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Abstract: Leaf area index (LAI) is a key biophysical parameter used to determine foliage cover
and crop growth in environmental studies in order to assess crop yield. Frequently, plant canopy
analyzers (LAI-2000) and digital cameras for hemispherical photography (DHP) are used for indirect
effective plant area index (PAIe f f ) estimates. Nevertheless, these instruments are expensive and
have the disadvantages of low portability and maintenance. Recently, a smartphone app called
PocketLAI was presented and tested for acquiring PAIe f f measurements. It was used during an
entire rice season for indirect PAIe f f estimations and for deriving reference high-resolution PAIe f f
maps. Ground PAIe f f values acquired with PocketLAI, LAI-2000, and DHP were well correlated
(R2 = 0.95, RMSE = 0.21 m2/m2 for Licor-2000, and R2 = 0.94, RMSE = 0.6 m2/m2 for DHP).
Complementary data such as phenology and leaf chlorophyll content were acquired to complement
seasonal rice plant information provided by PAIe f f . High-resolution PAIe f f maps, which can be used
for the validation of remote sensing products, have been derived using a global transfer function
(TF) made of several measuring dates and their associated satellite radiances.

Keywords: rice; effective plant area index (PAIe f f ); PocketLAI; smartphone; high-resolution map

1. Introduction

With the aim of managing plant needs in a more efficient way, precision agriculture has arisen as
a rush of technological enhancements to classical farm management tools [1,2]. Detailed geo-spatial
information on plant and soil properties is essential knowledge in crop management. In this context,
remote sensing has become a very efficient tool for precision farming of large areas through data
acquired by sensors on-board satellite platforms [3], airborne imagery [4], and unmanned aerial
vehicles (UAVs) [5]. In this framework, rice cultivation is one of the most extended land uses for food
production worldwide and has therefore been the main objective of many studies using optical [6,7]
and radar [8–10] remote sensing techniques. In this context, leaf area index (LAI) is a key biophysical
variable for both crop monitoring and modelling applications, defined as the total one-sided leaf area
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in relation to the ground [11]. LAI has been used in agricultural and remote sensing studies [12,13],
including precision agriculture [14], and is regarded as a key input in global models of ecosystem,
hydrology, climate, ecology, biogeochemistry, and productivity [15].

In situ LAI measurement methods can be divided into two main categories: direct and
indirect [16,17]. Direct methods require an effort in collecting an optimal sample size and
estimating plant density, which involve destructive harvest techniques [18]. Direct and indirect
methods are complementary, as direct LAI measurements can be used a reference or calibration
for indirect measurements. Indirect methods allow the inference of LAI from observations of
another variable. They are generally faster than direct methods and allow larger spatial sample
collection. Indirect methods can be divided into indirect contact LAI measurements and indirect
non-contact measurements [19]. Indirect contact LAI methods are based on the estimation of the
contact frequency [20], while indirect non-contact methods are based on the estimation of the gap
fraction [21]. Contact frequency is the probability that a beam (radiation) penetrates inside the canopy
and interacts with the vegetation. On the other hand, gap fraction is the integrated value of the gap
frequency, which accounts for the probability that the beam will have no contact with the vegetation
until it reaches the ground. Sensors like LAI-2000 or LAI-2200 Plant Canopy Analyzers (LI-COR,
Inc., Nebraska, USA) measure the gap fraction from five different angles simultaneously. Digital
hemispherical photography (DHP) is another indirect technique for computing the gap fraction
through cameras with hemispherical lenses (fish-eye) coupled.

This method estimates LAI from measurements of the gap fraction, defined as the fraction of sky
seen from below the canopy (upwards photography) or fraction of soil seen from above (downwards
photography). Both Plant Canopy Analyzers and DHP are some of the most widely used classical
optical instruments for indirect LAI estimation [19,22]. Classical commercial instruments have proven
to be a good alternative to destructive methods in many experimental conditions [23] but these
instruments are usually quite expensive both to purchase and to maintain. Due to their weight and
strict requirements concerning acquisition protocol, they can also prove to be quite difficult to use in
cases in which access to the canopy or placement of the instrument either below or above the canopy
is difficult, such as in the case of flooded rice fields. Specifically, DHP techniques requires high effort
by the operator during the classification process needed to obtain a LAI estimate. This fact limits
the deployment of these measurements in near real time applications. An additional drawback when
using these instruments is the time needed for repairing them in case of damage. A delay in the repair
or replacement of the instrument may lead to canceling the field campaign in the worst case.

Recently, in the context of exploiting the technology implemented in smartphones for studies
dealing with natural sciences, we introduced a mobile application called PocketLAI for leaf area index
estimation [24]. PocketLAI was already successfully tested against Decagon AccuPAR Ceptometer,
and it was used to measure LAI both on rice and other crop types also deviating from ideal
assumptions of the light transmittance model used [25]. Smartphones are becoming an accessible
daily instrument for most of the population. The use of smartphone components such as global
position system (GPS), camera, accelerometer, and core processing power makes them suitable for
a number of purposes, including methods for indirect LAI estimation. Smartphone capabilities are
growing day by day, making them a reliable alternative to classical measuring instruments.

Leaf area index estimates refer only to leaf elements of the plant. Destructive methods only
allow for measurement of leafs [26], but when dealing with indirect methods, several important
considerations should be taken into account for a proper definition of the measured variable.
In particular, for in situ LAI acquisitions and remote sensing observations, if no distinction is made
between leaves and other plant elements, the proper term to use is PAI (Plant Area Index) rather
than LAI [27–29]. Canopies are made of green photosynthetically active elements and other elements
which are not green and therefore non-photosynthetically active (senescent leaves, trunks, branches,
fruits, and flowers). Hence, to represent the photosynthetic functionality of all elements of the
plant, PAI should be corrected to GAI (Green Area Index) [30]. Nevertheless, a proper indirect
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determination of GAI requires optical instruments able to distinguish green from non-green elements
within the canopy [19]. Since this study deals with measurements and estimates taking into account
all elements of the rice plant during all phenological stages, the term PAI will be used throughout
the manuscript.

Temporal information on crop status is a requirement for better crop monitoring used to
support agronomical management. In this context, other crop parameters, such as leaf chlorophyll
content (Chl) or plant phenological stages should be acquired in order to complete temporal
information of the crop. The identification of phenological stages can be addressed by visual
interpretation of the plant morphological characteristics. This procedure can be carried out following
standardized protocols, such as the Biologische Bundesanstalt Bundessortenamt and Chemical
industry (BBCH) [31], which provides a description of the major morphological characteristics of each
plant development stage assigning a specific numerical code for each one. An example of using the
BBCH scale to identify phenological stages over rice fields can be found in [32]. On the other hand,
chlorophyll content provides information about the physiological status of plants, nutrient stress,
photosynthesis, and growing periods [33,34]. Chlorophyll concentration may change throughout
different stages of plant phenology and is affected when crop plants are under stress conditions,
mainly due to changes in soil nitrogen content [35]. Thus, leaf chlorophyll content becomes a key issue
for agronomists and farmers to make management decisions at critical stages and has been widely
studied by the remote sensing community [36–38]. Direct field measurements of chlorophyll content
over large areas require a big effort in collecting destructive samples and conducting laboratory
chemistry methods. Conversely, the use of handheld devices, such as SPAD-502 (Minolta Osaka
Company, Ltd., Japan), are being used for rapid non-destructive sampling of leaf chlorophyll
content [36,39]. For these purposes, continuous seasonal field phenology and leaf chlorophyll content
were measured to complement seasonal rice plant information provided by PAI acquisitions.

In situ bio-physical parameters acquired during field campaigns are usually used for the
validation of coarse satellite-derived products [40–42]. For these purposes, field measurements
must follow several good practices and protocols [43]. Validation is commonly addressed through
the derivation of a reference high-resolution map of an area covering several moderate resolution
pixels [44,45]. The broadest strategy for the validation of satellite products is based on a bottom-up
approach: it starts from the scale of the individual measurements that are aggregated over an
elementary sampling unit area (ESU) corresponding to a support area consistent with that of the
high-resolution imagery used for the up-scaling of ground data [44,46].

The main aim of this study is to monitor the rice plant area index with PocketLAI, assessing
its consistency and performance with LAI-2000 and DHP during an entire rice season. The analysis
of PocketLAI performance includes inter-comparison of field measurements and derived (upscaled)
maps, which can be used for continuous monitoring and validation of LAI products. This study
contributes to instrument comparison studies of rice.

The remainder of this study is organized as follows: Section 2 describes the study area and
the sampling strategy outlining the in situ PAI measurements and describing the instruments
used. Section 3 discusses the obtained results and the ancillary bio-physical variables used for
rice monitoring, and finally Section 4 concludes the paper with a discussion and outline of the
future research.

2. Materials and Methods

2.1. Study Area and Field Campaign

The study area is located in selected farms of the rice district of Sueca (39◦16’N, 0◦18’W), situated
in the south of Valencia, in Eastern Spain (see Figure 1). The area has a typical Mediterranean climate;
mild, with an average annual humidity of 65%. The average annual temperature is 17 ◦C. Their
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mean values range from 11 ◦C in January, and 27 ◦C in August. The mean annual precipitation is
approximately 430 mm, tending to be intense and concentrated in autumn.

Figure 1. Study area: Location of the study area in Spain (left), a Landsat 8 Operational Land Imager
(OLI) RGB composite image showing the extent of the rice fields (middle), and specific locations of
the elementary sampling units (ESUs) within the rice fields (right). Four representative ESUs (R1, L3,
JN, and D1) were selected for showing phenology stages.

The site is a homogeneous rice planting area of approximately 10 km × 20 km extension. Most
of the paddy rice fields are rectangular and flat, approximately 100 m × 200 m. The rice cropping
practices are common in the entire rice district. The sowing dates are around early May. The maturity
stage is reached in early September, and the rice harvest begins in mid-September. Fields are flooded
most of the time during the season. The two main rice varieties are Senia and Bomba, and are
under the guarantee granted by the Regulatory Board of Designation of Origin Arròs de València
http://www.arrozdevalencia.org. These rice varieties have different morphological structures. The
Senia variety has more stacked up stems and leafs, while the Bomba variety has a considerably
greater height.

ERMES (an Earth obseRvation Model based ricE information Service) http://www.ermes-fp7space.eu/
is an FP7 Project funded by the European Commission with the objective of developing a prototype of
downstream service dedicated to the rice sector to support authorities and farmers. In the framework
of ERMES, ground measurements of phenology, plant height, chlorophyll content, FAPAR (Fraction
of Absorbed Photosynthetically Active Radiation), and PAI were acquired on 26 ESUs from June the
17th to September the 8th in 2014. Measurement dates were selected to cover the entire rice season.

2.2. Spatial Sampling Strategy

The sampling strategy is a critical issue and should include considerations such as the number,
dimensions, and spatial distributions of ESUs, driven by the heterogeneity of the study area, and
the sampling scheme within each individual ESU. The 26 ESUs were selected within homogeneous
rice fields. The fields were selected in order to take into account the main cultivated rice varieties.
A reliable sampling covering the maximum bio-physical parameter variability was done. Over each
ESU, the same sampling scheme was used as recommended by the VALERI (Validation of Land
European Remote sensing Instruments) protocol in the case of row crops. This protocol suggests to
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take measurements along small transects between rows and incorporate some random acquisitions
to prevent possible biases in the characterization of the row effect. ESUs were located at least 30 m
away from the field borders and were approximately 20 m × 20 m in size. In order to characterize
the variability within each ESU, a range of 18 to 24 measurements of the bio-physical variables
were taken. This number of replicates allows to obtain a statistically significant mean estimate of
each bio-physical variable per ESU. The center of the ESU was geo-referenced using GPS for later
matching and association of the mean of each bio-physical variable with the reflectance derived from
satellite data.

2.3. Effective Plant Area Index (PAIe f f )

Strictly speaking, the “true LAI” can be measured only using a planimeter [26]. Indirect methods
compute an effective leaf area index through the following relation:

LAIe f f = Ω · LAI (1)

where Ω is the aggregation or dispersion parameter [47,48], also known as the clumping index [11].
It accounts for canopy structure, geometry and foliage clumping. PocketLAI, LAI-2000, and DHP
actually provide an estimate of the plant area index, since all parts of the plant contribute to
the canopy transmittance. Indirect methods based on gap fraction measurements do not have the
ability to determine if some leaves are present behind the stems, branches, flowers, or trunk [29].
In this study, we are using PAIe f f , since we are considering the rice fields as a turbid medium
(minimum clumping).

2.4. PocketLAI

In this study, we proposed the use of PocketLAI for in situ non-destructive rice PAIe f f
monitoring. PocketLAI is a smartphone application based on the segmentation of images acquired
at 57.5o below the canopy to estimate the gap fraction [24]. It is based on a simplified model of light
transmittance under the assumption of a random spatial distribution of infinitely small leaves. In this
case, the gap fraction P0(θv, φv) in the zenith angle θv direction and azimuth angle φv is given by:

P0(θv, φv) = exp
(
−G(θvφv)

PAI
cos θv

)
(2)

where G(θv, φv) is the projection function, which can be considered as almost independent of leaf
inclination (G u 0.5) for a viewing angle of 57.5o (u1 radian) [17]. Inverting Equation (2), PAI can
be estimated from the gap fraction at this particular direction as follows:

PAI(57.5o) =
− ln P0(57.5o)

0.93
. (3)

At this directional configuration, the information acquired is independent from leaf angle
distribution and minimizes leaf clumping effects [30]. This property comes from the projection function
used to compute gap fraction corresponding to the projection of a PAI unit into a given direction. This
mobile application has been shown to perform well in canopies with different structures [25] and
has proven its reliability in terms of both trueness and precision [24]. PocketLAI computes the gap
fraction using the smartphone’s accelerometer and camera. The operator holds the device vertically
below the canopy and rotates the device along its main axis. When the angle between the vertical and
the normal to the screen reaches 57.5o, a camera frame is captured and processed using an algorithm
based on a segmentation strategy to detect sky pixels. In this study, the smartphone was placed 5 cm
above the shallow water. PockeLAI allows the averaging of various numbers of PAI estimates in
order to get a representative measure of the ESU based on the visual jackknife method [18]. In this
work, the mobile application was installed on a Samsung Galaxy S4 GT-I9505, with a Quad-Core
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1.9 GHz processor and 2 GB RAM. The smartphone’s camera allowed PocketLAI to take images with
a resolution of 4128 × 3096 pixels. With the aim of obtaining a representative measurement of each
ESU, eighteen measurements acquired under similar illumination conditions were computed for each
ESU following the strategy described in Section 2.2.

2.5. Digital Hemispherical Photography (DHP)

Digital hemispherical photography allows the computation of PAI measuring the gap fraction.
The digital photographs were taken downward-looking and the distance between the camera and the
top of the rice canopy was set to about to 1 m to avoid the case that leaves were too close to the lens.
Although upward photography is easy for gap identification, it may overestimate the gap fractions
and consequently underestimate the PAIe f f in the case of rice [29]. Thus, in this study, given this
underestimation and the characteristics of the rice plant (low height) and soil conditions (flooded),
the downward-looking method was selected. During the ERMES field campaign, 16 photographs
per ESU were acquired with the DHP and were subsequently processed using the Can-Eye software
developed at INRA-CSE Avignon in order to meet the requirements of VALERI. Can-Eye computes
effective PAI from gap fractions after an interactive thresholding classification process separating
rice foliage from the background (downward view). The images were masked limiting to 60o zenith
angle the valid range of fisheye lens to avoid edge distortions and ensuring that the area captured was
within the ESU. Hemispherical photographs were taken maintaining the camera in an approximately
horizontal position not-exceeding 10o, which is considered the threshold for minimizing errors
due horizontal camera levelling in estimating PAI [28]. Photographs with suboptimal horizontal
acquisition were excluded. A NIKON Coolpix5000 camera was used at the finest image resolution
available (JPEG format at 2560 × 1920 pixels resolution) and a FC-E8 Nikon fisheye lens with a field
of view of 183o. The camera with the fisheye lens was calibrated before the field according to the
CAN EYE manual [49]. The PAIe f f was computed using the Miller’s formula [50] as follows:

PAIe f f = 2
∫ π/2

0
− ln P0(θ) cos(θ) sin(θ) dθ (4)

In addition, the Can-Eye software proposes an estimate of the PAIe f f derived from the gap
fraction measured for a view angle of 57.5o in the same way that is computed in Equation (3). Can-Eye
software simultaneously processes up to 16 images acquired over the same ESU. All images belonging
to the same ESU were acquired with similar illumination conditions to limit the variation of color
dynamics between images.

2.6. LAI-2000 Plant Canopy Analyzer

Li-Cor LAI-2000 was used to estimate the rice PAI using a gap fraction method that determines
the PAI from measurements made above and below the canopy, which are used to determine canopy
light interception at five zenith angles (7◦, 23◦, 38◦, 53◦, and 68◦). Canopy transmission is measured
between 320 and 490 nm. LAI-2000 computes the PAIe f f using the Miller’s formula as:

PAIe f f = 2
∫ π/2

0
− ln P(θ) cos(θ) sin(θ) dθ = 2

5

∑
i=1

KiWi (5)

where Ki and Wi are the contact number and the weighting factor, and the subscript i refers to the
number of the ring. P(θ) is the average probability of light penetration into the canopy, and the gap
fraction Gi(θ) is computed as:

Gi(θ) = exp(ln P(θ)) = exp

(
(

1
N
)

N

∑
j=1

ln(
Bj

Aj
)

)
(6)
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The subscript j is number of readings (j = 1 . . . N), and Bj and Aj are the corresponding readings
to below and above the canopy, respectively.

In this field campaign, a 270o view cap was used to limit the azimuthal field of view, facing
away from the operator. Three replications of one measurement above and eight below the canopy
were made for each measurement. Regarding below canopy measurements, the Li-Cor LAI-2000
instrument was placed about 5 cm above the shallow water. Measurements were made under diffuse
light conditions in order to avoid incoming radiation from sunlit foliage.

2.7. Complementary Field Data

2.7.1. Phenology

The information regarding the phenology was obtained for all ESUs with in situ observations
according to the BBCH scale for rice. Representative ESUs of the study area (see Figure 1) were
selected in order to show phenology stages of the fields. The BBCH scale provides a continuous
numerical range for identifying and describing the plant phenology. Table 1 describes the main rice
stages as follows: stages 0 to 49 correspond to the vegetative phase of the rice cycle, stages 50 to 69
correspond to the reproductive phase, and stages 70 to 99 correspond to the maturation phase. The
BBCH scale accounts for a single plant. If an operator aims to define the phenology stage of an ESU,
at least half of the plants should present the same phenological state.

Table 1. Description of the rice phenological cycle according to the BBCH scale stages.

Description Principal Stage BBCH

Vegetative

Germination 0 0–9
Leaf development 1 10–19
Tillering 2 20–29
Stem elongation 3 30–39
Booting 4 40–49

Reproductive Emergence, heading 5 50–59
Flowering, anthesis 6 60–69

Maturation
Fruit development 7 70–79
Ripening 8 80–89
Senescence 9 90–99

2.7.2. Chlorophyll Content

The leaf chlorophyll content has been obtained by means of a SPAD-502, which gives a
leaf chlorophyll content estimate taking into account the radiation absorbed by leaves at specific
wavelengths. SPAD-502 provides digital counts (DN) which are dimensionless and require an
empirical calibration between SPAD-502 DN and extracted chlorophyll values in laboratory. This
problem can be addressed using specific calibration curves, which includes linear, exponential, or
polynomial calibration functions. In this work, a calibrated SPAD-502 using a power relationship to
obtain leaf Chl content physical values in µg · cm−2 was used [36]. Hence, in order to characterize the
chlorophyll content of the ESUs, 10–15 readings were made covering each ESU. SPAD-502 readings
were made on the last completely unfolded leaf.

2.8. Transfer Function for High-Resolution PAIe f f Mapping

In this study, the field measurements were also used for the derivation of a reference
high-resolution map within the study area which can be used for remote sensing validation products.
The derivation of high-resolution PAIe f f maps is a procedure based on an empirical transfer
function (TF) that establishes a relationship between the average PAIe f f values from each ESU
and the multispectral values from sensors onboard either satellite or airborne platforms. In this
work, a relationship between the average PAIe f f values from each ESU and radiometric values
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over concomitant Landsat-8 imagery in four spectral bands, namely green, red, near infrared, and
shortwave infrared 1 bands (G, R, NIR, and SWIR1) was used. Following previous works [44]
and recommendations [41,43,45], the up-scaling algorithm relies on a robust linear regression that
evaluates the band combination that exhibits the lowest error. A multivariate ordinary least squares
(OLS) regression is used, which assumes that the prediction Y (in situ PAIe f f measurement) is related
to the independent variable Xi, i = 1, 2, . . . , q (Landsat-8 radiometric values in the four selected bands)
through the the following functional relationship:

Yj = β0 +
q

∑
j=1

β j · Xij + ε (i = 1, . . . , n) (7)

where n is the number of observations, and β j are the parameters of the multiple linear regression.
With the goal of minimizing the influence of outliers, an iteratively re-weighted least squares (IRLS)
method is applied. This approach includes a weight factor to adjust the amount of each response
value on the estimates provided by the model. ESUs with weights lower than 0.7 are usually linked
either to samples located near the field borders or to experimental errors [44]. In order to evaluate
the optimal Landsat-8 OLI band combination, we considered the weighted root mean square error
(RW) and the cross-validation root mean square error (RC). The RW gives the mean prediction
error assumed by the model for all the observations while the RC provides information about the
model’s performance.

In this study, the response variable represents the three data sets of in situ PAIe f f measurements
(i.e., PAIAPP

e f f , PAIDHP
e f f , and PAILAI2000

e f f ), whereas the predictor variable is the radiometric information
on the four Landsat-8 OLI spectral bands. Landsat 8 OLI images provide valuable information for
crop monitoring at the local scale [51] due to the spatial (30 m) and temporal (16 day) resolutions.
Images were downloaded as a Level 1T product and atmospherically corrected using the L8SR
code, which corrects to surface reflectance from top of atmosphere (TOA) reflectance using ancillary
NCEP (US National Centers for Environmental Prediction) water vapor data and TOMS (Total Ozone
Mapping Spectrometer) ozone data sets. Landsat 8 OLI images were clipped to 1500 × 800 pixel size
covering the entire rice area.

The standard method of generating a reference map relies on the information provided by
spectral bands and vegetation indices from a single date of imagery [44,46]. This general method
implies that each map is derived with a different TF made with the corresponding measurements
and associated reflectances. One main feature of this work is the combination of field and satellite
data from different acquisition dates in order to create a multitemporal data set which was used for
building a unique global TF able to derive mutitemporal maps (see Figure 2).

Figure 2. Standard method for derivation of high-resolution reference maps building a transfer
function per available measuring date (up), and the proposed method made with a multitemporal
data set (bottom).
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3. Results

3.1. On the Temporal Evolution of the PAIe f f Field Measurements

A general overview of the PAIe f f measurements obtained during the field campaign shows that
the range of PAIe f f values obtained using all three instruments is according to the values reported
in the literature for rice [29,52]. Seasonal variation of rice PAIe f f (see Figure 3b) shows the typical
behavior throughout the entire rice season. Maximum values of PAIe f f were observed on day of year
(DoY) 220. Significant differences in PAIe f f time profiles were observed in the representative ESUs.
Specifically, R1 clearly presented the highest values, about 1 m2/m2 at the beginning of the season
and about 5.5 m2/m2 at almost the end of the growing season when the PAIe f f values are maximum.
R1 and L3 ESUs belong to same rice variety; nevertheless, a different PAIe f f evolution was observed
(see Figure 3b,c): plant density on R1 (number of rice plants per unit area) was significantly higher
than on L3, leading to systematically higher PAIe f f values.

3.2. On the Ancillary Data: Phenology and Leaf Chlorophyll Content

As part of the ERMES field campaign, phenology was monitored during 10 days from DoY = 168
to DoY = 251. In general, all representative ESUs have a similar behavior (see Figure 3a), since sowing
dates were very similar in the study area. Comparison of rice PAIe f f and BBCH seasonal variation
(Figure 3c) highlights three most noticeable features: (1) the fast increase in PAIe f f during the tillering
and stem elongation vegetative stages (BBCH from 20 to 40); (2) the saturation of PAIe f f during the
stages of flowering, fruit development, and ripening (BBCH from 50 to 90), in which these vegetative
and maturation phases the rice plant loses some leaves and becomes drier, PAIe f f being practically
constant; and (3) D1, JN, and L3 ESUs have a close evolution, while R1 shows higher PAIe f f values
due to higher plant density.

Rice leaf chlorophyll content measured with SPAD-502 showed a constant behavior during
vegetative and reproductive stages, which means that no anomalies due to significant changes in Chl
were found. A slight decrease in the rice Chl content was observed in the maturation stage due to the
beginning of rice senescence (see Figure 3d). Since SPAD-502 readings were made in the last unfolded
leaf, in most cases the estimated Chl content corresponded to leaves that were not senescent; i.e., on
leaves where the hydrolytic processes that recycle nitrogen-rich compounds (including chlorophylls
and rubisco) were not started yet. Consequently, although the total plant nitrogen content at the end
of August were low (because of older leaves), measurements in the last-emitted leaf could still have
high nitrogen content. This could explain why leaf chlorophyll contents were still high while the rice
plants were approximately in the last part of the crop cycle. On the other hand, differences in leaf
Chl values are related to the two main rice varieties of the study area. The Senia variety (R1 and L3
ESUs) presents leaves with a high chlorophyll content of about 60 µg · cm−2. By contrast, the Bomba
variety (D1 and JN ESUs) presented lower chlorophyll content values, about 35–40 µg · cm−2. These
Chl values explain the yellow greenish leaf color of the Bomba variety.
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Figure 3. Bio-physical indicators measured in four representative ESUs during the field campaign:
(a) Phenology according to the (BBCH) scale; (b) effective plant area index acquired with PocketLAI;
(c) effective plant area index related with the BBCH phenological stages; and (d) leaf chlorophyll
content measured during the rice season.

3.3. On the PAIe f f Measuring Instruments and Maps Comparison

PocketLAI computes the PAIe f f of an ESU, averaging each PAIe f f calculated from each gap
fraction reading on the ESU, while DHP and LAI-2000 first calculate the average gap fraction within
an ESU and retrieve PAIe f f from it. Since the gap fraction-PAIe f f relationship is not linear, it is not
equivalent to first average the gap fraction and then estimate the PAIe f f than the contrary [17]. This
fact may be one of the reasons why PocketLAI generally underestimates PAIe f f values (see Figure 4).
The PAIe f f and PAIe f f (57.5o) values obtained with DHP were used to compare estimates from
LAI-2000 and PocketLAI with PAIe f f , respectively. Different statistics were computed to assess the
consistency and performance of the PocketLAI with LAI-2000 and DHP: root-mean-squared error
(RMSE) and mean absolute error (MAE) were used to assess the accuracy, Mean error (ME) to evaluate
the bias, and coefficient of determination (R2) to account for the goodness-of-fit and variability
between instruments.

Effective PAI values computed with all three instruments are well correlated. The coefficient
of determination computed between PAIe f f estimates acquired with PocketLAI and classical
instruments was R2 = 0.95 and R2 = 0.94 for LAI-2000 and DHP, respectively. Comparisons also
reveal high accuracy and small bias between instruments (ME = −0.38 m2/m2, MAE = 0.41 m2/m2

for LAI-2000, and ME = 0.46 m2/m2, MAE = 0.48 m2/m2 for DHP). PocketLAI presents a very
small negative bias regarding LAI-2000, although a slight positive bias is found at the beginning
of the season (PAIe f f < 1 m2/m2) (see Figure 4a). PocketLAI is also highly consistent with DHP,
although it tends to produce slightly lower values (ME = 0.47) (see Figure 4b). Comparison between
LAI-2000 and DHP instruments also shows good results in terms of accuracy, bias, and variability
(RMSE = 0.33 m2/m2, ME = 0.11 m2/m2, R2 = 0.94 m2/m2) (see Figure 4c).
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Indirect methods provide a PAIe f f associated with several sources of measurement error,
including performance of instruments, illumination conditions, simplification of leaf optical
properties, suboptimal spatial sampling within an ESU, and saturation of optical signal in dense
canopies. Specifically, variability observed when PAIe f f values are greater than four typically
correspond to rice plants in the reproductive phenology stage. At this point, there is a significant
change in the rice morphological structure due to the panicle emergence, leading to an increasing
variability of the estimates. Error, Bias, and correlation between instruments are small and do agree
with previous studies in different crops [23,53] in which strong correlations (R2 = 0.96 and R2 = 0.94),
small bias (ME ≈ 0.2) and accuracy (RMSE ≈ 0.5) were found.
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Figure 4. Comparison of effective plant area index measurements collected in the 2014 Spanish
ERMES field campaign between: (a) PocketLAI and LAI-2000; (b) PocketLAI and Digital
hemispherical photography (DHP) and (c) DHP and LAI-2000.

These in situ PAIe f f measurements allowed the creation of a transfer function, which was used
to derive PAIe f f maps. RW and RC errors in function of the selected Landsat-8 combination bands
were computed for the TF. The best band combination was (SWIR1,NIR,R,G) in all three cases. This
specific band combination reveals RW = 0.46 and RC = 0.50 in the case of PocketLAI, RW = 0.51
and RC = 0.52 in the case of LAI-2000, and RW = 0.50 and 0.51 in the case of DHP. Statistical
indicators of the selected transfer functions showed good correlations and biases in all three cases
(R2 > 0.93 and B < 0.02). For the shake of brevity we only show one derived PAIe f f map per
instrument, which corresponds to DoY = 196 and BCCH ≈ 35 (see Figure 5). The three derived
maps show similar estimated PAIe f f values within the study area. Nevertheless, the estimated
PAIAPP

e f f map shows a slight underestimation if it is compared with PAIDHP
e f f - and PAILAI2000

e f f -derived
maps. Pixels covering non-interest areas were masked out in blue color. Up-scaled maps derived
from this ground dataset are made available for the validation of remote sensing products through
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the ImagineS www.fp7-imagines.eu (Implementing Multi-scale aGricultural Indicators Exploiting
Sentinels) ground database.

Figure 5. PAIe f f -derived maps using a transfer function and Landsat-8 data (DoY = 196, year 2014)
using PAILAI2000

e f f (left); PAIDHP
e f f (middle); and PAIAPP

e f f (right) data sets.

Derived maps reveal PAIe f f estimates fell within the expected range at that phenological rice
state and show high consistency between classical instruments estimates. On the other hand, the map
derived with PocketLAI measurements shows less intense greens, corresponding to values slightly
lower than the ones retrieved either with DHP or LAI-2000. This fact is in agreement with the low
PAIe f f underestimation observed in the comparison of the in situ PAIe f f measurements between the
app and the classical instruments. All three estimated maps show expected within-field variations
due to the spatial PAIe f f variability of rice fields corresponding to different varieties, phenological
stages, and low values corresponding to field boundaries and non-vegetated areas such as roads, rice
dryers, and agricultural warehouses. Statistical indicators between derived map values showed very
high correlations and consistency between the PocketLAI and the classical instruments (see Table 2).
Difference between PAIe f f maps retrieved with different methods was also computed to explore
spatial patterns (see Figure 6). The density scatterplots between derived map values are shown in
Figure 7. Difference maps showed no spatial patterns in disagreement between classical methods and
the PocketLAI. Nevertheless, the PocketLAI–DHP difference map (Figure 6 (right panel)) revealed
higher differences in estimated LAI values, mainly in the condition of dense biomass (high-range
values), which suggests an underestimation of the PocketLAI field measurements with respect to
the other indirect methods. In addition, the scatterplots between map values showed a proportional
underestimation in maps retrieved using PocketLAI data over the rice fields for PAIe f f high-range
values (i.e., PAIe f f > 4). This underestimation may reach a maximum of 1 (in PAIe f f units) and 0.6
when compared with DHP and LAI-2000, respectively (see Figure 7).

Table 2. Statistical indicators (Root-mean-squared error, RMSE; mean absolute error, MAE; absolute
value of the mean error, |ME|; and the coefficient of determination, R2) between PocketLAI estimated
values and classical instruments (DHP and LAI-2000).

Instrument RMSE MAE |ME| R2

DHP 0.67 0.64 0.61 0.94
LAI-2000 0.35 0.33 0.29 0.98
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Figure 6. Difference maps between PAIe f f derived from PocketLAI and LAI-2000 (left); and
DHP (right).

Figure 7. Scatterplots of PAIe f f estimates between PocketLAI and LAI-2000 (left) and DHP (right).

4. Conclusions

The results presented in this work bring to light the good performance of a brand new
smartphone mobile app called PocketLAI for effective plant area index acquisitions over rice. Ground
PocketLAI measurements were compared with those acquired with classical instruments (LAI-2000
and DHP). In this study, the assessment was carried out over paddy fields in Spain during the 2014
ERMES field activities. PocketLAI usually underestimates PAIe f f values from LAI-2000 and DHP.
Despite that low underestimation, it is found that PAIe f f is very well correlated between the app and
the classical instruments (R2 = 0.94 for DHP and R2 = 0.95 in the case of LAI-2000). The averaging
methods within an ESU are different for PocketLAI, LAI-2000, and DHP. PocketLAI allows farmers
to easily monitor crop status during the rice season and to capture within-field spatial variability of
its state. The use of the app by smartphones is a very good alternative to classical instruments due to
its portability and low-cost. These results suggest that PocketLAI can be used as a plant area index
measuring instrument, specially for near-real-time applications. Even so, further studies will include
intercomparison with different mobile devices over different crops.
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The seasonal PAIe f f measurements obtained from this study are in accordance with Committee
on Earth Observation Satellites (CEOS) good practice protocols, making it suitable for bio-physical
land product validation and up-scaling purposes. As a matter of fact, this data set is being used
for validation and can be found on the ImagineS website. This work show how measures from
a smartphone can be used for up-scaling and deriving high-resolution PAIe f f maps through a
transfer function.

Although this strategy is usually made to build ad hoc TF per available measurement-imagery
day, this paper proposes the use of a unique global TF made of several measuring dates and their
associated reflectances. This approach is more robust to estimate PAI during all stages of the plant
season while avoiding overfitting to individual dates.

The map derived from in situ PocketLAI measurements was compared with those obtained
either from LAI-2000 and DHP. Statistical indicators showed high correlations and consistency
when derived map values using PocketLAI acquisitions were compared with DHP and LAI-2000
derived maps.

In this study, the rice monitoring was completed with concomitant in situ leaf chlorophyll
content and phenology measurements. Leaf chlorophyll content measurements showed no stress
situations during the growing season. The rice phenology acquired during this study was used
for monitoring of the current growing season and provided useful information to be used in crop
models. Specifically, when phenology is BBCH ≥ 50, which implies that the rice plant is in the
reproductive and maturation phases, the PAIe f f acquired do not match with the green area index,
which is provided by operational products.

This work showed an example of maps derived using one date Landsat data. Multispectral
images periodically-recorded from sensors such as Landsat or SPOT5 are commonly used to monitor
vegetation status. In this context, and taking the advantage that the study area of this work was
recently selected and added for the SPOT5 take5 acquisition plan, future work will consider these
free available data for deriving bio-physical parameter maps through the same up-scaling approach
used in this study. In the same way, the upcoming dissemination of free Sentinel 2A data will be a
good source of data for these purposes due to its similar temporal, spectral, and spatial characteristics.
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