On a matrix group constructed from an $\{R, s+1, k\}$ -potent matrix

 $_{3}$ Minerva Catral^{*} Leila Lebtahi[†] Jeffrey Stuart[‡] Néstor Thome[†]

April 4, 2014

Abstract

For a $\{k\}$ -involutory matrix $R \in \mathbb{C}^{n \times n}$ (that is, $R^k = I_n$) and $s \in \{0, 1, 2, 3, ...\}$, a matrix $A \in \mathbb{C}^{n \times n}$ is called $\{R, s + 1, k\}$ -potent if A satisfies $RA = A^{s+1}R$. In this paper, a matrix group corresponding to a fixed $\{R, s + 1, k\}$ -potent matrix is explicitly constructed and properties of this group are derived and investigated. This constructed group is then reconciled with the classical matrix group G_A that is associated with a generalized group invertible matrix A.

¹² Keywords: $\{R, s+1, k\}$ -potent matrix; group inverse; matrix group.

13 AMS subject classification: Primary: 15A09; Secondary: 15A21

14 1 Introduction

For a matrix $A \in \mathbb{C}^{n \times n}$, the group inverse, if it exists, is the unique matrix $A^{\#}$ satisfying the matrix equations

17

1

2

4

5

$$AA^{\#}A = A, \quad A^{\#}AA^{\#} = A^{\#}, \quad AA^{\#} = A^{\#}A.$$
 (1)

It is well known that $A^{\#}$ exists if and only if rank $A^2 = \text{rank } A$. Further information on group inverses and their applications can be found in [4], and a collection of results on the importance of group inverses of certain classes of singular matrices in several application areas can be found in the recent book [5]. Theorem 7.2.5 in [4, pp. 124] states that a

^{*}Department of Mathematics and Computer Science, Xavier University, Cincinnati, OH 45207, USA. E-mail: catralm@xavier.edu.

[†]Instituto Universitario de Matemática Multidiscilpinar. Universitat Politècnica de València. E-46022 Valencia, Spain. E-mail: {leilebep,njthome}@mat.upv.es. This work has been partially supported by Ministerio de Economía y Competitividad of Spain, grant DGI MTM2010-18228.

[‡]Department of Mathematics, Pacific Lutheran University, Tacoma, WA 98447, USA. E-mail: jeffrey.stuart@plu.edu.

square matrix A of rank r > 0 belongs to a (multiplicative) matrix group G_A if and only if rank $A^2 = \text{rank } A$. In this case, $A \in \mathbb{C}^{n \times n}$ has the canonical form

$$A = P \begin{bmatrix} C & O \\ O & O \end{bmatrix} P^{-1},$$
(2)

where $P \in \mathbb{C}^{n \times n}$ and $C \in \mathbb{C}^{r \times r}$ are nonsingular matrices. The matrix group G_A corresponding to A is then given by

$$G_A = \left\{ P \left[\begin{array}{cc} X & O \\ O & O \end{array} \right] P^{-1} : \ X \in \mathbb{C}^{r \times r}, \ \operatorname{rank}(X) = r \right\}.$$
(3)

²⁸ The identity element in G_A is

24

27

31

45

$$E = P \begin{bmatrix} I_r & O \\ O & O \end{bmatrix} P^{-1},$$

where $I_r \in \mathbb{C}^{r \times r}$ is the identity matrix, and the inverse of A in this group is

$$A^g = P \left[\begin{array}{cc} C^{-1} & O \\ O & O \end{array} \right] P^{-1}$$

³² Some results related to matrix groups on nonnegative matrices can be found in [1].

Note that the inverse A^g of A in G_A satisfies the matrix equations in (1), and by uniqueness, $A^g = A^{\#}$; the identity element E in G_A satisfies $E = AA^{\#} = A^{\#}A$.

For $p \in \{2, 3, ...\}$, a matrix A is called $\{p\}$ -group involutory if the group inverse of Aexists and satisfies $A^{\#} = A^{p-1}$; in such a case, an equivalent condition is that $A^{p+1} = A$ (see [2, 3]).

Throughout this paper we will use matrices $R \in \mathbb{C}^{n \times n}$ such that $R^k = I_n$ where $k \in \{2, 3, 4, \ldots\}$. These matrices R are called $\{k\}$ -involutory [11, 12, 14], and they generalize the well-studied involutory matrices (k = 2). Note that the definition given in [11, 12] differs from that in [14]; in this paper we adopt the definition given in [14], namely that Ris $\{k\}$ -involutory does not require that k be minimal with respect to $R^k = I$.

Let $R \in \mathbb{C}^{n \times n}$ be a $\{k\}$ -involutory matrix and $s \in \{0, 1, 2, 3, ...\}$. A matrix $A \in \mathbb{C}^{n \times n}$ is called $\{R, s + 1, k\}$ -potent if it satisfies

$$RA = A^{s+1}R. (4)$$

These matrices generalize centrosymmetric matrices (that is, matrices $A \in \mathbb{C}^{n \times n}$ such that AJ = JA where J is the $n \times n$ antidiagonal matrix; see [13]), the matrices $A \in \mathbb{C}^{n \times n}$ such that AP = PA where P is an $n \times n$ permutation matrix (see [10]), and $\{K, s + 1\}$ -potent matrices (that is, matrices $A \in \mathbb{C}^{n \times n}$ for which $KAK = A^{s+1}$ where $K^2 = I_n$; see [7, 8]). For a study of $\{R, s + 1, k\}$ -potent matrices we refer the reader to [6] where, in particular, the following characterization was given.

Theorem 1. [6, Theorem 1] Let $R \in \mathbb{C}^{n \times n}$ be a $\{k\}$ -involutory matrix, $s \in \{1, 2, 3, ...\}$, $n_{s,k} = (s+1)^k - 1$, and $A \in \mathbb{C}^{n \times n}$. Then the following conditions are equivalent: ⁵⁴ (a) A is $\{R, s+1, k\}$ -potent.

57

⁵⁵ (b) A is an $\{n_{s,k}\}$ -group involutory matrix and there exist disjoint projectors $P_0, P_1, \ldots, P_{n_{s,k}}$ ⁵⁶ with

$$A = \sum_{j=1}^{n_{s,k}} \omega^j P_j \qquad and \qquad \sum_{j=0}^{n_{s,k}} P_j = I_n,$$

where $\omega = e^{\frac{2\pi i}{n_{s,k}}}$, and $P_j = O$ when $\omega^j \notin \sigma(A)$ and $P_0 = O$ when $0 \notin \sigma(A)$, and such that the projectors $P_0, P_1, \ldots, P_{n_{s,k}}$ satisfy

60 (i) For each $i \in \{1, ..., n_{s,k} - 1\}$, there exists a unique $j \in \{1, ..., n_{s,k} - 1\}$ such 61 that $RP_iR^{-1} = P_j$,

62 (*ii*)
$$RP_{n_{s,k}}R^{-1} = P_{n_{s,k}}$$
, and

63 (*iii*)
$$RP_0R^{-1} = P_0$$
.

⁶⁴ (c) A is diagonalizable and there exist disjoint projectors $P_0, P_1, \ldots, P_{n_{s,k}}$ satisfying condi-⁶⁵ tions (i), (ii), and (iii) given in (b).

In [9], a matrix group constructed from a given $\{K, s+1\}$ -potent matrix was presented and studied. The goal of this paper is to construct a matrix group corresponding to a given $\{R, s+1, k\}$ -potent matrix. We then reconcile this constructed group with the matrix group G_A given in (3).

70 2 First results

⁷¹ In this section we assume $s \ge 1$. We now establish properties of $\{R, s + 1, k\}$ -potent matrices.

⁷³ Lemma 1. Suppose that $A \in \mathbb{C}^{n \times n}$ is an $\{R, s + 1, k\}$ -potent matrix. Then the following ⁷⁴ properties hold.

75 (a)
$$A^{(s+1)^k} = A$$

76 (b)
$$A^{\#} = A^{(s+1)^k-2}$$
 and the group projector $AA^{\#}$ satisfies $AA^{\#} = A^{(s+1)^k-1}$

$$\pi$$
 (c) $(A^{(s+1)^k-1})^j = A^{(s+1)^k-1}$ for every $j \in \{1, 2, 3, \dots\}$

78 (d) $R^p A^j = A^{j(s+1)^p} R^p$ for every $p \in \{1, 2, ..., k\}, j \in \{1, 2, ..., (s+1)^k - 1\}$. In particular,

⁷⁹ R^p and $A^{(s+1)^k-1}$ commute, the matrices A^j are $\{R, s+1, k\}$ -potent and A is $\{R^p, (s+1)^p - 1, k\}$ -potent.

⁸¹ (e)
$$(A^{j}R^{p})^{m} = A^{j[(s+1)^{mp}-1]/[(s+1)^{p}-1]}R^{mp}$$
, for every $j \in \{1, 2, ..., (s+1)^{k} - 1\}$, $p \in \{1, 2, ..., k\}$, $m \in \{1, 2, ..., k\}$. In particular,

⁸³ (e)'
$$(A^{s}R)^{m} = A^{(s+1)^{m}-1}R^{m}$$
 for every $m \in \{1, 2, \dots, k\}$.

⁸⁴ (f) For every
$$j, \ell \in \{1, 2, ..., (s+1)^k - 1\}$$
, $p, m \in \{1, 2, ..., k\}$, $(A^j R^p)(A^\ell R^m) = A^{\ell'} R^{p'}$,
⁸⁵ where $\ell' \equiv \ell(s+1)^p + j [mod ((s+1)^k - 1)]$ and $p' \equiv p + m [mod (k)]$.

⁸⁸ (h) For every $j \in \{1, 2, ..., (s+1)^k - 1\}$, $p \in \{1, 2, ..., k\}$, the following equalities hold: ⁸⁹ $(A^{\ell}R^{k-p})(A^{j}R^{p}) = (A^{j}R^{p})(A^{\ell}R^{k-p}) = A^{(s+1)^{k}-1}$, where ℓ is the unique element of

90 $\{1, 2, \dots, (s+1)^k - 1\}$ such that $\ell \equiv -j(s+1)^{k-p} [mod ((s+1)^k - 1)].$

91 (i)
$$(AR)^{ks+1} = AR.$$

⁹² Proof. Statements (a) and (b) were proved in [6]. Using (a),

93
$$(A^{(s+1)^k-1})^2 = A^{(s+1)^k} A^{(s+1)^k-2} = A A^{(s+1)^k-2} = A^{(s+1)^k-1},$$

and now (c) follows by induction.

We next prove (d). First note that

96

99

104

$$RAR^{-1} = A^{s+1} \tag{5}$$

⁹⁷ implies $RA^{j}R^{-1} = A^{j(s+1)}$, for all $j \ge 1$. Thus, if A is $\{R, s+1, k\}$ -potent then so is A^{j} ⁹⁸ for all $j \ge 1$. In particular, let j = s + 1. Then

$$RA^{s+1}R^{-1} = A^{(s+1)^2}, (6)$$

and (5) and (6) gives $R^2AR^{-2} = A^{(s+1)^2}$. By induction, $R^pAR^{-p} = A^{(s+1)^p}$ for all $p \ge 1$. Since for all j > 1, A^j is also $\{R, s+1, k\}$ -potent, it follows that $R^pA^jR^{-p} = A^{j(s+1)^p}$ for all $j \ge 1$ and all $p \ge 1$. This proves (d).

For (e), the equality is clear for m = 1. For m = 2, we have

$$(A^{j}R^{p})^{2} = A^{j}R^{p}A^{j}R^{p}$$

= $A^{j}A^{j(s+1)^{p}}R^{2p}$, by (d)
= $A^{j(1+(s+1)^{p})}R^{2p}$.

The general case $(A^{j}R^{p})^{m} = A^{j[1+(s+1)^{p}+(s+1)^{2p}+\ldots+(s+1)^{(m-1)p}]}R^{mp}$ follows by induction. The identity $[(s+1)^{p}-1][(s+1)^{(m-1)p}+\cdots+(s+1)^{p}+1] = (s+1)^{mp}-1$ yields the result. For the proof of (e)', it is enough to set j = s and p = 1 in (e).

Statement (f) follows easily from (d). Next, by using (c) and (d),

109
$$(A^{j}R^{p})A^{(s+1)^{k}-1} = A^{j}A^{(s+1)^{k}-1}R^{p} = A^{j-1}A^{(s+1)^{k}}R^{p} = A^{j-1}AR^{p} = A^{j}R^{p}$$

for every $j \in \{1, 2, ..., (s+1)^k - 1\}$ and $p \in \{1, 2, ..., k\}$. This proves one equality in (g). The other equality can be directly shown as

112
$$A^{(s+1)^{k}-1}(A^{j}R^{p}) = A^{(s+1)^{k}}A^{j-1}R^{p} = A^{j}R^{p}.$$

For the proof of (h), let $j \in \{1, 2, ..., (s+1)^k - 1\}$. By (d), there exists ℓ such that $(A^{\ell}R^{k-p})(A^jR^p) = A^{(s+1)^{k-1}}$ if and only if $A^{\ell+j(s+1)^{k-p}} = A^{(s+1)^{k-1}}$. This last equality holds if and only if $\ell \equiv -j(s+1)^{k-p} [\text{mod } ((s+1)^k - 1)]$. Using this value of ℓ we can get $\ell(s+1)^p \equiv -j(s+1)^k [\text{mod } ((s+1)^k - 1)]$. Now,

117
$$(A^{j}R^{p})(A^{\ell}R^{k-p}) = A^{j}A^{\ell(s+1)^{p}}R^{p}R^{k-p} = A^{j(s+1)^{k}}A^{\ell(s+1)^{p}} = A^{j(s+1)^{k}+\ell(s+1)^{p}} = A^{(s+1)^{k}-1},$$

which leads to (*h*). Observe that $\ell \equiv -j(s+1)^{k-p} \pmod{((s+1)^k - 1)}$ is equivalent to $j(s+1)^k \equiv -\ell(s+1)^p \pmod{((s+1)^k - 1)}$.

Finally, by setting j = p = 1 and m = k in (e), we obtain

121
$$(AR)^{ks+1} = [(AR)^k]^s AR = \left[A^{\frac{(s+1)^k - 1}{s}}\right]^s AR = A^{(s+1)^k - 1}AR = AR,$$

where the last equality follows from (a). This proves statement (i), and completes the proof of Lemma 1. \Box

¹²⁴ 3 Construction of the matrix group

Using Lemma 1, we construct, from a given $\{R, s + 1, k\}$ -potent matrix, a matrix group containing a cyclic subgroup of $\{R, s + 1, k\}$ -potent matrices. Throughout this section we assume $s \ge 1$.

Theorem 2. Suppose $A \in \mathbb{C}^{n \times n}$ is an $\{R, s+1, k\}$ -potent matrix, and assume that $A^i \neq A^j$ for all distinct $i, j \in \{1, 2, ..., (s+1)^k - 1\}$. Then the set

$$G = \{A^{j}R^{p}: j \in \{1, 2, \dots, (s+1)^{k} - 1\}, p \in \{1, 2, \dots, k\}\}$$

¹³¹ is a group under matrix multiplication, and the following statements hold.

132 (a) A is an element of order $(s+1)^k - 1$, and the set

$$S_A = \{A^j, \ j \in \{1, 2, \dots, (s+1)^k - 1\}\}$$
(7)

is a cyclic subgroup of G. Moreover, S_A is the smallest (in the inclusion sense) subgroup of G that contains A, $A^{\#}$, and $AA^{\#}$.

136 (b) $A^{s}R$ and $A^{(s+1)^{k}-1}R^{k-1}$ are elements of order k of G.

137 (c)
$$(A^{s}R)A(A^{s}R)^{k-1} = A^{s+1}.$$

(d) The set S_A is a normal subgroup of G and all its elements are $\{R, s + 1, k\}$ -potent matrices.

(e) The order of G is $k((s+1)^k - 1)$ and G is not commutative.

Proof. Properties (f) - (h) in Lemma 1 show that G is a group under multiplication with identity element $A^{(s+1)^k-1}$.

Statement (a) follows from properties (a) - (c) in Lemma 1 and the assumption that the powers A^i are distinct for $i \in \{1, 2, ..., (s+1)^k - 1\}$.

By setting m = k in property (e)' in Lemma 1, we obtain $(A^s R)^k = A^{(s+1)^k-1}$. On the other hand, since $A^{(s+1)^{k-1}}$ and R^{k-1} commute by property (d) in Lemma 1,

$$(A^{(s+1)^{k}-1}R^{k-1})^{k} = (A^{(s+1)^{k}-1})^{k}(R^{k})^{k-1} = A^{(s+1)^{k}-1},$$

148 proving statement (b).

¹⁴⁹ By setting m = k - 1 in property (e)' in Lemma 1, we obtain

150
$$(A^{s}R)A(A^{s}R)^{k-1} = A^{s}RA^{(s+1)^{k-1}}R^{k-1} = A^{s}A^{(s+1)^{k-1}(s+1)}RR^{k-1} = A^{s+1}.$$

¹⁵¹ proving statement (c).

For the proof of statement (d), let $j, t \in \{1, 2, ..., (s+1)^k - 1\}$, $p \in \{1, 2, ..., k\}$, and $\ell \in \{1, 2, ..., (s+1)^k - 1\}$ such that $j(s+1)^k \equiv -\ell(s+1)^p \pmod{((s+1)^k - 1)}$. Using property (d) of Lemma 1, we obtain

$$(A^{j}R^{p})A^{t}(A^{\ell}R^{k-p}) = A^{j}A^{t(s+1)^{p}}R^{p}A^{\ell}R^{k-p} = A^{j}A^{t(s+1)^{p}}A^{\ell(s+1)^{p}}R^{p}R^{k-p} = A^{t(s+1)^{p}}.$$

Hence, S_A is a normal subgroup of G, and by setting p = 1 in property (d) in Lemma 1, we find that the elements of S_A are $\{R, s + 1, k\}$ -potent matrices.

For the proof of statement (e), we show that the elements $A^{j}R^{p}$, $j \in \{1, \ldots, (s+1)^{k}-1\}$ and $p \in \{1, \ldots, k\}$, are pairwise distinct.

First we show that for fixed $p \in \{1, \ldots, k-1\}$, $AR^p \neq A^j$ for any $j \in \{1, \ldots, (s+1)^k - 1\}$. 160 Otherwise, $AR^{p}A = A^{j+1}$, and using property (d) in Lemma 1, $A(R^{p}A) = A(A^{(s+1)^{p}}R^{p}) =$ 161 $A^{(s+1)^p}(AR^p) = A^{(s+1)^p+j}$. But then, $A^{j+1} = A^{(s+1)^p+j}$, contradicting the assumption 162 that the powers A^i are pairwise distinct for $i \in \{1, \ldots, (s+1)^k - 1\}$. Next, since for 163 $p \in \{1, \ldots, k-1\}, AR^p \neq A^j$ for any $j \in \{1, \ldots, (s+1)^k - 1\}$, it follows that for any $\ell \in \{1, \ldots, (s+1)^k - 1\}$ 164 $\{1, 2, \dots, (s+1)^k - 1\}$ and $p \in \{1, \dots, k-1\}, A^{\ell} R^p \neq A^j$ for any $j \in \{1, 2, \dots, (s+1)^k - 1\}$. 165 Finally, if $A^{j}R^{p} = A^{\ell}R^{m}$ for some $j, \ell \in \{1, 2, ..., (s+1)^{k} - 1\}$ and $p, m \in \{1, ..., k\}$ 166 with $(j,p) \neq (\ell,m)$, then $A^j R^{p-m} = A^{\ell}$, contradicting the previous assertion. Thus, the 167 elements $A^j R^p$, $j \in \{1, \ldots, (s+1)^k - 1\}$ and $p \in \{1, \ldots, k\}$, are pairwise distinct, and the 168 order of G is $k[(s+1)^k - 1]$. In order to show that G is not commutative, it is enough to 169 see that $(AR)(A^{s+1}R^{k-1}) = (A^{s+1}R^{k-1})(AR)$ gives $A^{(s+1)^2+1} = A^{(s+1)^{k-1}+s+1}$ which leads 170 to a contradiction. 171

Theorem 3.1 (e) in [9] states that for a $\{K, s+1\}$ -potent matrix, the associated matrix group G either has order $(s+1)^2 - 1$ and is commutative, or has order $2((s+1)^2 - 1)$ and is not commutative; Theorem 2 (e) now asserts that the former case does not occur.

We have shown that $A, A^{\#}$, and $AA^{\#}$ belong to S_A . Is $I_n - AA^{\#}$ also an element of the group G? **Proposition 1.** If $A \in \mathbb{C}^{n \times n}$ is a nonzero $\{R, s + 1, k\}$ -potent matrix then the eigenprojection at zero does not belong to G, that is,

$$I_n - AA^\# \notin G.$$

Proof. If we suppose that $I_n - AA^{\#} \in G$ then there exist $j \in \{1, 2, \dots, (s+1)^k - 1\}, p \in \{1, 2, \dots, k\}$ such that $I_n - AA^{\#} = A^j R^p$. Pre-multiplying by A we get $A^{j+1} = O$, that is, A is nilpotent. Since A is diagonalizable, we arrive at A = O, which is a contradiction. \Box

Let H be the set defined by

180

 $H = \{ A^{(s+1)^k - 1} R^p : p \in \{1, 2, \dots, k\} \}.$

Then under matrix multiplication, H is a cyclic subgroup of G that is not normal because if $g = A^{(s+1)^k-2}$ and $h = A^{(s+1)^k-1}R^p$ for $p \in \{1, 2, ..., k-1\}$ then $ghg^{-1} \notin H$.

Corollary 1. The group G is a semidirect product of H acting on S_A .

Proof. Every element $A^{j}R^{p}$ of G can be written as a product of an element of S_{A} and an element of H as $A^{j}R^{p} = A^{j}(A^{(s+1)^{k}-1}R^{p})$ and this representation is unique. This uniqueness follows from the fact that G has order $k((s+1)^{k}-1)$.

Observe that $H \simeq \mathbb{Z}_k$, $S_A \simeq \mathbb{Z}_{(s+1)^{k-1}}$, and another way to see that G is isomorphic to a semidirect product of \mathbb{Z}_k acting on $\mathbb{Z}_{(s+1)^{k-1}}$ is by considering its representation in the form $\langle a, b | a^k = e, b^r = e, aba = b^m \rangle$ where m, r are coprime. Here $r = (s+1)^k - 1$, $a = A^s R, b = A, m = s + 1$.

¹⁹⁶ Moreover, notice that the result presented in Corollary 1 describes the quotient group ¹⁹⁷ G/S_A . In fact, the natural embedding $\iota : H \hookrightarrow G$, composed with the natural projection ¹⁹⁸ $\pi : G \to G/S_A$, gives an isomorphism between G/S_A and H, which is represented in (8).

199

We next reconcile the matrix group G given in Theorem 2 that is constructed from an $\{R, s+1, k\}$ -potent matrix A, and the matrix group G_A given in (3). We begin with the following lemma.

Lemma 2. Suppose that $R \in \mathbb{C}^{n \times n}$ is $\{k\}$ -involutory, $s \in \{1, 2, 3, ...\}$, and $A \in \mathbb{C}^{n \times n}$ has rank r > 0. Then A is $\{R, s + 1, k\}$ -potent if and only if there exists a nonsingular matrix $P \in \mathbb{C}^{n \times n}$ such that

$$A = P \begin{bmatrix} C & O \\ O & O \end{bmatrix} P^{-1}, \qquad R = P \begin{bmatrix} R_1 & O \\ O & R_2 \end{bmatrix} P^{-1}, \qquad (9)$$

where $R_1 \in \mathbb{C}^{r \times r}$, $R_2 \in \mathbb{C}^{(n-r) \times (n-r)}$ are $\{k\}$ -involutory, and $C \in \mathbb{C}^{r \times r}$ is nonsingular and $\{R_1, s+1, k\}$ -potent.

Proof. Suppose that A is $\{R, s+1, k\}$ -potent. Then A has index at most 1 and so it has 209 the form 210

$$A = P \begin{bmatrix} C & O \\ O & O \end{bmatrix} P^{-1},$$
(10)

where $C \in \mathbb{C}^{r \times r}$ is nonsingular. We now partition R conformable to A as follows 212

$$R = P \begin{bmatrix} R_1 & R_3 \\ R_4 & R_2 \end{bmatrix} P^{-1}.$$
 (11)

Using expressions (10) and (11) we have that

$$A^{s+1}R = P \begin{bmatrix} C^{s+1}R_1 & C^{s+1}R_3 \\ O & O \end{bmatrix} P^{-1}$$

and

211

213

217

$$RA = P \left[\begin{array}{cc} R_1 C & O \\ R_4 C & O \end{array} \right] P^{-1}$$

Equating blocks, 214

215
$$C^{s+1}R_1 = R_1C, \quad C^{s+1}R_3 = O, \quad \text{and} \quad R_4C = O.$$

Since C is nonsingular, $R_3 = O$, $R_4 = O$, and so 216

$$R = P \left[\begin{array}{cc} R_1 & O \\ O & R_2 \end{array} \right] P^{-1}.$$

Using $R^k = I_n$, this last expression implies that R_1 and R_2 are both $\{k\}$ -involutory. Hence, 218 C is $\{R_1, s+1, k\}$ -potent. 219

- The converse is trivial. 220
- Recall that the elements of G_A have a canonical form as given in (3). 221

Theorem 3. Suppose $A \in \mathbb{C}^{n \times n}$ is an $\{R, s+1, k\}$ -potent matrix, and suppose that $A^i \neq A^j$ 222 for all pairwise distinct $i, j \in \{1, 2, ..., (s+1)^k - 1\}$. If A and R are expressed as in (9) 223 then224

 $G = \left\{ P \left[\begin{array}{cc} C^{j} R_{1}^{p} & O \\ O & O \end{array} \right] P^{-1} : \ j \in \{1, 2, \dots, (s+1)^{k} - 1\}, \ p \in \{1, 2, \dots, k\} \right\}.$

²²⁶ Moreover, G is a subgroup of
$$G_A$$
.

Proof. The description of the elements of G follows from Theorem 2 and Lemma 2. It is 227 clear that $G \subseteq G_A$. Since C is $\{R_1, s+1, k\}$ -potent, G is closed, hence G is a subgroup of 228 G_A . 229

230 4 Final remarks: the case s = 0

For the case s = 0 in (4), the matrix A satisfies AR = RA where $R^k = I_n$. Notice that property (a) in Lemma 1 does not give any information. However, if there exists some positive integer t such that $A^{t+1} = A$ and t is the smallest positive integer satisfying this property, then we can construct the group $G = \{A^j R^p, j \in \{1, 2, ..., t\}, p \in \{1, 2, ..., k\}\}$ having similar properties as in the case $s \ge 1$. If such an integer t does not exist, it is impossible to construct the corresponding group, as the following example shows.

237 Example 1. Consider the matrices

$$A = \begin{bmatrix} \cos(\alpha) & \sin(\alpha) & 0\\ -\sin(\alpha) & \cos(\alpha) & 0\\ 0 & 0 & 2 \end{bmatrix} \quad \text{and} \quad R = \begin{bmatrix} 0 & -1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 1 \end{bmatrix},$$

²³⁹ for some $\alpha \in \mathbb{R}$, we have that $R^4 = I_3$, AR = RA and

$$A^{m} = \begin{bmatrix} \cos(m\alpha) & \sin(m\alpha) & 0\\ -\sin(m\alpha) & \cos(m\alpha) & 0\\ 0 & 0 & 2^{m} \end{bmatrix} \text{ for all } m \ge 2$$

In general, when s = 0 there is no relation between the existence of the group inverse of A and of A being $\{R, 1, k\}$ -potent. In Example 1 we have a $\{R, 1, 4\}$ -potent matrix that is nonsingular whereas in Example 2 below the given $\{R, 1, 4\}$ -potent matrix does not have a group inverse.

245 Example 2. Consider the matrices

246

238

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \quad \text{and} \quad R = \begin{bmatrix} i & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

In this case, AR = RA, $R^4 = I_3$, but the group inverse of A does not exist.

248 **References**

- [1] A.N. Alahmadi, Y. Alkhamees, S.K. Jain. On semigroups and semirings of nonnegative matrices, *Linear and Multilinear Algebra*, 60, 5, 595–598, 2012.
- [2] O.M. Baksalary, G. Trenkler. On K-potent matrices, *Electronic Journal of Linear* Algebra, 26, 446-470, 2013.
- [3] R. Bru, N. Thome. Group inverse and group involutory matrices, *Linear and Multi- linear Algebra*, 45 (2-3), 207–218, 1998.

- [4] S.L. Campbell, C.D. Meyer Jr. Generalized Inverses of Linear Transformations. Dover, New York, Second Edition, 1991.
- [5] S.J. Kirkland, M. Neumann. Group Inverses of *M*-Matrices and Their Applications.
 CRC Press, London, 2013.
- [6] L. Lebtahi, J. Stuart, N. Thome, J.R. Weaver. Matrices A such that $RA = A^{s+1}R$ when $R^k = I$, Linear Algebra and its Applications, 439, 1017–1023, 2013.
- [7] L. Lebtahi, O. Romero, N. Thome. Characterizations of $\{K, s + 1\}$ -potent matrices and applications. *Linear Algebra and its Applications*, 436, 293–306, 2012.
- [8] L. Lebtahi, O. Romero, N. Thome. Relations between $\{K, s + 1\}$ -potent matrices and different classes of complex matrices. *Linear Algebra and its Applications*, 438, 1517–1531, 2013.
- [9] L. Lebtahi, N. Thome. Properties of a matrix group associated to a $\{K, s+1\}$ -potent matrix, *Electronic Journal of Linear Algebra*, 24, 34–44, 2012.
- ²⁶⁸ [10] J. Stuart, J. Weaver. Matrices that commute with a permutation matrix, *Linear Al-*²⁶⁹ gebra and its Applications, 150, 255–265, 1991.
- [11] W. F. Trench. Characterization and properties of matrices with k-involutory symmetries, *Linear Algebra and its Applications*, 429, 2278–2290, 2008.
- [12] W. F. Trench. Characterization and properties of matrices with k-involutory symmetries II, *Linear Algebra and its Applications*, 432, 2782–2797, 2010.
- [13] J. Weaver. Centrosymmetric (cross-symmetric) matrices, their basic properties, eigenvalues and eigenvectors, *American Mathematical Monthly*, 2, 10, 711–717, 1985.
- [14] M. Yasuda. Some properties of commuting and anti-commuting m-involutions. Acta Mathematica Scientia, 32B(2), 631–644, 2012.