On a matrix group constructed from an $\{R, s+1, k\}$-potent matrix

Minerva Catral ${ }^{*}$ Leila Lebtahi ${ }^{\dagger}$ Jeffrey Stuart ${ }^{\ddagger}$ Néstor Thome ${ }^{\dagger}$

April 4, 2014

Abstract

For a $\{k\}$-involutory matrix $R \in \mathbb{C}^{n \times n}$ (that is, $R^{k}=I_{n}$) and $s \in\{0,1,2,3, \ldots\}$, a matrix $A \in \mathbb{C}^{n \times n}$ is called $\{R, s+1, k\}$-potent if A satisfies $R A=A^{s+1} R$. In this paper, a matrix group corresponding to a fixed $\{R, s+1, k\}$-potent matrix is explicitly constructed and properties of this group are derived and investigated. This constructed group is then reconciled with the classical matrix group G_{A} that is associated with a generalized group invertible matrix A.

Keywords: $\{R, s+1, k\}$-potent matrix; group inverse; matrix group.
AMS subject classification: Primary: 15A09; Secondary: 15A21

1 Introduction

For a matrix $A \in \mathbb{C}^{n \times n}$, the group inverse, if it exists, is the unique matrix $A^{\#}$ satisfying the matrix equations

$$
\begin{equation*}
A A^{\#} A=A, \quad A^{\#} A A^{\#}=A^{\#}, A A^{\#}=A^{\#} A \tag{1}
\end{equation*}
$$

It is well known that $A^{\#}$ exists if and only if rank $A^{2}=\operatorname{rank} A$. Further information on group inverses and their applications can be found in 4, and a collection of results on the importance of group inverses of certain classes of singular matrices in several application areas can be found in the recent book [5]. Theorem 7.2 .5 in [4, pp. 124] states that a
*Department of Mathematics and Computer Science, Xavier University, Cincinnati, OH 45207, USA. E-mail: catralm@xavier.edu.
${ }^{\dagger}$ Instituto Universitario de Matemática Multidiscilpinar. Universitat Politècnica de València. E-46022 Valencia, Spain. E-mail: \{leilebep, njthome\}@mat.upv.es. This work has been partially supported by Ministerio de Economía y Competitividad of Spain, grant DGI MTM2010-18228.
${ }^{\ddagger}$ Department of Mathematics, Pacific Lutheran University, Tacoma, WA 98447, USA. E-mail: jeffrey.stuart@plu.edu.
square matrix A of rank $r>0$ belongs to a (multiplicative) matrix group G_{A} if and only if $\operatorname{rank} A^{2}=\operatorname{rank} A$. In this case, $A \in \mathbb{C}^{n \times n}$ has the canonical form

$$
A=P\left[\begin{array}{ll}
C & O \tag{2}\\
O & O
\end{array}\right] P^{-1}
$$

where $P \in \mathbb{C}^{n \times n}$ and $C \in \mathbb{C}^{r \times r}$ are nonsingular matrices. The matrix group G_{A} corresponding to A is then given by

$$
G_{A}=\left\{P\left[\begin{array}{cc}
X & O \tag{3}\\
O & O
\end{array}\right] P^{-1}: X \in \mathbb{C}^{r \times r}, \operatorname{rank}(X)=r\right\}
$$

The identity element in G_{A} is

$$
E=P\left[\begin{array}{ll}
I_{r} & O \\
O & O
\end{array}\right] P^{-1}
$$

where $I_{r} \in \mathbb{C}^{r \times r}$ is the identity matrix, and the inverse of A in this group is

$$
A^{g}=P\left[\begin{array}{cc}
C^{-1} & O \\
O & O
\end{array}\right] P^{-1}
$$

Some results related to matrix groups on nonnegative matrices can be found in [1].
Note that the inverse A^{g} of A in G_{A} satisfies the matrix equations in (1), and by uniqueness, $A^{g}=A^{\#}$; the identity element E in G_{A} satisfies $E=A A^{\#}=A^{\#} A$.

For $p \in\{2,3, \ldots\}$, a matrix A is called $\{p\}$-group involutory if the group inverse of A exists and satisfies $A^{\#}=A^{p-1}$; in such a case, an equivalent condition is that $A^{p+1}=A$ (see [2, 3]).

Throughout this paper we will use matrices $R \in \mathbb{C}^{n \times n}$ such that $R^{k}=I_{n}$ where $k \in$ $\{2,3,4, \ldots\}$. These matrices R are called $\{k\}$-involutory [11, 12, 14], and they generalize the well-studied involutory matrices $(k=2)$. Note that the definition given in [11, 12] differs from that in [14]; in this paper we adopt the definition given in [14], namely that R is $\{k\}$-involutory does not require that k be minimal with respect to $R^{k}=I$.

Let $R \in \mathbb{C}^{n \times n}$ be a $\{k\}$-involutory matrix and $s \in\{0,1,2,3, \ldots\}$. A matrix $A \in \mathbb{C}^{n \times n}$ is called $\{R, s+1, k\}$-potent if it satisfies

$$
\begin{equation*}
R A=A^{s+1} R . \tag{4}
\end{equation*}
$$

These matrices generalize centrosymmetric matrices (that is, matrices $A \in \mathbb{C}^{n \times n}$ such that $A J=J A$ where J is the $n \times n$ antidiagonal matrix; see [13]), the matrices $A \in \mathbb{C}^{n \times n}$ such that $A P=P A$ where P is an $n \times n$ permutation matrix (see [10]), and $\{K, s+1\}$-potent matrices (that is, matrices $A \in \mathbb{C}^{n \times n}$ for which $K A K=A^{s+1}$ where $K^{2}=I_{n}$; see [7, 8]). For a study of $\{R, s+1, k\}$-potent matrices we refer the reader to [6] where, in particular, the following characterization was given.

Theorem 1. [6, Theorem 1] Let $R \in \mathbb{C}^{n \times n}$ be a $\{k\}$-involutory matrix, $s \in\{1,2,3, \ldots\}$, $n_{s, k}=(s+1)^{k}-1$, and $A \in \mathbb{C}^{n \times n}$. Then the following conditions are equivalent:
(a) A is $\{R, s+1, k\}$-potent.
(b) A is an $\left\{n_{s, k}\right\}$-group involutory matrix and there exist disjoint projectors $P_{0}, P_{1}, \ldots, P_{n_{s, k}}$ with

$$
A=\sum_{j=1}^{n_{s, k}} \omega^{j} P_{j} \quad \text { and } \quad \sum_{j=0}^{n_{s, k}} P_{j}=I_{n}
$$

where $\omega=e^{\frac{2 \pi i}{n_{s, k}}}$, and $P_{j}=O$ when $\omega^{j} \notin \sigma(A)$ and $P_{0}=O$ when $0 \notin \sigma(A)$, and such that the projectors $P_{0}, P_{1}, \ldots, P_{n_{s, k}}$ satisfy
(i) For each $i \in\left\{1, \ldots, n_{s, k}-1\right\}$, there exists a unique $j \in\left\{1, \ldots, n_{s, k}-1\right\}$ such that $R P_{i} R^{-1}=P_{j}$,
(ii) $R P_{n_{s, k}} R^{-1}=P_{n_{s, k}}$, and
(iii) $R P_{0} R^{-1}=P_{0}$.
(c) A is diagonalizable and there exist disjoint projectors $P_{0}, P_{1}, \ldots, P_{n_{s, k}}$ satisfying conditions (i), (ii), and (iii) given in (b).

In [9], a matrix group constructed from a given $\{K, s+1\}$-potent matrix was presented and studied. The goal of this paper is to construct a matrix group corresponding to a given $\{R, s+1, k\}$-potent matrix. We then reconcile this constructed group with the matrix group G_{A} given in (3).

2 First results

In this section we assume $s \geq 1$. We now establish properties of $\{R, s+1, k\}$-potent matrices.

Lemma 1. Suppose that $A \in \mathbb{C}^{n \times n}$ is an $\{R, s+1, k\}$-potent matrix. Then the following properties hold.
(a) $A^{(s+1)^{k}}=A$.
(b) $A^{\#}=A^{(s+1)^{k}-2}$ and the group projector $A A^{\#}$ satisfies $A A^{\#}=A^{(s+1)^{k}-1}$.
(c) $\left(A^{(s+1)^{k}-1}\right)^{j}=A^{(s+1)^{k}-1}$ for every $j \in\{1,2,3, \ldots\}$.
(d) $R^{p} A^{j}=A^{j(s+1)^{p}} R^{p}$ for every $p \in\{1,2, \ldots, k\}, j \in\left\{1,2, \ldots,(s+1)^{k}-1\right\}$. In particular, R^{p} and $A^{(s+1)^{k}-1}$ commute, the matrices A^{j} are $\{R, s+1, k\}$-potent and A is $\left\{R^{p},(s+\right.$ $\left.1)^{p}-1, k\right\}$-potent.
(e) $\left(A^{j} R^{p}\right)^{m}=A^{j\left[(s+1)^{m p}-1\right] /\left[(s+1)^{p}-1\right]} R^{m p}$, for every $j \in\left\{1,2, \ldots,(s+1)^{k}-1\right\}, p \in$ $\{1,2, \ldots, k\}, m \in\{1,2, \ldots, k\}$. In particular,
(e) ${ }^{\prime}\left(A^{s} R\right)^{m}=A^{(s+1)^{m}-1} R^{m}$ for every $m \in\{1,2, \ldots, k\}$.
(f) For every $j, \ell \in\left\{1,2, \ldots,(s+1)^{k}-1\right\}, p, m \in\{1,2, \ldots, k\},\left(A^{j} R^{p}\right)\left(A^{\ell} R^{m}\right)=A^{\ell^{\prime}} R^{p^{\prime}}$, where $\ell^{\prime} \equiv \ell(s+1)^{p}+j\left[\bmod \left((s+1)^{k}-1\right)\right]$ and $p^{\prime} \equiv p+m[\bmod (k)]$.
(g) $\left(A^{j} R^{p}\right) A^{(s+1)^{k}-1}=A^{(s+1)^{k}-1}\left(A^{j} R^{p}\right)=A^{j} R^{p}$, for every $j \in\left\{1,2, \ldots,(s+1)^{k}-1\right\}$, $p \in\{1,2, \ldots, k\}$.
(h) For every $j \in\left\{1,2, \ldots,(s+1)^{k}-1\right\}, p \in\{1,2, \ldots, k\}$, the following equalities hold: $\left(A^{\ell} R^{k-p}\right)\left(A^{j} R^{p}\right)=\left(A^{j} R^{p}\right)\left(A^{\ell} R^{k-p}\right)=A^{(s+1)^{k}-1}$, where ℓ is the unique element of $\left\{1,2, \ldots,(s+1)^{k}-1\right\}$ such that $\ell \equiv-j(s+1)^{k-p}\left[\bmod \left((s+1)^{k}-1\right)\right]$.
(i) $(A R)^{k s+1}=A R$.

Proof. Statements (a) and (b) were proved in 6]. Using (a),

$$
\left(A^{(s+1)^{k}-1}\right)^{2}=A^{(s+1)^{k}} A^{(s+1)^{k}-2}=A A^{(s+1)^{k}-2}=A^{(s+1)^{k}-1}
$$

and now (c) follows by induction.
We next prove (d). First note that

$$
\begin{equation*}
R A R^{-1}=A^{s+1} \tag{5}
\end{equation*}
$$

implies $R A^{j} R^{-1}=A^{j(s+1)}$, for all $j \geq 1$. Thus, if A is $\{R, s+1, k\}$-potent then so is A^{j} for all $j \geq 1$. In particular, let $j=s+1$. Then

$$
\begin{equation*}
R A^{s+1} R^{-1}=A^{(s+1)^{2}} \tag{6}
\end{equation*}
$$

and (5) and (6) gives $R^{2} A R^{-2}=A^{(s+1)^{2}}$. By induction, $R^{p} A R^{-p}=A^{(s+1)^{p}}$ for all $p \geq 1$. Since for all $j>1, A^{j}$ is also $\{R, s+1, k\}$-potent, it follows that $R^{p} A^{j} R^{-p}=A^{j(s+1)^{p}}$ for all $j \geq 1$ and all $p \geq 1$. This proves (d).

For (e), the equality is clear for $m=1$. For $m=2$, we have

$$
\begin{aligned}
\left(A^{j} R^{p}\right)^{2} & =A^{j} R^{p} A^{j} R^{p} \\
& =A^{j} A^{j(s+1)^{p}} R^{2 p}, \text { by }(d) \\
& =A^{j\left(1+(s+1)^{p}\right)} R^{2 p} .
\end{aligned}
$$

The general case $\left(A^{j} R^{p}\right)^{m}=A^{j\left[1+(s+1)^{p}+(s+1)^{2 p}+\ldots+(s+1)^{(m-1) p}\right]} R^{m p}$ follows by induction. The identity $\left[(s+1)^{p}-1\right]\left[(s+1)^{(m-1) p}+\cdots+(s+1)^{p}+1\right]=(s+1)^{m p}-1$ yields the result. For the proof of $(e)^{\prime}$, it is enough to set $j=s$ and $p=1$ in (e).

Statement (f) follows easily from (d). Next, by using (c) and (d),

$$
\left(A^{j} R^{p}\right) A^{(s+1)^{k}-1}=A^{j} A^{(s+1)^{k}-1} R^{p}=A^{j-1} A^{(s+1)^{k}} R^{p}=A^{j-1} A R^{p}=A^{j} R^{p}
$$

for every $j \in\left\{1,2, \ldots,(s+1)^{k}-1\right\}$ and $p \in\{1,2, \ldots, k\}$. This proves one equality in (g). The other equality can be directly shown as

$$
A^{(s+1)^{k}-1}\left(A^{j} R^{p}\right)=A^{(s+1)^{k}} A^{j-1} R^{p}=A^{j} R^{p} .
$$

For the proof of (h), let $j \in\left\{1,2, \ldots,(s+1)^{k}-1\right\}$. By (d), there exists ℓ such that $\left(A^{\ell} R^{k-p}\right)\left(A^{j} R^{p}\right)=A^{(s+1)^{k}-1}$ if and only if $A^{\ell+j(s+1)^{k-p}}=A^{(s+1)^{k}-1}$. This last equality holds if and only if $\ell \equiv-j(s+1)^{k-p}\left[\bmod \left((s+1)^{k}-1\right)\right]$. Using this value of ℓ we can get $\ell(s+1)^{p} \equiv-j(s+1)^{k}\left[\bmod \left((s+1)^{k}-1\right)\right]$. Now,

$$
\left(A^{j} R^{p}\right)\left(A^{\ell} R^{k-p}\right)=A^{j} A^{\ell(s+1)^{p}} R^{p} R^{k-p}=A^{j(s+1)^{k}} A^{\ell(s+1)^{p}}=A^{j(s+1)^{k}+\ell(s+1)^{p}}=A^{(s+1)^{k}-1},
$$

which leads to (h). Observe that $\ell \equiv-j(s+1)^{k-p}\left[\bmod \left((s+1)^{k}-1\right)\right]$ is equivalent to $j(s+1)^{k} \equiv-\ell(s+1)^{p}\left[\bmod \left((s+1)^{k}-1\right)\right]$.

Finally, by setting $j=p=1$ and $m=k$ in (e), we obtain

$$
(A R)^{k s+1}=\left[(A R)^{k}\right]^{s} A R=\left[A^{\frac{(s+1)^{k}-1}{s}}\right]^{s} A R=A^{(s+1)^{k}-1} A R=A R
$$

where the last equality follows from (a). This proves statement (i), and completes the proof of Lemma 1 .

3 Construction of the matrix group

Using Lemma 1, we construct, from a given $\{R, s+1, k\}$-potent matrix, a matrix group containing a cyclic subgroup of $\{R, s+1, k\}$-potent matrices. Throughout this section we assume $s \geq 1$.

Theorem 2. Suppose $A \in \mathbb{C}^{n \times n}$ is an $\{R, s+1, k\}$-potent matrix, and assume that $A^{i} \neq A^{j}$ for all distinct $i, j \in\left\{1,2, \ldots,(s+1)^{k}-1\right\}$. Then the set

$$
G=\left\{A^{j} R^{p}: j \in\left\{1,2, \ldots,(s+1)^{k}-1\right\}, p \in\{1,2, \ldots, k\}\right\}
$$

is a group under matrix multiplication, and the following statements hold.
(a) A is an element of order $(s+1)^{k}-1$, and the set

$$
\begin{equation*}
S_{A}=\left\{A^{j}, j \in\left\{1,2, \ldots,(s+1)^{k}-1\right\}\right\} \tag{7}
\end{equation*}
$$

is a cyclic subgroup of G. Moreover, S_{A} is the smallest (in the inclusion sense) subgroup of G that contains $A, A^{\#}$, and $A A^{\#}$.
(b) $A^{s} R$ and $A^{(s+1)^{k}-1} R^{k-1}$ are elements of order k of G.
(c) $\left(A^{s} R\right) A\left(A^{s} R\right)^{k-1}=A^{s+1}$.
(d) The set S_{A} is a normal subgroup of G and all its elements are $\{R, s+1, k\}$-potent matrices.
(e) The order of G is $k\left((s+1)^{k}-1\right)$ and G is not commutative.

Proof. Properties $(f)-(h)$ in Lemma 1 show that G is a group under multiplication with identity element $A^{(s+1)^{k}-1}$.

Statement (a) follows from properties $(a)-(c)$ in Lemma 1 and the assumption that the powers A^{i} are distinct for $i \in\left\{1,2, \ldots,(s+1)^{k}-1\right\}$.

By setting $m=k$ in property $(e)^{\prime}$ in Lemma 1, we obtain $\left(A^{s} R\right)^{k}=A^{(s+1)^{k}-1}$. On the other hand, since $A^{(s+1)^{k}-1}$ and R^{k-1} commute by property (d) in Lemma 1 .

$$
\left(A^{(s+1)^{k}-1} R^{k-1}\right)^{k}=\left(A^{(s+1)^{k}-1}\right)^{k}\left(R^{k}\right)^{k-1}=A^{(s+1)^{k}-1}
$$

proving statement (b).
By setting $m=k-1$ in property $(e)^{\prime}$ in Lemma 1, we obtain

$$
\left(A^{s} R\right) A\left(A^{s} R\right)^{k-1}=A^{s} R A^{(s+1)^{k-1}} R^{k-1}=A^{s} A^{(s+1)^{k-1}(s+1)} R R^{k-1}=A^{s+1} .
$$

proving statement (c).
For the proof of statement (d), let $j, t \in\left\{1,2, \ldots,(s+1)^{k}-1\right\}, p \in\{1,2, \ldots, k\}$, and $\ell \in\left\{1,2, \ldots,(s+1)^{k}-1\right\}$ such that $j(s+1)^{k} \equiv-\ell(s+1)^{p}\left[\bmod \left((s+1)^{k}-1\right)\right]$. Using property (d) of Lemma 1, we obtain

$$
\left(A^{j} R^{p}\right) A^{t}\left(A^{\ell} R^{k-p}\right)=A^{j} A^{t(s+1)^{p}} R^{p} A^{\ell} R^{k-p}=A^{j} A^{t(s+1)^{p}} A^{\ell(s+1)^{p}} R^{p} R^{k-p}=A^{t(s+1)^{p}} .
$$

Hence, S_{A} is a normal subgroup of G, and by setting $p=1$ in property (d) in Lemma 1 , we find that the elements of S_{A} are $\{R, s+1, k\}$-potent matrices.

For the proof of statement (e), we show that the elements $A^{j} R^{p}, j \in\left\{1, \ldots,(s+1)^{k}-1\right\}$ and $p \in\{1, \ldots, k\}$, are pairwise distinct.

First we show that for fixed $p \in\{1, \ldots, k-1\}, A R^{p} \neq A^{j}$ for any $j \in\left\{1, \ldots,(s+1)^{k}-1\right\}$. Otherwise, $A R^{p} A=A^{j+1}$, and using property (d) in Lemma 1, $A\left(R^{p} A\right)=A\left(A^{(s+1)^{p}} R^{p}\right)=$ $A^{(s+1)^{p}}\left(A R^{p}\right)=A^{(s+1)^{p}+j}$. But then, $A^{j+1}=A^{(s+1)^{p}+j}$, contradicting the assumption that the powers A^{i} are pairwise distinct for $i \in\left\{1, \ldots,(s+1)^{k}-1\right\}$. Next, since for $p \in\{1, \ldots, k-1\}, A R^{p} \neq A^{j}$ for any $j \in\left\{1, \ldots,(s+1)^{k}-1\right\}$, it follows that for any $\ell \in$ $\left\{1,2, \ldots,(s+1)^{k}-1\right\}$ and $p \in\{1, \ldots, k-1\}, A^{\ell} R^{p} \neq A^{j}$ for any $j \in\left\{1,2, \ldots,(s+1)^{k}-1\right\}$. Finally, if $A^{j} R^{p}=A^{\ell} R^{m}$ for some $j, \ell \in\left\{1,2, \ldots,(s+1)^{k}-1\right\}$ and $p, m \in\{1, \ldots, k\}$ with $(j, p) \neq(\ell, m)$, then $A^{j} R^{p-m}=A^{\ell}$, contradicting the previous assertion. Thus, the elements $A^{j} R^{p}, j \in\left\{1, \ldots,(s+1)^{k}-1\right\}$ and $p \in\{1, \ldots, k\}$, are pairwise distinct, and the order of G is $k\left[(s+1)^{k}-1\right]$. In order to show that G is not commutative, it is enough to see that $(A R)\left(A^{s+1} R^{k-1}\right)=\left(A^{s+1} R^{k-1}\right)(A R)$ gives $A^{(s+1)^{2}+1}=A^{(s+1)^{k-1}+s+1}$ which leads to a contradiction.

Theorem 3.1 (e) in [9] states that for a $\{K, s+1\}$-potent matrix, the associated matrix group G either has order $(s+1)^{2}-1$ and is commutative, or has order $2\left((s+1)^{2}-1\right)$ and is not commutative; Theorem 2 (e) now asserts that the former case does not occur.

We have shown that $A, A^{\#}$, and $A A^{\#}$ belong to S_{A}. Is $I_{n}-A A^{\#}$ also an element of the group G ?

Proposition 1. If $A \in \mathbb{C}^{n \times n}$ is a nonzero $\{R, s+1, k\}$-potent matrix then the eigenprojection at zero does not belong to G, that is,

$$
I_{n}-A A^{\#} \notin G
$$

Proof. If we suppose that $I_{n}-A A^{\#} \in G$ then there exist $j \in\left\{1,2, \ldots,(s+1)^{k}-1\right\}, p \in$ $\{1,2, \ldots, k\}$ such that $I_{n}-A A^{\#}=A^{j} R^{p}$. Pre-multiplying by A we get $A^{j+1}=O$, that is, A is nilpotent. Since A is diagonalizable, we arrive at $A=O$, which is a contradiction.

Let H be the set defined by

$$
H=\left\{A^{(s+1)^{k}-1} R^{p}: p \in\{1,2, \ldots, k\}\right\} .
$$

Then under matrix multiplication, H is a cyclic subgroup of G that is not normal because if $g=A^{(s+1)^{k}-2}$ and $h=A^{(s+1)^{k}-1} R^{p}$ for $p \in\{1,2 \ldots, k-1\}$ then $g h g^{-1} \notin H$.

Corollary 1. The group G is a semidirect product of H acting on S_{A}.

Proof. Every element $A^{j} R^{p}$ of G can be written as a product of an element of S_{A} and an element of H as $A^{j} R^{p}=A^{j}\left(A^{(s+1)^{k}-1} R^{p}\right)$ and this representation is unique. This uniqueness follows from the fact that G has order $k\left((s+1)^{k}-1\right)$.

Observe that $H \simeq \mathbb{Z}_{k}, S_{A} \simeq \mathbb{Z}_{(s+1)^{k}-1}$, and another way to see that G is isomorphic to a semidirect product of \mathbb{Z}_{k} acting on $\mathbb{Z}_{(s+1)^{k}-1}$ is by considering its representation in the form $\left\langle a, b \mid a^{k}=e, b^{r}=e, a b a=b^{m}\right\rangle$ where m, r are coprime. Here $r=(s+1)^{k}-1$, $a=A^{s} R, b=A, m=s+1$.

Moreover, notice that the result presented in Corollary 1 describes the quotient group G / S_{A}. In fact, the natural embedding $\iota: H \hookrightarrow G$, composed with the natural projection $\pi: G \rightarrow G / S_{A}$, gives an isomorphism between G / S_{A} and H, which is represented in (8).

We next reconcile the matrix group G given in Theorem 2 that is constructed from an $\{R, s+1, k\}$-potent matrix A, and the matrix group G_{A} given in (3). We begin with the following lemma.

Lemma 2. Suppose that $R \in \mathbb{C}^{n \times n}$ is $\{k\}$-involutory, $s \in\{1,2,3, \ldots\}$, and $A \in \mathbb{C}^{n \times n}$ has rank $r>0$. Then A is $\{R, s+1, k\}$-potent if and only if there exists a nonsingular matrix $P \in \mathbb{C}^{n \times n}$ such that

$$
A=P\left[\begin{array}{cc}
C & O \tag{9}\\
O & O
\end{array}\right] P^{-1}, \quad R=P\left[\begin{array}{cc}
R_{1} & O \\
O & R_{2}
\end{array}\right] P^{-1}
$$

where $R_{1} \in \mathbb{C}^{r \times r}, R_{2} \in \mathbb{C}^{(n-r) \times(n-r)}$ are $\{k\}$-involutory, and $C \in \mathbb{C}^{r \times r}$ is nonsingular and $\left\{R_{1}, s+1, k\right\}$-potent.

Proof. Suppose that A is $\{R, s+1, k\}$-potent. Then A has index at most 1 and so it has the form

$$
A=P\left[\begin{array}{ll}
C & O \tag{10}\\
O & O
\end{array}\right] P^{-1}
$$

where $C \in \mathbb{C}^{r \times r}$ is nonsingular. We now partition R conformable to A as follows

$$
R=P\left[\begin{array}{ll}
R_{1} & R_{3} \tag{11}\\
R_{4} & R_{2}
\end{array}\right] P^{-1}
$$

Using expressions (10) and (11) we have that

$$
A^{s+1} R=P\left[\begin{array}{cc}
C^{s+1} R_{1} & C^{s+1} R_{3} \\
O & O
\end{array}\right] P^{-1}
$$

and

$$
R A=P\left[\begin{array}{ll}
R_{1} C & O \\
R_{4} C & O
\end{array}\right] P^{-1}
$$

Equating blocks,

$$
C^{s+1} R_{1}=R_{1} C, \quad C^{s+1} R_{3}=O, \quad \text { and } \quad R_{4} C=O .
$$

Since C is nonsingular, $R_{3}=O, R_{4}=O$, and so

$$
R=P\left[\begin{array}{cc}
R_{1} & O \\
O & R_{2}
\end{array}\right] P^{-1}
$$

Using $R^{k}=I_{n}$, this last expression implies that R_{1} and R_{2} are both $\{k\}$-involutory. Hence, C is $\left\{R_{1}, s+1, k\right\}$-potent.

The converse is trivial.
Recall that the elements of G_{A} have a canonical form as given in (3).
Theorem 3. Suppose $A \in \mathbb{C}^{n \times n}$ is an $\{R, s+1, k\}$-potent matrix, and suppose that $A^{i} \neq A^{j}$ for all pairwise distinct $i, j \in\left\{1,2, \ldots,(s+1)^{k}-1\right\}$. If A and R are expressed as in (9) then

$$
G=\left\{P\left[\begin{array}{cc}
C^{j} R_{1}^{p} & O \\
O & O
\end{array}\right] P^{-1}: j \in\left\{1,2, \ldots,(s+1)^{k}-1\right\}, p \in\{1,2, \ldots, k\}\right\}
$$

Moreover, G is a subgroup of G_{A}.
Proof. The description of the elements of G follows from Theorem 2 and Lemma 2. It is clear that $G \subseteq G_{A}$. Since C is $\left\{R_{1}, s+1, k\right\}$-potent, G is closed, hence G is a subgroup of G_{A}.

4 Final remarks: the case $s=0$

For the case $s=0$ in (4), the matrix A satisfies $A R=R A$ where $R^{k}=I_{n}$. Notice that property (a) in Lemma 1 does not give any information. However, if there exists some positive integer t such that $A^{t+1}=A$ and t is the smallest positive integer satisfying this property, then we can construct the group $G=\left\{A^{j} R^{p}, j \in\{1,2, \ldots, t\}, p \in\{1,2, \ldots, k\}\right\}$ having similar properties as in the case $s \geq 1$. If such an integer t does not exist, it is impossible to construct the corresponding group, as the following example shows.

Example 1. Consider the matrices

$$
A=\left[\begin{array}{rcc}
\cos (\alpha) & \sin (\alpha) & 0 \\
-\sin (\alpha) & \cos (\alpha) & 0 \\
0 & 0 & 2
\end{array}\right] \quad \text { and } \quad R=\left[\begin{array}{rrr}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

for some $\alpha \in \mathbb{R}$, we have that $R^{4}=I_{3}, A R=R A$ and

$$
A^{m}=\left[\begin{array}{rcc}
\cos (m \alpha) & \sin (m \alpha) & 0 \\
-\sin (m \alpha) & \cos (m \alpha) & 0 \\
0 & 0 & 2^{m}
\end{array}\right] \quad \text { for all } m \geq 2 .
$$

In general, when $s=0$ there is no relation between the existence of the group inverse of A and of A being $\{R, 1, k\}$-potent. In Example 1 we have a $\{R, 1,4\}$-potent matrix that is nonsingular whereas in Example 2 below the given $\{R, 1,4\}$-potent matrix does not have a group inverse.

Example 2. Consider the matrices

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \quad \text { and } \quad R=\left[\begin{array}{ccc}
i & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

In this case, $A R=R A, R^{4}=I_{3}$, but the group inverse of A does not exist.

References

[1] A.N. Alahmadi, Y. Alkhamees, S.K. Jain. On semigroups and semirings of nonnegative matrices, Linear and Multilinear Algebra, 60, 5, 595-598, 2012.
[2] O.M. Baksalary, G. Trenkler. On K-potent matrices, Electronic Journal of Linear Algebra, 26, 446-470, 2013.
[3] R. Bru, N. Thome. Group inverse and group involutory matrices, Linear and Multilinear Algebra, 45 (2-3), 207-218, 1998.
[4] S.L. Campbell, C.D. Meyer Jr. Generalized Inverses of Linear Transformations. Dover, New York, Second Edition, 1991.
[5] S.J. Kirkland, M. Neumann. Group Inverses of M-Matrices and Their Applications. CRC Press, London, 2013.
[6] L. Lebtahi, J. Stuart, N. Thome, J.R. Weaver. Matrices A such that $R A=A^{s+1} R$ when $R^{k}=I$, Linear Algebra and its Applications, 439, 1017-1023, 2013.
[7] L. Lebtahi, O. Romero, N. Thome. Characterizations of $\{K, s+1\}$-potent matrices and applications. Linear Algebra and its Applications, 436, 293-306, 2012.
[8] L. Lebtahi, O. Romero, N. Thome. Relations between $\{K, s+1\}$-potent matrices and different classes of complex matrices. Linear Algebra and its Applications, 438, 1517-1531, 2013.
[9] L. Lebtahi, N. Thome. Properties of a matrix group associated to a $\{K, s+1\}$-potent matrix, Electronic Journal of Linear Algebra, 24, 34-44, 2012.
[10] J. Stuart, J. Weaver. Matrices that commute with a permutation matrix, Linear Algebra and its Applications, 150, 255-265, 1991.
[11] W. F. Trench. Characterization and properties of matrices with k-involutory symmetries, Linear Algebra and its Applications, 429, 2278-2290, 2008.
[12] W. F. Trench. Characterization and properties of matrices with k-involutory symmetries II, Linear Algebra and its Applications, 432, 2782-2797, 2010.
[13] J. Weaver. Centrosymmetric (cross-symmetric) matrices, their basic properties, eigenvalues and eigenvectors, American Mathematical Monthly, 2, 10, 711-717, 1985.
[14] M. Yasuda. Some properties of commuting and anti-commuting m-involutions. Acta Mathematica Scientia, 32B(2), 631-644, 2012.

