Matrices A such that $R A=A^{s+1} R$ when $R^{k}=I$

Leila Lebtahi* Jeffrey Stuart ${ }^{\dagger}$ Néstor Thome* James R. Weaver ${ }^{\ddagger}$

Abstract

This paper examines matrices $A \in \mathbb{C}^{n \times n}$ such that $R A=A^{s+1} R$ where $R^{k}=I$, the identity matrix, and where s and k are nonnegative integers with $k \geq 2$. Spectral theory is used to characterize these matrices. The cases $s=0$ and $s \geq 1$ are considered separately since they are analyzed by different techniques.

Keywords: Potent matrix; idempotent matrix; spectrum; Jordan form; involutory matrix.
AMS subject classification: Primary: 15A18; Secondary: 15A09, 15A21

1 Introduction and Preliminaries

Let R_{1} be the square matrix with ones on the cross diagonal and zeros elsewhere; note that R_{1} is often called the centrosymmetric permutation matrix. A matrix A_{1} that commutes with R_{1} is called a centrosymmetric matrix [12]. Any square matrix R_{2} satisfying $R_{2}^{2}=I$, where I is the identity matrix, is called an involution or an involutory matrix. The real eigenvalues of nonnegative matrices that commute with a real involution were studied in [13]. It is well-known that if P is a permutation matrix, then $P^{k}=I$ for some positive integer k. Matrices that commute with a permutation matrix P were studied in [8]. A well-known and important class of matrices that commute with a permutation matrix are the circulant matrices $[3,6]$, consisting of all matrices that commute with R_{3}, where R_{3} is the irreducible permutation matrix with ones on the first superdiagonal, a one in the lower left-hand corner, and zeros elsewhere. If A is an $n \times n$ circulant matrix, then $R_{3} A=A R_{3}$ can be expressed as $R_{3} A R_{3}^{n-1}=A$ since $R_{3}^{n}=I_{n}$, the $n \times n$ identity matrix.

[^0]A matrix $R \in \mathbb{C}^{n \times n}$ such that $R^{k}=I_{n}$ for some positive integer k with $k \geq 2$ is called a $\{k\}$-involutory matrix $[10,11]$. Throughout this paper, all matrices R will be $\{k\}$-involutory. It is clear that when $k=2$, such an R is either $\pm I_{n}$, or else a nontrivial involution. Also, $k=n$ is the smallest positive integer for which R_{3} is $\{k\}$-involutory, and this guarantees that there are nontrivial, nondiagonal $\{k\}$-involutory matrices for all integers k and n with $n \geq 2$ and $2 \leq k \leq n$. The matrix $\exp \left(\frac{2 \pi i}{k}\right) I_{n}$ is $\{k\}$-involutory for all positive integers n and all integers $k \geq 2$, and, thus, it should be clear that there are $\{k\}$-involutory matrices for which $k>n$ must occur. Finally, we always assume that $R \neq I_{n}$, and hence, if $R^{k}=I_{n}$, then $k \geq 2$.

This paper is focused on the study of the $\{R, s+1, k\}$-potent matrices. A matrix $A \in \mathbb{C}^{n \times n}$ is called an $\{R, s+1, k\}$-potent matrix if $R A=A^{s+1} R$ for some nonnegative integer s and some $\{k\}$-involutory matrix R. Note that the cases, $k=2$ and $s \geq 1$, and $k \geq 2$ and $s=0$, have already been analyzed in [7,14], respectively. Spectral properties of matrices related to the $\{R, s+1, k\}$ potent matrices are presented in [4, 9]. Other similar classes of matrices and their spectral properties have been studied in [5, 9, 10, 11].

In this paper characterizations of $\{R, s+1, k\}$-potent matrices are given, with the cases $s \geq 1$ and $s=0$ treated separately. In the first case, the concept of $\{t+1\}$-group involutory matrix will be used. These matrices were introduced in [2] for $t=2$, and the definition can be extended for any integer $t>2$ as follows: A matrix $A \in \mathbb{C}^{n \times n}$ is called a $\{t+1\}$-group involutory matrix if $A^{\#}=A^{t-1}$, where $A^{\#}$ denotes the group inverse of A. We recall that the group inverse of a square matrix A is the only matrix $A^{\#}$ (when it exists) satisfying: $A A^{\#} A=A, A^{\#} A A^{\#}=A^{\#}, A A^{\#}=A^{\#} A$. Moreover, $A^{\#}$ exists if and only if $\operatorname{rank}\left(A^{2}\right)=\operatorname{rank}(A)[1]$.

2 Main results

Clearly, I_{n} and $n \times n$ zero matrix O are always $\{R, s+1, k\}$-potent matrices. For any given positive integers n, s and k (with $k \geq 2$), and for any given $n \times n$ $\{k\}$-involutory matrix R, there exists a nontrivial $\{R, s+1, k\}$-potent matrix. Consider $A=\omega I_{n}$ where ω is a primitive $s^{t h}$ root of unity. Note that when $s=0$, $A=R$ is an $\{R, 1, k\}$-potent matrix that is nontrivial when R is nontrivial.

The question arising in this paper follows from the observation that if $A \in$ $\mathbb{C}^{n \times n}$ is an $\{R, s+1, k\}$-potent matrix, then $A^{(s+1)^{k}}=A$. To see this, note that from $R A=A^{s+1} R$, it follows that $R^{2} A=R\left(A A^{s} R\right)=A^{s+1} R A^{s} R=$ $A^{s+1} A^{s+1} R A^{s-1} R=\cdots=A^{(s+1)(s+1)} R^{2}$, and similarly, $R^{k} A=A^{(s+1)^{k}} R^{k}$. (The equality in the observation is uninformative when $s=0$; the $s=0$ case will be addressed in Subsection 2.2.) The necessity of $A^{(s+1)^{k}}=A$ is clear, but is this condition sufficient to guarantee that a matrix A is an $\{R, s+1, k\}$-potent matrix for an arbitrary $\{k\}$-involution R ? Not surprisingly, since R does not appear in the equality, the condition is not sufficient as the following example
demonstrates:

$$
A=\exp \left(\frac{2 \pi i}{3}\right) I_{2}, \quad R=\operatorname{diag}(i,-1), \quad s=1, \quad k=4
$$

Consequently, we seek a complementary condition that in conjunction with $A^{(s+1)^{k}}=A$ implies A is an $\{R, s+1, k\}$-potent matrix.

2.1 The case $s \geq 1$

Assume that A is an $\{R, s+1, k\}$-potent matrix. Let $n_{s}=(s+1)^{k}-1$. Since $A^{(s+1)^{k}}=A$, the polynomial $t^{(s+1)^{k}}-t$, whose roots all have multiplicity 1 , is divisible by the minimal polynomial of A. Thus, A is diagonalizable with spectrum $\sigma(A) \subseteq\{0\} \cup\left\{\omega^{1}, \omega^{2}, \ldots, \omega^{n_{s}-1}, \omega^{n_{s}}=1\right\}$ where $\omega:=\exp \left(\frac{2 \pi i}{n_{s}}\right)$. Hence, the spectral theorem [1] assures that there exist disjoint projectors

$$
P_{0}, P_{1}, P_{2}, \ldots, P_{n_{s}-1}, P_{n_{s}}
$$

such that

$$
\begin{equation*}
A=\sum_{j=1}^{n_{s}} \omega^{j} P_{j} \quad \text { and } \quad \sum_{j=0}^{n_{s}} P_{j}=I_{n} \tag{1}
\end{equation*}
$$

where $P_{j_{0}}=O$ if there exists $j_{0} \in\left\{1,2, \ldots, n_{s}\right\}$ such that $\omega^{j_{0}} \notin \sigma(A)$ and moreover that $P_{0}=O$ when $0 \notin \sigma(A)$.

Pre-multiplying the previous expressions given in (1) by the matrix R and post-multiplying by R^{-1} gives

$$
R A R^{-1}=\sum_{j=1}^{n_{s}} \omega^{j} R P_{j} R^{-1}
$$

and

$$
\begin{equation*}
\sum_{j=0}^{n_{s}} R P_{j} R^{-1}=I_{n} \tag{2}
\end{equation*}
$$

It is clear that the nonzero $R P_{j} R^{-1}$ are disjoint projectors for each $j=0,1, \ldots, n_{s}$. From (1),

$$
A^{s+1}=\sum_{j=1}^{n_{s}} \omega^{j(s+1)} P_{j}
$$

because the nonzero P_{j} are disjoint projectors.
Let $S=\left\{1,2, \ldots, n_{s}-1\right\}$. Now consider $\varphi: S \cup\{0\} \rightarrow S \cup\{0\}$ as the function defined by $\varphi(j)=b_{j}$, where b_{j} is the smallest nonnegative integer such that $b_{j} \equiv j(s+1)\left[\bmod n_{s}\right]$. Then φ is a bijection [7]. It follows that

$$
A^{s+1}=\sum_{j=1}^{n_{s}-1} \omega^{\varphi(j)} P_{j}+P_{n_{s}}
$$

and since A is an $\{R, s+1, k\}$-potent matrix,

$$
A^{s+1}=R A R^{-1}
$$

Hence,

$$
\sum_{i=1}^{n_{s}-1} \omega^{i} R P_{i} R^{-1}+R P_{n_{x}} R^{-1}=\sum_{j=1}^{n_{s}-1} \omega^{\varphi(j)} P_{j}+P_{n_{s}}
$$

Since φ is a bijection, for each $i \in S$, there exists a unique $j \in S$ such that $i=\varphi(j)$. From the uniqueness of the spectral decomposition, it follows that for every $i \in S$, there exists a unique $j \in S$ such that

$$
\begin{equation*}
R P_{i} R^{-1}=R P_{\varphi(j)} R^{-1}=P_{j} \tag{3}
\end{equation*}
$$

It is clear that uniqueness also implies that

$$
\begin{equation*}
R P_{n_{s}} R^{-1}=P_{n_{s}} . \tag{4}
\end{equation*}
$$

Finally, from (1)

$$
P_{0}=I_{n}-\sum_{j=1}^{n_{s}} P_{j}
$$

Taking into account (2) and the definition of the bijection φ,

$$
\begin{equation*}
R P_{0} R^{-1}=P_{0} \tag{5}
\end{equation*}
$$

because of the uniqueness of the spectral decomposition. Observe that in the case where there exists $j_{0} \in S$ such that $\omega^{j_{0}} \notin \sigma(A)$, it has been indicated that $P_{j_{0}}=O$. In this situation, $P_{\varphi\left(j_{0}\right)}=R P_{j_{0}} R^{-1}=O$ is also true.

Conversely, assuming $A^{(s+1)^{k}}=A$ and that the relationships on the projectors obtained in (3), (4), and (5) hold, we can consider

$$
\begin{equation*}
A=\sum_{j=1}^{n_{s}} \omega^{j} P_{j} \tag{6}
\end{equation*}
$$

It is now easy to check that $A^{s+1}=R A R^{-1}$.
The matrices P_{j} 's satisfying relations (3), (4), and (5) where

$$
P_{0}, P_{1}, \ldots, P_{n_{s}}
$$

are the projectors appearing in the spectral decomposition of A associated to the eigenvalues

$$
0, \omega^{1}, \ldots, \omega^{n_{x}-1}, 1
$$

are said to satisfy condition (\mathcal{P}). Then, the complementary condition we were looking for is condition (\mathcal{P}).

These results are summarized in what follows. Before that, note

$$
\operatorname{rank}(A)=\operatorname{rank}\left(A^{(s+1)^{k}}\right) \leq \operatorname{rank}\left(A^{2}\right) \leq \operatorname{rank}(A)
$$

when $A^{(s+1)^{k}}=A$. Then, in this case, the group inverse of A exists, and it is easy to check that $A^{\#}=A^{(s+1)^{k}-2}$, that is, A is a $\left\{(s+1)^{k}\right\}$-group involutory matrix.

The main result of this subsection is now stated.
Theorem 1 Let $R \in \mathbb{C}^{n \times n}$ be a $\{k\}$-involutory matrix, $s \in\{1,2,3, \ldots\}, n_{s}=$ $(s+1)^{k}-1$, and, $A \in \mathbb{C}^{n \times n}$. Then the following conditions are equivalent:

1. A is $\{R, s+1, k\}$-potent.
2. $A^{(s+1)^{k}}=A$ and there exist $P_{0}, P_{1}, P_{2}, \ldots, P_{n_{s}}$ satisfying condition (\mathcal{P}).
3. A is diagonalizable,

$$
\sigma(A) \subseteq\{0\} \cup\left\{\omega^{1}, \omega^{2}, \ldots, \omega^{n_{s}}=1\right\}
$$

with $\omega=\exp \left(\frac{2 \pi i}{n_{s}}\right)$, and there exist $P_{0}, P_{1}, P_{2}, \ldots, P_{n_{s}}$ satisfying condition (\mathcal{P}).
4. A is an $\left\{(s+1)^{k}\right\}$-group involutory matrix and there exist $P_{0}, P_{1}, P_{2}, \ldots, P_{n_{x}}$ satisfying condition (\mathcal{P}).

From the definition of an $\{R, s+1, k\}$-potent matrix, if A is $\{R, s+1, k\}$ potent, then A is similar to A^{s+1}. Hence, the uniqueness of the spectral decomposition of A allows us to state the correspondence between the distinct eigenvalues of A as well as between their corresponding projectors. Specifically:

Corollary 2 Let $R \in \mathbb{C}^{n \times n}$ be a $\{k\}$-involutory matrix, $s \in\{1,2,3, \ldots\}$, and $A \in \mathbb{C}^{n \times n}$ with spectrum

$$
\sigma(A)=\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right\}, \quad \text { with } m \geq 1
$$

where the λ_{h} are the distinct eigenvalues of A. Then A is $\{R, s+1, k\}$-potent if and only if A is diagonalizable and for each $i \in\{1,2, \ldots, m\}$ there is a unique $j \in\{1,2, \ldots, m\}$ such that $\lambda_{i}=\lambda_{j}^{s+1}$ and $P_{i} R=R P_{j}$ where $P_{1}, P_{2}, \ldots, P_{m}$ are the projectors satisfying condition (\mathcal{P}).

Note that from condition (c) in Theorem 1 we know if $\sigma(A) \nsubseteq\{0\} \cup$ $\left\{\omega^{0}, \omega^{1}, \ldots, \omega^{(s+1)^{k}-2}\right\}$ then A is not $\{R, s+1, k\}$-potent. Even more, Corollary 2 gives us another simple sufficient condition for A to not be $\{R, s+1, k\}$-potent. The following example illustrates this situation. Let

$$
A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -i & 1 \\
0 & 0 & 1
\end{array}\right], \quad \text { and } \quad R=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right]
$$

It is obvious that the eigenvalues of A are its diagonal elements. Then, we can conclude that A is not $\{R, 3,2\}$-potent because cubing the eigenvalue $-i$ of A gives the value i which is not an eigenvalue.

The general situation is given in the following result.

Corollary 3 Let $R \in \mathbb{C}^{n \times n}$ be a $\{k\}$-involutory matrix and $s \in\{1,2,3, \ldots\}$. If the matrix $A \in \mathbb{C}^{n \times n}$ has an eigenvalue λ such that one of the following conditions holds:

1. $\lambda^{s+1} \notin \sigma(A)$
2. $\lambda^{(s+1)^{k}} \neq \lambda$
then A is not $\{R, s+1, k\}$-potent.
Up to now we have considered $s \in\{1,2,3, \ldots\}$ where the diagonalizability of A is a consequence of the fact that A is $\{R, s+1, k\}$-potent. The case $s=0$ is now examined.

2.2 The case $s=0$

This situation corresponds to those matrices $A \in \mathbb{C}^{n \times n}$ such that $R A=A R$ and $R^{k}=I_{n}$. Such matrices are called $\{R, k\}$-generalized centrosymmetric matrices or, for consistency, $\{R, 1, k\}$-potent matrices. These matrices are in general not diagonalizable, as is shown by the following example:

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 1 \\
0 & 0 & 1
\end{array}\right], \quad R=\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] \quad \text { and } \quad k=2
$$

When the diagonalizability is assumed, the uniqueness of the spectral decomposition (see [1], pp. 62) gives the following result.

Theorem 4 Let $A \in \mathbb{C}^{n \times n}$ be a diagonalizable matrix with m distinct eigenvalues, $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$, and spectral decomposition $A=\sum_{i=1}^{m} \lambda_{i} P_{i}$. Suppose that $R \in \mathbb{C}^{n \times n}$ is $\{k\}$-involutory for some integer $k \geq 2$. Then A is an $\{R, k\}$-generalized centrosymmetric matrix if and only if $R P_{i}=P_{i} R$ for all $i \in\{1,2, \ldots, m\}$.

Note that all of the cases $k<m, k=m$, and $k>m$ can occur as the following examples show:

1. If $A=\operatorname{diag}(1,2,3,2,1)$ and R is the 5×5 centrosymmetric permutation matrix then $A R=R A$ and $k=2<3=h$.
2. If $A=\operatorname{diag}(1,2)$ and $R=\operatorname{diag}(1,-1)$ then $A R=R A$ and $k=2=h$.
3. If $A=I_{2}$ and $R=\exp \left(\frac{2 \pi i}{25}\right) I_{2}$ then $A R=R A$ and $k=25>1=h$.

Suppose $R \in \mathbb{C}^{n \times n}, R^{k}=I$, and R has n distinct eigenvalues. Then $k \geq$ n, and R is diagonalizable. Further, $A R=R A$ exactly when R and A are simultaneously diagonalizable. Consequently, if A is an $\{R, k\}$-potent matrix then A is diagonalizable. Further, when $k=n$, the spectrum of R is the complete set of $n^{\text {th }}$ roots of unity, so R is similar to the $n \times n$ circulant permutation matrix
R_{3}. That is, there is a nonsingular matrix Q such that $Q R Q^{-1}=R_{3}$. Further, $A R=R A$ exactly when $Q A Q^{-1}$ is a circulant matrix (see for example Theorem 3.1.1 in [3]). Next, we investigate the cases where R does not have n distinct eigenvalues.

First, we present a classic result, and we include its proof for the sake of completeness.

Lemma 5 For each $\{k\}$-involutory matrix $R \in \mathbb{C}^{n \times n}$, there exists an integer t with $1 \leq t \leq n$ and a nonsingular matrix $Q \in \mathbb{C}^{n \times n}$ such that the Jordan form of $R, J_{R}=Q^{-1} R Q$ is the diagonal matrix $J_{R}=\operatorname{diag}\left(\omega_{1} I_{n_{1}}, \omega_{2} I_{n_{2}}, \ldots, \omega_{t} I_{n_{t}}\right)$, where the ω_{i} are distinct $k^{\text {th }}$ roots of unity and $n_{1}+n_{2}+\cdots+n_{t}=n$.

Proof. Assume that $k>1$. Let $\omega=\exp \left(\frac{2 \pi i}{k}\right)$. Since $R^{k}=I_{n}$, the minimum polynomial $m_{R}(\lambda)$ of R divides $\lambda^{k}-1=\prod_{j=1}^{k}\left(\lambda-\omega^{j}\right)$, and consequently, every factor of $m_{R}(\lambda)$ must be a distinct linear factor. It follows that R is diagonalizable, and hence, that J_{R} has the specified form where the ω_{j} are distinct elements from $\left\{\omega^{1}, \omega^{2}, \ldots, \omega^{k}\right\}$ whose sum of multiplicities is n.

Theorem 6 Suppose that $R \in \mathbb{C}^{n \times n}$ is a $\{k\}$-involutory matrix with nonsingular matrix Q and Jordan form J_{R} as given in the preceding lemma. Then $A R=R A$ for $A \in \mathbb{C}^{n \times n}$ if and only if the blocks of $Y=Q^{-1} A Q$ satisfy $Y_{i j}=O$ when $i \neq j$, and $Y_{i i} \in \mathbb{C}^{n_{i} \times n_{i}}$ is arbitrary for $1 \leq i, j \leq t$. The matrices Y contain exactly

$$
d=\sum_{j=1}^{t} n_{i}^{2}
$$

arbitrary parameters, so $C(R)=\left\{A \in \mathbb{C}^{n \times n}: R A=A R\right\}$ is a vector space of dimension d. Further,

$$
C(R) \simeq \bigoplus_{i=1}^{t} \mathbb{C}^{n_{i} \times n_{i}}
$$

where $\mathbb{C}^{n_{i} \times n_{i}}$ is the full matrix algebra of $n_{i} \times n_{i}$ matrices over the complex field and where the isomorphism sends A to $Q^{-1} A Q$.

Proof. $A R=R A$ if and only if $Y=Q^{-1} A Q$ satisfies $Y J_{R}=J_{R} Y$. For $1 \leq i, j \leq t$,

$$
Y_{i j}\left(\omega_{j} I_{n_{j}}\right)=\left(\omega_{i} I_{n_{i}}\right) Y_{i j}
$$

Since $\omega_{i} \neq \omega_{j}$ when $i \neq j, Y_{i j}=O$. When $i=j, Y_{i j}$ is an arbitrary $n_{i} \times n_{i}$ matrix. Thus, Y is a direct sum of arbitrary submatrices containing $\sum_{j=1}^{t} n_{i}^{2}$ arbitrary entries.

References

[1] A. Ben-Israel, T. Greville, Generalized Inverses: Theory and Applications, John Wiley \& Sons, $2^{\text {nd }}$ edition, 2003.
[2] R. Bru, N. Thome. Group inverse and group involutory matrices, Linear and Multilinear Algebra, 45:2-3 (1998) 207-218.
[3] P.J. Davis, Circulant Matrices, $2^{\text {nd }}$ edition, Chelsea Publishing, 1994.
[4] Hong-Ke Du, Yuan Li, The spectral characterization of generalized projections, Linear Algebra Appl., 400 (2005) 313-318.
[5] C.R.H. Hanusa, Pseudo-centrosymmetric matrices, with applications to counting perfect matchings, Linear Algebra Appl., 427:2-3 (2007) 206-217.
[6] R. Horn, C. Johnson, Matrix Analysis, Cambridge U. P., New York, 1987.
[7] L. Lebtahi, O. Romero, N. Thome. Spectral study of generalized potent matrices, Proceedings of the International Conference on Applied Linear Algebra, Novi Sad, Serbia, 2010.
[8] J. Stuart, J. Weaver, Matrices that commute with a permutation matrix, Linear Algebra Appl., 150 (1991) 255-265.
[9] D. Tao, M. Yasuda, A spectral characterization of generalized real symmetric centrosymmetric and generalized real symmetric skew-centrosymmetric matrices, SIAM J. Matrix Anal. Appl. 23:3 (2001/02) 885-895, (electronic), http://epubs.siam.org/sam-bin/dbq/article/38673.
[10] W.F. Trench. Characterization and properties of matrices with k-involutory symmetries, Linear Algebra Appl., 429 (2008) 2278-2290.
[11] W.F. Trench. Characterization and properties of matrices with k-involutory symmetries II, Linear Algebra Appl., 432 (2010) 2782-2797.
[12] J. Weaver. Centrosymmetric Matrices (cross-symmetric) matrices, their basic properties, eigenvalues and eigenvectors, American Mathematical Monthly, 2:10 (1985) 711-717.
[13] J. Weaver. Real Eigenvalues of Nonnegative Matrices which Commute with a Symmetric Involution, Linear Algebra Appl., 110 (1998) 243-253.
[14] J.R. Weaver. Block diagonalization for a matrix A when $A R=R A$ and $R^{k}=I$, Proceedings of the 16th Conference of the International Linear Algebra Society, Pisa, 2010.

[^0]: *Instituto Universitario de Matemática Multidiscilpinar. Universitat Politècnica de València. E-46022 Valencia, Spain. E-mail: \{leilebep, njthome\}@mat.upv.es. This work has been partially supported by the Ministry of Education of Spain (Grant DGI MTM2010-18228).
 ${ }^{\dagger}$ Department of Mathematics, Pacific Lutheran University, Tacoma, WA 98447 USA. Email: jeffrey.stuart@plu.edu.
 \ddagger Department of Mathematics and Statistics, University of West Florida, Pensacola, FL 32514, USA. E-mail: jweaver@uwf.edu.

