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Thesis Structure

The main goal of this thesis is to present some results on p-nilpotency and permutabil-

ity in locally finite groups. It is organised in five chapters.

Well known definitions and results which are widely used in the thesis are collected

in the first chapter. They are stated with suitable references. No proofs are included.

Chapter two is devoted to the study of p-nilpotency of hyperfinite groups, p a prime.

The results are published in the paper:

Ballester-Bolinches, A.; Camp-Mora, S.; Spagnuolo, F., On p-nilpotency of hyperfi-

nite groups. Monatshefte für Mathematik, 176, no. 4, 497-502, 2015.

A group is p-nilpotent if it has a normal Hall p′-subgroup. In finite groups, a group

is p-nilpotent if and only if every Sylow p-subgroup has a normal p-complement. In this

chapter we study which properties of the Sylow p-subgroups determine the p-nilpotency

of the group by the p-nilpotency of their normalisers. For example, a classical result of

Burnside states that a finite group G with an abelian Sylow p-subgroup P is p-nilpotent

if and only if the normalizer of P in G is p-nilpotent. A class of p-groups X determines p-

nilpotency locally if every finite group G with a Sylow p-subgroup P in X is p-nilpotent

if and only if the normalizer of P in G is p-nilpotent. The main results of chapter 2

extend some known results of p-nilpotency of finite groups to hyperfinite groups. We

prove:

• If X is a subgroup closed class of p-groups closed under taking epimorphic images

that determines p-nilpotency locally and G is a hyperfinite group with a pronor-

mal Sylow p-subgroup P in the class X , then G is p-nilpotent if and only if the

normalizer of P in G is p-nilpotent (Theorem 2.4).

• It X is a subgroup closed class of p-groups that determines p-nilpotency locally

and G is a hyperfinite locally p-soluble group with a Sylow p-subgroup P in the

class X , then G is p-nilpotent if and only if the normalizer of P in G is p-nilpotent

(Theorem 2.5).
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In chapters 3 and 4 we study the structural influence of the subgroups of infinite

rank. The results are collected in the following two papers.

Ballester-Bolinches, A.; Camp-Mora, S.; Kurdachenko, L.A.; Spagnuolo, F., On groups

whose subgroups of infinite rank are Sylow permutable. Annali di Matematica Pura

ed Applicata (4), 195, no. 3, 717-723, 2016,

Ballester-Bolinches, A.; Camp-Mora, S.; Dixon, M.R.; Ialenti, R.; Spagnuolo, F., On

locally finite groups whose subroups of infinite rank have some permutable prop-

erty. Submitted.

Recall that a group G has finite rank equal to r if every finitely generated subgroup

of G is generated by at most r elements and r is the least integer with this property. If

such an integer r does not exist then we say that G has infinite rank. Furthermore, G

has finite section p-rank equal to r if every elementary abelian p-section of G is finite of

order at most pr and there is an elementary abelian p-section of G of order exactly pr.

As before, if such an integer r does not exist then G has infinite section p-rank.

The properties of subgroups we consider includes permutability, S-permutability,

semipermutability and S-semipermutability. The main results of Chapter 3 are:

• If in a hyper-(abelian or finite) group G with infinite section p-rank all subgroups

with infinite section p-rank are S-permutable, then G is locally nilpotent (Theo-

rem 3.1).

• If in a locally finite group G with infinite rank all subgroups of infinite rank are

S-permutable, then G is locally nilpotent (Theorem 3.3).

• If in a locally finite group G with infinite section p-rank all subgroups with infinite

section p-rank are permutable, then G is an Iwasawa group (Theorem 3.4).

We prove some known results as a consequence of the main theorems.

In chapter 4, the properties considered are semipermutability and S- semipermutabil-

ity. The main results are:

• In locally finite groups with infinite section p-rank whose subgroups with infi-

nite section p-rank are semipermutable, all subgroups are semipermutable (Theo-

rem 4.5).

• For S-semipermutability, it is proved that in a locally finite group with the minimal

condition on p-subgroups for every prime p, if all subgroups with infinite rank are

S-semipermutable then all subgroups are S-semipermutable (Theorem 4.9).
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It is presented a counterexample that shows that the minimal condition on the p-

subgroups cannot be omitted (Proposition 4.10).

In chapter 5 all groups considered are finite. We study the immersion of semimodular

subgroups of odd order in a finite group. The results presented can be found in the

following paper, submitted to a scientific journal:

Ballester-Bolinches, A.; Heineken, H.; Spagnuolo, F., On semipermutable subgroups

of finite groups. Submitted.

Some of the results of this chapter are:

• A finite group, product of a normal supersoluble subgroup and a subnormal semi-

modular subgroup of odd order, is supersoluble (Theorem 5.1).

• If a finite group G has a normal supersoluble subgroup N and a subnormal semi-

modular subgroup of odd order S, then the product NSG is supersoluble (Theo-

rem 5.2).

An interesting consequence of the last result is that the normal closure of a subnormal

semimodular subgroup of odd order is supersoluble.





Resumen

En esta tesis se presentan algunos resultados sobre p-nilpotencia y permutabilidad en

grupos localmente finitos. Está estructurada en cinco caṕıtulos.

El primer caṕıtulo, que tiene carácter introductorio: contiene definiciones y resulta-

dos conocidos que serán utilizados en los caṕıtulos sucesivos. Por tratarse de resultados

ya conocidos, se introducen con referencias y sin demostraciones.

En el caṕıtulo 2 se trata la p-nilpotencia en grupos hiperfinitos, donde p es un primo.

Los resultados presentados se encuentran publicados en el siguiente art́ıculo

Ballester-Bolinches, A.; Camp-Mora, S.; Spagnuolo, F., On p-nilpotency of hyperfi-

nite groups. Monatshefte für Mathematik, 176, no. 4, 497–502, 2015 [10].

Un grupo se dice p-nilpotente si tiene un p′-subgrupo de Hall normal. En el caso de

grupos finitos, se tiene que un grupo es p-nilpotente si y solo si todo p-subgrupo de

Sylow tiene un p-complemento normal. En este caṕıtulo se estudian propiedades de los

p-subgrupos de Sylow de un grupo que garanticen que el grupo es p-nilpotente si y solo

si el normalizador de un p-subgrupo de Sylow es p-nilpotente. Por ejemplo, un resultado

clásico de Burnside establece que un grupo finito con p-subgrupos de Sylow abelianos

es p-nilpotente si y solo si el normalizador de un p-subgrupo de Sylow es p-nilpotente.

Para ello, se define la propiedad de determinación local de p-nilpotencia: una clase de p-

grupos X determina la p-nilpotencia localmente si todo grupo finito G con un p-subgrupo

de Sylow P en la clase X es p-nilpotente si y solo si el normalizador de P en G es

p-nilpotente.

Los resultados principales del caṕıtulo 2 extienden varios resultados conocidos sobre

p-nilpotencia de grupos finitos. Se prueba que:

• Si X es una clase de p-grupos cerrada para subgrupos e imágenes epimorfas

que determina la p-nilpotencia localmente y G es un grupo hiperfinito con un

p-subgrupo de Sylow pronormal P en la clase X , entonces G es p-nilpotente si y

solo si el normalizador de P en G es p-nilpotente (teorema 2.4).

21
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• SiX es una clase de p-grupos cerrada para subgrupos que determina la p-nilpotencia

localmente y G es un grupo hiperfinito localmente p-resoluble con un p-subgrupo

de Sylow P en la clase X , entonces G es p-nilpotente si y solo si el normalizador

de P en G es p-nilpotente (teorema 2.5).

En los caṕıtulos 3 y 4 se estudian grupos de rango infinito en los que el compor-

tamiento de los subgrupos de rango infinito respecto a cierta propiedad determina la

estructura del grupo. Los resultados de estos caṕıtulos aparecen en el art́ıculo

Ballester-Bolinches, A.; Camp-Mora, S.; Kurdachenko, L.A.; Spagnuolo, F., On groups

whose subgroups of infinite rank are Sylow permutable. Annali di Matematica Pura

ed Applicata (4), 195, no. 3, 717–723, 2016 [8],

y en el trabajo enviado para su posible publicación en una revista cient́ıfica

Ballester-Bolinches, A.; Camp-Mora, S.; Dixon, M.R.; Ialenti, R.; Spagnuolo, F., On

locally finite groups whose subroups of infinite rank have some permutable pro-

perty, enviado [7].

Recordemos que un grupoG tiene rango finito e igual a r si los subgrupos finitamente

generados de G están generados por como máximo r elementos y r es el menor entero

con tal propiedad. Si no existe un tal r, se dice que G tiene rango infinito. Se dice que G

tiene p-rango de sección finito e igual a r si toda sección p-elemental abeliana de G es

finita y tiene orden como máximo pr y hay una sección p-elemental abeliana con orden

exactamente pr. Igualmente, si no existe un tal r, se dice que G tiene p-rango de sección

infinito.

Las propiedades de los subgrupos de rango infinito que se consideran son la permu-

tabilidad y algunas generalizaciones de la permutabilidad. En particular, en el caṕıtulo

3 los principales resultados obtenidos se refieren a las propiedades de permutabilidad y

permutabilidad con los subgrupos de Sylow. Se prueban los siguientes resultados.

• Si en un grupoG hiper-(abeliano o finito) con p-rango de sección infinito todo sub-

grupo con p-rango de sección infinito es S-permutable, entonces G es localmente

nilpotente (teorema 3.1).

• Si en un grupo G localmente finito con rango infinito todo subgrupo de rango

infinito es S-permutable, entonces G es localmente nilpotente (teorema 3.3).

• Si en un grupo G localmente finito con p-rango de sección infinito todo subgrupo

con p-rango de sección infinito es permutable, entonces G es un grupo de Iwasawa

(teorema 3.4).
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Como consecuencia de los resultados principales se recuperan algunos resultados ya

conocidos.

En el caṕıtulo 4 se consideran las propiedades de semipermutabilidad y S- semiper-

mutabilidad. Se prueban los siguientes resultados:

• En los grupos localmente finitos con p-rango de sección infinito cuyos subgrupos

con p-rango de sección infinitos son semipermutables, todos los subgrupos son

semipermutables (teorema 4.5).

• Para la S-semipermutabilidad, se prueba que en un grupo localmente finito con

condición minimal sobre los p-subgrupos para todos los primos p, si todos los

subgrupos de rango infinito son S-semipermutables, entonces todos los subgrupos

son S-semipermutables (teorema 4.9).

Se presenta un contraejemplo que muestra que en el último resultado no se puede

eliminar la hipótesis de que el grupo tenga la condición minimal sobre los p-subgrupos

para todo primo p (proposición 4.10).

En el caṕıtulo 5 se consideran únicamente grupos finitos y se estudia la inmersión

de los subgrupos semimodulares de orden impar en un grupo finito. Un grupo se dice

semimodular si todos sus subgrupos son semipermutables. Los resultados forman parte

del siguiente trabajo, que ha sido enviado para su posible publicación en una revista

cient́ıfica:

Ballester-Bolinches, A.; Heineken, H.; Spagnuolo, F., On semipermutable subgroups

of finite groups, enviado. [13].

Algunos de los resultados de este caṕıtulo son los siguientes:

• Un grupo finito que es producto de un subgrupo normal superresoluble y de un

subgrupo subnormal semimodular es superresoluble (teorema 5.1).

• Si un grupo finito G tiene un subgrupo normal N superresoluble y un subgrupo S

subnormal semimodular de orden impar, entonces el producto NSG es superreso-

luble (teorema 5.2).

Una consecuencia interesante del último resultado es que la clausura normal de un

subgrupo subnormal semimodular de orden impar es superresoluble.
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Preliminaries

Contents

1.1 Minimal condition and Černikov groups . . . . . . . . . . . . . . . . . . 25
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1.4 Permutability properties of subgroups . . . . . . . . . . . . . . . . . . . 31

In this chapter, we collect together a number of results. Many are well known and are

included here for convenient reference, because of their extensive use in later chapters.

To begin with, we recall that if X is a class of groups, a group G is said to be locally

X if every finitely generated subgroup of G belongs to X . In this work, we are interested

in locally finite groups, or groups which are locally X for the class X of all finite groups.

In the first section of this chapter we are concerned with a finiteness condition that

has been playing an important role in ring theory and group theory: the minimal condi-

tion.

1.1 Minimal condition and Černikov groups

Recall first that a subgroup theoretical property P is a property that certain subgroups

of a group possess that is invariant under isomorphisms.

Definition 1.1. Let P be a subgroup theoretical property. A group G is said to satisfy

the minimal condition on P-subgroups (min-P for short) if all sets of P-subgroups of G

partially ordered by inclusion have a minimal element.

In the particular case when P is the property of being a subgroup, then the condition

min-P is called the minimal condition, or simply, min. Condition min-p, p a prime,

denotes the case when P is the property of being a p-subgroup.

The following result is elementary.

25
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Lemma 1.2. A groupG satisfies min-P if and only if every descending chain of P-subgroups

of G terminates in finitely many steps.

Some useful properties of the groups with the minimal condition are gathered in the

following result.

Proposition 1.3. 1. Every group satisfying the minimal condition is periodic.

2. ([25, Lemma 1.5.3]) The class of groups with the minimal condition is closed under

taking subgroups and homomorphic images.

3. ([25, Lemma 1.5.3]) If L is a normal subgroup of a group G such that L and G/L

satisfy the minimal condition, then G satisfies the minimal condition. In particular,

the class of groups with the minimal condition is closed under taking finite normal

products.

4. ([25, Lemma 1.5.4]) The group G satisfies the minimal condition if and only if every

countable subgroup of G satisfies the minimal condition.

The most important examples of infinite groups with the minimal condition are the

Prüfer p-groups of type p∞ (Prüfer p-group for short), p a prime. These groups, denoted

by Cp∞ , play a very important role in group theory and can be thought of as the mul-

tiplicative group of complex pn-th roots of unity, or as the set of elements of p-power

order of the additive abelian group Q/Z. These groups are also the main examples of

infinite groups with every proper subgroup finite. They also are canonical examples of

divisible abelian groups.

Recall that a radicable group G is a group in which we can solve the equation yn = x

for every element x ∈ G and every integer n. An abelian radicable group is called

divisible.

Another example of a divisible abelian group is the additive group of the rational

numbers Q. These two examples of abelian divisible groups are central since an abelian

group is divisible if and only if it is a direct sum of isomorphic copies of Q and Prüfer

groups (see [49, 4.1.5]).

The following property of abelian groups should be noted.

Theorem 1.4. [49, 4.1.4] If G is an abelian group, there exists a unique largest divisible

subgroup D of G. Moreover, G = D⊕R, where R is a reduced subgroup, that is, R has no

nontrivial divisible subgroups.
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The structure of groups with the minimal condition is not as well understood as

the corresponding structure for rings. Nevertheless, there are some interesting positive

results. The following theorem, due to Kuroš, characterises the abelian groups in the

class and it is a nice application of Theorem 1.4.

Theorem 1.5. [25, 1.5.5] Let G be an abelian group. Then G has the minimal condition

if and only if G is a finite direct product of Prüfer groups and finite cyclic groups.

Definition 1.6. A finite extension of an abelian group with the minimal condition on

subgroups is called Černikov group.

Such groups were named in honour of S. N. Černikov, who studied the class of groups

with minimal condition (see for example [16, 17]).

Note that from Theorem 1.5 it follows that a group G is Černikov if and only if G

has a normal divisible abelian subgroup D of finite index and D is a direct product of

finitely many Prüfer groups. Moreover, G is Černikov if and only if G has a finite series

whose factors are finite or Prüfer.

The following proposition contains some useful properties of Černikov groups.

Proposition 1.7. 1. The class of Černikov groups is closed under taking subgroups and

epimorphic images.

2. If G is a group and L is a normal subgroup of G such that L and G/L are divisible

Černikov groups, then G is divisible and hence abelian Černikov group.

3. If G is a group and L is a normal subgroup of G such that L and G/L are Černikov

groups, then G is a Černikov group.

Recall that if G is a group and X is a class of groups, the X-residual of G is the

subgroup

GX =
⋂
{N C G|G/N ∈ X}.

Lemma 1.8. [25, 1.5.8] Let G be a group and suppose that the set of normal subgroups of

finite index of G has the minimal condition. Then the finite residual of G has finite index

in G.

In the case of a Černikov group G the finite residual GF is the largest normal divisible

subgroup of G.

The periodic group of automorphisms of a Černikov group studied by Baer [3] and

Polovickĭı [48] will be also used in our work.
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Theorem 1.9. [25, 1.5.16] Let G be a Černikov group. If A is a periodic group of auto-

morphisms of G, then A is a Černikov group.

We bring this subsection to a close with a nice consequence of Theorem 1.9.

Corollary 1.10. [25, 1.5.17] Let G be a nilpotent Černikov group. If A is a periodic group

of automorphisms of G, then A is finite.

1.2 Ranks of a group

In this section, we collect some results concerning some numerical invariants of a

group which are important in our work. They are motivated by the concept of dimension

of vector spaces.

We begin with the abelian case and consider an analoge of linearly independent

subsets of a vector space.

Definition 1.11. Let G be an abelian group. A nonempty subset X of G is called linearly

independent, or independent for short, if given x1, . . . , xm distinct elements of X and

integers n1, . . . , nm, the relation n1x1 + · · ·+ nmxm = 0 implies that nixi = 0 for all i.

Zorn’s Lemma shows that every independent subset of G is contained in a maximal

independent subset. Moreover, if we restrict the attention on independent subsets con-

sisting of elements of infinite order or of elements of order some power of a fixed prime,

we obtain maximal independent subsets consisting of elements of these types. Thus, we

have:

Theorem 1.12. [49, 4.2.1] Let G be an abelian group. Then two maximal linearly inde-

pendent subsets of G consisting of elements of infinite order (respectively elements of order

some power of a fixed prime) have the same cardinality.

Bearing in mind the above result, the following definition turns out to be natural.

Definition 1.13. Let G be an abelian group. The cardinality r0(G) of a maximal inde-

pendent subset consisting of elements of infinite order is called the 0-rank of G; if p is

a prime, the p-rank of G, rp(G), is defined as the cardinality of a maximal independent

subset consisting of elements of p-power order.

If T (G) is the torsion subgroup of G, that is, the subgroup composed of all elements

of finite order, then r0(G) = r0(G/T (G)) and rp(G) = rp(T (G)).
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We define the special rank r(G), often just called the rank, of an abelian group G as

r(G) = r0(G) +maxp{rp(G)}.

This motivates the following:

Definition 1.14. A group G has finite special rank (or just rank) rk(G) = r if every

finitely generated subgroup of G is generated by at most r elements and r is the least

integer with this property. If such an integer r does not exist then we say that G has

infinite special rank.

It is clear that the additive group of Q is of rank 1. Moreover, we have:

Lemma 1.15. Let G be a periodic abelian group. Then G satisfies the minimal condition

if and only if G has finite rank. Furthermore, in this case G is a Černikov group and it is a

direct sum G = D ⊕ F for some divisible subgroup D and finite subgroup F .

A group of finite rank with the minimal condition need not to be Černikov: the Tarski

monster constructed by Ol’shanskii [46] is an infinite simple 2-generator group with all

proper subgroups cyclic of prime order.

The concept of rank of groups was largely studied in last seventy years (see for ex-

ample [4, 18, 26, 28, 30, 31, 34, 38, 42–45, 50, 51, 58, 62]).

Some useful properties of groups of finite rank are contained in the following propo-

sition:

Proposition 1.16. Let G be a group and N a subgroup of G.

1. If G has finite rank r(G) = r, then N has rank at most r. Furthermore, if N is a

normal subgroup of G, G/N has rank at most r.

2. If N is normal in G, N has rank r and G/N has rank s, then G has rank at most

r + s.

3. G has finite rank if and only if every countable subgroup of G has finite rank.

Note that an abelian p-group P , p a prime, has finite rank r if and only if every ele-

mentary abelian section U/V of P has finite order at most pr, and P has an elementary

abelian section A/B of order pr.

This motivates the following numerical invariant associated to the prime p.

Definition 1.17. Let p be a prime. A groupG has finite section p-rank srp(G) = r if every

elementary abelian p-section of G is finite of order at most pr and there is an elementary

abelian p-section A/B of G such that |A/B| = pr.



Chapter 1. Preliminaries 30

Observe that if G is an abelian group, then rp(G) ≤ srp(G) but the equality does not

hold in general: the group Cp×Z has p-rank 1, but the elementary p-section (Cp×Z)/pZ
has order p2, so the section p-rank of Cp × Z is (at least) 2.

Note that if a groupG has an element g of infinite order, thenG has a section 〈g〉/〈gp〉
of order p for every prime p. Then if G is not periodic, srp(G) ≥ 1 for every prime p. If G

is a periodic group that contains no p-elements, then srp(G) = 0. Otherwise, srp(G) ≥ 1.

The section p-rank version of Proposition 1.16 is the following:

Proposition 1.18. Let G be a group and p be a prime number.

(i) If G has finite section p-rank, then

1. if K is a subgroup of G and H is a normal subgroup of K, srp(K/H) ≤ srp(G);

2. if H is a normal subgroup of G, srp(G) ≤ srp(H) + srp(G/H);

3. if H is a normal periodic subgroup of G such that p /∈ π(H), srp(G/H) =

srp(G).

(ii) If H is a normal subgroup of G and H and G/H have finite section p-rank, then G

has finite section p-rank.

1.3 Groups with min-p

In this section, we collect some results about the interesting class of groups with

min-p, p a prime.

We begin with the following lemma.

Lemma 1.19. [25, 2.5.1] Let G be a locally finite group. Then G satisfies min-p for the

prime p if and only if G contains a maximal elementary abelian p-subgroup which is finite.

Definition 1.20. Let G be a locally finite group and let p be a prime. A maximal p-

subgroup P of G is called a Wehrfritz p-subgroup if P contains an isomorphic copy of

every p-subgroup of G.

Theorem 1.21. [25, 2.5.4] Let G be a group with min-p for some p. Then G contains

Wehrfritz p-subgroups and every finite p-subgroup lies in at least one of these.

Lemma 1.22. [25, 2.5.3] Let P and Q be Černikov groups. If Q contains an isomorphic

copy of every finite subgroup of P then Q contains a subgroup isomorphic to P .
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Lemma 1.23. [25, 2.5.5] LetG be a group with min-p for the prime p. If P is a p-subgroup

of G and Q is a Wehrfritz p-subgroup of G then the following are equivalent:

(i) P is a Wehrfritz p-subgroup of G;

(ii) P contains an isomorphic copy of every finite p-subgroup of G;

(iii) P ∼= Q.

Corollary 1.24. [25, 2.5.8] Let G be a group with min-p for the prime p. Then the p-

subgroup P is a Wehrfritz p-subgroup of G if and only if P contains a conjugate of every

finite p-subgroup of G.

The following theorem is due to Kargapolov [38]. Recall that a group G involves a

group H if H is isomorphic to a section of G.

Theorem 1.25. Let G be a locally finite group that satisfies min-p for a prime p. Then

G/Op′,p(G) is finite if and only if G does not involve any infinite simple group containing

elements of order p.

Corollary 1.26. [25, 2.5.13] Suppose G is a locally soluble group satisfying min-p for all

primes p. Let π be a finite set of primes. Then G/Oπ′(G) is a soluble Černikov group.

Theorem 1.27. [25, 2.5.14] Let G be a locally soluble group with min-p for all primes

p. Then G contains a radicable abelian normal subgroup G0 such that G/G0 is residually

finite and the Sylow p-subgroups of G/G0 are finite for each prime p.

The following theorem of Belyaev [15] quite useful. Recall that a group is almost

locally soluble if it has a locally soluble subgroup with finite index.

Theorem 1.28. If G is a locally finite group satisfying min-p for every p, then G is almost

locally soluble.

1.4 Permutability properties of subgroups

A subgroup H of a group G is said to be permutable in G (or quasi-normal in G),

if HK = KH for every subgroup K of G. This concept arises as a generalization

of that of normal subgroup and was introduced by Ore in 1939 ([47]). Permutable

subgroups are subnormal in the finite case by a result of Ore, and ascendant, non-

necessarily subnormal, in the general one by a result of Stonehewer ([57]).
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Another interesting subgroup embedding property which can be defined in a periodic

group is the Sylow permutabilty.

Let π(G) denote the set of primes dividing the order of some element of a periodic

group G. Let π be a subset of π(G). Following Kegel ([39]), we say that a subgroup H of

G is said to be π–permutable (or π–quasinormal) in G, if H permutes with every Sylow

p–subgroup of G for every p ∈ π. A subgroup H of G is said to be Sylow–permutable (or

S–permutable) in G if H is π–permutable, for π = π(G).

According to a result of Kegel ([39], [11, Lemma 1.2.8, Theorem 1.2.14]), an S-

permutable subgroup of a finite group is subnormal. Unfortunately, this result does not

remain true in the locally finite universe: every subgroup of a locally nilpotent group

is S-permutable, and there are many examples of locally nilpotent groups with non-

subnormal subgroups. Moreover, there exist locally finite p-groups with no ascendant

subgroups (see for example [16, 56]). Therefore, S-permutable subgroups are not as-

cendant in general. However, they are ascendant in the hyperfinite universe ([14, Propo-

sition 2.4]). In addition, if G is a locally finite group with Černikov Sylow subgroups,

every S-permutable subgroup of G is ascendant ([9, Theorem 11]).

The following lemma is very useful.

Lemma 1.29. Let G be a locally finite group.

(i) Let L be a normal subgroup of G such that G/L is countable.

1. [25, Lemma 2.3.9] If P/L is a Sylow p-subgroup of G/L, then G has a Sylow

p-subgroup S such that P/L = SL/L.

2. If H is an S-permutable subgroup of G, then HL/L is S-permutable in G/L.

(ii) Let H be an S-permutable subgroup of G. If K is a subgroup of G containing H, then

H is S-permutable in K.

Others interesting extensions of the permutability which have been studied inten-

sively in recent years are the semipermutability and S-semipermutability introduced by

Chen in [19] in the finite case.

Definition 1.30. A subgroup H of a periodic group G is said to be semipermutable

(respectively, S-semipermutable) provided that it permutes with every subgroup (respec-

tively, Sylow subgroup) K of G such that π(H) ∩ π(K) = ∅.

Unfortunately semipermutable subgroups are not subnormal in general. It is enough

to consider a Sylow 2-subgroup of the symmetric group of degree 3.



Chapter 1. Preliminaries 33

Semipermutability and S-semipermutability are not closed under homomorphic im-

ages either ([6]).

We recall the following easy fact.

Lemma 1.31. Let G be a periodic group and H a subgroup of G. If H is semipermutable

(respectively S-semipermutable) in G and H ≤ K ≤ G, then H is semipermutable (respec-

tively, S-semipermutable) in K.

Clearly the extent to which a subnormal subgroup of a finite group can differ from

being S-permutable is of interest and so the description of the periodic groups in which

S-permutability is transitive could help.

Definition 1.32. A periodic group G is a PST -group if S-permutability is a transitive

relation in G, that is, if H ≤ K ≤ G and H is S-permutable in K and K is S-permutable

in G, then H is S-permutable in G.

According to Kegel’s result, a finite group G is a PST -group if and only if every

subnormal subgroup is S-permutable in G. The class of finite PST -groups has been

extensively investigated with a lot of nice results available. The reader is referred to

[11, Chapter 2] for basic results about this class of groups.

In particular, Agrawal ([11, 2.1.8]) characterised soluble PST-groups.

Theorem 1.33. A finite group G is a soluble PST -group if and only if the nilpotent resid-

ual of G is a Hall subgroup of odd order acted upon by conjugation as a group of power

automorphisms by G.

In particular, the class of finite soluble PST -groups is subgroup-closed.

The structure theorem for finite PST -groups was showed by Robinson in [52] (see

[11, 2.1.19]).

The finiteness does not tend to be unnecessary in much of this theory. For in-

stance, there exist locally finite non-PST -groups in which every subnormal subgroup

is S-permutable (see [14, example 2.8]).

The problems to deal with infinite PST -groups are due to the bad behaviour of Sylow

subgroups, in particular from the difficulty to form quotients and the deficiency of Sylow

p-subgroups to be conjugate.

In [53], Robinson proved the following characterisation of locally finite groups with

all finite subgroups PST :
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Theorem 1.34. [53, Theorem PST] Let G be a locally finite group. Then the following

statements are equivalent:

1. all finite subgroups of G are PST -groups;

2. there is an abelian normal subgroup L containing no involutions such that G/L is

locally nilpotent, π(L)∩π(G/L) = ∅ and elements of G induce power automorphisms

in L;

3. in each section of G the serial subgroups and the S-permutable subgroups coincide;

4. every section of G is a PST -group.

Clearly S-semipermutability is not transitive either. Hence it is natural to consider

the following class of groups.

Definition 1.35. A group G is called a BT -group if S-semipermutability is a transitive

relation in G, that is, if H ≤ K ≤ G and H is S-semipermutable in K and K is S-

semipermutable in G, then H is S-semipermutable in G.

This class was introduced and characterized by Wang, Li and Wang in [59]. Further

contributions were presented in [1].

The following important theorem shows that soluble BT -groups are a subclass of

PST -groups:

Theorem 1.36 ([59]). Let G be a finite group with nilpotent residual L. The following

statements are equivalent:

1. G is a soluble BT-group;

2. every subgroup of G of prime power order is S-semipermutable;

3. every subgroup of G of prime power order is semipermutable;

4. every subgroup of G is semipermutable;

5. G is a soluble PST -group and if p and q are distinct primes not dividing the order of L

withGp a Sylow p-subgroup ofG andGq a Sylow q-subgroup ofG, then [Gp, Gq] = 1.

Corollary 1.37. [59, 3.3] If G is a finite group in which all subgroups are semipermutable,

then G is a PST -group.

The soluble BT -groups are a proper subclass of soluble PST -groups ([5]).
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Lemma 1.38. Let G be a soluble finite BT -group. Then:

1. G is supersoluble.

2. G/K is BT -group for all normal subgroups K of G.

Proof. Statement 1 follows from Corollary 1.37 and Theorem 1.33.

Assume that K is a normal subgroup of G. If A,B are two subgroups of G con-

taining K, we know about minimal supplements A+, B+ of K in A,B that their in-

tersections with K in A,B are contained in the Frattini subgroups Φ(A+),Φ(B+) re-

spectively. Hence if A/K = A+K/K ∼= A+/(A+ ∩ K) is a π-subgroup, so is A+, and

gcd(|A/K|, |B/K|) = 1 yields gcd(|A+|, |B+|) = 1. Now A+B+ = B+A+ since G is a

soluble BT-group (by Theorem 1.36) and AB = KA+B+ = KB+A+ = BA, further

(A/K)(B/K) = (B/K)(A/K). This proves Statement 2.

It is easy to see that semipermutability and S-semipermutability are not closed under

taking subgroups and homomorphic images. However the following property is true in

finite groups

Lemma 1.39. [63, Property 1, Property 2] Let H be a S-semipermutable subgroup of a

finite group G. Let N be a normal subgroup of G. If H is a p-group for some prime

p ∈ π(G), then HN/N is S-semipermutable in G/N .
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2.1 Introduction

The results presented in this chapter are the contents of the paper:

Ballester-Bolinches, A.; Camp-Mora, S.; Spagnuolo, F., On p-nilpotency of hyperfi-

nite groups. Monatshefte für Mathematik, 176, no. 4, 497-502, 2015.

In this chapter all groups considered are periodic; p will denote a prime number.

We say that a group G is p-nilpotent if G has a normal Hall p′-subgroup (or Sylow

p′-subgroup in the terminology of [25]). In this case Op′(G), the largest normal p′-

subgroup of G, is a Sylow p′-subgroup of G. If G is finite, the classical Schur–Zassenhaus

theorem shows that Op′(G) is complemented in G by a Sylow p-subgroup of G. Hence

a finite group is p-nilpotent if and only if every Sylow p-subgroup has a normal comple-

ment. In the case of infinite groups, the situation is much more complicated since there

exist groups with non-complemented normal Sylow p′-subgroups (see [25]).

The p-nilpotency of a finite group G is a property which can be read off from the

structure of the Sylow p-subgroups of G and the way in which they are embedded in G.

For instance, if a Sylow p-subgroup P of a finite group is abelian, then G is p-nilpotent

if and only if NG(P ) is p-nilpotent. This is a classical result of Burnside ([36, Chap.IV,

2.6]), which was extended to modular Sylow p-subgroups, i. e. groups with modular

subgroup lattice, by Ballester-Bolinches and Esteban-Romero (see [11, Theorem 2.2.5]).

The latter result remains true for hyperfinite groups, i. e. a group with an ascending

37
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series of normal subgroups whose factors are finite, and pronormal Sylow p-subgroups

as Kurdachenko and Otal showed in [40].

Theorem 2.1 ([40, Main Theorem]). Let P be a Sylow p-subgroup of a hyperfinite group.

If P is modular and pronormal in G, then G is p-nilpotent if and only if NG(P ) is p-

nilpotent.

For our purposes, it seems worthwhile introducing the following definition ([60]).

Definition 2.2. A class of p-groups X determines p-nilpotency locally if every finite group

G with a Sylow p-subgroup P in X is p-nilpotent if and only if NG(P ) is p-nilpotent.

The present chapter deals with the problem of determining when a hyperfinite group

G is p-nilpotent, and can be considered as a continuation of [40].

The above-mentioned results show that the class of all abelian p-groups and the

class of all modular p-groups are both examples of subgroup-closed classes of p-groups

determining p-nilpotency locally. Regular p-groups ([36, Chap.III, Section 10]) also

constitute a subgroup-closed class of p-groups which determines p-nilpotency locally

by virtue of a result of Hall and Wielandt ([36, Chap.IV, 8.1]). All finite p-groups of

nilpotency class less or equal to p − 1 and all finite p-groups of exponent p are regular.

Therefore the class of all p-groups of nilpotency class at most p − 1 and the class of all

p-groups of exponent p are subgroup-closed classes determining p-nilpotency locally.

Weigel [60] proved that if p is odd, there exists a subgroup-closed class of p-groups

which determines p-nilpotency locally and contains every subgroup-closed class of finite

p-groups with this property. It is defined as follows.

Definition 2.3. Let E = 〈g1, g2, . . . , gp〉 be an elementary abelian group of order pp. Let

C = 〈x〉 be a cyclic group of order pm acting on E, where m is a natural number, in such

a way gxi = gi+1 for 1 ≤ i ≤ p− 1 and gxp = g1. Let Yp(m) = EoC be the corresponding

semidirect product.

Note that Yp(1) is just the regular wreath product Cp o Cp.

We say that a p-group P is slim if no subgroup Yp(m) for m ≥ 1 can be embedded in

P .

By [60, Main Theorem] (see also [12]), the class of all slim p-groups, p odd, deter-

mines p-nilpotency locally and it contains every subgroup-closed class finite of p-groups

which determines p-nilpotency locally ([60, Proposition4.3]).

Our main results show that Theorem 2.1 is not accidental and it is a consequence of

a general completeness property of certain classes of p-groups.
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Theorem 2.4. Suppose that X is a subgroup-closed class of p-groups which is closed under

taking epimorphic images. If X determines p-nilpotency locally and G is a hyperfinite group

with a pronormal Sylow p-subgroup P in X , then G is p-nilpotent if and only if NG(P ) is

p-nilpotent.

For classes of p-groups which are not closed under taking epimorphic images, we

need to impose local p-solubility. In this case, the hypothesis of pronormality of the

Sylow p-subgroup can be removed.

Theorem 2.5. Suppose that X is a subgroup-closed class of p-groups. If X determines

p-nilpotency locally and G is a hyperfinite locally p-soluble group with a Sylow p-subgroup

P in X , then G is p-nilpotent if and only if NG(P ) is p-nilpotent.

2.2 Proofs

Most of the labour of the proof of Theorem 2.4 resides in establishing the following

key lemmas.

Lemma 2.6. Let X be a class of p-groups which is closed under taking subgroups. Assume

that G = PN is a locally finite group which is the product of a Sylow p-subgroup P ∈ X
and a finite normal subgroup N . If X determines p-nilpotency locally, then G is p-nilpotent

if and only if NG(P ) is p-nilpotent.

Proof. Since P is has finite index in G, it follows that CoreG(P ) has finite index in G.

Then Op(G), the largest normal p-subgroup of G, has finite index in G and so G/Op(G)

is a finite group. Therefore the Sylow p-subgroups of G are conjugate.

It is clear that only the sufficiency of the condition is in doubt. Suppose that NG(P )

is p-nilpotent. We see thatG/Op′(G) satisfies the hypothesis of the lemma. Let T/Op′(G)

be a p-subgroup ofG/Op′(G) containing POp′(G)/Op′(G). Applying [25, Theorem 2.4.5],

there exists a Sylow p-subgroup A of T such that T = AOp′(G). Since Op′(G) is finite,

it follows that A has finite index in T and so the Sylow p-subgroups of T are conjugate.

In particular, P and A are conjugate in T . Hence T = POp′(G) and POp′(G)/Op′(G) is

a Sylow p-subgroup of G/Op′(G). Moreover, the conjugacy of the Sylow p-subgroups of

G yields NG/Op′ (G)(POp′(G)/Op′(G)) = NG(P )Op′(G)/Op′(G). Thus G/Op′(G) satisfies

the hypothesis of the lemma. If G/Op′(G) is p-nilpotent, then G is p-nilpotent. Therefore

we may assume that Op′(G) = {1}.

We prove that G is p-nilpotent by induction on |G : P |, the index of P in G. Suppose

that NG(P ∩N) is a proper subgroup of G. Then P is a Sylow p-subgroup of NG(P ∩N)
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and |NG(P ∩N) : P | < |G : P |. By induction, NG(P ∩N) is p-nilpotent. Since N is finite

and the Sylow p-subgroups ofG are conjugate, we have that P∩N is a Sylow p-subgroup

of N . Moreover, P ∩N belongs to X . Hence N is p-nilpotent and so N is a p-group since

Op′(N) ≤ Op′(G) = {1}. Thus G is a p-group and the lemma is proved. Hence we may

assume that P ∩N is a normal subgroup of G. Let X be a finite subgroup of P such that

P ∩N is contained in X and P = Op(G)X (note that Op(G) is a proper subgroup of P ).

Then X is a p-subgroup of NX and |NX : X| = |N : N ∩X| is a p′-number. Hence X is

a Sylow p-subgroup of NX and X ∈ X . Since NNX(X) is contained in NG(P ), it follows

that NNX(X) is p-nilpotent. The hypothesis on X implies that XN is p-nilpotent. Then

N is p-nilpotent and so N is a p-group since Op′(N) = {1}. The proof of the lemma is

complete.

Lemma 2.7. Let X be a class of p-groups which is closed under taking subgroups and

epimorphic images. Assume that G is a hyperfinite group with a Sylow p-subgroup P ∈ X
of finite index in G. If X determines p-nilpotency locally, then G is p-nilpotent if and only

if NG(P ) is p-nilpotent.

Proof. As in Lemma 2.6, we have that the Sylow p-subgroups of G are conjugate. Sup-

pose that NG(P ) is p-nilpotent. We argue that G is p-nilpotent by induction on |G : P |.
We may assume Op′(G) = {1}. Since G/CoreG(P ) is a finite group and P is a proper

subgroup of G, there exists a maximal subgroup M of G containing P . Then M satisfies

the hypotheses of the lemma and |M : P | < |G : P |. By induction, M is p-nilpotent. If

P is a proper subgroup of M , then {1} 6= Op′(M) EM . Therefore M ≤ NG(Op′(M)).

The maximality of M implies that either NG(Op′(M)) = G or NG(Op′(M)) = M . If

NG(Op′(M)) = G, then Op′(M) E G and Op′(M) ≤ Op′(G) = {1}, contrary to sup-

position. Thus NG(Op′(M)) = M , and |G : NG(Op′(M))| is finite. In particular,

Op′(M) has a finitely many G-conjugates. Since G/CoreG(P ) is a finite group and

Op′(M) ∩ CoreG(P ) = {1}, it follows that Op′(M) is finite. Consequently, the normal

closureN ofOp′(M) inG is finite. By Lemma 2.6, it follows that PN is p-nilpotent. Then

N is a normal p′-subgroup of G and so N ≤ Op′(G) = {1}. This contradiction yields

M = P and so G/Op(G) is a primitive group (see [36, Chap. II, Section 3]). Since

P/Op(G) is in X , it follows that G/Op(G) is p-nilpotent. Then G is locally p-soluble and

Soc(G/Op(G)) is a p′-group. In particular, every chief factor of G/Op(G) whose order is

divisible by p is central in G. Let H/K be a chief factor of G such that H ≤ Op(G). Since

G is hyperfinite, H/K is finite and then Op(G) ≤ CG(H/K) by [25, Lemma 1.7.11].

Let X be a finite supplement of Op(G) in G = XOp(G) containing a transversal of K in

H. Let S be a Sylow p-subgroup of X, then SOp(G) is a Sylow p-subgroup of G. Since

NG(S) is contained in NG(SOp(G)), it follows that is NG(S) is p-nilpotent. Since S ∈ X ,

we have that X is p-nilpotent. Since Op(G) centralises H/K, it follows that H/K is a



Chapter 2. On p-nilpotency of hyperfinite groups 41

chief factor of the p-nilpotent group XK/K. Then H/K ≤ Z(XK/K). Hence H/K

is central in G. The proof of [25, Lemma 6.2.3] can be adapted to conclude that G is

p-nilpotent.

The converse is clear.

Note that if X is not closed under taking epimorphic images, we cannot guarantee

that the primitive group G/Op(G) is p-nilpotent. Hence we have to impose local p-

solubility to G to get the same result.

Lemma 2.8. Let X be a class of p-groups which is closed under taking subgroups. Assume

that G is a hyperfinite locally p-soluble group with a Sylow p-subgroup P ∈ X of finite

index in G. If X determines p-nilpotency locally, then G is p-nilpotent if and only if NG(P )

is p-nilpotent.

Lemma 2.9. If P be a hyperfinite p-group, then P is hypercentral.

Proof. Assume that P is not hypercentral. Let Z̄ = Z̄(P ) be the hypercentre of P , then

P̄ = P/Z̄ is not trivial, but Z(P̄ ) is trivial. Since P is hyperfinite, P̄ is also hyperfinite. In

particular, P̄ has a non-trivial finite normal subgroup N̄ . Let pr = |N̄ |. Since P̄ induces

a group of automorphisms of N̄ by conjugation, P̃ = P̄ /CP̄ (N̄) is finite. The action of P̃

induced by the action of P̄ on the finite subgroup N̄ decomposes N̄ as a union of orbits.

Since P̃ is a finite p-group, each of these orbits is of length a power of p. The orbit of

the identity element 1 of N̄ is {1}. Since Z(P̄ ) = {1}, there cannot be more orbits of

length 1 in this action, since all these orbits correspond to central elements of P̄ . In

particular, all other orbits have length divisible by p. But then |N̄ | = pr = 1 + pt for a

certain natural number t, that is, 1 is a multiple of p. This is a contradiction. Therefore

P must be hypercentral.

Common arguments. It seems desirable to collect the arguments common to our main

theorems.

It is clear that only the sufficiency of the condition of p-nilpotency of NG(P ) in The-

orems 2.4, 2.5 is in doubt. Assume that NG(P ) is p-nilpotent. Let P be a Sylow p-

subgroup of G in X , and let

1 = H0 ≤ H1 ≤ · · · ≤ Hα ≤ Hα+1 ≤ · · · ≤ Hγ = G

be an ascending series of normal subgroups of G with finite factors.
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Since H1 is a finite normal subgroup of G, we can apply Lemma 2.6 to conclude that

PH1 is p-nilpotent. Since the Sylow p-subgroups of PH1 are conjugate we have that

PH1 = POp′(PH1). Now Op′(PH1) is contained in Op′(H1), so that PH1 = POp′(H1).

We argue by transfinite induction that PHα = POp′(Hα) for all ordinals α ≤ γ. If

this is false, there is a first ordinal α such that POp′(Hα) is a proper subgroup of PHα.

Then α > 1 and PHβ = POp′(Hβ) for all ordinals β < α. If α is a limit ordinal,

Hα =
⋃
β<αHβ, Op′(Hα) =

⋃
β<αOp′(Hβ) and PHα = POp′(Hα). Hence α cannot be a

limit ordinal, δ = α− 1 exists and PHδ = POp′(Hδ). Write N = Hδ and H = Hα. Then

N = (P ∩N)Op′(N). Write M = Op′(N) and X = HP . Then X/M = (H/M)(PM/M).

Let R be a finite subgroup of H such that H = NR. Then X = (PM)R. Therefore

PM/M is of finite index in X/M . Let T/M be a Sylow p-subgroup of X/M containing

PM/M . Since T/M is hypercentral by Lemma 2.9, it follows that PM/M is ascendant

in T/M .

If PM/M is a proper subgroup of T/M , then there exists a subgroup Y/M of T/M

such that PM/M is a proper normal subgroup of Y/M .

Assume that PM/M is a Sylow p-subgroup of X/M . Then we apply Lemma 2.7 if

X is closed under taking epimorphic images and Lemma 2.8 if G is locally p-soluble

to conclude that X/M is p-nilpotent. Hence X is p-nilpotent and X = POp′(H). This

contradiction shows that PHα is p-nilpotent for all ordinals α ≤ γ. In particular, G =

PHγ is p-nilpotent. Therefore Theorem 2.4 and Theorem 2.5 hold in this case.

Proof of Theorem 2.4. Assume that P is pronormal in G. We need only to prove that

PM/M is a Sylow p-subgroup of G/M . Suppose that PM/M is a proper subgroup of

T/M . Then Y/M ≤ NG/M (PM/M) = NG(P )M/M . Since PM/M contains every p-

element of NG(P )M/M , it follows that Y/M should be contained in PM/M . This is a

contradiction. Hence PM/M is a Sylow p-subgroup of X/M and the theorem holds.

Proof of Theorem 2.5. Assume that G is locally p-soluble. Then we may also assume

that Hβ+1/Hβ is either a p-group or a p′-group for all β ≤ γ. If H/N is a p-group, then

H/M is a p-group and so is X/M . Then X is p-nilpotent. This contradiction implies that

H/N and H/M are p′-groups. In this case, PM/M is a Sylow p-subgroup of X/M , and

the proof of the theorem is complete.
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3.1 Introduction

The results presented in this chapter are further contributions to the research project

that analyses the influence of the embedding of subgroups of infinite rank on the struc-

ture of a periodic group (see for example [20–24, 27, 29, 33, 41, 55]). They appear in

the articles:

• Ballester-Bolinches, A.; Camp-Mora, S.; Kurdachenko, L.A.; Spagnuolo, F., On

groups whose subgroups of infinite rank are Sylow permutable. Annali di

Matematica Pura ed Applicata (4), 195, no. 3, 717-723, 2016,

• Ballester-Bolinches, A.; Camp-Mora, S.; Dixon, M.R.; Ialenti, R.; Spagnuolo, F., On

locally finite groups whose subroups of infinite rank have some permutable

property. Submitted,

and show that for normality, permutability and S-permutability, the behaviour of the

subgroups of finite rank with respect to that embedding property can be ignored.

Recall that a group G is said to be hyper-(abelian or finite) if it has an ascending series

of normal subgroups whose factors are abelian or finite.

In the sequel, all groups considered are periodic; p will denote a prime number.

43
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Our first main result analyses hyper-(abelian or finite) groups in which the subgroups

of infinite section p-rank are S-permutable.

Theorem 3.1. Let G be a hyper-(abelian or finite) group of infinite section p-rank. If every

subgroup of infinite section p-rank is S-permutable in G, then G is locally nilpotent.

As an immediate deduction we have the following.

Corollary 3.2. Let G be a hyper-(abelian or finite) group of infinite section rank. If every

subgroup of infinite section rank is S-permutable in G, then G is locally nilpotent.

For (special) rank, in [7] Theorem 3.1 is extended to the case of locally finite groups,

the second main result.

Theorem 3.3. Let G be a locally finite group of infinite rank whose subgroups of infinite

rank are S-permutable. Then G is locally nilpotent.

Our next result is a consequence of Theorem 3.1. Recall that a group G is called

quasihamiltonian or Iwasawa if all its subgroups are permutable. The structure of quasi-

hamiltonian groups have been completely described by Iwasawa (see [54, Chapter 2]):

they are exactly the locally nilpotent groups with modular subgroup lattice. Dixon and

Karatas ([29]), motivated by the papers [33, 41], proved that if a (generalised) solu-

ble group G of infinite rank has all its subgroups of infinite rank permutable, then G is

quasihamiltonian.

The following theorem is an extension of Dixon and Karatas’ result in the locally

finite case.

Theorem 3.4. Let G be a locally finite group of infinite section p-rank. If every subgroup

of infinite section p-rank is permutable in G, then G is an Iwasawa group.

As a consequence we have.

Corollary 3.5. Let G be a locally finite group of infinite section rank. If every subgroup of

infinite section rank is permutable in G, then G is an Iwasawa group.

Corollary 3.6 ([29]). Let G be a locally finite group with infinite rank. If every subgroup

of infinite rank is permutable in G, then G is locally nilpotent.

Evans and Kim [33] proved that a (generalised) soluble group of infinite rank is

Dedekind (all its subgroups are normal) if its subgroups of infinite rank are normal. The

following extension in the locally finite universe follows from Theorem 3.4.
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Theorem 3.7. Let G be a locally finite group of infinite section p-rank. If every subgroup

of infinite section p-rank is normal in G, then G is a Dedekind group.

Corollary 3.8. Let G be a locally finite group of infinite section rank. If every subgroup of

infinite section rank is normal in G, then G is a Dedekind group.

Corollary 3.9 ([33]). Let G be a locally finite group with infinite rank. If every subgroup

of infinite rank is normal in G, then G is a Dedekind group.

3.2 Groups with S-permutable subgroups of infinite section

rank

The first main result of this section analyses hyper-(abelian or finite) groups in which

the subgroups of infinite section p-rank are S-permutable. From now on we establish

a number of results that, when taken together, give a good picture of hyper-(abelian

or finite) groups of infinite section p-rank with all subgroups of infinite section p-rank

S-permutable.

Start recalling that if a locally finite group G is locally nilpotent, then G has all Sylow

subgroups normal. Hence every subgroup ofG is S-permutable inG. Next lemma shows

that the converse is also true.

Lemma 3.10. Let G be a locally finite group. Then G is locally nilpotent if and only if

every subgroup of G is S-permutable in G.

Proof. Assume that every subgroup of G is S-permutable in G, and let F be a finite

subgroup of G. Then, by Lemma 1.29, every subgroup of F is S-permutable in F . By

[39], F is nilpotent. Thus G is locally nilpotent.

Observing the structure of locally finite groups with infinite section p-rank, we proved

that they have at least one Sylow p-subgroup of infinite rank.

Lemma 3.11. Let G be a locally finite group. If G has infinite section p-rank, then G has

a Sylow p-subgroup S which is not a Černikov subgroup.

Proof. Assume thatG has two subgroups U and V such that U is a normal subgroup of V

and V/U is an infinite elementary abelian p-group. Then V/U has an infinite countable

elementary abelian p-subgroup, X/U say. By Lemma 1.29, X has a p-subgroup R such

thatX = UR. Since R/(R∩U) is an infinite elementary abelian p-section of R, it follows
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that R is not a Černikov group. Therefore every Sylow p-subgroup of G containing R is

not a Černikov group, and lemma holds in this case.

Suppose now that every elementary abelian p-section of G is finite. Then, by Lemma

1.19, G satisfies min-p and so the p-subgroups of G are all Černikov. Applying Theo-

rem 1.21, it follows that G has a Wehrfritz p-subgroup, W say. Since W is Černikov, we

have that W has finite section p-rank, and so the order of every elementary abelian sec-

tion of W is at most pk for some positive integer k. Let A,B be subgroups of G such that

A is a normal subgroup of B and B/A is a finite elementary abelian p-group. Then, by

Lemma 1.29, there exists a p-subgroup Y of B such that B = Y A. SinceW is a Wehrfritz

p-subgroup of G, Y is isomorphic to a subgroup of W . Hence B/A ∼= Y/(Y ∩ A) is iso-

morphic to a elementary abelian section of W . Therefore |B/A| ≤ pk. This means that

G has finite section p-rank, contrary to supposition.

The proof of the lemma is complete.

In hyper-(abelian or finite) groups it is possible to find normal Sylow subgroups

looking at S-permutable subgroups; in fact, whenever G has a Sylow p-subgroup S-

permutable, then it must be normal in G.

Lemma 3.12. Let G be a hyper-(abelian or finite) group. If a Sylow p-subgroup S of G is

S-permutable in G, then S is normal in G.

Proof. Suppose that S is not normal. Then there exists a Sylow p-subgroup P of G such

that P 6= S. Since S is S-permutable in G, SP is a subgroup of G. Since P 6= S,

SP 6= S. Applying [2, Corollary 3.2.7], it follows that π(SP ) = {p}. Hence SP = P ,

against supposition. Consequently S is normal in G.

As an immediate corollary we have the following

Corollary 3.13. Let G be a hyper-(abelian or finite) group of infinite section p-rank. If

every subgroup of G of infinite section p-rank is S-permutable in G, then the Sylow p-

subgroups of G are normal in G.

Proof. By Lemma 3.11, G has a non-Černikov Sylow p-subgroup S. By Lemma 1.19, S

has infinite section p-rank. Hence S is S-permutable in G. Applying Lemma 3.12, we

obtain that S is normal in G.

The following corollary is a key result to prove the Theorem 3.4
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Lemma 3.14. Let G be a locally finite group with a normal Sylow p-subgroup S that is not

Černikov and G/CG(S) is not a p-group. If every subgroup of G of infinite section p-rank

is S-permutable in G, then S is abelian and every subgroup of S is G-invariant.

Proof. Let q ∈ π(G/CG(S)) with q 6= p and let Q be a Sylow q-subgroup of G. Let B be

any non-Černikov subgroup of S. Then B has infinite section p-rank by Lemma 1.19 and

so B is S-permutable inG. In particular, BQ is a subgroup ofG and BQ ≤ 〈B,Q〉 = BQ.

Since BQ ≤ S, it follows that BQ ≤ S ∩ BQ = B(S ∩ Q) = B. This means that every

subgroup of S of infinite section p-rank is Q-invariant.

Let g be any element of S. Since S is not Černikov, we can apply [61] to conclude

that S has an infinite elementary abelian p-subgroup A which is 〈g〉-invariant. Without

loss of generality we can suppose that A is countable. Then A = Dr
n∈N
〈an〉. We now

construct inductively a family {An|n ∈ N} of finite 〈g〉-invariant subgroups of A such

that E = 〈An|n ∈ N〉 = Dr
n∈N

An.

Since g has finite order, we have that A1 = 〈a1〉〈g〉 is finite. Hence A = A1 × C1 for

some infinite subgroup C1 of A and Cx1 has finite index in A for all x ∈ 〈g〉. Furthermore,

the family {Cx1 |x ∈ 〈g〉} is finite. Therefore D1 = Core〈g〉(C1) is a 〈g〉-invariant infinite

elementary abelian p-subgroup of C1 which has finite index in A. Let 1 6= d ∈ D1 and

write A2 = 〈d〉〈g〉. Then A2 is a finite 〈g〉-invariant subgroup of D1. Hence A1∩A2 = {1}
and A = (A1A2) × C2 for some infinite subgroup C2. Therefore A1 and A2 satisfies

the above property and the construction proceeds. Without loss of generality we can

suppose that 〈g〉 ∩E = {1}. Indeed, if 〈g〉 ∩E = 〈b〉, then there exists a positive integer

m such that 〈b〉 ≤ Dr
1≤n≤m

An. Then we can replace E by Dr
n>m

An.

Let Σ,∆ be two infinite subsets of N such that ∆ ∩ Σ = ∅ and Σ ∪∆ = N. Set EΣ =

Dr
n∈Σ

An and E∆ = Dr
n∈∆

An. Then EΣ and E∆ are infinite 〈g〉-invariant elementary abelian

p-subgroups of E and 〈g〉 = 〈g〉EΣ∩〈g〉E∆. Since 〈g〉EΣ and 〈g〉E∆ have infinite section

p-rank, it follows that 〈g〉EΣ and 〈g〉E∆ are Q-invariant. Then 〈g〉 = 〈g〉EΣ ∩ 〈g〉E∆ is

Q-invariant. Since g is an arbitrary element of S, we obtain that every subgroup of S is

Q-invariant, that is, Q acts on S by conjugation as a group of power automorphisms.

Let 1 6= yCG(S) ∈ G/CG(S) be a p′-element, and let s ∈ S such that [s, y] 6= 1. If a ∈
S, then y induces a power p′-automorphism on K = 〈s, a〉. Applying [11, Lemma 1.3.4],

it follows that K is abelian. Consequently, S is an abelian subgroup of G.

Since every subgroup of S is Q-invariant for each Sylow q-subgroup Q of G and each

q ∈ π(G/CG(S)), with q 6= p, and S is abelian, we conclude that every subgroup of S is

G-invariant.
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In a locally finite group G with all subgroups of infinite section p-rank S-permutable,

every countable quotient ofGwith a normal subgroup of infinite section p-rank is locally

nilpotent.

Lemma 3.15. Let G be a locally finite group. Suppose that G has a normal subgroup L

such that L has infinite section p-rank and G/L is countable. If every subgroup of G of

infinite section p-rank is S-permutable in G, then G/L is locally nilpotent.

Proof. Let H/L be a subgroup of G/L. Then H has infinite section p-rank. Therefore H

is S-permutable in G. By Lemma 1.29, H/L is S-permutable in G/L. Therefore every

subgroup of G/L is S-permutable in G/L and G/L is locally nilpotent by Corollary 3.10.

It is possible to prove Theorem 3.1 for countable hyper-(abelian or finite) groups.

Proposition 3.16. Let G be a countable hyper-(abelian or finite) group. Suppose that G

has infinite section p-rank. If every subgroup of G of infinite section p-rank is S-permutable

in G, then G is locally nilpotent.

Proof. Assume for a contradiction that the group G is not locally nilpotent. Apply-

ing Lemma 3.11 and Corollary 3.13, we conclude that G has a non-Černikov Sylow p-

subgroup S which is normal in G. Clearly every subgroup of G containing S has infinite

section p-rank and so G/S is locally nilpotent by Corollary 3.10. Since G is countable, it

follows that G splits over S by [25, Theorem 2.4.5], that is, G has a p′-subgroup R such

that G = SR.

Suppose that G/CG(S) is a p-group, then R ≤ CG(S), and hence G = S × R. Since

G/S is locally nilpotent, then R is locally nilpotent and then G is locally nilpotent,

against supposition. Therefore G/CG(S) is not a p-group. Applying Lemma 3.14, it

follows that S is abelian and every subgroup of S is G-invariant. Let A = Ω1(S) = {x ∈
S|xp = 1}. Since S is not Černikov, A is an infinite elementary abelian p-subgroup of S

by Lemma 1.19. Let B and C be infinite subgroups of A such that A = B × C. Then B

and C are G-invariant subgroups of S of infinite section p-rank. By Lemma 3.15, G/B

and G/C are locally nilpotent. Therefore G is locally nilpotent, and this contradiction

proves the proposition.

We are now able to prove Theorem 3.1.

Proof of Theorem 3.1. Let F be a finite subgroup of G. Since G has infinite section

p-rank, G has a non-Černikov Sylow p-subgroup by Lemma 3.11. By Lemma 1.19, G has
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an infinite elementary abelian countable p-subgroup, B say. Set K = 〈F,B〉. Then K

is countable and it has infinite section p-rank. Since every subgroup of K with infinite

section p-rank is S-permutable in G, it follows from Lemma 1.29 that K has all its

subgroups of infinite section p-rank S-permutable. By Proposition 3.16, K is locally

nilpotent and then F is nilpotent. Consequently, G is locally nilpotent.

Corollary 3.2 follows directly from Theorem 3.1.

To prove Theorem 3.3 we need some previous results

Proposition 3.17. Let G be a periodic locally soluble group of infinite rank and let X be a

finite subgroup of G. Then there exists an abelian subgroup A = A1 × A2 of G of infinite

rank such that A1 and A2 are X-invariant of infinite rank and, furthermore, A∩X = {1}.

Proof. By [35] there exists an abelian X-invariant subgroup B of G such that B has

infinite rank and B = B1 × B2 × · · · , where each Bi is a minimal normal subgroup of

BX and hence each Bi is an elementary abelian p-group, for some prime p. Since X

is finite and G is locally finite, it is clear that each Bi is also finite and hence of finite

rank. Since X is finite there exists n such that X ∩ (Bn × Bn+1 × · · · ) = {1}. Clearly

A = Bn × Bn+1 × · · · is X-invariant of infinite rank and by renumbering and omitting

terms if necessary we may assume that r(Bi) < r(Bi+1) for i ≥ n. Then we may write

A = A1 ×A2 where A1, A2 are X-invariant of infinite rank.

It is useful to prove a property on countable locally finite groups with infinite rank

and all subgroups of infinite rank S-permutable, since the proof of the main theorem

can be restricted to countable groups.

Lemma 3.18. Let G be a countable locally finite group of infinite rank whose subgroups

with infinite rank are S-permutable. If H is a normal subgroup of G with infinite rank,

then G/H is locally nilpotent.

Proof. If K/H is a subgroup of G/H, then K has infinite rank. It follows by [14, Corol-

lary 2.3] that every subgroup of G/H is S-permutable. By our remark in the Introduc-

tion, G/H is locally nilpotent.

Now it is possible to prove Theorem 3.3.

Proof of Theorem 3.3. It is easy to check that it is sufficient to prove the theorem for

countable groups, so let G be such a countable group. We prove the result in a series of

steps.
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Step 1. If G has a p-subgroup T of infinite rank, for some prime p, then every

Sylow p-subgroup of G has infinite rank.

Let S be a Sylow p-subgroup of G. In fact we prove that T ∩ S has infinite rank.

Suppose, to the contrary, that r(T ∩ S) is finite. Since T has infinite rank it contains an

infinite elementary abelian p-subgroup A. Then A = (A∩S)×A∗, for some subgroup A∗

and since A∩S ≤ T ∩S, it follows that A∗ has infinite rank also. Of course S∩A∗ = {1}.
Let x ∈ A∗ so that A∗ = 〈x〉 × C, for some subgroup C and we may write C = U × V ,

with U and V of infinite rank. Clearly U〈x〉 ∩ V 〈x〉 = 〈x〉. Furthermore, U〈x〉 and V 〈x〉
have infinite rank and hence permute with S. Let y ∈ S. If t is an integer, then xty =

s1u = s2v, with u ∈ U〈x〉, v ∈ V 〈x〉 and s1, s2 ∈ S. Hence s−1
2 s1 = vu−1 ∈ S∩A∗ = {1},

so u = v ∈ 〈x〉. It follows that S〈x〉 is a p-subgroup of G. Since S is a Sylow p-subgroup

of G we deduce that x ∈ S, contrary to our choice of x. Consequently, T ∩ S has infinite

-rank and, in particular, S has infinite rank.

Step 2. If G has a Sylow p-subgroup with infinite rank, for some prime p, then

every element of order q belongs to Oq(G), for every prime q 6= p.

Let P be a Sylow p-subgroup with infinite rank and let x be an element of order q, for

the prime q 6= p. Assume, by way of a contradiction, that there exists a Sylow q-subgroup

Q of G such that x /∈ Q. Consider P̄ :=
⋂q
i=1 P

xi . By Step 1, P̄ has infinite rank. Then,

by Proposition 3.17, P̄ has an elementary abelian p-subgroup B = B1 × B2 such that

each Bi is 〈x〉-invariant of infinite rank and B ∩ 〈x〉 = {1}. Clearly B1〈x〉 ∩B2〈x〉 = 〈x〉
and Bi〈x〉 has infinite rank for i = 1, 2. Hence (Bi〈x〉)Q = Q(Bi〈x〉) for i = 1, 2. If

Q∩B〈x〉 is trivial, then, as above, 〈x〉 permutes with Q so Q〈x〉 is a q-group and x ∈ Q,

a contradiction.

On the other hand suppose that Q ∩ B〈x〉 is non-trivial. The Sylow q-subgroups

of B〈x〉 have order q so Q ∩ B〈x〉 = 〈b〉 is cyclic of order q. If 〈b〉 ≤ B1〈x〉 ∩ B2〈x〉,
then 〈b〉 ≤ 〈x〉, so 〈x〉 = 〈b〉 ≤ Q, contrary to the choice of Q. Therefore, we may

assume 〈b〉 � B1〈x〉 and since 〈b〉 is cyclic of order q, we have 〈b〉 ∩ B1〈x〉 = {1}. Then

Q ∩B1〈x〉 ≤ Q ∩B〈x〉 = 〈b〉, so Q ∩B1〈x〉 ≤ 〈b〉 ∩B1〈x〉 = {1}. Hence we may replace

B by B1 and obtain the contradiction that x ∈ Q again.

Consequently, x belongs to every Sylow q-subgroup of G and then x ∈ Oq(G).

Step 3. Suppose that G has a p-subgroup X of infinite rank, for some prime p.

If Q is a Sylow q-subgroup of G, with q 6= p, then Q / G.
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Consider the group G/Oq(G). If Oq(G) has infinite rank, then G/Oq(G) is a locally

nilpotent q′-group. On the other hand, if Oq(G) has finite rank, then G/Oq(G) has

infinite rank and all its subgroups of infinite rank are S-permutable. It contains the

p-subgroup XOq(G)/Oq(G) of infinite rank and, by Step 2, every element of order q

in G/Oq(G) lies in Oq(G/Oq(G)), which is trivial. Hence, in both cases, G/Oq(G) is a

q′-group, so Q = Oq(G) as required.

Step 4. For at most one prime p, the group G has p-subgroups of infinite rank.

Suppose that P is a Sylow p-subgroup of infinite rank and that Q is a Sylow q-

subgroup of infinite rank. By Step 3, every Sylow subgroup of G is normal in G, so

that G is locally nilpotent.

Step 5. G has a Sylow p-subgroup of infinite rank, for some prime p.

By contradiction, suppose that every Sylow subgroup of G has finite rank, so that G

satisfies the minimal condition on p-subgroups for every prime p. Let F be any finite

subgroup of G and put π = π(F ). Then π is a finite set and G/Oπ′(G) is a Černikov

group ([25, Theorem 3.5.15], and Corollary 1.26). It follows that Oπ′(G) has infinite

rank and the factor group G/Oπ′(G) is locally nilpotent by Lemma 3.18. In particular,

F ' FOπ′(G)/Oπ′(G) is nilpotent and G is locally nilpotent, a contradiction.

Step 6. Final step.

By Step 5, G has a Sylow p-subgroup of infinite rank, for some prime p. Then, by

Step 3, G has a unique Sylow q-subgroup Gq, for any q 6= p and, by Step 4, Gq has finite

rank. Thus R = Dr
q 6=p

Gq is a normal p′-subgroup of G. Furthermore, since G is countable,

it follows by [25, Theorem 2.4.5] that there exists a Sylow p-subgroup P of G such that

G = RP . In particular, by Step 1, P has infinite rank.

Fix a prime q 6= p and put Q = Gq. It is clear that CP (Q) is normal in PQ, since Q is

normal in G. Now Q is Černikov and P/CP (Q) is a periodic group of automorphisms of

Q, so is also Černikov by Theorem 1.9. Hence CP (Q) has infinite rank and all subgroups

of PQ/CP (Q) are S-permutable. Consequently, PQ/CP (Q) is locally nilpotent. On the

other hand PQ/Q is certainly locally nilpotent, so by Remak’s theorem, PQ embeds in

PQ/Q × PQ/CP (Q). Hence PQ is locally nilpotent. In particular [P,Q] = {1} and

this hold for every Sylow q-subgroup Gq of G, with q 6= p. It follows that [P,R] = {1}
and G = P × R is locally nilpotent. This last contradiction completes the proof of the

theorem.
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3.3 Groups with permutable subgroups of infinite section rank

In this section it is analysed the structure of locally finite groups whose subgroups

of infinite section p-rank are permutable. One of the aim of this section is to prove an

extension of Dixon and Karatas’ result in the locally finite case and we prove it as a

consequence of the main theorem of the current section.

Let’s start giving some important properties of locally finite groups with all subgroups

with infinite section p-rank permutable.

Lemma 3.19. Let G be a locally finite group. Suppose that G has infinite section p-rank.

If every subgroup of G of infinite section p-rank is permutable in G, then

1. G has normal Sylow p-subgroup S which is not Černikov;

2. every subgroup of G/S is permutable;

3. G/S is locally nilpotent and metabelian.

Proof. By Lemma 3.11, G has a Sylow p-subgroup S that is not Černikov. Since the

section p-rank of S is infinite, S is permutable in G. Then S is an ascendant subgroup

of G by [54, Theorem 6.2.10]. It follows that SG is a p-subgroup of G and then S = SG

is normal in G. Now, let H/S be a subgroup of G/S. Since the section p-rank of S

is infinite, H has infinite section p-rank. Therefore it is permutable in G. Then H/S is

permutable inG/S. Thus every subgroup ofG/S is permutable. By [54, Theorem 2.4.13

and Theorem 2.4.22], G/S is locally nilpotent and metabelian.

Now we are able to extend Dixon and Karatas’ result to locally finite groups with

infinite section p-rank, that is the main result of this section.

Proof of Theorem 3.4. By Lemma 3.19, G has normal Sylow p-subgroup S which is not

Černikov and every subgroup of G/S is permutable.

Let g, x be elements of S and write H = 〈g, x〉. Since S is not Černikov, S has

an infinite elementary abelian p-subgroup A, which is H-invariant by [61]. Without

loss of generality we can suppose that A is countable. Then A = Dr
n∈N
〈an〉. We can

argue as in the proof of Lemma 3.14. Then we determine a family {An|n ∈ N} of

finite H-invariant groups of G such that E = 〈An|n ∈ N〉 = Dr
n∈N

An and E ∩ H = {1}.
Let L = NG(E). Then H ≤ L, and every subgroup of L of infinite section p-rank is

permutable in L. In particular, every subgroup of L containing E is permutable in L and

L/E is an Iwasawa group. Since E ∩H = {1}, it follows that 〈g〉〈x〉 = 〈x〉〈g〉. Therefore
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g permutes with every cyclic subgroup of S, and hence it permutes with every subgroup

of S. Applying [54, Theorem 2.4.14], we obtain that S is nilpotent. By Lemma 3.19,

G/S is soluble. Hence G is soluble and so G is locally nilpotent by Theorem 3.1. In

particular G = S × Q, where Q is the Sylow p′-subgroup of G. As we proved above,

every subgroup of S (respectively, Q ∼= G/S) is permutable in S (respectively in Q).

Therefore G is an Iwasawa group.

Proof of Corollary 3.6. Suppose that G has infinite section rank. If H is a subgroup of

G of infinite section rank, then H has infinite (special) rank. Therefore H is permutable

in G. Applying Corollary 3.5, we obtain that G is an Iwasawa group. Assume now that

G has finite section rank. Then G has Černikov Sylow subgroups. Let F be a finite sub-

group of G. Then π = π(F ) is finite, and F ∩Oπ′(G) = 1. Hence F ∼= FOπ′(G)/Oπ′(G).

Moreover, G/Oπ′(G) is Černikov by Corollary 1.26 and [25, Theorem 3.5.15]; in partic-

ular, G/Oπ′(G) is countable and Oπ′(G) has infinite (special) rank. Let H/Oπ′(G) be a

subgroup of G/Oπ′(G). Then H has infinite (special) rank. Therefore H is permutable

in G. So H/Oπ′(G) is permutable, and in particular S-permutable in G/Oπ′(G). There-

fore every subgroup of G/Oπ′(G) is S-permutable in G/Oπ′(G) and G/Oπ′(G) is locally

nilpotent by Lemma 3.10. Then F is nilpotent, and G is locally nilpotent.

Changing our focus now into Dedekind groups, Evans and Kim proved in [33] that

a (generalised) soluble group of infinite rank is Dedekind if its subgroups of infinite

rank are normal. The following extension in the locally finite universe for section p-rank

follows from Theorem 3.4.

Proof of Theorem 3.7. Applying Lemma 3.19, we obtain that G has normal Sylow p-

subgroup S which is not Černikov. By Theorem 3.4, G is locally nilpotent. Then G =

S × Q, where Q is the Sylow p′-subgroup of G. Choose elements g, x in S and write

H = 〈g, x〉. Arguing as in Theorem 3.4, we determine a subgroup L of G and an infinite

elementary abelian p-subgroup E of L such that E is H-invariant and E ∩ H = {1}.
Then every subgroup of L of infinite section p-rank is normal in L. Since the section

p-rank of E is infinite, L/E is a Dedekind group. Since H ∼= HE/E, it follows that 〈g〉
is 〈x〉-invariant. This means that G is a Dedekind group.





CHAPTER 4

On locally finite groups whose

subgroups of infinite rank have

some permutable property

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Groups of infinite rank with all subgroups of infinite rank semiper-

mutable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 Groups of infinite rank with all subgroups of infinite rank S- semiper-

mutable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1 Introduction

In this chapter we take our analysis of the impact of the embedding of the subgroups

of infinite section rank on the stucture of a periodic group further. The results are

contained in the following article:

Ballester-Bolinches, A.; Camp-Mora, S.; Dixon, M.R.; Ialenti, R.; Spagnuolo, F., On

locally finite groups whose subroups of infinite rank have some permutable prop-

erty. Submitted.

Our main aim in Section 4.2 is to prove that a locally finite group with all subgroups

of infinite section p-rank semipermutable, has all subgroups semipermutable. However

in Section 4.3 a simple example is given of a metabelian group in which every subgroup

of infinite rank is S-semipermutable but not all subgroups are S-semipermutable.
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4.2 Groups of infinite rank with all subgroups of infinite rank

semipermutable

The purpose of this section is to prove that a locally finite group whose subgroups

of infinite rank are semipermutable has all subgroups semipermutable. The following

result states that in a locally finite group it is enough to look at the cyclic subgroups of

prime power order to determine if every subgroup is semipermutable.

Lemma 4.1. Let G be a locally finite group. Then all subgroups of G are semipermutable

if and only if whenever x is a p-element and y is a q-element of G, then 〈x〉〈y〉 = 〈y〉〈x〉,
for all distinct primes p and q.

Proof. If every subgroup of G is semipermutable, the statement is clear, so assume that

all cyclic p-subgroups and all cyclic q-subgroups of G permute, where p and q are dif-

ferent prime numbers. Let H and K be subgroups of G such that π(H) ∩ π(K) = ∅.
Suppose that h ∈ H and k ∈ K. We prove that 〈h〉〈k〉 is a subgroup of G. Note that

〈h〉 = 〈h〉p1 × · · · × 〈h〉ps
〈k〉 = 〈k〉q1 × · · · × 〈k〉qt

where 〈h〉pi is the Sylow pi-subgroup of 〈h〉 and 〈k〉qj is the Sylow qj-subgroup of 〈k〉.
By hypothesis, every 〈h〉pi permutes with every 〈k〉qj , for i = 1, . . . s and j = 1, . . . t, and

hence 〈h〉 permutes with 〈k〉. It follows that HK = KH and the lemma is proved.

Next result gives a second restriction: if a locally finite group with all subgroups

of infinite section p-rank semipermutable has a p-subgroup S of infinite rank, then all

subgroups of S are semipermutable.

Lemma 4.2. Let G be a locally finite group with infinite section p-rank whose subgroups of

infinite section p-rank are semipermutable. If G has a p-subgroup S with infinite rank and

an element x with o(x) = qα such that q 6= p and q is a prime number, then every subgroup

of S permutes with 〈x〉. In particular S〈x〉 is a {p, q}-group.

Proof. Let y ∈ S. We prove that 〈y〉〈x〉 = 〈x〉〈y〉. By Proposition 3.17, S has an abelian

subgroup A = A1 × A2 such that Ai has infinite rank, A〈y〉i = Ai for i = 1, 2 and

A ∩ 〈y〉 = {1}. Then A1〈y〉 ∩ A2〈y〉 = 〈y〉. Since Ai〈y〉 has infinite section p-rank,

〈x〉(Ai〈y〉) = (Ai〈y〉)〈x〉, for i = 1, 2. It follows that for all i, j ∈ Z, xiyj = a1x
m = a2x

n,

with m,n ≥ 1 and ai ∈ Ai〈y〉. Hence xm−n = a−1
1 a2 ∈ 〈x〉 ∩ A〈y〉 = {1}. Then

a1 = a2 ∈ 〈y〉 and 〈x〉〈y〉 = 〈y〉〈x〉.
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Furthermore, if a locally finite group with the previous hypothesis has a p-subgroup

of infinite rank, then all q-subgroups permute with all r-subgroups, with q and r distinct

primes different from p.

Lemma 4.3. Let G be a locally finite group with infinite section p-rank whose subgroups

of infinite section p-rank are semipermutable. Let q, r be distinct primes different from p

and let S be a p-subgroup of G with infinite section p-rank. If x is a q-element and y is an

r-element of G, then 〈x〉〈y〉 = 〈y〉〈x〉.

Proof. Let A be an abelian subgroup of infinite rank of S such that A = A1 × A2 and

Ai has infinite section p-rank, for i = 1, 2. Thus Ai〈x〉 = 〈x〉Ai and A1〈x〉 ∩ A2〈x〉 =

〈x〉. Furthermore by Lemma 4.2, Ai〈x〉 is a {p, q}-group with infinite section p-rank,

so (Ai〈x〉)〈y〉 = 〈y〉(Ai〈x〉). It follows that xy = yma1 = yna2, with m,n ≥ 1 and

ai ∈ Ai〈x〉. Therefore a1a
−1
2 = yn−m ∈ A〈x〉 ∩ 〈y〉 = {1}. So a1 = a2 ∈ 〈x〉 and

〈x〉〈y〉 = 〈y〉〈x〉.

Finally, next lemma reduces the problem to countable locally finite groups.

Lemma 4.4. Let G be a locally finite group with infinite section p-rank. If every count-

able subgroup of G with infinite section p-rank has all subgroups semipermutable, then all

subgroups of G are semipermutable.

Proof. Let x, y be element of G with relatively prime orders. Since G has infinite section

p-rank, it follows from Theorem 1.19 that there exists a countable elementary abelian

p-subgroup A of infinite rank. Form H = 〈x, y,A〉, a countable subgroup of G of infinite

section p-rank. Then every subgroup of H is semipermutable, by hypothesis, so 〈x〉〈y〉 =

〈y〉〈x〉. Hence every subgroup of G is semipermutable, by Lemma 4.1.

We are now able to prove the main theorem of present section.

Theorem 4.5. Let G be a locally finite group with infinite section p-rank whose subgroups

of infinite section p-rank are semipermutable. Then every subgroup of G is semipermutable.

Proof. Using Lemma 4.4 and Lemma 1.31 we may suppose that G is a countable group.

By Lemma 3.11, G has a Sylow p-subgroup P which is not Černikov. Let x, y ∈ G

with o(x) = rα, o(y) = qβ and r 6= q. We prove that 〈x〉〈y〉 = 〈y〉〈x〉. By Lemma 4.3

if q, r 6= p, then 〈x〉 and 〈y〉 permute. So we may suppose that r = p and prove that x

belongs to a p-subgroup of infinite rank of G.

Let {Fn}n∈N be a totally ordered local system of finite subgroups of G. We may

assume that x ∈ F1. Let {Pn}n∈N be a totally ordered local system of finite subgroups of
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P such that the rank of Pn is at least n for every n ≥ 1, and consider the finite subgroup

Gn = 〈Fn, Pn〉. Let S1 be a Sylow p-subgroup ofG1 containing x and notice that the rank

of S1 is at least 1. Let n ≥ 1 and let Sn be a Sylow p-subgroup of Gn such that x ∈ Sn.

Since Gn ≤ Gn+1 there exists a Sylow p-subgroup Sn+1 of Gn+1 such that Sn ≤ Sn+1.

We note that rk(Sn+1) ≥ n + 1. The subgroup S =
⋃
n≥1 Sn is a p-subgroup of G with

infinite rank such that x ∈ S. The result follows by Lemma 4.2.

The result on groups with infinite section rank is an immediate consequence of The-

orem 4.5

Corollary 4.6. Let G be a locally finite group with infinite section rank whose subgroups

of infinite section rank are semipermutable. Then every subgroup of G is semipermutable.

Otherwise, for (special) rank, things are not so direct.

Theorem 4.7. Let G be a locally finite group with infinite (special) rank whose subgroups

of infinite rank are semipermutable. Then every subgroup of G is semipermutable.

Proof. It is enough to prove that G has a Sylow p-subgroup of infinite rank, for some

prime p, so that the theorem will follow as an application of Theorem 4.5. Suppose, by a

contradiction, that every p-subgroup has finite rank, so thatG has min-p, for every prime

p. By [25, Theorem 3.5.15], G contains a locally soluble normal subgroup S of finite

index. Let x and y be respectively a p-element and a q-element of G, with p 6= q, and put

π = {p, q}. Then G/Oπ′(S) is a Černikov group by Corollary 1.26 and Oπ′(S) has infinite

rank. By [35, Theorem 1], Oπ′(S) contains an abelian subgroup B = B1 × B2, where

B1 and B2 are 〈x〉-invariant subgroups of infinite rank and 〈x〉∩B = {1}. Therefore, for

every i = 1, 2, Bi〈x〉 is a q′-subgroup of infinite rank of G and (Bi〈x〉)〈y〉 = 〈y〉(Bi〈x〉).
As B〈x〉 ∩ 〈y〉 = {1}, the following equalities hold:

〈x〉〈y〉 = (B1〈x〉 ∩B2〈x〉) 〈y〉 = (B1〈x〉)〈y〉 ∩ (B2〈x〉)〈y〉

and 〈x〉〈y〉 is a subgroup of G. The theorem now follows from Lemma 4.1.

4.3 Groups of infinite rank with all subgroups of infinite rank

S- semipermutable

Focus now the attention on S-semipermutability. The following result is the corre-

sponding of Lemma 4.1 for S-semipermutable subgroups and it is easy to establish.
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Lemma 4.8. Let G be a locally finite group and let p, q be distinct primes. Then every

subgroup of G is S-semipermutable if and only if every p-element of G permutes with every

Sylow q-subgroup of G, for all such pairs of primes in π(G).

For locally finite groups with all subgroups of infinite rank S-semipermutable the best

it could be proved is that all subgroups are S-semipermutable only if the group has the

minimal condition on p-subgroups for every prime p.

Theorem 4.9. Let G be a locally finite group of infinite rank with min-p for every p. If

every subgroup of infinite rank of G is S-semipermutable, then all subgroups of G are

S-semipermutable.

Proof. Let x be a p-element of G and let Q be a Sylow q-subgroup of G, where p and q

are different prime numbers. By [25, Theorem 3.5.15], G has a locally soluble normal

subgroup S of finite index in G. Let π be a finite subset of π(S) such that p, q /∈ (π′ ∩
π(S)). By Corollary 1.26, G/Oπ′(S) is a Černikov group and hence Oπ′(S) has infinite

rank. By Proposition 3.17 there is an abelian subgroup B = B1 × B2 in Oπ′(S) such

that B1 and B2 have infinite rank and both are normalized by x. Then the q′-subgroups

Bi〈x〉, which have infinite rank, permute with Q and

〈x〉Q = (B1〈x〉)Q ∩ (B2〈x〉)Q

is a subgroup of G. In particular, 〈x〉 is S-semipermutable in G, so every subgroup of G

is S-semipermutable, by Lemma 4.8.

Unfortunately a result analogous to Theorem 4.7 does not hold, as the following

example shows.

Proposition 4.10. There exists a periodic metabelian group G with infinite rank whose

subgroups of infinite rank are S-semipermutable but not every subgroup of G is S- semiper-

mutable.

Proof. For every integer i ≥ 1, let Ti = 〈ai, bi | a3
i = b2i = 1, b−1

i aibi = a−1
i 〉 be an

isomorphic copy of the symmetric group on three letters S3 and let T = Dri≥1Ti.

Let P = Dri≥1〈bi〉, let Q = 〈a1〉 × 〈a2〉 and consider G = P nQ. Observe that P is an

elementary abelian 2-group of infinite rank, so that G is a countable metabelian group

of infinite rank.

Let A be a subgroup of G of infinite rank. Since G has a finite normal Sylow 3-

subgroup, there are only two possibilities for the set π(A): either π(A) = {2, 3} or
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π(A) = {2}. In the first case, A is trivially S-semipermutable in G. In the second case,

A permutes with the normal Sylow q-subgroup Q. Then every subgroup of G of infinite

rank is S-semipermutable.

Suppose, for a contradiction, that every subgroup of G is S-semipermutable. Let

X = 〈a1a2〉. By assumption, X is S-semipermutable and then PX is a subgroup of G.

Since X = PX ∩ Q, X is a normal subgroup of PX. However this is a contradiction

since the element

b−1
1 a1a2b1 = b−1

1 a1b1a2 = a2
1a2

does not belong to X.
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5.1 Introduction

The results presented in this chapter are the contents of the paper:

Ballester-Bolinches, A.; Heineken, H.; Spagnuolo, F., On semipermutable subgroups

of finite groups. Submitted.

In the following, G always denotes a finite group.

The properties of semipermutability and S-semipermutability on finite groups have

been extensively studied in recent years (see, for example, the survey paper [5]). We

mention here the paper of Isaacs [37] where some interesting properties of S- semiper-

mutable subgroups were proved. Among other results, he showed that the normal clo-

sure of an S-semipermutable nilpotent Hall subgroup is soluble.

The aim of this chapter is to offer some results that are more or less in the same spirit.

We study the embedding of subgroups of odd order with all subgroups semipermutable

and, in particular, we show that their normal closure is supersoluble.

In the sequel we call a group G semimodular if all subgroups of G are semiper-

mutable in G. Note that semimodular groups are exactly the soluble BT -groups by

Theorem 1.36.

Our first result confirms the supersolubility of a group which is the product of a

normal supersoluble subgroup and a subnormal semimodular subgroup of odd order.

61
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Theorem 5.1. Let the factorised group G = NS be the product of a normal supersoluble

subgroup N and a subnormal semimodular subgroup S of odd order. Then G is supersolu-

ble.

If the condition S of odd order is removed from Theorem 5.1, then the conclusion is

no longer true.

Example 5.1. Let G = 〈a1, a2, b1, b2, c|a2
1 = a2

2 = b31 = b32 = c2 = 1, [a1, b2] = [a2, b1] =

[a1, a2] = [b1, b2] = 1, a−1
1 b1a1 = b−1

1 , a−1
2 b2a2 = b−1

2 , c−1a1c = a2, c
−1b1c = b2〉 be the

regular wreath product Σ3 o C2 of the symmetric group of degree 3 with a cyclic group of

order 2. Set N = 〈a1, a2, b1, b2〉. Then N is a normal subgroup of G which is isomorphic

to Σ3 × Σ3. Hence N is supersoluble. Let A = 〈b1, b2, c〉. Observe that A is a subnormal

subgroup of G and B = 〈b1, b2〉 = 〈b1b2〉 ×D for some normal subgroup D of A such that

S = D〈c〉 is isomorphic to Σ3. Then S is subnormal in G = NS, S is a semimodular

subgroup of G but G is not supersoluble.

The next theorem is an application of Theorem 5.1. It shows that the product of

a normal supersoluble subgroup and the normal closure of a subnormal semimodular

subgroup of odd order of a group is always supersoluble.

Theorem 5.2. Let G be a group and N a normal supersoluble subgroup of G. If S is a

subnormal semimodular subgroup of G of odd order, then NSG is supersoluble.

The following corollaries are consequences of Theorem 5.2

Corollary 5.3. If S is a subnormal semimodular subgroup of odd order of a group G, then

SG is supersoluble.

Corollary 5.4. Let N be a normal supersoluble subgroup of a group G and S1, . . . , Sk be

subnormal semimodular subgroups of G of odd order. Then 〈N,S1, . . . , Sk〉 is supersoluble.

Proof. Using induction on k and applying Theorem 5.2, we obtain that NSG1 . . . SGk is

supersoluble. Hence 〈N,S1, . . . , Sk〉 is supersoluble.

Corollary 5.5. Let S1, . . . , Sk be subnormal semimodular subgroups of a group G of odd

order. Then 〈S1, . . . , Sk〉 is supersoluble.

5.2 Proofs

Proof of Theorem 5.1. Assume that the result is false and that G is a counterexample

of smallest possible order with least |G : N | + |S|. Then N 6= 1 and S 6= 1. Applying
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Lemma 1.38, it follows that G is a product of two subnormal supersoluble subgroups.

Hence G is soluble.

Let L be a minimal normal subgroup of G. Then L is an elementary abelian p-

group for some prime p. Our goal is to show that G/L satisfies the hypotheses of the

theorem. First of all, G/L = (NL/L)(SL/L) is the product of the normal supersoluble

subgroup NL/L of G/L and the subnormal odd order subgroup SL/L ∼= S/S∩L which

is semimodular by Lemma 1.38. Since G/L satisfies the hypotheses of the theorem,

the minimal choice of G yields G/L is supersoluble. Since the class of all supersoluble

groups is a saturated formation, it follows that G is a primitive group.

Let D = Soc(G) = F(G) be the unique minimal normal subgroup of G. Then D ≤ N
and CG(D) = D. Since N is supersoluble, it follows that N/D is abelian of exponent

dividing p − 1. In particular, N/D is a p′-group. By [32, Chapter A, Lemma 14.3], D

normalises S. Let p be the prime dividing |D|. Then D = Op(G). Let X be a minimal

normal subgroup of N contained in D. Since N is supersoluble, it follows that X is

cyclic of order p. Since G/D is supersoluble, we conclude that X 6= D, and so X is not

normal in G. In particular, D = XG = XNS = XS . Let us denote Y = XS. Then Y is

a subgroup of G containing D and Y = DS. Assume that Y = G then S is normal in

G and G = S, against our choice of G. Therefore Y is a proper subgroup of G. Clearly

Y = (Y ∩N)S satisfies the hypotheses of the theorem. The minimal choice of G implies

that Y is supersoluble. Since D is the Fitting subgroup of G and DS is subnormal in G,

alsoD is the Fitting subgroup of Y , andDS/D ∼= S/D∩S is abelian of exponent dividing

p− 1. It follows that Y/Op′,p(Y ) is abelian of exponent dividing p− 1. Since Op′(Y ) is a

normal subgroup of Y , it follows that Op′(Y ) ≤ CG(D) = D. Hence Op′(Y ) = {1}. In

particular, Op′,p(Y ) = Op(Y ) and Y/Op(Y ) is abelian of exponent dividing p−1. Let T be

a Hall p′ subgroup of S. By hypothesis, S is semimodular so that T permutes with every

subgroup of D∩S. Since D∩S is a normal Sylow p-subgroup of S, it follows that every

element of T induces a power automorphism on D ∩ S. Therefore [D ∩ S, T ] = D ∩ S
since S cannot be nilpotent. In particular, D ∩ S is the nilpotent residual of S which

is just the nilpotent residual of DS. If X were contained in D ∩ S, then it would be

normalised by S and so X would be a normal subgroup of G, contrary to supposition.

Let us denote D∩S = A. Therefore {1} 6= XA/A is centralised by TA/A. Applying [32,

Chapter A, Proposition 2.15], we obtain that D = XA = [D,T ]×CD(T ). Since D ∩S is

a maximal subgroup of D contained in [D,T ] and [D,T ] 6= D, it follows that CD(T ) is a

normal subgroup of Y of order p.

Since T does not normalise X, there exists a q-element y of T for some prime q

such that y /∈ NG(X). Let us assume that y is of minimal order. Then 〈yq〉 ≤ NG(X).

Moreover, y /∈ N . Assume that N〈y〉 is a proper subgroup of G. Since N〈y〉 satisfies the
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hypotheses of the theorem, we have that N〈y〉 is supersoluble. Moreover S normalises

A〈y〉 (note that T is abelian). Therefore N〈y〉 is a normal subgroup of G. Because N

is a proper subgroup of N〈y〉, then the minimal choice of (G,N, S) would imply the

supersolubility of G. This contradiction yields G = N〈y〉. Then

D = XG = X〈y〉 = XXy . . . Xyq−1

Assume that X = 〈x〉. Then xα = xy
q

for some 1 ≤ α ≤ p− 1. Since {1} 6= CD(T ) ≤
CD(〈y〉), we have that α = 1. Therefore the characteristic polynomial of the linear map

induced by y on the vector space D is xq − 1. On the other hand, D = A × CD(T ).

Since y induces a power automorphism in D ∩ S, it follows that ay = am for some

1 ≤ m ≤ p − 1 and all a ∈ D ∩ S. If m = 1, then y ∈ CG(D) = D. This contradiction

yields m > 1. Therefore the matrix of y relative to a basis of D composed of a basis of A

and non-trivial element of CD(T ) has characteristic polynomial (x−1)(x−m)q−1 which

does not equal to xq − 1 since q is odd. This final contradiction proves the result.

The following lemma is probably well known. We include a proof for the sake of

completeness.

Lemma 5.6. If S is a subnormal subgroup of a groupG, there exist subgroups S1, S2, . . . , Sm

of G such that S = S1 ≤ S2 ≤ · · · ≤ Sm = SG and, for all i ∈ {1, . . . ,m − 1}, Si is a

normal subgroup of Si+1 such that Si+1 = SiS
gi for some gi ∈ G.

Proof. We use induction on the defect of S in G. Clearly the lemma holds if S is a

normal subgroup of G. Hence we may assume that S 6= SG. Then T = Sg 6= S

for some g ∈ G. By induction, there exist subgroups T1, T2, . . . , Ta of SG such that

T = T1 ≤ T2 ≤ · · · ≤ Ta = TS
G

and, for all i ∈ {1, . . . , a − 1}, Ti is a normal subgroup

of Ti+1 such that Ti+1 = TiT
gi for some gi ∈ SG. Let M = SS

G
. Let Si = T g

−1

i for all

i ∈ {1, . . . , a − 1}. Then S = S1 ≤ S2 ≤ · · · ≤ Sa = M ≤ MT1 ≤ · · · ≤ MTa satisfies

the statement of the lemma. If SG = MTa we are done. If not, there exists an element

h ∈ G such that N = Sh is not contained in MTa. Arguing as above, we can construct

a chain from S to SS
G
TS

G
NSG

. Since SG is a product of finitely many subgroups of

the form (Sx)S
G

, the construction of the series of subgroups stated in the lemma can be

carried out.

Proof of Theorem 5.2. Applying Lemma 5.6, we obtain that there exists a series S =

S1 ≤ S2 ≤ · · · ≤ Sm = SG and, for all i ∈ {1, . . . ,m−1}, Si is a normal subgroup of Si+1

such that Si+1 = SiS
gi for some gi ∈ G. We prove that NSi is supersoluble for all i by

induction on m. If m = 1, then NS1 = NS is supersoluble by Theorem 5.1. Assume that
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m > 1 and NSm−1 is supersoluble. Note that NSm−1 is a normal subgroup of NSm and

Sgm−1 is a subnormal semimodular subgroup of NSm of odd order such that NSm =

NSm−1S
gm−1 . Applying Theorem 5.1, we have that NSm = NSG is supersoluble.
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[58] V.P. ŠUNKOV. Locally finite groups of finite rank. Algebra i Logika, 10: 199–225,

1971. (see p. 29)



Bibliography 71

[59] L. WANG, Y. LI, and Y. WANG. Finite groups in which (S-)semipermutability is a

transitive relation. Int. J. Algebra, 2: 143–152, 2008. (see p. 34)

[60] T.S. WEIGEL. Finite p-groups which determine p-nilpotency locally. Hokkaido

Math. J., 41: 11–29, 2012. (see p. 38)
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