(k)+t )) X

X Z A, hyra(h-n)+i O c(hy+a(k-hy+i
1<h<k

I1<i<pgi1-p

[AX),Y]+[X,A()]= (‘ZL, Yo+ atirr19atioyie X aiyee + Zz,z X 4 y+10 a1 aiy+ e Yagho e ) X

X l;k Acyrat-nysi Octhyrath—nysi :A([X’Y])‘
<h<

I<i<ppi1-p

Wenow take Y'=Y, ) aknye jOcthyrathonyrj» LS A<k, 1S < pryyy.

(X7 T= 3 e 2 XawretattrtYechrrateonrss ) Octmsationss» A(XY])=0,
[AX),Y'|+[X, A )] =0+[X,0]=0.

Suppose there exists Y €L, (U) such that A(X)= [Y,X]: then, for X =0,¢)s»
1</< p,,,, we shall have: 0= [Y, aa(k)+,] and the components of Y will depend only on

z Acmyrate-mysi Octmyrate-ny+i = YagysiQaryer » hence Yy, =0 and for all £,
1<h<k
I<i<ppii-p

1<h<k, A.yrat-nm+i =0 - This completes the proof. O

InU,weset: T = Z Z B, Uehyrath-hy+i Ocoyrath—tye) |
1<t<k 1<h<k
<7< pr1—¢ \JSI<Pgr1-p
B}{’i are C” mappings from U to IR only depending on Upseestlgiy- T €L, (U).

We immediately verify that:

Lemma 4. The mapping from L/(U) to Ly(U): X - [T,X] is a derivation of L{(U) which

is not an inner derivation.

Let Z ro , 3<r <k+1, be the vector fields on U defined by:
0 . .
Z, = z Rykriorye jOathsroryrj» Whete Rygpypyyj > 1S 7S py s, are C™ mappings
1SjSpg—rs2
from U to /R depending on uy,..., Uy - Zf gL, U).

Then we have:



Lemma 5. The mapping from Li(U) to Ly({U): X —> [Z Z?,X} is a derivation of

3<r<k+1

L (U) which is not an inner derivation.

Theorem 2. Let D be a derivation of Ly(U). There exist ZlheAlh(U), 0<h<k,

Zg € Ag ), Zr0 , 35 r<k+1, vector fields on U (see lemma 5), a derivation A (see lemma
3) and a vector field T (see lemma 4), such that for every X € Ly(U):

DO = P 4+ D 20X |F MO +[T.X],

In particular, dim H' (LI(U))Z-l-OO. Zlo, Zg, z ZB, A and T are uniquely

3<r<k+1

determined; Zlh , 1<h<k, is only determined up to the sum of

z Ec(h)+a(k—h)+jac(h)+a(k—h)+j B where Ec(h)+a(k—h)+j Only depends on ul,...,ua(k).
1<j<prr1-n

Proof. 1) First we study the uniqueness: suppose that, for every X € L;(U), we also have:

'h 0 , ' h _ 4k
D(X)= [ZOshsk Z'+Y, 7 ,XJ +A(X)+[T", X], where Z," € 4! (U),0<h<k,
Z;O S Ag ), Z;O, 3<r<k+1, vector fields on U (see lemma 5),

A'[ z Xa(k)+l(u1""7ua(k+l)) aa(k)+l}:

I<I<ppy

[ z aa(k)+l)(a(k)+lj z Ac(h)+a(k—h)+i ac(h)+a(k—h)+i
1<h<k

<[<
I<I<pgy 1<i<ppy1-p

A' z Xc(h)+a(k—h)+j(ul’""ua(k+1))ac(h)+a(k—h)+j =0,
1<h<k

1<j<prr1-n
r'= z z Byl Uetnyrate-nysi | Octyrati-nes» Where Ayiqpyei and By
1<t<k 1<h<k

1< ppes1—¢ \ISI<Ppey1—p

are C” mappings from U to IR only depending on ..., Ug(ky - We set:
0_ 50
Zy =24y = z bathyej Oathye)

1<j<pps1
h 'h
ZI'=Z" = Y &e(myrati—hysi Octhyrati—nyi» 1Sh<k
ISi<pk+1-h
0 0
Zr - Zr = zda(k+1—r)+j aa(k+1—r)+j > 2<r<k+l
1<j<pj—r+2

1 " : : "

Ac(h)+a(k—h)+i - Ac(h)+a(k—h)+i = Ac(h)+a(k—h)+i > B/{,i _B;zj,i = Bh,j;' s 1Sh<k,1<i<pg,.

Forevery X € L;(U), we have :

[ 20-2°x]+[ X (2 -2") X+ X (20-2°) .X]+@a-ayx)+[T -1, X]=0.
1<h<k 2<r<k+1

We deduce that:



i) for X =0,y1s> 1 SIS ppyy

= 2 Butytbare) Oatres = Do Caterri&ethyratinysi Octiyrathonysi =0>  then
1<j<pri 1<h<k
1<i<pps1-n

Oatkyribaysj =0, 1< J < pryy and Oyqyi&e(hyrath-nyri =0, 1Sh <k 1<i<pryyy,
ll) for X:ua(k)+laa(k)+l, ISISpk-{-]:
ba(k)+l aa(k)+z + Z Ac(h)+a(k—h)+i ac(h)+a(k—h)+i =0, then ba(k)+l =0, for all /,

1<h<k
1<i<pj41-h

i) for X =u,; v Ouyuss 1S5Sk, 1<i< ppyy o, 1SI< py g
dye-syri Oaiyrs =0 then dy_g,; =0, 1<s<k.

iv) for X = ac(h)+a(k—h)+i’ 1<h<k,1<i<ppiy:

_Bh,Ji ac(t)+a(k—t)+ J =0 then Bh{ ; =0.

2) The existence of Zlh , 0<h<k, Z?, 2<r<k+1, A and T is induced from the four

following lemmas.

Lemma 6. There exist ZP € Alo ), Zlh € Alh (U), 1<h<k, such that the mapping from
LiU)to LiU): X - Dj(X)=D(X)-[ Z)+ D ene 215 X is a derivation of Ly(U)
which verifies Dy (0 4(j)41) =0 for 1<I< pp.

. hy+a(k—h)+i
Proof. Setting, for 1</ < p, ;1 D(0,y1) = z D;((kgif( s O chyralk—hy+i »

0<h<k
I<i<pr41-h

we have, for 1 </, f < p;.q:

D( Ou(ky+t»Cahys f ) =0= [ D@ ks 0utiysr 1+ Pagiyst» P@ugiys ) |

Hence 0 ,x)+ szgzgila(k_h)H = O0a() +ZD§EZ;I‘;.(k_h)+i; thus there exist, in U, C* functions

of ul,...,ua(k+1) , Dc(h)+a(k—h)+i , 0<h<k , 1<i< Pr+1-h such that

aa(k)+ch(h)+a(k—h)+i = ngzgif(k_h)+i . It 1s sufficient to set:

50 h_
Z ——Zlg,-gpkﬂ Dyoyri Oy » 41 = zlgispkﬂ_h D, wyrate—ny+i Ochyrath—nyi» 1Sh<k.
This completes the proof. O

Lemma 7. There exist ZO € AIO(U), Zg € AS(U), Zf, 3<r<k+1, vector fields on U
(see lemma 5), a derivation A of Ly(U) (see lemma 3) such that the mapping from L;(U) to
Li(U):
X > Dy(X)=D(X)-[ >, .2 X]-[ Z.X ]-AX)
=D(X) - Zoshskzlh + ZZS;‘SkHZrO’X J-AM)
is a derivation of Li(U) which verifies Dy (0ayu) =0 for 1<I<pp,

Dy (u 0 4ey41) =0 for 1< j<a(k+1), 1<1< ppy. (we have set: Zlo =2f) +ZIO)



Proof. Setting, for 1 < j<a(k+1), 1</<p;.:

— z (W)+a(k—=h)+i .
Dl(ujaa(k)+[)— ch’a(k)t_l'_l ! ac(h)+a(k_h)+i 5 we haVe, fOI‘ 1 ng pk+1
0<h<k
1<i<pp41-h

Dl([ O a(iy+ £ U0 aiye ]) =0 = [aa(k)+faD1(ujaa(k)+l) .
We deduce that Dj‘f’(:'();)i(lk_hw only depends on uy,..., U4y -

For1<j,r<a(k+1),1<[,f < p;,1,wehave:
k
D, ([ U ;0 iyl > Ur O iy ]): S atiy+1Dy (“jﬁa(k)+f)—5}z( 1D, (0 4 (ky+1)
:[ Dy (ujaa(k)+l)9uraa(k)+f ]+[ ”jaa(k)+laD1 (uraa(k)+f) ]

1) Assume 1<r<a(k):for j=a(k)+l=a(k)+ [, we have:

(h)+a(k—h)+i _ (k)+l
- Z Drc,a(k)il l ac(h)+a(k—h)+i__Dra,a(k)+l aa(k)+l‘
0<h<k
1<i<ppi1-p

We deduce thatfor 0<h<k,1<i<p; ., ,i#l, Df’(ah()kgﬁ’r(lk_h)*" =0.

. k)+l +f

(k)+ _ pa(k)+f
We deduce that D;Z,a(k)+l = Df,a(k)+f .
2) Assume a(k)+1<r<a(k+1):forr#a(k)+!=j=a(k)+ f,wehave:

hy+a(k—hy+i k)+l
- ZDf,(a();:)i(l s O c(hyrak—hy+i :Dg(k)+l,a(k)+l aa(k)+l_Df,Ez(3c-;+l Oatky+ -

0<h<k
I<i<pfi1-h
We deduce that for 0<h<k, 1<i<p, ., ., i#[, D:(ah()kgi(lk_h)ﬂ =0, next

D;(k)+l,a(k)+l =0.For r= a(k)+l * ] = a(k)+f,We have :

(k)+f (h)+a(k—h)+i (k)+l
D:zl(k)+f,a(k)+f aa(k)+f + Z Dccz(k)+;l’,a(k)+} ac(h)+a(k—h)+i _D:;l(k)+l,a(k)+l aa(k)+l
1<h<k
1<i<ppi1-p

(h)+a(k—h)+i _ pa(k)+ (k)+f
- Z Dcf(k)+la,a(k)+ll ac(h)+a(k—h)+i _DZ(k)+ Foak)+ aa(k)+f _DZ(k)+l,a(k)+ f aa(k)+1
1<h<k
ISi<ppy1-p

. pmalk)+f _ palk)+
We deduce: Da(k)+f,a(k)+f = Da(k)+f,a(k)+l ’

c(hyratk—hy+i _ me(h)yra(k—h)+i .
Doy rrathye s = Patiyrtatyrr » 1SHSK SIS Py
Weset: D; = common value of D;l(ak()l:)il’ 1<j<alk+1),

h k—h)+i . . .
Achyrath-ny+i = Dc%k;j:ig(k)lf for 1<h<k,1<i< p;.,; ,which determines A,

0 =0
Z, = ZISiﬁpk_H_z Da(k+l—r)+i aa(k+1—r)+i , 2<r<k+l, Zy = z

Zlo = Zf) + ZO . This completes the proof. O

1<i<pj Da(k)+i aa(k).H‘ and

Lemma 8. There exists a vector field T on U (see lemma 4) such that the mapping from

Li(U)to Li(U): X = Dy(X) =D,(X) —[T,X] is a derivation of L;(U) which verifies



D3 (0cinyragk-my+i) =0, for O0<h<k, 1<i<pg, ;. Dyu;0,4),)=0 for 1<I<p,,
1< j<a(k+1).

Proof. We set, for | <h<k,1<i< p;,_:

— (r)+a(k—r)+] .
Dy@ciyraeiy) = 2, Dinyratime Octryrathorys; - For 1<1< pyyy, we have:

0<r<k
I<j<pk+1-r

D, ([ aa(k)+l’ac(h)+a(k—h)+i ]) =0= [ aa(/f)Jr/aDz (ac(h)+a(k—h)+i) ] .

We deduce that Dg((,:))izglf:zgilj only depends on uy,...,u, ) . We have:

DZ[[ Octhrratinsi» 2 HatkriOas ]J -0

I<I<pp 4
(r)+a(k=r)+j
[ Z Dcc(;)+3(k—2)+z! ac(r)+a(k—r)+j’ 2 ua(k)+laa(k)+l ]
0<r<k I<I<ppiq
1<j<pk+1-r

We deduce that Df((f)fé(k_hm =0 for 1</< p;,;.1Itis enough to set:

_ (r)+a(k—r)+j
T=- z z Dcc(h)+a(k—;z)+lJ uc(h)+a(k—h)+i ac(r)+a(k—r)+j'
1<r<k 1<h<k
17 plea1—r \ 1SI<Ppy1-h

This completes the proof.O

Lemma 9. For every X € Li(U) whose components on O.g.atk-myris 1SES Py
0<h<k, are polynomials of variables u ;, 1< j<a(k+1), of degree <3, D3(X) =0.

Proof. 1) We take 1<r,t<a(k+1), 1<I<p,:

— (M+a(k=h)+j c(h)+a(k—h)+j
Dy (u4,14,0 111 = z Dy yaiyr " Ochyratknysj » Where the D, G atky+ 7 only

r

0<h<k
1</<pg+1-h

depends on uy,...,Ug(g41)- For 1< [ < ppy, we have:

c(h)+a(k—h)+j
Ds([ dugays s>ttt @agy V=0=[ Buguys s D3 (1,0 4400) ] then DEEEM only

depends on u,..., U,y -

i)Assume a(k)+1 < r,t < a(k +1): [ zua(k)_i_faa(k)_,_f,Mrutaa(k)_H ]: urutaa(k)H

1</ <pis1
Applying Ds to this, we obtain:
a(k)+f _ (h)+a(k=h)+j )
= 2Dl ahCater = 2 Drvatirs | Octiyrathonys; - We deduce:
I</<pk+1 0<h<k
1<j<pk+1-h
2Df§ka)(%+l =0 for 1< < pr., Drc(thzzr]f)%l_h)ﬁ =0 for 1<h<k,1<i<p;.,, from

which it follows that D3 (u,.4,0 ;(5)4) = 0.
i) Assume 1<r<a(k)<t<a(k+1): [u.0,, uld,pyer |=2u,0,0 40101

From i) it follows that D; (ufaa(kw) =0 then D3 (u,u,04¢)4;) = 0.

10



iii) Assume 1<t <a(k): [ uraa(k)ﬂ,ut ua(k)+,6a(k)+l ]: urutﬁa(kw.

From i7) it follows that D3 (u; U 4410 g+ ) =0 then D3 (u,.4,0 4jy4y) = 0.

2) We take 1<r,t,s<a(k+1),1<1,f < priq: fromD3([ O q(y+ f>UrtihsO gieys ]): 0
we deduce that [ O a(iy+ £ » D3 (1,150 () 41) ]: 0.

i)Assume a(k)+1<r,t,s <a(k+1):

[ Dty rOuthys f ottt agiyss 1= 20,1010 o 1yy hence Dy (u, 1111 0 g 5y2) = 0.

I<f<pk+1
ii) Assume 1<r<ak)<t,s<alk+1):

[ Dty rOuthys fotr it agiysr 1= 1,2,1050 yayyy hence Dyttt 0y 5y2) = 0.
I<f<pp+1
iii) Assume 1<rt<a(k)<s<a(k+1):

2

[urutas’usaa(k)H ] = 2urutusaa(k)+l hence DS(urutusaa(k)H):O
iv)Assume 1<r,t,s <a(k):

[ 4,20,0 4hys1 U sUa(hy110agiyss ] = Uttt 0g(yss hence Dy (u 1,10 yg44y) = 0.

3)i) Weset,for 1<r<a(k+1),1<h<k,1<i< p,_:

_ t)+a(k—t)+j
D3 (urac(h)+a(k—h)+i) - z D:,(c(h)a+a(k—h{+i 8c(l)+a(k—t)+j :
0<t<k
1<j<pk+1-¢

For 1</< p,.,, we have:
Ds([ O a(k)+1>UrO c(hyralh—h)+i ) =0 =] 0 a(kye1 D3 (Ur0 cnyragi—mysi) -
For 1<r <a(k), 1 <I< p;.;,wehave:
Ds([ U0 g(ky+1 > Ua(k)+10 c(h)y+a(k—h)+i ) = b, (0 c(hyra(—hy+i)
[ 1,0 g (k)1 D3 Uiy 410 c(hy+a(i—hy+i) ]=0.

Hence, for1<r< a(k) , D3 (urac(h)+a(k_h)+i) =0.
For a(k)+1<r<a(k+1),wehave,

D3 (4,0 cyrate—nyi) =~ Dateyrt.ctnyrate—ny+i€atky+
If »=a(k)+1,we have, D;Z((l];)):fc(h)+a(k—h)+i =0 forj#/, then

a(k)+ B c(t)y+alk-1)+) B
Dyiyatethyratiny =0 and Dy o da i =0 for 1<i<k.

If r#a(k)+1,since Dy cimyrate-myi =0 then D3(u,0 ) vage—ny+i) =0-
ii) Wetakenow 1<¢t,r,s<a(k+1),1<h<k,1<i<p;. 5 ,1<I<pi:

[uturaa(k)H’ua(k)+lac(h)+a(k—h)+i ] = UM Oc(hyra(k-hy+i  hence
Dy (uu,.0 o (pyra(i—ny+i) = 0-
[ut”r”saa(k)H’ua(k)+lac(h)+a(k—h)+i ] = U U0 (pyra(k-hy+i  hence

Dy (uu, 150 o (pyra(i—ny+i) =0 -
Let us conclude the demonstration of the theorem by considering any X belonging to L;(U);

for every x € U, there exists X € L;(U) whose components on Oc(hy+ratk—-my+i » 0Sh<k,
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1<i< pri1_p »are polynomials of degree < 3 and such that j3 (X - )?)(x) =0. By lemma 2
we have Dy (X —)?)(x) =0. Since D; ()N() =0, then D;(X)(x)=0.

On the other hand, because Z]' —Z," = zlsiSpk+1_;, 8ehyratk-hyri Ochyrath-nysi » 1 Sh <k, with
Outkyi8eiyrath-iyi =0, 1<h<k, 1<i< pryp, 1<I<p,,,, thus the vector fields Zlh are
not uniquely determined but determined up to the sum of
D i<ppary Gethrati-nye Octiyrati-nyej » WHETe &e(pyrq(i—py+; Only depends on uy,...,tt gk -

So the dimension of H' (LI(U )) is infinite for U open set of adapted local coordinates of vk,
This completes the proof. O

On the other hand, let Z be the vector field on U defined by

AR h( > uc(h)ﬂ.ac(hw] (cf[1], p. 124). We showed that, in fact, Z is globally
1<h<k 1< j<a(k+1-h)

defined. We immediately verify that:

Lemma 10. The mapping from L,(U) toL,(U) (resp. from LJ(Vk) to
LJ(V]‘)):X—)[Z‘U,X} ( resp. X—)[Z,X]) is a derivation of L,(U) (resp. LJ(Vk)) which

is not an inner derivation. So dim H' (LJ (U)) >1, dimH' (LJ (Vk)) >1.

The derivations of L;(U) have been studied by J. Lehmann-Lejeune (cf. [4], th. 1, p. 25). Let
us recall the results:

Theorem 3. For every derivation D of L ;(U) there exist k real constants K;, 1 <h <k, and
an element Y € L ;(U) such that, for every X € L;(U):

D(X)= [ Zl<h<k Kth_lZ‘U +Y, X ] K, and Y are uniquely determined; then
dimH' (L,(U))=k.

4. When the foliations are defined by submersions

In this section, we assume that the k foliations of M are defined by k submersions
M, —>M, where 1<h<k, My=M, the M, are manifolds of dimension
a(k+1-h)and p; >0, p; 20 2<i<k+1. The leaves of each foliation Fj_;_;, are the
connected components of the inverse image by 7, ©...o 77y of the points of M, .

Let y, e M,be a point of M. Denote by y, = 7o) jo...omy(yg)eM;,, 1<h<k.
For all i, 0<h<k, there exist U, open sets of local coordinates (U1 5eees Ug (k1)) »
is a projection :

neighborhood of y, in M, such that 7, (Uh) = Uh+1 and 7, 0,

( Upsestlgyrpy) = (UyseesUypy) Then there exists an open set of local coordinates

U= ﬁ_l(UO) of V¥ This is an “open set of adapted local coordinates uy,...,u,,”” which,
moreover, is adapted to the submersions.
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The automorphisms of the foliations Fj,_, on M =M, 1<h<k, defined by
T, o/, o...om My —> M, are projectable vector fields from M, to M.

Lemma 11. Let Q) be an open set okaand XEL?(Q), 1<s<k+1, 0Zh<k+1-s
(cf- [4]). For every x €2, the germ at x of Xis the germ at x of an X'ELJ(Vk).

Proof. Let 2 be an open set of V¥ such that Q=7"o 7(QQ) and xe€Q. We set
Q= 7(€2), open set of M, and y, = 7(x) € Q. According to lemma 5 (cf [1], p. 127), it is
sufficient to show the result for X € Lil+1 (Q), 1<s<k, 0<h<k-s.

Let )A(GL?H((AZ) be a vector field on Q, 1<s<k, 0<h<k-s,and XGL?H(Q) be
the corresponding vector field on €2 ( cf. [4]).

Ze oM 0.0 (X) = XS is a vector field on f!s, open set of M, neighborhood of
Yy =mgomgjo...om(yg). There exists ¢, function on M, with support contained in
0} s> and equal to 1 in a neighborhood @;of y,. The vector field X5 = (DS)A( ¢ 1s global on
M ;. The germ at y, of X5 is equal to the germ at y, of X s - With the help of a metric on
M, we can define the lift on M, of vector fields defined in M ;. Indeed, let g be a metric on
M and y, apoint of M. Denote by S, the orthogonal supplementary set relatively to g of
Ker(n]) to TyMy: T, My= Ker(n)@®S,. Setting y, = 7,(y,), S, is isomorphic to
TyM;. For 0<h<k-1 and y, =7z, o, o..om(yg), assume that the vector space

T\, M} is endowed with a scalar product; thus T, M = Ker(n),1)®S,.,, where S, is

the orthogonal supplementary set of Ker(z),;) in T vy M- Spi is endowed with a scalar
product: the restriction of the scalar product on 7 Vi M ,. On the other hand, S, is isomorphic

to T, My, ; we deduce from this isomorphism a scalar product on 7', . M.

Yh+1
This assertion is true for /2 =0. Thus it’s true foreveryh, 0<h <k —1.
We deduce that we can write as an orthogonal direct sum: 7\, My = & E,, where E, is
1<r<k+1

isomorphic to Ker(zz,)for 1<r <k and E,; to T, M.

Hence we could lift up a vector field on M ,,,1<h <k, into a vector field on M _;, taking it
in S}, . And step by step or gradually, we could lift it on M.

Then let X, be the lift of X* on M. Set szk(Jg(R)?S)) (cf. [4]). 1t is a vector field

globally defined on V*. Denote by Q' the open set of V% such that
Q' =(mgomy_yo ..‘07z107z)_1(6?)s). Q' contains x . The vector field X‘Q, —)N(‘Q, e L, (QY).

To show it, we will do an inductive reasoning on s .
For s =1, X‘Q, —)~(‘Q, € L;(Q"). According to lemma 5 (cf [1]), the germ at x of X, —)?‘Q, is

the germ at x ofan Y € L, (Vk ). X being global, thus the germ at x of X is the germ at x of
v k
X'=X+YeL,(V").
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Now, for 1<s<k, 0<h<k—s,assume that for every XGLi’(Q) the germ at x of X is
the germ at x of an X'ELJ(Vk). Let XGL?H (©2) be a vector field on Q. Then

Xy — )?Q. € L, (Q"). According to the inductive hypothesis, the germ at x of X‘Q, —X"Q. is

the germat xof an Y € L, (Vk). X being global, thus the germ at x of X is the germ at x of
X'=X+Ye L, (V*). This proves our lemma. O

Proposition 4. For every derivation D of L, (Vk) and for every X elL,; (Vk),
supp D(X) csupp X ; every derivation D of L, (Vk) is local.

Proof. Let @ be an open set of V¥ such that @ = 72'_1(72'(60)). We set @ = (@) open set of
M. Let X e L', (M) be a vector field on My, 0<s<k, 0<h<k—s (cf. [4]) such
that X| o= 0. (For s=0, Li’ + (M) is the set of the vector fields of M|, tangent to the
leaves of Fj,_;, and orthogonal to the leaves of Fj ., ;). Denote by X the corresponding
vector fieldon V¥, X € Lh+1(V ) (cf. [4]). We have: X‘ =0.

Let X* be the projected of Xon M ¢ For all y € @, there exist open sets Ql and Qz of
M, such that Q; NQ, =@, 7, 0m, o..om(y) =y, €Qy, supp X* <, (for s =0,
X=X, Vs :yeﬁz and supp)?cf)l). )A(‘SQZ =0; in particular X° is zero in a
neighborhood of ). According to the theorem of A. Lichnerowicz (cf [5], p. 64), we can
write X° = Z[f’i‘v,f;s JMS where Y, T* are vector fields on M, with support in Q:

1 1

Y5 =0,T5 =0.
for =7 Moy
Let X° (respectlvely T ) be the lift of X¥ ( respectlvely ) on M (for s =0,

X=X, 7 =7, ,.S: T7)and X = B (J§(RX*)) (ef. [3))

X:Zﬂ(Jg(R[K‘,Z ]MOD.

If ¥ = Pk(Jh(RY )) .=P,C(Jh(RT )) and @, = (7, ox,_jo...om o) (Q,), open set
of V* containing x = 77! (y) (for s =0, 7, =7 ), we have:

[7.7]= ﬂ(Jg(R[ﬁs,ﬁsJ))+Ri where R, € L,(V*) and Ry, =0. Then

1271

X = Z([ i l} ) Since X —X e L,(V*), we have: X = Z[ - l]-i—R where
R, e L(V*) and Ry, =0.Hence D(X):Z([D(Y,.), T]+] ,.,D(T,.)])+D(RS).

To conclude, we will do an inductive reasoning on s to show that D(R, )‘ o = 0.

ForS:0,RO:O.ThenD(R())‘@:O.ThusD(X)‘w2 0 smceT‘a)2 =0, Y, =0, hence

ilan
D(X)‘w =0. Now we suppose that D(X)‘w2 =0 forevery X € Lﬁ (V'*) such that X‘wz =0,
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1<s<k,0<h<k-s.Let X L' (V") beavectorfieldon V", 0<h<k-s5,0<s<k.
According to the inductive hypothesis, D(R, )‘ oy = 0, hence D(X )‘ o = 0, and thus

D(X)‘w = () .This concludes the proof. O
Theorem 4. When the k foliations on M are defined by submersions dim H' (LJ (Vk)) =k.

Proof. Let D be a derivation on L (Vk). For every open set Q of V%, we have an induced
derivation D¢, : L;(€2) = L,(Q).For X € L,(Q) and x € Q, we set :

Do (X)(x)=D(X")(x) where X'e L J(Vk) and coincides with X in an open neighborhood
of x ('seelemma 11). D, (X )(x) does not depend on X' according to proposition 4.

Consider now a covering (U o )a oA of V¥ by adapted local coordinates open sets. According

to theorem 3, for all & € 4, there exists ¥, e L,(U,), k constants K|",...,K;’ such that for
every X eL,;(U,) :
b
Dy, (X)=[ 3 Kiy J'Zy, +Y,. X ]
0<b<k-1
Since DUa and DUa' limited to U, NU , coincide, Y, and Y, limited to U, "U,,. are

equal and Kz, = Klfil , 0<bh<k—1.Thus there exists ¥ € L; (Vk) and k real constants

Ki,.....K} such that forall @ € 4, YUa =Y, and K;,; =Kj,;, 0<b<k-1.
Since for every XELJ(Vk), D(X)‘Ua =Dy, (X‘U ),we have for every XELJ(Vk)Z

D(X) = z K, J'Z +Y, X | This concludes the proof. O
0<b<k-1

5. Case of the torus endowed with two foliations

0 0
We consider the vector fields X =—+a— and X '=g+ ﬂai in R*, provided with

Ox oy ox 4
canonical coordinates (x,y,z), where o and € R—Q. The first integrals of X (rep. X")
globally defined are the functions G(y —ax,z) (resp. G'(z— fx,y)) where G and G' are

C”® mappings from R? to R. Defining an equivalence relation in R’ by:
(x,y,z2)=(x",y",z2") if x—x'€Z, y—y'e€Z and z—z'€Z , we obtain on the torus T3 the
vector fields still denoted by X and X'. The first integrals of X and X' must be periodic C*°
mappings in x,) and z, of period 1. For a fixed y, u — G'(u, y) is periodic in u of period 1
and S . Then G' only depends on y . Likewise, for a fixed z, v = G'(v,z) is periodic in v
of period 1 and & . Then G only depends on z .

We endow T° with the following two foliations: /| is determined by X and X', of
codimension 1 and F, is determined by X, of codimension 2. We have [} D F,. The
globally defined first integrals associated to the foliation /| are the functions
F(x,y,2)=G(y—ax,z) = G'(z— fx,y). We deduce that the first integrals of Fj are

constant, and those of F, are only function of z .
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On M =T , we consider the coordinate change:

u, =—ﬂx+£y+z, Uy =x—ly and wu; = 1 y  where u €la,b, u,ela'b], uy;ela",b".
a a

a
(uq,up,u3) are local coordinates adapted to the foliations Fq and F,. We deduce on the

transverse bundle V2, the adapted local coordinates (u,,u,,us,u,,us,uy) in the open set
U=]a,b[x]a',b[x]a".b"[xR*. We will only consider this kind of open sets of adapted
coordinates.

Let U and U' be two such open sets satisfying U n"U"'# . We have, in U NU": u, —ui =1,
Uy, —uy =g, uy—uy =h, where f,g and h are locally constant, u, =u,, us=1us, us=ug.
Then 8,=0,, 8,=0,, =05, 0,=0,, 05=0s, ds =05. (For simplicity, we have set:

ai =0, ).Thus we have six vector fields globally defined on V% which realize a parallelism.
1

i

We denote by X, (resp. X3) the canonical lifts of X" (resp. X ) in V2. We have:

0
o =—
0z Joy =04, JO, =05,
82 :§+ﬁ§:X2’ J83 =0, J84:86, and Z=u484 +u585 +2u686.
X V4
A Jos =0, Jog=0,
63 =—+(I—IX3
ox oy

0
We will take as a basis of T(Vz) : [;,X2,X3,84,65,66j . For simplicity, we set: el 0,.
z 4

Let YeL,(V?). We set Y =Y,0, + Y, X, + 3X3 + Y404 + Y505 + Y0¢. For every vector
field T in V2, we have [v,JT]=J[Y,T]. By considering T =0,, T=X,, T = X3, T =04,
T =05 then T =0, we deduce:

Lemma 12. Each element of Lj (V2) is of one of the following types:

1)Ko,

2)F(2)Xy + (uy + Pus)0,F0s,

3) p(x,y,2) X3,

4) G(2)04 + (ug + pus)0,Gog,

5)y(x,y,2)0s,

6)#(x,y,z)0¢ where K is a constant and the mappings F and G from R to R (resp.
o.w,¢ from R® to R) are I-periodic in z (resp. I-periodic in x,y and z ). Ll(VZ) is the
set of the elements of type 3, 5 and 6. The set of elements of type 2 (resp. 4) is Ag (Vz) (resp.
AT)) f 12]). We have: L, V) =Ro, @ LVH® AVH®LT?).

Let ¥ =10, +(Y,X; + (uy + fus)0.Y,05) + VX3 +(Y,0, + (uy + Pus)0.Y,06 ) + Y505 + Y0g an

element of L, (V7).
We set:
A (V) =(X3.55)06, Ay (Y)=Y,05 + Ys05 + BY;05,
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A3(Y) = Yl(as —ﬂ84) 5 A4(Y) = Yz (85 —ﬂ64) .
It is easy to verify that:

Lemma 13. Ay, Ay, A3 and Ay are derivations of LJ(VZ) which are not inner derivations.

Thus dim H'(L, (7)) 26 since Aj, Ay, Az, Ay, X —[Z,X] and X —[JZ,X] are

non-inner linearly independent derivations of L, 7?).

6. Case of the sphere endowed with two foliations. Study of /' (LI(VZ)) .

Let S° be the unit 3- sphere defined by S° = {(xl,x2,x3,x4)/x12 +X XS X = 1} . We consider
W:S3—{x12+x§ =0, x; +x; =0}.We set v =+/x3 +x;, 0<v <1,

_L_.2
X; =+/1 =V} cosv,
— 2 o
X, =4/l sinv,

X4 =V sinv,

L 0 0 ,
where v, and v; are 2x -periodic and, X :—+v12 —— whose first integrals are C™
Vv, 0vy
mappings F(v,).
dv dv dv
We have: — =0, —2 =1, —> =1 thus v, =cste, t=v, and v, =vlv, +cste.
dt dt dt

We endow W with the following two foliations: F| is determined by the foliation of the torus,
of codimension 1 and £ is determined by X, of codimension 2.

On W , we consider the coordinate change:

u =v, u, =v;—v, and uy;=v; where u; €]0,1[, u, €]0,27[, uy €]0,27].

(u),u,,uy) are local coordinates adapted to the foliations F| and F,. We deduce on the
transverse bundle Vz, the adapted local coordinates (u,u,,us,u,,us,us) in the open set

U =]0,1[x]0,27z[x]0,27z[xR3. We will only consider this kind of open sets of adapted
coordinates.
Let Uand U' be two such open sets satisfying U NU'#. We have, in UNU": y, =ui,

uy—u,=f, uy—u; =g, where f and g are locally constant on U "U"', u, =u,, us =us,

ug =ug. Then 6,=98,, 0,=0,, 0,=0; 0,=0,, 0s =05, ds =0y. (For simplicity, we have

set: 2 =0, ).Thus we have six vector fields globally defined on V% which realize a parallelism.
We have:

Vi J@l = 84, J62 = 85,
% =20, ., Jo3=0, Jog=05, and X =u?0;.
az Jas = 0, J86 = 0,
—=0,+0,

V3
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Let Yel; (Vz) .Weset Y =Y,0,+Y,0, + ;X +Y,0, + Y505 + Y0, . For every vector field T in

Vz,we have [Y,JT]:J[Y,T]. By considering 7'=0,, T'=0,, T=X, I'=0,, T =05 then
T =0,, we deduce:

Lemma 14. Each element of L, (V'?) is of one of the following types:
1) Fy(uy)0, +uy0,F104 + (%”ialel + uéalFljafy )

2) Fy ()0, +u,0,F0s,

3) o(uy,uy,us) X,

4) Fy ()04 +u40,Fy0s,

)y (uy,uy,u3)0s,

6) P(uy,1uy,13)0s .

LI(VZ) is the set of the elements of type 3, 5 and 6.

Let Y = (uy,uy,13) X +y (uy,1,,u3)05 + (uy,14y,u3)d, an element of L, (V?).

We set: A(Y)=(X.0)(A(u;)0s + B(uy)0).

Moreover, let T = (Cs (u; Jus + Cg (u; Jug ) 05 + (D5 (uy Jus + Dg (uy Jug ) O .-

It is easy to verify that A and Y —)[T Y ] are derivations of LI(VZ) which are not inner
derivations. Thus we have the following result:

Theorem 5. Let D be a derivation of Ll(Vz). There exists a unique vector field SeL, %)
(S=Z+Z,+7Z,,Z, of type 1, Z, of type 2 and Z, of type 3) such that for every Y e LI(VZ) :
DY) = [S,Y] +AY)+ [T,Y] + [ZS,Y] + [Zé,Y] . Zs and Z, are of type 5 and 6 respectively and
are determined up to the sum of y(u;)0s + ¢(u,)0; .
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