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1 On a matrix group constructed from an
: {R, s+ 1, k}-potent matrix
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5 Abstract

6 For a {k}-involutory matrix R € C™*" (that is, R¥ = I,,) and s € {0,1,2,3,...},
7 a matrix A € C™" is called {R, s + 1,k}-potent if A satisfies RA = A*1R. In
8 this paper, a matrix group corresponding to a fixed {R, s + 1, k}-potent matrix is
9 explicitly constructed and properties of this group are derived and investigated. This
10 constructed group is then reconciled with the classical matrix group G4 that is
11 associated with a generalized group invertible matrix A.

2 Keywords: {R, s+ 1, k}-potent matrix; group inverse; matrix group.
13 AMS subject classification: Primary: 15A09; Secondary: 15A21

« 1 Introduction

15 For a matrix A € C"™*", the group inverse, if it exists, is the unique matrix A* satisfying
16 the matrix equations

. AA*A = A, A*AA* = A# AA* = A*A. (1)

15 It is well known that A% exists if and only if rank A% = rank A. Further information on
10 group inverses and their applications can be found in [4], and a collection of results on the
2 importance of group inverses of certain classes of singular matrices in several application
2 areas can be found in the recent book [5]. Theorem 7.2.5 in [4) pp. 124] states that a
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square matrix A of rank r > 0 belongs to a (multiplicative) matrix group G4 if and only
if rank A% = rank A. In this case, A € C™" has the canonical form

A:P{g 8}131, (2)

where P € C™" and C' € C™" are nonsingular matrices. The matrix group G corre-
sponding to A is then given by

Gy — {P { P } P X €C, rank(X) — r} | (3)

The identity element in G4 is

(5L 0] ..
E—P[OO}P,

where I, € C"™" is the identity matrix, and the inverse of A in this group is

c1 O
g __ —1
A_P{ ; O}p |

Some results related to matrix groups on nonnegative matrices can be found in [IJ.

Note that the inverse AY of A in G4 satisfies the matrix equations in , and by
uniqueness, A9 = A#: the identity element F in G4 satisfies £ = AA#* = A% A,

For p € {2,3,...}, a matrix A is called {p}-group involutory if the group inverse of A
exists and satisfies A” = AP~!: in such a case, an equivalent condition is that AP™! = A
(see [2, 3]).

Throughout this paper we will use matrices R € C"*" such that R* = I, where k €
{2,3,4,...}. These matrices R are called {k}-involutory [11], 12, 14], and they generalize
the well-studied involutory matrices (k = 2). Note that the definition given in [11], 12]
differs from that in [14]; in this paper we adopt the definition given in [14], namely that R
is {k}-involutory does not require that k& be minimal with respect to RF = I.

Let R € C"*" be a {k}-involutory matrix and s € {0,1,2,3,...}. A matrix A € C"*"
is called {R, s + 1, k}-potent if it satisfies

RA = A*TIR. (4)

These matrices generalize centrosymmetric matrices (that is, matrices A € C™*™ such that
AJ = JA where J is the n x n antidiagonal matrix; see [13]), the matrices A € C"*" such
that AP = PA where P is an n X n permutation matrix (see [10]), and {K, s + 1}-potent
matrices (that is, matrices A € C"™" for which KAK = A™! where K? = I,,; see [7, [§]).
For a study of {R, s + 1, k}-potent matrices we refer the reader to [6] where, in particular,
the following characterization was given.

Theorem 1. [0, Theorem 1] Let R € C™*" be a {k}-involutory matriz, s € {1,2,3,...},
nsk = (s+1)" =1, and A € C*™™. Then the following conditions are equivalent:

2



70

(a) A is{R,s+ 1,k}-potent.

(b) Avis an {ng}-group involutory matriz and there exist disjoint projectors Py, Py, ..., P,

with

A:ijPj and ZPj:]m
j=1 Jj=0

271

Ns k

Y ns,k

where w = e"sk , and P; = O when w’ ¢ o(A) and Py = O when 0 ¢ o(A), and such

that the projectors Py, Py, ..., P, , satisfy

(1) For each i € {1,...,ns) — 1}, there exists a unique j € {1,...,ns, — 1} such

that RP,R™' = P;,
(i) RP, R~ =P, ,, and
(iii) RP,R™Y = P,

(c) A is diagonalizable and there exist disjoint projectors Py, Py, . ..

tions (i), (ii), and (iii) given in (b).

P, . satisfying condi-

y L ng g

In [9], a matrix group constructed from a given { K, s+ 1}-potent matrix was presented
and studied. The goal of this paper is to construct a matrix group corresponding to a given
{R, s+1, k}-potent matrix. We then reconcile this constructed group with the matrix group

G 4 given in (3)).

2 First results

In this section we assume s > 1. We now establish properties of {R,s + 1, k}-potent

matrices.

Lemma 1. Suppose that A € C™*" is an {R, s + 1, k}-potent matriz. Then the following

properties hold.
(a) ATV = A

(b) A#* = ATV =2 4nd the group projector AA* satisfies AA# = Al+D* =1,

(¢) (AGTDF =17 — AGHD* =1 for cpery 5 € {1,2,3,... }.

(d) RPAT = ATV RP for everyp € {1,2,...,k}, 5 € {1,2,..., (s+1)F—=1}. In particular,
RP and ASTV"1 commute, the matrices A7 are {R, s+ 1, k}-potent and A is {RP, (s +

1)? — 1, k}-potent.

(¢) (ATRPY™ — A+ =W+ -0 Rme  for cvery § € {1,2,.

{1,2,...,k}, me{1,2,...,k}. In particular,

(e)’ (A*R)™ = ATV =1R™ for every m € {1,2, ...

k).

s+ D=1}, p €
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(f) For every j,0 € {1,2,...,(s+1)* =1}, p,m € {1,2,...,k}, (AVRP)(A‘R™) = A" R¥,
where ¢! = (s + 1) + j [mod ((s + 1)* — 1)] and p’ = p + m [mod (k)].

(9) (ATRPYAGTD =1 — AGHD*-L(AIRPY = AIRP, for every j € {1,2,...,(s + 1)¥ — 1},
pe{l,2,....k}.

(h) For every j € {1,2,...,(s+ 1)k =1}, p € {1,2,...,k}, the following equalities hold:
(A'RFP)(ATRP) = (AJRP)(A'RFP) = AGTD"=1 where ( is the unique element of
{1,2,...,(s+ 1)k — 1} such that { = —j(s + 1)*P [mod ((s + 1)¥ — 1)].

(i) (AR)*s+1 = AR.
Proof. Statements (a) and (b) were proved in [6]. Using (a),

Y

(A(s+1)k71)2 — AGHDF g+ DF =2 _ g g(s+D)F -2 _ A(s+1)’“71

and now (c) follows by induction.
We next prove (d). First note that

RAR™' = Ast! (5)

implies RA7R™' = A7) for all j > 1. Thus, if A is {R,s + 1, k}-potent then so is A’
for all j > 1. In particular, let 7 = s+ 1. Then

RAIR™ = ACHD”, (6)

and () and @ gives RZAR™? = AG+tY’ By induction, RPAR™? = AGHY” for all p > 1.
Since for all j > 1, A7 is also {R, s + 1, k}-potent, it follows that RPA'R™P = A/ for
all 7 > 1 and all p > 1. This proves (d).

For (e), the equality is clear for m = 1. For m = 2, we have

(ARPY? = AIRPAIRP
_ WA R by (d)
_ QIO+ R2p.

The general case (A7 RP)™ = AIL+EHD (D)4 A+ D)7 pmp fo]lows by induction. The
identity [(s + 1)? — 1][(s + 1)~ VP 4 ... 4 (s + 1)P + 1] = (s + 1)™ — 1 yields the result.
For the proof of (e)’, it is enough to set j = s and p =1 in (e).

Statement (f) follows easily from (d). Next, by using (¢) and (d),

(AjRp)A(SH)’“l — AAGED 1 pp AT AGED P AI-1ARP — ATRP

for every j € {1,2,...,(s+1)* =1} and p € {1,2,...,k}. This proves one equality in (g).
The other equality can be directly shown as

AGTUS 14T RPY = Al 471 RP — ATRP.

4
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For the proof of (h), let j € {1,2,...,(s+ 1)* — 1}. By (d), there exists ¢ such that
(A'RF-P)(ATRP) = AGHD*1if and only if AHE+D? — AGHD*1 " This last equality
holds if and only if £ = —j(s + 1)*77 [mod ((s + 1)* — 1)]. Using this value of ¢ we can get
((s+1)P = —j(s+ 1)F [mod ((s + 1)¥ — 1)]. Now,

(AjRp)(AéRk—p> — AJ AU+ pp pk—p Aj(s+1)kA£(s+1)p _ Aj(s+1)’“+£(s+1)1’ _ A(s+1)k71,
which leads to (h). Observe that £ = —j(s + 1)*7? [mod ((s + 1)* — 1)] is equivalent to

j(s+1)kF = —l(s+ 1)? [mod ((s + 1) — 1)].
Finally, by setting j = p =1 and m = k in (e), we obtain

a1 ]? &
(AR = [(AR)*AR = {A“i} AR — AP UAR — AR,

where the last equality follows from (a). This proves statement (i), and completes the
proof of Lemma [I] O

3 Construction of the matrix group

Using Lemma , we construct, from a given {R, s + 1, k}-potent matrix, a matrix group
containing a cyclic subgroup of {R, s + 1, k}-potent matrices. Throughout this section we
assume s > 1.

Theorem 2. Suppose A € C™" is an {R, s+1, k}-potent matriz, and assume that A* # A’
for all distinct i,5 € {1,2,...,(s+ 1)k —1}. Then the set

G={ARr: je{l,2,....,(s+1)" =1}, pc{l,2,...,k}}
s a group under matrix multiplication, and the following statements hold.
(a) A is an element of order (s + 1)* — 1, and the set
Sy={A", je{1,2,...,(s+1)*—1}} (7)

is a cyclic subgroup of G. Moreover, Sy is the smallest (in the inclusion sense) subgroup
of G that contains A, A%, and AA¥.

(b) A*R and ACTV 1 RF-1 gre elements of order k of G.
(¢) (A*R)A(AR)F1 = A+,

(d) The set Sa is a normal subgroup of G and all its elements are {R,s + 1, k}-potent
matrices.

(e) The order of G is k((s +1)* — 1) and G is not commutative.
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Proof. Properties (f) — (h) in Lemma 1] show that G is a group under multiplication with
identity element AGTD*~1,

Statement (a) follows from properties (a) — (¢) in Lemma [If and the assumption that
the powers A’ are distinct for i € {1,2,...,(s+ 1)¥ — 1},

By setting m = k in property (e)’ in Lemma , we obtain (A°R)F = AGTD*~1On the
other hand, since AT~ and RF~! commute by property (d) in Lemma

st 1)k _ st 1)k s 1)F_
(A( +1) le l)k _ (A( +1) 1) (Rk) _ A( +1) 17

proving statement (b).
By setting m = k — 1 in property (e)’ in Lemma [l we obtain

(ASR)A(ASR) ASRA(S+1 Rk 1 ASA(S-l—l)k*l(s—i—l)RRk—l e

proving statement (c).

For the proof of statement (d), let j,t € {1,2,...,(s+ 1)* =1}, p € {1,2,...,k}, and
¢ e{1,2,...,(s+1)* — 1} such that j(s + 1)* = —£(s + 1)? [mod ((s + 1)* — 1)]. Using
property (d) of Lemma [I} we obtain

(AjRp)At(Aszip) A]At (s+1) RpAZRk D __ A]At(erl)pAE(erl)pRka D __ At(erl)p.

Hence, S4 is a normal subgroup of G, and by setting p = 1 in property (d) in Lemma
we find that the elements of S are {R, s + 1, k}-potent matrices.

For the proof of statement (e), we show that the elements A7RP, j € {1,...,(s+1)*—1}
and p € {1,...,k}, are pairwise distinct.

First we show that for fixedp € {1,...,k—1}, ARP # A’ forany j € {1,..., (s+1)*—1}.
Otherwise, ARPA = A/*!, and using property (d) in Lemmal[l} A(R?A) = A(ACHD’ RP) =
Al+DP (AR”) = AGHD™ - But then, AIT! = AGHDPH contradicting the assumption
that the powers A’ are pairwise distinct for ¢ € {1,...,(s + 1)* — 1}. Next, since for
pe{l,....k—1}, ARP # AJ for any j € {1,...,(s+ 1)¥ — 1}, it follows that for any ¢ €
{1,2,...,(s+1)*~1}andp e {1,...,k—1}, A°RP £ Al forany j € {1,2,...,(s+1)"—1}.
Finally, if A7RP = A‘R™ for some j, ¢ € {1,2,...,(s +1)* — 1} and p,m € {1,...,k}
with (j,p) # (¢, m), then A7RP~™ = A*, Contradlctlng the previous assertion. Thus, the
elements ATRP, j € {1,...,(s+1)*—1} and p € {1,...,k}, are pairwise distinct, and the
order of G is k[(s + 1)* — 1]. In order to show that G is not commutative, it is enough to
see that (AR)(ASTIRF-1) = (ASH1RF1)(AR) gives AGTD L — AG+D" s+l which leads
to a contradiction. O

Theorem 3.1 (e) in [9] states that for a { K, s+ 1}-potent matrix, the associated matrix
group G either has order (s + 1)? — 1 and is commutative, or has order 2((s +1)? — 1) and
is not commutative; Theorem [2] (¢) now asserts that the former case does not occur.

We have shown that A, A%, and AA# belong to S4. Is I, — AA# also an element of
the group G?
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Proposition 1. If A € C"" is a nonzero {R, s + 1, k}-potent matriz then the eigenpro-
jection at zero does not belong to G, that is,

I, — AA* ¢ G.

Proof. If we suppose that I, — AA# € G then there exist j € {1,2,...,(s+ 1)* -1}, p €
{1,2,...,k} such that I, — AA# = A/RP. Pre-multiplying by A we get A7™! = O, that is,
A is nilpotent. Since A is diagonalizable, we arrive at A = O, which is a contradiction. [

Let H be the set defined by
H={ACT"Rr . e {1,2,... k}}.

Then under matrix multiplication, H is a cyclic subgroup of GG that is not normal because
if g= AT 2 and h = ATV IRe for p € {1,2...,k — 1} then ghg™' ¢ H.

Corollary 1. The group G is a semidirect product of H acting on Sa.

Proof. Every element A’RP of G can be written as a product of an element of S, and
an element of H as ATRP = AJ(AGHD"~1RP) and this representation is unique. This
uniqueness follows from the fact that G has order k((s + 1)F — 1). O

Observe that H ~ Zj, Sa =~ Z1yx—1, and another way to see that G is isomorphic
to a semidirect product of Zj acting on Zqyx_; is by considering its representation in
the form (a,b|a® = e, 0" = e,aba = b™) where m,r are coprime. Here r = (s + 1)¥ — 1,
a=AR, b=A m=s+1.

Moreover, notice that the result presented in Corollary [1| describes the quotient group
G/Sy4. In fact, the natural embedding ¢ : H < G, composed with the natural projection
7w : G — (G/Sy, gives an isomorphism between G/S4 and H, which is represented in (§]).

G—>G/Sa (8)

1A

H

We next reconcile the matrix group G given in Theorem [2| that is constructed from an
{R,s+ 1,k}-potent matrix A, and the matrix group G4 given in (3). We begin with the
following lemma.

Lemma 2. Suppose that R € C"*" is {k}-involutory, s € {1,2,3,...}, and A € C"™™™ has
rank r > 0. Then A is {R,s+ 1, k}-potent if and only if there exists a nonsingular matriz
P e C™" such that

o [c o7 .. _[R 017 ..
A_PL)O]P, R_P{O &]P, (9)

where Ry € C™7, Ry € Cv=X(=") gre {k}-involutory, and C € C™" is nonsingular and
{Ry,s + 1, k}-potent.
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Proof. Suppose that A is {R, s + 1, k}-potent. Then A has index at most 1 and so it has
the form

B C O 1
1=r[S 9]pm "
where C' € C"™" is nonsingular. We now partition R conformable to A as follows
_ Ry Rs —1
R—P{R4 R2:|P . (11)

Using expressions and we have that

C*t'R, C*"'R
s+1 _ 1 3 —1
ATR=P { 0 0 } P
and Cc O
- Ry -1
RA=P { R.C O } P

Equating blocks,
C*"'R, = R,C, C*™Ry = O, and R,C = O.

Since C' is nonsingular, R3 = O, Ry = O, and so

R 07,
ner[® 0]

Using R* = I,,, this last expression implies that R; and Ry are both {k}-involutory. Hence,
Cis {Ry,s + 1, k}-potent.
The converse is trivial. O]

Recall that the elements of G4 have a canonical form as given in (3)).

Theorem 3. Suppose A € C"*" is an { R, s+1, k}-potent matriz, and suppose that A* # A’
for all pairwise distinct i,j € {1,2,...,(s+ 1)* —1}. If A and R are expressed as in (@
then

j PP
G:{p{cé% g}P1:je{LZ”w@+1f—1Lpe{LZ”wH}.

Moreover, G is a subgroup of G 4.

Proof. The description of the elements of G follows from Theorem [2] and Lemma [ It is
clear that G C G 4. Since C'is {R1, s + 1, k}-potent, G is closed, hence G is a subgroup of
Ga. O
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4 Final remarks: the case s =0

For the case s = 0 in , the matrix A satisfies AR = RA where R* = I,. Notice that
property (a)) in Lemma [I] does not give any information. However, if there exists some
positive integer ¢ such that A" = A and ¢ is the smallest positive integer satisfying this
property, then we can construct the group G = {A'RP.j € {1,2,...,t}, pe {1,2,... k}}
having similar properties as in the case s > 1. If such an integer ¢t does not exist, it is
impossible to construct the corresponding group, as the following example shows.

Example 1. Consider the matrices

cos(a) sin(a) 0 0 -1 0
A= | —sin(a) cos(a) 0 and R=|1 0 0],
0 0 2 0 01
for some a € R, we have that R* = I3, AR = RA and
cos(ma) sin(ma) 0
A™ = | —sin(ma) cos(ma) 0 for all m > 2.
0 0 2m

In general, when s = 0 there is no relation between the existence of the group inverse of
A and of A being {R, 1, k}-potent. In Example (1| we have a {R, 1, 4}-potent matrix that is
nonsingular whereas in Example 2 below the given {R, 1, 4}-potent matrix does not have
a group inverse.

Example 2. Consider the matrices

A:

O O =
o O O
O = O

7
and R=10
0

O = O
_ o O

In this case, AR = RA, R* = I3, but the group inverse of A does not exist.
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