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Abstract

This paper examines matrices A ∈ Cn×n such that RA = As+1R where
Rk = I, the identity matrix, and where s and k are nonnegative integers
with k ≥ 2. Spectral theory is used to characterize these matrices. The
cases s = 0 and s ≥ 1 are considered separately since they are analyzed
by different techniques.
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1 Introduction and Preliminaries

Let R1 be the square matrix with ones on the cross diagonal and zeros else-
where; note that R1 is often called the centrosymmetric permutation matrix. A
matrix A1 that commutes with R1 is called a centrosymmetric matrix [12]. Any
square matrix R2 satisfying R22 = I, where I is the identity matrix, is called an
involution or an involutory matrix. The real eigenvalues of nonnegative matri-
ces that commute with a real involution were studied in [13]. It is well-known
that if P is a permutation matrix, then P k = I for some positive integer k.
Matrices that commute with a permutation matrix P were studied in [8]. A
well-known and important class of matrices that commute with a permutation
matrix are the circulant matrices [3, 6], consisting of all matrices that commute
with R3, where R3 is the irreducible permutation matrix with ones on the first
superdiagonal, a one in the lower left-hand corner, and zeros elsewhere. If A is
an n×n circulant matrix, then R3A = AR3 can be expressed as R3AR

n−1
3 = A

since Rn3 = In, the n× n identity matrix.
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A matrix R ∈ Cn×n such that Rk = In for some positive integer k with k ≥ 2
is called a {k}-involutory matrix [10, 11]. Throughout this paper, all matrices
R will be {k}-involutory. It is clear that when k = 2, such an R is either ±In, or
else a nontrivial involution. Also, k = n is the smallest positive integer for which
R3 is {k}-involutory, and this guarantees that there are nontrivial, nondiagonal
{k}-involutory matrices for all integers k and n with n ≥ 2 and 2 ≤ k ≤ n. The
matrix exp( 2πik ) In is {k}-involutory for all positive integers n and all integers
k ≥ 2, and, thus, it should be clear that there are {k}-involutory matrices for
which k > n must occur. Finally, we always assume that R 6= In, and hence, if
Rk = In, then k ≥ 2.

This paper is focused on the study of the {R, s + 1, k}-potent matrices. A
matrix A ∈ Cn×n is called an {R, s + 1, k}-potent matrix if RA = As+1R for
some nonnegative integer s and some {k}-involutory matrix R. Note that the
cases, k = 2 and s ≥ 1, and k ≥ 2 and s = 0, have already been analyzed in
[7, 14], respectively. Spectral properties of matrices related to the {R, s+1, k}-
potent matrices are presented in [4, 9]. Other similar classes of matrices and
their spectral properties have been studied in [5, 9, 10, 11].
In this paper characterizations of {R, s + 1, k}-potent matrices are given,

with the cases s ≥ 1 and s = 0 treated separately. In the first case, the concept
of {t+1}-group involutory matrix will be used. These matrices were introduced
in [2] for t = 2, and the definition can be extended for any integer t > 2 as
follows: A matrix A ∈ Cn×n is called a {t + 1}-group involutory matrix if
A# = At−1, where A# denotes the group inverse of A. We recall that the group
inverse of a square matrix A is the only matrix A# (when it exists) satisfying:
AA#A = A, A#AA# = A#, AA# = A#A. Moreover, A# exists if and only if
rank(A2) = rank(A) [1].

2 Main results

Clearly, In and n × n zero matrix O are always {R, s + 1, k}-potent matrices.
For any given positive integers n, s and k (with k ≥ 2), and for any given n× n
{k}-involutory matrix R, there exists a nontrivial {R, s + 1, k}-potent matrix.
Consider A = ωIn where ω is a primitive sth root of unity. Note that when s = 0,
A = R is an {R, 1, k}-potent matrix that is nontrivial when R is nontrivial.
The question arising in this paper follows from the observation that if A ∈

Cn×n is an {R, s + 1, k}-potent matrix, then A(s+1)k = A. To see this, note
that from RA = As+1R, it follows that R2A = R(AAsR) = As+1RAsR =

As+1As+1RAs−1R = · · · = A(s+1)(s+1)R2, and similarly, RkA = A(s+1)
k

Rk.
(The equality in the observation is uninformative when s = 0; the s = 0 case
will be addressed in Subsection 2.2.) The necessity of A(s+1)

k

= A is clear, but
is this condition suffi cient to guarantee that a matrix A is an {R, s+1, k}-potent
matrix for an arbitrary {k}-involution R? Not surprisingly, since R does not
appear in the equality, the condition is not suffi cient as the following example
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demonstrates:

A = exp

(
2πi

3

)
I2, R = diag(i,−1), s = 1, k = 4.

Consequently, we seek a complementary condition that in conjunction with
A(s+1)

k

= A implies A is an {R, s+ 1, k}-potent matrix.

2.1 The case s ≥ 1
Assume that A is an {R, s+ 1, k}-potent matrix. Let ns = (s+ 1)k − 1. Since
A(s+1)

k

= A, the polynomial t(s+1)
k − t, whose roots all have multiplicity 1,

is divisible by the minimal polynomial of A. Thus, A is diagonalizable with

spectrum σ(A) ⊆ {0} ∪ {ω1, ω2, . . . , ωns−1, ωns = 1} where ω := exp
(
2πi
ns

)
.

Hence, the spectral theorem [1] assures that there exist disjoint projectors

P0, P1, P2, . . . , Pns−1, Pns

such that

A =

ns∑
j=1

ωjPj and
ns∑
j=0

Pj = In, (1)

where Pj0 = O if there exists j0 ∈ {1, 2, . . . , ns} such that ωj0 /∈ σ(A) and
moreover that P0 = O when 0 /∈ σ(A).
Pre-multiplying the previous expressions given in (1) by the matrix R and

post-multiplying by R−1 gives

RAR−1 =

ns∑
j=1

ωjRPjR
−1

and
ns∑
j=0

RPjR
−1 = In. (2)

It is clear that the nonzeroRPjR−1 are disjoint projectors for each j = 0, 1, . . . , ns.
From (1),

As+1 =

ns∑
j=1

ωj(s+1)Pj

because the nonzero Pj are disjoint projectors.
Let S = {1, 2, . . . , ns − 1}. Now consider ϕ : S ∪ {0} → S ∪ {0} as the

function defined by ϕ(j) = bj , where bj is the smallest nonnegative integer such
that bj ≡ j(s+ 1) [mod ns]. Then ϕ is a bijection [7]. It follows that

As+1 =

ns−1∑
j=1

ωϕ(j)Pj + Pns
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and since A is an {R, s+ 1, k}-potent matrix,

As+1 = RAR−1.

Hence,
ns−1∑
i=1

ωiRPiR
−1 +RPnxR

−1 =

ns−1∑
j=1

ωϕ(j)Pj + Pns .

Since ϕ is a bijection, for each i ∈ S, there exists a unique j ∈ S such that
i = ϕ(j). From the uniqueness of the spectral decomposition, it follows that for
every i ∈ S, there exists a unique j ∈ S such that

RPiR
−1 = RP

ϕ(j)
R−1 = Pj . (3)

It is clear that uniqueness also implies that

RPnsR
−1 = Pns . (4)

Finally, from (1)

P0 = In −
ns∑
j=1

Pj .

Taking into account (2) and the definition of the bijection ϕ,

RP0R
−1 = P0 (5)

because of the uniqueness of the spectral decomposition. Observe that in the
case where there exists j0 ∈ S such that ωj0 /∈ σ(A), it has been indicated that
Pj0 = O. In this situation, Pϕ(j0) = RPj0R

−1 = O is also true.

Conversely, assuming A(s+1)
k

= A and that the relationships on the projec-
tors obtained in (3), (4), and (5) hold, we can consider

A =

ns∑
j=1

ωjPj (6)

It is now easy to check that As+1 = RAR−1.
The matrices Pj’s satisfying relations (3), (4), and (5) where

P0, P1, . . . , Pns

are the projectors appearing in the spectral decomposition of A associated to
the eigenvalues

0, ω1, . . . , ωnx−1, 1,

are said to satisfy condition (P). Then, the complementary condition we were
looking for is condition (P).
These results are summarized in what follows. Before that, note

rank(A) = rank(A(s+1)
k

) ≤ rank(A2) ≤ rank(A)
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when A(s+1)
k

= A. Then, in this case, the group inverse of A exists, and it is
easy to check that A# = A(s+1)

k−2, that is, A is a {(s+ 1)k}-group involutory
matrix.
The main result of this subsection is now stated.

Theorem 1 Let R ∈ Cn×n be a {k}-involutory matrix, s ∈ {1, 2, 3, . . . }, ns =
(s+ 1)k − 1, and, A ∈ Cn×n. Then the following conditions are equivalent:

1. A is {R, s+ 1, k}-potent.

2. A(s+1)
k

= A and there exist P0, P1, P2, . . . , Pns satisfying condition (P).

3. A is diagonalizable,

σ(A) ⊆ {0} ∪ {ω1, ω2, . . . , ωns = 1},

with ω = exp
(
2πi
ns

)
, and there exist P0, P1, P2, . . . , Pns satisfying condition

(P).

4. A is an {(s+1)k}-group involutory matrix and there exist P0, P1, P2, . . . , Pnx
satisfying condition (P).

From the definition of an {R, s + 1, k}-potent matrix, if A is {R, s + 1, k}-
potent, then A is similar to As+1. Hence, the uniqueness of the spectral de-
composition of A allows us to state the correspondence between the distinct
eigenvalues of A as well as between their corresponding projectors. Specifically:

Corollary 2 Let R ∈ Cn×n be a {k}-involutory matrix, s ∈ {1, 2, 3, . . . }, and
A ∈ Cn×n with spectrum

σ(A) = {λ1, λ2, . . . , λm}, with m ≥ 1

where the λh are the distinct eigenvalues of A. Then A is {R, s+1, k}-potent if
and only if A is diagonalizable and for each i ∈ {1, 2, . . . ,m} there is a unique
j ∈ {1, 2, . . . ,m} such that λi = λs+1j and PiR = RPj where P1, P2, . . . , Pm are
the projectors satisfying condition (P).

Note that from condition (c) in Theorem 1 we know if σ(A) * {0} ∪
{ω0, ω1, . . . , ω(s+1)k−2} then A is not {R, s+1, k}-potent. Even more, Corollary
2 gives us another simple suffi cient condition for A to not be {R, s+1, k}-potent.
The following example illustrates this situation. Let

A =

 1 0 0
0 −i 1
0 0 1

 , and R =

 −1 0 0
0 1 0
0 0 −1

 .
It is obvious that the eigenvalues of A are its diagonal elements. Then, we can
conclude that A is not {R, 3, 2}-potent because cubing the eigenvalue −i of A
gives the value i which is not an eigenvalue.
The general situation is given in the following result.
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Corollary 3 Let R ∈ Cn×n be a {k}-involutory matrix and s ∈ {1, 2, 3, . . . }.
If the matrix A ∈ Cn×n has an eigenvalue λ such that one of the following
conditions holds:

1. λs+1 /∈ σ(A)

2. λ(s+1)
k 6= λ

then A is not {R, s+ 1, k}-potent.

Up to now we have considered s ∈ {1, 2, 3, . . . } where the diagonalizability
of A is a consequence of the fact that A is {R, s+ 1, k}-potent. The case s = 0
is now examined.

2.2 The case s = 0

This situation corresponds to those matrices A ∈ Cn×n such that RA = AR and
Rk = In. Such matrices are called {R, k}-generalized centrosymmetric matrices
or, for consistency, {R, 1, k}-potent matrices. These matrices are in general not
diagonalizable, as is shown by the following example:

A =

 1 0 0
1 1 1
0 0 1

 , R =

 0 0 1
0 1 0
1 0 0

 and k = 2.

When the diagonalizability is assumed, the uniqueness of the spectral de-
composition (see [1], pp. 62) gives the following result.

Theorem 4 Let A ∈ Cn×n be a diagonalizable matrix with m distinct eigen-
values, λ1, λ2, . . ., λm, and spectral decomposition A =

∑m
i=1 λiPi. Suppose

that R ∈ Cn×n is {k}-involutory for some integer k ≥ 2. Then A is an
{R, k}-generalized centrosymmetric matrix if and only if RPi = PiR for all
i ∈ {1, 2, . . . ,m}.

Note that all of the cases k < m, k = m, and k > m can occur as the
following examples show:

1. If A = diag(1, 2, 3, 2, 1) and R is the 5 × 5 centrosymmetric permutation
matrix then AR = RA and k = 2 < 3 = h.

2. If A = diag(1, 2) and R = diag(1,−1) then AR = RA and k = 2 = h.

3. If A = I2 and R = exp
(
2πi
25

)
I2 then AR = RA and k = 25 > 1 = h.

Suppose R ∈ Cn×n, Rk = I, and R has n distinct eigenvalues. Then k ≥
n, and R is diagonalizable. Further, AR = RA exactly when R and A are
simultaneously diagonalizable. Consequently, if A is an {R, k}-potent matrix
then A is diagonalizable. Further, when k = n, the spectrum of R is the complete
set of nth roots of unity, so R is similar to the n×n circulant permutation matrix
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R3. That is, there is a nonsingular matrix Q such that QRQ−1 = R3. Further,
AR = RA exactly when QAQ−1 is a circulant matrix (see for example Theorem
3.1.1 in [3]). Next, we investigate the cases where R does not have n distinct
eigenvalues.
First, we present a classic result, and we include its proof for the sake of

completeness.

Lemma 5 For each {k}-involutory matrix R ∈ Cn×n, there exists an integer t
with 1 ≤ t ≤ n and a nonsingular matrix Q ∈ Cn×n such that the Jordan form
of R, JR = Q−1RQ is the diagonal matrix JR = diag(ω1In1 , ω2In2 , . . . , ωtInt),
where the ωi are distinct kth roots of unity and n1 + n2 + · · ·+ nt = n.

Proof. Assume that k > 1. Let ω = exp
(
2πi
k

)
. Since Rk = In, the minimum

polynomial mR(λ) of R divides λk − 1 =
∏k
j=1

(
λ− ωj

)
, and consequently,

every factor of mR(λ) must be a distinct linear factor. It follows that R is
diagonalizable, and hence, that JR has the specified form where the ωj are
distinct elements from {ω1, ω2, . . . , ωk} whose sum of multiplicities is n.

Theorem 6 Suppose that R ∈ Cn×n is a {k}-involutory matrix with nonsin-
gular matrix Q and Jordan form JR as given in the preceding lemma. Then
AR = RA for A ∈ Cn×n if and only if the blocks of Y = Q−1AQ satisfy
Yij = O when i 6= j, and Yii ∈ Cni×ni is arbitrary for 1 ≤ i, j ≤ t. The
matrices Y contain exactly

d =

t∑
j=1

n2i

arbitrary parameters, so C(R) = {A ∈ Cn×n : RA = AR} is a vector space of
dimension d. Further,

C(R) '
t⊕
i=1

Cni×ni

where Cni×ni is the full matrix algebra of ni×ni matrices over the complex field
and where the isomorphism sends A to Q−1AQ.

Proof. AR = RA if and only if Y = Q−1AQ satisfies Y JR = JRY . For
1 ≤ i, j ≤ t,

Yij
(
ωjInj

)
= (ωiIni)Yij .

Since ωi 6= ωj when i 6= j, Yij = O. When i = j, Yij is an arbitrary ni × ni
matrix. Thus, Y is a direct sum of arbitrary submatrices containing

∑t
j=1 n

2
i

arbitrary entries.
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