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Abstract 
The use of a voltammetric electronic tongue for the quantitative analysis of quality parameters in influent wastewater from 
a wastewater treatment plant (WWTP) that treats domestic and industrial wastewater is proposed. The electronic 
voltammetric tongue consists of a set of four noble electrodes (iridium, rhodium, platinum and gold) housed inside a 
stainless steel cylinder. These noble metals have high durability and are low maintenance-demanding, as required for 
developing future automated equipment. A pulse voltammetry study was conducted in 35 wastewater samples to 
determine ammonia (NH4

+-N), nitrates (NO3
--N), total phosphate (tot-P), soluble chemical oxygen demand (CODs) and 

conductivity. These parameters were also determined in these samples by routine analytical methods in the WWTP 
laboratory. A partial least squares (PLS) analysis was run to obtain a model to predict each parameter. Twenty-five 
samples were included in the calibration set and 10 in the validation set. Calibration and validation sets were selected 
randomly, except for the extreme values of each parameter, which were included in the calibration set. Variable selection 
was performed on the voltammetric data using Genetic Algorithms in the calibration data set for each parameter. The 
electronic tongue showed good predictive power to determine the concentrations of NH4

+-N, NO3
--N and tot-P and CODs. 
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1. Introduction 

Environmental protection has become a growing social 
concern. Consequently, stringent quality requirements for 
effluent water have been established for wastewater 
treatment plants (WWTP) to reduce the impact on aquatic 
ecosystems [1]. In order to improve the efficiency of 
treatment processes so they meet these requirements, it is 
necessary to know the quality of influent wastewater. 
Wastewater quality is usually defined by the levels of 
diverse parameters related with main contaminants, such 
as chemical oxygen demand (COD), biological oxygen 
demand (BOD), ammonium, orthophosphate, nitrate, 
conductivity and pH, among others. These parameters are 
usually determined by traditional laboratory analytical 
techniques. These analytical procedures are based mainly 
on sample collection and retrospective analyses, which 

makes their application to real-time monitoring and 
process controls difficult [2]. Off-line monitoring is 
suitable for monitoring slight changes over long time 
periods, when the time needed between the sample 
analysis and the reported results becomes less important 
[3]. On the contrary for real-time monitoring applications 
in a WWTP, on-line information about current influent 
water quality is required. In this scenario, interest in 
applying techniques to optimise and control WWTPs is 
increasing. For these purposes, automated systems and 
fast measurement procedures are highly valued. The use 
of commercially available sensors to monitor and control 
the biological processes that take place in WWTPs 
enhances pollutant removal efficiency [4]. Nevertheless, 
the strong investment and high maintenance costs of 
these specific sensors for each quality parameter are 
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sometimes prohibitive for a medium- or small-sized 
WWTP.  
Electronic tongues have emerged as a useful tool for 
qualitative and quantitative sample analyses. According 
to the agreed IUPAC definition, an electronic tongue is a 
“multisensory system, which consists of a number of 
low-selective sensors and uses advanced mathematical 
procedures for signal processing based on pattern 
recognition and/or multivariate data analysis” [5]. 
Basically, electronic tongues consist of an information-
collecting unit to be used in the aqueous phase, connected 
to a routine for multivariate data processing [5,6]. They 
use semi-specific sensors that produce a signal pattern 
which can be related to either a specific compound or a 
quality aspect of the sample [7,8]. Despite of the use of 
low-specificity sensors, their combination provides a 
huge information potential [6] for electronic tongues. A 
vast number of electronic tongues have been described 
based on different measurement techniques, but the 
majority are based on electrochemical measurements [6]. 
Among the diverse electrochemical techniques that can 
be implemented in an electronic tongue, the most 
versatile and robust is perhaps voltammetry because it is 
usually less influenced by electrical disturbances and has 
a favourable signal to noise ratio [9]. In voltammetric 
electronic tongues, a potential is applied to a working 
electrode. Then the redox active species are reduced or 
oxidised on the electrode surface and the resulting 
current, together with the current due to reorganisation 
charges on Helmholtz layers, are measured [6]. Given the 
simplicity and versatility of electronic tongues, and the 
possibility of them being implemented into automated 
online equipment, research efforts have been made to 
develop and use them in a wide range of applications, as 
in the food industry [10–14] and in environmental 
analyses [15,16]. In the water quality monitoring context, 
electronic tongues are appealing as they are easy to 
implement online and are low-cost [15]. However, very 
few studies have reported the potential use of electronic 
tongues in wastewater monitoring [15,17]. 
Following our interest in using electronic tongues, we 
report herein a study on the ability of a simple 
voltammetric electronic tongue, based on four noble 
metals -iridium (Ir), rhodium (Rh), platinum (Pt) and 
gold (Au)- to determine several important parameters for 
wastewater quality control in WWTPs. The novelty of 
this manuscript compared to previous studies, is the more 
realistic approach based in several factors, to improve the 
development of a future system for the on-line 
monitoring. Regarding to the sensing system, this 
approach aims to acquire simplification in the sensor 
system using only noble metals. These noble metals, 
owing to their lower reactivity, have high durability and 
are less maintenance-demanding, as required for 

developing future automated equipment, compared to the 
non-noble metals. Moreover, the use of only four 
electrodes compared to previous published works with 
eight electrodes allows for a reduction in the number of 
variables to be considered, which saves data storage and 
computational time. In relation with the waste water 
origin, previous studies on the application of electronic 
tongues for wastewater monitoring have been carried out 
on influent wastewater samples from a WWTP pilot 
plant, equipped with a submerged anaerobic membrane 
bioreactor, and fed only with domestic wastewater [17]. 
Despite the advantages of these bioreactors, their efficient 
use is limited to domestic water treatment, with low 
pollutant contents, and located in places with a climate 
marked by mild temperatures. In this work, and in order 
to acquire a more generalised application, we studied 
influent wastewater samples from a WWTP equipped 
with an aerobic reactor, which treats domestic and 
industrial wastewater with high levels of pollutants. 
Moreover, the number of real samples has been increased 
to 35 and the samples have been studied native, without 
any dilution. Owing the complexity of analysis of these 
more polluted samples, variable reduction and variable 
selection using Genetic Algorithms have been used to 
select the most informative variables to improve the 
predictions. For all these reasons, this work aims for a 
more realistic context to show the application of 
electronic tongue for wastewater monitoring. With this 
experimental setting, we found that the voltammetric 
electronic tongue was able to predict levels of CODs, 
ammonia (NH4

+-N), nitrates (NO3
--N), total Phosphate 

(tot-P) and conductivity with acceptable accuracy and 
precision. 

2. Experimental 

2.1. Wastewater sampling and analytical methods 

In order to study the influent wastewater composition, 35 
samples were collected in a WWTP in the town of 
Almazora (Castellón, E Spain) after the screening and 
degritter stages to eliminate solids and grease. The 
WWTP is equipped with an aerobic reactor, is feed with a 
mixture of domestic and industrial wastewater, and 
whose average volume is 6,400 m3/day (year 2014). 
Wastewater samples were collected in a 15-day interval 
at different hours and on working days, and covered 
diverse wastewater compositions and, hence, different 
levels of domestic and industrial contaminants. The 
ranges of concentrations of the different parameters for 
the samples included in this study are shown in Table 1. 
Owing to changes in composition throughout the day and 
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the diverse features of samples, the ranges of 
contaminants was quite wide (see Table 1). Samples were 
stored cold at 4ºC and were then analysed with the 
electronic tongue in less than 48 h.  

Parallel routine analytical standardised tests (Lange 
cuvette test-system) were carried out to determine the 
contents of ammonia (NH4

+-N), nitrates (NO3
--N), total 

phosphate (tot-P) and chemical oxygen demand (CODs). 
Conductivity was determined with a conductimeter. 

 

2.2. Voltammetry measurements 

The electronic tongue system used in this study is based 
on pulse voltammetry, and was developed by the Instituto 
Interuniversitario de Investigación de Reconocimiento 
Molecular y Desarrollo Tecnológico (IDM), at the 
Universitat Politècnica de València (UPV, Spain). The 
electronic tongue is composed of electronic equipment, a 
software application that runs on a personal computer 
(PC) and a set of metallic electrodes. The electronic 
equipment applies voltage signals to electrodes. The 
temporal evolution of the current signal is collected for 
each working electrode and sent to the PC to be stored for 
further processing. A set of pulses is put together to form 
a pulse train in order to extract as much information as 
possible from the solution. [18] The details of this 
electronic equipment have already been published [19]. 
Following the methodology proposed by Winquist et al., 
[7] the electronic tongue device used in this work 
consisted in an array of four metallic working electrodes, 

Ir, Rh, Pt and Au, with purity of 99.9% and a 2-mm 
diameter. It was housed inside a homemade stainless steel 
cylinder, which was used at the same time as both the 
body of the electronic tongue system and the counter 
electrode. A more detailed description of the electrodes 
used can be found in Campos et al. 2012 and 2014 
[15,17]. Electrodes were conditioned before the 
measurements were taken by mechanical polishing and 
immersion in an acidic solution. Then electrodes were 
rinsed with distilled water before measurements were 
taken. A saturated calomel electrode was used as the 
reference electrode. 

 Range GAVS LVs R2 p1 p2 RMSEP RMSEP*100/max 

NH4
+-N 18.80-62.90 28 9 0.815 0.832 6.08 5.91 9.39 

NO3
--N 0.452-1.370 41 6 0.701 0.978 -0.05 0.135 9.83 

tot-P 3.41-9.19 34 10 0.686 0.900 1.21 1.06 11.58 

CODs 148-1949 25 9 0.664 0.946 72.75 176 14.74 

Cond 1140-2340 43 11 0.872 0.923 110 105 4.47 

Table 1. The range of concentrations in wastewaters (units in ppm for the concentrations of NH4
+-N, NO3

--N, tot-P and COD’s, and in 
µS/cm2 for conductivity) for the set of 35 study samples is shown. The number of variables selected as the best set of variables by GA is 
also shown in this table for each parameter (GAVS). The adjusting parameters (R2, p1, p2 and RMSEP) and the number of latent variables 
(LVs) are shown from the PLS prediction models in the validation set. 

 

Figure 1: (a) Applied pulse sequence. The pulse sequence was the 
same for all the electrodes. (b) Response given by a wastewater 
sample included in the analysis. The data of all the electrodes are 
shown in the same figure. The abscissa axis shows the measured 
points and is equivalent to the time in ms as a pulse is described 
with 100 points and duration is 100 ms. 
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For each measurement, 50 mL of wastewater were 
introduced into a cell, with controlled temperature at 
25.0±0.1ºC (PolyScience). Voltammetric measurements 
were taken without adding any background electrolyte. 
The applied pulse sequence was the same for all four 
working electrodes and was composed of 10 pulses: 200, 
0, 600, -500, 0, 400, -750, 0, 750 and 150 mV. Each 
pulse was applied for 100 ms. Current values collected 
per pulse and electrode were described by 100 
measurements (1 data/ms). These pulses were designed 
according to the cyclic voltammetry information obtained 
in a previously published work [15]. In all, 4,000 points 
(10 pulses x 100 points for pulse x 4 electrodes) were 
recorded in each wastewater sample. Figure 1 shows the 
pulse sequence applied and the data collected in a sample. 

2.3. Data management and statistical analysis 

2.3.1. Data sets for the study 

Thirty-five influent wastewater samples were used in this 
study. For each sample, three aliquots of 50 mL were 
measured to assess reproducibility. The data obtained in 
the three repetitions of each sample were averaged by 
considering the 4,000 points in each repetition. In order 
to evaluate the dispersion of each repetition, the average 
dispersion versus the median was calculated for each 
repetition A (ADMA) on all 35 samples. 

𝐴𝐷𝑀$ =
&'()$(*

(+,
-

                                             (1) 

ADMA evaluates the difference between the measured 
value on each repetition (Ai) and the median value (Mei) 
for each point/current value (N points) of the signals. 
ADMA is used to rule out repetitions with high 
dispersion. Only the repetitions with a value of ADMA 
lower than 3 µA were used to calculate the average. After 
the average, the data resulted in 4,000 data points per 
sample. Figure 2 shows a superposition of the data in the 
four electrodes for the 35 samples. The calibration (25 
samples ≈70%) and validation (10 samples ≈30%) sets 
were selected randomly, except for the data with extreme 
values (maximum and minimum) of each parameter, 
which were included in the calibration set. The 
calibration and validation sets were the same for the 
statistical analysis in all the parameters. 

2.3.2. Data reduction and variable selection 

With the increasing ease of measuring multiple variables 
per object, the relevance of variable selection for data 
reduction and for improved interpretability is becoming 
more important [20]. Reducing obtained data sets also 
saves data storage and computational time [9]. The 
dimensionality of the data matrix considered herein was 
high (4,000 data points per sample). The dimensionality 
problem is typical in many fields of science [20] and it 
has been recognised that feature selection can be most 
beneficial to improve the model’s predictive ability and 
to make it simpler [21]. Moreover, the model is easier to 
interpret and the studied system is better understood [20]. 
In the field of voltammetric tongues, several strategies 
have been used to reduce or select the number of 
variables. One approach is to select only a number of 
current values at certain fixed times to represent the 
different steps or pulses in pulse voltammetry 
experiments [18,22]. Data from voltammetric electronic 
tongues have also been simplified by modelling the 
response from electrodes by an equation that describes 
both the Faradic current and the charging current [23], or 
by an equation that describes the curve as a fourth-order 
polynomial approach for each pulse [19]. A 
chemical/physical model based on the voltammetric 
theory has been developed to extract interesting features 
of current transients. It revealed different information 
about species in solutions, which enhanced the separation 
ability in the PCA analysis done with different samples 
[9]. A discrete wavelet transform (DWT) and fast Fourier 
transform (FFT) have also been used to reduce the 
complexity of cyclic voltagrams from electronic tongues 
in wines samples [12,24].  

A different approach for variable reduction is to use 
genetic algorithms (GA), which is now used as a 
widespread subset search. GA are inspired by the 
biological evolution theory and by natural selection in the 
sense that the variables which yield fitted models 
showing high performance (or fitness), and were more 
likely to “survive” and to be included in variable sets in 
subsequent model refits. Furthermore, a mutation step 
ensures a certain level of randomness in the algorithm 
[20]. In the field of electrochemical measurements, GA 

Figure 2: The figure shows a superposition of the pulse 
voltammetry data for the 35 samples. 
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combined with PLS regression have been applied to 
reduce the considerable number of variables in 
polarography, stripping and square wave voltammetry 
[25] in order to determine different compounds and 
metals, and to characterise wine ageing [26]. In both 
cases the results obtained after variable selection were 
better than those obtained when considering the whole set 
of variables [25,26].  

In the present study, variable selection was performed 
using GA in the calibration set. Before applying GA to 
the original data set, it was considered that the 
performance of GA worsened when more than 200 input 
variables were used [27]. This is due to the fact that a 
high variables/object ratio increases the risk of 
overfitting, and the size of the search domain becomes 
too large [26,27]. In order to obtain an adequate data set 
size (4,000 current values for each sample), several data 
of interest were selected to represent the pulse by 
following the procedures of Winquist et al. 2011 and 
Ivarsson et al. 2005. In particular, of all the current values 
recorded in each pulse (100), two data sets were selected: 
4 data per pulse (data recorded at 2, 5, 10 and 50 ms; 4 
current values x 10 pulses x 4 electrodes = 160 data per 
sample) and 5 data per pulse (data recorded at 2, 3, 5, 10 
and 50 ms; 5 current values x 10 pulses x 4 electrodes = 
200 data per sample). This reduced the 4000 data in the 
original set to 160 data (a variable reduction of 96%) or 
to 200 data (a variable reduction of 95%) for each 
sample. After this variable reduction, GA variable 
selection was performed with both data sets (160 and 200 
points) with the calibration set (25 samples) for each 
parameter (NH4

+-N, NO3
--N, tot-P, CODs and 

conductivity) to further reduce the number of variables 
using the software PLS_Toolbox Solo 8.0 (Eingenvector 
Research, Inc.) for chemometrics analyses. Data were 
preprocessed by performing an autoscale (mean centring 
and scaling each variable to the unit standard deviation). 
Then GA were performed directly with the whole set of 
160 data. However, the set of 200 data was split into two 
subsets with 100 variables each (the Ir and Rh data in one 
subset, and the Pt and Au data in the other subset) to 
reduce the variables/objects ratio, and to thus improve the 

ability of GA for variable selection. The results of the GA 
selected variables from the two subsets of 100 were 
combined as a final set of selected variables. 

2.3.3. PLS analysis 

A multivariate analysis was performed by the PLS [28] 
method and using the software PLS_Toolbox Solo 8.0 
(Eigenvector Research, Inc.) for chemometrics analysis 
before the analysis, data were autoscaled. In order to 
evaluate the adequacy of the experimental data and to 
select the quantity of latent variables, a cross-validation 
was performed before building the model. Venetian 
Blinds was the method used in the cross-validation. The 
minimum value for the cross-validation error was used to 
select the number of latent variables for the model. Then 
the obtained model was applied to the set of validation 
samples to predict the values of all the parameters of 
interest: NH4

+-N, NO3
--N, tot-P, CODs and conductivity. 

The models were evaluated to determine the overfit risk 
by running Permutation tests (Pairwise Wilcoxon, Signed 
Rank test and Rand t-test). Finally, model evaluation was 
made by comparing real versus predicted concentrations 
using the correlation coefficient (R2), the root mean 
square error of prediction (RMSEP), and slope (p1) and 
intercept (p2) for the validation set (from y = p1·x + p2 
based on a simple lineal model). 

Five data sets were evaluated for each parameter with 
PLS, and according to the different variable reduction 
and selection trials. The five data sets were: a) the whole 
set of data (4,000 current values); b) the data reduced to 5 
points per pulse (200 current values); c) the data reduced 
to 4 points per pulse (160 current values); d) the data 
selected by GA from the set of 5 points per pulse; e) the 
data selected by GA from the set of 4 points per pulse. 
The final number of data considered in the GA differed 
for each parameter and depended on the best result 
achieved in GA performance. 

3. Results and Discussion 
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Figure 3: The PLS prediction results are provided in this figure for NH4
+-N, conductivity, tot-P, NO3

--N and DQO. Plots show the 25 
samples of the calibration set as blue circles and the prediction for 10 samples in the validation set as red squares. The 1:1 line (solid black 
line) and the fitting line for the validation set (dashed line in red) are also displayed. 

A PLS 

analysis was used to obtain a correlation between 
voltammetric measurements using the electronic tongue 
and the contents of NH4

+-N, NO3
--N, tot-P, COD, 

according to analytical tests and conductivity. The best 
results were obtained when using the data selected by 
GA. The values of R2, p1, p2 and RMSEP are shown in 
Table 1 for the set with best PLS performance in each 
parameter, together with the range of measurements, the 
number of GA selected variables and the RMSEP in 
relation to the maximum value within the range of each 
parameter. This last data provides an idea of the 
percentage of error in predictions. For all the parameters, 
the GA data set improved the PLS results for predictions. 
The GA ran from the initial set of 200 data obtained the 
best PLS performances for NO3

--N, tot-P and 
conductivity using 41, 34 and 43 variables, respectively 
(which meant a variable reduction of 98.30%, 99.15% 
and 98.93%, respectively). The GA run from the initial 
set of 160 data led to the best PLS performances for 
NH4

+-N and CODs using 28 and 25 variables, 

respectively (which meant a variable reduction of 99.30% 
and 99.37%, respectively). The Permutation Test 
calculated in all the models showed that the models built 
from GA were unlikely over-fit models. 

The PLS calibration set and prediction set for NH4
+-N, 

conductivity, NO3
--N, tot-P and CODs are shown in 

Figure 3 (predicted parameter vs. measured parameter). 
Figures 3 offer an idea of the accuracy and precision in 
the prediction model applied to the validation set.  

Numerically, an idea of the accuracy and precision of 
predictions can be obtained when linearly fitting the 
experimental points calculated in the predicted group 
according to the model in the calibration set. The slope 
(p1) and the intercept with the y axis (p2) of the linear 
fitting of the predicted vs. real data in the validation set 
(y=p1x + p2) were related to accuracy in prediction. The 
model was much better as p1 approached 1. RMSEP 
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deals with model precision and the model was much 
better as RMSEP approached 0.  

The data in Table 1 indicate that in all cases predictions 
had higher p1 values than 0.8 and 0.9 for parameters 
NO3

--N, tot-P, COD’s and conductivity. According to the 
RMSEP values and the range of measurements for each 
parameter, it was established that the parameters in the 
validation set could be determined with errors lower than 
10%. The level of accuracy and precision of these results 
was acceptable if we bear in mind that samples were 
quite complex and were analysed by simple equipment 
based on the use of an electronic tongue with metallic 
electrodes.  

An important point to achieve this prediction 
performance was the selection of data of interest from the 
whole pulse, previous to GA variable selection. As it has 
been explained, it is recommended to perform GA with 
no more than 200 input variables, but the data sets here 
considered were originally of 4000 current values for 
each sample. In a first step to reduce the dimensionality, 
a reduced number of current values was selected from the 
whole pulse. The selection was done, as already 
mentioned, according to previously published data, and 
taking into account points to give information of both 
Faradic and non-Faradic contributions to the signal. This 
selection would enable to detect both electroactive and 
not electroactive species as phosphate compounds, which 
are also of interest in this case. 

Finally, a more realistic approach for the quantitative 
analysis of quality parameters in wastewater by electronic 
tongue has been shown. This approach is based in diverse 
factors which are the study samples with a high level of 
pollutants, the use of a sensing system composed by only 
noble metals with high durability and a low maintenance 
demanding, the saving in data storage and computational 
time by the reduction in the number of variables 
preserving representative information of Faradic and non-
Faradic contributions, and the use of GA for variable 
selection to improve the predictions. This electronic 
tongue is low-cost, offers high durability and cuts the 
analysis time from hours/days to minutes. 

4. Conclusions  

The use of a simple electronic tongue combined with 
variable reduction strategies for multivariante analysis is 
described herein to analyse wastewater quality 
parameters in highly polluted influent real wastewater 

samples from a WWTP equipped with an aerobic reactor 
which is fed with domestic and industrial wastewaters. 
The parameters analysed in this study (NH4

+-N, NO3
--N, 

tot-P, CODs and conductivity) are very important for 
planning wastewater treatment of either domestic or 
industrial origin. The equipment that we used consisted 
of an electronic voltammetric tongue with only four 
noble metal electrodes (Ir, Rh, Pt and Au) housed inside a 
stainless steel cylinder. Only noble metals were used 
since they have higher durability and are less 
maintenance-demanding compared to non-noble metals, 
and also with the aim to reduce the number of data to be 
analysed to save computational time and data storage. 
Data dimensionality lowered in more than 98% by 
selecting a set of representative data per pulse and 
performing GA variable selection on them. The PLS 
studies indicated that the information obtained using an 
electronic voltammetric tongue with only four noble 
metals could be used to make estimations of these 
parameters rapidly and with acceptable accuracy and 
precision. These results suggested that simple electronic 
tongues based only on noble metals can be applied in 
WWTPs to improve the efficiency of domestic and 
industrial wastewater treatment processes. Such 
equipment is inexpensive, needs very little maintenance, 
offers high durability and can be implemented in situ to 
offer continuous water quality monitoring. 

This information on influent wastewater is very useful for 
optimising WWTP operations and for saving costs during 
treatment processes. Moreover, the use of low-
maintenance electrodes opens up a possibility for future 
automated developments. 
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