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Abstract5

For a {k}-involutory matrix R ∈ Cn×n (that is, Rk = In) and s ∈ {0, 1, 2, 3, . . . },6

a matrix A ∈ Cn×n is called {R, s + 1, k}-potent if A satisfies RA = As+1R. In7

this paper, a matrix group corresponding to a fixed {R, s + 1, k}-potent matrix is8

explicitly constructed and properties of this group are derived and investigated. This9

constructed group is then reconciled with the classical matrix group GA that is10

associated with a generalized group invertible matrix A.11
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1 Introduction14

For a matrix A ∈ Cn×n, the group inverse, if it exists, is the unique matrix A# satisfying15

the matrix equations16

AA#A = A, A#AA# = A#, AA# = A#A. (1)17

It is well known that A# exists if and only if rank A2 = rank A. Further information on18

group inverses and their applications can be found in [4], and a collection of results on the19

importance of group inverses of certain classes of singular matrices in several application20

areas can be found in the recent book [5]. Theorem 7.2.5 in [4, pp. 124] states that a21
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square matrix A of rank r > 0 belongs to a (multiplicative) matrix group GA if and only22

if rank A2 = rank A. In this case, A ∈ Cn×n has the canonical form23

A = P

[
C O
O O

]
P−1, (2)24

where P ∈ Cn×n and C ∈ Cr×r are nonsingular matrices. The matrix group GA corre-25

sponding to A is then given by26

GA =

{
P

[
X O
O O

]
P−1 : X ∈ Cr×r, rank(X) = r

}
. (3)27

The identity element in GA is28

E = P

[
Ir O
O O

]
P−1,29

where Ir ∈ Cr×r is the identity matrix, and the inverse of A in this group is30

Ag = P

[
C−1 O
O O

]
P−1.31

Some results related to matrix groups on nonnegative matrices can be found in [1].32

Note that the inverse Ag of A in GA satisfies the matrix equations in (1), and by33

uniqueness, Ag = A#; the identity element E in GA satisfies E = AA# = A#A.34

For p ∈ {2, 3, . . . }, a matrix A is called {p}-group involutory if the group inverse of A35

exists and satisfies A# = Ap−1; in such a case, an equivalent condition is that Ap+1 = A36

(see [2, 3]).37

Throughout this paper we will use matrices R ∈ Cn×n such that Rk = In where k ∈38

{2, 3, 4, . . .}. These matrices R are called {k}-involutory [11, 12, 14], and they generalize39

the well-studied involutory matrices (k = 2). Note that the definition given in [11, 12]40

differs from that in [14]; in this paper we adopt the definition given in [14], namely that R41

is {k}-involutory does not require that k be minimal with respect to Rk = I.42

Let R ∈ Cn×n be a {k}-involutory matrix and s ∈ {0, 1, 2, 3, . . . }. A matrix A ∈ Cn×n
43

is called {R, s+ 1, k}-potent if it satisfies44

RA = As+1R. (4)45

These matrices generalize centrosymmetric matrices (that is, matrices A ∈ Cn×n such that46

AJ = JA where J is the n× n antidiagonal matrix; see [13]), the matrices A ∈ Cn×n such47

that AP = PA where P is an n× n permutation matrix (see [10]), and {K, s+ 1}-potent48

matrices (that is, matrices A ∈ Cn×n for which KAK = As+1 where K2 = In; see [7, 8]).49

For a study of {R, s+ 1, k}-potent matrices we refer the reader to [6] where, in particular,50

the following characterization was given.51

Theorem 1. [6, Theorem 1] Let R ∈ Cn×n be a {k}-involutory matrix, s ∈ {1, 2, 3, . . . },52

ns,k = (s+ 1)k − 1, and A ∈ Cn×n. Then the following conditions are equivalent:53
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(a) A is {R, s+ 1, k}-potent.54

(b) A is an {ns,k}-group involutory matrix and there exist disjoint projectors P0, P1, . . . , Pns,k55

with56

A =

ns,k∑
j=1

ωjPj and

ns,k∑
j=0

Pj = In,57

where ω = e
2πi
ns,k , and Pj = O when ωj /∈ σ(A) and P0 = O when 0 /∈ σ(A), and such58

that the projectors P0, P1, . . . , Pns,k satisfy59

(i) For each i ∈ {1, . . . , ns,k − 1}, there exists a unique j ∈ {1, . . . , ns,k − 1} such60

that RPiR
−1 = Pj,61

(ii) RPns,kR
−1 = Pns,k , and62

(iii) RP0R
−1 = P0.63

(c) A is diagonalizable and there exist disjoint projectors P0, P1, . . . , Pns,k satisfying condi-64

tions (i), (ii), and (iii) given in (b).65

In [9], a matrix group constructed from a given {K, s+ 1}-potent matrix was presented66

and studied. The goal of this paper is to construct a matrix group corresponding to a given67

{R, s+1, k}-potent matrix. We then reconcile this constructed group with the matrix group68

GA given in (3).69

2 First results70

In this section we assume s ≥ 1. We now establish properties of {R, s + 1, k}-potent71

matrices.72

Lemma 1. Suppose that A ∈ Cn×n is an {R, s + 1, k}-potent matrix. Then the following73

properties hold.74

(a) A(s+1)k = A.75

(b) A# = A(s+1)k−2 and the group projector AA# satisfies AA# = A(s+1)k−1.76

(c) (A(s+1)k−1)j = A(s+1)k−1 for every j ∈ {1, 2, 3, . . . }.77

(d) RpAj = Aj(s+1)pRp for every p ∈ {1, 2, . . . , k}, j ∈ {1, 2, . . . , (s+1)k−1}. In particular,78

Rp and A(s+1)k−1 commute, the matrices Aj are {R, s+ 1, k}-potent and A is {Rp, (s+79

1)p − 1, k}-potent.80

(e) (AjRp)m = Aj[(s+1)mp−1]/[(s+1)p−1]Rmp, for every j ∈ {1, 2, . . . , (s + 1)k − 1}, p ∈81

{1, 2, . . . , k}, m ∈ {1, 2, . . . , k}. In particular,82

(e)’ (AsR)m = A(s+1)m−1Rm for every m ∈ {1, 2, . . . , k}.83
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(f) For every j, ` ∈ {1, 2, . . . , (s+ 1)k − 1}, p,m ∈ {1, 2, . . . , k}, (AjRp)(A`Rm) = A`
′
Rp′,84

where `′ ≡ `(s+ 1)p + j [mod ((s+ 1)k − 1)] and p′ ≡ p+m [mod (k)].85

(g) (AjRp)A(s+1)k−1 = A(s+1)k−1(AjRp) = AjRp, for every j ∈ {1, 2, . . . , (s + 1)k − 1},86

p ∈ {1, 2, . . . , k}.87

(h) For every j ∈ {1, 2, . . . , (s + 1)k − 1}, p ∈ {1, 2, . . . , k}, the following equalities hold:88

(A`Rk−p)(AjRp) = (AjRp)(A`Rk−p) = A(s+1)k−1, where ` is the unique element of89

{1, 2, . . . , (s+ 1)k − 1} such that ` ≡ −j(s+ 1)k−p [mod ((s+ 1)k − 1)].90

(i) (AR)ks+1 = AR.91

Proof. Statements (a) and (b) were proved in [6]. Using (a),92

(A(s+1)k−1)2 = A(s+1)kA(s+1)k−2 = AA(s+1)k−2 = A(s+1)k−1,93

and now (c) follows by induction.94

We next prove (d). First note that95

RAR−1 = As+1 (5)96

implies RAjR−1 = Aj(s+1), for all j ≥ 1. Thus, if A is {R, s + 1, k}-potent then so is Aj97

for all j ≥ 1. In particular, let j = s+ 1. Then98

RAs+1R−1 = A(s+1)2 , (6)99

and (5) and (6) gives R2AR−2 = A(s+1)2 . By induction, RpAR−p = A(s+1)p for all p ≥ 1.100

Since for all j > 1, Aj is also {R, s + 1, k}-potent, it follows that RpAjR−p = Aj(s+1)p for101

all j ≥ 1 and all p ≥ 1. This proves (d).102

For (e), the equality is clear for m = 1. For m = 2, we have103

(AjRp)2 = AjRpAjRp

= AjAj(s+1)pR2p, by (d)
= Aj(1+(s+1)p)R2p.

104

The general case (AjRp)m = Aj[1+(s+1)p+(s+1)2p+...+(s+1)(m−1)p]Rmp follows by induction. The105

identity [(s + 1)p − 1][(s + 1)(m−1)p + · · · + (s + 1)p + 1] = (s + 1)mp − 1 yields the result.106

For the proof of (e)′, it is enough to set j = s and p = 1 in (e).107

Statement (f) follows easily from (d). Next, by using (c) and (d),108

(AjRp)A(s+1)k−1 = AjA(s+1)k−1Rp = Aj−1A(s+1)kRp = Aj−1ARp = AjRp
109

for every j ∈ {1, 2, . . . , (s+ 1)k − 1} and p ∈ {1, 2, . . . , k}. This proves one equality in (g).110

The other equality can be directly shown as111

A(s+1)k−1(AjRp) = A(s+1)kAj−1Rp = AjRp.112
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For the proof of (h), let j ∈ {1, 2, . . . , (s + 1)k − 1}. By (d), there exists ` such that113

(A`Rk−p)(AjRp) = A(s+1)k−1 if and only if A`+j(s+1)k−p = A(s+1)k−1. This last equality114

holds if and only if ` ≡ −j(s+ 1)k−p [mod ((s+ 1)k − 1)]. Using this value of ` we can get115

`(s+ 1)p ≡ −j(s+ 1)k [mod ((s+ 1)k − 1)]. Now,116

(AjRp)(A`Rk−p) = AjA`(s+1)pRpRk−p = Aj(s+1)kA`(s+1)p = Aj(s+1)k+`(s+1)p = A(s+1)k−1,117

which leads to (h). Observe that ` ≡ −j(s + 1)k−p [mod ((s + 1)k − 1)] is equivalent to118

j(s+ 1)k ≡ −`(s+ 1)p [mod ((s+ 1)k − 1)].119

Finally, by setting j = p = 1 and m = k in (e), we obtain120

(AR)ks+1 = [(AR)k]sAR =

[
A

(s+1)k−1
s

]s
AR = A(s+1)k−1AR = AR,121

where the last equality follows from (a). This proves statement (i), and completes the122

proof of Lemma 1.123

3 Construction of the matrix group124

Using Lemma 1, we construct, from a given {R, s + 1, k}-potent matrix, a matrix group125

containing a cyclic subgroup of {R, s+ 1, k}-potent matrices. Throughout this section we126

assume s ≥ 1.127

Theorem 2. Suppose A ∈ Cn×n is an {R, s+1, k}-potent matrix, and assume that Ai 6= Aj128

for all distinct i, j ∈ {1, 2, . . . , (s+ 1)k − 1}. Then the set129

G = {AjRp : j ∈ {1, 2, . . . , (s+ 1)k − 1}, p ∈ {1, 2, . . . , k}}130

is a group under matrix multiplication, and the following statements hold.131

(a) A is an element of order (s+ 1)k − 1, and the set132

SA = {Aj, j ∈ {1, 2, . . . , (s+ 1)k − 1}} (7)133

is a cyclic subgroup of G. Moreover, SA is the smallest (in the inclusion sense) subgroup134

of G that contains A, A#, and AA#.135

(b) AsR and A(s+1)k−1Rk−1 are elements of order k of G.136

(c) (AsR)A(AsR)k−1 = As+1.137

(d) The set SA is a normal subgroup of G and all its elements are {R, s + 1, k}-potent138

matrices.139

(e) The order of G is k((s+ 1)k − 1) and G is not commutative.140
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Proof. Properties (f)− (h) in Lemma 1 show that G is a group under multiplication with141

identity element A(s+1)k−1.142

Statement (a) follows from properties (a) − (c) in Lemma 1 and the assumption that143

the powers Ai are distinct for i ∈ {1, 2, . . . , (s+ 1)k − 1}.144

By setting m = k in property (e)′ in Lemma 1, we obtain (AsR)k = A(s+1)k−1. On the145

other hand, since A(s+1)k−1 and Rk−1 commute by property (d) in Lemma 1,146

(A(s+1)k−1Rk−1)k = (A(s+1)k−1)k(Rk)k−1 = A(s+1)k−1,147

proving statement (b).148

By setting m = k − 1 in property (e)′ in Lemma 1, we obtain149

(AsR)A(AsR)k−1 = AsRA(s+1)k−1

Rk−1 = AsA(s+1)k−1(s+1)RRk−1 = As+1.150

proving statement (c).151

For the proof of statement (d), let j, t ∈ {1, 2, . . . , (s + 1)k − 1}, p ∈ {1, 2, . . . , k}, and152

` ∈ {1, 2, . . . , (s + 1)k − 1} such that j(s + 1)k ≡ −`(s + 1)p [mod ((s + 1)k − 1)]. Using153

property (d) of Lemma 1, we obtain154

(AjRp)At(A`Rk−p) = AjAt(s+1)pRpA`Rk−p = AjAt(s+1)pA`(s+1)pRpRk−p = At(s+1)p .155

Hence, SA is a normal subgroup of G, and by setting p = 1 in property (d) in Lemma 1,156

we find that the elements of SA are {R, s+ 1, k}-potent matrices.157

For the proof of statement (e), we show that the elements AjRp, j ∈ {1, . . . , (s+1)k−1}158

and p ∈ {1, . . . , k}, are pairwise distinct.159

First we show that for fixed p ∈ {1, . . . , k−1}, ARp 6= Aj for any j ∈ {1, . . . , (s+1)k−1}.160

Otherwise, ARpA = Aj+1, and using property (d) in Lemma 1, A(RpA) = A(A(s+1)pRp) =161

A(s+1)p(ARp) = A(s+1)p+j. But then, Aj+1 = A(s+1)p+j, contradicting the assumption162

that the powers Ai are pairwise distinct for i ∈ {1, . . . , (s + 1)k − 1}. Next, since for163

p ∈ {1, . . . , k − 1}, ARp 6= Aj for any j ∈ {1, . . . , (s+ 1)k − 1}, it follows that for any ` ∈164

{1, 2, . . . , (s+1)k−1} and p ∈ {1, . . . , k−1}, A`Rp 6= Aj for any j ∈ {1, 2, . . . , (s+1)k−1}.165

Finally, if AjRp = A`Rm for some j, ` ∈ {1, 2, . . . , (s + 1)k − 1} and p,m ∈ {1, . . . , k}166

with (j, p) 6= (`,m), then AjRp−m = A`, contradicting the previous assertion. Thus, the167

elements AjRp, j ∈ {1, . . . , (s+ 1)k − 1} and p ∈ {1, . . . , k}, are pairwise distinct, and the168

order of G is k[(s+ 1)k − 1]. In order to show that G is not commutative, it is enough to169

see that (AR)(As+1Rk−1) = (As+1Rk−1)(AR) gives A(s+1)2+1 = A(s+1)k−1+s+1 which leads170

to a contradiction.171

Theorem 3.1 (e) in [9] states that for a {K, s+ 1}-potent matrix, the associated matrix172

group G either has order (s+ 1)2− 1 and is commutative, or has order 2((s+ 1)2− 1) and173

is not commutative; Theorem 2 (e) now asserts that the former case does not occur.174

175

We have shown that A, A#, and AA# belong to SA. Is In − AA# also an element of176

the group G?177
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Proposition 1. If A ∈ Cn×n is a nonzero {R, s + 1, k}-potent matrix then the eigenpro-178

jection at zero does not belong to G, that is,179

In − AA# /∈ G.180

Proof. If we suppose that In − AA# ∈ G then there exist j ∈ {1, 2, . . . , (s+ 1)k − 1}, p ∈181

{1, 2, . . . , k} such that In −AA# = AjRp. Pre-multiplying by A we get Aj+1 = O, that is,182

A is nilpotent. Since A is diagonalizable, we arrive at A = O, which is a contradiction.183

Let H be the set defined by184

H = {A(s+1)k−1Rp : p ∈ {1, 2, . . . , k}}.185

Then under matrix multiplication, H is a cyclic subgroup of G that is not normal because186

if g = A(s+1)k−2 and h = A(s+1)k−1Rp for p ∈ {1, 2 . . . , k − 1} then ghg−1 /∈ H.187

Corollary 1. The group G is a semidirect product of H acting on SA.188

Proof. Every element AjRp of G can be written as a product of an element of SA and189

an element of H as AjRp = Aj(A(s+1)k−1Rp) and this representation is unique. This190

uniqueness follows from the fact that G has order k((s+ 1)k − 1).191

Observe that H ' Zk, SA ' Z(s+1)k−1, and another way to see that G is isomorphic192

to a semidirect product of Zk acting on Z(s+1)k−1 is by considering its representation in193

the form 〈a, b| ak = e, br = e, aba = bm〉 where m, r are coprime. Here r = (s + 1)k − 1,194

a = AsR, b = A, m = s+ 1.195

Moreover, notice that the result presented in Corollary 1 describes the quotient group196

G/SA. In fact, the natural embedding ι : H ↪→ G, composed with the natural projection197

π : G→ G/SA, gives an isomorphism between G/SA and H, which is represented in (8).198

G
π // G/SA

H

ι

OO

g

<<yyyyyyyy

(8)199

We next reconcile the matrix group G given in Theorem 2 that is constructed from an200

{R, s + 1, k}-potent matrix A, and the matrix group GA given in (3). We begin with the201

following lemma.202

Lemma 2. Suppose that R ∈ Cn×n is {k}-involutory, s ∈ {1, 2, 3, . . . }, and A ∈ Cn×n has203

rank r > 0. Then A is {R, s+ 1, k}-potent if and only if there exists a nonsingular matrix204

P ∈ Cn×n such that205

A = P

[
C O
O O

]
P−1, R = P

[
R1 O
O R2

]
P−1, (9)206

where R1 ∈ Cr×r, R2 ∈ C(n−r)×(n−r) are {k}-involutory, and C ∈ Cr×r is nonsingular and207

{R1, s+ 1, k}-potent.208
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Proof. Suppose that A is {R, s + 1, k}-potent. Then A has index at most 1 and so it has209

the form210

A = P

[
C O
O O

]
P−1, (10)211

where C ∈ Cr×r is nonsingular. We now partition R conformable to A as follows212

R = P

[
R1 R3

R4 R2

]
P−1. (11)213

Using expressions (10) and (11) we have that

As+1R = P

[
Cs+1R1 Cs+1R3

O O

]
P−1

and

RA = P

[
R1C O
R4C O

]
P−1.

Equating blocks,214

Cs+1R1 = R1C, Cs+1R3 = O, and R4C = O.215

Since C is nonsingular, R3 = O, R4 = O, and so216

R = P

[
R1 O
O R2

]
P−1.217

Using Rk = In, this last expression implies that R1 and R2 are both {k}-involutory. Hence,218

C is {R1, s+ 1, k}-potent.219

The converse is trivial.220

Recall that the elements of GA have a canonical form as given in (3).221

Theorem 3. Suppose A ∈ Cn×n is an {R, s+1, k}-potent matrix, and suppose that Ai 6= Aj222

for all pairwise distinct i, j ∈ {1, 2, . . . , (s + 1)k − 1}. If A and R are expressed as in (9)223

then224

G =

{
P

[
CjRp

1 O
O O

]
P−1 : j ∈ {1, 2, . . . , (s+ 1)k − 1}, p ∈ {1, 2, . . . , k}

}
.225

Moreover, G is a subgroup of GA.226

Proof. The description of the elements of G follows from Theorem 2 and Lemma 2. It is227

clear that G ⊆ GA. Since C is {R1, s+ 1, k}-potent, G is closed, hence G is a subgroup of228

GA.229
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4 Final remarks: the case s = 0230

For the case s = 0 in (4), the matrix A satisfies AR = RA where Rk = In. Notice that231

property (a) in Lemma 1 does not give any information. However, if there exists some232

positive integer t such that At+1 = A and t is the smallest positive integer satisfying this233

property, then we can construct the group G = {AjRp, j ∈ {1, 2, . . . , t}, p ∈ {1, 2, . . . , k}}234

having similar properties as in the case s ≥ 1. If such an integer t does not exist, it is235

impossible to construct the corresponding group, as the following example shows.236

Example 1. Consider the matrices237

A =

 cos(α) sin(α) 0
− sin(α) cos(α) 0

0 0 2

 and R =

 0 −1 0
1 0 0
0 0 1

 ,238

for some α ∈ R, we have that R4 = I3, AR = RA and239

Am =

 cos(mα) sin(mα) 0
− sin(mα) cos(mα) 0

0 0 2m

 for all m ≥ 2.240

In general, when s = 0 there is no relation between the existence of the group inverse of241

A and of A being {R, 1, k}-potent. In Example 1 we have a {R, 1, 4}-potent matrix that is242

nonsingular whereas in Example 2 below the given {R, 1, 4}-potent matrix does not have243

a group inverse.244

Example 2. Consider the matrices245

A =

 1 0 0
0 0 1
0 0 0

 and R =

 i 0 0
0 1 0
0 0 1

 .246

In this case, AR = RA, R4 = I3, but the group inverse of A does not exist.247
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