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Abstract 

 

In [Lie Algebra on the Transverse Bundle of a Decreasing Family of Foliations, J. 

Geom. Phys., 60 (2010) 122-133], we defined the transverse bundle kV to a 

decreasing family of k foliations iF  on a manifold M. We have shown that there 

exists a )1,1(  tensor J  of  
kV  such that 0≠kJ , 01 =+kJ  and we defined by 

)( k
J VL  the Lie Algebra of vector fields X on kV  such that, for each vector field 

Y on 
kV , [ ] [ ]YXJJYX ,, = .  

In this note, we study the first Chevalley-Eilenberg Cohomology Group i.e. the 

quotient space of derivations of )( k
J VL  by the subspace of inner derivations, 

denoted by ( )1 ( )kJH L V  .  
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1. Introduction 

 

Let  M  be a differentiable  manifold of dimension m endowed  with  k  foliations 1 2, ,..., kF F F , 

k 1≥ , of respective codimensions 
1 1 2 1 2, ,...., ... kp p p p p p+ + + +  such that 1 2 ... kF F F⊃ ⊃ ⊃  

(
1 2 1.... k km p p p p += + + + + , 1 0p >  , 0ip ≥ , 2 1i k≤ ≤ +  ). 

In [1], we defined a so-called "order k bundle 
kV  transverse to the foliations iF " and we proved 

that there exists a )1,1(  tensor  J   of  
kV   such that 0≠kJ , 01 =+kJ  and for every pair of 

vector fields X ,Y  on  kV : 

[ ] [ ] [ ] [ ] 0,,,, 2 =+−− YXJJYXJYJXJJYJX . 

Ω   being an open set of kV , we denote by ( )JL Ω  the Lie Algebra of vector fields X defined on 

Ω  such that the Lie derivative ( )L X J  is equal to zero i.e., for each vector field Y on Ω :     

[ ] [ ]YXJJYX ,, = . 
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We define by 1L  a subset of ( )kJL V  constituted by the vector field X on 
kV such that 

KerJX ∈ . The purpose of this paper is to study the first Chevalley-Eilenberg Cohomology 

Group of JL , denoted by ( )1 ( )kJH L V . In [2], J.Lehmann-Lejeune studied the Cohomology 

on the Transverse Bundle of a Foliation. This paper is organized as follows.  

In section 2, we recall some relevant results and notations (cf [1]), more precisely, we define the 

order k bundle 
kV and the )1,1(  tensor J  of  

kV , and we remind the most important result 

showed in [1]: for every 1( )kX L V∈ , we can write [ ],i ii
X Y Z=∑  where 

i∑ is a finite 

sum and ii ZY ,  belongs to )(1
kVL .  

In section 3, we study the derivations of )(1
kVL . We prove that every derivation of ( )kJL V  

restricted to )(1
kVL  is a derivation of )(1

kVL  and also every derivation of )(1
kVL   is local. 

Moreover, we construct three derivations of 1( )L U  witch are not inner derivations, where U  is 

an open set of adapted local coordinates of 
kV . On the other hand we show that, for every 

kx V∈ , there exists an open set U containing x  such that dim ( )1
1( )H L U  is infinite.  

In section 4, we study the case of foliations defined by submersions and then we show that the 

dimension of ( )1 ( )kJH L V  is equal to k .  

In section 5, we study an example on 3T  with 2k =  foliations where  dim ( )1 ( )kJH L V k> . 

In section 6, we compute ( )1
1( )kH L V  in the case of the 3- sphere. 

 

 

2. Preliminaries 

 

Let  M  be a differentiable  manifold of dimension m endowed  with  k  foliations 1 2, ,..., kF F F , 

k 1≥ , of respective codimensions 
1 1 2 1 2, ,...., ... kp p p p p p+ + + +  such that 1 2 ... kF F F⊃ ⊃ ⊃  

(
1 2 1.... k km p p p p += + + + + , 1 0p >  , 0ip ≥ , 2 1i k≤ ≤ +  ). 

 

Notation:   we set:    
1 2( ) .... ha h p p p= + + +                                  for     1 1h k≤ ≤ + , 

                                 ( ) 0a h =                                                           for     0h ≤ , 

                                 ( ) ( 1) ( ) .... ( 2)c t a k a k a k t= + + + + − +          for     1 1t k≤ ≤ + , 

                                 ( ) 0c t =                                                            for     0t ≤  

 

We define a so-called "order k bundle 
kV  transverse to the foliations iF " (cf [1], p. 123) in the 

following way. The order k tangent bundle of M is the manifold of dimension (k+1)m of the 

−k jets of origin 0 of differentiable mappings from IR to M denoted kT M (cf. [3]).  

Let s  and h  be two integers such that khs ≤≤≤0 , 1≥h  . On the set of −h jets of 

differentiable mappings of origin 0 from IR to M, we define an equivalence relation. Let ϕ  and 

ψ   be two differentiable mappings from IR to M such that (0) (0)ϕ ψ= . 

Denote by  1 2( , ,..., )mu u u  the local coordinates of an open set Û M⊂ , adapted to the k  

foliations  (i.e.   1 2 ( ), ,..., a hu u u  are constants on the leaves of hF , 1 h k≤ ≤ ), such that   

0
ˆ(0) (0) x Uϕ ψ= = ∈ .  
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We say that the −h jets of  ϕ  and ψ   are equivalent if: )0()0(
b

l
b

b

l
b

d

d

d

d

ρ

ψ

ρ

ϕ
= , 1 ,b s≤ ≤  

1 ( 1 )l a k b≤ ≤ + −  and   ,1 hbs ≤≤+   1 ( 1 )l a k s≤ ≤ + − . This equivalence relation is 

independent of the open set Û  of coordinates adapted to the k foliations containing 0x . 

We denote by  ( )s hV  the quotient space of the −h jets of differentiable mappings from IR to M 

endowed with this equivalence relation.  

This is a manifold of dimension   
0

( 1 )
t s

a k t
≤ ≤

+ − +∑ ( ) ( 1 )h s a k s− + − . 

For ,hs =  ( )s sV   will be denoted, for simplicity, by sV . 

 

We have the following diagram, where the arrows are the natural projections: 

 
kV ←   kkV )( 1−   ← kkV )( 2−      ←← ..... kV )( 2      ←  kV )( 1     ←     MT k  

                                                                                                            

                 1−kV   ←   12 )( −− kkV   ←← ..... 12 )( −kV  ←   11)( −kV   ←     MT k 1−  

                                                                                                            

                                      2−kV       ←← ..... 22 )( −kV  ← 21)( −kV    ←      MT k 2−  

                                                                       

.

.

.
↓                  

.

.

.
↓                      

.

.

.
↓          

                                                                       ↓                  ↓                     ↓                    

                                                                        2V     ←    21)(V       ←     MT 2  

                                                                                                                      

                                                                                            1V         ←       TM  

                                                                                                                      

                                                                                                                      

                                                                                                                    M  
 

kV  is called order k  bundle transverse to the k foliations  kFFF ,...,, 21 . 

The dimension of  kV   is   10
( 1) k tt k

n t p + −≤ ≤
= +∑  

0
( 1 )

t k
a k t

≤ ≤
= + −∑ . 

kT M  (which can be considered as a ( )s kV   with  0=s )  is equipped with an order k  nearly 

tangent structure  0J  of constant range km  (cf. [ ]3 ). In [1] p. 124, we show that there exists a 

)1,1(  tensor J  of 
kV  which is the projection on kV of the nearly tangent operator 0J  of order k 

on kT M . Its rank is constant and equal to
1

( 1 )
t k

a k t
≤ ≤

+ −∑ : it verifies 0kJ ≠ , 1 0kJ + =  and 

for every pair of vector fields X ,Y  on  kV : 

[ ] [ ] [ ] [ ] 0,,,, 2 =+−− YXJJYXJYJXJJYJX . 

Ω   being an open set of kV , we denote by ( )JL Ω  the Lie Algebra of vector fields X defined on 

Ω  such that the Lie derivative ( )L X J  is equal to zero i.e., for each vector field Y on Ω :     

[ ] [ ]YXJJYX ,, =  

 

Let U  be an open set of adapted local coordinates 1( ,...., )nu u  and X  a vector field on U . 
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X   belongs to ( )JL Ω  if and only if, for every open set U  of adapted local  coordinates 

1( ,...., )nu u   such that  UΩ∩ ≠∅ , UX ∩Ω  is a vector field finite sum  

( ) ( 1 ) ( ) ( 1 )0 1
( , , ) c h q a k s h l c h q a k s h lq s

A s h l X + + + − − + + + + − − +≤ ≤ −
= ∂∑  , where 1 1s k≤ ≤ + ,  

0 1h k s≤ ≤ + − , 21 k h sl p − − +≤ ≤   (we  set  
i

i
u∂
∂

=∂ ) .  

( ) ( 1)c h a k s h lX + − − + +   only depends on  1 ( 2)( ,...., )a k su u − +  and for 1 1q s≤ ≤ − ,  

( ) ( 1 )c h q a k s h lX + + + − − +  = 
( )

1

( )( ) ( 1 )

1 11
!... ...

t
j

j r

b
i

c t jc h a k s h l

i ti i
j r t q jj r

uX

bu u u

++ + − − +

≤ ≤ ≤ ≤

 
∂  

 
∂ ∂ ∂   

∑ ∏ ∏  (cf. [1], Lemma 1). 

( , , )A s h l  is hence completely determined by its non zero first component ( ) ( 1)c h a k s h lX + − − + +  ;  

if  1s =  , it will be  its only one non zero component. 

We set:   
21

( ) ( , , )
k h s

h
s l p

A U A s h l
− − +≤ ≤

=∑     where  1 1s k≤ ≤ + ,  0 1h k s≤ ≤ + − . 

Then, for 1 1s k≤ ≤ + , we construct the set ( ) ( ) ( )s
s JL L KerJ ΩΩ = Ω ∩   (cf [1], p. 126-127). 

We recall the following results (cf [1]): 

 

Theorem 1. For every 1( )kX L V∈ , we can write [ ],i ii
X Y Z=∑  where ∑i

is a finite 

sum and ii ZY ,  belongs to )(1
kVL . 

 

Lemma 1. Let U be an open set of adapted local coordinates of 
kV and s an integer such that 

2 1s k≤ ≤ +  (suppose 2 0k sp − + ≠ ). Every element of )(ULs is a bracket finite sum of elements 

of )(ULs  which means that: [ ] )()(),( ULULUL sss = . 

 

 

3. General study of Derivations 

 

In this section, we suppose that 01 ≠+kp . 

Proposition 1. Let D be a derivation of ( )kJL V . Then ( )1 1( ) ( )k kD L V L V⊂  and 
1( )kL V

D  is a 

derivation of 1( )kL V . 

 

Proof. From theorem 1, for every 1( )kX L V∈ , we can write [ ],i ii
X Y Z=∑  where  

i∑ is a 

finite sum and ii ZY ,  belongs to 1( )kL V . Thus [ ] [ ]( )( ) ( ), , ( )i i i ii
D X D Y Z Y D Z= +∑ .  

Furthermore, ( )iD Y  and ( )iD Z ( )kJL V∈ . Since 1( )kL V  is an ideal of ( )kJL V  (cf [1], lemma 

4), we deduce that [ ]( ),i iD Y Z   and [ ], ( )i iY D Z  belong to )(1
kVL and thus 1( ) ( )kD X L V∈ . 

This completes the proof. □  
 

Proposition 2.  For  every  derivation  D  of  )(1
kVL  and   for  every 1( )kX L V∈ ,  

supp ( )D X ⊂  supp X ; every derivation  D  of  )(1
kVL  is local. 
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Proof. Let 1( )kX L V∈  be a vector field on 
kV and ω an open set of 

kV such that 0X ω = ; 

setting 
1( ( ))π π ω−Ω = , we also have 0X Ω = . For each x∈Ω , there exist open sets 1Ω  

and 2Ω  of  
kV such that 1 2Ω ∩Ω =∅ , 

1( ( ))i iπ π−Ω = Ω , i = 1, 2 ,  supp 1X ⊂ Ω , 2x∈Ω . 

According to theorem 2 (cf [1], p.128), we can write [ ],i ii
X T Y=∑ , where ,i iT Y  belongs to 

1( )kL V and whose supports are in 1Ω . Since [ ] [ ]( )( ) ( ), , ( )i i i ii
D X D T Y T D Y= +∑ , we 

deduce that 
2

( ) 0D X Ω = , then ( ) 0D X Ω = . This completes the proof. □  

 

Proposition 3. Let U be an open set of adapted local coordinates of 
kV and s an integer such 

that 2 1s k≤ ≤ + . Suppose 02 ≠+−skp . Let D be a derivation of )(ULs . Then 

( ) )()( 11 ULULD ss −− ⊂  and )(1 UsL
D

−
 is a derivation of )(1 ULs− . 

 

Proof. In fact, according to theorem 1 for s = 2 and lemma 6 (cf [1], p. 128) for 13 +≤≤ ks , 

for every )(1 ULX s−∈ , we can write [ ]iii
ZYX ,∑=   where  ∑i

is a finite sum and  

ii ZY ,  belong to )(1 ULs− . From lemma 4 (cf [1]), we deduce that 

[ ] [ ]( )∑ +=
i iiii ZDYZYDXD )(,),()(  belongs to )(1 ULs− . This completes the proof. □  

 

Lemma 2. Let U be an open set of adapted local coordinates of 
kV and s an integer such that 

1 1s k≤ ≤ + . Suppose 02 ≠+−skp . Let D be a derivation of )(ULs , )(ULX s∈ and Ux∈  

such that 0))((3 =xXj . Then  0))(( =xXD . 

 

Proof. This results from lemma 7 (cf [1], p. 128). □  
 

From now on and until the section ends, U is an open set of adapted local coordinates of  
kV . 

 

Define a mapping  ∆ : )(1 UL →  )(1 UL  by:  

 

( )( ) 1 ( 1) ( )1 1

( ) ( ) ( ) ( ) ( ) ( )
11 1

1 1

( ,..., )a k l a k a k ll pk

a k l a k l c h a k h i c h a k h i
h kl pk

i pk h

X u u

X A

+ + +≤ ≤ +

+ + + − + + − +
≤ ≤≤ ≤ +

≤ ≤ + −

∆ ∂ =

 
  
 ∂ ∂    

 

∑

∑ ∑
 

 

( ) ( ) 1 ( 1) ( ) ( )
1

1 1

( ,..., ) 0c t a k t j a k c t a k t j
t k

j pk t

X u u+ − + + + − +
≤ ≤

≤ ≤ + −

 
 

∆ ∂ = 
 
 

∑  

 

where ihkahcA +−+ )()(  , kh ≤≤1 , hkpi −+≤≤ 11  are 
∞C mappings from U to IR  only 

depending on )(1,..., kauu . 
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Lemma 3 : ∆  is a derivation of )(1 UL , which  is not an inner derivation. 

 

Proof: In fact, we take 

1

( ) ( )

1 k

a k l a k l

l p

X X

+

+ +
≤ ≤

= ∂∑  and  

1

( ) ( )

1 k

a k t a k t

t p

Y Y

+

+ +
≤ ≤

= ∂∑  

[ ] ( )( )
1

( ) ( ) ( ) ( ) ( ) ( ) ( )1
,

k
a k l a k l a k t a k l a k l a k t a k tt p l

X Y X Y Y X
+

+ + + + + + +≤ ≤
= ∂ − ∂ ∂∑ ∑  

[ ]( ) ( )( )

1

1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( )

1

,

h k

k h

a k l a k t a k l a k t a k l a k t a k l a k tl t

c h a k h i c h a k h i

i p

X Y X Y Y X

A
≤ ≤

+ −

+ + + + + + + +

+ − + + − +

≤ ≤

∆ = ∂ ∂ − ∂ ∂ ×

 
 × ∂ 
 
 

∑

∑
 

[ ] [ ] ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), ,
( ), , ( ) a k t a k l a k t a k t a k l a k l a k t a k tl t l t
X Y X Y Y X X Y+ + + + + + + +∆ + ∆ = − ∂ ∂ + ∂ ∂ ×∑ ∑

                                          [ ]( )
1

1

( ) ( ) ( ) ( )

1

,
h k

k h

c h a k h i c h a k h i

i p

A X Y
≤ ≤

+ −

+ − + + − +

≤ ≤

 
 × ∂ = ∆ 
 
 

∑ . 

We now take 
'
( ) ( ) ( ) ( )' c h a k h j c h a k h jY Y + − + + − += ∂ , kh ≤≤1 , 11 k hj p + −≤ ≤ .   

[ ] ( )'
( ) ( ) ( ) ( ) ( ) ( )1

, ' a k l a k l c h a k h j c h a k h jh k l
X Y X Y+ + + − + + − +≤ ≤

= ∂ ∂∑ ∑ , [ ]( ), ' 0X Y∆ = ,    

[ ] [ ] [ ]( ), ' , ( ') 0 ,0 0X Y X Y X∆ + ∆ = + = . 

Suppose there exists 1( )Y L U∈  such that [ ]( ) ,X Y X∆ = : then, for ( )a k lX += ∂ , 

11 kl p +≤ ≤ , we shall have: ( )0 , a k lY + = ∂   and the components of Y will depend only on 

1 ( ),..., a ku u . For ( ) ( )a k l a k lX u + += ∂ , 11 kl p +≤ ≤ , we shall have: 

1

1

( ) ( ) ( ) ( ) ( ) ( )

1
h k

k h

c h a k h i c h a k h i a k l a k l

i p

A Y
≤ ≤

+ −

+ − + + − + + +

≤ ≤

∂ = ∂∑  , hence ( ) 0a k lY + =  and for all h , 

kh ≤≤1 ,  ( ) ( ) 0c h a k h iA + − + = . This completes the proof. □  

 

In U, we set :     
1 1

1 1

( ) ( ) ( ) ( ),

1 1
t k h k

k t k h

j
c h a k h i c t a k t jh i

j p i p

T B u
≤ ≤ ≤ ≤

+ − + −

+ − + + − +

≤ ≤ ≤ ≤

 
 = ∂ 
 
 

∑ ∑ ,    

,
j
h iB  are  C∞

mappings from U to IR  only depending on )(1,..., kauu . ( )JT L U∉ . 

We immediately verify that: 

 

Lemma 4. The mapping from 1( )L U  to )(1 UL : [ ],X T X→   is a derivation of )(1 UL  which  

is not an inner derivation. 

 

Let 
0
rZ , 3 1r k≤ ≤ + , be the vector fields on U defined by:  

2

0
( 1 ) ( 1 )

1 k r

r a k r j a k r j

j p

Z R

− +

+ − + + − +
≤ ≤

= ∂∑ , where ( 1 )a k r jR + − +  , 21 k rj p − +≤ ≤ , are C∞
 mappings 

from U to IR  depending on )(1,..., kauu . 
0 ( )r JZ L U∉ .  

Then we have: 
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Lemma 5. The mapping from )(1 UL  to )(1 UL : 
0

3 1
,rr k

X Z X
≤ ≤ +

 →  ∑   is a derivation of 

)(1 UL  which  is not an inner derivation. 

 

Theorem 2. Let D be a derivation of )(1 UL . There exist 1 1 ( )h hZ A U∈ , 0 h k≤ ≤ , 

0 0
2 2 ( )Z A U∈ , 

0
rZ , 3 1r k≤ ≤ + , vector fields  on U (see lemma 5), a derivation ∆  (see lemma 

3)  and a vector field T (see lemma 4), such that for every 1( )X L U∈ :   

     [ ]0
10 2 1

( ) , ( ) ,h
rh k r k

D X Z Z X X T X
≤ ≤ ≤ ≤ +

 = + + ∆ + ∑ ∑ .     

In particular,   dim ( )1
1( )H L U = +∞ . 

0
1Z , 

0
2Z , 

0

3 1 rr k
Z

≤ ≤ +∑ , ∆  and T are uniquely 

determined; 1
hZ , 1 h k≤ ≤ , is only determined up to the sum of 

1

( ) ( ) ( ) ( )

1 k h

c h a k h j c h a k h j

j p

E

+ −

+ − + + − +
≤ ≤

∂∑  , where ( ) ( )c h a k h jE + − +  only depends on )(1,..., kauu . 

 

Proof. 1) First we study the uniqueness: suppose that, for every 1( )X L U∈ , we also have:  

[ ]' '0
10 2 1

( ) , '( ) ',h
rh k r k

D X Z Z X X T X
≤ ≤ ≤ ≤ +

 = + + ∆ + ∑ ∑ , where 
'
1 1 ( )h hZ A U∈ , 0 h k≤ ≤ , 

'0 0
2 2 ( )Z A U∈ , 

'0
rZ , 3 1r k≤ ≤ + , vector fields  on U (see lemma 5),  

1

1
1

1

( ) 1 ( 1) ( )

1

'
( ) ( ) ( ) ( ) ( ) ( )

1
1

' ( ,..., )

k

h k
k

k h

a k l a k a k l

l p

a k l a k l c h a k h i c h a k h i

l p
i p

X u u

X A

+

≤ ≤+
+ −

+ + +
≤ ≤

+ + + − + + − +
≤ ≤

≤ ≤

 
∆ ∂ = 
 
 

   ∂ ∂      

∑

∑ ∑
 

1

1

( ) ( ) 1 ( 1) ( ) ( )

1

' ( ,..., ) 0
h k

k h

c h a k h j a k c h a k h j

j p

X u u
≤ ≤

+ −

+ − + + + − +

≤ ≤

 
 ∆ ∂ = 
 
 

∑ , 

1 1

1 1

'
( ) ( ) ( ) ( ),

1 1

'
t k h k

k t k h

j
c h a k h i c t a k t jh i

j p i p

T B u
≤ ≤ ≤ ≤

+ − + −

+ − + + − +

≤ ≤ ≤ ≤

 
 = ∂ 
 
 

∑ ∑ , where 
'
( ) ( )c h a k h iA + − +  and 

'
,
j

h iB  ,   

are 
∞C mappings from U to IR  only depending on )(1,..., kauu . We set: 

1

0 '0
1 1 ( ) ( )

1 k

a k j a k j

j p

Z Z b

+

+ +
≤ ≤

− = ∂∑ ,   

∑
−+≤≤

+−++−+ ∂=−
hkpi

ihkahcihkahc
hh gZZ

11

)()()()(
'
11 ,  kh ≤≤1  

∑
+−≤≤

+−++−+ ∂=−
21

)1()1(
0'0

rkpj

jrkajrkarr dZZ ,        2 1r k≤ ≤ +  

' ''
( ) ( ) ( ) ( ) ( ) ( )c h a k h i c h a k h i c h a k h iA A A+ − + + − + + − +− =   ,  

' ''
, , ,
j j j
h i h i h iB B B− =  ,  kh ≤≤1 , 11 k hi p + −≤ ≤ . 

For every 1( )X L U∈ , we have :  

[ ] [ ( ) ] [ ( ) ] [ ]0 '0 ' 0 '0
1 1 1 1

1 2 1

, , , ( ')( ) ', 0.h h
r r

h k r k

Z Z X Z Z X Z Z X X T T X
≤ ≤ ≤ ≤ +

− + − + − + ∆ −∆ + − =∑ ∑
We deduce that:  
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)i  for ( )a k lX += ∂ , 11 kl p +≤ ≤ : 

1

( ) ( ) ( )

1 k

a k l a k j a k j

j p

b

+

+ + +
≤ ≤

− ∂ ∂∑
1

1 1

( ) ( ) ( ) ( ) ( ) 0

h k
i pk h

a k l c h a k h i c h a k h ig

≤ ≤
≤ ≤ + −

+ + − + + − +− ∂ ∂ =∑ , then 

0)()( =∂ ++ jkalka b , 11 +≤≤ kpj   and  0)()()( =∂ +−++ ihkahclka g , kh ≤≤1 , hkpi −+≤≤ 11  

)ii  for ( ) ( )a k l a k lX u + += ∂ , 11 kl p +≤ ≤ : 

lkalkab ++ ∂ )()(   

1
1 1

''
( ) ( ) ( ) ( ) 0

h k
i pk h

c h a k h i c h a k h iA

≤ ≤
≤ ≤ + −

+ − + + − ++ ∂ =∑ , then 0)( =+lkab , for all l , 

11 kl p +≤ ≤   and  
''
( ) ( ) 0c h a k h iA + − + =  for all h , kh ≤≤1 , hkpi −+≤≤ 11 . 

)iii  for ( ) ( )a k s i a k lX u − + += ∂ , 1 s k≤ ≤ , skpi −+≤≤ 11 , 11 kl p +≤ ≤ : 

( ) ( ) 0a k s i a k ld − + +∂ =   then  0)( =+− iskad ,  ks ≤≤1 . 

)iv  for ( ) ( )c h a k h iX + − += ∂ , kh ≤≤1 , hkpi −+≤≤ 11 :  

''
( ) ( ), 0j

c t a k t jh iB + − +− ∂ =   then  .0
''
, =
j
ihB   

2) The existence of 1
hZ , kh ≤≤0 , 

0
rZ , 2 1r k≤ ≤ + , ∆  and T  is induced from the four 

following lemmas. 

 

Lemma 6. There exist )(ˆ 0
1

0
1 UAZ ∈ , )(11 UAZ hh ∈ , kh ≤≤1 , such that the mapping from 

)(1 UL to )(1 UL : )(1 XDX → [ ]0
1 11
ˆ( ) ,h

h k
D X Z Z X

≤ ≤
= − +∑  is a derivation  of )(1 UL  

which verifies  0)( )(1 =∂ +lkaD  for 11 kl p +≤ ≤ . 

 

Proof. Setting, for 11 kl p +≤ ≤ :    

0
1 1

( ) ( )
( ) ( ) ( )( )( )

h k
i pk h

c h a k h i
a k l c h a k h ia k lD D

≤ ≤
≤ ≤ + −

+ − +
+ + − ++∂ = ∂∑ , 

we have, for 1,1 +≤≤ kpfl :  

    [ ]( ) [ ] [ ])(,),(0, )()()()()()( fkalkafkalkafkalka DDD ++++++ ∂∂+∂∂==∂∂  

Hence 
ihkahc

fkalka
ihkahc

lkafka DD
+−+

++
+−+

++ ∂=∂ )()(
)()(

)()(
)()( ; thus there exist, in U, 

∞C  functions 

of )1(1,..., +kauu , ihkahcD +−+ )()( , kh ≤≤0 , hkpi −+≤≤ 11   such that  

ihkahc
lkaihkahclka DD

+−+
++−++ =∂ )()(
)()()()( .  It is sufficient to set:  

1

0
1 ( ) ( )1
ˆ

k
a k i a k ii p

Z D
+

+ +≤ ≤
= − ∂∑ ,  

1
1 ( ) ( ) ( ) ( )1 k h

h
c h a k h i c h a k h ii p

Z D
+ −

+ − + + − +≤ ≤
= − ∂∑ , kh ≤≤1 . 

This completes the proof. □  
 

Lemma 7. There exist )(
~ 0

1
0
1 UAZ ∈ , 

0 0
2 2 ( )Z A U∈ , 

0
rZ , 3 1r k≤ ≤ + , vector fields  on U 

(see lemma 5), a derivation ∆  of )(1 UL (see lemma 3) such that the mapping from )(1 UL to 

)(1 UL :  

                   )(2 XDX → [ ] [ ]0 0
1 12 1
( ) , , ( )rr k

D X Z X Z X X
≤ ≤ +

= − − −∆∑ ɶ  

                                          [ ]0
10 2 1

( ) , ( )
h

rh k r k
D X Z Z X X

≤ ≤ ≤ ≤ +
= − + − ∆∑ ∑                     

 is a derivation of )(1 UL  which verifies  0)( )(2 =∂ +lkaD  for 11 +≤≤ kpl , 

0)( )(2 =∂ +lkajuD  for  )1(1 +≤≤ kaj , 11 +≤≤ kpl . (we have set: 
0
1

0
1

0
1

~ˆ ZZZ += ) 
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Proof. Setting, for )1(1 +≤≤ kaj , 11 +≤≤ kpl :     

0
1 1

( ) ( )
1 ( ) ( ) ( ), ( )( )

h k
i pk h

c h a k h i
j a k l c h a k h ij a k lD u D

≤ ≤
≤ ≤ + −

+ − +
+ + − ++∂ = ∂∑ ,    we have, for 11 +≤≤ kpf :  

    [ ]( ) [ ])(,0, )(1)()()(1 lkajfkalkajfka uDuD ++++ ∂∂==∂∂ . 

We deduce that  
ihkahc

lkajD
+−+

+
)()(

)(,  only depends on  )(1,..., kauu . 

For )1(,1 +≤≤ karj , 1,1 +≤≤ kpfl , we have :   

[ ]( ) )()(, )(1
)(

)(1)()()(1 lkar
fka

jfkaj
r

lkafkarlkaj uDuDuuD +
+

++++ ∂−∂=∂∂ δδ                                             

                                             [ ] [ ])(,),( )(1)()()(1 fkarlkajfkarlkaj uDuuuD ++++ ∂∂+∂∂=  

 

1) Assume )(1 kar ≤≤ : for ( ) ( )j a k l a k f= + = + , we have : 

   

0
1 1

( ) ( ) ( )
( ) ( ) ( ), ( ) , ( )

h k
i pk h

c h a k h i a k l
c h a k h i a k lr a k l r a k lD D

≤ ≤
≤ ≤ + −

+ − + +
+ − + ++ +− ∂ = − ∂∑ .  

We deduce that for kh ≤≤0 , hkpi −+≤≤ 11  , li ≠ ,  
( ) ( )
, ( ) 0c h a k h i
r a k lD + − +

+ = . 

For fkaj += )( , we have : 
( ) ( )

( ) ( ), ( ) , ( )
a k l a k f

a k l a k lr a k l r a k fD D+ +
+ ++ +− ∂ = − ∂ . 

We deduce that  
fka
fkar

lka
lkar DD

+
+

+
+ = )(

)(,
)(
)(, . 

2) Assume )1(1)( +≤≤+ karka : for fkajlkar +==+≠ )()( , we have : 

  lka
lka
lkarlka

r
lkalka

hkpi
kh

ihkahc
ihkahc

lkar DDD +
+
++++

−+≤≤
≤≤

+−+
+−+

+ ∂−∂=∂− ∑ )(
)(
)(,)()(,)(

11
0

)()(
)()(

)(, . 

We deduce that for kh ≤≤0 , hkpi −+≤≤ 11  , li ≠ ,  0
)()(

)(, =+−+
+

ihkahc
lkarD , next 

0)(,)( =++
r

lkalkaD . For fkajlkar +=≠+= )()( , we have : 

1
1 1

1
1 1

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( ) , ( ) ( ) , ( ) ( ) , ( )

( ) ( ) ( )
( ) ( ) ( )( ) , ( ) ( ) , ( )

h k
i pk h

h k
i pk h

a k f c h a k h i a k l
a k f c h a k h i a k la k f a k f a k f a k f a k l a k l

c h a k h i a k l
c h a k h i a k fa k l a k l a k f a k l

D D D

D D

≤ ≤
≤ ≤ + −

≤ ≤
≤ ≤ + −

+ + − + +
+ + − + ++ + + + + +

+ − + +
+ − + ++ + + +

∂ + ∂ − ∂

− ∂ = ∂ −

∑

∑ ( )
( )( ) , ( )

a k f
a k la k l a k fD +

++ + ∂
 

We deduce:  
lka

lkafka
fka

fkafka DD
+

++
+

++ = )(
)(,)(

)(
)(,)( , 

                    
ihkahc

lkalka
ihkahc
fkafka DD

+−+
++

+−+
++ = )()(

)(,)(
)()(
)(,)( ,  kh ≤≤1 , hkpi −+≤≤ 11 . 

We set:  =jD  common  value  of  
lka
lkajD

+
+

)(
)(, , )1(1 +≤≤ kaj ,  

ihkahc
lkalkaihkahc DA
+−+
+++−+ = )()(
)(,)()()(   for kh ≤≤1 , hkpi −+≤≤ 11  , which determines ∆ , 

2

0
( 1 ) ( 1 )1 k r

r a k r i a k r ii p
Z D

− +
+ − + + − +≤ ≤

= ∂∑ , 12 +≤≤ kr , 
1

0
1 ( ) ( )1 k

a k i a k ii p
Z D

+
+ +≤ ≤

= ∂∑ɶ   and  

0
1

0
1

0
1

~ˆ ZZZ += . This completes the proof. □  

 

Lemma 8. There exists a vector field T on U (see lemma 4) such that the mapping from 

)(1 UL to )(1 UL : 3( )X D X→ [ ]2( ) ,D X T X= −  is a derivation of )(1 UL  which verifies  
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3 ( ) ( )( ) 0c h a k h iD + − +∂ = , for 0 h k≤ ≤ , 11 k hi p + −≤ ≤ , 3 ( )( ) 0j a k lD u +∂ =  for 11 kl p +≤ ≤ ,  

)1(1 +≤≤ kaj . 

 

Proof. We set, for kh ≤≤1 , hkpi −+≤≤ 11  : 

 

0
1 1

( ) ( )
2 ( ) ( ) ( ) ( )( ) ( )( )

r k
j pk r

c r a k r j
c h a k h i c r a k r jc h a k h iD D

≤ ≤
≤ ≤ + −

+ − +
+ − + + − ++ − +∂ = ∂∑ . For 11 +≤≤ kpl , we have:  

[ ]( ) [ ]2 ( ) ( ) ( ) ( ) 2 ( ) ( ), 0 , ( )a k l c h a k h i a k l c h a k h iD D+ + − + + + − +∂ ∂ = = ∂ ∂ . 

We deduce that 
( ) ( )
( ) ( )
c r a k r j
c h a k h iD + − +

+ − +  only depends on )(1,..., kauu . We have: 

[ ]
1

2 ( ) ( ) ( ) ( )

1

, 0

k

c h a k h i a k l a k l

l p

D u

+

+ − + + +
≤ ≤

 
∂ ∂ = = 

 
 

∑  

                                  [ ]
0 1

1 1

( ) ( )
( ) ( ) ( ) ( )( ) ( )

1

,

r k k
j pk r

c r a k r j
c r a k r j a k l a k lc h a k h i

l p

D u

≤ ≤ +
≤ ≤ + −

+ − +
+ − + + ++ − +

≤ ≤

∂ ∂∑ ∑       

We deduce that  
( )
( ) ( ) 0a k l

c h a k h iD +
+ − + =   for  11 +≤≤ kpl . It is enough to set:  

1 1
1 11 1

( ) ( )
( ) ( ) ( ) ( )( ) ( ) .

r k h k
j p i pk r k h

c r a k r j
c h a k h i c r a k r jc h a k h iT D u

≤ ≤ ≤ ≤
≤ ≤ ≤ ≤+ − + −

+ − +
+ − + + − ++ − +

 
 

= − ∂ 
 
 

∑ ∑   

This completes the proof.□  
 

Lemma 9. For every 1( )X L U∈  whose components on ( ) ( )c h a k h i+ − +∂ , 11 k hi p + −≤ ≤ , 

0 h k≤ ≤ , are polynomials of variables ju , 1 ( 1)j a k≤ ≤ + , of degree 3≤ , .0)(3 =XD  

 

Proof. 1) We take  )1(,1 +≤≤ katr , 11 +≤≤ kpl : 

0
1 1

( ) ( )
3 ( ) ( ) ( ), , ( )( )

h k
j pk h

c h a k h j
r t a k l c h a k h jr t a k lD u u D

≤ ≤
≤ ≤ + −

+ − +
+ + − ++∂ = ∂∑ , where the 

jhkahc
lkatrD

+−+
+

)()(
)(,,  only 

depends on )1(1,..., +kauu . For 11 +≤≤ kpf , we have: 

[ ]( ) [ ])(,0, )(3)()()(3 lkatrfkalkatrfka uuDuuD ++++ ∂∂==∂∂  then  
( ) ( )
, , ( )
c h a k h j
r t a k lD + − +

+  only 

depends on )(1,..., kauu . 

)i Assume )1(,1)( +≤≤+ katrka :  [ ] lkatrlkatr

kpf

fkafka uuuuu ++
+≤≤

++ ∂=∂∂∑ )()(

11

)()( ,  

Applying 3D to this, we obtain:  

∑
+≤≤

+
+
+ =∂−

11

)(
)(

)(,,

kpf

fka
fka

lkatrD ∑
−+≤≤

≤≤
+−+

+−+
+ ∂

hkpj
kh

jhkahc
jhkahc

lkatrD

11
0

)()(
)()(

)(,, . We deduce:  

02
)(

)(,, =+
+
jka

lkatrD  for 11 +≤≤ kpj ,   0
)()(

)(,, =+−+
+

ihkahc
lkatrD  for kh ≤≤1 , hkpi −+≤≤ 11 , from 

which it follows that 0)( )(3 =∂ +lkatruuD . 

)ii  Assume  )1()(1 +≤<≤≤ katkar :    [ ] lkatrlkattr uuuu ++ ∂=∂∂ )()(
2 2, . 

From )i  it follows that 0)( )(
2

3 =∂ +lkatuD   then 0)( )(3 =∂ +lkatruuD . 
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)iii Assume  )(,1 katr ≤≤ :  [ ] lkatrlkalkatlkar uuuuu ++++ ∂=∂∂ )()()()( , . 

From )ii  it follows that 0)( )()(3 =∂ ++ lkalkat uuD   then 0)( )(3 =∂ +lkatruuD . 

2) We take )1(,,1 +≤≤ kastr , 1,1 +≤≤ kpfl :  from [ ]( ) 0, )()(3 =∂∂ ++ lkastrfka uuuD  

we deduce that  [ ] 0)(, )(3)( =∂∂ ++ lkastrfka uuuD . 

)i Assume )1(,,1)( +≤≤+ kastrka :  

[ ] lkastrlkastr

kpf

fkafka uuuuuuu ++
+≤≤

++ ∂=∂∂∑ )()(

11

)()( 2,  hence 0)( )(3 =∂ +lkastr uuuD . 

)ii  Assume  )1(,)(1 +≤<≤≤ kastkar : 

[ ] lkastrlkastr

kpf

fkafka uuuuuuu ++
+≤≤

++ ∂=∂∂∑ )()(

11

)()( ,   hence 0)( )(3 =∂ +lkastr uuuD . 

)iii  Assume  )1()(,1 +≤<≤≤ kaskatr : 

[ ] lkastrlkasstr uuuuuu ++ ∂=∂∂ )()(
2 2,   hence  0)( )(3 =∂ +lkastr uuuD  

)iv Assume  )(,,1 kastr ≤≤ :  

[ ] lkastrlkalkaslkatr uuuuuuu ++++ ∂=∂∂ )()()()( ,    hence  0)( )(3 =∂ +lkastr uuuD . 

3) )i  We set, for )1(1 +≤≤ kar , kh ≤≤1 , hkpi −+≤≤ 11 : 

0
1 1

( ) ( )
3 ( ) ( ) ( ) ( ), ( ) ( )( )

t k
j pk t

c t a k t j
r c h a k h i c t a k t jr c h a k h iD u D

≤ ≤
≤ ≤ + −

+ − +
+ − + + − ++ − +∂ = ∂∑ . 

For 11 kl p +≤ ≤ , we have:  

[ ]( ) [ ])(,0, )()(3)()()()(3 ihkahcrlkaihkahcrlka uDuD +−+++−++ ∂∂==∂∂ . 

For  )(1 kar ≤≤ , 11 +≤≤ kpl , we have:  

[ ]( ) )(, )()(3)()()()(3 ihkahcrihkahclkalkar uDuuD +−++−+++ ∂=∂∂  

                                                                 [ ] 0)(, )()()(3)( =∂∂= +−+++ ihkahclkalkar uDu . 

Hence, for )(1 kar ≤≤ , 0)( )()(3 =∂ +−+ ihkahcruD . 

For  )1(1)( +≤≤+ karka , we have,  

                                       lka
r

ihkahclkaihkahcr DuD ++−+++−+ ∂−=∂ )()()(,)()()(3 )(  

If  lkar += )( , we have,   0
)(

)()(,)( =+
+−++

jka
ihkahclkaD   for lj ≠ ,  then   

0
)(

)()(,)( =+
+−++

lka
ihkahclkaD     and   0

)()(
)()(,)( =+−+
+−++

jtkatc
ihkahclkaD   for  kt ≤≤1 . 

If  lkar +≠ )( , since  0)()(,)( =+−++
r

ihkahclkaD   then  0)( )()(3 =∂ +−+ ihkahcruD . 

)ii  We take now  )1(,,1 +≤≤ kasrt , kh ≤≤1 , hkpi −+≤≤ 11  , 11 +≤≤ kpl : 

[ ] ihkahcrtihkahclkalkart uuuuu +−++−+++ ∂=∂∂ )()()()()()( ,     hence  

0)( )()(3 =∂ +−+ ihkahcrtuuD . 

[ ] ihkahcsrtihkahclkalkasrt uuuuuuu +−++−+++ ∂=∂∂ )()()()()()( ,    hence  

0)( )()(3 =∂ +−+ ihkahcsrt uuuD . 

Let us conclude the demonstration of the theorem by considering any X belonging to )(1 UL ; 

for every Ux∈ , there exists )(
~

1 ULX ∈  whose components on ihkahc +−+∂ )()(  , kh ≤≤0 , 
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hkpi −+≤≤ 11  , are polynomials of degree 3≤  and such that 0))(
~

(3 =− xXXj . By lemma 2 

we have 0))(
~

(3 =− xXXD . Since 0)
~

(3 =XD , then 0))((3 =xXD .  

On the other hand, because  
1

'
1 1 ( ) ( ) ( ) ( )1 k h

h h
c h a k h i c h a k h ii p

Z Z g
+ −

+ − + + − +≤ ≤
− = ∂∑ ,  1 h k≤ ≤ , with 

( ) ( ) ( ) 0a k l c h a k h ig+ + − +∂ = ,  1 h k≤ ≤ , hkpi −+≤≤ 11 , 11 kl p +≤ ≤ , thus the vector fields 1
hZ are 

not uniquely determined but determined up to the sum of 

1
( ) ( ) ( ) ( )1 k h

c h a k h j c h a k h jj p
g

+ −
+ − + + − +≤ ≤

∂∑  , where ( ) ( )c h a k h jg + − +  only depends on )(1,..., kauu . 

So the dimension of ( )1
1( )H L U  is infinite for U open set of adapted local coordinates of  

kV . 

This completes the proof. □  
 

On the other hand, let Z  be the vector field on U  defined by  

( ) ( )

1 1 ( 1 )

U
c h j c h j

h k j a k h

Z h u + +
≤ ≤ ≤ ≤ + −

 
= ∂  

 
∑ ∑  (cf [1], p. 124). We showed that, in fact, Z  is globally 

defined. We immediately verify that: 

 

Lemma 10. The mapping from ( )JL U  to ( )JL U  (resp. from ( )kJL V  to 

( )kJL V ): ,
U

X Z X →    ( resp. [ ],X Z X→ )  is a derivation of ( )JL U  (resp. ( )kJL V )  which  

is not an inner derivation. So  dim ( )1 ( ) 1JH L U ≥ , dim ( )1 ( ) 1k
JH L V ≥ . 

 

The derivations of )(ULJ  have been studied by J. Lehmann-Lejeune (cf. [4], th. 1, p. 25). Let 

us recall the results: 

 

Theorem 3. For every derivation D of )(ULJ there exist k  real constants hK , kh ≤≤1 , and 

an element )(ULY J∈  such that, for every )(ULX J∈ : 

[ ]1

1
( ) ,h

h Uh k
D X K J Z Y X−

≤ ≤
= +∑ ; hK  and Y are uniquely determined; then  

dim ( )1 ( ) .JH L U k=  

 

 

4. When the foliations are defined by submersions 

 

In this section, we assume that the k  foliations of M are defined by k  submersions 

1:h h hM Mπ − →   where 1 h k≤ ≤ , MM =0 , the hM  are manifolds of dimension 

)1( hka −+ and 01 >p  , 0≥ip  12 +≤≤ ki . The leaves of each foliation hkF −+1  are the 

connected components of the inverse image by 1... ππ ��h  of the points of hM . 

Let 0 0y M∈ be a point of  0M . Denote by hy  = hhh My ∈− )(... 011 πππ ��� , kh ≤≤1 . 

For all h , kh ≤≤0 , there exist hÛ  open sets of local coordinates ),...,( )1(1 hkauu −+ , 

neighborhood of hy  in hM , such that 11
ˆ)ˆ( ++ = hhh UUπ  and  

hUh ˆ1+π  is a projection :   

( ),..., )1(1 hkauu −+  →   ),...,( )(1 hkauu − .Then there exists an open set of local coordinates 

)ˆ( 0
1 UU −= π  of  

kV . This is an ‘’open set of adapted local coordinates nuu ,...,1 ’’ which, 

moreover, is adapted to the submersions.  
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The automorphisms of the foliations hkF −+1  on 0M M= , kh ≤≤1 , defined by 

1 1...h hπ π π−� � � hMM →0: , are projectable vector fields from 0M  to hM . 

 

Lemma 11. Let Ω  be an open set  of 
kV and )(Ω∈ h

sLX , 11 +≤≤ ks ,     skh −+≤≤ 10   

( cf. [4]). For every  Ω∈x , the germ  at  x of  X is the germ  at  x  of  an  ' ( )kJX L V∈ . 

 

Proof. Let Ω  be an open set of 
kV  such that )(1 Ω=Ω − ππ �  and Ω∈x .  We set 

)(ˆ Ω=Ω π , open set of 0M  and  Ω∈= ˆ)(0 xy π . According to lemma 5 (cf [1], p. 127), it is 

sufficient to show the result for )(1 Ω∈ +
h
sLX ,  ks ≤≤1 ,  skh −≤≤0 . 

Let )ˆ(ˆ
1 Ω∈ +

h
sLX  be a vector field on Ω̂ , ks ≤≤1 ,  skh −≤≤0 , and  )(1 Ω∈ +

h
sLX  be 

the corresponding vector field on Ω  ( cf. [4]).  

sss XX ˆ)ˆ(... 11 =∗∗
−

∗ πππ ���  is a vector field on sΩ̂ , open set of sM , neighborhood of 

)(... 011 yy sss πππ ��� −= . There exists sϕ , function on sM , with support contained in 

sΩ̂ , and equal to 1 in a neighborhood sω̂ of sy . The vector field ss
s XX ˆˆ ϕ=  is global on 

sM . The germ at sy of  
sX̂  is equal to the germ at sy  of sX̂ . With the help of a metric on 

0M , we can define the lift on 0M  of vector fields defined in sM . Indeed, let g  be a metric on 

0M  and 0y  a point of 0M . Denote by 1S  the orthogonal supplementary set relatively to g  of 

)( 1
∗πKer  to  00

MTy  : 00
MTy  = 11 )( SKer ⊕∗π . Setting )( 011 yy π= , 1S  is  isomorphic to 

11
MTy . For 10 −≤≤ kh  and )(... 011 yy hhh πππ ��� −= , assume that the vector space 

hhy
MT  is endowed with a scalar product; thus hhy

MT 11)( +
∗
+ ⊕= hh SKer π , where 1+hS  is 

the orthogonal supplementary set of )( 1
∗
+hKer π  in  hhy

MT . 1+hS  is endowed with a scalar 

product: the restriction of the scalar product on hhy
MT . On the other hand, 1+hS  is isomorphic 

to 11 ++ hhy
MT ; we deduce from this isomorphism a scalar product  on 11 ++ hhy

MT . 

This assertion is true for  0=h . Thus it’s true for everyh , 10 −≤≤ kh . 

We deduce that we can write as an orthogonal direct sum: r
kr

y EMT
11

00 +≤≤
⊕= , where rE  is 

isomorphic to )( ∗
rKer π for kr ≤≤1  and 1+kE  to 

ky kT M .  

Hence we could lift up a vector field on hM , kh ≤≤1 , into a vector field on 1−hM , taking it 

in hS . And step by step or gradually, we could lift it on 0M . 

Then let sX
~

 be the lift of ˆ sX  on 0M . Set ( )0 ( )h s
kX P J RX=ɶ ɶ  (cf. [4]). It is a vector field 

globally defined on 
kV . Denote by 'Ω  the open set of  

kV  such that 

)ˆ()...(' 1
11 sss ωππππ −

−=Ω ���� . 'Ω  contains x . The vector field )'(
~

'' Ω∈− ΩΩ sLXX . 

To show it, we will do an inductive reasoning on s . 

For 1=s , 1' '
( ')X X LΩ Ω− ∈ Ωɶ . According to  lemma 5 (cf [1]), the germ at x  of 

' '
X XΩ Ω− ɶ  is 

the germ at x  of an )(1
kVLY ∈ . X

~
 being global, thus the germ at x  of X is the germ at x of  

)(
~

' k
J VLYXX ∈+= .  
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Now, for ks ≤≤1 ,  skh −≤≤0 , assume that for every )(Ω∈ h
sLX  the germ at x  of X is 

the germ at x  of  an ' ( )kJX L V∈ .  Let )(1 Ω∈ +
h
sLX  be a vector field on Ω . Then 

)'(
~

'' Ω∈− ΩΩ sLXX . According to the inductive hypothesis, the germ at x of 
' '

X XΩ Ω− ɶ  is 

the germ at x of  an ( )kJY L V∈ . Xɶ  being global, thus the germ at x  of X is the germ at x of  

' ( )kJX X Y L V= + ∈ɶ . This proves our lemma. □  

 

Proposition 4. For every derivation D of )( k
J VL  and for every )( k

J VLX ∈ , 

supp ⊂)(XD supp X ; every derivation D  of  )( k
J VL  is local. 

 

Proof. Let ω  be an open set of 
kV such that ))((1 ωππω −= . We set )(ˆ ωπω =  open set of 

0M . Let )(ˆ
01 MLX h

s+∈  be a vector field on 0M , ks ≤≤0 ,  skh −≤≤0  (cf. [4]) such 

that 0ˆ
ˆ =ωX . (For 0=s , )( 01 MLhs+  is the set of the vector fields of 0M , tangent to the 

leaves of hkF −  and orthogonal to the leaves of hkF −+1 ). Denote by X  the corresponding 

vector field on 
kV , )(1

kh
s VLX +∈  (cf. [4]). We have: 0X ω = . 

Let ˆ sX  be the projected of X̂ on sM . For  all  ω̂∈y , there  exist  open  sets  1Ω̂  and 2Ω̂  of 

sM  such that ∅=Ω∩Ω 21
ˆˆ , 211

ˆ)(... Ω∈=− sss yyπππ ��� , supp 1
ˆ ˆsX ⊂ Ω  (for 0=s , 

ˆ ˆsX X= , 2
ˆ

sy y= ∈Ω  and   supp 1
ˆ ˆX ⊂ Ω ). 

2
ˆ

ˆ 0sX
Ω
= ; in particular ˆ sX  is zero in a 

neighborhood of  sy . According  to  the  theorem  of  A. Lichnerowicz  (cf [5], p. 64), we  can  

write ˆ ˆ ˆ,
s

s s s
i i

M
i

X Y T =  ∑ where  ˆ s
iY , ˆ s

iT  are vector fields on sM , with support in 1Ω̂ : 

2
ˆ

ˆ 0s
iY Ω

= , 
2

ˆ
ˆ 0s
iT Ω

= .  

Let 
sXɶ  (respectively 

s
iY
ɶ , 

s
iT
ɶ  ) be the lift of 

sX̂  ( respectively ˆ siY , ˆ siT ) on 0M  (for 0=s , 

ˆsX X=ɶ , ˆs s
i iY Y=ɶ , ˆs s

i iT T=ɶ ) and ( )0 ( )h s
kX P J RX=ɶ ɶ  (cf. [3]): 

0
0 ,h s s

k i i
M

i

X P J R Y T
   =      

∑ɶ ɶ ɶ .  

If  ( )0 ( )h s
i k iY P J RY=ɶ ɶ ,  ( )0 ( )h s

i k iT P J RT=ɶ ɶ  and 
1

2 1 1 2
ˆ( ... ) ( )s sω π π π π −

−= Ω� � � � , open set 

of 
kV containing 

1( )x yπ −=  (for 0s = , sπ π= ), we have: 

( )( )0, ,h s s
i i k i i iY T P J R Y T R   = +   
ɶ ɶ ɶ ɶ   where ( )ki sR L V∈  and 

2
0iR ω = . Then 

( ),i i i

i

X Y T R = − ∑ɶ ɶ ɶ . Since  ( )ksX X L V− ∈ɶ , we  have:   ,i i s

i

X Y T R = + ∑ ɶ ɶ     where   

( )ks sR L V∈  and 
2

0sR ω = . Hence   ( )( ) ( ), , ( ) ( )i i i i s

i

D X D Y T Y D T D R   = + +   ∑ ɶ ɶ ɶ ɶ . 

To conclude, we will do an inductive reasoning on s  to show that 
2

( ) 0sD R ω = . 

For 0s = , 0 0R = . Then 
20( ) 0D R ω = . Thus 

2
( ) 0D X ω = , since 

2
0iT ω =ɶ , 

2
0iY ω =ɶ , hence 

( ) 0D X ω = . Now we suppose that 
2

( ) 0D X ω =  for every ( )h k
sX L V∈  such that 

2
0X ω = , 
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1 s k≤ ≤ , 0 h k s≤ ≤ − . Let 1( )h k
sX L V+∈  be a vector field on 

kV , 0 h k s≤ ≤ − ,0 s k≤ ≤ .  

According to the inductive hypothesis, 
2

( ) 0sD R ω = , hence 
2

( ) 0D X ω = , and thus 

( ) 0D X ω = .This concludes the proof. □  

 

Theorem 4. When the k  foliations on  M  are defined by  submersions  dim ( )1 ( )kJH L V k= . 

 

Proof. Let D be a derivation on ( )kJL V . For every open set Ω  of 
kV , we have an induced 

derivation  : ( ) ( )J JD L LΩ Ω → Ω . For ( )JX L∈ Ω  and x∈Ω , we set :  

))('())(( xXDxXD =Ω  where ' ( )kJX L V∈ and coincides with X in an open  neighborhood 

of x  ( see lemma 11). ( )( )D X xΩ  does not depend on 'X  according to proposition 4. 

Consider now a covering ( )
A

Uα α ∈
 of 

kV  by adapted local coordinates open sets. According 

to theorem 3, for all Aα ∈ , there exists ( )JY L Uα α∈ , k  constants 1 ,..., kK Kα α
 such that for 

every ( )JX L Uα∈  : 

                                [ ]∑
−≤≤

+ +=
10

1 ,)(
kb

U
b

bU XYZJKXD αα
α

α . 

Since αUD  and  
'αUD  limited to 'αα UU ∩  coincide, αY  and 'αY  limited to 'U Uα α∩  are 

equal  and 
α
1+bK  = 

'
1

α
+bK , 10 −≤≤ kb . Thus there exists ∈Y ( )kJL V  and k  real constants 

kKK ,....,1  such that for all A∈α , αα
YYU =  and 

α
11 ++ = bb KK , 10 −≤≤ kb . 

Since for every ( )kJX L V∈ ,  ( )( ) UU U
D X D X

α αα = , we  have  for  every  ( )kJX L V∈ :    

[ ]1

0 1

( ) ,b
b

b k

D X K J Z Y X+
≤ ≤ −

= +∑ . This concludes the proof. □  

 

5. Case of the torus endowed with two foliations 

 

We consider the vector fields X
x y
α

∂ ∂
= +
∂ ∂

 and 
zx

X
∂
∂

+
∂
∂

= β'  in 
3ℝ , provided with 

canonical coordinates ),,( zyx , where α  and β ∈ −ℝ ℚ . The first integrals of X  (rep. 'X ) 

globally defined  are the functions ),( zxyG α−  (resp. ),(' yxzG β− ) where G and 'G  are 

∞C  mappings  from 
2ℝ  to ℝ . Defining an equivalence relation in 

3ℝ  by: 

)',','(),,( zyxzyx ≈  if 'x x− ∈ℤ , 'y y− ∈ℤ  and 'z z− ∈ℤ , we obtain on the torus 
3T the 

vector fields still denoted by X and 'X . The first integrals of X and 'X  must be periodic 
∞C  

mappings in yx,  and z , of period 1. For a fixed y , ),(' yuGu→  is periodic in u  of period 1 

and β . Then 'G  only depends on y . Likewise, for a fixed z , ),(' zvGv→  is periodic in v  

of period 1 and α . Then G  only depends on z . 

We endow 
3T  with the following two foliations: 1F  is determined by X  and 'X , of 

codimension 1 and 2F  is determined by X , of codimension 2. We have  21 FF ⊃ . The 

globally defined first integrals associated to the foliation 1F  are the functions 

=−= ),(),,( zxyGzyxF α ),(' yxzG β− . We deduce that the first integrals of 1F  are 

constant, and those of 2F  are only function of z . 
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On 
3TM = , we consider the coordinate change: 

1u x y z
β

β
α

= − + + , 2

1
u x y

α
= −   and  3

1
u y

α
=     where  ] [1 ,u a b∈ , ] [2 ', 'u a b∈ , ] [3 '', ''u a b∈ . 

),,( 321 uuu  are local coordinates adapted to the foliations 1F  and 2F . We deduce on the 

transverse bundle 
2V ,  the adapted local coordinates 1 2 3 4 5 6( , , , , , )u u u u u u  in the open set 

] [ ] [ ] [ 3, ', ' '', ''U a b a b a b= × × ×ℝ . We will only consider this kind of open sets of adapted 

coordinates.  

Let U and 'U  be two such open sets satisfying 'U U∩ ≠∅ . We have, in 'U U∩ : '
1 1u u f− = , 

'
2 2u u g− = , '

3 3u u h− = , where ,f g  and h  are locally constant, '
4 4u u= , '

5 5u u= , '
6 6u u= . 

Then '
1 1∂ = ∂ , '

2 2∂ = ∂ , '
3 3∂ = ∂ , '

4 4∂ = ∂ , '
5 5∂ = ∂ , '

6 6∂ = ∂ . (For simplicity, we have set: 

i

iu

∂
= ∂

∂
).Thus we have six vector fields globally defined on 2V  which realize a parallelism.  

We denote by 2X  (resp. 3X ) the canonical lifts of  'X  (resp. X ) in 
2V . We have: 











33

22

1

X
yx

X
zx

z

=
∂
∂

+
∂
∂

=∂

=
∂
∂

+
∂
∂

=∂

∂
∂

=∂

α

β ,         

,0,0

,,0

,

65

643

,5241

=∂=∂

∂=∂=∂

∂=∂∂=∂

JJ

JJ

JJ

   and  .2 665544 ∂+∂+∂= uuuZ  

We will take as a basis of  )( 2VT : 2 3 4 5 6, , , , ,X X
z

∂ ∂ ∂ ∂ ∂ 
. For simplicity, we set: z

z
∂=

∂
∂

. 

Let 2( )JY L V∈ . We set 66554433221 ∂+∂+∂+++∂= YYYXYXYYY z . For every vector 

field T in 
2V , we have [ ] [ ]TYJJTY ,, = . By considering zT ∂= , 2XT = , 3XT = , 4∂=T , 

5∂=T  then 6∂=T , we deduce: 

 

Lemma 12.  Each element of )( 2VLJ  is of one of the following types:  

1) zK∂ ,                        

2) 5542 )()( ∂∂++ FuuXzF zβ ,  

3) 3),,( Xzyxϕ ,          

4) 6544 )()( ∂∂++∂ GuuzG zβ , 

5) 5),,( ∂zyxψ ,         

6) 6),,( ∂zyxφ  where K  is a constant and the mappings F and G  from ℝ  to ℝ  (resp. 

φψϕ ,,  from 
3
ℝ  to ℝ ) are 1-periodic in z  (resp. 1-periodic in yx,  and z ). )( 2

1 VL  is the 

set of the elements of type 3, 5 and 6. The set of elements of type 2 (resp. 4) is )( 20
2 VA  (resp. 

)( 21
2 VA ) (cf. [2]). We have: 

2 0 2 1 2 2
2 2 1( ) ( ) ( ) ( )J zL V A V A V L V= ∂ ⊕ ⊕ ⊕ℝ . 

 

Let ( ) ( )1 2 2 4 5 2 5 3 3 4 4 4 5 4 6 5 5 6 6( ) ( )z z zY Y Y X u u Y Y X Y u u Y Y Yβ β= ∂ + + + ∂ ∂ + + ∂ + + ∂ ∂ + ∂ + ∂   an 

element of  2( )JL V .  

We set:  

             ( )1 3 3 6( ) .Y X Y∆ = ∂ ,  2 4 5 5 5 6 6( )Y Y Y Yβ β∆ = ∂ + ∂ + ∂ ,  
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             3 1 5 4( ) ( )Y Y β∆ = ∂ − ∂ , ( )4 2 5 4( )Y Y β∆ = ∂ − ∂ . 

It is easy to verify that: 

 

Lemma 13. 1∆ , 2∆ , 3∆  and 4∆  are derivations of  )( 2VLJ  which  are not inner derivations. 

 

Thus dim ( )1 2( ) 6JH L V ≥   since 1∆ , 2∆ , 3∆ , 4∆ , [ ]XZX ,→  and [ ]XJZX ,→  are 

non-inner linearly independent derivations of 2( )JL V . 

 

6. Case of the sphere endowed with two foliations. Study of ( )1 2
1( )H L V . 

 

Let 3S  be the unit 3- sphere defined by { }3 2 2 2 2
1 2 3 4 1 2 3 4( , , , ) / 1S x x x x x x x x= + + + = . We consider 

{ }3 2 2 2 2
1 2 3 40, 0W S x x x x= − + = + = . We set 2 2

1 3 4v x x= + ,  10 1v< < , 

2
1 1 2

2
2 1 2

3 1 3

4 1 3

1 cos

1 sin

cos

sin

x v v

x v v

x v v

x v v

 = −

 = −
 =


=

 

where  2v   and  3v  are 2π -periodic and, 
2
1

2 3

X v
v v

∂ ∂
= +
∂ ∂

 whose first integrals are 
∞C  

mappings 1( )F v . 

We have: 1 0
dv

dt
= , 2 1

dv

dt
= , 23

1

dv
v

dt
=  thus 1v cste= , 2t v=  and  2

3 1 2v v v cste= + . 

We endow W  with the following two foliations: 1F  is determined by the foliation of the torus, 

of codimension 1 and 2F  is determined by X , of codimension 2. 

On W , we consider the coordinate change: 

1 1u v= , 2
2 3 1 2u v v v= −   and  3 3u v=     where  ] [1 0,1u ∈ , ] [2 0,2u π∈ , ] [3 0,2u π∈ . 

1 2 3( , , )u u u  are local coordinates adapted to the foliations 1F  and 2F . We deduce on the 

transverse bundle 2V ,  the adapted local coordinates 1 2 3 4 5 6( , , , , , )u u u u u u  in the open set 

] [ ] [ ] [ 30,1 0,2 0,2U π π= × × ×ℝ . We will only consider this kind of open sets of adapted 

coordinates.  

Let U and 'U  be two such open sets satisfying 'U U∩ ≠∅ . We have, in 'U U∩ : '
1 1u u= , 

'
2 2u u f− = , '

3 3u u g− = , where f  and g  are locally constant on 'U U∩ , '
4 4u u= , '

5 5u u= , 

'
6 6u u= . Then '

1 1∂ = ∂ , '
2 2∂ = ∂ , '

3 3∂ = ∂  '
4 4∂ = ∂ , '

5 5∂ = ∂ , '
6 6∂ = ∂ . (For simplicity, we have 

set: i

iu

∂
= ∂

∂
).Thus we have six vector fields globally defined on 2V  which realize a parallelism.  

We have: 









 1 1 2 2

1

2
1 2

2

2 3

3

2v v
v

v
v

v

∂
= ∂ − ∂

∂

∂
= − ∂

∂

∂
= ∂ + ∂

∂

,         

,0,0

,,0

,

65

643

,5241

=∂=∂

∂=∂=∂

∂=∂∂=∂

JJ

JJ

JJ

      and  2
1 3X u= ∂ . 
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Let )( 2VLY J∈ . We set 1 1 2 2 3 4 4 5 5 6 6Y Y Y Y X Y Y Y= ∂ + ∂ + + ∂ + ∂ + ∂ . For every vector field T in 

2V , we have [ ] [ ]TYJJTY ,, = . By considering 1T = ∂ , 2T = ∂ , T X= , 4T = ∂ , 5T = ∂  then 

6T = ∂ , we deduce: 

 

Lemma 14.  Each element of 2( )JL V  is of one of the following types:  

1) 2 2
1 1 1 4 1 1 4 4 1 1 6 1 1 6

1
( )

2
F u u F u F u F

 ∂ + ∂ ∂ + ∂ + ∂ ∂ 
 

,                        

2) 2 1 2 4 1 2 5( )F u u F∂ + ∂ ∂ ,  

3) 1 2 3( , , )u u u Xϕ ,          

4) 4 1 4 4 1 4 6( )F u u F∂ + ∂ ∂ , 

5) 1 2 3 5( , , )u u uψ ∂ ,         

6) 1 2 3 6( , , )u u uφ ∂ . 

2
1( )L V  is the set of the elements of type 3, 5 and 6.  

 

Let 1 2 3 1 2 3 5 1 2 3 6( , , ) ( , , ) ( , , )Y u u u X u u u u u uϕ ψ φ= + ∂ + ∂   an element of  2
1( )L V .  

We set: ( )( )1 5 1 6( ) . ( ) ( )Y X A u B uϕ∆ = ∂ + ∂ . 

Moreover, let ( ) ( )5 1 5 6 1 6 5 5 1 5 6 1 6 6( ) ( ) ( ) ( )T C u u C u u D u u D u u= + ∂ + + ∂ . 

It is easy to verify that ∆  and [ ],Y T Y→  are derivations of 2
1( )L V  which are not inner 

derivations. Thus we have the following result: 

 

Theorem 5. Let D be a derivation of 2
1( )L V . There exists a unique vector field 2( )JS L V∈  

( 1 2 3S Z Z Z= + + , 1Z  of type 1, 2Z  of type 2 and 3Z  of type 3) such that for every 2
1( )Y L V∈ : 

[ ] [ ] [ ] [ ]5 6( ) , ( ) , , ,D Y S Y Y T Y Z Y Z Y= + ∆ + + + . 5Z  and 6Z  are of type 5 and 6 respectively and 

are determined up to the sum of  1 5 1 6( ) ( )u uψ φ∂ + ∂ . 
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