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Abstract

Recently, situations where a matrix coincides with some of its powers have been

studied. This kind of matrices is related to the generalized inverse matrices. On

the other hand, it is possible to introduce another class of matrices that involve an

involutory matrix, generalizing the well-known idempotent matrix, widely useful in

many applications. In this paper, we introduce a new kind of matrices called {K, s+

1}-potent, as an extension of the aforementioned ones. First, different properties of

{K, s + 1}-potent matrices have been developed. Later, the main result developed

in this paper is the characterization of this kind of matrices from a spectral point

of view, in terms of powers of the matrix, by means of the group inverse and, via

a block representation of a matrix of index 1. Finally, an application of the above

results to study linear combinations of {K, s + 1}-potent matrices is derived.
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1 Introduction

An involutory matrix K ∈ C
n×n is a matrix that is its own inverse, that is, when applied

twice, brings one back to the starting point. Algebraically that is K2 = In, where In

denotes the identity matrix of size n × n. Some examples of involutory matrices are: one
of the three classes of elementary matrix (namely the row-interchange elementary matrix)
which corresponds to permutation matrices, the signature matrices, an orthogonal matrix
which is also symmetric, etc. Involutions have been applied to different areas. For example,
Euclidean geometry (e.g., reflection against a plane), group theory (e.g., classification of
finite simple groups), ring theory (e.g., taking the transpose in a matrix ring), and so on.
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On the other hand, in cryptography, it was suggested to use an involutory matrix as a
key while encrypting with the Hill Cipher. In this case, the use of involutory matrices
to eliminate the computation of matrix inverses for Hill decryptions is very useful. This
means that the same tool could be used for both encryption and decryption of messages [7].

It is well-known that an exchange matrix J = [jk,t] ∈ C
n×n is defined as a matrix

with 1’s along the cross-diagonal (i.e., jk,n−k+1 = 1, 1 ≤ k ≤ n) and 0’s everywhere else.
Matrices A ∈ C

n×n such that JA = AJ are called centrosymmetric and have been widely
studied because of their applications in wavelets, partial differential equations, and other
areas [6]. A matrix A ∈ C

n×n is centrosymmetric with respect to an involutory matrix K
if it satisfies KA = AK and this class of matrices has been studied in [9].

In previous years, situations where a square matrix A equals some of its powers s + 1
were studied [2]. In particular, As+1 = A for some s = 2, 3, . . . if and only if A# = As−1,
where A# represents the group inverse of the matrix A ∈ C

n×n [3]. We recall that for a
given matrix A ∈ C

n×n, we call the group inverse of A, and we denote by A#, the matrix
satisfying the following conditions AA#A = A, A#AA# = A#, and AA# = A#A. The
matrix A# exists if and only if A and A2 have the same rank. If it exists, it is unique [1].

Motivated by all these ideas we introduce the following definition.

Definition 1 Let K ∈ C
n×n be an involutory matrix and s ∈ {1, 2, 3, . . . }. A matrix

A ∈ C
n×n is called {K, s + 1}-potent if it satisfies

KAs+1K = A. (1)

Clearly, this definition includes some extensions of the situations mentioned above. It is
clear that when K = In the concept of {K, s + 1}-potent coincides with that of {s + 1}-
potent matrix (that is, As+1 = A), which has been already considered and it is not relevant
in this paper [2].

We will denote by Ωk the set of all kth roots of unity with k a positive integer which is
a multiplicative group. If we define ωk = e2πi/k then Ωk = {ωk, ω

2
k, . . . , ω

k
k}.

This paper is organized as follows. In Section 2, properties of {K, s+1}-potent matrices
are obtained. Specifically, we show that for each positive integer n there exists at least
one matrix of size n × n belonging to this class. We also present a method to construct
an infinite number of {K, s + 1}-potent matrices from only one of them. Furthermore,
sums, products, direct sums and inverses of {K, s + 1}-potent matrices have been studied.
In Section 3, characterization of {K, s + 1}-potent matrices are presented from a spectral
point of view, in terms of powers of the matrix, by means of the group inverse and, via a
block representation of a matrix of index 1. Finally, in Section 4, as an application we give
conditions under which a linear combination of two commuting {K, s+1}-potent matrices
is {K, s + 1}-potent.
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2 On the existence and properties of {K, s+1}-potent

matrices

The first question is related to the existence of the {K, s + 1}-potent matrices and it is
analyzed in the following result.

Theorem 1 For each n ∈ {1, 2, 3, . . . }, there exists at least one matrix A ∈ C
n×n such

that A is {K, s + 1}-potent for each involutory matrix K and for each s ∈ {1, 2, 3, . . . }.

Proof. Let n ∈ {1, 2, 3, . . . }. If we consider the matrix A = ωIn being w ∈ Ωs, one has
that As+1 = ws+1In = wIn = A and then KAs+1K = KAK = wK2 = A. �

We now establish properties concerning {K, s + 1}-potent matrices.

Lemma 1 Let K ∈ C
n×n be an involutory matrix, s ∈ {1, 2, 3 . . . }, and A ∈ C

n×n.

(I) Then the following conditions are equivalent:

(a) A is a {K, s + 1}-potent matrix.

(b) KAK = As+1.

(c) KA = As+1K.

(d) AK = KAs+1.

(II) If A ∈ C
n×n is a {K, s + 1}-potent matrix then A(s+1)2 = A.

Proof. From K2 = In, multiplying both sides of the equality KAs+1K = A by K, we
get K2As+1K2 = KAK and then As+1 = KAK. The converse is similar and then the
equivalence between (a) and (b) in (I) is proved. The other equalities of (I) follow directly
taking into account that K−1 = K.

By (I) (b) and the definition we have that A(s+1)2 = (As+1)s+1 = (KAK)s+1 =
KAs+1K = A which shows (II) and thus the lemma has been proved. �

In addition, we present more properties showing when the set of {K, s + 1}-potent
matrices is closed under certain operations.

Lemma 2 Let K ∈ C
n×n be an involutory matrix, s ∈ {1, 2, 3 . . . }, and A,B ∈ C

n×n be
two {K, s + 1}-potent matrices. The following properties hold.

(a) If s = 1 then AB = −BA if and only if A + B is a {K, 2}-potent matrix.

(b) If AB = BA = O then A + B is a {K, s + 1}-potent matrix.

(c) If AB = BA then AB is a {K, s + 1}-potent matrix.

(d) If t ∈ {0} ∪ Ωs then tA is a {K, s + 1}-potent matrix.
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(e) If A is a nonsingular matrix then A−1 is a {K, s + 1}-potent matrix.

(f) If K is Hermitian (that is, K∗ = K) then A∗ is {K, s + 1}-potent.

(g) If W ∈ C
n×n is nonsingular and KW = WK then WAW−1 is {K, s + 1}-potent.

Proof. Set s = 1. Since KA2K = A and KB2K = B, one gets that the condition
K(A+B)2K = A+B is equivalent to AB = −BA. Item (a) is then shown. Item (b) is sim-
ilar to (a). Item (c) follows directly from K(AB)s+1K = (KAs+1K)(KBs+1K) = AB be-
cause AB = BA. The assumption ts+1 = t implies that K(tA)s+1K = ts+1KAs+1K = tA.
The property related to the nonsingularity of A is true because A−1 = (KAs+1K)

−1
=

K−1(As+1)−1K−1 = K(A−1)s+1K. In a similar way as before we get A∗ = (KAs+1K)∗ =
K(As+1)∗K = K(A∗)s+1K, because K is Hermitian. Finally, by definition and the as-
sumption the equality K(WAW−1)s+1 = WAW−1 follows directly. �

By using unitary similarity the next results allow us to construct more examples from
some initial ones. Even, Corollary 1 allows to construct infinite {K, s+1}-potent matrices
starting from only one of them where K is Hermitian and commutes with a unitary matrix.

Corollary 1 Let K ∈ C
n×n be an involutory and Hermitian matrix, s ∈ {1, 2, 3 . . . }, and

A ∈ C
n×n be a {K, s + 1}-potent matrix. If U ∈ C

n×n is a unitary matrix such that
KU = UK then UAU ∗ is {K, s + 1}-potent.

Proof. Since KAs+1K = A and K−1 = K = K∗ we get

K(UAU ∗)s+1K = KUAs+1U∗K∗ = UKAs+1K∗U∗ = UAU ∗,

and then the result has been shown. �

Example 1 For the matrices

A =





0 0 −i
i 0 0
0 1 0



 and K =





1 0 0
0 0 1
0 1 0





it is easy to see that A is a {K, 2}-potent matrix. The most general form for the unitary
matrix U where UK = KU is

U =





a b b
d e f
d f e





being a, b, d, e, f ∈ C that satisfy |a|2 + 2|b|2 = 1, ad̄ + bē + bf̄ = 0, |d|2 + |e|2 + |f |2 = 1,
and |d|2 + ef̄ + f ē = 0. For example, setting e = 0 we get d = 0, |a| = |f | = 1, and b = 0.
In this case we obtain the infinite {K, 2}-potent matrices

UAU ∗ =





0 −iaf̄ 0
0 0 1

if ā 0 0





where |a| = |f | = 1.
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We would like to remark that Corollary 1 has a simple proof. However, it is interesting
to construct a big collection of examples from only one. Specifically, this example shows
that with only one {K, s + 1}-potent matrix we can construct infinite examples. In order
to answer the question: Does any {K, s+1}-potent matrix has this form? (that is, for two
given {K, s + 1}-potent matrices A and B of the same size, is it possible to find a unitary
matrix U such that B = UAU ∗ and KU = UK?). The answer is negative as shown by the
following counterexample: the matrices

A =

[

0 0
0 −i

]

and B =

[

1 0
0 i

]

are {K, 5}-potent for K = I2, but it is easy to check that there is no unitary matrix U such
that B = UAU ∗. This example also solves the same problem for nonsingular matrices, that
is, the corresponding to case (g) of Lemma 2.

Now, we present some properties related to {K, s+1}-potency by using block matrices.

Lemma 3 Let s ∈ {1, 2, 3 . . . }, and {K1, K2, . . . , Kt} and {A1, A2, . . . , At} be two sets of
matrices such that Ki, Ai ∈ C

ni×ni being Ki an involutory matrix for i = 1, 2, . . . , t. If for
each i = 1, 2, . . . , t, every matrix Ai is {Ki, s + 1}-potent, then defining the direct sums

A =
t

⊕

i=1

Ai and K =
t

⊕

i=1

Ki,

the matrix A is {K, s + 1}-potent.

Proof. As A =
⊕t

i=1 Ai and K =
⊕t

i=1 Ki, performing the following product KAs+1K by
blocks it is easy to see that it is equal to A. Note that for all matrices Ai, i = 1, 2, . . . , t,
it is necessary to use the same power s + 1. �

3 Characterization of {K, s + 1}-potent matrices

We start this section with the following known result.

Lemma 4 ([1]) Let A ∈ C
n×n with k distinct eigenvalues λ1, . . . , λk. Then A is diagonal-

izable if and only if there exist disjoint projectors P1, P2, . . . , Pk, that is PiPj = δijPi for

i, j ∈ {1, 2, . . . , k}, such that A =
∑k

j=1 λjPj and In =
∑k

j=1 Pj.

A special relation between the elements of the set {0, 1, 2, . . . , (s + 1)2 − 2} will be
necessary in what follows.

Lemma 5 Let s ∈ {1, 2, 3, . . . } and ϕ : {0, 1, 2, . . . , (s+1)2−2} → {0, 1, 2, . . . , (s+1)2−2}
be the function defined by ϕ(j) = bj where bj is the smallest nonnegative integer such that
bj ≡ j(s + 1) [mod ((s + 1)2 − 1)]. Then ϕ is a bijective function.
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Proof. It is evident that the function ϕ is well-defined. Now, we define the following sets:

B1 = {0, s + 1, 2(s + 1), . . . , s(s + 1)}

and, by recurrence, for each k ∈ {1, 2, . . . , s − 1}, the sets

Bk+1 = {1} + Bk

and, finally,

Bs+1 = {s, (s + 1) + s, 2(s + 1) + s, . . . , (s − 1)(s + 1) + s}.

Calling B the joint of all of them, by construction we have

B =
s+1
⋃

k=1

Bk = {0, 1, 2, . . . , (s + 1)2 − 2}.

We will show that for every b ∈ B, there is a unique value j ∈ {0, 1, 2, . . . , (s + 1)2 − 2}
such that b ≡ j(s + 1) [mod ((s + 1)2 − 1)] where b is the smallest nonnegative integer
satisfying these conditions. For that, we first construct the following sets:

J1 = {0, 1, 2, . . . , s}

and, by recurrence, for each i ∈ {1, 2, . . . , s − 1} the sets

Ji+1 = {s + 1} + Ji

and, finally,

Js+1 = {s(s + 1), s(s + 1) + 1, s(s + 1) + 2, . . . , s(s + 1) + (s − 1)}.

Set b ∈ B. Then there exists k ∈ {1, 2, . . . , s + 1} such that b ∈ Bk.
If k = 1 then b ∈ B1, and it is clear that there exists a unique j ∈ J1 such that

b = j(s + 1) and so b ≡ j(s + 1) [mod ((s + 1)2 − 1)].
If k ∈ {2, 3, . . . , s} then

b ∈ Bk = {k − 1, (s + 1) + (k − 1), 2(s + 1) + (k − 1), . . . , s(s + 1) + (k − 1)},

then it is clear that there exists a unique j ∈ Jk such that j(s+1) = b+(k−1)((s+1)2−1),
and so, b ≡ j(s + 1) [mod ((s + 1)2 − 1)].

Finally, if b ∈ Bs+1 then it is clear that there exists a unique j ∈ Js+1 such that
j(s + 1) = b + s((s + 1)2 − 1) and so b ≡ j(s + 1) [mod ((s + 1)2 − 1)].

Moreover, by construction

s+1
⋃

i=1

Ji = {0, 1, 2, . . . , (s + 1)2 − 2}
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and thus the previous reasoning proves the existence. Finally, it is clear that #(Ji) = s+1
for i ∈ {1, 2, . . . , s}, #(Js+1) = s and the condition

Ji ∩ Jk = ∅ holds for every i, k ∈ {1, 2, . . . , s + 1} with i 6= k,

which guarantees the uniqueness. The prove is complete. �

The spectral theory is a suitable approach to obtain characterizations of different classes
of matrices that involve powers [5]. We will use this theory in order to characterize {K, s+
1}-potent matrices.

Theorem 2 Let K ∈ C
n×n be an involutory matrix, s ∈ {1, 2, 3 . . . }, and A ∈ C

n×n.
Then the following conditions are equivalent.

(a) A is {K, s + 1}-potent.

(b) A is diagonalizable, σ(A) ⊆ {0} ∪ Ω(s+1)2−1, KPjK = Pϕ(j), where j ∈ {0, 1, . . . , (s +
1)2 − 2} and KP(s+1)2−1K = P(s+1)2−1 being ϕ the bijection defined in Lemma 5 and
P0, P1, . . . , P(s+1)2−1 the projectors appearing in the spectral decomposition of A given

in Lemma 4 associated to the eigenvalues 0, w1
(s+1)2−1, . . . , w

(s+1)2−2

(s+1)2−1, 1, respectively.

(c) A(s+1)2 = A, KPjK = Pϕ(j), where j ∈ {0, 1, . . . , (s + 1)2 − 2} and KP(s+1)2−1K =
P(s+1)2−1 being ϕ the bijection defined in Lemma 5 and P0, P1, . . . , P(s+1)2−1 the projec-
tors appearing in the spectral decomposition of A given in Lemma 4 associated to the

eigenvalues 0, w1
(s+1)2−1, . . . , w

(s+1)2−2

(s+1)2−1, 1, respectively.

Proof.
(a) =⇒ (b) Since A is {K, s + 1}-potent, property (II) of Lemma 1 implies that

A(s+1)2 = A. As the polynomial q(t) = t(s+1)2 − t is a multiple of the minimal polynomial
qA(t) of A and by using that every root of qA(t) has multiplicity 1 then A is diagonalizable
and moreover, it is clear that σ(A) ⊆ {0} ∪ Ω(s+1)2−1.

On the other hand, by Lemma 4, there exist disjoint projectors P0, P1, . . . , P(s+1)2−1

such that

A =

(s+1)2−1
∑

j=1

ωj
(s+1)2−1Pj and

(s+1)2−1
∑

j=0

Pj = In, (2)

where we must understand that Pj0 = O if there exists j0 ∈ {1, 2, . . . , (s + 1)2 − 1} such
that wj0

(s+1)2−1 /∈ σ(A) and moreover that P0 = O when 0 /∈ σ(A).
Pre and postmultiplying the previous expressions by matrix K we have

KAK =

(s+1)2−1
∑

j=1

ωj
(s+1)2−1KPjK
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and
(s+1)2−1

∑

j=0

KPjK = In (3)

since K2 = In. Therefore, as projectors Pj are disjoint, it is evident that KPjK are also
disjoint projectors for all j = 0, 1, . . . , (s + 1)2 − 1. Again, by using the fact that Pj are
disjoint projectors, from (2) we deduce by recurrence that

As+1 =

(s+1)2−1
∑

j=1

ω
j.(s+1)

(s+1)2−1Pj

and because of ϕ(j) ≡ j(s + 1) [mod ((s + 1)2 − 1)] for all j = 1, 2, . . . , (s + 1)2 − 2 we
arrive to

As+1 =

(s+1)2−2
∑

j=1

ω
ϕ(j)

(s+1)2−1Pj + P(s+1)2−1.

Using the hypothesis and Lemma 1 (I) (b), and equating the expressions KAK and As+1

we get

(s+1)2−2
∑

i=1

ωi
(s+1)2−1KPiK + KP(s+1)2−1K =

(s+1)2−2
∑

j=1

ω
ϕ(j)

(s+1)2−1Pj + P(s+1)2−1.

Since ϕ is a bijection, for every i ∈ {1, 2, . . . , (s + 1)2 − 2}, there exists a unique j ∈
{1, 2, . . . , (s + 1)2 − 2} such that i = ϕ(j). From the uniqueness of the spectral de-
composition we obtain that for every i ∈ {1, 2, . . . , (s + 1)2 − 2}, there exists a unique
j ∈ {1, 2, . . . , (s + 1)2 − 2} such that KPϕ(j)K = KPiK = Pj and then KPjK = Pϕ(j)

holds. It is clear that such a uniqueness also implies that KP(s+1)2−1K = P(s+1)2−1. Finally,
from (2) we get

P0 = In −
(s+1)2−1

∑

j=1

Pj

and taking into account (3) and the definition of bijection ϕ we get

KP0K = In −
(s+1)2−2

∑

i=1

KPiK − KP(s+1)2−1K = In −
(s+1)2−2

∑

j=1

KPϕ(j)K − KP(s+1)2−1K

= In −
(s+1)2−2

∑

i=1

Pi − P(s+1)2−1 = P0.

We must observe that in the case where j0 ∈ {1, 2, . . . , (s + 1)2 − 2} such that wj0
(s+1)2−1 /∈

σ(A) exists, it has been indicated that we must consider Pj0 = O. In this situation,
Pϕ(j0) = KPj0K = O must also be true.
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(b) =⇒ (a) By hypothesis and Lemma 4, it is clear that

A =

(s+1)2−1
∑

j=1

ωj
(s+1)2−1Pj (4)

and by recurrence one has

As+1 =

(s+1)2−1
∑

j=1

ω
j.(s+1)

(s+1)2−1Pj.

By a similar reasoning as in the implication (a) =⇒ (b) and by using the hypothesis it is
clear that

As+1 =

(s+1)2−2
∑

j=1

ω
ϕ(j)

(s+1)2−1Pj + P(s+1)2−1 =

(s+1)2−2
∑

j=1

ω
ϕ(j)

(s+1)2−1KPϕ(j)K + KP(s+1)2−1K

=

(s+1)2−1
∑

i=1

ωi
(s+1)2−1KPiK = KAK,

where in the last step we have used (4) again.
(b) ⇐⇒ (c) It is sufficient to show that the fact that A is diagonalizable and σ(A) ⊆

{0} ∪ Ω(s+1)2−1 is equivalent to A(s+1)2 = A.
It is clear that if A is diagonalizable then A = PDP−1 where D is a diagonal matrix

with diagonal entries belonging to the set {0} ∪ Ω(s+1)2−1. A direct computation shows

that A(s+1)2 = A. Conversely, if A(s+1)2 = A, a similar reasoning as before in (a) =⇒ (b)
allows to obtain the conclusion. This ends the proof. �

Remark 1 As we can see in the proof of Theorem 2, for each j0 ∈ {0, 1, 2, . . . , (s+1)2−2},
the projectors Pj0 and Pϕ(j0) must be both zero or both nonzero matrices in the spectral
decomposition of A since KPj0K = Pϕ(j0). In addition, the projector P(s+1)2−1 appears or
not in that decomposition satisfying the relations indicated in items (b) and (c) depending
on whether the eigenvalue 1 belongs or not to the spectrum of A. For example, if s = 2
(that is (s + 1)2 − 1 = 8) and ω is a primitive 8th root of unity, then A = ω7In can not
be a {K, 3}-potent matrix for any involutory matrix K ∈ C

n×n. In fact, the spectrum of
the matrix A should contain the value ω5 (because KP7K = Pϕ(7) = P5), which yields to a
contradiction. We can also see it directly: KA3K = ω5K2 = ω−2A 6= A.

As we have shown, A(s+1)2 = A holds for every {K, s + 1}-potent matrix A. Could the
power k of A such that Ak = A be less than (s + 1)2? The answer is given in the following
result.
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Corollary 2 Let K ∈ C
n×n be an involutory matrix, s ∈ {1, 2, 3 . . . }, A ∈ C

n×n, and let’s
assume that there exists a positive integer 1 < k < (s + 1)2 such that Ak = A. Then A is
a {K, s + 1}-potent matrix if and only if k − 1 divides (s + 1)2 − 1, A is diagonalizable,

σ(A) = {λ0, λ1, . . . , λt} ⊆ {0} ∪ Ωk−1 (5)

(being λi 6= λj for i 6= j, for i, j ∈ {0, 1, . . . , t}), and for each i ∈ {0, 1, . . . , t} there exists
a unique j ∈ {0, 1, . . . , t} such that λi = λs+1

j and Pi = KPjK where P0, P1, . . . , Pt are
the projectors appearing in the spectral decomposition of Lemma 4 of A associated to the
eigenvalues given in (5), respectively.

Proof. Since A is {K, s + 1}-potent, by Theorem 2, the matrix A is diagonalizable and
σ(A) ⊆ {0} ∪ Ω(s+1)2−1. The assumption Ak = A yields to σ(A) ⊆ {0} ∪ Ωk−1 and
so σ(A) ⊆ {0} ∪ Ωgcd(k−1,(s+1)2−1) = Ωk−1, because k − 1 divides (s + 1)2 − 1. From
A = KAs+1K and the uniqueness assured in the spectral decomposition, we arrive to the
correspondence λi = λs+1

j and Pi = KPjK as indicated. The converse can be shown in a
similar way as in Theorem 2. �

Example 2 The matrix

A =





0 0 −i
i 0 0
0 1 0





is {K, 2}-potent for the involutory matrix

K =





1 0 0
0 0 1
0 1 0



 ,

and it satisfies A4 = A. It is possible to check that when ω = −1+i
√

3
2

,

σ(A) = {ω, ω2, ω3} =

{

−1 + i
√

3

2
,
−1 − i

√
3

2
, 1

}

The corresponding projectors are

P1 =
1

3





1 −i ω −i ω
i ω 1 ω
i ω ω 1



 , P2 =
1

3





1 −i ω −i ω
i ω 1 ω
i ω ω 1



 , P3 =
1

3





1 −i −i
i 1 1
i 1 1





and, in this case, KP1K = P2 and KP3K = P3.

On the other hand, it is easy to verify that any {K, s + 1}-potent matrix has a group
inverse matrix. Furthermore, another equivalence of the {K, s+1}-potent matrices can be
obtained by means of this kind of generalized inverse matrices.
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Corollary 3 Let K ∈ C
n×n be an involutory matrix, s ∈ {1, 2, 3, . . . }, and A ∈ C

n×n.
Then A is {K, s+1}-potent if and only if A# = A(s+1)2−2, KPjK = Pϕ(j), j ∈ {0, 1, 2, . . . , (s+
1)2 − 2} and KP(s+1)2−1K = P(s+1)2−1 where ϕ is the bijection defined in Lemma 5 and
P0, P1, . . . , P(s+1)2−1 the projectors appearing in the spectral decomposition of A given in

Lemma 4 associated to the eigenvalues 0, w1
(s+1)2−1, . . . , w

(s+1)2−2

(s+1)2−1, 1, respectively.

Proof. In [3] the equivalence between the conditions A# = A and A3 = A was proved and
a direct extension allows to establish that the equalities A# = A(s+1)2−2 and A(s+1)2 = A
are two equivalent conditions. The proof ends by the application of property (c) of Theo-
rem 2. �

Again, by using the fact that any {K, s + 1}-potent matrix has a group inverse matrix,
we give another characterization of {K, s + 1}-potent matrices. Actually, we will use the
following fact: a square matrix has index 1 if and only if A and A2 have the same rank.
We recall that the index of a square matrix A is the smallest nonnegative integer k such
that rank(Ak) = rank(Ak+1) [4].

Theorem 3 Let K ∈ C
n×n be an involutory matrix, s ∈ {1, 2, 3 . . . }, and A ∈ C

n×n. Then
A is a {K, s + 1}-potent matrix if and only if there are nonsingular matrices Q,P ∈ C

n×n

such that

A = Q

[

D O
O O

]

Q−1, K = P

[

X O
O T

]

P−1, P−1Q =

[

W O
O In−r

]

,

where D = [dij] ∈ C
r×r is diagonal, r = rank(A), and dii ∈ {0} ∪ Ω(s+1)2−1; X ∈ C

r×r and
T ∈ C

(n−r)×(n−r) are involutory matrices, and W ∈ C
r×r is a nonsingular matrix such that

C = WDW−1 ∈ C
r×r is {X, s + 1}-potent.

Proof. If A is {K, s + 1}-potent then A has index 1. Hence, it is possible to write A (of
rank r) in the form

A = P

[

C O
O O

]

P−1, (6)

where C ∈ C
r×r is nonsingular. Using this expression, performing As+1 and KAK, and

equating we get

P

[

Cs+1 O
O O

]

P−1 = KP

[

C O
O O

]

P−1K−1. (7)

Now, we consider the partitioning of P−1KP given by

P−1KP =

[

X Y
Z T

]

with X,Y, Z, T of adequate sizes according to the partition of A given in (6). Substituting
this matrix in (7) and equating we obtain

Cs+1X = XC, Cs+1Y = O, and ZC = O.

11



As C is nonsingular, Y = O, Z = O and so

K = P

[

X O
O T

]

P−1.

Since K2 = In, this last expression implies that X and T are involutory matrices, thus
XCs+1X = C, meaning that C is {X, s+1}-potent. By Theorem 2, there are a nonsingular
matrix W and a diagonal matrix D such that C = WDW−1 where the diagonal elements
of D belong to {0} ∪ Ω(s+1)2−1. Substituting in (6) and denoting

Q = P

[

W O
O In−r

]

we get the required form for the matrix A.
The converse is straightforward. This completes the proof. �

Remark 2 In order to have the same similarity matrix in both matrices A and K, a
similar reasoning as in the above theorem gives the following result: A is a {K, s + 1}-
potent matrix if and only if there are nonsingular matrices P ∈ C

n×n and C ∈ C
r×r such

that

A = P

[

C O
O O

]

P−1, K = P

[

X O
O T

]

P−1

where r = rank(A), X ∈ C
r×r and T ∈ C

(n−r)×(n−r) are involutory matrices, and C is a
{X, s + 1}-potent matrix.

By exploiting the structure of the involutory matrix K we can give the following result.

Theorem 4 Let K ∈ C
n×n be an involutory matrix and let P ∈ C

n×n be such that

K = P

[

Ip O
O −Iq

]

P−1.

Let assume that

A = P

[

B C
O D

]

P−1

where B ∈ C
p×p, C ∈ C

p×q, and D ∈ C
q×q. Then A is {K, s + 1}-potent if and only if B

and D are {s + 1}-potent and

C +
s

∑

i=0

Bs−iCDi = O.

12



Proof. It is easy to see that

As+1 = P

[

Bs+1
∑s

i=0 Bs−iCDi

O Ds+1

]

P−1.

Now, after doing some algebraic manipulations one gets that KAs+1K = A if and only if
B and D are {s + 1}-potent and C +

∑s
i=0 Bs−iCDi = O, which ends the proof. �

A similar result to this last one can be obtained by assuming that matrix A is similar to
a block lower triangular matrix by means of the similarity matrix P . However, when this
special form of A is not assumed, the conclusion is, in general, not satisfied. For example,
let consider

K =

[

0 2
1
2

0

]

= P

[

1 0
0 −1

]

P−1

and

A =

[ −3 −2
√

7
√

7
2

2

]

= P

[

−1
2

5
2
−

√
7

5
2

+
√

7 −1
2

]

P−1

a {K, 2}-potent matrix where

P =

[

2 −2
1 1

]

.

By using the same notation as in Theorem 4, it is clear that B = D = − 1
2

are not
{2}-potent matrices and then the conclusion is not valid.

Other characterization for A to be {K, s+1}-potent matrix is presented in next theorem
(we can compare with Theorem 2).

Theorem 5 Let K ∈ C
n×n be an involutory matrix, s ∈ {1, 2, 3, . . . }, and A ∈ C

n×n with
spectrum

σ(A) = {λ1, λ2, . . . , λt} (8)

(being λi 6= λj for i 6= j and i, j ∈ {1, 2, . . . , t}). Then A is {K, s+1}-potent if and only if
A is diagonalizable and for each i ∈ {1, 2, . . . , t} there is a unique j ∈ {1, 2, . . . , t} such that
λi = λs+1

j and Pi = KPjK where P1, P2, . . . , Pt are the projectors appearing in the spectral
decomposition of Lemma 4 of A associated to the eigenvalues given in (8), respectively.

Proof. Since A is {K, s + 1}-potent, by Theorem 2, A is diagonalizable. Since A =
KAs+1K, we get that A is similar to As+1. The uniqueness assured in the spectral decom-
position allows to state the correspondence: for every i ∈ {1, 2, . . . , t}, there is a unique
j ∈ {1, 2, . . . , t} such that λi = λs+1

j and Pi = KPjK as indicated in Theorem 2 because

A =
t

∑

i=1

λiPi, and KAs+1K =
t

∑

j=1

λs+1
j KPjK.

The converse can be shown by means of the spectral theorem in a similar way. �
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Note that, under the notation of Theorem 5, we can define the function θ : {1, 2, . . . , t} →
{1, 2, . . . , t} by means of θ(i) = j where j is the unique element in {1, 2, . . . , t} such that
λi = λs+1

j . Then, it can be seen that θ is an involution (in particular, bijective). This

function allows us to write λi = λs+1
θ(i) and Pi = KPθ(i)K in Theorem 5.

Another necessary condition for A to be a {K, s + 1}-potent matrix is given in the
following result where eigenvectors are involved.

Corollary 4 Let K ∈ C
n×n be an involutory matrix, s ∈ {1, 2, 3, . . . }, and A ∈ C

n×n such
that Axi = λixi being λi 6= λj for i 6= j, xi 6= 0 for i, j ∈ {1, 2, . . . , n}. If there exists
i0 ∈ {1, 2, . . . , n} such that As+1xθ(i0) 6= λi0xθ(i0) then A is not {K, s + 1}-potent.

Proof. If we assume that A is {K, s+1}-potent then A = Pdiag(λ1, . . . , λn)P−1 and then
Theorem 5 yields to

As+1 = Pdiag(λs+1
1 , . . . , λs+1

n )P−1 = Pdiag(λθ(1), . . . , λθ(n))P
−1

= PΣdiag(λ1, . . . , λn)ΣT P−1 = (PΣ)diag(λ1, . . . , λn)(PΣ)−1,

where Σ represents a (product of) permutation matrix that reorder the eigenvalues. This
fact is contrary to the hypothesis. �

4 Application: Linear combinations of {K, s+1}-potent

matrices

As an application of the results presented in Section 3 we give the following theorem.
Recall that two commuting diagonalizable matrices share a basis of eigenvectors, so they
are simultaneously diagonalizable [8].

Theorem 6 Let c1, c2 be nonzero complex numbers and A,B ∈ C
n×n nonzero {K, s + 1}-

potent matrices such that AB = BA. Assume that C = c1A + c2B is a linear combination
of A and B which is {K, s + 1}-potent. Then any of the following conditions holds.

a) c1, c2 ∈ Ω(s+1)2−1.

b) c1 ∈ Ω(s+1)2−1 and there is r ∈ {0, 1, . . . , (s + 1)2 − 2} such that ωr
(s+1)2−1c1 + c2 ∈

{0} ∪ Ω(s+1)2−1.

c) c2 ∈ Ω(s+1)2−1 and there is t ∈ {0, 1, . . . , (s + 1)2 − 2} such that c1 + ωt
(s+1)2−1c2 ∈

{0} ∪ Ω(s+1)2−1.

d) There are r, t ∈ {0, 1, . . . , (s + 1)2 − 2} such that r + t is not a multiple of (s + 1)2 − 1
and there are ζ1, ζ2 ∈ {0} ∪ Ω(s+1)2−1, with ζ1 6= 0 or ζ2 6= 0, and

c1 =
ζ1ω

t
(s+1)2−1 − ζ2

ωr+t
(s+1)2−1 − 1

, c2 =
ζ2ω

r
(s+1)2−1 − ζ1

ωr+t
(s+1)2−1 − 1

.

14



e) c1 + c2 ∈ {0} ∪ Ω(s+1)2−1.

f) There is t ∈ {0, 1, . . . , (s + 1)2 − 2} such that ω−t
(s+1)2−1c1 + c2 ∈ {0} ∪ Ω(s+1)2−1.

Proof. Since A and B are {K, s + 1}-potent matrices such that AB = BA, there exist
(Theorem 1.3.19 [8] and Theorem 2) a nonsingular matrix P and diagonal matrices DA

and DB such that A = PDAP−1 and B = PDBP−1. Then C = c1A + c2B = P (c1DA +
c2DB)P−1. Denote DA := diag(λ1, . . . , λn) and DB := diag(µ1, . . . , µn).

The eigenvalues of DA, DB and c1DA + c2DB are elements in {0} ∪ Ω(s+1)2−1 because
A, B, and C are {K, s + 1}-potent matrices (Theorem 2). Thus,

c1λi + c2µi ∈ {0} ∪ Ω(s+1)2−1, for all i = 1, . . . , n. (9)

Since DA 6= O, there exists i0 ∈ {1, . . . , n} such that λi0 6= 0 and so λi0 ∈ Ω(s+1)2−1. From
(9),

c1 + c2
µi0

λi0

∈ {0} ∪ Ω(s+1)2−1,

and moreover µi0/λi0 ∈ {0} ∪ Ω(s+1)2−1 because Ω(s+1)2−1 is a multiplicative group. Anal-
ogously, there is j0 ∈ {1, . . . , n} such that µj0 ∈ Ω(s+1)2−1 because DB 6= O. Again, from
(9) we get

λj0

µj0

c1 + c2 ∈ {0} ∪ Ω(s+1)2−1,

If µi0 = 0 = λj0 then c1, c2 ∈ Ω(s+1)2−1 (because c1 6= 0 6= c2) and so case (a) is obtained.
If µi0 = 0 and λj0 ∈ Ω(s+1)2−1 then c1 ∈ Ω(s+1)2−1 and there is r ∈ {0, 1, . . . , (s+1)2−2}

such that ωr
(s+1)2−1c1 + c2 ∈ {0} ∩ Ω(s+1)2−1. Case (b) is thus obtained.

If µi0 6= 0 and λj0 = 0, case (c) can be obtained in a similar way as case (b).
Finally, if µi0 , λj0 ∈ Ω(s+1)2−1 then we have to solve the linear system ωr

(s+1)2−1c1+c2 = ζ1

and c1 + ωt
(s+1)2−1c2 = ζ2 in the unknowns c1 and c2 where ζ1, ζ2 ∈ {0} ∩ Ω(s+1)2−1. By

Gaussian elimination it is easy to see that

c1 =
ζ1ω

t
(s+1)2−1 − ζ2

ωr+t
(s+1)2−1 − 1

, c2 =
ζ2ω

r
(s+1)2−1 − ζ1

ωr+t
(s+1)2−1 − 1

in case that ωr+t
(s+1)2−1 6= 1, that is, when r + t is not a multiple of (s + 1)2 − 1 (case (d)).

When ωr+t
(s+1)2−1 = 1, we have two possibilities: r = t = 0 or r + t = (s + 1)2 − 1. The

first yields to case (e) and the second one gives case (f) because ωr
(s+1)2−1 = ω−t

(s+1)2−1. The
proof is then finished. �
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