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Abstract 

An algorithmic implementation is presented to deal with several responses in mixtures 
problems, without theoretical limits on the number of responses or on the factors to be 
blended. Also, constrained and unconstrained domains are handled, as well as domains with 
both mixtures and discrete variables. Besides, an alternative way of interpreting the results 
coming from the experimental design for mixtures is presented. It is based on the parallel 
coordinates plots for visualization in more than the usual three-dimensional Cartesian 
diagrams or the simplex mixture spaces for at most four experimental factors.  

Specifically, this is done in cases in which more than one experimental response should be 
handled, tackling the conflict by estimating trading-off solutions via the computation of the 
pareto-optimal front, which is fully explored with the parallel coordinates plots.  

The procedure is shown by two case-studies, taken from the literature. The first one deals 
with several factors in a constrained experimental domain when trying to optimize a 
detergent by taking into account two severely conflicting characteristics. The second one is 
about five chemical components blended with different dosage levels for getting a concrete 
strong enough, experimental results that are re-evaluated by posing a unique blocked design 
for analysing the data.  

The joint use of the pareto-optimal front for mixtures designs and the parallel coordinates 
plots for its visualization provide the researcher a deeper understanding of the problem under 
study to make accurate decisions. 
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1. INTRODUCTION 

According to Smith [1], scientific experiments can be sequenced in three stages: planning the 
experiments, conducting the planned experiments and analysing/interpreting the collected 
results. Provided at least that the planning involves statistical design of experiments (DOE), 
the experiments are randomized (blocked if necessary) and the interpretation uses statistical 
analysis of data, the three stages all together comprise what he call the experimental design 
process, emphasizing the need of the three phases, despite the fact that, when talking about 
experimental design process, it seems that it only refers to planning. The present work 
addresses the three stages, centred in the experimental designs for mixtures, and emphasising 
the last step: how to interpret the data obtained with the experiments.  

When the (experimental) factors to be handled in a given problem are proportions of a blend, 
we are dealing with specific experimental designs, those for mixtures. One of the distinctive 
characteristics of experimental designs for mixtures is that their factors are always linearly 
dependent, because in each experiment the variables should be positive and sum to unity.  

The usual mixture plots in the simplex mixture space can represent the experimental domain 
for up to three factors. However, with more than three factors and/or more than one 
experimental response to study it is difficult to interpret the results and more even if the 
responses have to be simultaneously optimized. In this multi-response optimization 
framework, an algorithmic implementation is presented, in this work, for estimation of the 
pareto-optimal set of solutions in mixtures spaces.  

It is usual to distinguish between mixture variables (component proportions) and other 
variables (factor levels) that, in general, do not linearly depend on one another. Experiments 
in which both are combined, i.e., component proportions and factor levels, are called mixture-
process variable experiments [1]. Also, in this paper, a procedure for computing the pareto 
front is presented for blocked designs (combining discrete block variables with proportions of 
a blend).  

The methodology of finding pareto-optimal solutions that is extended here for mixture 
experimental designs with any number of factors, and for combined experimental designs, 
has been developed by our research group in the context of RSM experimental designs [2], 
for blocking designs [3] and even to look for experimental designs with specific 
characteristics [4], or in robustness studies [5]. Its usefulness is proved [6] for solving a 
severe conflict in multianalite determinations with chromatographic techniques, both LC-
MS/MS and GC-MS. Also, it is useful in a context seemingly distant such as to build class-
models based on neural networks [7] with optimal values of sensitivity and specificity, that 
permits the simultaneous optimization of the probabilities of both false compliance and false 
noncompliance [8], usual in analytical determinations.  

The implementation and some advantages are shown with some case-studies from the 
literature in section 3, after section 2 that summarizes the minimum concepts needed to 
follow the paper.  
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2. THEORETICAL BACKGROUND 

2.1. Mixtures 

A mixture is composed of two or more components or ingredients blended to form an end 
product. Therefore, the proportions of components are not independent of one another: the 
increase of one of them necessarily requires the decreasing of one or more of the other 
components so that the total amount remains the same. Besides, the measured characteristics 
of the end products depend only on the relative proportions of the ingredients present in the 
blend and not on the total amount of mixture. 

In a precise way, the experimental space, known as mixture simplex, is defined by 
proportions (fractions of the mixture) Xi, i = 1, 2…, q, of q components (notice that Xi will 
denote both the component i and its proportion in a mixture), so that  

0
1

i

i
i

X
X
≥

=∑         (1) 

 

It is frequent that Xi represents nonnegative percentages of the mixture. In that case, when 
divided by 100 %, they would be fractions as in eq. (1). 

Because of the equality constraint in eq. (1) the factor space is not q-dimensional but lays in 
the hyperplane in q – 1 dimensions (a 2-dimensional plane for mixtures of three components), 
which besides is bounded because of the inequality constraints, so we have the mixture space, 
a (q – 1)-dimensional simplex.  

Regardless the dimension, each vertex of a simplex represents a pure component, binary 
mixtures are always on the one-dimensional edge, ternary blends lye on the two-dimensional 
faces, and so on. However, with the usual three dimensional Cartesian plots, the mixture 
space can only be graphically depicted for up to four components. 

Measurements of the physical or chemical properties of the end product are taken on several 
mixtures along the simplex domain (usually selected mixtures according to the chosen 
design) in an attempt to find the blend that produces the best result. This is decided with a 
model (some form of mathematical equation) that adequately fits the experimental results. 
Further to the prediction of the response for any combination of ingredients, the model is also 
used to measure or understand the influence of each component (alone or in combination with 
the other components) on the response. The work presented here is a useful tool for this 
purpose. 

The linear dependency among proportions implies that the experimental designs for mixtures 
are a distinctive kind of experimental designs, and also the models in which the responses to 
be measured or observed are functionally related to the proportions of the corresponding 
components.  
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Generally speaking, several regression models can be used in a mixture setting, but the most 
usual ones are the so-called Scheffé canonical polynomials. For the sake of simplicity, 
equation (2) only shows the quadratic Scheffé polynomial that serves to illustrate the special 
characteristics of models for non-independent factors.  

1

1 1 1

q q q

i i ij i j
i i j i

Y X X X
−

= = = +

= β + β + ε∑ ∑ ∑      (2) 

 

For polynomials up to full quartic models, see [9]. For a discussion with examples about the 
way they are obtained, and other alternatives for incorporating the linear dependency into the 
models see [1,10]. Also the book by Cornell [11] is completely devoted to designs for 
mixtures, deeply explaining concepts and methods for choosing and analysing designs. Under 
the name of ‘nonclassical’ designs, categorical or continuous factors are combined with 
mixture compositions in ref. [12], where also several different experimental domains are 
handled. 

Comparing the model in eq. (2) to a general quadratic model in the context of Response 
Surface Methodology (RSM), equation (3), the most singular characteristic is that the model 
in eq. (2) –all the Scheffé canonical polynomials, in fact- has neither intercept nor pure 
quadratic terms. 
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This is so because to obtain a full-rank mixture model, q + 1 of the coefficients in eq. (3) 
should be deleted and this is done by the following substitutions, taking into account the 
summation constraint in eq. (1),  
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Consequently, the intercept became a sum of first-order terms and all squared terms became 
single linear terms plus some crossproduct terms. Nevertheless, it is clear that the 
interpretation of the coefficients as a measure of the effect on the response of the 
corresponding factors or interactions among factors now is lost.  

Instead, linear terms in eq. (2) i iXβ  just quantify the response due to pure components, and 

ij i jX Xβ  refers to the nonlinear blending relations affecting the response due to synergism (or 

antagonism) of the binary mixtures.  
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Also, it implies that the VIF (Variance Inflation Factor) of a coefficient is not directly related 
to the usual quality of the estimated coefficient (not direct relation with the length of the 
confidence intervals for the estimated coefficients). However, if the final goal of the fitted 
model is predictive, the variance function should be checked. For more information about 
VIFs and variance functions in the regular RSM context, see [13]. 

Regarding the experimental designs for mixtures, Scheffé polynomials are usually linked to 
Scheffé mixtures designs (simplex-lattice designs), with points uniformly spread over the 
simplex factor space. Such a distribution is a {q, m} simplex lattice when the proportions are 
defined in such a way that each component takes all the values evenly spaced from 0 to 1 
(i.e., Xi = {0, 1/m, 2/m, …, 1} for i = 1, 2, …, q). In that way, all possible combinations of the 
components are considered, in the given proportions.  

Also, the simplex-centroid designs are usual arrangements of mixtures. In this case, the 
design points correspond to all permutations of coordinates for a given value, namely all the 
pure components as permutations of (1, 0, …., 0), all the binary components obtained with 
permutations of (½, ½, 0, …, 0), and so on until the centroid of the simplex space 
corresponding to (1/q, 1/q, …, 1/q), thus 2q – 1 points.  

For example, for three ingredients (q = 3) the {3, 2} simplex-lattice and the simplex-centroid 
only differ in the centroid (1/3, 1/3, 1/3), whereas for q = 4 the simplex-centroid contain 15 
points, all the 10 points along the sides of the tetrahedron of a {4, 2} simplex lattice 
corresponding only to pure components and binary blends, plus the ternary mixtures and the 
centroid. 

 

2.2. Multi-response optimization via pareto-optimal front 

Most real situations require handling different responses depending upon the same factors 
(or component proportions). However, rarely the same proportions achieve the best possible 
value for all of the responses being optimized. This fact is summarized by expressing that we 
are dealing with conflicting responses as they behave oppositely when varying the 
proportions of the mixture.  

The theoretical reason behind this behaviour is that, for more than a single response, the 
values obtained for different responses can be arranged into a vector belonging to the 
‘objective space’ which is then multivariate and there is not a total order defined in two- or 
larger dimensional spaces [14], that is, there are many ways in which multiresponse data can 
be ordered.  

In such a case, an alternative [15] to the usual transformation into desirability functions is to 
find the trade-off among responses via the pareto-optimal solutions. Pareto-optimal solutions 
are based on the concept of dominance among vectors in the objective space. Let x and x’ be 
vectors that contain different component proportions, i.e, points in the mixture simplex, and 
let us suppose that we have m ≥ 2 responses Yi (i = 1, 2, …, m) and that all of them should be 
minimized.  
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Also, let F(x) = (y1, y2, …, ym) and F(x’) = (y’1, y’2, …, y’m) denote their images in the 
objective space, i.e., the corresponding values of the responses for the proportions in x and x’. 
It is said that x dominates x’ when x performs not worse than x’ in all the responses and 
outperforms x’ in at least one of them, i.e, the two following conditions hold (bear in mind 
that all the responses are supposed to be minimized) 

i) yi  ≤ yi’  for i = 1, 2, …, m 

ii) yj  < yj’ for at least one j = 1, 2, …, m 

 

When there is no other point that dominates a given x, it is said that x is a nondominated 
solution (sometimes the definition is unambiguously applied also to the corresponding 
counterpart in the objective space). With this definition, it is clear that we are interested in 
nondominated solutions, in fact, the nondominated solutions when considering the whole 
mixture domain. The set of nondominated solutions of the whole feasible space is the so-
called pareto-optimal front or simply pareto front.  

The pareto front is then the set of solutions among which no response can be improved 
without worsening another one. Besides, the form of the front quantifies the extent of the 
conflicting behaviour among responses. 

Regarding the procedure to estimate the front, the need of handling a population is rapidly 
understandable because we are looking for a set of solutions with different behaviour in the 
responses so any optimization algorithm that gives or moves only one point is not valid.  

Due to the characteristics of the experimental domain, and for moderately few factors, a 
simple approach to approximate the pareto front is just to choose the nondominated solutions 
among those in a sufficiently fine grid, usually defined by uniform steps in each factor (from 
0 to 1). In this case, the quality of the approximation depends on the grid and on the functions 
being optimized. For ‘nice’ functions, such as polynomials of low degree, and in general 
terms, the finer the grid, the better exploration but at the cost of increasing the number of 
function evaluations. From a practical point of view the size of the steps to define the grid can 
be decided as the minimum percentage of the corresponding factor that is experimentally 
distinguishable.  

Among iterative methods that work with populations, we use an evolutionary algorithm, 
primarily based on the NSGA-II [16], to move the population of potential solutions in 
improving levels of non-dominance (towards the pareto front) without losing the variety 
among solutions so a more or less ‘uniform’ estimate of the pareto front is obtained.  

Precisely, at a given generation, a new population (same size as the actual population) is 
generated by sequentially selecting pairs of mixtures in the design space, taken from the 
actual population with uniform probability, and then simple crossover is applied with random 
selection of the crossing point. On this population of off-strings mutation is applied with 
probability defined by the user, by randomly changing the given proportion of coordinates.  
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Then, the two populations are merged together and sorted in levels of non-dominance that are 
followed in the selection of the mixtures that survive for the next generation. If in a given 
level, there are more points than needed to fill the new population, the most disperse ones are 
selected according to the crowding distance. Along the evolution the specific characteristics 
of a mixture design should be taken into account so that crossover and mutation always are 
applied to q – 1 of the components, and ensuring that the resulting mixtures are in the 
domain. Otherwise, they are simply discarded. 

 

2.3. Drawing via parallel coordinates plot 

Along the previous sections the limited possibilities of a graphical illustration of the 
mixture space (the simplex) and/or the objective space became apparent, no more than four 
components and no more than three responses can be depicted with the usual three-
dimensional Cartesian graphics. Besides, to interpret the effect of a change in proportions on 
the responses, a joint representation of the domain and the fitted surface would be very 
useful. To overcome the limitation of the three-dimensional spaces we use the representation 
in parallel coordinates plots by Inselberg [17]. The use of parallel coordinates plots is not new 
in Analytical Chemistry, alone [6] or combined with other methods to help interpretation, for 
instance, with dendrograms in [18]. However, its implementation to study pareto-optimal 
fronts in experimental designs for mixtures is new, as far as the authors know. 
Alternative/additional visualization methods for pareto fronts were recently revised and 
explained in [19,20].  

A parallel coordinates plot consists of a diagram with as many parallel lines as coordinates 
there are in the vector to be visualized. In our case, these lines are vertical parallel lines. Each 
individual value is marked as height in the corresponding line and then all these heights are 
joined by broken lines.  

For our purposes, each point being depicted in the parallel coordinates plot is made up by 
component proportions in the mixture space as well as the corresponding expected values of 
all the responses, and only for the solutions in the pareto front. In that way, the plot permits 
the simultaneous interpretation of the trade-off among responses, the visualization of the 
effect of the components on the different responses and also the best possible value 
achievable in each individual response. 

 

3. RESULTS AND DISCUSSION 

The usefulness of the approach is shown in some case-studies. In the first one, the mixture of 
four components, with reduced range of variation, should be found to lower both the clear 
point and viscosity of a liquid detergent. With four components, a restricted (constrained) 
three-dimensional simplex space should be handled together with two highly conflicting 
experimental responses. 

The second one is about finding the five components of a chemical admixture to obtain a 
concrete strong enough (determined after 1, 8 and 28 days of the admixture) and with 
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maximum water reduction. Besides the difficulties of handling so many factors and 
responses, the experiments were conducted in blocks by keeping the dosage levels constant 
within each block, but using three different dosage levels when preparing the admixture. 

 
3.1. Optimization of hydrotrope agents in a liquid detergent 

This case-study comes from the work by Kamoun et al. [21] about mixtures of four 
components acting as hydrotrope agents for concentrate liquid detergents. Precisely, the 
interest is in the effect of sodium toluenesulfonates (STS), sodium xylenesulfionates (SXS), 
sodium benzenesulfonates (SBS) and sodium sulfate, Na2SO4, on the clear point (T) and 
viscosity (η) of the corresponding liquid detergent.  

For each blend, the viscosity is instrumentally determined, and the clear point refers to the 
temperature at which the detergent appears cloudy again after prior heating at 80 ºC. The 
final goal is to determine the mixture that improves the effectiveness of the hydrotrope, that 
is, minimum values for both T and η. 

In this case, there are four factors in the blend, so the simplex mixture space is already in 
three dimensions, which makes it more difficult the interpretation of the models fitted. 
Further, with two experimental responses to be simultaneously minimized, we need to study 
the possible trade-off solutions and the effect of the factors on the different responses, when 
only considering optimal solutions.  

Finally, another characteristic of the problem is that the experimental domain has additional 
constrains, further to the usual total amount of component proportions equal to one, eq. (1). 
These restrictions impose that the relative quantity of STS vary in [0.10, 0.60], SXS must be 
in [0.10, 0.50], Na2SO4 in [0.05, 0.40], and the proportion of SBS varies in [0.05, 0.30]. 

In this constrained domain, we estimate the pareto-optimal front by using the models fitted to 
T and η, which adequately described the experimental results obtained with a D-optimal 
design with 32 experiments. There are four factors to be mixed so the quadratic model has the 
same ‘crossproducts model’ expression of equation (2). The details of the fitting and 
validation of the models, as well as the selection of the experimental design in this 
constrained experimental domain, can be consulted in the cited paper [21].  

With the general ideas of the procedure explained in [15], the algorithm is adapted to work in 
mixture experimental designs additionally taking into account the constraints in the domain. 
For the case at hand, to estimate the front, a population of 500 mixtures in the constrained 
four-dimensional experimental domain evolves during 5000 generations with probability of 
mutation equal to 0.2. The final population is made up by 487 non-dominated solutions, i.e., 
mixtures that provide viscosity or temperature of the resulting detergent with the property of 
being the minimum possible value in at least one of them. These mixtures in the front provide 
values of viscosity, η, from 908.90 to 948.47 whereas T (the clear point) is expected to 
achieve values in the experimental domain from 18.61 ºC to 25.29 ºC.  

As there are two responses, the usual two-dimensional plot in the objective (responses) space 
can be used to represent the joint behaviour of viscosity and clear point. This is figure 1 (clear 



 
  Page 9/ 19 
 

point versus viscosity) that shows the conflict between the responses, the pareto-optimal front 
shows the typical curvature directed towards the origin, which is clearly interpreted: the 
decreasing of one of the coordinates necessarily requires the increase of the value in the other 
coordinate. In other words, going down in the front (better clear point) requires necessarily 
moving to the right (worse viscosity) or equivalently, to move to the left to improve viscosity 
is possible provided you go up along the front, worsening the achievable clear point. 

Figure 1 

 

An alternative representation of the solutions found, in the form of a parallel coordinates plot 
with some adaptation [6] to improve visualization, is in figure 2. As can be seen, this plot is 
not limited in the number of coordinates to be represented and, for the problem at hand, 
allows representing together the mixtures of the four compounds and the two responses. 

Figure 2 

 

In figure 2, the first four coordinates are for the percentages of Na2SO4, SBS, STS and SXS, 
respectively; the remaining two coordinates are for the expected values of viscosity and clear 
point, respectively. Each broken line joining mixtures to responses represents one of the 
pareto-optimal solutions found. Finally, as the scales are modified to improve visualization, 
the numbers up and down each coordinate are the minimum and maximum values, 
respectively, for the corresponding coordinate.  

In this way, the same values seen in fig. 1 can also be seen in the last two coordinates in 
figure 2. The minimum values among the results of the experimental design were for η = 900, 
and T = 19 ºC and they are achieved (taking into account the variability of the 
determinations) in the solutions in the pareto-optimal front. On the other hand, the largest 
values obtained among the experiments carried out of η = 1900 and T = 73 ºC are 
substantially reduced for the pareto-optimal mixtures.  

Like in figure 1, when looking at the mentioned last two coordinates of figure 2, the 
conflicting behaviour of the two objectives is also apparent: the lines coming from the 
coordinate for η to the one for T cross each other like maintaining a fixed point in between. 
That clearly implies that low values of η (in the range described by the optimal solutions) 
correspond to large values of T and vice versa. In other words, to decrease the viscosity η an 
increase in T should be assumed and vice versa. Also, the region for the lowest value of T 
seems to be much more populated than the one corresponding to the minimum values of 
viscosity, which suggests that by mixing the four compounds within the specified ranges it is 
more difficult to reduce the viscosity than the temperature of clear point. 

Regarding the mixtures to achieve these values of the responses, they are depicted in the first 
four coordinates of figure 2. The limits in each coordinate are written in percentage to better 
perceive the slight differences among solutions, as far as the first two coordinates is 
concerned, that is, the contribution of sodium sulfate Na2SO4 and sodium benzenesulfonates, 
SBS, respectively, to the blend.  
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The first conclusion is that, in practice, the variation in the values in figure 2 are obtained 
with mixtures of only two of the components, STS and SXS, third and fourth coordinates, 
because all the solutions in the pareto-optimal front share the fact that SBS and Na2SO4 are, 
in practice, constant at their minimum achievable value, 5 %. The only characteristic that 
might be mentioned is that a slight increase of Na2SO4 (more than 5.15 %, up to 5.23 %) 
observable in the red dashed lines in figure 2 causes the loss of the minimum allowable 
values in both responses, especially for viscosity. Other than that, it is also patent that with 
5% of both Na2SO4 and SBS, the remaining coordinates still cover all the values seen in 
figure 2, in particular, all the expected allowable values of both responses. 

The pattern of crossing lines with a fixed point in between already mentioned for the 
coordinates corresponding to the experimental responses is also observed in the coordinates 
corresponding to STS, the third, and SXS, the fourth.  

Despite the explanation just exposed about the interpretation of this graphical behaviour as an 
opposed behaviour (pointing to conflict among responses or opposed effect of the factors on 
the responses), we should keep in mind that for mixture designs, the total amount is constant 
so this is exactly what we were expecting in the factors of the mixture. Of course, the lines 
that crisscross only between the third and fourth coordinates shows the opposed behavior 
only there because both the sodium sulfate and SBS are almost kept constant at 5%.  

Furthermore, increasing proportions of STS, from 40 % to 60 % of the blend, linked to 
decreasing proportions of SXS, from 50 % to 30 %, provide better (lower) values of 
viscosity, although larger temperatures of clear point, T. On the contrary, given the opposite 
behaviour, if the best values of T are sought, the quantity of SXS should be increased, and 
STS accordingly decreased. 

Notice that these decisions about how to modify the proportions of STS and SXS are related 
to the lowest possible value in one of the responses for a given value of the other. The fact 
that SBS and Na2SO4 in the mixture should be set at 5% says that the two responses are very 
sensitive to these factors when it is about minimizing both of them. Consequently, and given 
that 5% is the lowest proportion allowed, the increasing of any of them causes that the 
corresponding mixture is no longer optimal, i.e. it necessarily worsens the expected 
experimental responses, although it is difficult to quantify how much.  

 

3.2. Optimization of an admixture for concrete  

In [22] Akalin et al. explain that the selection of proper chemical admixtures is a crucial 
criterion to achieve adequate specifications for concrete. To decide among the proportion of 
five different chemical compounds, proportions of raw materials to obtain chemical 
admixture, named A, B, C, D, and E, and their effect on some characteristics of the 
corresponding mortar, 18 experiments were conducted following an appropriate experimental 
design, and for three different dosage levels. That means a total of 54 experiments following 
a D-optimal design. 
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In this case, the simplex mixture space is four-dimensional (five admixture components to be 
mixed) and constrained because D and E have both an upper bound, 18 % and 5%, 
respectively. In this experimental domain, four experimental models are fitted and analysed 
for water reduction (%) and for the compressive strengths (Mpa) on mortar after 1, 7, and 28 
days. Experimental conditions (proportions of the components in the mixture) are sought for 
maximal strength and loss of water.  

The results obtained in the cited paper [22] are separately discussed per dosage level, so three 
different models are handled for each response. In the present work, although the dosage 
level can be a continuous factor, we interpret it in terms of ‘blocking’. Blocking can be used 
to transform into factors of the design those variables that are known or suspected of 
experiencing discrete changes throughout the experiment or that, in general, are difficult to 
control but only have, if any, an additive effect.  

In the original work, authors maintain the dosage level constant among some experiments and 
then changed it, but it was kept constant in a different group of experiments, so that the 
possible effect of different dosage level can be modelled as if the experiments were 
conducted in blocks.  

Consequently, we set up the corresponding blocked design and re-interpret the whole 
experimental results by considering them all together in the definition of a blocked mixture 
design. Table 1 summarizes the experimental domain when considering the new experimental 
design, where the dosage level is used as a discrete variable with three levels and the 
remaining five chemical components of the admixture are continuous, though linearly 
dependent, variables that further vary in a constrained domain.  

Table 1. 
 

The variance function with this design remains below 0.46 in the whole experimental 
domain, so the design is adequate because the main goal of the fitted models is to predict 
values of the responses in the experimental domain.  

Only binary synergisms were modelled by means of a full quadratic model with 17 
coefficients, like the one described in equation (5), where X2 till X6 refer to the mixture 
components A, B, C, D, and E, respectively. 

1 1 1 1 2 2 3 3 4 4 5 5 6 6

23 2 3 24 2 4 25 2 5 26 2 6 34 3 4

35 3 5 36 3 6 45 4 5 46 4 6 56 3 5

A A B BY X X X X X X X
X X X X X X X X X X
X X X X X X X X X X

= β + β + β + β + β + β + β +

β + β + β + β + β +
β + β + β + β + β + ε

   (5) 

 

Notice that there are two terms in eq. (5) linked to the ‘block’ factor, namely the dosage level. 
Because there are three blocks, the two coefficients β1A and β1B are multiplying two variables 
that are in fact indicator (binary) variables, in this case, X1A = 1 when the dosage level used 
was 0.8% and 0 otherwise, whereas X1B = 1 when dosage level is 1.0% and 0 otherwise. That 
means that when the dosage level is 1.2 %, no coefficient is added or subtracted. 
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The coefficients estimated for the four response variables being handled are in table 2 
together with some usual statistics. Regarding the validation of the fitted models, no outlier 
residual or lack of normality have been found in any of the models. The significance test 
refers to the hypothesis test whose null hypothesis is that all the coefficients are null as 
against the alternative hypothesis that at least one of them is non-null. The p-values of the 
significance tests in table 2 (penultimate row) lead to conclude that the four models are 
statistically significant, at 5% significance level. They describe 89.9 %, 90.1 %, 79.4 % and 
83.6 % of the variance of the corresponding response, according to R2 for water reduction 
(WR), compressive strength after 1 day (S1), after 7 days (S7) and after 28 days (S28), 
respectively.  

Table 2. 

There are a total of four experiments (one for 0.8 % and 1.2 % and two for 1.0 % dosage 
levels) replicated twice, so that an estimation of the pure error can be obtained to test for lack 
of fit, LOF. The null hypothesis in this case is that there is not bias, as against a biased model. 
With the p-values associated with the decision in the last row of table 2, there is no evidence 
of LOF in the models, except for the significant bias detected in the model of S1, at 5% 
significance level, despite being the model with the largest coefficient of determination, R2. A 
similar behaviour is observed in some of the models for S1 in [22] that the authors attribute to 
the fact that, for this response, the replicates are very similar (when not exactly the same) so 
that the pure error is estimated as practically null, leading to a significant lack of fit. Thus, 
with some reservations, the model is accepted.  

Regarding the block effect, the estimated coefficients b1A are statistically non-null (5% 
significance level) for all the responses, except for S7. Taking into account the sign, one can 
say that using 0.8 % dosage level significantly decreases WR; and the compressive strength 
can be improved (larger values are desired for the compressive strength no matter the elapsed 
time) at the beginning (after 1 day) but finally, after 28 days, gets significantly worse. Using 
1.0 % of dosage level, b1B, does not have effect on the responses, except may be for S1. This 
also points out a possible conflicting behaviour between S1, S7 and S28 that was not 
necessarily expected. And the relation between strengths and water reduction is not clear 
either.  

In any case, the joint optimization (maximum values for all the responses) requires the study 
of the possibly conflicting behaviour, and to look for trade-off solutions. Again, this study is 
made by searching the pareto-optimal front for the four experimental responses depending on 
the five factors (the chemical components) but also the discrete factor that models the dosage 
level should be taken into account. To do this, after the usual crossover and mutation in the 
mixture space of the five components, the corresponding off-springs are used with all the 
dosage levels and enter to the selection phase based on non-dominance.  

With a population of 200 mixtures with different dosage level and with D less than 18 % and 
E less than 5 %, evolving for 500 generations, the pareto-optimal front estimated is made by 
142 solutions that can achieve a maximum value of 15.38 % of water reduction, 22.9 Mpa of 
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compressive strength after one day that gets at most 64.22 Mpa after seven days and 71.69 
Mpa after 28 days, though not for the same admixture.  

This can be seen in figure 3 that depicts the pareto-optimal front in the form of a parallel 
coordinates plot. It is clear the advantage of using parallel coordinates plot to represent 
together the five factors (A-E) plus the dosage level (DL) plus the four experimental 
responses, compressive strengths (after 1, 7 and 28 days) and water reduction (WR). Not 
surprisingly given the interpretation of the coefficients related to the block in the fitted 
models, the admixtures are mostly, but not exclusively, for dosage level of 1 % and 1.2 % 
and, remarkably, all of them with the property of having the proportion of B equal to 0 %, i.e. 
no B component in the admixture.  

Figure 3 

In particular, dashed red lines superimposed in figure 3 highlight the only six solutions found 
optimal when the dosage level is 0.8 %, clearly linked to the best possible value for the 
strength after one day, S1, and the worst values for the remaining three responses. Further to 
the 0.8 % of dosage level, and B = 0 %, these admixtures share the fact that also D = E = 0 % 
thus the admixture is made exclusively with A and C, with larger proportion of component A. 
Although with the rescaling to improve visualization the original scales are not evident in 
figure 3, to achieve the best strength after one day, as predicted by the fitted model, 
component A should be between 61.4 % to 83.6 % of the total admixture with the 
corresponding proportion of C decreasing from 38.6 % to 16.4 % for achieving compressive 
strengths after 7 days, S7, less than 52.3 Mpa, that remain below 62.8 Mpa after 28 days, S28, 
and water reduction WR at most of 12.3 %. 

More populated is the pareto-optimal front for solutions with dosage level 1 % and 1.2 %, 
blue dotted lines in figure 3, that cover almost the whole range allowable for component A, 
and E (bounded from above by 5%), no more than 93.3 % of C and up to almost 13 % of the 
limiting 18 % allowed for component D.  

By removing from the graph the coordinate for B, which is constant, and the solutions 
corresponding to 0.8 % of dosage level, the new parallel coordinates plot, rescaled with the 
corresponding extreme values, is in figure 4, pointed blue lines for dosage level of 1 %, 
dashed red lines for 1.2 %. The new limits seen in figure 4 show that with the mixtures 
detailed in the previous paragraph, the expected values of the compressive strengths are 
maintained larger than 6.42 Mpa after one day, 53.79 Mpa after 7 days and 63.54 Mpa after 
28 days, and the remaining response, water reduction is always above 12.3 %. 

 

Figure 4 

 

Figure 4 also illustrates that dosage level of 1 % favours all compressive strengths and dosage 
level of 1.2 % improves water reduction, whose best values are related to high proportion of 
component A and low proportion of component C, not larger than 35 %. By restricting again 
the parallel coordinates plot to optimal solutions obtained with 1.2 % dosage level in figure 5, 
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in this range of C and 1.2 % dosage level, the increase of A (which should be no less than 55 
%) mostly linked to reduction of D and E causes the increase of water reduction with 
decreasing values of the three values of strength.  

 

figure 5 

4. CONCLUSIONS 

The adaptation and implementation of a tool to compute the pareto-optimal front in multi-
response mixture designs, joint to the use of graphs in the form of parallel coordinates plot, 
allow handling and more easily interpreting experimental results via the fitted model, and 
also finding optimal experimental conditions that provide a compromising solution among 
several conflicting responses.  

The procedure is also extended to cover some increasingly need of ‘ad-hoc’ experimental 
design, showing that it can be useful with ‘combined’ nonclassical designs that contain, in the 
case shown, continuous mixture proportions and discrete levels of some factors, which may 
be the result of a block design. This opens a route for the use of these tools in problems with 
process variables and mixtures. 
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FIGURE CAPTIONS 

 

Figure 1. Pareto-optimal front in the objective (responses) space for the minimization of 
viscosity (η) and clear point (T). 
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Figure 2. Parallel coordinates plot of the pareto-optimal front estimated for case in section 
3.1. Percentages of SBS for sodium benzenesulfonates, STS is for sodium 
toluenesulfonates, SXS for sodium xylenesulfionates. η is the viscosity and T is 
the clear point. Different line types and colour separate the solutions with more 
(dashed red lines) or less (dotted blue lines) than 5.15 % of sodium sulphate. 

 
 

Figure 3. Parallel coordinates plot of the pareto-optimal front for the optimization of 
concrete in section 3.2. DL is the dosage level, A-E are for the proportions of the 
corresponding chemicals (%); S1 (Mpa) is the compressive strength after one day, 
S7 (Mpa) after 7 days, and S28 (Mpa) after 28 days, WR (%) is water reduction. 
Red dashed lines highlight the solutions with 0.8 % of dosage level. 
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Figure 4. Parallel coordinates plot of the pareto-optimal solutions in section 3.2 only for 
dosage level 1 % (blue continuous lines) or 1.2 % (dotted red lines), and removing 
the coordinate for B (which is always 0%). DL is the dosage level, A-E are for the 
percentage of these chemicals; S1 (Mpa) is the strength after one day, S7 (Mpa) 
after 7 days, and S28 (Mpa) after 28 days, WR (%) is water reduction. 

 
 

 

Figure 5. Parallel coordinates plot of the pareto-optimal solutions in section 3.2 with dosage 
level 1 % and without B component. A-E are for the percentage of these 
chemicals; S1 (Mpa) is the strength after one day, S7 (Mpa) after 7 days, and S28 
(Mpa) after 28 days, WR (%) is water reduction. 
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Tables 

 

Table 1. Experimental domain for the blocked mixture design of case in section 3.2 

Factor  Number of levels Levels  

Dosage Level 3 0.8  

  1  

  1.2  

Component  Lower bound Upper bound 

A   0.00 1.00 

B   0.00 1.00 

C   0.00 1.00 

D   0.00 0.18 

E   0.00 0.05 

 

 

Table 2. Estimated coefficients (bi), standard error of estimation, sy/x, and determination 

coefficient R2 of the models fitted for water reduction (WR), and compressive strength after 

one (S1), seven (S7) and 28 (S28) days. Also, p-values for both significance and lack of fit 

(LOF) tests 

 WR S1 S7 S28 
b1A -2.099* 2.689* -1.691 -2.063* 
b1B -0.641 2.648* 1.034 0.825 
b2 14.511 19.972 54.539 63.539 
b3 6.33 15.587 42.15 54.144 
b4 11.72 18.607 54.456 63.704 
b5 -9.586 -215.02 -251.74 -218.39 
b6 161.54 875.45 -3784.4 -261.8 
b23 2.12 -4.018 5.286 4.105 
b24 2.389 3.072 -3.641 5.449 
b25 34.274 186.88 406.82 374.66 
b26 -141.01 -1022.2 4159.3 441.56 
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b34 -3.918 -5.71 -5.6 -4.289 
b35 38.376 213.05 464.88 422.65 
b36 -149.23 -951.62 4178.1 459.86 
b45 32.295 192.2 407.67 367.75 
b46 -119.46 -953.32 4161.7 416.64 
b56 -204.06 -1159.4 3434.3 98.506 

sy/x 1.163 0.643 2.998 2.094 
R2 0.899 0.901 0.794 0.836 
p-value 

(signif.test) < 10-4 < 10-4 < 10-4 < 10-4 

p-value 

(LOF) 0.603 0.0039 0.942 0.372 

* Indicates a significant block effect (the coefficient is significantly non-null at 5% 

significance level)  
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