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Inverse eigenvalue problem for normal J-hamiltonian matrices
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Abstract

A complex square matrix A is called J-hamiltonian if A.J is hermitian where J is a normal
real matrix such that J? = —1I,,. In this paper we solve the problem of finding .J-hamiltonian
normal solutions for the inverse eigenvalue problem.
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1. Introduction

Inverse eigenvalue problems arise as important tools in several research subjects, includ-
ing structural design, parameter identification and modeling [3, 5, 11], etc. The main goal
of the inverse eigenvalue problem is to construct a matrix A with a determined structure
and a specified spectrum. In the literature, this kind of problems has been studied under
certain constraints on A. For instance, the case when A is hermitian reflexive or anti-
reflexive with respect to a tripotent hermitian matrix was analyzed in [7]. Subsequently,
that problem was generalized to matrices that are hermitian reflexive with respect to a
normal {k + 1}-potent matrix [4]. By using hamiltonian matrices, in [1] Bai solved the
inverse eigenvalue problem for hermitian and generalized skew-hamiltonian matrices.

It is remarkable that hamiltonian matrices play an important role in several engineering
areas such as optimal quadratic linear control [8, 10|, H, optimization [12] and the solution
of Riccati algebraic equations [6], among others.

The symbols M* and M will denote the conjugate transpose and the Moore-Penrose
inverse of a matrix M, respectively. As is standard, I,, will stand for the n x n identity

'Departamento de Matematica. Facultad de Ingenierfa. Universidad de Buenos Aires. Buenos Aires,
Argentina. E-mail address: silgig@yahoo.com.ar. This author was partially supported by Universidad
de Buenos Aires Grant 20020130100671BA (EXP-UBA: 9.011/2013).

2Universidad Internacional de La Rioja. Logrofio, Spain. E-mail address: leila.lebtabi@unir.net.
This author was partially supported by Ministerio de Economia y Competitividad (DGI Grant MTM2013-
43678-P).

3Instituto Universitario de Matematica Multidisciplinar. Universitat Politecnica de Valencia. E-46022
Valencia, Spain. E-mail address: njthome@mat .upv.es. This author was partially supported by Ministerio
de Economia y Competitividad (DGI Grant MTM2013-43678-P).

Preprint submitted to Applied Mathematics Letters March 11, 2015


https://core.ac.uk/display/80525388?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

matrix. We remind the reader that for a given complex rectangular matrix M € C™*",
its Moore-Penrose inverse is the unique matrix MT € C™™ that satisfies MMM = M,
MMM = MY, (MMT)* = MM'" and (MTM)* = M'M. This matrix always exists
[2]. We also need the following notation for both specified orthogonal projectors: W]E? =
I, — MTM and W = I,, — MM,

It is well known that a matrix A € C%**2* is called hamiltonian if it satisfies (AJ)* = AJ

for
B 0 I
J_[—[k 0 }

We extend this concept by considering the following matrices.

Definition 1. Let J € R™" be a normal matriz such that J> = —1I,,. A matric A € C™*"
is called J-hamiltonian if (AJ)* = AJ.

From now on, we will consider a fixed normal matrix .J € R"*” such that J? = —1,. It
is clear that n = 2k for some positive integer k. For a given matrix X € C™™ and a given
diagonal matrix D € C™*™, we are looking for solutions of the matrix equation

AX = XD (1)

where the unknown A € C™" must be normal and J-hamiltonian.

2. Inverse eigenvalue problem

2.1. General expression for matrices A

Let J € R™™ be a normal matrix satisfying J? = —1I,. It is easy to see that J is
skew-hermitian and its spectrum is included in {—i,7} where both eigenvalues i and —i
have the same multiplicity, & = n/2. Then, there exists a unitary matrix U € C™*™ such
that

B iy 0 .
J—U{O —iIk}U' (2)
Using block matrices, we can analyze the structure of matrices A as follows. We parti-
tion
A Ap
U AU = 3
[ A A )

according to the partition of J. From (2) and (3), equality (AJ)* = AJ yields

—iAy, —iA, . iAn —itA | .
U{ 1AT, 1AL v=u iAgr —1Ag v

from where we deduce

Al = —An,  Ap=-—An, A5 = A (4)



Since A must be normal, using expressions (4) we get that

[ —AZ 4 A AT A1 A — AppAgy |
AA* — U 11 124199 1143112 124122 U*
| —ALAL F ApAl,  Af A — A,
and [ A2 + ALA A1 A A Aoy |
- + A A} —A11 A1 + A1p Ao
A*A — U 11 12 U*
| AR AN — ApAl, Al A — A5,

imply A1 A2 = A2 A, We have obtained the following result.

Theorem 1. Let J € R™ " be partitioned as in (2). Then A € C™™" is a normal J-
hamiltonian matriz if and only if

A:U{&lAu]W (5)

Aly A
where AII = _All; A;Z = —AQQ, CLTI,d A11A12 = A12A22.

2.2. Existence and explicit solution

In order to solve the inverse eigenvalue problem we need the next result.

Lemma 1. Let M,N € C"™. Then YM = N has a skew-hermitian solution Y if and

only if l
NW]E} =0 and M*N s skew-hermitian.

In this case, the general solution is given by
Y = NMt— (NMY WP + Wi zwlp (6)
where Z € C™*" is skew-hermitian.

Proof. By Theorem 1, [2, pp. 52|, the equation YM = N has a solution if and
only if N = NM'M. Let Y be a skew-hermitian solution of YM = N. It is easy
to see that M*N is skew-hermitian. Now, if M*N is skew-hermitian then N*M and
Yo = NMT — (NMT)* + (NMT)*MM' are skew-hermitian as well since NMT — (NMT)*
and (NMY)*MMT = (M")*(N*M)M' are skew-hermitian. Moreover, it can be easily
shown that Yj is a solution of Y M = N.

The general skew-hermitian solution can be obtained adding to Y, the general skew-
hermitian solution of the homogeneous equation Y M = 0. Hence, by Corollary 1 of Lemma
2.3.1 of [9] we deduce that in fact the solution is (6). [ |

Now we consider the following partition of X

x

ool ¥

where X, X, € CF*™.



Substituting (5) and (7) in AX = XD we get
A Ap Xy _ Xq D
Ajy  Ag X X '
This matrix equation can be equivalently written as

An Xi+A:2 Xy = XiD (8)
AT2X1+A22X2 == XQD '

Clearly, from the first equation we have

All Xl :XlD—A12X2. (9)
By Theorem 1 in [2, pp. 52|, equation (9) has a solution in Ay if and only if

(X, D — Ay X)W = 0. (10)
The condition (10) is equivalent to

Aso XoW) = X, DW ). (11)
Again, by Theorem 1 in [2, pp. 52|, equation (11) has a solution in Ay if and only if

il
Xi DWWy = 0- (12)

In this case, the general expression for Ais is

A12 = XlDW)((lz (XQW)((?)T + YVIQW)(;)W(I) (13)
2 X1
for arbitrary Y, € CF**,
If we now substitute Ao by (13) in equation (9) we obtain
An X1 = XiD = XaDW (WD X = YW ) Xo. (14)
Using Lemma 1, equation (14) has a skew-hermitian solution in A;; if and only if
XD = X, DWY (X, W Xy — vi,W" X | WY =0 15
1 1 X1( 2 X1) 2 12 XQW)((” 2 X1 ( )
1
and
X; [XlD — XiDWy) (W) Xz = YiaW,) XQ] (16)
X1

is skew-hermitian. In this case the general solution of (14) is given by

Ay = [XlD — XiDWy) (W) Xz = Yia W XQ] X{ -
X1

—(x])* [XlD — XiDWy) (Xo W) Xz = YiaW) XQ] W+ W we,

@
WX1

4



for arbitrary skew-hermitian Y;; € CF**. The properties of the Moore-Penrose inverse
provide the following expression:

A = | XiD - X, DW (XWX, —Y12W o Xo| XT+
HXD XKWL VWK + Wy Wﬁz; (17)

In order to determine A, we substitute expression Ajy given by (13) in the second
equation of (8) and we obtain

Agy Xo = XoD — (WO XHW D XX, — W (l)Yfgxl (18)

Equation (18) has a skew-hermitian solution in Asy if and only if

[XQD — (W X)W D XX, - (,)Yf;Xl] W =0 (19)
and
X; lXQD — (WOXHWED XX, — W (Z)Y;‘QXI} (20)

is skew-hermitian. In this case, its general solution is given by
Ay = [XQD —(WYX)WI D XX~ W Y;;Xl] XJ -
—(xhy {Xgp — (W X3 Wi D XX - U)Y;gxl} W+ Wy, W),
for arbitrary skew-hermitian Y, € C*** which can be also written as
Ay = {XQD—(W)(QX WD XX, - (l)Yf;Xl] XI+
+(X3)” {XleDW)(Q (X,Wht - X{‘YHW);W)(;J W+ WOy w. (21)

Summarizing, we have obtained the following result.

Theorem 2. Let X € C™™ D € C™"™ be a diagonal matrix and J € R™™ be a normal
matriz such that J*> = —1I,,. Consider the partition X = U [ X7 X5 ]* as in (7) where
X1, Xy € CF*™_ Then there exists a J-hamiltonian, normal matriz A € C™*" such that
AX = XD if and only if conditions (12), (15), (16), (19), (20) and A1 A1 = A

hold. In this case, the general solution can be written as

AH A12
A=U U~
|: ATQ A22 :|

where Ay1, A1o and Asg are given by (17), (13) and (21), respectively.
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