The First Chevalley-Eilenberg Cohomology Group of the Lie Algebra on the Transverse Bundle of a Decreasing Family of Foliations

Leila Lebtahi Departamento de Matemática Aplicada Universidad Politécnica de Valencia Camino de Vera s/n 46022 Valencia, Spain E-mail: leilebep@mat.upv.es

<u>Abstract</u>

In [Lie Algebra on the Transverse Bundle of a Decreasing Family of Foliations, J. Geom. Phys., 60 (2010) 122-133], we defined the transverse bundle V^k to a decreasing family of k foliations F_i on a manifold M. We have shown that there exists a (1,1) tensor J of V^k such that $J^k \neq 0$, $J^{k+1} = 0$ and we defined by $L_J(V^k)$ the Lie Algebra of vector fields X on V^k such that, for each vector field Y on V^k , [X, JY] = J[X, Y]. In this note, we study the first Chevalley-Eilenberg Cohomology Group i.e. the

In this note, we study the first Chevalley-Eilenberg Cohomology Group i.e. the quotient space of derivations of $L_J(V^k)$ by the subspace of inner derivations, denoted by $H^1(L_J(V^k))$.

Keywords: Foliations; Fiber Bundles; Lie Algebra; Derivation; Cohomology group.

Mathematics Subject Classification: 53C12; 55R10; 17B66; 13N15; 17B56

1. Introduction

Let M be a differentiable manifold of dimension *m* endowed with *k* foliations $F_1, F_2, ..., F_k$, $k \ge 1$, of respective codimensions $p_1, p_1 + p_2, ..., p_1 + p_2 + ... + p_k$ such that $F_1 \supset F_2 \supset ... \supset F_k$ $(m = p_1 + p_2 + ... + p_k + p_{k+1}, p_1 > 0, p_i \ge 0, 2 \le i \le k+1)$.

In [1], we defined a so-called "order k bundle V^k transverse to the foliations F_i " and we proved that there exists a (1,1) tensor J of V^k such that $J^k \neq 0$, $J^{k+1} = 0$ and for every pair of vector fields X, Y on V^k :

$$[JX, JY] - J[JX, Y] - J[X, JY] + J^{2}[X, Y] = 0.$$

Ω being an open set of V^k , we denote by $L_J(Ω)$ the Lie Algebra of vector fields X defined on Ω such that the Lie derivative L(X)J is equal to zero i.e., for each vector field Y on Ω:

$$[X,JY] = J[X,Y].$$

We define by L_1 a subset of $L_J(V^k)$ constituted by the vector field X on V^k such that $X \in KerJ$. The purpose of this paper is to study the first Chevalley-Eilenberg Cohomology Group of L_J , denoted by $H^1(L_J(V^k))$. In [2], J.Lehmann-Lejeune studied the Cohomology on the Transverse Bundle of a Foliation. This paper is organized as follows.

In section 2, we recall some relevant results and notations (cf [1]), more precisely, we define the order k bundle V^k and the (1,1) tensor J of V^k , and we remind the most important result showed in [1]: for every $X \in L_1(V^k)$, we can write $X = \sum_i [Y_i, Z_i]$ where \sum_i is a finite sum and Y_i, Z_i belongs to $L_1(V^k)$.

In section 3, we study the derivations of $L_1(V^k)$. We prove that every derivation of $L_J(V^k)$ restricted to $L_1(V^k)$ is a derivation of $L_1(V^k)$ and also every derivation of $L_1(V^k)$ is local. Moreover, we construct three derivations of $L_1(U)$ witch are not inner derivations, where U is an open set of adapted local coordinates of V^k . On the other hand we show that, for every $x \in V^k$, there exists an open set U containing x such that dim $H^1(L_1(U))$ is infinite.

In section 4, we study the case of foliations defined by submersions and then we show that the dimension of $H^1(L_J(V^k))$ is equal to k.

In section 5, we study an example on T^3 with k = 2 foliations where dim $H^1(L_J(V^k)) > k$. In section 6, we compute $H^1(L_1(V^k))$ in the case of the 3- sphere.

2. Preliminaries

Let M be a differentiable manifold of dimension *m* endowed with *k* foliations $F_1, F_2, ..., F_k$, $k \ge 1$, of respective codimensions $p_1, p_1 + p_2, ..., p_1 + p_2 + ... + p_k$ such that $F_1 \supset F_2 \supset ... \supset F_k$ $(m = p_1 + p_2 + ... + p_k + p_{k+1}, p_1 > 0, p_i \ge 0, 2 \le i \le k+1)$.

Notation:	we set:	$a(h) = p_1 + p_2 + \dots + p_h$	for	$1 \le h \le k+1,$
		a(h) = 0	for	$h \leq 0$,
		$c(t) = a(k+1) + a(k) + \dots + a(k-t+2)$	for	$1 \le t \le k+1,$
		c(t) = 0	for	$t \leq 0$

We define a so-called "order k bundle V^k transverse to the foliations F_i " (cf [1], p. 123) in the following way. The order k tangent bundle of M is the manifold of dimension (k+1)m of the k-jets of origin 0 of differentiable mappings from IR to M denoted $T^k M$ (cf. [3]).

Let s and h be two integers such that $0 \le s \le h \le k$, $h \ge 1$. On the set of h-jets of differentiable mappings of origin 0 from IR to M, we define an equivalence relation. Let φ and ψ be two differentiable mappings from IR to M such that $\varphi(0) = \psi(0)$.

Denote by $(u_1, u_2, ..., u_m)$ the local coordinates of an open set $\hat{U} \subset M$, adapted to the k foliations (i.e. $u_1, u_2, ..., u_{a(h)}$ are constants on the leaves of F_h , $1 \le h \le k$), such that $\varphi(0) = \psi(0) = x_0 \in \hat{U}$.

We say that the h-jets of φ and ψ are equivalent if: $\frac{d^b \varphi_l}{d\rho^b}(0) = \frac{d^b \psi_l}{d\rho^b}(0)$, $1 \le b \le s$, $1 \le l \le a(k+1-b)$ and $s+1 \le b \le h$, $1 \le l \le a(k+1-s)$. This equivalence relation is independent of the open set \hat{U} of coordinates adapted to the *k* foliations containing x_0 . We denote by $(V^s)^h$ the quotient space of the h-jets of differentiable mappings from IR to M endowed with this equivalence relation. This is a manifold of dimension $\sum_{0 \le t \le s} a(k+1-t) + (h-s)a(k+1-s)$.

For s = h, $(V^s)^s$ will be denoted, for simplicity, by V^s .

We have the following diagram, where the arrows are the natural projections:

$$V^{k} \leftarrow (V^{k-1})^{k} \leftarrow (V^{k-2})^{k} \leftarrow \dots \leftarrow (V^{2})^{k} \leftarrow (V^{1})^{k} \leftarrow T^{k}M$$

$$V^{k-1} \leftarrow (V^{k-2})^{k-1} \leftarrow \dots \leftarrow (V^{2})^{k-1} \leftarrow (V^{1})^{k-1} \leftarrow T^{k-1}M$$

$$V^{k-2} \leftarrow \dots \leftarrow (V^{2})^{k-2} \leftarrow (V^{1})^{k-2} \leftarrow T^{k-2}M$$

$$V^{k-2} \leftarrow \dots \leftarrow (V^{2})^{k-2} \leftarrow (V^{1})^{2} \leftarrow T^{2}M$$

$$V^{1} \leftarrow M$$

 V^k is called order k bundle transverse to the k foliations $F_1, F_2, ..., F_k$. The dimension of V^k is $n = \sum_{0 \le t \le k} (t+1)p_{k+1-t} = \sum_{0 \le t \le k} a(k+1-t)$.

 $T^{k}M$ (which can be considered as a $(V^{s})^{k}$ with s = 0) is equipped with an order k nearly tangent structure J_{0} of constant range km (cf. [3]). In [1] p. 124, we show that there exists a (1,1) tensor J of V^{k} which is the projection on V^{k} of the nearly tangent operator J_{0} of order k on $T^{k}M$. Its rank is constant and equal to $\sum_{1 \le t \le k} a(k+1-t)$: it verifies $J^{k} \ne 0$, $J^{k+1} = 0$ and for every pair of vector fields X, Y on V^{k} :

$$[JX, JY] - J[JX, Y] - J[X, JY] + J^{2}[X, Y] = 0.$$

Ω being an open set of V^k , we denote by $L_J(Ω)$ the Lie Algebra of vector fields X defined on Ω such that the Lie derivative L(X)J is equal to zero i.e., for each vector field Y on Ω: [X, JY] = J[X, Y]

Let U be an open set of adapted local coordinates $(u_1,...,u_n)$ and X a vector field on U.

 $\begin{array}{l} X \quad \text{belongs to } L_J(\Omega) \quad \text{if and only if, for every open set } U \quad \text{of adapted local coordinates} \\ (u_1,...,u_n) \quad \text{such that} \quad \Omega \cap U \neq \emptyset, \quad X_{\mid \Omega \cap U} \quad \text{is a vector field finite sum} \\ A(s,h,l) \quad = \sum_{0 \leq q \leq s-1} X_{c(h+q)+a(k+1-s-h)+l} \quad \partial_{c(h+q)+a(k+1-s-h)+l} \quad , \quad \text{where} \quad 1 \leq s \leq k+1, \\ 0 \leq h \leq k+1-s, \ 1 \leq l \leq p_{k-h-s+2} \quad (\text{we set } \partial_i = \frac{\partial}{\partial u_i}). \end{array}$

 $X_{c(h)+a(k-s-h+1)+l}$ only depends on $(u_1,...,u_{a(k-s+2)})$ and for $1 \le q \le s-1$,

$$X_{c(h+q)+a(k+1-s-h)+l} = \sum \frac{\partial^{i} X_{c(h)+a(k+1-s-h)+l}}{\partial u_{1}^{i_{1}} \dots \partial u_{j}^{i_{j}} \dots \partial u_{r}^{i_{r}}} \prod_{1 \le j \le r} \left[\prod_{1 \le t \le q} \frac{\left(u_{c(t)+j}\right)^{b_{j}^{t}}}{b_{j}^{t}!} \right]$$
(cf. [1], Lemma 1).

$$\begin{split} A(s,h,l) \text{ is hence completely determined by its non zero first component } & X_{c(h)+a(k-s-h+1)+l}; \\ \text{if } s=1 \text{ , it will be its only one non zero component.} \\ \text{We set: } & A_s^h(U) = \sum_{1 \leq l \leq p_{k-h-s+2}} A(s,h,l) \text{ where } 1 \leq s \leq k+1, \ 0 \leq h \leq k+1-s. \\ \text{Then, for } 1 \leq s \leq k+1 \text{ , we construct the set } L_s(\Omega) = L_J(\Omega) \cap (KerJ_{|\Omega}^s) \text{ (cf [1], p. 126-127).} \\ \text{We recall the following results (cf [1]):} \end{split}$$

Theorem 1. For every $X \in L_1(V^k)$, we can write $X = \sum_i [Y_i, Z_i]$ where \sum_i is a finite sum and Y_i, Z_i belongs to $L_1(V^k)$.

Lemma 1. Let U be an open set of adapted local coordinates of V^k and s an integer such that $2 \le s \le k+1$ (suppose $p_{k-s+2} \ne 0$). Every element of $L_s(U)$ is a bracket finite sum of elements of $L_s(U)$ which means that: $[L_s(U), L_s(U)] = L_s(U)$.

3. General study of Derivations

In this section, we suppose that $p_{k+1} \neq 0$. **Proposition 1.** Let D be a derivation of $L_J(V^k)$. Then $D(L_1(V^k)) \subset L_1(V^k)$ and $D_{|L_1(V^k)|}$ is a derivation of $L_1(V^k)$.

Proof. From theorem 1, for every $X \in L_1(V^k)$, we can write $X = \sum_i [Y_i, Z_i]$ where \sum_i is a finite sum and Y_i, Z_i belongs to $L_1(V^k)$. Thus $D(X) = \sum_i ([D(Y_i), Z_i] + [Y_i, D(Z_i)])$.

Furthermore, $D(Y_i)$ and $D(Z_i) \in L_J(V^k)$. Since $L_1(V^k)$ is an ideal of $L_J(V^k)$ (cf [1], lemma 4), we deduce that $[D(Y_i), Z_i]$ and $[Y_i, D(Z_i)]$ belong to $L_1(V^k)$ and thus $D(X) \in L_1(V^k)$. This completes the proof. \Box

Proposition 2. For every derivation D of $L_1(V^k)$ and for every $X \in L_1(V^k)$, supp $D(X) \subset$ supp X; every derivation D of $L_1(V^k)$ is local.

Proof. Let $X \in L_1(V^k)$ be a vector field on V^k and ω an open set of V^k such that $X_{|\omega} = 0$; setting $\Omega = \pi^{-1}(\pi(\omega))$, we also have $X_{|\Omega} = 0$. For each $x \in \Omega$, there exist open sets Ω_1 and Ω_2 of V^k such that $\Omega_1 \cap \Omega_2 = \emptyset$, $\Omega_i = \pi^{-1}(\pi(\Omega_i))$, i = 1, 2, supp $X \subset \Omega_1$, $x \in \Omega_2$. According to theorem 2 (cf [1], p.128), we can write $X = \sum_i [T_i, Y_i]$, where T_i, Y_i belongs to $L_1(V^k)$ and whose supports are in Ω_1 . Since $D(X) = \sum_i ([D(T_i), Y_i] + [T_i, D(Y_i)])$, we deduce that $D(X)_{|\Omega_2} = 0$, then $D(X)_{|\Omega} = 0$. This completes the proof. \Box

Proposition 3. Let U be an open set of adapted local coordinates of V^k and s an integer such that $2 \le s \le k+1$. Suppose $p_{k-s+2} \ne 0$. Let D be a derivation of $L_s(U)$. Then $D(L_{s-1}(U)) \subset L_{s-1}(U)$ and $D_{|L_{s-1}(U)}$ is a derivation of $L_{s-1}(U)$.

Proof. In fact, according to theorem 1 for s = 2 and lemma 6 (cf [1], p. 128) for $3 \le s \le k+1$, for every $X \in L_{s-1}(U)$, we can write $X = \sum_i [Y_i, Z_i]$ where \sum_i is a finite sum and Y_i, Z_i belong to $L_{s-1}(U)$. From lemma 4 (cf [1]), we deduce that $D(X) = \sum_i ([D(Y_i), Z_i] + [Y_i, D(Z_i)])$ belongs to $L_{s-1}(U)$. This completes the proof. \Box

Lemma 2. Let U be an open set of adapted local coordinates of V^k and s an integer such that $1 \le s \le k+1$. Suppose $p_{k-s+2} \ne 0$. Let D be a derivation of $L_s(U)$, $X \in L_s(U)$ and $x \in U$ such that $j^3(X)(x) = 0$. Then D(X)(x) = 0.

Proof. This results from lemma 7 (cf [1], p. 128). \Box

From now on and until the section ends, U is an open set of adapted local coordinates of V^k .

Define a mapping $\Delta: L_1(U) \to L_1(U)$ by:

$$\begin{split} \Delta \left(\sum_{1 \le l \le p_{k+1}} X_{a(k)+l}(u_1, \dots, u_{a(k+1)}) \partial_{a(k)+l} \right) &= \\ \left(\sum_{1 \le l \le p_{k+1}} \partial_{a(k)+l} X_{a(k)+l} \right) \left(\sum_{\substack{1 \le h \le k \\ 1 \le i \le p_{k+1}-h}} A_{c(h)+a(k-h)+i} \ \partial_{c(h)+a(k-h)+i} \right) \\ \Delta \left(\sum_{\substack{1 \le t \le k \\ 1 \le j \le p_{k+1}-t}} X_{c(t)+a(k-t)+j}(u_1, \dots, u_{a(k+1)}) \partial_{c(t)+a(k-t)+j} \right) &= 0 \end{split}$$

where $A_{c(h)+a(k-h)+i}$, $1 \le h \le k$, $1 \le i \le p_{k+1-h}$ are C^{∞} mappings from U to IR only depending on $u_1, \dots, u_{a(k)}$.

Lemma 3: Δ is a derivation of $L_1(U)$, which is not an inner derivation.

$$\begin{aligned} \mathbf{Proof:} \text{ In fact, we take } X &= \sum_{1 \le l \le p_{k+1}} X_{a(k)+l} \ \partial_{a(k)+l} \text{ and } Y = \sum_{1 \le t \le p_{k+1}} Y_{a(k)+t} \ \partial_{a(k)+t} \\ &\left[[X,Y] = \sum_{1 \le t \le p_{k+1}} \left(\sum_{l} \left(X_{a(k)+l} \partial_{a(k)+l} Y_{a(k)+t} - Y_{a(k)+l} \partial_{a(k)+l} X_{a(k)+t} \right) \right) \ \partial_{a(k)+t} \\ &\Delta ([X,Y]) = \left(\sum_{l,t} \left(X_{a(k)+l} \partial_{a(k)+t} \partial_{a(k)+l} Y_{a(k)+t} - Y_{a(k)+l} \partial_{a(k)+t} \partial_{a(k)+t} X_{a(k)+t} \right) \right) \\ &\times \left(\sum_{\substack{1 \le h \le k \\ 1 \le i \le p_{k+1-h}}} A_{c(h)+a(k-h)+i} \ \partial_{c(h)+a(k-h)+i} \right) \\ &\left[\Delta (X),Y] + [X,\Delta (Y)] = \left(-\sum_{l,t} Y_{a(k)+t} \partial_{a(k)+l} \partial_{a(k)+t} X_{a(k)+t} + \sum_{l,t} X_{a(k)+l} \partial_{a(k)+t} \partial_{a(k)+t} Y_{a(k)+t} \right) \\ &\times \left(\sum_{\substack{1 \le h \le k \\ 1 \le i \le p_{k+1-h}}} A_{c(h)+a(k-h)+i} \ \partial_{c(h)+a(k-h)+i} \right) = \Delta ([X,Y]). \end{aligned}$$

We now take
$$Y' = Y'_{c(h)+a(k-h)+j}\partial_{c(h)+a(k-h)+j}$$
, $1 \le h \le k$, $1 \le j \le p_{k+1-h}$.
 $[X, Y'] = \sum_{1 \le h \le k} \left(\sum_{l} X_{a(k)+l} \partial_{a(k)+l} Y'_{c(h)+a(k-h)+j} \right) \partial_{c(h)+a(k-h)+j}$, $\Delta([X, Y']) = 0$,
 $[\Delta(X), Y'] + [X, \Delta(Y')] = 0 + [X, 0] = 0$.

Suppose there exists $Y \in L_1(U)$ such that $\Delta(X) = [Y, X]$: then, for $X = \partial_{a(k)+l}$, $1 \le l \le p_{k+1}$, we shall have: $0 = [Y, \partial_{a(k)+l}]$ and the components of Y will depend only on $u_1, \dots, u_{a(k)}$. For $X = u_{a(k)+l}\partial_{a(k)+l}$, $1 \le l \le p_{k+1}$, we shall have:

$$\sum_{\substack{1 \le h \le k \\ 1 \le i \le p_{k+1-h}}} A_{c(h)+a(k-h)+i} \quad \partial_{c(h)+a(k-h)+i} = Y_{a(k)+l} \partial_{a(k)+l} \quad \text{, hence } Y_{a(k)+l} = 0 \quad \text{and for all } h \text{,}$$

 $1 \le h \le k$, $A_{c(h)+a(k-h)+i} = 0$. This completes the proof. \Box

In U, we set :
$$T = \sum_{\substack{1 \le t \le k \\ 1 \le j \le p_{k+1-t}}} \left(\sum_{\substack{1 \le h \le k \\ 1 \le i \le p_{k+1-h}}} B_{h,i}^j \quad u_{c(h)+a(k-h)+i} \quad \partial_{c(t)+a(k-t)+j} \right),$$

 $B_{h,i}^{j}$ are C^{∞} mappings from U to *IR* only depending on $u_1, ..., u_{a(k)}$. $T \notin L_J(U)$. We immediately verify that:

Lemma 4. The mapping from $L_1(U)$ to $L_1(U): X \to [T, X]$ is a derivation of $L_1(U)$ which is not an inner derivation.

Let Z_r^0 , $3 \le r \le k+1$, be the vector fields on U defined by: $Z_r^0 = \sum_{1 \le j \le p_{k-r+2}} R_{a(k+1-r)+j} \partial_{a(k+1-r)+j}$, where $R_{a(k+1-r)+j}$, $1 \le j \le p_{k-r+2}$, are C^{∞} mappings

from U to *IR* depending on $u_1,...,u_{a(k)}$. $Z_r^0 \notin L_J(U)$. Then we have: Lemma 5. The mapping from $L_1(U)$ to $L_1(U): X \to \left[\sum_{3 \le r \le k+1} Z_r^0, X\right]$ is a derivation of $L_1(U)$ which is not an inner derivation.

Theorem 2. Let D be a derivation of $L_1(U)$. There exist $Z_1^h \in A_1^h(U)$, $0 \le h \le k$, $Z_2^0 \in A_2^0(U)$, Z_r^0 , $3 \le r \le k+1$, vector fields on U (see lemma 5), a derivation Δ (see lemma 5) 3) and a vector field T (see lemma 4), such that for every $X \in L_1(U)$:

 $D(X) = \left[\sum_{0 \le h \le k} Z_1^h + \sum_{2 \le r \le k+1} Z_r^0, X\right] + \Delta(X) + [T, X].$ $\dim H^1(L_1(U)) = +\infty$. Z_1^0 , Z_2^0 , $\sum_{3 \le r \le k+1} Z_r^0$, Δ and T are uniquely In particular, determined; Z_1^h , $1 \le h \le k$, is only determined up to the sum $\sum_{1 \leq j \leq p_{k+1-h}} E_{c(h)+a(k-h)+j} \partial_{c(h)+a(k-h)+j} \text{ , where } E_{c(h)+a(k-h)+j} \text{ only depends on } u_1, \dots, u_{a(k)}.$

Proof. 1) First we study the uniqueness: suppose that, for every $X \in L_1(U)$, we also have: $D(X) = \left[\sum_{0 \le h \le k} Z_1^{'h} + \sum_{2 \le r \le k+1} Z_r^{'0}, X \right] + \Delta'(X) + [T', X], \text{ where } Z_1^{'h} \in A_1^h(U), 0 \le h \le k,$ $Z_{2}^{'0} \in A_{2}^{0}(U), Z_{r}^{'0}, 3 \le r \le k+1$, vector fields on U (see lemma 5), $\Delta' \left(\sum_{1 \le l \le n} X_{a(k)+l}(u_1, \dots, u_{a(k+1)}) \partial_{a(k)+l} \right) =$ $\left(\sum_{1\leq l\leq p_{k+1}}\partial_{a(k)+l}X_{a(k)+l}\right)\left(\sum_{\substack{1\leq h\leq k\\1\leq i\leq p_{k+1-h}}}A_{c(h)+a(k-h)+i}\right)\left(\sum_{1\leq k\leq k}A_{c(h)+a(k-h)+i}\right)\right)$ $\Delta' \left(\sum_{1 \le h \le k} X_{c(h)+a(k-h)+j}(u_1, ..., u_{a(k+1)}) \partial_{c(h)+a(k-h)+j} \right) = 0,$ $T' = \sum_{1 \le t \le k} \left(\sum_{1 \le h \le k} B'_{h,i} \, u_{c(h)+a(k-h)+i} \right) \, \partial_{c(t)+a(k-t)+j}, \text{ where } A'_{c(h)+a(k-h)+i} \text{ and } B'_{h,i},$

are C^{∞} mappings from U to *IR* only depending on $u_1, \dots, u_{a(k)}$. We set:

$$\begin{split} Z_{1}^{0} - Z_{1}^{'0} &= \sum_{1 \leq j \leq p_{k+1}} b_{a(k)+j} \quad \partial_{a(k)+j} \quad \partial_{a(k)+j} ,\\ Z_{1}^{h} - Z_{1}^{'h} &= \sum_{1 \leq i \leq p_{k+1-h}} g_{c(h)+a(k-h)+i} \quad \partial_{c(h)+a(k-h)+i} , \ 1 \leq h \leq k \\ Z_{r}^{0} - Z_{r}^{'0} &= \sum_{1 \leq j \leq p_{k-r+2}} d_{a(k+1-r)+j} \quad \partial_{a(k+1-r)+j} , \qquad 2 \leq r \leq k+1 \\ A_{c(h)+a(k-h)+i} - A_{c(h)+a(k-h)+i} = A_{c(h)+a(k-h)+i}^{''} , \ B_{h,i}^{j} - B_{h,i}^{'j} = B_{h,i}^{''j} , \ 1 \leq h \leq k , \ 1 \leq i \leq p_{k+1-h}. \\ \text{For every } X \in L_{1}(U) , \text{ we have :} \\ \left[Z_{1}^{0} - Z_{1}^{'0}, X \right] + \left[\sum_{1 \leq h \leq k} \left(Z_{1}^{h} - Z_{1}^{'h} \right) , X \right] + \left[\sum_{2 \leq r \leq k+1} \left(Z_{r}^{0} - Z_{r}^{'0} \right) , X \right] + (\Delta - \Delta')(X) + \left[T - T', X \right] = 0 \\ \text{We deduce that:} \end{split}$$

We deduce that:

$$\begin{split} i) \text{ for } X &= \partial_{a(k)+l}, \ 1 \leq l \leq p_{k+1}: \\ &- \sum_{1 \leq j \leq p_{k+1}} \partial_{a(k)+l} b_{a(k)+j} \quad \partial_{a(k)+j} - \sum_{1 \leq h \leq k} \partial_{a(k)+l} g_{c(h)+a(k-h)+i} \quad \partial_{c(h)+a(k-h)+i} = 0, \\ &\partial_{a(k)+l} b_{a(k)+j} = 0, \ 1 \leq j \leq p_{k+1} \quad \text{and} \quad \partial_{a(k)+l} g_{c(h)+a(k-h)+i} = 0, \ 1 \leq h \leq k, \ 1 \leq i \leq p_{k+1-h} \\ ⅈ) \text{ for } X = u_{a(k)+l} \partial_{a(k)+l}, \ 1 \leq l \leq p_{k+1}: \\ &b_{a(k)+l} \quad \partial_{a(k)+l} \quad + \sum_{\substack{1 \leq h \leq k \\ 1 \leq i \leq p_{k+1-h}}} A_{c(h)+a(k-h)+i}^{"} \quad \partial_{c(h)+a(k-h)+i} = 0, \ \text{ then } b_{a(k)+l} = 0, \ \text{ for all } l, \\ &1 \leq l \leq p_{k+1} \quad \text{and} \quad A_{c(h)+a(k-h)+i}^{"} = 0 \ \text{ for all } h, \ 1 \leq h \leq k, \ 1 \leq i \leq p_{k+1-h}. \\ &iii) \ \text{ for } X = u_{a(k-s)+i} \quad \partial_{a(k)+l}, \ 1 \leq s \leq k, \ 1 \leq i \leq p_{k+1-s}, \ 1 \leq l \leq p_{k+1}: \\ &d_{a(k-s)+i} \quad \partial_{a(k)+l} = 0 \ \text{ then } d_{a(k-s)+i} = 0, \ 1 \leq s \leq k. \\ &iv) \ \text{ for } X = \partial_{c(h)+a(k-h)+i}, \ 1 \leq h \leq k, \ 1 \leq i \leq p_{k+1-h}: \\ &- B_{h,i}^{"j} \quad \partial_{c(t)+a(k-t)+j} = 0 \ \text{ then } B_{h,i}^{"j} = 0. \end{split}$$

2) The existence of Z_1^h , $0 \le h \le k$, Z_r^0 , $2 \le r \le k+1$, Δ and T is induced from the four following lemmas.

Lemma 6. There exist $\hat{Z}_1^0 \in A_1^0(U)$, $Z_1^h \in A_1^h(U)$, $1 \le h \le k$, such that the mapping from $L_1(U)$ to $L_1(U)$: $X \to D_1(X) = D(X) - [\hat{Z}_1^0 + \sum_{1 \le h \le k} Z_1^h, X]$ is a derivation of $L_1(U)$ which verifies $D_1(\partial_{a(k)+l}) = 0$ for $1 \le l \le p_{k+1}$.

Proof. Setting, for $1 \le l \le p_{k+1}$: $D(\partial_{a(k)+l}) = \sum_{\substack{0 \le h \le k \\ 1 \le l \le p_{k+1}-h}} D_{a(k)+l}^{c(h)+a(k-h)+i} \ \partial_{c(h)+a(k-h)+i}$,

we have, for $1 \leq l, f \leq p_{k+1}$: $D\left(\left[\begin{array}{c}\partial_{a(k)+l}, \partial_{a(k)+f}\end{array}\right]\right) = 0 = \left[\begin{array}{c}D(\partial_{a(k)+l}), \partial_{a(k)+f}\end{array}\right] + \left[\begin{array}{c}\partial_{a(k)+l}, D(\partial_{a(k)+f})\end{array}\right]$ Hence $\partial_{a(k)+f} D_{a(k)+l}^{c(h)+a(k-h)+i} = \partial_{a(k)+l} D_{a(k)+f}^{c(h)+a(k-h)+i}$; thus there exist, in U, C^{∞} functions of $u_1, \dots, u_{a(k+1)}, D_{c(h)+a(k-h)+i}, 0 \leq h \leq k, 1 \leq i \leq p_{k+1-h}$ such that $\partial_{a(k)+l} D_{c(h)+a(k-h)+i} = D_{a(k)+l}^{c(h)+a(k-h)+i}$. It is sufficient to set: $\hat{Z}_1^0 = -\sum_{1 \leq i \leq p_{k+1}} D_{a(k)+i} \partial_{a(k)+i}, \quad Z_1^h = -\sum_{1 \leq i \leq p_{k+1-h}} D_{c(h)+a(k-h)+i} \partial_{c(h)+a(k-h)+i}, 1 \leq h \leq k$. This completes the proof. \Box

Lemma 7. There exist $\widetilde{Z}_1^0 \in A_1^0(U)$, $Z_2^0 \in A_2^0(U)$, Z_r^0 , $3 \le r \le k+1$, vector fields on U (see lemma 5), a derivation Δ of $L_1(U)$ (see lemma 3) such that the mapping from $L_1(U)$ to $L_1(U)$:

$$\begin{aligned} X \to D_2(X) &= D_1(X) - \left[\sum_{2 \le r \le k+1} Z_r^0, X \right] - \left[\tilde{Z}_1^0, X \right] - \Delta(X) \\ &= D(X) - \left[\sum_{0 \le h \le k} Z_1^h + \sum_{2 \le r \le k+1} Z_r^0, X \right] - \Delta(X) \end{aligned}$$

is a derivation of $L_1(U)$ which verifies $D_2(\partial_{a(k)+l}) = 0$ for $1 \le l \le p_{k+1}$, $D_2(u_j\partial_{a(k)+l}) = 0$ for $1 \le j \le a(k+1)$, $1 \le l \le p_{k+1}$. (we have set: $Z_1^0 = \hat{Z}_1^0 + \tilde{Z}_1^0$)

Proof. Setting, for $1 \le j \le a(k+1)$, $1 \le l \le p_{k+1}$:

$$D_{1}(u_{j}\partial_{a(k)+l}) = \sum_{\substack{0 \le h \le k \\ 1 \le i \le p_{k+1}-h}} D_{j,a(k)+l}^{c(h)+a(k-h)+i} \ \partial_{c(h)+a(k-h)+i} , \text{ we have, for } 1 \le f \le p_{k+1} :$$

$$D_{1}\left(\left[\partial_{a(k)+f}, u_{j}\partial_{a(k)+l}\right]\right) = 0 = \left[\partial_{a(k)+f}, D_{1}(u_{j}\partial_{a(k)+l})\right].$$
We deduce that $D_{j,a(k)+l}^{c(h)+a(k-h)+i}$ only depends on $u_{1}, \dots, u_{a(k)}$.
For $1 \le j, r \le a(k+1), 1 \le l, f \le p_{k+1}$, we have :

$$D_{1}\left(\left[u_{j}\partial_{a(k)+l}, u_{r}\partial_{a(k)+f}\right]\right) = \delta_{a(k)+l}^{r}D_{1}(u_{j}\partial_{a(k)+f}) - \delta_{j}^{a(k)+f}D_{1}(u_{r}\partial_{a(k)+l})\right)$$

$$= \left[D_{1}(u_{j}\partial_{a(k)+l}), u_{r}\partial_{a(k)+f}\right] + \left[u_{j}\partial_{a(k)+l}, D_{1}(u_{r}\partial_{a(k)+f})\right]$$
1) Assume $1 \le r \le a(k)$; for $i = a(k) + l = a(k) + f$ we have :

1) Assume
$$1 \le r \le a(k)$$
: for $j = a(k) + l = a(k) + f$, we have:

$$-\sum_{\substack{0 \le h \le k \\ 1 \le i \le p_{k+1-h}}} D_{r,a(k)+l}^{c(h)+a(k-h)+i} \quad \partial_{c(h)+a(k-h)+i} = -D_{r,a(k)+l}^{a(k)+l} \quad \partial_{a(k)+l}.$$

We deduce that for $0 \le h \le k$, $1 \le i \le p_{k+1-h}$, $i \ne l$, $D_{r,a(k)+l}^{c(h)+a(k-h)+i} = 0$. For j = a(k) + f, we have $: -D_{r,a(k)+l}^{a(k)+l} \quad \partial_{a(k)+l} = -D_{r,a(k)+f}^{a(k)+f} \quad \partial_{a(k)+l}$. We deduce that $D_{r,a(k)+l}^{a(k)+l} = D_{r,a(k)+f}^{a(k)+f}$. 2) Assume $a(k) + 1 \le r \le a(k+1)$: for $r \ne a(k) + l = j = a(k) + f$, we have :

2) Assume $a(k) + 1 \le r \le a(k+1)$. for $r \ne a(k) + i = j = a(k) + j$, we have . $-\sum_{\substack{0 \le h \le k \\ 1 \le i \le p_{k+1} - h}} D_{r,a(k)+l}^{c(h)+a(k-h)+i} = D_{a(k)+l,a(k)+l}^{r} \quad \partial_{a(k)+l} - D_{r,a(k)+l}^{a(k)+l} \quad \partial_{a(k)+l} .$

We deduce that for $0 \le h \le k$, $1 \le i \le p_{k+1-h}$, $i \ne l$, $D_{r,a(k)+l}^{c(h)+a(k-h)+i} = 0$, next $D_{r,a(k)+l}^{r} = 0$. For $r = a(k) + l \ne i = a(k) + f$ we have:

$$D_{a(k)+l,a(k)+l} = 0.1017 - u(k) + i \neq j - u(k) + j \text{, we have}.$$

$$D_{a(k)+f,a(k)+f}^{a(k)+f} = \partial_{a(k)+f} + \sum_{\substack{1 \le h \le k \\ 1 \le i \le p_{k+1-h}}} D_{a(k)+f,a(k)+f}^{c(h)+a(k-h)+i} = \partial_{a(k)+f,a(k)+l}^{c(h)+a(k-h)+i} - D_{a(k)+l,a(k)+l}^{a(k)+l} = \partial_{a(k)+f}^{a(k)+l} - \sum_{\substack{1 \le h \le k \\ 1 \le i \le p_{k+1-h}}} D_{a(k)+l,a(k)+l}^{c(h)+a(k-h)+i} = D_{a(k)+f,a(k)+l}^{a(k)+l} = \partial_{a(k)+f} - D_{a(k)+l,a(k)+f}^{a(k)+f} = \partial_{a(k)+l}^{a(k)+l} = D_{a(k)+f,a(k)+l}^{a(k)+l} = D_{a(k)+f,a($$

We deduce:
$$D_{a(k)+f,a(k)+f}^{a(k)+f} = D_{a(k)+f,a(k)+l}^{a(k)+l}$$
,
 $D_{a(k)+f,a(k)+f}^{c(h)+a(k-h)+i} = D_{a(k)+l,a(k)+l}^{c(h)+a(k-h)+i}$, $1 \le h \le k$, $1 \le i \le p_{k+1-h}$.

We set: $D_j = \text{common value of } D_{j,a(k)+l}^{a(k)+l}, 1 \le j \le a(k+1),$ $A_{c(h)+a(k-h)+i} = D_{a(k)+l,a(k)+l}^{c(h)+a(k-h)+i} \text{ for } 1 \le h \le k, 1 \le i \le p_{k+1-h}, \text{ which determines } \Delta,$ $Z_r^0 = \sum_{1 \le i \le p_{k-r+2}} D_{a(k+1-r)+i} \partial_{a(k+1-r)+i}, \quad 2 \le r \le k+1, \quad \tilde{Z}_1^0 = \sum_{1 \le i \le p_{k+1}} D_{a(k)+i} \partial_{a(k)+i} \text{ and }$ $Z_1^0 = \hat{Z}_1^0 + \tilde{Z}_1^0.$ This completes the proof. \Box

Lemma 8. There exists a vector field T on U (see lemma 4) such that the mapping from $L_1(U)$ to $L_1(U): X \to D_3(X) = D_2(X) - [T, X]$ is a derivation of $L_1(U)$ which verifies

$$\begin{split} D_3(\partial_{c(h)+a(k-h)+i}) &= 0, \ for \ 0 \leq h \leq k, \ 1 \leq i \leq p_{k+1-h}, \ D_3(u_j \partial_{a(k)+i}) = 0 \ for \ 1 \leq l \leq p_{k+1}, \\ 1 \leq j \leq a(k+1). \end{split}$$

Proof. We set, for $1 \le h \le k$, $1 \le i \le p_{k+1-h}$:

$$D_2(\partial_{c(h)+a(k-h)+i}) = \sum_{\substack{0 \le r \le k \\ 1 \le j \le p_{k+1}-r}} D_{c(h)+a(k-h)+i}^{c(r)+a(k-r)+j} \quad \partial_{c(r)+a(k-r)+j} \text{ . For } 1 \le l \le p_{k+1} \text{ , we have:}$$

$$D_2\left(\left[\begin{array}{c}\partial_{a(k)+l},\partial_{c(h)+a(k-h)+i}\end{array}\right]\right) = 0 = \left[\begin{array}{c}\partial_{a(k)+l},D_2(\partial_{c(h)+a(k-h)+i})\end{array}\right].$$

We deduce that $D_{c(h)+a(k-h)+i}^{c(r)+a(k-h)+j}$ only depends on $u_1,...,u_{a(k)}$. We have:

$$\begin{split} D_2 \Biggl(\left[\begin{array}{c} \partial_{c(h)+a(k-h)+i}, \sum_{1 \leq l \leq p_{k+1}} u_{a(k)+l} \partial_{a(k)+l} \end{array} \right] \Biggr) &= 0 &= \\ \left[\sum_{\substack{0 \leq r \leq k \\ 1 \leq j \leq p_{k+1-r}}} D_{c(h)+a(k-h)+i}^{c(r)+a(k-r)+j} \partial_{c(r)+a(k-r)+j}, \sum_{1 \leq l \leq p_{k+1}} u_{a(k)+l} \partial_{a(k)+l} \end{array} \right] \end{split}$$

We deduce that $D_{c(h)+a(k-h)+i}^{a(k)+l} = 0$ for $1 \le l \le p_{k+1}$. It is enough to set:

$$T = -\sum_{\substack{1 \le r \le k \\ 1 \le j \le p_{k+1-r}}} \left(\sum_{\substack{1 \le h \le k \\ 1 \le i \le p_{k+1-h}}} D_{c(h)+a(k-h)+i}^{c(r)+a(k-r)+j} u_{c(h)+a(k-h)+i} \right) \partial_{c(r)+a(k-r)+j}.$$

This completes the proof. \Box

Lemma 9. For every $X \in L_1(U)$ whose components on $\partial_{c(h)+a(k-h)+i}$, $1 \le i \le p_{k+1-h}$, $0 \le h \le k$, are polynomials of variables u_j , $1 \le j \le a(k+1)$, of degree ≤ 3 , $D_3(X) = 0$.

Proof. 1) We take $1 \le r, t \le a(k+1), 1 \le l \le p_{k+1}$: $D_3(u_r u_t \partial_{a(k)+l}) = \sum_{\substack{0 \le h \le k \\ 1 \le j \le p_{k+1-h}}} D_{r,t,a(k)+l}^{c(h)+a(k-h)+j} \partial_{c(h)+a(k-h)+j}$, where the $D_{r,t,a(k)+l}^{c(h)+a(k-h)+j}$ only

depends on $u_1, \dots, u_{a(k+1)}$. For $1 \le f \le p_{k+1}$, we have:

 $D_3(\left[\partial_{a(k)+f}, u_r u_t \partial_{a(k)+l}\right]) = 0 = \left[\partial_{a(k)+f}, D_3(u_r u_t \partial_{a(k)+l})\right] \text{ then } D_{r,t,a(k)+l}^{c(h)+a(k-h)+j} \text{ only depends on } u_1, \dots, u_{a(k)}.$

i) Assume
$$a(k) + 1 \le r, t \le a(k+1)$$
: $\left[\sum_{1 \le f \le p_{k+1}} u_{a(k)+f} \partial_{a(k)+f}, u_r u_t \partial_{a(k)+l}\right] = u_r u_t \partial_{a(k)+l}$

Applying D_3 to this, we obtain:

$$-\sum_{1 \le f \le p_{k+1}} D_{r,t,a(k)+l}^{a(k)+f} \partial_{a(k)+f} = \sum_{\substack{0 \le h \le k \\ 1 \le j \le p_{k+1}-h}} D_{r,t,a(k)+l}^{c(h)+a(k-h)+j} \partial_{c(h)+a(k-h)+j}$$
. We deduce:

 $2D_{r,t,a(k)+l}^{a(k)+j} = 0 \text{ for } 1 \le j \le p_{k+1}, \quad D_{r,t,a(k)+l}^{c(h)+a(k-h)+i} = 0 \text{ for } 1 \le h \le k, \ 1 \le i \le p_{k+1-h}, \text{ from which it follows that } D_3(u_r u_t \partial_{a(k)+l}) = 0.$

ii) Assume
$$1 \le r \le a(k) < t \le a(k+1)$$
: $\begin{bmatrix} u_r \partial_t, & u_t^2 \partial_{a(k)+l} \end{bmatrix} = 2u_r u_t \partial_{a(k)+l}$.
From *i*) it follows that $D_3(u_t^2 \partial_{a(k)+l}) = 0$ then $D_3(u_r u_t \partial_{a(k)+l}) = 0$.

$$\begin{array}{l} iii) \text{ Assume } 1 \leq r,t \leq a(k): \left[u_r \partial_{a(k)+l}, u_t u_{a(k)+l} \partial_{a(k)+l} \right] = u_r u_t \partial_{a(k)+l}. \\ \text{From } ii) \text{ it follows that } D_3(u_t u_{a(k)+l} \partial_{a(k)+l}) = 0 \text{ then } D_3(u_r u_l \partial_{a(k)+l}) = 0. \\ 2) \text{ We take } 1 \leq r,t,s \leq a(k+1), 1 \leq l,f \leq p_{k+1}: \text{ from } D_3(\left[\partial_{a(k)+f}, u_r u_t u_s \partial_{a(k)+l} \right] \right] = 0 \\ \text{we deduce that } \left[\partial_{a(k)+f}, D_3(u_r u_t u_s \partial_{a(k)+l}) \right] = 0. \\ i) \text{ Assume } a(k) + 1 \leq r,t,s \leq a(k+1): \\ \left[\sum_{1 \leq f \leq p_{k+1}} u_{a(k)+f} \partial_{a(k)+f}, u_r u_t u_s \partial_{a(k)+l} \right] = 2u_r u_t u_s \partial_{a(k)+l} \text{ hence } D_3(u_r u_t u_s \partial_{a(k)+l}) = 0. \\ ii) \text{ Assume } 1 \leq r \leq a(k) < t,s \leq a(k+1): \\ \left[\sum_{1 \leq f \leq p_{k+1}} u_a(k) + f \partial_{a(k)+f}, u_r u_t u_s \partial_{a(k)+l} \right] = u_r u_t u_s \partial_{a(k)+l} \text{ hence } D_3(u_r u_t u_s \partial_{a(k)+l}) = 0. \\ iii) \text{ Assume } 1 \leq r \leq a(k) < t,s \leq a(k+1): \\ \left[u_r u_t \partial_s, u_s^2 \partial_{a(k)+l} \right] = 2u_r u_t u_s \partial_{a(k)+l} \text{ hence } D_3(u_r u_t u_s \partial_{a(k)+l}) = 0. \\ iii) \text{ Assume } 1 \leq r,t \leq a(k) < s \leq a(k+1): \\ \left[u_r u_t \partial_{a(k)+l}, u_s u_{a(k)+l} \partial_{a(k)+l} \right] = u_r u_t u_s \partial_{a(k)+l} \text{ hence } D_3(u_r u_t u_s \partial_{a(k)+l}) = 0. \\ iv) \text{ Assume } 1 \leq r,t,s \leq a(k): \\ \left[u_r u_t \partial_{a(k)+l}, u_s u_{a(k)+l} \partial_{a(k)+l} \right] = u_r u_t u_s \partial_{a(k)+l} \text{ hence } D_3(u_r u_t u_s \partial_{a(k)+l}) = 0. \\ iv) \text{ Assume } 1 \leq r,t,s \leq a(k): \\ \left[u_r u_t \partial_{a(k)+l}, u_s u_{a(k)+l} \partial_{a(k)+l} \right] = u_r u_t u_s \partial_{a(k)+l} \text{ hence } D_3(u_r u_t u_s \partial_{a(k)+l}) = 0. \\ iv) \text{ Assume } 1 \leq r,t,s \leq a(k): \\ \left[u_r u_t \partial_{a(k)+l}, u_s u_{a(k)+l} \partial_{a(k)+l} \right] = u_r u_t u_s \partial_{a(k)+l} \text{ hence } D_3(u_r u_t u_s \partial_{a(k)+l}) = 0. \\ 3) i) \text{ We set, for } 1 \leq r \leq a(k+1), 1 \leq h \leq k, 1 \leq i \leq p_{k+1-h}: \\ D_3(u_r \partial_{c(h)+a(k-h)+i}) = \sum_{\substack{0 \leq r \leq k \\ 1 \leq f \geq p_{k+1-i}}} D_{r,c(h)+a(k-h)+i}^{o(r)+a(k-h)+i} \partial_{c(r)+a(k-h)+i} \cdot \partial_{c(r)+a(k-h)+i}$$

For $1 \le l \le p_{k+1}$, we have:

$$D_{3}\left(\left[\begin{array}{c}\partial_{a(k)+l}, u_{r}\partial_{c(h)+a(k-h)+i}\end{array}\right]\right) = 0 = \left[\begin{array}{c}\partial_{a(k)+l}, D_{3}(u_{r}\partial_{c(h)+a(k-h)+i})\end{array}\right].$$

For $1 \le r \le a(k)$, $1 \le l \le p_{k+1}$, we have:

$$D_{3}\left(\left[\begin{array}{c}u_{r}\partial_{a(k)+l}, u_{a(k)+l}\partial_{c(h)+a(k-h)+i}\end{array}\right]\right) = D_{3}(u_{r}\partial_{c(h)+a(k-h)+i})$$

$$= \left[\begin{array}{c}u_{r}\partial_{a(k)+l}, D_{3}(u_{a(k)+l}\partial_{c(h)+a(k-h)+i})\end{array}\right] = 0$$

Hence, for $1 \le r \le a(k)$, $D_3(u_r \partial_{c(h)+a(k-h)+i}) = 0$. For $a(k) + 1 \le r \le a(k+1)$, we have,

$$D_{3}(u_{r}\partial_{c(h)+a(k-h)+i}) = -D_{a(k)+l,c(h)+a(k-h)+i}\partial_{a(k)+l}$$

If $r = a(k) + l$, we have, $D_{a(k)+l,c(h)+a(k-h)+i}^{a(k)+j} = 0$ for $j \neq l$, then
 $D_{a(k)+l,c(h)+a(k-h)+i}^{a(k)+l} = 0$ and $D_{a(k)+l,c(h)+a(k-h)+i}^{c(t)+a(k-h)+i} = 0$ for $1 \le t \le k$.
If $r \neq a(k) + l$, since $D_{a(k)+l,c(h)+a(k-h)+i}^{r} = 0$ then $D_{3}(u_{r}\partial_{c(h)+a(k-h)+i}) = 0$.
ii) We take now $1 \le t, r, s \le a(k+1), 1 \le h \le k, 1 \le i \le p_{k+1-h}, 1 \le l \le p_{k+1}$:
 $\begin{bmatrix} u_{t}u_{r}\partial_{a(k)+l}, u_{a(k)+l}\partial_{c(h)+a(k-h)+i} \end{bmatrix} = u_{t}u_{r}\partial_{c(h)+a(k-h)+i}$ hence
 $D_{3}(u_{t}u_{r}\partial_{c(h)+a(k-h)+i}) = 0$.
 $\begin{bmatrix} u_{t}u_{r}u_{s}\partial_{a(k)+l}, u_{a(k)+l}\partial_{c(h)+a(k-h)+i} \end{bmatrix} = u_{t}u_{r}u_{s}\partial_{c(h)+a(k-h)+i}$ hence
 $D_{3}(u_{t}u_{r}u_{s}\partial_{c(h)+a(k-h)+i}) = 0$.

Let us conclude the demonstration of the theorem by considering any X belonging to $L_1(U)$; for every $x \in U$, there exists $\widetilde{X} \in L_1(U)$ whose components on $\partial_{c(h)+a(k-h)+i}$, $0 \le h \le k$, $1 \le i \le p_{k+1-h}$, are polynomials of degree ≤ 3 and such that $j^3(X - \widetilde{X})(x) = 0$. By lemma 2 we have $D_3(X - \widetilde{X})(x) = 0$. Since $D_3(\widetilde{X}) = 0$, then $D_3(X)(x) = 0$. On the other hand, because $Z_1^h - Z_1^{'h} = \sum_{1 \le i \le p_{k+1-h}} g_{c(h)+a(k-h)+i} \partial_{c(h)+a(k-h)+i}$, $1 \le h \le k$, with $\partial_{a(k)+l}g_{c(h)+a(k-h)+i} = 0$, $1 \le h \le k$, $1 \le i \le p_{k+1-h}$, $1 \le l \le p_{k+1}$, thus the vector fields Z_1^h are not uniquely determined but determined up to the sum of $\sum_{1 \le j \le p_{k+1-h}} g_{c(h)+a(k-h)+j} \partial_{c(h)+a(k-h)+j}$, where $g_{c(h)+a(k-h)+j}$ only depends on $u_1, ..., u_{a(k)}$. So the dimension of $H^1(L_1(U))$ is infinite for U open set of adapted local coordinates of V^k . This completes the proof. \Box

On the other hand, let Z be the vector field on U defined by

 $Z^{U} = \sum_{1 \le h \le k} h \left(\sum_{1 \le j \le a(k+1-h)} u_{c(h)+j} \partial_{c(h)+j} \right) \text{ (cf [1], p. 124). We showed that, in fact, } Z \text{ is globally defined. We immediately verify that:}$

Lemma 10. The mapping from $L_J(U)$ to $L_J(U)$ (resp. from $L_J(V^k)$) to $L_J(V^k)$): $X \to [Z_{|U}, X]$ (resp. $X \to [Z, X]$) is a derivation of $L_J(U)$ (resp. $L_J(V^k)$) which is not an inner derivation. So dim $H^1(L_J(U)) \ge 1$, dim $H^1(L_J(V^k)) \ge 1$.

The derivations of $L_J(U)$ have been studied by J. Lehmann-Lejeune (cf. [4], th. 1, p. 25). Let us recall the results:

Theorem 3. For every derivation D of $L_J(U)$ there exist k real constants K_h , $1 \le h \le k$, and an element $Y \in L_J(U)$ such that, for every $X \in L_J(U)$:

 $D(X) = \left[\sum_{1 \le h \le k} K_h J^{h-1} Z_{|U} + Y, X \right]; \quad K_h \quad and \quad Y \quad are \quad uniquely \quad determined; \quad then \\ \dim H^1(L_J(U)) = k.$

4. When the foliations are defined by submersions

In this section, we assume that the k foliations of M are defined by k submersions $\pi_h: M_{h-1} \to M_h$ where $1 \le h \le k$, $M_0 = M$, the M_h are manifolds of dimension a(k+1-h) and $p_1 > 0$, $p_i \ge 0$ $2 \le i \le k+1$. The leaves of each foliation F_{k+1-h} are the connected components of the inverse image by $\pi_h \circ \ldots \circ \pi_1$ of the points of M_h .

Let $y_0 \in M_0$ be a point of M_0 . Denote by $y_h = \pi_h \circ \pi_{h-1} \circ ... \circ \pi_1(y_0) \in M_h$, $1 \le h \le k$. For all h, $0 \le h \le k$, there exist \hat{U}_h open sets of local coordinates $(u_1,...,u_{a(k+1-h)})$, neighborhood of y_h in M_h , such that $\pi_{h+1}(\hat{U}_h) = \hat{U}_{h+1}$ and $\pi_{h+1}|_{\hat{U}_h}$ is a projection : $(u_1,...,u_{a(k+1-h)}) \rightarrow (u_1,...,u_{a(k-h)})$. Then there exists an open set of local coordinates $U = \pi^{-1}(\hat{U}_0)$ of V^k . This is an "open set of adapted local coordinates $u_1,...,u_n$ " which, moreover, is adapted to the submersions. The automorphisms of the foliations F_{k+1-h} on $M = M_0$, $1 \le h \le k$, defined by $\pi_h \circ \pi_{h-1} \circ ... \circ \pi_1 : M_0 \to M_h$, are projectable vector fields from M_0 to M_h .

Lemma 11. Let Ω be an open set of V^k and $X \in L_s^h(\Omega)$, $1 \le s \le k+1$, $0 \le h \le k+1-s$ (cf. [4]). For every $x \in \Omega$, the germ at x of X is the germ at x of an $X' \in L_J(V^k)$.

Proof. Let Ω be an open set of V^k such that $\Omega = \pi^{-1} \circ \pi(\Omega)$ and $x \in \Omega$. We set $\hat{\Omega} = \pi(\Omega)$, open set of M_0 and $y_0 = \pi(x) \in \hat{\Omega}$. According to lemma 5 (cf [1], p. 127), it is sufficient to show the result for $X \in L^h_{s+1}(\Omega)$, $1 \le s \le k$, $0 \le h \le k - s$.

Let $\hat{X} \in L_{s+1}^{h}(\hat{\Omega})$ be a vector field on $\hat{\Omega}$, $1 \le s \le k$, $0 \le h \le k - s$, and $X \in L_{s+1}^{h}(\Omega)$ be the corresponding vector field on Ω (cf. [4]).

 $\pi_s^* \circ \pi_{s-1}^* \circ \dots \circ \pi_1^* (\hat{X}) = \hat{X}_s$ is a vector field on $\hat{\Omega}_s$, open set of M_s , neighborhood of $y_s = \pi_s \circ \pi_{s-1} \circ \dots \circ \pi_1(y_0)$. There exists φ_s , function on M_s , with support contained in $\hat{\Omega}_s$, and equal to 1 in a neighborhood $\hat{\omega}_s$ of y_s . The vector field $\hat{X}^s = \varphi_s \hat{X}_s$ is global on M_s . The germ at y_s of \hat{X}^s is equal to the germ at y_s of \hat{X}_s . With the help of a metric on M_0 , we can define the lift on M_0 of vector fields defined in M_s . Indeed, let g be a metric on M_0 and y_0 a point of M_0 . Denote by S_1 the orthogonal supplementary set relatively to g of $Ker(\pi_1^*)$ to $T_{y_0}M_0 : T_{y_0}M_0 = Ker(\pi_1^*) \oplus S_1$. Setting $y_1 = \pi_1(y_0)$, S_1 is isomorphic to $T_{y_1}M_1$. For $0 \le h \le k - 1$ and $y_h = \pi_h \circ \pi_{h-1} \circ \dots \circ \pi_1(y_0)$, assume that the vector space $T_{y_h}M_h$ is endowed with a scalar product; thus $T_{y_h}M_h = Ker(\pi_{h+1}^*) \oplus S_{h+1}$, where S_{h+1} is the orthogonal supplementary set of $Ker(\pi_{h+1}^*)$ in $T_{y_h}M_h$. On the other hand, S_{h+1} is isomorphic to $T_{y_{h+1}}M_{h+1}$; we deduce from this isomorphism a scalar product on $T_{y_h}M_h$. Now the scalar product on $T_{y_h}M_h = Ker(\pi_{h+1}^*) \oplus S_{h+1}$. This assertion is true for h = 0. Thus it's true for every h, $0 \le h \le k - 1$.

isomorphic to $Ker(\pi_r^*)$ for $1 \le r \le k$ and E_{k+1} to $T_{\nu_k}M_k$.

Hence we could lift up a vector field on M_h , $1 \le h \le k$, into a vector field on M_{h-1} , taking it in S_h . And step by step or gradually, we could lift it on M_0 .

Then let \widetilde{X}_s be the lift of \widehat{X}^s on M_0 . Set $\widetilde{X} = P_k \left(J_0^h(R\widetilde{X}^s) \right)$ (cf. [4]). It is a vector field globally defined on V^k . Denote by Ω' the open set of V^k such that $\Omega' = (\pi_s \circ \pi_{s-1} \circ \dots \circ \pi_1 \circ \pi)^{-1} (\widehat{\omega}_s)$. Ω' contains x. The vector field $X_{|\Omega'} - \widetilde{X}_{|\Omega'} \in L_s(\Omega')$. To show it, we will do an inductive reasoning on s.

For s = 1, $X_{|\Omega'} - \tilde{X}_{|\Omega'} \in L_1(\Omega')$. According to lemma 5 (cf [1]), the germ at x of $X_{|\Omega'} - \tilde{X}_{|\Omega'}$ is the germ at x of an $Y \in L_1(V^k)$. \tilde{X} being global, thus the germ at x of X is the germ at x of $X' = \tilde{X} + Y \in L_1(V^k)$. Now, for $1 \le s \le k$, $0 \le h \le k - s$, assume that for every $X \in L_s^h(\Omega)$ the germ at x of X is the germ at x of an $X' \in L_J(V^k)$. Let $X \in L_{s+1}^h(\Omega)$ be a vector field on Ω . Then $X_{|\Omega'} - \tilde{X}_{|\Omega'} \in L_s(\Omega')$. According to the inductive hypothesis, the germ at x of $X_{|\Omega'} - \tilde{X}_{|\Omega'}$ is the germ at x of an $Y \in L_J(V^k)$. \tilde{X} being global, thus the germ at x of X is the germ at x of $X' = \tilde{X} + Y \in L_J(V^k)$. This proves our lemma. \Box

Proposition 4. For every derivation D of $L_J(V^k)$ and for every $X \in L_J(V^k)$, supp $D(X) \subset$ supp X; every derivation D of $L_J(V^k)$ is local.

Proof. Let ω be an open set of V^k such that $\omega = \pi^{-1}(\pi(\omega))$. We set $\hat{\omega} = \pi(\omega)$ open set of M_0 . Let $\hat{X} \in L_{s+1}^h(M_0)$ be a vector field on M_0 , $0 \le s \le k$, $0 \le h \le k - s$ (cf. [4]) such that $\hat{X}_{|\hat{\omega}} = 0$. (For s = 0, $L_{s+1}^h(M_0)$ is the set of the vector fields of M_0 , tangent to the leaves of F_{k-h} and orthogonal to the leaves of F_{k+1-h}). Denote by X the corresponding vector field on V^k , $X \in L_{s+1}^h(V^k)$ (cf. [4]). We have: $X_{|\omega} = 0$.

Let \hat{X}^s be the projected of \hat{X} on M_s . For all $y \in \hat{\omega}$, there exist open sets $\hat{\Omega}_1$ and $\hat{\Omega}_2$ of M_s such that $\hat{\Omega}_1 \cap \hat{\Omega}_2 = \emptyset$, $\pi_s \circ \pi_{s-1} \circ ... \circ \pi_1(y) = y_s \in \hat{\Omega}_2$, $supp \hat{X}^s \subset \hat{\Omega}_1$ (for s = 0, $\hat{X}^s = \hat{X}$, $y_s = y \in \hat{\Omega}_2$ and $supp \hat{X} \subset \hat{\Omega}_1$). $\hat{X}^s_{|\hat{\Omega}_2} = 0$; in particular \hat{X}^s is zero in a neighborhood of y_s . According to the theorem of A. Lichnerowicz (cf [5], p. 64), we can write $\hat{X}^s = \sum_i \left[\hat{Y}^s_i, \hat{T}^s_i \right]_{M_s}$ where \hat{Y}^s_i, \hat{T}^s_i are vector fields on M_s , with support in $\hat{\Omega}_1$: $\hat{Y}^s_{|\hat{\Omega}_2} = 0$, $\hat{T}^s_{|\hat{\Omega}_2} = 0$.

Let \tilde{X}^s (respectively \tilde{Y}^s_i , \tilde{T}^s_i) be the lift of \hat{X}^s (respectively \hat{Y}^s_i , \hat{T}^s_i) on M_0 (for s = 0, $\tilde{X}^s = \hat{X}$, $\tilde{Y}^s_i = \hat{Y}^s_i$, $\tilde{T}^s_i = \hat{T}^s_i$) and $\tilde{X} = P_k \left(J^h_0(R\tilde{X}^s) \right)$ (cf. [3]):

$$\begin{split} \tilde{X} &= \sum_{i} P_{k} \left(J_{0}^{h} \left(R \begin{bmatrix} \tilde{Y}_{i}^{s}, \tilde{T}_{i}^{s} \end{bmatrix}_{M_{0}} \right) \right). \\ \text{If } \tilde{Y}_{i} &= P_{k} \left(J_{0}^{h} (R \tilde{Y}_{i}^{s}) \right), \ \tilde{T}_{i} &= P_{k} \left(J_{0}^{h} (R \tilde{T}_{i}^{s}) \right) \text{ and } \omega_{2} = (\pi_{s} \circ \pi_{s-1} \circ \dots \circ \pi_{1} \circ \pi)^{-1} (\hat{\Omega}_{2}), \text{ open set of } V^{k} \text{ containing } x = \pi^{-1}(y) \text{ (for } s = 0, \ \pi_{s} = \pi), \text{ we have:} \\ \left[\tilde{Y}_{i}, \tilde{T}_{i} \right] &= P_{k} \left(J_{0}^{h} \left(R \begin{bmatrix} \tilde{Y}_{i}^{s}, \tilde{T}_{i}^{s} \end{bmatrix} \right) \right) + R_{i} \text{ where } R_{i} \in L_{s}(V^{k}) \text{ and } R_{i|\omega_{2}} = 0. \text{ Then} \\ \tilde{X} &= \sum_{i} \left(\begin{bmatrix} \tilde{Y}_{i}, \tilde{T}_{i} \end{bmatrix} - R_{i} \right). \text{ Since } X - \tilde{X} \in L_{s}(V^{k}), \text{ we have: } X = \sum_{i} \begin{bmatrix} \tilde{Y}_{i}, \tilde{T}_{i} \end{bmatrix} + R_{s} \text{ where} \\ R_{s} \in L_{s}(V^{k}) \text{ and } R_{s|\omega_{2}} = 0. \text{ Hence } D(X) = \sum_{i} \left(\begin{bmatrix} D(\tilde{Y}_{i}), \tilde{T}_{i} \end{bmatrix} + \begin{bmatrix} \tilde{Y}_{i}, D(\tilde{T}_{i}) \end{bmatrix} \right) + D(R_{s}). \\ \text{To conclude, we will do an inductive reasoning on } s \text{ to show that } D(R_{s})_{|\omega_{2}} = 0. \end{split}$$

For s = 0, $R_0 = 0$. Then $D(R_0)_{|\omega_2} = 0$. Thus $D(X)_{|\omega_2} = 0$, since $\tilde{T}_{i|\omega_2} = 0$, $\tilde{Y}_{i|\omega_2} = 0$, hence $D(X)_{|\omega} = 0$. Now we suppose that $D(X)_{|\omega_2} = 0$ for every $X \in L_s^h(V^k)$ such that $X_{|\omega_2} = 0$,

 $1 \le s \le k$, $0 \le h \le k - s$. Let $X \in L^h_{s+1}(V^k)$ be a vector field on V^k , $0 \le h \le k - s$, $0 \le s \le k$. According to the inductive hypothesis, $D(R_s)_{|\omega_2} = 0$, hence $D(X)_{|\omega_2} = 0$, and thus $D(X)_{|\omega_2} = 0$. This concludes the proof. \Box

Theorem 4. When the k foliations on M are defined by submersions dim $H^1(L_J(V^k)) = k$.

Proof. Let D be a derivation on $L_J(V^k)$. For every open set Ω of V^k , we have an induced derivation $D_{\Omega}: L_J(\Omega) \to L_J(\Omega)$. For $X \in L_J(\Omega)$ and $x \in \Omega$, we set :

 $D_{\Omega}(X)(x) = D(X')(x)$ where $X' \in L_J(V^k)$ and coincides with X in an open neighborhood of x (see lemma 11). $D_{\Omega}(X)(x)$ does not depend on X' according to proposition 4.

Consider now a covering $(U_{\alpha})_{\alpha \in A}$ of V^k by adapted local coordinates open sets. According to theorem 3, for all $\alpha \in A$, there exists $Y_{\alpha} \in L_J(U_{\alpha})$, k constants $K_1^{\alpha}, ..., K_k^{\alpha}$ such that for every $X \in L_J(U_{\alpha})$:

$$D_{U_{\alpha}}(X) = \left[\sum_{0 \le b \le k-1} K_{b+1}^{\alpha} \ J^{b} Z_{|U_{\alpha}} + Y_{\alpha}, X \right].$$

Since $D_{U_{\alpha}}$ and $D_{U_{\alpha'}}$ limited to $U_{\alpha} \cap U_{\alpha'}$ coincide, Y_{α} and $Y_{\alpha'}$ limited to $U_{\alpha} \cap U_{\alpha'}$ are equal and $K_{b+1}^{\alpha} = K_{b+1}^{\alpha'}$, $0 \le b \le k-1$. Thus there exists $Y \in L_J(V^k)$ and k real constants K_1, \ldots, K_k such that for all $\alpha \in A$, $Y_{|U_{\alpha}} = Y_{\alpha}$ and $K_{b+1} = K_{b+1}^{\alpha}$, $0 \le b \le k-1$.

Since for every $X \in L_J(V^k)$, $D(X)_{|U\alpha} = D_{U_\alpha}(X_{|U_\alpha})$, we have for every $X \in L_J(V^k)$: $D(X) = \left[\sum_{0 \le b \le k-1} K_{b+1} J^b Z + Y, X\right]$. This concludes the proof. \Box

5. Case of the torus endowed with two foliations

We consider the vector fields $X = \frac{\partial}{\partial x} + \alpha \frac{\partial}{\partial y}$ and $X' = \frac{\partial}{\partial x} + \beta \frac{\partial}{\partial z}$ in \mathbb{R}^3 , provided with canonical coordinates (x, y, z), where α and $\beta \in \mathbb{R} - \mathbb{Q}$. The first integrals of X (rep. X') globally defined are the functions $G(y - \alpha x, z)$ (resp. $G'(z - \beta x, y)$) where G and G' are C^{∞} mappings from \mathbb{R}^2 to \mathbb{R} . Defining an equivalence relation in \mathbb{R}^3 by: $(x, y, z) \approx (x', y', z')$ if $x - x' \in \mathbb{Z}$, $y - y' \in \mathbb{Z}$ and $z - z' \in \mathbb{Z}$, we obtain on the torus T^3 the vector fields still denoted by X and X'. The first integrals of X and X' must be periodic C^{∞} mappings in x, y and z, of period 1. For a fixed $y, u \to G'(u, y)$ is periodic in u of period 1 and β . Then G' only depends on y. Likewise, for a fixed $z, v \to G'(v, z)$ is periodic in v of period 1 and α . Then G only depends on z.

We endow T^3 with the following two foliations: F_1 is determined by X and X', of codimension 1 and F_2 is determined by X, of codimension 2. We have $F_1 \supset F_2$. The globally defined first integrals associated to the foliation F_1 are the functions $F(x, y, z) = G(y - \alpha x, z) = G'(z - \beta x, y)$. We deduce that the first integrals of F_1 are constant, and those of F_2 are only function of z.

On $M = T^3$, we consider the coordinate change:

 $u_1 = -\beta x + \frac{\beta}{\alpha} y + z$, $u_2 = x - \frac{1}{\alpha} y$ and $u_3 = \frac{1}{\alpha} y$ where $u_1 \in]a, b[, u_2 \in]a', b'[, u_3 \in]a'', b''[$. (u_1, u_2, u_3) are local coordinates adapted to the foliations F_1 and F_2 . We deduce on the transverse bundle V^2 , the adapted local coordinates $(u_1, u_2, u_3, u_4, u_5, u_6)$ in the open set $U =]a, b[\times]a', b'[\times]a'', b''[\times \mathbb{R}^3$. We will only consider this kind of open sets of adapted coordinates.

Let U and U' be two such open sets satisfying $U \cap U' \neq \emptyset$. We have, in $U \cap U' : u_1 - u'_1 = f$, $u_2 - u'_2 = g$, $u_3 - u'_3 = h$, where f, g and h are locally constant, $u_4 = u'_4$, $u_5 = u'_5$, $u_6 = u'_6$. Then $\partial_1 = \partial'_1$, $\partial_2 = \partial'_2$, $\partial_3 = \partial'_3$, $\partial_4 = \partial'_4$, $\partial_5 = \partial'_5$, $\partial_6 = \partial'_6$. (For simplicity, we have set: $\frac{\partial}{\partial u_i} = \partial_i$). Thus we have six vector fields globally defined on V^2 which realize a parallelism.

We denote by X_2 (resp. X_3) the canonical lifts of X' (resp. X) in V^2 . We have:

We will take as a basis of $T(V^2)$: $\left(\frac{\partial}{\partial z}, X_2, X_3, \partial_4, \partial_5, \partial_6\right)$. For simplicity, we set: $\frac{\partial}{\partial z} = \partial_z$. Let $Y \in L_J(V^2)$. We set $Y = Y_1 \partial_z + Y_2 X_2 + Y_3 X_3 + Y_4 \partial_4 + Y_5 \partial_5 + Y_6 \partial_6$. For every vector field T in V^2 , we have [Y, JT] = J[Y, T]. By considering $T = \partial_z$, $T = X_2$, $T = X_3$, $T = \partial_4$, $T = \partial_5$ then $T = \partial_6$, we deduce:

Lemma 12. Each element of $L_J(V^2)$ is of one of the following types:

1)
$$K\partial_z$$
,
2) $F(z)X_2 + (u_4 + \beta u_5)\partial_z F\partial_5$,
3) $\varphi(x, y, z)X_3$,
4) $G(z)\partial_4 + (u_4 + \beta u_5)\partial_z G\partial_6$,
5) $\psi(x, y, z)\partial_5$,
6) $\phi(x, y, z)\partial_6$ where K is a constant and the mappings F and G from \mathbb{R} to \mathbb{R} (resp.
 φ, ψ, ϕ from \mathbb{R}^3 to \mathbb{R}) are 1-periodic in z (resp. 1-periodic in x, y and z). $L_1(V^2)$ is the
set of the elements of type 3, 5 and 6. The set of elements of type 2 (resp. 4) is $A_2^0(V^2)$ (resp.
 $A_2^1(V^2)$) (cf. [2]). We have: $L_J(V^2) = \mathbb{R}\partial_z \oplus A_2^0(V^2) \oplus A_2^1(V^2) \oplus L_1(V^2)$.

Let $Y = Y_1\partial_z + (Y_2X_2 + (u_4 + \beta u_5)\partial_z Y_2\partial_5) + Y_3X_3 + (Y_4\partial_4 + (u_4 + \beta u_5)\partial_z Y_4\partial_6) + Y_5\partial_5 + Y_6\partial_6$ an element of $L_J(V^2)$. We set:

$$\Delta_1(Y) = (X_3 \cdot X_3)\partial_6, \quad \Delta_2(Y) = Y_4\partial_5 + \beta Y_5\partial_5 + \beta Y_6\partial_6,$$

 $\Delta_3(Y) = Y_1(\partial_5 - \beta \partial_4), \ \Delta_4(Y) = Y_2(\partial_5 - \beta \partial_4).$ It is easy to verify that:

Lemma 13. Δ_1 , Δ_2 , Δ_3 and Δ_4 are derivations of $L_J(V^2)$ which are not inner derivations. Thus dim $H^1(L_J(V^2)) \ge 6$ since Δ_1 , Δ_2 , Δ_3 , Δ_4 , $X \to [Z, X]$ and $X \to [JZ, X]$ are non-inner linearly independent derivations of $L_J(V^2)$.

6. Case of the sphere endowed with two foliations. Study of $H^1(L_1(V^2))$.

Let S^3 be the unit 3- sphere defined by $S^3 = \{(x_1, x_2, x_3, x_4) / x_1^2 + x_2^2 + x_3^2 + x_4^2 = 1\}$. We consider $W = S^3 - \{x_1^2 + x_2^2 = 0, x_3^2 + x_4^2 = 0\}$. We set $v_1 = \sqrt{x_3^2 + x_4^2}$, $0 < v_1 < 1$, $\begin{cases} x_1 = \sqrt{1 - v_1^2} \cos v_2 \\ x_2 = \sqrt{1 - v_1^2} \sin v_2 \\ x_3 = v_1 \cos v_3 \\ x_4 = v_1 \sin v_3 \end{cases}$

where v_2 and v_3 are 2π -periodic and, $X = \frac{\partial}{\partial v_2} + v_1^2 \frac{\partial}{\partial v_3}$ whose first integrals are C^{∞}

mappings $F(v_1)$.

We have:
$$\frac{dv_1}{dt} = 0$$
, $\frac{dv_2}{dt} = 1$, $\frac{dv_3}{dt} = v_1^2$ thus $v_1 = cste$, $t = v_2$ and $v_3 = v_1^2 v_2 + cste$

We endow W with the following two foliations: F_1 is determined by the foliation of the torus, of codimension 1 and F_2 is determined by X, of codimension 2.

On W, we consider the coordinate change:

 $u_1 = v_1$, $u_2 = v_3 - v_1^2 v_2$ and $u_3 = v_3$ where $u_1 \in]0,1[$, $u_2 \in]0,2\pi[$, $u_3 \in]0,2\pi[$.

 (u_1, u_2, u_3) are local coordinates adapted to the foliations F_1 and F_2 . We deduce on the transverse bundle V^2 , the adapted local coordinates $(u_1, u_2, u_3, u_4, u_5, u_6)$ in the open set $U =]0,1[\times]0,2\pi[\times]0,2\pi[\times]0,2\pi[\times]^3$. We will only consider this kind of open sets of adapted coordinates.

Let U and U' be two such open sets satisfying $U \cap U' \neq \emptyset$. We have, in $U \cap U': u_1 = u'_1$, $u_2 - u'_2 = f$, $u_3 - u'_3 = g$, where f and g are locally constant on $U \cap U'$, $u_4 = u'_4$, $u_5 = u'_5$, $u_6 = u'_6$. Then $\partial_1 = \partial'_1$, $\partial_2 = \partial'_2$, $\partial_3 = \partial'_3$, $\partial_4 = \partial'_4$, $\partial_5 = \partial'_5$, $\partial_6 = \partial'_6$. (For simplicity, we have set: $\frac{\partial}{\partial u_i} = \partial_i$). Thus we have six vector fields globally defined on V^2 which realize a parallelism. We have:

$$\begin{cases} \frac{\partial}{\partial v_1} = \partial_1 - 2v_1v_2\partial_2 \\ \frac{\partial}{\partial v_2} = -v_1^2\partial_2 \\ \frac{\partial}{\partial v_3} = \partial_2 + \partial_3 \end{cases} \quad J\partial_1 = \partial_4, \ J\partial_2 = \partial_5, \\ J\partial_1 = \partial_4, \ J\partial_2 = \partial_5, \\ J\partial_1 = \partial_4, \ J\partial_2 = \partial_5, \\ J\partial_2 = \partial_5, \\ J\partial_3 = 0, \ J\partial_4 = \partial_6, \\ J\partial_5 = 0, \ J\partial_6 = 0, \end{cases} \text{ and } X = u_1^2\partial_3$$

Let $Y \in L_J(V^2)$. We set $Y = Y_1\partial_1 + Y_2\partial_2 + Y_3X + Y_4\partial_4 + Y_5\partial_5 + Y_6\partial_6$. For every vector field T in V^2 , we have [Y, JT] = J[Y, T]. By considering $T = \partial_1$, $T = \partial_2$, T = X, $T = \partial_4$, $T = \partial_5$ then $T = \partial_6$, we deduce:

Lemma 14. Each element of $L_J(V^2)$ is of one of the following types:

$$I) F_{1}(u_{1})\partial_{1} + u_{4}\partial_{1}F_{1}\partial_{4} + \left(\frac{1}{2}u_{4}^{2}\partial_{1}^{2}F_{1} + u_{6}\partial_{1}F_{1}\right)\partial_{6},$$

$$2) F_{2}(u_{1})\partial_{2} + u_{4}\partial_{1}F_{2}\partial_{5},$$

$$3) \varphi(u_{1}, u_{2}, u_{3})X,$$

$$4) F_{4}(u_{1})\partial_{4} + u_{4}\partial_{1}F_{4}\partial_{6},$$

$$5) \psi(u_{1}, u_{2}, u_{3})\partial_{5},$$

$$6) \phi(u_{1}, u_{2}, u_{3})\partial_{6}.$$

$$L_{1}(V^{2}) \text{ is the set of the elements of type 3, 5 and 6.}$$

Let $Y = \varphi(u_1, u_2, u_3)X + \psi(u_1, u_2, u_3)\partial_5 + \phi(u_1, u_2, u_3)\partial_6$ an element of $L_1(V^2)$. We set: $\Delta(Y) = (X.\varphi)(A(u_1)\partial_5 + B(u_1)\partial_6)$. Moreover, let $T = (C_5(u_1)u_5 + C_6(u_1)u_6)\partial_5 + (D_5(u_1)u_5 + D_6(u_1)u_6)\partial_6$. It is easy to verify that Δ and $Y \rightarrow [T, Y]$ are derivations of $L_1(V^2)$ which are not inner

It is easy to verify that Δ and $Y \rightarrow [T, Y]$ are derivations of $L_1(V^2)$ which are not inner derivations. Thus we have the following result:

Theorem 5. Let D be a derivation of $L_1(V^2)$. There exists a unique vector field $S \in L_J(V^2)$ $(S = Z_1 + Z_2 + Z_3, Z_1 \text{ of type } 1, Z_2 \text{ of type } 2 \text{ and } Z_3 \text{ of type } 3)$ such that for every $Y \in L_1(V^2)$: $D(Y) = [S,Y] + \Delta(Y) + [T,Y] + [Z_5,Y] + [Z_6,Y]$. Z_5 and Z_6 are of type 5 and 6 respectively and are determined up to the sum of $\psi(u_1)\partial_5 + \phi(u_1)\partial_6$.

References.

- L. Lebtahi, Lie Algebra on the Transverse Bundle of a Decreasing Family of Foliations, J. Geom. Phys. 60 (2010) 122-133.
- [2] J. Lehmann-Lejeune, Cohomologies sur le fibré transverse à un feuilletage, C.R.A.S. Paris, 295 (1982), pp. 495-498.
- [3] G. Catz, Sur le fibré tangent d'ordre 2, C.R.A.S. Paris, 278 (1974), 277-280.
- [4] J. Lehmann-Lejeune, Etude locale des automorphismes de la structure Etude des dérivations, Pub. I.R.M.A de Lille, Vol 2, nº II (1980).
- [5] A. Lichnerowicz, Algèbres de Lie attachées à un feuilletage, Ann. Fac. Sc. Toulouse, 1 (1979), pp. 45-76.