A Note on k-Generalized Projections

Leila Lebtahi, Néstor Thome*
Departamento de Matemática Aplicada
Universidad Politécnica de Valencia
Camino de Vera s/n
46022 Valencia, Spain
E-mail:\{leilebep,njthome\}@mat.upv.es
Corresponding author: Néstor Thome

Abstract

In this note, we investigate characterizations for k-generalized projections (i.e., $A^{k}=A^{*}$) on Hilbert spaces. The obtained results generalize those for generalized projections on Hilbert spaces in [Hong-Ke Du, Yuan Li, The spectral characterization of generalized projections, Linear Algebra and its Applications, 400, (2005), 313-318] and those for matrices in [J. Benítez, N. Thome, Characterizations and linear combinations of k-generalized projectors, Linear Algebra and its Applications, In Press].

Keywords: Projections; Normal matrices; t-Potent matrices.
AMS Classification: 47A05, 15A57
In [2], it was defined a generalized projection as a complex matrix A satisfying $A^{2}=A^{*}$. This concept was extended in [3] for infinite-dimensional Hilbert spaces. For H a Hilbert space, we shall denote
$\mathcal{B}(H)=\{A / A$ is linear and bounded operator, $A: H \rightarrow H\}$.
If k is an integer greater than 1 , we define a k-generalized projection as an element A of $\mathcal{B}(H)$ such that $A^{k}=A^{*}$, where A^{*} is the adjoint operator of A.

[^0]Moreover, the $n \times n$ complex matrices such that $A^{k}=A^{*}$ (where A^{*} denotes its conjugate transpose) were characterized in [1].

We recall that $A \in \mathcal{B}(H)$ is said to be normal if $A A^{*}=A^{*} A$, it is said to be orthogonal projection if $A^{2}=A=A^{*}$, and A is called k-potent if $A^{k}=A$. In particular, A is a projection if $A^{2}=A$ and A is tripotent if $A^{3}=A$. In addition, the spectrum of A will be denoted by $\sigma(A)$.

The main purpose of this note is to give characterizations of the k generalized projections by using the spectral theorem for normal operators on Hilbert spaces (see [4]). We quote this theorem for the sake of completeness.

Theorem 1 ([4]) Let H be a Hilbert space and $A \in \mathcal{B}(H)$. If A is normal then there exists a unique resolution of the identity E on the Borel subsets of $\sigma(A)$ which satisfies

$$
A=\int_{\sigma(A)} \lambda \mathrm{d} E(\lambda)
$$

where $E(\lambda)$ denotes the spectral projection associated with the spectral point $\lambda \in \sigma(A)$ and $E(\lambda)=0$ if $\lambda \notin \sigma(A)$.

The main result of this note is the following.
Theorem 2 Let H be a Hilbert space and $A \in \mathcal{B}(H)$. Then the following statements are equivalent.
(a) A is a k-generalized projection.
(b) A is normal and $\sigma(A) \subseteq\{0\} \cup \sqrt[k+1]{1}$, where $\sqrt[k+1]{1}$ denotes the unity roots of order $k+1$.
(c) A is normal and $(k+2)$-potent.

In this case, one has

$$
\begin{equation*}
A=\bigoplus_{\lambda \in \sqrt[k+1]{1}} \lambda E(\lambda) \tag{1}
\end{equation*}
$$

where $E(\lambda)=0$ if $\lambda \notin \sigma(A)$ and \oplus stands for the direct sum.
Proof. (a) $\Rightarrow(\mathrm{b})$. Suppose that $A^{k}=A^{*}$. It is evident that $A A^{*}=A^{*} A$, i.e., A is normal. Theorem 1 assures that

$$
\begin{equation*}
A=\int_{\sigma(A)} \lambda \mathrm{d} E(\lambda) \tag{2}
\end{equation*}
$$

and then $0=A^{k}-A^{*}=\int_{\sigma(A)}\left(\lambda^{k}-\bar{\lambda}\right) \mathrm{d} E(\lambda)$, which implies $\lambda^{k}-\bar{\lambda}=0$ for all $\lambda \in \sigma(A)$. The roots of this equation are 0 and $\sqrt[k+1]{1}$ since if $\lambda=r \mathrm{e}^{\mathrm{i} \theta}$, with $r>0$ and $-\pi \leq \theta<\pi$, then we get $r^{k} \mathrm{e}^{\mathrm{i} k \theta}=r \mathrm{e}^{-\mathrm{i} \theta}$ and so $r=1$ and $\mathrm{e}^{\mathrm{i}(k+1) \theta}=1$, i.e., $\lambda=\mathrm{e}^{\mathrm{i} \theta} \in \sqrt[k+1]{1}$. From (2), it is clear that (1) holds.
(b) \Rightarrow (c). If A is normal and $\sigma(A) \subseteq\{0\} \cup \sqrt[k+1]{1}$ then (1) is true from Theorem 1. Now, since $\lambda^{k+2}=\lambda$ for all $\lambda \in \sigma(A)$,

$$
A^{k+2}=\bigoplus_{\lambda \in \sqrt[k+1]{1}} \lambda^{k+2} E(\lambda)=\bigoplus_{\lambda \in \sqrt[k+1]{1}} \lambda E(\lambda)=A
$$

(c) $\Rightarrow(\mathrm{a})$. If A is normal, from Theorem 1 one has that

$$
\begin{equation*}
A=\int_{\sigma(A)} \lambda \mathrm{d} E(\lambda) \tag{3}
\end{equation*}
$$

From $A^{k+2}=A$ we get that

$$
0=A^{k+2}-A=\int_{\sigma(A)}\left(\lambda^{k+2}-\lambda\right) \mathrm{d} E(\lambda)
$$

Hence, $\lambda^{k+2}-\lambda=0$ for all $\lambda \in \sigma(A)$. Now, it is easy to deduce $\lambda^{k}=\bar{\lambda}$ for all $\lambda \in \sigma(A)$ and so, from (3) we obtain $A^{k}=A^{*}$.

This completes the proof.
Theorem 2 in [3] and Theorem 2.1 in [1] can be obtained as corollaries of Theorem 2.

Corollary 1 Let H be a Hilbert space and let $A \in \mathcal{B}(H)$ be a k-generalized projection.
(I) If $\sigma(A) \subseteq \mathbb{R}$ and
(a) k is even then A is a projection.
(b) k is odd then A is a tripotent operator.
(II) If $\sigma(A) \subseteq i \mathbb{R}$ and
(a) k is a multiple of 4 then $A^{3}=-A$.
(b) k is not a multiple of 4 then $A=O$.

Proof. By Theorem 2 we know that A is normal and $\sigma(A) \subseteq\{0\} \cup \sqrt[k+1]{1}$.
(I) By hypothesis, $\sigma(A) \subseteq\{0\} \cup(\sqrt[k+1]{1} \cap \mathbb{R})$. If k is even then $\sigma(A) \subseteq$ $\{0,1\}$, hence $A^{2}=A$. If k is odd then $\sigma(A) \subseteq\{-1,0,1\}$, hence $A^{3}=A$.
(II) In this case, $\sigma(A) \subseteq i \mathbb{R} \cap(\{0\} \cup \sqrt[k+1]{1})$. If k is a multiple of 4 then $i \mathbb{R} \cap(\{0\} \cup \sqrt[k+1]{1})=\{0, \mathrm{i},-\mathrm{i}\}$ and hence $A^{3}+A=O$. If k is not a multiple of 4 then $\mathbb{R} \cap(\{0\} \cup \sqrt[k+1]{1})=\{0\}$ and hence $A=O$. This conclude the proof.

It is well-known that: A is normal and $\sigma(A) \subseteq \mathbb{R}$ if and only if $A=A^{*}$ (i.e., A is self-adjoint). So, the hypothesis that " A is a k-generalized projection and $\sigma(A) \subseteq \mathbb{R}$ " is equivalent to " A is a k-generalized projection and $A^{*}=A$ ". Analogously, the hypothesis that " A is a k-generalized projection and $\sigma(A) \subseteq i \mathbb{R}$ " is equivalent to " A is a k-generalized projection and $A^{*}=-A "$ (i.e., A is skew self-adjoint).

Corollary 2 Let H be a Hilbert space and let $A \in \mathcal{B}(H)$ be a k-generalized projection. The range of A (denoted by $\mathcal{R}(A)$) is closed.

Proof. Since A is a k-generalized projection, by Theorem 2 we get that A is normal and its spectrum is finite, so 0 is not a limited point of the spectrum of the normal operator A, then $\mathcal{R}(A)$ is closed. This completes the proof.

A similar result to Theorem 2 can be established for matrices and it generalizes Corollary 4 in [3].

Corollary 3 Let H be a Hilbert space and let $A \in \mathcal{B}(H)$ be a k-generalized projection. Then A^{k+1} is an orthogonal projection.
Proof. From Theorem 2, we get $A^{k+2}=A$ and then $\left(A^{k+1}\right)^{2}=A^{k+2} A^{k}=$ $A A^{k}=A^{k+1}$. Moreover, A^{k+1} is an orthogonal projection because

$$
\left(A^{k+1}\right)^{*}-A^{k+1}=\left(A^{k} A\right)^{*}-A^{k} A=\left(A^{*} A\right)^{*}-A^{*} A=0,
$$

since $A^{*} A$ is self-adjoint. This completes the proof.
It is clear that Corollary 2 and Corollary 3 generalize the results given in Corollary 3 in [3].

References

[1] J. Benítez, N. Thome, Characterizations and linear combinations of k generalized projectors, Linear Algebra and its Applications, 410 (2005) 150-159.
[2] J. Groß, G. Trenkler, Generalized and Hypergeneralized Projectors, Linear Algebra and its Applications, 364 (1997) 463-474.
[3] Hong-Ke Du, Yuan Li, The spectral characterization of generalized projections, Linear Algebra and its Applications, 400, (2005), 313-318.
[4] W. Rudin, Functional Analysis, 2nd ed. New York, McGraw-Hill, 1991.

[^0]: *This work has been partially supported by Generalitat Valenciana Grupos 03/062.

