
Two handy geometric prediction methods of
cancer growth

June 1, 2015

Abstract

In present day societies, cancer is a widely spread disease that
affects a large proportion of the human population, many research
teams are developing algorithms to help medics to understand this
disease. In particular, tumor growth has been studied from different
viewpoints and different mathematical models have been proposed.
Our aim is to make predictions about shape growth, where shapes are
given as domains bounded by a closed curve in R2.

These predictions are based on geometric properties of plane curves
and vectors. We propose two methods of prediction and a compari-
son between them is shared. Both methods can be used to study the
evolution in time of any 2D and 3D geometrical forms such as cancer
skin and other types of cancer boundary. The first method is based on
observations in the normal direction to the plane curve (boundary) at
each point (normal method). The second method is based on observa-
tions at the growing boundaries in radial directions from the ”center”
of the shape (radius method). The real data consist of at least two
input curves that bind a plane domain.

Keywords: Normal method, Prediction methods, Radius method,
Tumor growth.
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1 Introduction

The evolution in time of some objects is the subject of study of many re-
searchers worldwide. Special attention has been given to cancer, and a way
to understand this disease is to know how it evolves over time.

We can find, in reading, many studies about mathematical modeling of
tumors, which attempt to predict the growth of tumors from a mathematical
point of view.

Williams and Bjerknes [14] introduced a stochastic model for the spread
of cancer cells. Cells, both healthy and diseased, are situated on a planar
lattice. Tumor extension is through cell division, one daughter keeps his
position, while the other usurps the position of a neighbor; abnormal cells
reproduce at a faster rate than normal cells.

One model that has been used to describe tumor growth is the exponen-
tial growth model [15] and another model used to describe tumor dynamics
is a Gompertz curve or Gompertz function [11]. This is a type of mathe-
matical model for a time series, where growth is slowest at the end of a time
period [15]. A proposed mathematical model based on energy conservation
(Universal Law model) was derived to model tumor growth [13]. This model
was tested against empirical data and the results fit a variety of in vitro and
in vivo data [5].

The development of tumor models is important as they offer a way to
better understand the kinetic growth of malignant tumors which may lead
to the development of successful treatment strategies.

Our aim is to propose two simple prediction methods of the shape growth,
where shapes are given as bounded domains by a closed curve in R2.

Let us assume that the cells, both normal and abnormal, are situated on
a planar lattice R2 and let Dt (Dt ∈ S , where S = sample space or Region of
Interest) denote a bounded domain occupied by cancer cells at time t. Given
the domain Dt ∈ R2 we consider that it is bounded by a simple closed curve
parameterized by arc length αt : [0, L] −→ R2. So, the original cancerous
population occupies the planar domain D0. For simplicity, Williams and
Bjerknes [14] restricted their attention to the process α0 starting with a
single abnormal cell at the origin. In this context, the following question
arises: how fast does α0 grow, and what is the geometric nature of αt for
time t > 0 (but not too large).

To make the prediction we use two geometrical methods and start from
the hypothesis that the speed of variation in time (growing) is constant in
each direction (but not equal). So the evolution in time of the tumor can be
expressed by the variation of each vector. Starting from this, the problem is
resumed to determine the values of each vector for a future time (t+ ∆t).
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In the first method (normal method) we construct the vectors in the
normal direction to the curve and in the second one (radial method) we
construct the vectors as an extension of the radius of a circle in which the
tumor can be enrolled.

The usual data consist of in at least two curves that bound two growing
planar domains. The first curve can be the contour of one tumor when it was
discovered (at time t), and the second curve is the same tumor after a while
∆t. For real data analysis both curves can be provided by two analysis with
computed tomography (CT), at a time interval.

Although these curves are continuous (parameterized) curves, all our cal-
culations, which are based on the comparison of these curves, are done on
digital curves, that is, a discretized version of the parameterized curves using
contour points of each curve.

The values of the vectors from a specific time can be calculated if we
know the parametric function or the discretized step. From both methods of
calculus the input data represent the coordinates of the contour points.

In section 2 we present a brief theory of growth shapes and curve de-
formations, and we propose our two prediction methods of tumor growing,
depending on the direction of growing chosen from each point of the curves.

In Section 3 we implement all the mathematical calculations in Matlab
software, and we build a library of functions to run both methods. We
present the results of stimulation study based on random and parametric
curves. We also present the analysis of a real data set. The paper ends with
some conclusions and open ideas.

2 Methodology

2.1 Shape and growth description

At present, there exists a variety of growth models for objects in discrete
space; see for instance [2], [11], [9], and [8]. In the Richardson model, intro-
duced in [12], the growth is described by a Markov process. For a growing
object in the plane, the state at time t is a random subset Yt of Z2 consisting
of the ”infected sites”, and Y0 (initial tumor) consists of a single site.

So, it is deduced from the preceding results that the tumor shape Yt at
present time t, depends on the structure of the initial tumor shape Y0. Then
the tumor shape in a future Yt+∆t, is a function which depends on the edge
and structure of the cancer in the present time Yt, and also on some external
factors like mitosis, nature of cancer (benign or malign), density, etc

(
all
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these factors can be included in a function g(t)
)
; then,

Yt+∆t = f(Yt) + g(t) (1)

In our study we consider the boundary of the tumor at different times
(not the entire tissue). This boundary is represented by a closed curve which
may be star-shaped or of any other random form. In real studies, a tumor is
discovered time after starting its development and, for this reason, the initial
domain D0 does not consist in just one cell but in a closed domain bounded
by a curve α0. So, each domain Dt ∈ R2 is bounded by a closed curve αt and
we propose two simple methods to predict the tumor growth.

To predict the tumor growth means to find the curve αt+∆t based on
observations at times ti < t + ∆t. Both methods are based on geomet-
ric properties of curves and vectors and the main differences between them
consist in the directions of the vectors chosen at points Pi ∈ αt(si).

The first method (normal method) can be applied to general curves (not
necessarily star-shaped) but the observed curves must be close enough to
avoid self-intersections between normal lines. The second method (radial
method) can be applied only to star-shaped domains with respect to a point
in D0.

2.2 Normal method

The first method is based on observations in the normal direction to the
plane curve (boundary) at each point.

We consider negatively oriented planar closed curves α : I −→ R2 (that
is, when traveling on α one always has the curve interior (tumor) to the
right). Moreover, when the curve α is parameterized by arc length s; then,
the signed curvature function of α(s) is defined as [4]

dT

ds
= κ(s)N(s), (2)

where T (s) is the unit tangent vector and N(s) is the unit normal vector
oriented to the exterior of D (like the sunlight).

The sign of the signed curvature κ indicates the direction in which the
unit tangent vector rotates as a function of the parameter along the curve. If
the unit tangent rotates counterclockwise, then κ > 0. If it rotates clockwise,
then κ < 0 (see Figure 1).

For a plane curve given by a parametrization α(s) =
(
x(s), y(s)

)
, the

signed curvature is expressed as

κ(s) =
x′y′′ − y′x′′(

(x′)2 + (y′)2
)3/2

. (3)
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Figure 1: Signed curvature κ for a negatively oriented planar closed curve α

To describe growth shape, our data consists of a discrete number of shapes
D0, D1, . . . Dn obtained at times ti = t0 + i∆t, respectively, and bounded by
closed simple curves αi, i = 1, 2, . . . n, where each curve αi is defined from
the preceding one as

αi(s) = αi−1(s) + fi−1(s)Ni−1(s), i = 1, 2, . . . n− 1, (4)

where Ni−1(s) is the unit normal to αi−1(s) and fi−1(s) is a differentiable
function.

In order to make a prediction, that is, in order to construct a curve αn+1(s)
from the information provided by α0, α1, . . . , αn and therefore a function
fn(s) from fi−1(s), i = 1, 2, . . . n, we consider the curve:

αn+1(s) = αn(s) + fn(s)Nn(s), (5)

where αn(s) and Nn(s) are defined in (4) and we suppose that fn(s) =
fn−1(s), ∀s ∈ I.

Then, we suppose that fi(s) = fi−1(s), ∀s ∈ I and for i = 1, 2, . . . n which
means that the function fi(s) at time ti is fi(s) = if0(s).

Note that if fi(s) = k, constant, then αi+1(s) is the parallel curve to αi(s)
at a distance k [6]. This is the simplest case when the evolution in time in
each direction is constant and equal to k. Note that to ensure that the curve
αn+1 is well defined it is necessary that, for all s ∈ I, the distance from the
curve αn to the point αn+1(s) will be fn(s).

Therefore, in our prediction, we take into consideration that the growing
rate is different for each normal direction but constant for equal periods of
time. In real studies the tumor is discovered after some time t and instead
of a parameterized curve the study is based on digital curves.
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In Figure 2a we show the digitization of a brain tumor at time t1 which
corresponds to curve α1(s) plotted at points P t1

i (xi, yi), with coordinates xi
and yi, i = 1, . . . , n.

After a time ∆t, for t2 = t1 + ∆t, the same growing tumor has a different
contour (Figure 2b), α2(s), represented at points P t2

j (xj), j = 1, . . . ,m.

Figure 2: Evolution in time of a tumor brain cancer: a) first image acquisition
of curve α1 and a points P t1

i ; b) the same tumor after time ∆t

The number of points n and m are factors which represent the resolution
or the step of digitization for each brain tumor contour.

Note that since the curves are digital we only know a discrete number of
points P t1

i , i = 1, 2, . . . n and P t2
j , j = 1, 2, . . .m for each curve: α1(si) and

α2(sj). Then, in general, it is possible that the estimated point P t2
j ∈ α2(sj)

with j ∈ {1, . . . ,m} does not correspond to a point Pj ∈ α2(sj). For this

reason, we join the points P t2
j (xj, yj) by straight segments and we obtain an

approximated polygonal curve to α2(sj) that, as there is no confusion, we

will denote it also by α2(s).
Now, from the n points P t1

i (xi, yi) in curve α1 and an approximation of
the values of N(si), we will compute the points in the polygonal curve α2.
We will suppose that we have two curves α1 and α2 and we will predict,
under our assumptions, the curve α3.

We proceed as follow. We consider three consecutive points P t1
i−1, P t1

i

and P t1
i+1 and the segment P t1

i−1P
t1
i+1; then we draw the perpendicular line to

this segment which passes through the point P t1
i . The intersection between

this line and the polygonal curve α2 corresponds to the calculated point P t2
j
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and the distance between P t1
i and P t2

j is f1(P t1
i ). We repeat this process for

i = 1, 2, . . . , n and we obtain all the points of P
t2
j , for i = 1, 2, . . . , n.

Other methods to approximate the normal direction to a point P t1
i , like

the bisector direction or the median direction, can be found in [1].

Figure 3: Calculus of the predicted points P t3
k with the normal method

At each point P t2
j we determine the normal vector N2(P t2

j ) to the polygo-

nal curve α2 and, following that direction, at a distance f1(P t1
i ), we plot the

predicted points P t3(xj, yj), j = 1, 2, . . . ,m, of the predicted curve α3(s), at
time t0 + 2∆t (see Figure 3).

The condition that must be required to apply this method is that vectors−−−−→
P t2
i P t3

j do not intersect between them for i = 1, 2, . . . , n. This can be ac-

complished when the distance f1(P t1
i ) for each point P t1

i does not exceed the
value of the κ(P t1

i ) [6]. There exist several different points approximation
methods for the discrete approximation of the curvature; for instance, circle
approximation or angle approximation (see, for instance [10]). However, we
will apply the Archimede’s theorem of the area of a parabolic segment to
approximate the curvature from a parabola [7].

Given P t1
i and the segment P t1

i−1P
t1
i+1 whose length is c, we have that [7],

A(4i) ≈
κ1(P t1

i )c3

12
, (6)

where A(4i) is the area of the triangle of vertices P t1
i−1, P t1

i and P t1
i+1.
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Since the distance d from the point P t1
i to the line defined by P t1

i−1P
t1
i+1

(see the triangle 42 = 4P t1
1 P

t1
2 P

t1
3 in Figure 3) is:

d =

√
a2 − a2 − b2 + c2

2 ∗ c2
(7)

where: a =‖ PiPi+1 ‖=
√

(xi+1 − xi)2 + (yi+1 − yi)2

b =‖ Pi−1Pi ‖=
√

(xi − xi−1)2 + (yi − yi−1)2

c =‖ Pi+1Pi−1 ‖=
√

(xi−1 − xi+1)2 + (yi−11 − yi+1)2

The approximation of the curvature when we know the coordinates of the
points P t1

i−1, P t1
i and P t1

i+1 is, from (6),

κ(P t1
i ) ≈ 6 d

c2
. (8)

Moreover, if we have the approximation of κ1(P t1
i ) via (8) and that of

f1(P t1
i ) we may know if there exists a relation between local curvature and

the growth shape. A discussion in this line that has been considered in
interesting applications [3].

2.2.1 Curve evolutions

This method of predicting growth is a particular case of curve evolution,
where each point of a curve α moves in the normal direction with speed
equal to the function f(s) at that point. Consider a family of smooth closed
curves α(s, t) where t means time and s is the parameter of the curve ( s and
t are independent) and suppose that α(s, ti) = αi(s), for i = 1, . . . , n.

The mathematical formulation in this case is

∂α(s, t)

∂t
= F (s)N(s, t), i = 1, . . . n− 1, (9)

where N(s, t) is the normal vector to the curve α(s, t) and F (s, t) is the
speed function. In principle the function F may depend on many factors like
local and global properties of the growing curve and time t. However, in our
method F does not depend on t.

For numerical implementation we approximate

∂αi(s, t)

∂t
|ti ≈

αi(s, ti + ∆t)− αi(s, ti)

∆t
= f(s)Ni(s), i = 1, . . . n− 1. (10)
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Then, since ∆t is constat for each i, we have:

αi+1(s) ≈ αi(s) + ∆tf(s)Ni(s) = αi(s) + f0(s)Ni(t). (11)

Several examples of functions F (s, t) can be found in [1], for instance,
when the function is the curvature of the initial curve, we have a curvature-
driven evolution of the initial curve α0.

2.3 Radius method

In this case we consider star-shaped domains from an origin O(x0, y0) and
vectors which are represented by the radius line from this origin to the each
point P t1

i of first curve α1 in that direction.
This method is quite simple to understand from the theoretical viewpoint

and also from the point of view of calculus. Using this method the choice of
the point of origin of the tumor is important O = O(x0, y0) (see Figure 4a).

Starting from this point we construct a line from each contour point P t1
i

of the curve α1 and continue to the intersection of the second contour α2

which give us the points of the second contour P t2
j , for each i = 1, 2, . . . ,m.

These lines with the direction from the center point O to the points P t1
i

will be called radius vectors and denoted by
−→
Rt1

i .

The estimated points P t2
j of the second curve αt1+∆t, as it is a second

time, are: P t2
1 , P t2

2 , P t2
j , here j = 1, 2, . . . , n. The third curve (the simulated

curve) is αt1+2∆t because the time intervals between t1, t2 and t3 are supposed
to be equal. These three curves are denoted by α1, α2 and α3 respectively.

For each j = 1, 2, . . . , n the distances between P t1
i and P t2

j are the values

of the function f1(P t1
i ) and we can calculate the spatial coordinate of the

contour points P ti
k with j = 1, 2, . . . , n at time t1 + 2∆t.

3 Simulations and application

3.1 Simulated data: random curves

The simulation consist in creating three discrete closed curves with different
areas, keeping the same center. Curves are created by joining a predeter-
mined number of points arranged in a circle of radius defined by the user
plus a uniformly distributed random variable. Each curve is simulated with
a different number of contour points. After generating the curves we ap-
ply both prediction methods, and calculate the predicted contour for each
method.
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Figure 4: Simulated tumors at time t, t + ∆t and t + 2∆t using random
curves: a) prediction with radius method; b) prediction with normal method

Radius method: we start to construct each vector
−−−−→
Ri(Pi) from the

center O(x0, y0) of the first tumor αt to each contour point Pi(xi, yi) at time
t, and we continue to the intersection of the second contour Pj(xj, yj) at time

t+ ∆t and so on by the predicted point Pk(xk, yk).
So as not to overload the picture, we plot just the first two iterations

and the corresponding points of calculus P t1
1 , P t2

1 , and the predicted point

P t3
1 (see Figure 4a).
Normal method: in order to begin the simulation, the first vector is the

normal vector
−−−−−→
N1(P t1

1 ) to surface αt in point P1(x1, y1), and in that direction

we find the point Pj(xj, yj) i.e P t2
1 at the intersection with the second contour

αt+∆t. Starting from this point in the direction of the normal vector to second
contour, we calculate the spatial coordinates of the predicted point (Figure
4b).

To show the precision of these methods we repeated simulation 100 times
and calculated the values of absolute error (εa) and relative error (εr) between
the area of the contour curve at time t + 2∆t names as t3 i.e αt+2∆t(s) or
α3(P t3

i ) (the area of the polygon determined by the points P t3
i ) and the area

of the predicted curve (the polygon determined by the estimated points P t3
k ).

The results are given in Table 1.
All the calculus proposed in these methods were done with Matlab and
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METHOD ABSOLUTE ERROR (εa) RELATIVE ERROR (εr)
min. average max. min. average max.

Normal 103.6847 565.9698 1022.6573 0.0033 0.0180 0.0325
Radius 1.6078 195.1009 608.7794 0.00003 0.00368 0.01148

Table 1: Absolute and relative errors for areas obtained from the normal and
radius methods.

did not require too many computing resources.
In a machine with i3 processor and 4 GB of RAM the time for simulating

the growing tumor based on three curves, each one with resolution n = m =
50 points, based on normal method was 1.897642 sec, and it is very accurate.

The running time to simulate the growing of the tumor with the radius
method, in the same conditions as in the preceding method, was 0.909440
sec, which means a decrease of the computational effort.

When star-shaped tumors are considered, both methods are accurate in
prediction and are computationally fast, and can be used with success in
lower computational machines.

Comparing the results we obviously note that the radius method is more
effective, and the user requires less recourses from the computing machine,
so it is very clear that it is a better method.

3.2 Simulated data: parametric curves

To check for the accuracy of each algorithm, we now consider a parametric
irregular form and its growth at regular intervals of time. The curves come
from a Fourier series expansion of a sine and cosine function.

In Figure 5 we plot in red the curve αt1 , in green the curve αt2 and in
blue the curve αt3 . Taking into account the first two boundaries of the shape
we predict the third curve (drawn in magenta in Figure 5) and we compare
with the real evolution of the function.

We also calculated the area of the surface drawn by the predicted contour
and the errors absolute and relative reported to the area of surface bounded
by curve αt3 :
a) relative error :
radius method: εr = 0.005278
normal method: εr = 0.005389
b) absolute error :
radius method: εa = 0.002709
normal method: εa = 0.002766
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Figure 5: Parametric and simulation shapes of curve at time t1, t2 and t3: a)
prediction with radius method; b) prediction with normal method

As can be noted, the absolute and relative errors for the normal method
are larger than these for the radius method.

3.3 Real data

We now show the performance of the two methods over real data. It was
necessary to implement, in one library, a series of functions to process images
from a magnetic resonance tomography, computed tomography or any other
analysis or image of a tumor. The input data is represented by a complete
set of images of a brain tumor taken at intervals of one month, to which we
apply the methods to predict its growth.

This particular tumor is found in the Central Nervous System and is called
glioblastoma multiform. In conformity with the World Health Organization,
this tumor is the most aggressive tumor and the type and grade is according
to IV-th classification. In the scans that we are studying it is clear that there
is a presence of multiple tumors in the body which is known as metastasis.
These metastatic tumors are children of primary tumors from the breast,
lung, colon, stomach and skin (melanoma), but in our case, the first was the
brain tumor.

From this complete set of analysis we selected three images taken in the
same plane: one from November 9th, 2009 (see Figure 6a), one from December
8th, 2009 (Figure 6b) and the last from January 10th, 2010 (Figure 6c).

The input data for this analysis was the first two curves.The boundary tu-
mor of November was digitalized in 64 points: αt1 = {P t1

1 , P
t1
2 , . . . , P

t1
64}. The

curve is closed, so P t1
1 ≡ P t1

64. The second one (corresponding to December)
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Figure 6: Evolution in time of the real brain tumor: a) boundary of the
tumor at time t; b) boundary of the same tumor in december; c) boundary
of the tumor in ianuary

was approximated with 61 points, then: αt2 = {P t2
1 , P

t2
2 , . . . , P

t2
61}.

We applied both prediction methods starting from the first two images
and we calculated the prediction of growth of this tumor, which we scheduled
for January 10th, 2010. We can directly compare the results of the prediction
methods, with the third image from the set of analysis.

The reference curve (plotted in blue in Figure 7) is the approximation in
60 points of the real contour of brain tumor. Because we start from the first
curve and all the calculus are related to the number of points P t1

i , (in this
case i = 64), the number of points of the prediction is identical, i.e k =64
points.

The area of the surface domain D3 representing a polygon with 59 sides
is Area(D3) = 7852.13479 and the predicted areas are:
a) radius method: Area(D3) = 7774.37985;
b) normal method: Area(D3) = 7776.43387.

The absolute and relative errors are:
a) radius method :(see Figure 7a)
- absolute error: εa = 77.7549
- relative error: εr = 0.00990
b) normal method :(see Figure 7b)
- absolute error: εa = 75.7009
- relative error: εr = 0.00964

We note that the results are directly affected by the digitization of the
curves by the physicians when they choose the contour points of the tumor.
Also we must take into account that the resolution of these kinds of images
is low (512x512 pixels). We would obtain better results if the input images
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Figure 7: Brain tumor: real evolution vs. prediction: a) prediction with
radius method; b) prediction with normal method

have quite a better resolution and if we plot the results with a B-spline curve,
which gives a better approximation of the predicted curve, defined in the first
instance as a polygon.

4 Conclusions and future research

Mathematical modeling always tries to find a compromise between simplicity
of analysis and requirements of realism. On the one hand, we have extremely
complex natural and biological systems; on the other hand, we need to for-
mally address some quantitative issues about these systems which can often
be done only through the use of mathematical models. For most of the realis-
tic problems, the solution of the corresponding exact equation is, in practice,
impossible, so we need to make approximations. Making approximations
to solve very difficult problems is not a new idea. Appropriate models en-
able accurate prediction of future behavior which can be used to control and
optimize various aspects of the system in question.

Both prediction methods proposed here are simple computing, fast, and
provide good results. They can help medics cure and better understand the
propagation of cancer. For a better adjustment of the prediction models in
the very near future, we are trying to develop new models without restricting
the growing velocity. In these cases, the function f(x) which transforms the
curve αt into the curve αt+∆t is a second-order degree function and from
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each point of the curve we must solve an equation system in order to find the
parameters of each function fi(x). We hope that this will lead us to remove
the predictions error in comparison with real data.
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