The First Chevalley-Eilenberg Cohomology Group of the Lie Algebra on the Transverse Bundle of a Decreasing Family of Foliations

Leila Lebtahi
Departamento de Matemática Aplicada
Universidad Politécnica de Valencia
Camino de Vera s/n
46022 Valencia, Spain
E-mail: leilebep@mat.upv.es

Abstract

In [Lie Algebra on the Transverse Bundle of a Decreasing Family of Foliations, J. Geom. Phys., 60 (2010) 122-133], we defined the transverse bundle V^{k} to a decreasing family of k foliations F_{i} on a manifold M . We have shown that there exists a $(1,1)$ tensor J of V^{k} such that $J^{k} \neq 0, J^{k+1}=0$ and we defined by $L_{J}\left(V^{k}\right)$ the Lie Algebra of vector fields X on V^{k} such that, for each vector field Y on $V^{k},[X, J Y]=J[X, Y]$. In this note, we study the first Chevalley-Eilenberg Cohomology Group i.e. the quotient space of derivations of $L_{J}\left(V^{k}\right)$ by the subspace of inner derivations, denoted by $H^{1}\left(L_{J}\left(V^{k}\right)\right)$.

Keywords: Foliations; Fiber Bundles; Lie Algebra; Derivation; Cohomology group.
Mathematics Subject Classification: 53C12; 55R10; 17B66; 13N15; 17B56

1. Introduction

Let M be a differentiable manifold of dimension m endowed with k foliations $F_{1}, F_{2}, \ldots, F_{k}$, $k \geq 1$, of respective codimensions $p_{1}, p_{1}+p_{2}, \ldots ., p_{1}+p_{2}+\ldots+p_{k}$ such that $F_{1} \supset F_{2} \supset \ldots \supset F_{k}$ $\left(m=p_{1}+p_{2}+\ldots .+p_{k}+p_{k+1}, p_{1}>0, p_{i} \geq 0,2 \leq i \leq k+1\right)$.
In [1], we defined a so-called "order k bundle V^{k} transverse to the foliations F_{i} " and we proved that there exists a (1,1) tensor J of V^{k} such that $J^{k} \neq 0, J^{k+1}=0$ and for every pair of vector fields X, Y on V^{k} :

$$
[J X, J Y]-J[J X, Y]-J[X, J Y]+J^{2}[X, Y]=0 .
$$

Ω being an open set of V^{k}, we denote by $L_{J}(\Omega)$ the Lie Algebra of vector fields X defined on Ω such that the Lie derivative $L(X) J$ is equal to zero i.e., for each vector field Y on Ω :

$$
[X, J Y]=J[X, Y] .
$$

We define by L_{1} a subset of $L_{J}\left(V^{k}\right)$ constituted by the vector field X on V^{k} such that $X \in \operatorname{KerJ}$. The purpose of this paper is to study the first Chevalley-Eilenberg Cohomology Group of L_{J}, denoted by $H^{1}\left(L_{J}\left(V^{k}\right)\right)$. In [2], J.Lehmann-Lejeune studied the Cohomology on the Transverse Bundle of a Foliation. This paper is organized as follows.
In section 2, we recall some relevant results and notations (cf [1]), more precisely, we define the order k bundle V^{k} and the $(1,1)$ tensor J of V^{k}, and we remind the most important result showed in [1]: for every $X \in L_{1}\left(V^{k}\right)$, we can write $X=\sum_{i}\left[Y_{i}, Z_{i}\right]$ where \sum_{i} is a finite sum and Y_{i}, Z_{i} belongs to $L_{1}\left(V^{k}\right)$.
In section 3 , we study the derivations of $L_{1}\left(V^{k}\right)$. We prove that every derivation of $L_{J}\left(V^{k}\right)$ restricted to $L_{1}\left(V^{k}\right)$ is a derivation of $L_{1}\left(V^{k}\right)$ and also every derivation of $L_{1}\left(V^{k}\right)$ is local. Moreover, we construct three derivations of $L_{1}(U)$ witch are not inner derivations, where U is an open set of adapted local coordinates of V^{k}. On the other hand we show that, for every $x \in V^{k}$, there exists an open set U containing x such that $\operatorname{dim} H^{1}\left(L_{1}(U)\right)$ is infinite.
In section 4 , we study the case of foliations defined by submersions and then we show that the dimension of $H^{1}\left(L_{J}\left(V^{k}\right)\right)$ is equal to k.
In section 5 , we study an example on T^{3} with $k=2$ foliations where $\operatorname{dim} H^{1}\left(L_{J}\left(V^{k}\right)\right)>k$.
In section 6 , we compute $H^{1}\left(L_{1}\left(V^{k}\right)\right)$ in the case of the 3 - sphere.

2. Preliminaries

Let M be a differentiable manifold of dimension m endowed with k foliations $F_{1}, F_{2}, \ldots, F_{k}$, $k \geq 1$, of respective codimensions $p_{1}, p_{1}+p_{2}, \ldots, p_{1}+p_{2}+\ldots+p_{k}$ such that $F_{1} \supset F_{2} \supset \ldots \supset F_{k}$ $\left(m=p_{1}+p_{2}+\ldots+p_{k}+p_{k+1}, p_{1}>0, p_{i} \geq 0,2 \leq i \leq k+1\right)$.

Notation: we set: $a(h)=p_{1}+p_{2}+\ldots+p_{h} \quad$ for $1 \leq h \leq k+1$,

$$
a(h)=0 \quad \text { for } \quad h \leq 0
$$

$$
c(t)=a(k+1)+a(k)+\ldots .+a(k-t+2) \quad \text { for } \quad 1 \leq t \leq k+1
$$

$$
c(t)=0 \quad \text { for } \quad t \leq 0
$$

We define a so-called "order k bundle V^{k} transverse to the foliations F_{i} " (cf [1], p. 123) in the following way. The order k tangent bundle of M is the manifold of dimension $(k+1) m$ of the k - jets of origin 0 of differentiable mappings from IR to M denoted $T^{k} M$ (cf. [3]).
Let s and h be two integers such that $0 \leq s \leq h \leq k, h \geq 1$. On the set of $h-$ jets of differentiable mappings of origin 0 from IR to M , we define an equivalence relation. Let φ and ψ be two differentiable mappings from IR to M such that $\varphi(0)=\psi(0)$.
Denote by $\left(u_{1}, u_{2}, \ldots, u_{m}\right)$ the local coordinates of an open set $\hat{U} \subset M$, adapted to the k foliations (i.e. $u_{1}, u_{2}, \ldots, u_{a(h)}$ are constants on the leaves of $F_{h}, 1 \leq h \leq k$), such that $\varphi(0)=\psi(0)=x_{0} \in \hat{U}$.

We say that the h-jets of φ and ψ are equivalent if: $\frac{d^{b} \varphi_{l}}{d \rho^{b}}(0)=\frac{d^{b} \psi_{l}}{d \rho^{b}}(0), 1 \leq b \leq s$, $1 \leq l \leq a(k+1-b)$ and $s+1 \leq b \leq h, \quad 1 \leq l \leq a(k+1-s)$. This equivalence relation is independent of the open set \hat{U} of coordinates adapted to the k foliations containing x_{0}.
We denote by $\left(V^{s}\right)^{h}$ the quotient space of the h-jets of differentiable mappings from IR to M endowed with this equivalence relation.
This is a manifold of dimension $\quad \sum_{0 \leq t \leq s} a(k+1-t)+(h-s) a(k+1-s)$.
For $s=h,\left(V^{s}\right)^{s}$ will be denoted, for simplicity, by V^{s}.
We have the following diagram, where the arrows are the natural projections:

V^{k} is called order k bundle transverse to the k foliations $F_{1}, F_{2}, \ldots, F_{k}$.
The dimension of V^{k} is $n=\sum_{0 \leq t \leq k}(t+1) p_{k+1-t}=\sum_{0 \leq t \leq k} a(k+1-t)$.
$T^{k} M$ (which can be considered as a $\left(V^{s}\right)^{k}$ with $s=0$) is equipped with an order k nearly tangent structure J_{0} of constant range $k m$ (cf. [3]). In [1] p. 124, we show that there exists a $(1,1)$ tensor J of V^{k} which is the projection on V^{k} of the nearly tangent operator J_{0} of order k on $T^{k} M$. Its rank is constant and equal to $\sum_{1 \leq t \leq k} a(k+1-t)$: it verifies $J^{k} \neq 0, J^{k+1}=0$ and for every pair of vector fields X, Y on V^{k} :

$$
[J X, J Y]-J[J X, Y]-J[X, J Y]+J^{2}[X, Y]=0
$$

Ω being an open set of V^{k}, we denote by $L_{J}(\Omega)$ the Lie Algebra of vector fields X defined on Ω such that the Lie derivative $L(X) J$ is equal to zero i.e., for each vector field Y on Ω :

$$
[X, J Y]=J[X, Y]
$$

Let U be an open set of adapted local coordinates $\left(u_{1}, \ldots, u_{n}\right)$ and X a vector field on U.
X belongs to $L_{J}(\Omega)$ if and only if, for every open set U of adapted local coordinates $\left(u_{1}, \ldots, u_{n}\right) \quad$ such that $\quad \Omega \cap U \neq \varnothing, \quad X_{\mid \Omega \cap U}$ is a vector field finite sum $A(s, h, l)=\sum_{0 \leq q \leq s-1} X_{c(h+q)+a(k+1-s-h)+l} \quad \partial_{c(h+q)+a(k+1-s-h)+l} \quad, \quad$ where $\quad 1 \leq s \leq k+1$, $0 \leq h \leq k+1-s, 1 \leq l \leq p_{k-h-s+2} \quad\left(\right.$ we set $\left.\partial_{i}=\frac{\partial}{\partial u_{i}}\right)$.
$X_{c(h)+a(k-s-h+1)+l}$ only depends on $\left(u_{1}, \ldots ., u_{a(k-s+2)}\right)$ and for $1 \leq q \leq s-1$,
$X_{c(h+q)+a(k+1-s-h)+l}=\sum \frac{\partial^{i} X_{c(h)+a(k+1-s-h)+l}}{\partial u_{1}^{i_{1}} \ldots \partial u_{j}^{i_{j}} \ldots \partial u_{r}^{i_{r}}} \prod_{1 \leq j \leq r}\left[\prod_{1 \leq t \leq q} \frac{\left(u_{c(t)+j}\right)^{b_{j}^{t}}}{b_{j}^{t}!}\right]$ (cf. [1], Lemma 1).
$A(s, h, l)$ is hence completely determined by its non zero first component $X_{c(h)+a(k-s-h+1)+l}$; if $s=1$, it will be its only one non zero component.
We set: $\quad A_{s}^{h}(U)=\sum_{1 \leq l \leq p_{k-h-s+2}} A(s, h, l) \quad$ where $1 \leq s \leq k+1, \quad 0 \leq h \leq k+1-s$.
Then, for $1 \leq s \leq k+1$, we construct the set $L_{s}(\Omega)=L_{J}(\Omega) \cap\left(\operatorname{Ker} J_{\Omega}^{s}\right) \quad(\operatorname{cf}[1], \mathrm{p} .126-127)$.
We recall the following results (cf [1]):
Theorem 1. For every $X \in L_{1}\left(V^{k}\right)$, we can write $X=\sum_{i}\left[Y_{i}, Z_{i}\right]$ where \sum_{i} is a finite sum and Y_{i}, Z_{i} belongs to $L_{1}\left(V^{k}\right)$.

Lemma 1. Let U be an open set of adapted local coordinates of V^{k} and s an integer such that $2 \leq s \leq k+1$ (suppose $\left.p_{k-s+2} \neq 0\right)$. Every element of $L_{S}(U)$ is a bracket finite sum of elements of $L_{S}(U)$ which means that: $\left[L_{s}(U), L_{s}(U)\right]=L_{s}(U)$.

3. General study of Derivations

In this section, we suppose that $p_{k+1} \neq 0$.
Proposition 1. Let D be a derivation of $L_{J}\left(V^{k}\right)$. Then $D\left(L_{1}\left(V^{k}\right)\right) \subset L_{1}\left(V^{k}\right)$ and $D_{L_{1}\left(V^{k}\right)}$ is a derivation of $L_{1}\left(V^{k}\right)$.

Proof. From theorem 1, for every $X \in L_{1}\left(V^{k}\right)$, we can write $X=\sum_{i}\left[Y_{i}, Z_{i}\right]$ where \sum_{i} is a finite sum and Y_{i}, Z_{i} belongs to $L_{1}\left(V^{k}\right)$. Thus $D(X)=\sum_{i}\left(\left[D\left(Y_{i}\right), Z_{i}\right]+\left[Y_{i}, D\left(Z_{i}\right)\right]\right)$.
Furthermore, $D\left(Y_{i}\right)$ and $D\left(Z_{i}\right) \in L_{J}\left(V^{k}\right)$. Since $L_{1}\left(V^{k}\right)$ is an ideal of $L_{J}\left(V^{k}\right)$ (cf [1], lemma 4), we deduce that $\left[D\left(Y_{i}\right), Z_{i}\right]$ and $\left[Y_{i}, D\left(Z_{i}\right)\right]$ belong to $L_{1}\left(V^{k}\right)$ and thus $D(X) \in L_{1}\left(V^{k}\right)$. This completes the proof.

Proposition 2. For every derivation D of $L_{1}\left(V^{k}\right)$ and for every $X \in L_{1}\left(V^{k}\right)$, $\operatorname{supp} D(X) \subset \operatorname{supp} X$; every derivation D of $L_{1}\left(V^{k}\right)$ is local.

Proof. Let $X \in L_{1}\left(V^{k}\right)$ be a vector field on V^{k} and ω an open set of V^{k} such that $X_{\mid \omega}=0$; setting $\Omega=\pi^{-1}(\pi(\omega))$, we also have $X_{\mid \Omega}=0$. For each $x \in \Omega$, there exist open sets Ω_{1} and Ω_{2} of V^{k} such that $\Omega_{1} \cap \Omega_{2}=\varnothing, \Omega_{i}=\pi^{-1}\left(\pi\left(\Omega_{i}\right)\right), \mathrm{i}=1,2$, supp $X \subset \Omega_{1}, x \in \Omega_{2}$. According to theorem 2 (cf [1], p.128), we can write $X=\sum_{i}\left[T_{i}, Y_{i}\right]$, where T_{i}, Y_{i} belongs to $L_{1}\left(V^{k}\right)$ and whose supports are in Ω_{1}. Since $D(X)=\sum_{i}\left(\left[D\left(T_{i}\right), Y_{i}\right]+\left[T_{i}, D\left(Y_{i}\right)\right]\right)$, we deduce that $D(X)_{\Omega_{2}}=0$, then $D(X)_{\Omega}=0$. This completes the proof.

Proposition 3. Let U be an open set of adapted local coordinates of V^{k} and s an integer such that $2 \leq s \leq k+1$. Suppose $p_{k-s+2} \neq 0$. Let D be a derivation of $L_{s}(U)$. Then $D\left(L_{s-1}(U)\right) \subset L_{s-1}(U)$ and $D_{\mid L_{s-1}(U)}$ is a derivation of $L_{s-1}(U)$.

Proof. In fact, according to theorem 1 for $s=2$ and lemma 6 (cf [1], p. 128) for $3 \leq s \leq k+1$, for every $X \in L_{s-1}(U)$, we can write $X=\sum_{i}\left[Y_{i}, Z_{i}\right]$ where \sum_{i} is a finite sum and Y_{i}, Z_{i} belong to $L_{s-1}(U)$. From lemma 4 (cf [1]), we deduce that $D(X)=\sum_{i}\left(\left[D\left(Y_{i}\right), Z_{i}\right]+\left[Y_{i}, D\left(Z_{i}\right)\right]\right)$ belongs to $L_{s-1}(U)$. This completes the proof.

Lemma 2. Let U be an open set of adapted local coordinates of V^{k} and s an integer such that $1 \leq s \leq k+1$. Suppose $p_{k-s+2} \neq 0$. Let D be a derivation of $L_{s}(U), X \in L_{s}(U)$ and $x \in U$ such that $j^{3}(X)(x)=0$. Then $D(X)(x)=0$.

Proof. This results from lemma 7 (cf [1], p. 128).
From now on and until the section ends, U is an open set of adapted local coordinates of V^{k}.
Define a mapping $\Delta: L_{1}(U) \rightarrow L_{1}(U)$ by:

$$
\begin{aligned}
& \Delta\left(\sum_{1 \leq l \leq p_{k+1}} X_{a(k)+l}\left(u_{1}, \ldots, u_{a(k+1)}\right) \partial_{a(k)+l}\right)= \\
& \left(\sum_{1 \leq l \leq p_{k+1}} \partial_{a(k)+l} X_{a(k)+l}\right)\left(\sum_{\substack{1 \leq h \leq k \\
1 \leq i \leq p_{k+1-h}}} A_{c(h)+a(k-h)+i} \partial_{c(h)+a(k-h)+i}\right) \\
& \Delta\left(\sum_{\substack{1 \leq t \leq k \\
1 \leq j \leq p_{k+1-t}}} X_{c(t)+a(k-t)+j}\left(u_{1}, \ldots, u_{a(k+1)}\right) \partial_{c(t)+a(k-t)+j}\right)=0
\end{aligned}
$$

where $A_{c(h)+a(k-h)+i}, 1 \leq h \leq k, 1 \leq i \leq p_{k+1-h}$ are C^{∞} mappings from U to $I R$ only depending on $u_{1}, \ldots, u_{a(k)}$.

Lemma 3: Δ is a derivation of $L_{1}(U)$, which is not an inner derivation.
Proof: In fact, we take $X=\sum_{1 \leq l \leq p_{k+1}} X_{a(k)+l} \quad \partial_{a(k)+l}$ and $Y=\sum_{1 \leq t \leq p_{k+1}} Y_{a(k)+t} \partial_{a(k)+t}$ $[X, Y]=\sum_{1 \leq t \leq p_{k+1}}\left(\sum_{l}\left(X_{a(k)+l} \partial_{a(k)+l} Y_{a(k)+t}-Y_{a(k)+l} \partial_{a(k)+l} X_{a(k)+t}\right)\right) \partial_{a(k)+t}$ $\Delta([X, Y])=\left(\sum_{l, t}\left(X_{a(k)+l} \partial_{a(k)+t} \partial_{a(k)+l} Y_{a(k)+t}-Y_{a(k)+l} \partial_{a(k)+t} \partial_{a(k)+l} X_{a(k)+t}\right)\right) \times$ $\times\left(\sum_{\substack{1 \leq h \leq k \\ 1 \leq \leq \leq p_{k+1-h}}} A_{c(h)+a(k-h)+i} \partial_{c(h)+a(k-h)+i}\right)$ $[\Delta(X), Y]+[X, \Delta(Y)]=\left(-\sum_{l, t} Y_{a(k)+t} \partial_{a(k)+l} \partial_{a(k)+t} X_{a(k)+t}+\sum_{l, t} X_{a(k)+l} \partial_{a(k)+l} \partial_{a(k)+t} Y_{a(k)+t}\right) \times$

$$
\times\left(\sum_{\substack{1 \leq \leq \leq k \\ 1 \leq i \leq p_{k+1-h}}} A_{c(h)+a(k-h)+i} \partial_{c(h)+a(k-h)+i}\right)=\Delta([X, Y])
$$

We now take $Y^{\prime}=Y_{c(h)+a(k-h)+j}^{\prime} \partial_{c(h)+a(k-h)+j}, 1 \leq h \leq k, 1 \leq j \leq p_{k+1-h}$.
$\left[X, Y^{\prime}\right]=\sum_{1 \leq h \leq k}\left(\sum_{l} X_{a(k)+l} \partial_{a(k)+l} Y_{c(h)+a(k-h)+j}^{\prime}\right) \partial_{c(h)+a(k-h)+j}, \Delta\left(\left[X, Y^{\prime}\right]\right)=0$,
$\left[\Delta(X), Y^{\prime}\right]+\left[X, \Delta\left(Y^{\prime}\right)\right]=0+[X, 0]=0$.
Suppose there exists $Y \in L_{1}(U)$ such that $\Delta(X)=[Y, X]$: then, for $X=\partial_{a(k)+l}$, $1 \leq l \leq p_{k+1}$, we shall have: $0=\left[Y, \partial_{a(k)+l}\right]$ and the components of Y will depend only on $u_{1}, \ldots, u_{a(k)}$. For $X=u_{a(k)+l} \partial_{a(k)+l}, 1 \leq l \leq p_{k+1}$, we shall have:
$\sum_{\substack{1 \leq h \leq k \\ 1 \leq i \leq p_{k+1-h}}} A_{c(h)+a(k-h)+i} \partial_{c(h)+a(k-h)+i}=Y_{a(k)+l} \partial_{a(k)+l}$, hence $Y_{a(k)+l}=0$ and for all h,
$1 \leq h \leq k, A_{c(h)+a(k-h)+i}=0$. This completes the proof.
In U, we set: $T=\sum_{\substack{1 \leq \leq \leq k \\ 1 \leq j \leq p_{k+1-t}}}\left(\sum_{\substack{1 \leq h \leq k \\ 1 \leq i \leq p_{k+1}-h}} B_{h, i}^{j} \quad u_{c(h)+a(k-h)+i} \quad \partial_{c(t)+a(k-t)+j}\right)$,
$B_{h, i}^{j}$ are C^{∞} mappings from U to $I R$ only depending on $u_{1}, \ldots, u_{a(k)} . T \notin L_{J}(U)$.
We immediately verify that:
Lemma 4. The mapping from $L_{1}(U)$ to $L_{1}(U): X \rightarrow[T, X]$ is a derivation of $L_{1}(U)$ which is not an inner derivation.

Let $Z_{r}^{0}, 3 \leq r \leq k+1$, be the vector fields on U defined by:
$Z_{r}^{0}=\sum_{1 \leq j \leq p_{k-r+2}} R_{a(k+1-r)+j} \partial_{a(k+1-r)+j}$, where $R_{a(k+1-r)+j}, 1 \leq j \leq p_{k-r+2}$, are C^{∞} mappings from U to $I R$ depending on $u_{1}, \ldots, u_{a(k)} . Z_{r}^{0} \notin L_{J}(U)$.
Then we have:

Lemma 5. The mapping from $L_{1}(U)$ to $L_{1}(U): X \rightarrow\left[\sum_{3 \leq r \leq k+1} Z_{r}^{0}, X\right]$ is a derivation of $L_{1}(U)$ which is not an inner derivation.

Theorem 2. Let D be a derivation of $L_{1}(U)$. There exist $Z_{1}^{h} \in A_{1}^{h}(U), 0 \leq h \leq k$, $Z_{2}^{0} \in A_{2}^{0}(U), Z_{r}^{0}, 3 \leq r \leq k+1$, vector fields on U (see lemma 5), a derivation Δ (see lemma 3) and a vector field T (see lemma 4), such that for every $X \in L_{1}(U)$:

$$
D(X)=\left[\sum_{0 \leq h \leq k} Z_{1}^{h}+\sum_{2 \leq r \leq k+1} Z_{r}^{0}, X\right]+\Delta(X)+[T, X] .
$$

In particular, $\operatorname{dim} H^{1}\left(L_{1}(U)\right)=+\infty . Z_{1}^{0}, Z_{2}^{0}, \sum_{3 \leq r \leq k+1} Z_{r}^{0}, \Delta$ and T are uniquely determined; $\quad Z_{1}^{h}, \quad 1 \leq h \leq k, \quad$ is only determined $u p$ to the sum of $\sum_{1 \leq j \leq p_{k+1-h}} E_{c(h)+a(k-h)+j} \partial_{c(h)+a(k-h)+j}$, where $E_{c(h)+a(k-h)+j}$ only depends on $u_{1}, \ldots, u_{a(k)}$.

Proof. 1) First we study the uniqueness: suppose that, for every $X \in L_{1}(U)$, we also have:
$D(X)=\left[\sum_{0 \leq h \leq k} Z_{1}^{\prime h}+\sum_{2 \leq r \leq k+1} Z_{r}^{\prime 0}, X\right]+\Delta^{\prime}(X)+\left[T^{\prime}, X\right]$, where $Z_{1}^{\prime h} \in A_{1}^{h}(U), 0 \leq h \leq k$, $Z_{2}^{\prime 0} \in A_{2}^{0}(U), Z_{r}^{\prime 0}, 3 \leq r \leq k+1$, vector fields on U (see lemma 5),
$\Delta^{\prime}\left(\sum_{1 \leq l \leq p_{k+1}} X_{a(k)+l}\left(u_{1}, \ldots, u_{a(k+1)}\right) \partial_{a(k)+l}\right)=$
$\left(\sum_{1 \leq l \leq p_{k+1}} \partial_{a(k)+l} X_{a(k)+l}\right)\left(\sum_{\sum_{1 \leq i \leq h \leq k}} A_{c(h)+a(k-h)+i}^{\prime} \partial_{c(h)+a(k-h)+i}\right)$
$\Delta^{\prime}\left(\sum_{\substack{1 \leq h \leq k \\ 1 \leq j \leq p_{k+1-h}}} X_{c(h)+a(k-h)+j}\left(u_{1}, \ldots, u_{a(k+1)}\right) \partial_{c(h)+a(k-h)+j}\right)=0$,
$T^{\prime}=\sum_{\substack{1 \leq \leq \leq k \\ 1 \leq j \leq p_{k+1-t}}}\left(\sum_{\substack{1 \leq h \leq k \\ 1 \leq i \leq p_{k+1-h}}} B_{h, i}^{\prime j} u_{c(h)+a(k-h)+i}\right) \partial_{c(t)+a(k-t)+j}$, where $A_{c(h)+a(k-h)+i}^{\prime}$ and $B_{h, i}^{\prime j}$,
are C^{∞} mappings from U to $I R$ only depending on $u_{1}, \ldots, u_{a(k)}$. We set:
$Z_{1}^{0}-Z_{1}^{\prime 0}=\sum_{1 \leq j \leq p_{k+1}} b_{a(k)+j} \partial_{a(k)+j}$,
$Z_{1}^{h}-Z_{1}^{\prime h}=\sum_{1 \leq i \leq p_{k+1-h}} g_{c(h)+a(k-h)+i} \quad \partial_{c(h)+a(k-h)+i}, 1 \leq h \leq k$
$Z_{r}^{0}-Z_{r}^{\prime 0}=\sum_{1 \leq j \leq p_{k-r+2}} d_{a(k+1-r)+j} \quad \partial_{a(k+1-r)+j}, \quad 2 \leq r \leq k+1$
$A_{c(h)+a(k-h)+i}-A_{c(h)+a(k-h)+i}^{\prime}=A_{c(h)+a(k-h)+i}^{\prime \prime}, \quad B_{h, i}^{j}-B_{h, i}^{\prime j}=B_{h, i}^{\prime j}, 1 \leq h \leq k, 1 \leq i \leq p_{k+1-h}$.
For every $X \in L_{1}(U)$, we have :
$\left[Z_{1}^{0}-Z_{1}^{\prime 0}, X\right]+\left[\sum_{1 \leq h \leq k}\left(Z_{1}^{h}-Z_{1}^{\prime h}\right), X\right]+\left[\sum_{2 \leq r \leq k+1}\left(Z_{r}^{0}-Z_{r}^{\prime 0}\right), X\right]+\left(\Delta-\Delta^{\prime}\right)(X)+\left[T-T^{\prime}, X\right]=0$.
We deduce that:
i) for $X=\partial_{a(k)+l}, 1 \leq l \leq p_{k+1}$:
$-\sum_{1 \leq j \leq p_{k+1}} \partial_{a(k)+l} b_{a(k)+j} \partial_{a(k)+j}-\sum_{\substack{1 \leq h \leq k \\ 1 \leq i \leq p_{k+1-h}}} \partial_{a(k)+l} g_{c(h)+a(k-h)+i} \partial_{c(h)+a(k-h)+i}=0, \quad$ then
$\partial_{a(k)+l} b_{a(k)+j}=0,1 \leq j \leq p_{k+1}$ and $\partial_{a(k)+l} g_{c(h)+a(k-h)+i}=0,1 \leq h \leq k, 1 \leq i \leq p_{k+1-h}$ ii) for $X=u_{a(k)+l} \partial_{a(k)+l}, 1 \leq l \leq p_{k+1}$:
$b_{a(k)+l} \quad \partial_{a(k)+l}+\sum_{\substack{1 \leq h \leq k \\ 1 \leq i \leq p_{k+1-h}}} A_{c(h)+a(k-h)+i}^{\prime \prime} \quad \partial_{c(h)+a(k-h)+i}=0$, then $b_{a(k)+l}=0$, for all l,
$1 \leq l \leq p_{k+1}$ and $A_{c(h)+a(k-h)+i}^{\prime \prime}=0$ for all $h, 1 \leq h \leq k, 1 \leq i \leq p_{k+1-h}$.
iii) for $X=u_{a(k-s)+i} \partial_{a(k)+l}, 1 \leq s \leq k, 1 \leq i \leq p_{k+1-s}, 1 \leq l \leq p_{k+1}$:
$d_{a(k-s)+i} \partial_{a(k)+l}=0$ then $d_{a(k-s)+i}=0,1 \leq s \leq k$.
$i v)$ for $X=\partial_{c(h)+a(k-h)+i}, 1 \leq h \leq k, 1 \leq i \leq p_{k+1-h}$:
$-B_{h, i}^{" j} \quad \partial_{c(t)+a(k-t)+j}=0$ then $B_{h, i}^{" j}=0$.
2) The existence of $Z_{1}^{h}, 0 \leq h \leq k, Z_{r}^{0}, 2 \leq r \leq k+1, \Delta$ and T is induced from the four following lemmas.

Lemma 6. There exist $\hat{Z}_{1}^{0} \in A_{1}^{0}(U), Z_{1}^{h} \in A_{1}^{h}(U), 1 \leq h \leq k$, such that the mapping from $L_{1}(U)$ to $L_{1}(U): X \rightarrow D_{1}(X)=D(X)-\left[\hat{Z}_{1}^{0}+\sum_{1 \leq h \leq k} Z_{1}^{h}, X\right]$ is a derivation of $L_{1}(U)$ which verifies $D_{1}\left(\partial_{a(k)+l}\right)=0$ for $1 \leq l \leq p_{k+1}$.

Proof. Setting, for $1 \leq l \leq p_{k+1}: \quad D\left(\partial_{a(k)+l}\right)=\sum_{\substack{0 \leq h \leq k \\ 1 \leq i \leq p_{k+1-h}}} D_{a(k)+l}^{c(h)+a(k-h)+i} \partial_{c(h)+a(k-h)+i}$,
we have, for $1 \leq l, f \leq p_{k+1}$:

$$
D\left(\left[\partial_{a(k)+l}, \partial_{a(k)+f}\right]\right)=0=\left[D\left(\partial_{a(k)+l}\right), \partial_{a(k)+f}\right]+\left[\partial_{a(k)+l}, D\left(\partial_{a(k)+f}\right)\right]
$$

Hence $\partial_{a(k)+f} D_{a(k)+l}^{c(h)+a(k-h)+i}=\partial_{a(k)+l} D_{a(k)+f}^{c(h)+a(k-h)+i}$; thus there exist, in U, C^{∞} functions of $u_{1}, \ldots, u_{a(k+1)}, D_{c(h)+a(k-h)+i}, 0 \leq h \leq k, 1 \leq i \leq p_{k+1-h}$ such that
$\partial_{a(k)+l} D_{c(h)+a(k-h)+i}=D_{a(k)+l}^{c(h)+a(k-h)+i}$. It is sufficient to set:
$\hat{Z}_{1}^{0}=-\sum_{1 \leq i \leq p_{k+1}} D_{a(k)+i} \partial_{a(k)+i}, \quad Z_{1}^{h}=-\sum_{1 \leq i \leq p_{k+1-h}} D_{c(h)+a(k-h)+i} \partial_{c(h)+a(k-h)+i}, \quad 1 \leq h \leq k$.
This completes the proof.
Lemma 7. There exist $\widetilde{Z}_{1}^{0} \in A_{1}^{0}(U), Z_{2}^{0} \in A_{2}^{0}(U), Z_{r}^{0}, 3 \leq r \leq k+1$, vector fields on U (see lemma 5), a derivation Δ of $L_{1}(U)$ (see lemma 3) such that the mapping from $L_{1}(U)$ to $L_{1}(U)$:

$$
\begin{aligned}
X \rightarrow D_{2}(X) & =D_{1}(X)-\left[\sum_{2 \leq r \leq k+1} Z_{r}^{0}, X\right]-\left[\tilde{Z}_{1}^{0}, X\right]-\Delta(X) \\
& =D(X)-\left[\sum_{0 \leq h \leq k} Z_{1}^{h}+\sum_{2 \leq r \leq k+1} Z_{r}^{0}, X\right]-\Delta(X)
\end{aligned}
$$

is a derivation of $L_{1}(U)$ which verifies $\quad D_{2}\left(\partial_{a(k)+l}\right)=0 \quad$ for $\quad 1 \leq l \leq p_{k+1}$, $D_{2}\left(u_{j} \partial_{a(k)+l}\right)=0$ for $1 \leq j \leq a(k+1), 1 \leq l \leq p_{k+1} .\left(\right.$ we have set: $\left.Z_{1}^{0}=\hat{Z}_{1}^{0}+\widetilde{Z}_{1}^{0}\right)$

Proof. Setting, for $1 \leq j \leq a(k+1), 1 \leq l \leq p_{k+1}$:

$$
\begin{aligned}
& D_{1}\left(u_{j} \partial_{a(k)+l}\right)=\sum_{\substack{0 \leq h \leq k \\
1 \leq i \leq p_{k+1-h}}} D_{j, a(k)+l}^{c(h)+a(k-h)+i} \partial_{c(h)+a(k-h)+i}, \text { we have, for } 1 \leq f \leq p_{k+1}: \\
& D_{1}\left(\left[\partial_{a(k)+f}, u_{j} \partial_{a(k)+l}\right]\right)=0=\left[\partial_{a(k)+f}, D_{1}\left(u_{j} \partial_{a(k)+l}\right)\right] .
\end{aligned}
$$

We deduce that $D_{j, a(k)+l}^{c(h)+a(k-h)+i}$ only depends on $u_{1}, \ldots, u_{a(k)}$.
For $1 \leq j, r \leq a(k+1), 1 \leq l, f \leq p_{k+1}$, we have :

$$
\begin{aligned}
D_{1}\left(\left[u_{j} \partial_{a(k)+l}, u_{r} \partial_{a(k)+f}\right]\right) & =\delta_{a(k)+l}^{r} D_{1}\left(u_{j} \partial_{a(k)+f}\right)-\delta_{j}^{a(k)+f} D_{1}\left(u_{r} \partial_{a(k)+l}\right) \\
& =\left[D_{1}\left(u_{j} \partial_{a(k)+l}\right), u_{r} \partial_{a(k)+f}\right]+\left[u_{j} \partial_{a(k)+l}, D_{1}\left(u_{r} \partial_{a(k)+f}\right)\right]
\end{aligned}
$$

1) Assume $1 \leq r \leq a(k)$: for $j=a(k)+l=a(k)+f$, we have :

$$
-\sum_{\substack{0 \leq h \leq k \\ 1 \leq i \leq h p_{k+1-h}}} D_{r, a(k)+l}^{c(h)+a(k-h)+i} \partial_{c(h)+a(k-h)+i}=-D_{r, a(k)+l}^{a(k)+l} \quad \partial_{a(k)+l}
$$

We deduce that for $0 \leq h \leq k, 1 \leq i \leq p_{k+1-h}, i \neq l, \quad D_{r, a(k)+l}^{c(h)+a(k-h)+i}=0$.
For $j=a(k)+f$, we have : $-D_{r, a(k)+l}^{a(k)+l} \quad \partial_{a(k)+l}=-D_{r, a(k)+f}^{a(k)+f} \quad \partial_{a(k)+l}$.
We deduce that $D_{r, a(k)+l}^{a(k)+l}=D_{r, a(k)+f}^{a(k)+f}$.
2) Assume $a(k)+1 \leq r \leq a(k+1)$: for $r \neq a(k)+l=j=a(k)+f$, we have :

We deduce that for $0 \leq h \leq k, \quad 1 \leq i \leq p_{k+1-h}, \quad i \neq l, \quad D_{r, a(k)+l}^{c(h)+a(k-h)+i}=0$, next $D_{a(k)+l, a(k)+l}^{r}=0$. For $r=a(k)+l \neq j=a(k)+f$, we have :

$-\sum_{\substack{11 \leq h \leq k \\ 1 \leq i \leq p k+1-h}} D_{a(k)+l, a(k)+l}^{c(h)+a(k-h)+i} \partial_{c(h)+a(k-h)+i}=D_{a(k)+f, a(k)+l}^{a(k)+l} \partial_{a(k)+f}-D_{a(k)+l, a(k)+f}^{a(k)+f} \quad \partial_{a(k)+l}$
We deduce: $D_{a(k)+f, a(k)+f}^{a(k)+f}=D_{a(k)+f, a(k)+l}^{a(k)+}$

$$
D_{a(k)+f, a(k)+f}^{c(h)+a(k-h)+i}=D_{a(k)+l, a(k)+l}^{c(h)+a(k-h)+i}, 1 \leq h \leq k, 1 \leq i \leq p_{k+1-h} .
$$

We set: $D_{j}=$ common value of $D_{j, a(k)+l}^{a(k)+l}, 1 \leq j \leq a(k+1)$,
$A_{c(h)+a(k-h)+i}=D_{a(k)+l, a(k)+l}^{c(h(k-h)+i}$ for $1 \leq h \leq k, 1 \leq i \leq p_{k+1-h}$, which determines Δ,
$Z_{r}^{0}=\sum_{1 \leq i \leq p_{k-r+2}} D_{a(k+1-r)+i} \partial_{a(k+1-r)+i}, \quad 2 \leq r \leq k+1, \quad \tilde{Z}_{1}^{0}=\sum_{1 \leq i \leq p_{k+1}} D_{a(k)+i} \partial_{a(k)+i} \quad$ and $Z_{1}^{0}=\hat{Z}_{1}^{0}+\widetilde{Z}_{1}^{0}$. This completes the proof.

Lemma 8. There exists a vector field T on U (see lemma 4) such that the mapping from $L_{1}(U)$ to $L_{1}(U): X \rightarrow D_{3}(X)=D_{2}(X)-[T, X]$ is a derivation of $L_{1}(U)$ which verifies
$D_{3}\left(\partial_{c(h)+a(k-h)+i}\right)=0$, for $0 \leq h \leq k, \quad 1 \leq i \leq p_{k+1-h}, \quad D_{3}\left(u_{j} \partial_{a(k)+l}\right)=0$ for $1 \leq l \leq p_{k+1}$, $1 \leq j \leq a(k+1)$.

Proof. We set, for $1 \leq h \leq k, 1 \leq i \leq p_{k+1-h}$:

$$
\begin{aligned}
& D_{2}\left(\partial_{c(h)+a(k-h)+i}\right)=\sum_{\substack{0 \leq r \leq k \\
1 \leq j \leq p_{k+1}-r}} D_{c(h)+a(k-h)+i}^{c(r)+a(k-r)+j} \partial_{c(r)+a(k-r)+j} . \text { For } 1 \leq l \leq p_{k+1} \text {, we have: } \\
& D_{2}\left(\left[\partial_{a(k)+l}, \partial_{c(h)+a(k-h)+i}\right]\right)=0=\left[\partial_{a(k)+l}, D_{2}\left(\partial_{c(h)+a(k-h)+i}\right)\right] .
\end{aligned}
$$

We deduce that $D_{c(h)+a(k-h)+i}^{c(r)+a(k-r)+j}$ only depends on $u_{1}, \ldots, u_{a(k)}$. We have:

$$
\begin{aligned}
& D_{2}\left(\left[\partial_{c(h)+a(k-h)+i}, \sum_{1 \leq l \leq p_{k+1}} u_{a(k)+l} \partial_{a(k)+l}\right]\right)=0= \\
& {\left[\sum_{\substack{0 \leq r \leq k \\
1 \leq j \leq p_{k+1}-r}} D_{c(h)+a(k-h)+i}^{c(r)+a(k-r)+j} \partial_{c(r)+a(k-r)+j}, \sum_{1 \leq l \leq p_{k+1}} u_{a(k)+l} \partial_{a(k)+l}\right]}
\end{aligned}
$$

We deduce that $D_{c(h)+a(k-h)+i}^{a(k)+l}=0$ for $1 \leq l \leq p_{k+1}$. It is enough to set:
$T=-\sum_{\substack{1 \leq r \leq k \\ 1 \leq j \leq p_{k+1}-r}}\left(\sum_{\substack{1 \leq h \leq k \\ 1 \leq i \leq p_{k+1-h}}} D_{c(h)+a(k-h)+i}^{c(r) a(k-r)+j} u_{c(h)+a(k-h)+i}\right) \partial_{c(r)+a(k-r)+j}$.
This completes the proof.
Lemma 9. For every $X \in L_{1}(U)$ whose components on $\partial_{c(h)+a(k-h)+i}, \quad 1 \leq i \leq p_{k+1-h}$, $0 \leq h \leq k$, are polynomials of variables $u_{j}, 1 \leq j \leq a(k+1)$, of degree $\leq 3, D_{3}(X)=0$.

Proof. 1) We take $1 \leq r, t \leq a(k+1), 1 \leq l \leq p_{k+1}$:
$D_{3}\left(u_{r} u_{t} \partial_{a(k)+l}\right)=\sum_{\substack{0 \leq h \leq k \\ 1 \leq j \leq p_{k+1-h}}} D_{r, t, a(k)+l}^{c(h)+a(k-h)+j} \partial_{c(h)+a(k-h)+j}$, where the $D_{r, t, a(k)+l}^{c(h)+a(k-h)+j}$ only depends on $u_{1}, \ldots, u_{a(k+1)}$. For $1 \leq f \leq p_{k+1}$, we have:
$D_{3}\left(\left[\partial_{a(k)+f}, u_{r} u_{t} \partial_{a(k)+l}\right]\right)=0=\left[\partial_{a(k)+f}, D_{3}\left(u_{r} u_{t} \partial_{a(k)+l}\right)\right]$ then $D_{r, t, a(k)+l}^{c(h)+a(k-h)+j}$ only depends on $u_{1}, \ldots, u_{a(k)}$.
i) Assume $a(k)+1 \leq r, t \leq a(k+1):\left[\sum_{1 \leq f \leq p_{k+1}} u_{a(k)+f} \partial_{a(k)+f}, u_{r} u_{t} \partial_{a(k)+l}\right]=u_{r} u_{t} \partial_{a(k)+l}$

Applying D_{3} to this, we obtain:
$-\sum_{1 \leq f \leq p_{k+1}} D_{r, t a(k)+l}^{a(k)+f} \partial_{a(k)+f}=\sum_{\substack{0 \leq h \leq k \\ 1 \leq j \leq p_{k+1}-h}} D_{r, t a(k)+l}^{c(h)+a(k-h)+j} \partial_{c(h)+a(k-h)+j}$. We deduce:
$2 D_{r, t, a(k)+l}^{a(k)+j}=0$ for $1 \leq j \leq p_{k+1}, \quad D_{r, t, a(k)+l}^{c(h)+a(k-h)+i}=0$ for $1 \leq h \leq k, 1 \leq i \leq p_{k+1-h}$, from which it follows that $D_{3}\left(u_{r} u_{t} \partial_{a(k)+l}\right)=0$.
ii) Assume $1 \leq r \leq a(k)<t \leq a(k+1)$: $\quad\left[u_{r} \partial_{t}, u_{t}^{2} \partial_{a(k)+l}\right]=2 u_{r} u_{t} \partial_{a(k)+l}$.

From i) it follows that $D_{3}\left(u_{t}^{2} \partial_{a(k)+l}\right)=0$ then $D_{3}\left(u_{r} u_{t} \partial_{a(k)+l}\right)=0$.
iii) Assume $1 \leq r, t \leq a(k):\left[u_{r} \partial_{a(k)+l}, u_{t} u_{a(k)+l} \partial_{a(k)+l}\right]=u_{r} u_{t} \partial_{a(k)+l}$.

From $i i$) it follows that $D_{3}\left(u_{t} u_{a(k)+l} \partial_{a(k)+l}\right)=0$ then $D_{3}\left(u_{r} u_{t} \partial_{a(k)+l}\right)=0$.
2) We take $1 \leq r, t, s \leq a(k+1), 1 \leq l, f \leq p_{k+1}$: from $D_{3}\left(\left[\partial_{a(k)+f}, u_{r} u_{t} u_{s} \partial_{a(k)+l}\right]\right)=0$ we deduce that $\left[\partial_{a(k)+f}, D_{3}\left(u_{r} u_{t} u_{s} \partial_{a(k)+l}\right)\right]=0$.
$i)$ Assume $a(k)+1 \leq r, t, s \leq a(k+1)$:
$\left[\sum_{1 \leq f \leq p_{k+1}} u_{a(k)+f} \partial_{a(k)+f}, u_{r} u_{t} u_{s} \partial_{a(k)+l}\right]=2 u_{r} u_{t} u_{s} \partial_{a(k)+l}$ hence $D_{3}\left(u_{r} u_{t} u_{s} \partial_{a(k)+l}\right)=0$.
ii) Assume $1 \leq r \leq a(k)<t, s \leq a(k+1)$:
$\left[\sum_{1 \leq f \leq p_{k+1}} u_{a(k)+f} \partial_{a(k)+f}, u_{r} u_{t} u_{s} \partial_{a(k)+l}\right]=u_{r} u_{t} u_{s} \partial_{a(k)+l}$ hence $D_{3}\left(u_{r} u_{t} u_{s} \partial_{a(k)+l}\right)=0$.
iii) Assume $1 \leq r, t \leq a(k)<s \leq a(k+1)$:
$\left[u_{r} u_{t} \partial_{s}, u_{s}^{2} \partial_{a(k)+l}\right]=2 u_{r} u_{t} u_{s} \partial_{a(k)+l}$ hence $D_{3}\left(u_{r} u_{t} u_{s} \partial_{a(k)+l}\right)=0$
$i v)$ Assume $1 \leq r, t, s \leq a(k)$:
$\left[u_{r} u_{t} \partial_{a(k)+l}, u_{s} u_{a(k)+l} \partial_{a(k)+l}\right]=u_{r} u_{t} u_{s} \partial_{a(k)+l}$ hence $D_{3}\left(u_{r} u_{t} u_{s} \partial_{a(k)+l}\right)=0$.
3) i) We set, for $1 \leq r \leq a(k+1), 1 \leq h \leq k, 1 \leq i \leq p_{k+1-h}$:

$$
D_{3}\left(u_{r} \partial_{c(h)+a(k-h)+i}\right)=\sum_{\substack{0 \leq t \leq k \\ 1 \leq j \leq p_{k+1-t}}} D_{r, c(h)+a(k-h)+i}^{c(t)+a(k-t)+j} \partial_{c(t)+a(k-t)+j}
$$

For $1 \leq l \leq p_{k+1}$, we have:
$D_{3}\left(\left[\partial_{a(k)+l}, u_{r} \partial_{c(h)+a(k-h)+i}\right]\right)=0=\left[\partial_{a(k)+l}, D_{3}\left(u_{r} \partial_{c(h)+a(k-h)+i}\right)\right]$.
For $1 \leq r \leq a(k), 1 \leq l \leq p_{k+1}$, we have:

$$
\begin{aligned}
D_{3}\left(\left[u_{r} \partial_{a(k)+l}, u_{a(k)+l} \partial_{c(h)+a(k-h)+i}\right]\right) & =D_{3}\left(u_{r} \partial_{c(h)+a(k-h)+i}\right) \\
= & {\left[u_{r} \partial_{a(k)+l}, D_{3}\left(u_{a(k)+l} \partial_{c(h)+a(k-h)+i}\right)\right]=0 . }
\end{aligned}
$$

Hence, for $1 \leq r \leq a(k), D_{3}\left(u_{r} \partial_{c(h)+a(k-h)+i}\right)=0$.
For $a(k)+1 \leq r \leq a(k+1)$, we have,

$$
D_{3}\left(u_{r} \partial_{c(h)+a(k-h)+i}\right)=-D_{a(k)+l, c(h)+a(k-h)+i}^{r} \partial_{a(k)+l}
$$

If $r=a(k)+l$, we have, $D_{a(k)+l, c(h)+a(k-h)+i}^{a(k)+j}=0$ for $j \neq l$, then
$D_{a(k)+l, c(h)+a(k-h)+i}^{a(k)+l}=0 \quad$ and $\quad D_{a(k)+l, c(h)+a(k-h)+i}^{c(t)+a(k-t)+j}=0 \quad$ for $1 \leq t \leq k$.
If $r \neq a(k)+l$, since $D_{a(k)+l, c(h)+a(k-h)+i}^{r}=0$ then $D_{3}\left(u_{r} \partial_{c(h)+a(k-h)+i}\right)=0$.
ii) We take now $1 \leq t, r, s \leq a(k+1), 1 \leq h \leq k, 1 \leq i \leq p_{k+1-h}, 1 \leq l \leq p_{k+1}$:
$\left[u_{t} u_{r} \partial_{a(k)+l}, u_{a(k)+l} \partial_{c(h)+a(k-h)+i}\right]=u_{t} u_{r} \partial_{c(h)+a(k-h)+i}$ hence
$D_{3}\left(u_{t} u_{r} \partial_{c(h)+a(k-h)+i}\right)=0$.
$\left[u_{t} u_{r} u_{s} \partial_{a(k)+l}, u_{a(k)+l} \partial_{c(h)+a(k-h)+i}\right]=u_{t} u_{r} u_{s} \partial_{c(h)+a(k-h)+i}$ hence
$D_{3}\left(u_{t} u_{r} u_{s} \partial_{c(h)+a(k-h)+i}\right)=0$.
Let us conclude the demonstration of the theorem by considering any X belonging to $L_{1}(U)$; for every $x \in U$, there exists $\widetilde{X} \in L_{1}(U)$ whose components on $\partial_{c(h)+a(k-h)+i}, 0 \leq h \leq k$,
$1 \leq i \leq p_{k+1-h}$, are polynomials of degree ≤ 3 and such that $j^{3}(X-\widetilde{X})(x)=0$. By lemma 2 we have $D_{3}(X-\widetilde{X})(x)=0$. Since $D_{3}(\widetilde{X})=0$, then $D_{3}(X)(x)=0$.
On the other hand, because $Z_{1}^{h}-Z_{1}^{\prime h}=\sum_{1 \leq i \leq p_{k+1-h}} g_{c(h)+a(k-h)+i} \partial_{c(h)+a(k-h)+i}, \quad 1 \leq h \leq k$, with $\partial_{a(k)+l} g_{c(h)+a(k-h)+i}=0, \quad 1 \leq h \leq k, 1 \leq i \leq p_{k+1-h}, 1 \leq l \leq p_{k+1}$, thus the vector fields Z_{1}^{h} are not uniquely determined but determined up to the sum of $\sum_{1 \leq j \leq p_{k+1-h}} g_{c(h)+a(k-h)+j} \partial_{c(h)+a(k-h)+j}$, where $g_{c(h)+a(k-h)+j}$ only depends on $u_{1}, \ldots, u_{a(k)}$. So the dimension of $H^{1}\left(L_{1}(U)\right)$ is infinite for U open set of adapted local coordinates of V^{k}. This completes the proof.

On the other hand, let Z be the vector field on U defined by $Z^{U}=\sum_{1 \leq h \leq k} h\left(\sum_{1 \leq j \leq a(k+1-h)} u_{c(h)+j} \partial_{c(h)+j}\right)$ (cf [1], p. 124). We showed that, in fact, Z is globally defined. We immediately verify that:

Lemma 10. The mapping from $L_{J}(U)$ to $L_{J}(U)$ (resp. from $L_{J}\left(V^{k}\right)$ to $\left.L_{J}\left(V^{k}\right)\right): X \rightarrow\left[Z_{\mid U}, X\right]($ resp. $X \rightarrow[Z, X])$ is a derivation of $L_{J}(U)$ (resp. $L_{J}\left(V^{k}\right)$) which is not an inner derivation. So $\operatorname{dim} H^{1}\left(L_{J}(U)\right) \geq 1, \operatorname{dim} H^{1}\left(L_{J}\left(V^{k}\right)\right) \geq 1$.

The derivations of $L_{J}(U)$ have been studied by J. Lehmann-Lejeune (cf. [4], th. 1, p. 25). Let us recall the results:

Theorem 3. For every derivation D of $L_{J}(U)$ there exist k real constants $K_{h}, 1 \leq h \leq k$, and an element $Y \in L_{J}(U)$ such that, for every $X \in L_{J}(U)$:
$D(X)=\left[\sum_{1 \leq h \leq k} K_{h} J^{h-1} Z_{U}+Y, X\right] ; K_{h}$ and Y are uniquely determined; then $\operatorname{dim} H^{1}\left(L_{J}(U)\right)=k$.

4. When the foliations are defined by submersions

In this section, we assume that the k foliations of M are defined by k submersions $\pi_{h}: M_{h-1} \rightarrow M_{h}$ where $1 \leq h \leq k, M_{0}=M$, the M_{h} are manifolds of dimension $a(k+1-h)$ and $p_{1}>0, p_{i} \geq 0 \quad 2 \leq i \leq k+1$. The leaves of each foliation F_{k+1-h} are the connected components of the inverse image by $\pi_{h} \circ \ldots \circ \pi_{1}$ of the points of M_{h}.
Let $y_{0} \in M_{0}$ be a point of M_{0}. Denote by $y_{h}=\pi_{h} \circ \pi_{h-1} \circ \ldots \circ \pi_{1}\left(y_{0}\right) \in M_{h}, 1 \leq h \leq k$. For all $h, 0 \leq h \leq k$, there exist \hat{U}_{h} open sets of local coordinates $\left(u_{1}, \ldots, u_{a(k+1-h)}\right)$, neighborhood of y_{h} in M_{h}, such that $\pi_{h+1}\left(\hat{U}_{h}\right)=\hat{U}_{h+1}$ and $\pi_{h+1} \hat{U}_{h}$ is a projection: $\left(u_{1}, \ldots, u_{a(k+1-h)}\right) \rightarrow\left(u_{1}, \ldots, u_{a(k-h)}\right)$.Then there exists an open set of local coordinates $U=\pi^{-1}\left(\hat{U}_{0}\right)$ of V^{k}. This is an 'open set of adapted local coordinates $u_{1}, \ldots, u_{n}{ }^{\prime \prime}$ which, moreover, is adapted to the submersions.

The automorphisms of the foliations F_{k+1-h} on $M=M_{0}, 1 \leq h \leq k$, defined by $\pi_{h} \circ \pi_{h-1} \circ \ldots \circ \pi_{1}: M_{0} \rightarrow M_{h}$, are projectable vector fields from M_{0} to M_{h}.

Lemma 11. Let Ω be an open set of V^{k} and $X \in L_{s}^{h}(\Omega), 1 \leq s \leq k+1, \quad 0 \leq h \leq k+1-s$ (cf. [4]). For every $x \in \Omega$, the germ at x of X is the germ at x of an $X^{\prime} \in L_{J}\left(V^{k}\right)$.

Proof. Let Ω be an open set of V^{k} such that $\Omega=\pi^{-1} \circ \pi(\Omega)$ and $x \in \Omega$. We set $\hat{\Omega}=\pi(\Omega)$, open set of M_{0} and $y_{0}=\pi(x) \in \hat{\Omega}$. According to lemma 5 (cf [1], p. 127), it is sufficient to show the result for $X \in L_{s+1}^{h}(\Omega), 1 \leq s \leq k, 0 \leq h \leq k-s$.

Let $\hat{X} \in L_{s+1}^{h}(\hat{\Omega})$ be a vector field on $\hat{\Omega}, 1 \leq s \leq k, 0 \leq h \leq k-s$, and $X \in L_{s+1}^{h}(\Omega)$ be the corresponding vector field on Ω (cf. [4]).
$\pi_{s}^{*} \circ \pi_{s-1}^{*} \circ \ldots \circ \pi_{1}^{*}(\hat{X})=\hat{X}_{s}$ is a vector field on $\hat{\Omega}_{s}$, open set of M_{s}, neighborhood of $y_{s}=\pi_{s} \circ \pi_{s-1} \circ \ldots \circ \pi_{1}\left(y_{0}\right)$. There exists φ_{s}, function on M_{s}, with support contained in $\hat{\Omega}_{s}$, and equal to 1 in a neighborhood $\hat{\omega}_{s}$ of y_{s}. The vector field $\hat{X}^{s}=\varphi_{s} \hat{X}_{s}$ is global on M_{s}. The germ at y_{s} of \hat{X}^{s} is equal to the germ at y_{s} of \hat{X}_{s}. With the help of a metric on M_{0}, we can define the lift on M_{0} of vector fields defined in M_{s}. Indeed, let g be a metric on M_{0} and y_{0} a point of M_{0}. Denote by S_{1} the orthogonal supplementary set relatively to g of $\operatorname{Ker}\left(\pi_{1}^{*}\right)$ to $T_{y_{0}} M_{0}: T_{y_{0}} M_{0}=\operatorname{Ker}\left(\pi_{1}^{*}\right) \oplus S_{1}$. Setting $y_{1}=\pi_{1}\left(y_{0}\right), S_{1}$ is isomorphic to $T_{y_{1}} M_{1}$. For $0 \leq h \leq k-1$ and $y_{h}=\pi_{h} \circ \pi_{h-1} \circ \ldots \circ \pi_{1}\left(y_{0}\right)$, assume that the vector space $T_{y_{h}} M_{h}$ is endowed with a scalar product; thus $T_{y_{h}} M_{h}=\operatorname{Ker}\left(\pi_{h+1}^{*}\right) \oplus S_{h+1}$, where S_{h+1} is the orthogonal supplementary set of $\operatorname{Ker}\left(\pi_{h+1}^{*}\right)$ in $T_{y_{h}} M_{h} . S_{h+1}$ is endowed with a scalar product: the restriction of the scalar product on $T_{y_{h}} M_{h}$. On the other hand, S_{h+1} is isomorphic to $T_{y_{h+1}} M_{h+1}$; we deduce from this isomorphism a scalar product on $T_{y_{h+1}} M_{h+1}$.
This assertion is true for $h=0$. Thus it's true for every $h, 0 \leq h \leq k-1$.
We deduce that we can write as an orthogonal direct sum: $T_{y_{0}} M_{0}=\underset{1 \leq r \leq k+1}{\oplus} E_{r}$, where E_{r} is isomorphic to $\operatorname{Ker}\left(\pi_{r}^{*}\right)$ for $1 \leq r \leq k$ and E_{k+1} to $T_{y_{k}} M_{k}$.
Hence we could lift up a vector field on $M_{h}, 1 \leq h \leq k$, into a vector field on M_{h-1}, taking it in S_{h}. And step by step or gradually, we could lift it on M_{0}.
Then let \tilde{X}_{s} be the lift of \hat{X}^{s} on M_{0}. Set $\tilde{X}=P_{k}\left(J_{0}^{h}\left(R \tilde{X}^{s}\right)\right)$ (cf. [4]). It is a vector field globally defined on V^{k}. Denote by Ω^{\prime} the open set of V^{k} such that $\Omega^{\prime}=\left(\pi_{s} \circ \pi_{s-1} \circ \ldots \circ \pi_{1^{\circ}} \pi\right)^{-1}\left(\hat{\omega}_{s}\right) . \Omega^{\prime}$ contains x. The vector field $X_{\mid \Omega^{\prime}}-\widetilde{X}_{\Omega^{\prime}} \in L_{s}\left(\Omega^{\prime}\right)$. To show it, we will do an inductive reasoning on s.
For $s=1, X_{\mid \Omega^{\prime}}-\tilde{X}_{\Omega^{\prime}} \in L_{1}\left(\Omega^{\prime}\right)$. According to lemma $5(\operatorname{cf}[1])$, the germ at x of $X_{\Omega^{\prime}}-\tilde{X}_{\Omega^{\prime}}$ is the germ at x of an $Y \in L_{1}\left(V^{k}\right)$. \tilde{X} being global, thus the germ at x of X is the germ at x of $X^{\prime}=\widetilde{X}+Y \in L_{J}\left(V^{k}\right)$.

Now, for $1 \leq s \leq k, \quad 0 \leq h \leq k-s$, assume that for every $X \in L_{s}^{h}(\Omega)$ the germ at x of X is the germ at x of an $X^{\prime} \in L_{J}\left(V^{k}\right)$. Let $X \in L_{s+1}^{h}(\Omega)$ be a vector field on Ω. Then $X_{\mid \Omega^{\prime}}-\widetilde{X}_{\mid \Omega^{\prime}} \in L_{s}\left(\Omega^{\prime}\right)$. According to the inductive hypothesis, the germ at x of $X_{\mid \Omega^{\prime}}-\tilde{X}_{\mid \Omega^{\prime}}$ is the germ at x of an $Y \in L_{J}\left(V^{k}\right)$. \tilde{X} being global, thus the germ at x of X is the germ at x of $X^{\prime}=\tilde{X}+Y \in L_{J}\left(V^{k}\right)$. This proves our lemma.

Proposition 4. For every derivation D of $L_{J}\left(V^{k}\right)$ and for every $X \in L_{J}\left(V^{k}\right)$, $\operatorname{supp} D(X) \subset \operatorname{supp} X$; every derivation D of $L_{J}\left(V^{k}\right)$ is local.

Proof. Let ω be an open set of V^{k} such that $\omega=\pi^{-1}(\pi(\omega))$. We set $\hat{\omega}=\pi(\omega)$ open set of M_{0}. Let $\hat{X} \in L_{s+1}^{h}\left(M_{0}\right)$ be a vector field on $M_{0}, 0 \leq s \leq k, 0 \leq h \leq k-s$ (cf. [4]) such that $\hat{X}_{\mid \hat{\omega}}=0$. (For $s=0, L_{s+1}^{h}\left(M_{0}\right)$ is the set of the vector fields of M_{0}, tangent to the leaves of F_{k-h} and orthogonal to the leaves of F_{k+1-h}). Denote by X the corresponding vector field on $V^{k}, X \in L_{s+1}^{h}\left(V^{k}\right)$ (cf. [4]). We have: $X_{\mid \omega}=0$.
Let \hat{X}^{s} be the projected of \hat{X} on M_{s}. For all $y \in \hat{\omega}$, there exist open sets $\hat{\Omega}_{1}$ and $\hat{\Omega}_{2}$ of M_{s} such that $\hat{\Omega}_{1} \cap \hat{\Omega}_{2}=\varnothing, \pi_{s} \circ \pi_{s-1} \circ \ldots \circ \pi_{1}(y)=y_{s} \in \hat{\Omega}_{2}$, $\operatorname{supp} \hat{X}^{s} \subset \hat{\Omega}_{1}$ (for $s=0$, $\hat{X}^{s}=\hat{X}, \quad y_{s}=y \in \hat{\Omega}_{2}$ and $\left.\operatorname{supp} \hat{X} \subset \hat{\Omega}_{1}\right) . \quad \hat{X}_{\hat{\Omega}_{2}}^{s}=0$; in particular \hat{X}^{s} is zero in a neighborhood of y_{s}. According to the theorem of A. Lichnerowicz (cf [5], p. 64), we can write $\hat{X}^{s}=\sum_{i}\left[\hat{Y}_{i}^{s}, \hat{T}_{i}^{s}\right]_{M_{s}}$ where $\hat{Y}_{i}^{s}, \hat{T}_{i}^{s}$ are vector fields on M_{s}, with support in $\hat{\Omega}_{1}$: $\hat{Y}_{i \mid \hat{\Lambda}_{2}}^{s}=0, \hat{T}_{i \mid \hat{\Omega}_{2}}^{s}=0$.
Let \tilde{X}^{s} (respectively $\tilde{Y}_{i}^{s}, \tilde{T}_{i}^{s}$) be the lift of \hat{X}^{s} (respectively $\hat{Y}_{i}^{s}, \hat{T}_{i}^{s}$) on M_{0} (for $s=0$, $\left.\tilde{X}^{s}=\hat{X}, \tilde{Y}_{i}^{s}=\hat{Y}_{i}^{s}, \tilde{T}_{i}^{s}=\hat{T}_{i}^{s}\right)$ and $\tilde{X}=P_{k}\left(J_{0}^{h}\left(R \tilde{X}^{s}\right)\right)$ (cf. [3]):
$\tilde{X}=\sum_{i} P_{k}\left(J_{0}^{h}\left(R\left[\tilde{Y}_{i}^{s}, \tilde{T}_{i}^{s}\right]_{M_{0}}\right)\right)$.
If $\tilde{Y}_{i}=P_{k}\left(J_{0}^{h}\left(R \tilde{Y}_{i}^{s}\right)\right), \tilde{T}_{i}=P_{k}\left(J_{0}^{h}\left(R \tilde{T}_{i}^{s}\right)\right)$ and $\omega_{2}=\left(\pi_{s} \circ \pi_{s-1} \circ \ldots \circ \pi_{1} \circ \pi\right)^{-1}\left(\hat{\Omega}_{2}\right)$, open set of V^{k} containing $x=\pi^{-1}(y)$ (for $s=0, \pi_{s}=\pi$), we have:
$\left[\tilde{Y}_{i}, \tilde{T}_{i}\right]=P_{k}\left(J_{0}^{h}\left(R\left[\tilde{Y}_{i}^{s}, \tilde{T}_{i}^{s}\right]\right)\right)+R_{i}$ where $R_{i} \in L_{s}\left(V^{k}\right)$ and $R_{i \mid \omega_{2}}=0$. Then
$\tilde{X}=\sum_{i}\left(\left[\tilde{Y}_{i}, \tilde{T}_{i}\right]-R_{i}\right)$. Since $X-\tilde{X} \in L_{s}\left(V^{k}\right)$, we have: $X=\sum_{i}\left[\tilde{Y}_{i}, \tilde{T}_{i}\right]+R_{s} \quad$ where $R_{s} \in L_{s}\left(V^{k}\right)$ and $R_{s \mid \omega_{2}}=0$. Hence $D(X)=\sum_{i}\left(\left[D\left(\tilde{Y}_{i}\right), \tilde{T}_{i}\right]+\left[\tilde{Y}_{i}, D\left(\tilde{T}_{i}\right)\right]\right)+D\left(R_{s}\right)$.
To conclude, we will do an inductive reasoning on s to show that $D\left(R_{s}\right)_{\mid \omega_{2}}=0$.
For $s=0, R_{0}=0$. Then $D\left(R_{0}\right)_{\mid \omega_{2}}=0$. Thus $D(X)_{\mid \omega_{2}}=0$, since $\tilde{T}_{i \mid \omega_{2}}=0, \tilde{Y}_{i \mid \omega_{2}}=0$, hence $D(X)_{\mid \omega}=0$. Now we suppose that $D(X)_{\mid \omega_{2}}=0$ for every $X \in L_{s}^{h}\left(V^{k}\right)$ such that $X_{\mid \omega_{2}}=0$,
$1 \leq s \leq k, 0 \leq h \leq k-s$. Let $X \in L_{s+1}^{h}\left(V^{k}\right)$ be a vector field on $V^{k}, 0 \leq h \leq k-s, 0 \leq s \leq k$. According to the inductive hypothesis, $D\left(R_{s}\right)_{\mid \omega_{2}}=0$, hence $D(X)_{\mid \omega_{2}}=0$, and thus $D(X)_{\mid \omega}=0$.This concludes the proof.

Theorem 4. When the k foliations on M are defined by submersions $\operatorname{dim} H^{1}\left(L_{J}\left(V^{k}\right)\right)=k$.
Proof. Let D be a derivation on $L_{J}\left(V^{k}\right)$. For every open set Ω of V^{k}, we have an induced derivation $D_{\Omega}: L_{J}(\Omega) \rightarrow L_{J}(\Omega)$. For $X \in L_{J}(\Omega)$ and $x \in \Omega$, we set:
$D_{\Omega}(X)(x)=D\left(X^{\prime}\right)(x)$ where $X^{\prime} \in L_{J}\left(V^{k}\right)$ and coincides with X in an open neighborhood of x (see lemma 11). $D_{\Omega}(X)(x)$ does not depend on X^{\prime} according to proposition 4.
Consider now a covering $\left(U_{\alpha}\right)_{\alpha \in A}$ of V^{k} by adapted local coordinates open sets. According to theorem 3, for all $\alpha \in A$, there exists $Y_{\alpha} \in L_{J}\left(U_{\alpha}\right), k$ constants $K_{1}^{\alpha}, \ldots, K_{k}^{\alpha}$ such that for every $X \in L_{J}\left(U_{\alpha}\right)$:

$$
D_{U_{\alpha}}(X)=\left[\sum_{0 \leq b \leq k-1} K_{b+1}^{\alpha} J^{b} Z_{\mid U_{\alpha}}+Y_{\alpha}, X\right] .
$$

Since $D_{U_{\alpha}}$ and $D_{U_{\alpha^{\prime}}}$ limited to $U_{\alpha} \cap U_{\alpha^{\prime}}$ coincide, Y_{α} and $Y_{\alpha^{\prime}}$ limited to $U_{\alpha} \cap U_{\alpha^{\prime}}$ are equal and $K_{b+1}^{\alpha}=K_{b+1}^{\alpha^{\prime}}, 0 \leq b \leq k-1$. Thus there exists $Y \in L_{J}\left(V^{k}\right)$ and k real constants K_{1}, \ldots, K_{k} such that for all $\alpha \in A, Y_{\mid U_{\alpha}}=Y_{\alpha}$ and $K_{b+1}=K_{b+1}^{\alpha}, 0 \leq b \leq k-1$.
Since for every $X \in L_{J}\left(V^{k}\right), D(X)_{\mid U \alpha}=D_{U_{\alpha}}\left(X_{\mid U_{\alpha}}\right)$, we have for every $X \in L_{J}\left(V^{k}\right)$: $D(X)=\left[\sum_{0 \leq b \leq k-1} K_{b+1} J^{b} Z+Y, X\right]$. This concludes the proof.

5. Case of the torus endowed with two foliations

We consider the vector fields $X=\frac{\partial}{\partial x}+\alpha \frac{\partial}{\partial y}$ and $X^{\prime}=\frac{\partial}{\partial x}+\beta \frac{\partial}{\partial z}$ in \mathbb{R}^{3}, provided with canonical coordinates (x, y, z), where α and $\beta \in \mathbb{R}-\mathbb{Q}$. The first integrals of X (rep. X^{\prime}) globally defined are the functions $G(y-\alpha x, z)$ (resp. $G^{\prime}(z-\beta x, y)$) where G and G^{\prime} are C^{∞} mappings from \mathbb{R}^{2} to \mathbb{R}. Defining an equivalence relation in \mathbb{R}^{3} by: $(x, y, z) \approx\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ if $x-x^{\prime} \in \mathbb{Z}, y-y^{\prime} \in \mathbb{Z}$ and $z-z^{\prime} \in \mathbb{Z}$, we obtain on the torus T^{3} the vector fields still denoted by X and X^{\prime}. The first integrals of X and X^{\prime} must be periodic C^{∞} mappings in x, y and z, of period 1. For a fixed $y, u \rightarrow G^{\prime}(u, y)$ is periodic in u of period 1 and β. Then G^{\prime} only depends on y. Likewise, for a fixed $z, v \rightarrow G^{\prime}(v, z)$ is periodic in v of period 1 and α. Then G only depends on z.
We endow T^{3} with the following two foliations: F_{1} is determined by X and X^{\prime}, of codimension 1 and F_{2} is determined by X, of codimension 2 . We have $F_{1} \supset F_{2}$. The globally defined first integrals associated to the foliation F_{1} are the functions $F(x, y, z)=G(y-\alpha x, z)=G^{\prime}(z-\beta x, y)$. We deduce that the first integrals of F_{1} are constant, and those of F_{2} are only function of z.

On $M=T^{3}$, we consider the coordinate change:
$u_{1}=-\beta x+\frac{\beta}{\alpha} y+z, u_{2}=x-\frac{1}{\alpha} y$ and $u_{3}=\frac{1}{\alpha} y \quad$ where $\left.u_{1} \in\right] a, b\left[, u_{2} \in\right] a^{\prime}, b^{\prime}\left[, u_{3} \in\right] a^{\prime \prime}, b^{\prime \prime}[$. $\left(u_{1}, u_{2}, u_{3}\right)$ are local coordinates adapted to the foliations F_{1} and F_{2}. We deduce on the transverse bundle V^{2}, the adapted local coordinates $\left(u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right)$ in the open set $U=] a, b[\times] a^{\prime}, b^{\prime}[\times] a^{\prime \prime}, b^{\prime \prime}\left[\times \mathbb{R}^{3}\right.$. We will only consider this kind of open sets of adapted coordinates.
Let U and U^{\prime} be two such open sets satisfying $U \cap U^{\prime} \neq \varnothing$. We have, in $U \cap U^{\prime}: u_{1}-u_{1}^{\prime}=f$, $u_{2}-u_{2}^{\prime}=g, u_{3}-u_{3}^{\prime}=h$, where f, g and h are locally constant, $u_{4}=u_{4}^{\prime}, u_{5}=u_{5}^{\prime}, u_{6}=u_{6}^{\prime}$. Then $\partial_{1}=\partial_{1}^{\prime}, \partial_{2}=\partial_{2}^{\prime}, \partial_{3}=\partial_{3}^{\prime}, \partial_{4}=\partial_{4}^{\prime}, \partial_{5}=\partial_{5}^{\prime}, \partial_{6}=\partial_{6}^{\prime}$. (For simplicity, we have set: $\frac{\partial}{\partial u_{i}}=\partial_{i}$).Thus we have six vector fields globally defined on V^{2} which realize a parallelism.
We denote by $X_{2}\left(\right.$ resp. $\left.X_{3}\right)$ the canonical lifts of $X^{\prime}($ resp. $X)$ in V^{2}. We have:
$\begin{cases}\partial_{1}=\frac{\partial}{\partial z} & J \partial_{1}=\partial_{4}, J \partial_{2}=\partial_{5}, \\ \partial_{2}=\frac{\partial}{\partial x}+\beta \frac{\partial}{\partial z}=X_{2}, & J \partial_{3}=0, J \partial_{4}=\partial_{6}, \quad \text { and } Z=u_{4} \partial_{4}+u_{5} \partial_{5}+2 u_{6} \partial_{6} . \\ \partial_{3}=\frac{\partial}{\partial x}+\alpha \frac{\partial}{\partial y}=X_{3} & J \partial_{5}=0, J \partial_{6}=0,\end{cases}$
We will take as a basis of $T\left(V^{2}\right):\left(\frac{\partial}{\partial z}, X_{2}, X_{3}, \partial_{4}, \partial_{5}, \partial_{6}\right)$. For simplicity, we set: $\frac{\partial}{\partial z}=\partial_{z}$.
Let $Y \in L_{J}\left(V^{2}\right)$. We set $Y=Y_{1} \partial_{z}+Y_{2} X_{2}+Y_{3} X_{3}+Y_{4} \partial_{4}+Y_{5} \partial_{5}+Y_{6} \partial_{6}$. For every vector field T in V^{2}, we have $[Y, J T]=J[Y, T]$. By considering $T=\partial_{z}, T=X_{2}, T=X_{3}, T=\partial_{4}$, $T=\partial_{5}$ then $T=\partial_{6}$, we deduce:

Lemma 12. Each element of $L_{J}\left(V^{2}\right)$ is of one of the following types:

1) $K \partial_{z}$,
2) $F(z) X_{2}+\left(u_{4}+\beta u_{5}\right) \partial_{z} F \partial_{5}$,
3) $\varphi(x, y, z) X_{3}$,
4) $G(z) \partial_{4}+\left(u_{4}+\beta u_{5}\right) \partial_{z} G \partial_{6}$,
5) $\psi(x, y, z) \partial_{5}$,
6) $\phi(x, y, z) \partial_{6}$ where K is a constant and the mappings F and G from \mathbb{R} to \mathbb{R} (resp. φ, ψ, ϕ from \mathbb{R}^{3} to \mathbb{R}) are 1-periodic in z (resp. 1-periodic in x, y and $\left.z\right) . L_{1}\left(V^{2}\right)$ is the set of the elements of type 3, 5 and 6. The set of elements of type 2 (resp. 4) is $A_{2}^{0}\left(V^{2}\right)$ (resp. $\left.A_{2}^{1}\left(V^{2}\right)\right)(c f .[2])$. We have: $L_{J}\left(V^{2}\right)=\mathbb{R} \partial_{z} \oplus A_{2}^{0}\left(V^{2}\right) \oplus A_{2}^{1}\left(V^{2}\right) \oplus L_{1}\left(V^{2}\right)$.

Let $Y=Y_{1} \partial_{z}+\left(Y_{2} X_{2}+\left(u_{4}+\beta u_{5}\right) \partial_{z} Y_{2} \partial_{5}\right)+Y_{3} X_{3}+\left(Y_{4} \partial_{4}+\left(u_{4}+\beta u_{5}\right) \partial_{z} Y_{4} \partial_{6}\right)+Y_{5} \partial_{5}+Y_{6} \partial_{6}$ an element of $L_{J}\left(V^{2}\right)$.
We set:

$$
\Delta_{1}(Y)=\left(X_{3} \cdot Y_{3}\right) \partial_{6}, \quad \Delta_{2}(Y)=Y_{4} \partial_{5}+\beta Y_{5} \partial_{5}+\beta Y_{6} \partial_{6}
$$

$$
\Delta_{3}(Y)=Y_{1}\left(\partial_{5}-\beta \partial_{4}\right), \Delta_{4}(Y)=Y_{2}\left(\partial_{5}-\beta \partial_{4}\right)
$$

It is easy to verify that:
Lemma 13. $\Delta_{1}, \Delta_{2}, \Delta_{3}$ and Δ_{4} are derivations of $L_{J}\left(V^{2}\right)$ which are not inner derivations.

Thus $\operatorname{dim} H^{1}\left(L_{J}\left(V^{2}\right)\right) \geq 6$ since $\Delta_{1}, \Delta_{2}, \Delta_{3}, \Delta_{4}, X \rightarrow[Z, X]$ and $X \rightarrow[J Z, X]$ are non-inner linearly independent derivations of $L_{J}\left(V^{2}\right)$.

6. Case of the sphere endowed with two foliations. Study of $H^{1}\left(L_{1}\left(V^{2}\right)\right)$.

Let S^{3} be the unit 3- sphere defined by $S^{3}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) / x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=1\right\}$. We consider $W=S^{3}-\left\{x_{1}^{2}+x_{2}^{2}=0, x_{3}^{2}+x_{4}^{2}=0\right\}$. We set $v_{1}=\sqrt{x_{3}^{2}+x_{4}^{2}}, 0<v_{1}<1$, $\left\{\begin{array}{l}x_{1}=\sqrt{1-v_{1}^{2}} \cos v_{2} \\ x_{2}=\sqrt{1-v_{1}^{2}} \sin v_{2} \\ x_{3}=v_{1} \cos v_{3} \\ x_{4}=v_{1} \sin v_{3}\end{array}\right.$
where $\quad v_{2}$ and v_{3} are 2π-periodic and, $X=\frac{\partial}{\partial v_{2}}+v_{1}^{2} \frac{\partial}{\partial v_{3}}$ whose first integrals are C^{∞} mappings $F\left(v_{1}\right)$.
We have: $\frac{d v_{1}}{d t}=0, \frac{d v_{2}}{d t}=1, \frac{d v_{3}}{d t}=v_{1}^{2}$ thus $v_{1}=$ cste, $t=v_{2}$ and $v_{3}=v_{1}^{2} v_{2}+$ cste.
We endow W with the following two foliations: F_{1} is determined by the foliation of the torus, of codimension 1 and F_{2} is determined by X, of codimension 2.
On W, we consider the coordinate change:
$u_{1}=v_{1}, u_{2}=v_{3}-v_{1}^{2} v_{2}$ and $u_{3}=v_{3} \quad$ where $\left.u_{1} \in\right] 0,1\left[, u_{2} \in\right] 0,2 \pi\left[, u_{3} \in\right] 0,2 \pi[$.
$\left(u_{1}, u_{2}, u_{3}\right)$ are local coordinates adapted to the foliations F_{1} and F_{2}. We deduce on the transverse bundle V^{2}, the adapted local coordinates $\left(u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}\right)$ in the open set $U=] 0,1[\times] 0,2 \pi[\times] 0,2 \pi\left[\times \mathbb{R}^{3}\right.$. We will only consider this kind of open sets of adapted coordinates.
Let U and U^{\prime} be two such open sets satisfying $U \cap U^{\prime} \neq \varnothing$. We have, in $U \cap U^{\prime}: u_{1}=u_{1}^{\prime}$, $u_{2}-u_{2}^{\prime}=f, u_{3}-u_{3}^{\prime}=g$, where f and g are locally constant on $U \cap U^{\prime}, u_{4}=u_{4}^{\prime}, u_{5}=u_{5}^{\prime}$, $u_{6}=u_{6}^{\prime}$. Then $\partial_{1}=\partial_{1}^{\prime}, \partial_{2}=\partial_{2}^{\prime}, \partial_{3}=\partial_{3}^{\prime} \partial_{4}=\partial_{4}^{\prime}, \partial_{5}=\partial_{5}^{\prime}, \partial_{6}=\partial_{6}^{\prime}$. (For simplicity, we have set: $\frac{\partial}{\partial u_{i}}=\partial_{i}$). Thus we have six vector fields globally defined on V^{2} which realize a parallelism. We have:
$\left\{\begin{array}{ll}\frac{\partial}{\partial v_{1}}=\partial_{1}-2 v_{1} v_{2} \partial_{2} \\ \frac{\partial}{\partial v_{2}}=-v_{1}^{2} \partial_{2} & J \partial_{1}=\partial_{4}, J \partial_{2}=\partial_{5}, \\ \frac{\partial}{\partial v_{3}}=\partial_{2}+\partial_{3} & J \partial_{3}=0, J \partial_{4}=\partial_{6}, \\ J \partial_{5}=0, J \partial_{6}=0,\end{array} \quad\right.$ and $X=u_{1}^{2} \partial_{3}$.

Let $Y \in L_{J}\left(V^{2}\right)$. We set $Y=Y_{1} \partial_{1}+Y_{2} \partial_{2}+Y_{3} X+Y_{4} \partial_{4}+Y_{5} \partial_{5}+Y_{6} \partial_{6}$. For every vector field T in V^{2}, we have $[Y, J T]=J[Y, T]$. By considering $T=\partial_{1}, T=\partial_{2}, T=X, T=\partial_{4}, T=\partial_{5}$ then $T=\partial_{6}$, we deduce:

Lemma 14. Each element of $L_{J}\left(V^{2}\right)$ is of one of the following types:

1) $F_{1}\left(u_{1}\right) \partial_{1}+u_{4} \partial_{1} F_{1} \partial_{4}+\left(\frac{1}{2} u_{4}^{2} \partial_{1}^{2} F_{1}+u_{6} \partial_{1} F_{1}\right) \partial_{6}$,
2) $F_{2}\left(u_{1}\right) \partial_{2}+u_{4} \partial_{1} F_{2} \partial_{5}$,
3) $\varphi\left(u_{1}, u_{2}, u_{3}\right) X$,
4) $F_{4}\left(u_{1}\right) \partial_{4}+u_{4} \partial_{1} F_{4} \partial_{6}$,
5) $\psi\left(u_{1}, u_{2}, u_{3}\right) \partial_{5}$,
6) $\phi\left(u_{1}, u_{2}, u_{3}\right) \partial_{6}$.
$L_{1}\left(V^{2}\right)$ is the set of the elements of type 3, 5 and 6.

Let $Y=\varphi\left(u_{1}, u_{2}, u_{3}\right) X+\psi\left(u_{1}, u_{2}, u_{3}\right) \partial_{5}+\phi\left(u_{1}, u_{2}, u_{3}\right) \partial_{6}$ an element of $L_{1}\left(V^{2}\right)$.
We set: $\Delta(Y)=(X . \varphi)\left(A\left(u_{1}\right) \partial_{5}+B\left(u_{1}\right) \partial_{6}\right)$.
Moreover, let $T=\left(C_{5}\left(u_{1}\right) u_{5}+C_{6}\left(u_{1}\right) u_{6}\right) \partial_{5}+\left(D_{5}\left(u_{1}\right) u_{5}+D_{6}\left(u_{1}\right) u_{6}\right) \partial_{6}$.
It is easy to verify that Δ and $Y \rightarrow[T, Y]$ are derivations of $L_{1}\left(V^{2}\right)$ which are not inner derivations. Thus we have the following result:

Theorem 5. Let D be a derivation of $L_{1}\left(V^{2}\right)$. There exists a unique vector field $S \in L_{J}\left(V^{2}\right)$ ($S=Z_{1}+Z_{2}+Z_{3}, Z_{1}$ of type $1, Z_{2}$ of type 2 and Z_{3} of type 3) such that for every $Y \in L_{1}\left(V^{2}\right)$: $D(Y)=[S, Y]+\Delta(Y)+[T, Y]+\left[Z_{5}, Y\right]+\left[Z_{6}, Y\right] . Z_{5}$ and Z_{6} are of type 5 and 6 respectively and are determined up to the sum of $\psi\left(u_{1}\right) \partial_{5}+\phi\left(u_{1}\right) \partial_{6}$.

References.

[1] L. Lebtahi, Lie Algebra on the Transverse Bundle of a Decreasing Family of Foliations, J. Geom. Phys. 60 (2010) 122-133.
[2] J. Lehmann-Lejeune, Cohomologies sur le fibré transverse à un feuilletage, C.R.A.S. Paris, 295 (1982), pp. 495-498.
[3] G. Catz, Sur le fibré tangent d'ordre 2, C.R.A.S. Paris, 278 (1974), 277-280.
[4] J. Lehmann-Lejeune, Etude locale des automorphismes de la structure - Etude des dérivations, Pub. I.R.M.A de Lille, Vol 2, ${ }^{\circ}{ }^{\circ}$ II (1980).
[5] A. Lichnerowicz, Algèbres de Lie attachées à un feuilletage, Ann. Fac. Sc. Toulouse, 1 (1979), pp. 45-76.

