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A comparison of classifiers and strategies

Mónica Millán-Giraldo · J. Salvador Sánchez · V. Javier Traver

Received: date / Accepted: date

Abstract In many real applications, data are not all avail-
able at the same time, or it is not affordable to process them
all in a batch process, but rather, instances arrive sequen-
tially in a stream. The scenario of streaming data introduces
new challenges to the machine learning community, since
difficult decisions have to be made. The problem addressed
in this paper is that of classifying incoming instances for
which one attribute arrives only after a given delay. In this
formulation, many open issues arise, such as how to clas-
sify the incomplete instance, whether to wait for the de-
layed attribute before performing any classification, or when
and how to update a reference set. Three different strate-
gies are proposed which address these issues differently. Or-
thogonally to these strategies, three classifiers of different
characteristics are used. Keeping on-line learning strategies
independent of the classifiers facilitates system design and
contrasts with the common alternative of carefully crafting
an ad hoc classifier. To assess how good learning is under
these different strategies and classifiers, they are compared
using learning curves and final classification errors for fif-
teen data sets. Results indicate that learning in this strin-
gent context of streaming data and delayed attributes can
successfully take place even with simple on-line strategies.
Furthermore, active strategies behave generally better than
more conservative passive ones. Regarding the classifiers, it
was found that simple instance-based classifiers such as the
well-known nearest neighbor may outperform more elabo-
rate classifiers such as the support vector machines, espe-
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cially if some measure of classification confidence is con-
sidered in the process.

Keywords Streaming data · On-line classification ·
Delayed attributes · Semi-supervised learning

1 Introduction

Most of traditional learning algorithms assume the avail-
ability of a training set of labeled objects (examples or in-
stances) in memory. In recent years, however, advances in
information technology have lead to a variety of applica-
tions in which huge volumes of data are collected continu-
ously, thus making impossible to store all data, or to process
any particular object more than once. Under these circum-
stances, data are not available as a batch but each instance
comes one object at a time (called streaming data). In gen-
eral, a data stream is defined as a sequence of instances [2,
17]. Data streams differ from the conventional model in im-
portant elements [4] that bring new challenges: (i) The ob-
jects in the stream arrive on-line; (ii) The system has no con-
trol over the order in which incoming data arrive to be pro-
cessed; and (iii) Data streams are potentially unbounded in
size.

Classification is perhaps the most widely studied prob-
lem in the context of data stream mining. Although substan-
tial progress has been made on this topic [1,8,21], a number
of issues still remain open. For example, many classifica-
tion models do not make adequate use of the history of data
streams in order to accommodate changes in class distribu-
tion (known as concept drift [12,22,23,25]). The scenario
we consider in this paper faces a new problem that may ap-
pear in several real-world applications. We assume that each
object of a data stream is a vector of d attribute values with-
out a class label. The aim of the classification model is to
predict the true class of each incoming object as soon as
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possible (ideally, in real time). However, suppose that the
attribute values are obtained from different sensors. These
may produce that the attribute values will become available
at different times if some sensor requires more processing
time to compute an attribute value than the others or even, if
some sensors fail. Therefore we are considering the problem
of classifying streaming data where one or more attributes
arrive with a delay. As an example, when a sensor fails in
a production process, it might not be feasible to stop ev-
erything and in this case, the system should employ the in-
formation available at present time. Three main issues here
are: (i) How to classify the incoming sample that contains
missing attributes; (ii) Whether to update the training (ref-
erence) set after predicting the class label of an incomplete
object or wait until the attribute vector has been completed;
and (iii) What to do when the missing attributes arrive at the
system.

In the literature, there exist many algorithms for han-
dling data with missing attributes in off-line learning [9,13,
14,20], but no one is absolutely better than the others. The
most representative categories of these are:

– Removing incomplete examples: The simplest way of
dealing with missing values is to discard the examples
that contain the missing values in order to create a new
complete data set. Nevertheless, this technique may lose
relevant information.

– Projection: The l missing attributes are ignored. This im-
plies to map the d dimensional input vectors onto an
(d − l) instance space.

– Imputation: It tries to guess the missing values. In fact,
usually missing values depend on other values, and if we
find a correlation between two attributes, we may use it
to impute missing attributes. Imputations may be deter-
ministic or random (stochastic). In the first case, imputa-
tions are determined by using the complete data, and are
the same if the method is applied again. In the second
case, imputations are randomly drawn.

Despite the problem of missing attributes has been widely
studied in off-line learning, to the best of our knowledge it
has not previously been considered in the context of on-line
learning with streaming data, which makes the problem con-
siderably more challenging. Only very recently, the prob-
lem of missing attributes in streaming data has been consid-
ered [10]. However interesting, their approach is an ad hoc
solution for decision trees, while our focus is on strategies
that are orthogonal to the choice of the classification method
being used. In addition, they did not consider that the miss-
ing attributes may arrive after a time delay. Another promis-
ing idea is that of working in the dissimilarity space rather
than in the original feature space, which offers advantages
under the missing attributes scenario [16].

This paper reports a preliminary study of three straight-
forward strategies for an early classification of streaming
data with missing (delayed) attributes. By early we mean
that classification of an incoming object is (may be) done
before the whole attribute vector is known. Many applica-
tions can benefit from performing this early classification,
since there may be some kind of loss associated with waiting
for the missing attributes to arrive. In the present work we
concentrate on the case of a single missing attribute, which
happens to be the same and arrive with a constant delay.

This article extends the conference paper [15] by com-
paring three different classifiers and providing further ex-
perimental insight into how these classifiers and the different
strategies considered behave with respect to the baseline ref-
erence strategy of only considering an initial reference set,
which is labelled and with all attributes, but with a reduced
number of instances.

2 On-line classification of Data with Delayed Attributes

At time step t in the scenario of attributes arriving with a
delay, we have a reference set St (a set of labeled examples
with all attributes available). Then, a new unlabeled object
xt+1 with one missing attribute x(i)t+1 arrives. After predicting
the label for xt+1, the system receives the value of the at-
tribute x(i)t−τ+1 corresponding to the object that came τ steps
earlier, xt−τ+1. Therefore, objects from xt−τ+2 to xt+1 are
still with one missing attribute.

Here, one key question is whether to use the unlabeled
data with missing attributes to update the reference set St
and in such a case, how to do it. In addition, we have to
decide how to best utilize the value of the missing attribute
x(i)t when it arrives.

When a new unlabeled object xt+1 arrives, the system
has to provide a prediction for its label based on the infor-
mation available up to time t. In this situation, it could be
desirable to make use of the confidence with which the pre-
vious classifications have been made. That is why a mod-
ification of the k-Nearest Neighbors (k-NN) rule [24] will
be used here and adapted to the problem at hand, since its
stochastic nature proves to be suitable to properly manage
the confidence measurements. Apart from this, the plain 1-
NN classifier and a Support Vector Machine (SVM) will be
also considered in the experiments for comparison purposes.
On the other hand, for handling the missing attribute of ob-
ject xt+1, we will employ the projection strategy because of
its simplicity and its proven good behavior.

2.1 A Confidence-based Classifier

All instances in the reference set have a confidence value for
each class, indicating the probability of belonging to the cor-
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responding class. When a new unlabeled object xt+1 from
the data stream arrives, its confidence values (one per class)
are estimated. Thus the object will be assigned to the class
with the highest confidence value.

To estimate the confidence values of the incoming ob-
ject xt+1, its k nearest neighbors from the reference set St
are used. The confidences of its k nearest neighbors and the
distances between each of them to the new object xt+1 are
also employed. More formally, let k be the number of near-
est neighbors, n j the j-th nearest neighbor of xt+1, pm(n j)

the confidence (probability) of the j-th nearest neighbor be-
longing to class m, and d(xt+1,n j) the Euclidean distance
between the object xt+1 and n j. The confidence of the ob-
ject xt+1 in relation with the class m, say Pm(xt+1), is given
by:

Pm(xt+1) =
k

∑
j=1

pm(n j)
1

ε +d(xt+1,n j)
, (1)

where ε is a constant value (ε = 1), which is employed to
avoid numerical problems in the division when the object
xt+1 is very similar to its j-th nearest neighbor.

The above expression states that the confidence that an
object xt+1 belongs to a class m is the weighted average of
the confidences that its k nearest neighbors belong to class
m. Each of these weights is inversely proportional to the dis-
tance from the object to the corresponding nearest neighbor.
In order to get a proper probability, the confidence Pm(xt+1)

in Eq. (1) is divided by the sum of the confidences of the k
nearest neighbors to all the c classes:

pm(xt+1) =
Pm(xt+1)

∑
c
r=1 Pr(xt+1)

. (2)

As the objects of the reference set St are labeled ele-
ments, their confidence values were initially set to 1 for the
true class (the class to which they belonged), and to 0 for
the remaining classes. During the on-line classification, the
confidence of all new objects added to the training set will
be updated according to the probability values estimated ac-
cording to Eq. (2).

2.2 Strategies for Handling Delayed Attributes

Assuming that at step t we have a reference set St available,
on-line classification of incomplete data streams consists of
three elements: (i) The technique to handle the situation of
a missing attribute x(i)t+1 of the new unlabeled object xt+1;
(ii) The classifier to predict the class label for this object;
and (iii) The strategy to manage the new information derived
from the value of the attribute x(i)t+1 when it arrives τ steps
later.

Regarding the first issue, as stated before, the projection
strategy is used: the arriving object as well as those in the

reference set are simply mapped onto the (d − 1) dimen-
sional space. Second, as for the prediction of the class label
for xt+1, three different classifiers are used: the k-NN classi-
fier based on posterior probabilities (Section 2.1), the plain
1-NN rule and a SVM. Finally, since it is not obvious which
is the best way to profit from the new information gained
with the arrival of the attribute x(i)t−τ+1 at time step t + 1,
three different strategies are explored:

– Do-nothing: This is a passive strategy where, while the
incoming object is incorporated into the current refer-
ence set St , nothing is done when the value of the miss-
ing attribute x(i)t−τ+1 arrives after τ time steps. However,
the attribute value of the corresponding object, xt−τ+1,
is set to the value x(i)t−τ+1.

– Put-and-reclassify: This is a proactive strategy that dif-
fers from the do-nothing approach in that the object xt−τ+1
is also reclassified, but this time using all attributes.

– Wait-and-classify: This is a reactive strategy where, un-
like the two previous strategies, the new object xt+1 is
not included in the reference set St until its missing at-
tribute is received after τ time steps. Only by then, the
complete object is classified and incorporated into the
reference set St+1+τ .

The different nature of these strategies will allow to gain
some insight into which may be the best way to proceed in
the context of on-line classification of streaming data with
missing (but delayed) attributes. This will also provide cues
on what further research avenues to follow. The assessment
of the different strategies proposed has been done on exten-
sive experimental work, which is subsequently presented.

3 Experiments and Results

The experiments here carried out are aimed at empirically
evaluating each strategy described in the previous section, in
order to determine which of them might be more suitable for
the classification of incomplete streaming data. The ultimate
purpose of this study is to investigate whether the use of
attribute values that arrive with a delay allows to improve the
system performance. Also, these experiments are intended
to explore the importance of using a classifier with some
confidence measurement in a scenario of early classification.

3.1 Experimental setup

Experiments were conducted as follows:

Data sets: Fifteen real data sets (a summary of which is given
in Table 1) were employed in the experimental work.
Most of these data sets have been commonly used in
previous research papers on data stream classification.
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Table 1 Characteristics of the real data sets used in the experiments

Data Number of Number of Number of Size of initial Database
set objects features classes reference set source
iris 150 4 3 12 UCI1

crabs 200 6 2 12 Ripley2

sonar 208 60 2 120 UCI
laryngeal1 213 16 2 32 Library3

thyroid 125 5 3 15 UCI
intubation 302 17 2 34 Library
ecoli 336 7 8 56 UCI
liver 345 6 2 12 UCI
wbc 569 30 2 60 UCI
laryngeal2 692 16 2 32 Library
pima 768 8 2 16 UCI
vehicle 846 18 4 72 UCI
vowel 990 11 10 110 UCI
german 1000 24 2 48 UCI
image 2310 19 7 133 UCI

1UCI [3]
2Ripley [18]
3Library http://www.bangor.ac.uk/~mas00a/activities/real_data.htm

Data were normalized in the range [0,1] and all features
were numerical. In the table, the data sets are sorted by
increasing size.

Partitions: For each database, five runs were carried out.
A random stratified sample of d × c, with d being the
number of attributes and c the number of classes, was
taken as the initial labeled reference set S0. The remain-
ing part of each database was used as the incoming on-
line streaming data. Besides, since many data sets are
relatively small (only a few hundred of instances), new
objects were artificially generated with the aim of hav-
ing a large number N of instances in the streaming data
set (N = 3000 was used here) so that on-line learning
effects can be studied for a longer time. These new ob-
jects were created by introducing random noise in one
or more random attributes of the original objects which
were themselves randomly selected. The probability of
introducing noise to each attribute of each new object
was 0.1. The amount of noise added to each attribute
was randomly chosen uniformly in [0,0.5], taking into
account that data were already normalized and guaran-
teeing that the values were not out of the range [0,1]
to keep them normalized. Besides, to simulate indepen-
dent and identically-distributed sequences, the data were
shuffled before each of the five runs.

Incomplete objects: A new object with one missing attribute
from the on-line data was fed to the system at a time
step. Both the most and the least relevant attributes of
each data set were simulated to be missing. Attribute rel-
evance was estimated by means of the Jeffries-Matusita
distance [5].

Delay: The value of the missing attribute comes after τ = 5
time steps. When the delayed attribute arrives, the cor-
responding object is completed with the true attribute
value.

Classification: At each time step t, the respective strategy
to handle delayed attributes was applied. The accumu-
lated classification error (the total number of misclas-

sifications divided by the number of samples processed
up to t) was computed. In this way we created a learn-
ing curve (trend line), which is the classification error as
a function of the number of on-line objects seen by the
classifier. The results were averaged across the five runs
giving a single incremental learning curve for each data
set.

Classifiers: The plain 1-NN rule, the 5-NN classifier with
confidence values (see Section 2.1) and a SVM were em-
ployed in the experiments. For SVM classification, the
kernel was a radial basis function (RBF) whose param-
eters were optimized for each data set. The RBF kernel
was chosen because of its generality and reported good
results [11]. Parameter optimization was performed us-
ing the functionality and guidelines provided within the
LIBSVM library [6].

For each of the five runs of the experiment, all strategies
received the same partitions of the data into initial labeled
reference set and streaming data set. These on-line data were
presented to all methods in the same order so that perfor-
mance differences can not be attributable to different data
(order).

3.2 Results

Detailed results of the plain 1-NN classifier on three repre-
sentative data set are provided in Fig. 1, with the x and y
axes representing, respectively, the number of objects fed to
the system at each time step, and the accumulated classifica-
tion error averaged over the five runs for each strategy. For
visualization purposes, the learning curves were smoothed,
which affects mainly the curves at the first time steps, when
the classification error is still unstable. To evaluate whether
the performance improves at all with streaming data, we
have also included the error using only the initial reference
set S0. This strategy is simply referred to as “Reference Set”
in figures in this section. Some remarks can be done from
these plots:

– The accumulated classification error decreases over time,
which is a clear evidence of how the system is learning
from the incoming, incomplete, unlabeled samples.

– When the delayed attribute was the most relevant, the
strategies Put-and-reclassify and Wait-and-classify can
be seen to work better than Do-nothing. A likely expla-
nation for this behavior is that, since the attribute is im-
portant for the correct classification, it is worth waiting
for the delayed attribute to arrive either for reclassify-
ing the object (Put-and-reclassify), or for incorporating
the object into the reference set only once it is complete
(Wait-and-classify).

– Using only the initial reference set S0 seems to behave
slightly better than the strategies here proposed when the
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Fig. 1 Average error computed for five runs in three datasets (one per row) using the plain 1-NN classifier. The missing attribute was either the
least (left) or the most relevant (right)

delayed attribute was the least relevant. In this case, it
might happen that this attribute is hindering the classi-
fier rather than helping it. As a consequence, and in the
context of the 1-NN classifier, it turns out to be better to
passively ignore all the incoming objects than trying to
make the most of them.

– As a final comment for the 1-NN classifier, although dif-
ferences between the early classification techniques and
the baseline case (which uses only the full and labeled
instances in the initial reference set S0) do not appear to

be significant, it seems that the use of some active strat-
egy (examples of which are our Put-and-reclassify and
Wait-and-classify) allows to improve the classification
results of incomplete data streams.

Results obtained with the SVM on the same three data
sets are plotted in Fig. 2. In this case, although the accumu-
lated classification error also decreases over time, it is ap-
parent that the early classification strategies proposed in the
present paper cannot outperform the baseline approach, irre-
spectively of the relevance of the attribute that arrives with a
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Fig. 2 Average error computed for five runs in three datasets (one per row) using the SVM classifier. The missing attribute was either the least
(left) or the most relevant (right)

time delay. These results suggest that the proposed strategies
might be more suitable for instance-based classifiers, such
as the nearest neighbor, than for a SVM-based classifier.
While beyond the scope of this paper, it should be explored
whether other configurations of the SVM or more elaborate
strategies (or both) would be required for the challenging
scenario of early classification of incomplete streaming data.

Fig. 3 depicts the incremental learning curves when us-
ing the confidence-based 5-NN classifier. Apart from several
characteristics common to the results of the two classifiers

previously analyzed (i.e., the decrease in the accumulated
classification error), the curves corresponding to this new
classifier allow to add a couple of remarkable comments:

– In the case of a delay in the most relevant attribute, there
exist significant differences between the three early clas-
sification strategies and the baseline; these differences
are especially significant for the vowel data set, which
corresponds to a non-binary problem with 10 classes.
The active strategies Put-and-reclassify and Wait-and-
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Fig. 3 Average error computed for five runs in three datasets (one per row) using the confidence-based 5-NN classifier. The missing attribute was
either the least (left) or the most relevant (right)

classify perform better than Do-nothing, like in the case
of the 1-NN rule.

– When the delayed attribute was the least relevant, the
early classification techniques also outperform the base-
line case, but now there do not exist significant differ-
ences between the active strategies (Put-and-reclassify
and Wait-and-classify) and the passive one (Do-nothing).
In fact, for the crabs data set this passive strategy is even
better than the active ones.

The analysis of the results attained with the three clas-
sifiers here explored suggests that the use of a confidence-
based classifier provides some advantages over the conven-
tional algorithms when employed in a context of streaming
data with delayed attributes. Also, it seems that the Put-
and-reclassify and Wait-and-classify strategies work better
than Do-nothing, especially when the delayed attribute cor-
responds to the most relevant.

As a further confirmation of the findings using the incre-
mental learning curves, and to gain insight into the general
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Fig. 4 Histograms of the number of proposed strategies outperforming
(θe = 0) the baseline case, for the SVM (top), the plain 1-NN (middle)
and the confidence-based 5-NN (bottom) classifiers

performance of the proposed strategies and classifiers over
the data sets used, additional alternative representations of
the results are offered.

First, for each classifier, a histogram of how many times
the proposed strategies outperform the baseline case of just
using the initial reference set S0 across all data sets, was
computed. To peform this count, we considered the final
classification error (i.e. after the time step t = N, when all
streaming objects have already been seen). A strategy A with
final classification error eA is considered to outperform strat-
egy B with error eB if eB−eA

eB
×100 < θe for a given threshold

θe ≥ 0 on the relative error improvement.
Fig. 4 shows these histograms (for θe = 0) which further

supports the claim that the best option to classify streaming
data with delayed attributes corresponds to the combined use

of the proposed strategies with the confidence-based 5-NN
classifier. In fact, when using this classifier, the three strate-
gies outperform the baseline case in 11 out of the 15 data sets
(73%), both for the least and the most relevant attributes be-
ing delayed. The opposite case occurs with the SVM, where
the use of the initial reference set clearly appears as the best
alternative. The 1-NN classifier exhibits an intermediate be-
havior between the other two classifiers.

To get an idea of how much improvement is obtained
when the the three strategies outperform the baseline strat-
egy, Fig. 5 represents, for the confidence-based 5-NN clas-
sifier, the evolution of the number of data sets in which this
happens, by varying the threshold θe used to define when a
strategy beats another one. It can be noticed that, while the
performance decays with increasing θe, as it can naturally be
expected, the behavior is reasonably good even for signifi-
cant reductions in the final classification error. For instance,
in the case of the most relevant delayed attribute, for an error
improvement θe = 5% the strategies beat the baseline in as
many as 10 out of the 15 data sets considered (i.e. 67%), and
for θe = 10%, the improvement still occurs in nearly half the
number of data sets (7/15 or 47%).

A second view of the results is based on a method of
ranking [7]: the strategies were ranked for each data set and
each classifier, according to their final classification errors.
As there are four competing algorithms (the three proposed
strategies plus the baseline case), the possible ranks for each
data set and each classifier range from 1 (best) to 4 (worst).
Fig. 6 plots the averaged ranks versus the classifiers (the av-
erage was taken across the data sets). Unlike the histograms
above (Fig. 4, the averaged ranks allow to assess the be-
havior of each strategy with respect to each classifier. As it
can be observed in this figure, for the most relevant delayed
attribute, Put-and-reclassify and Wait-and-classify signifi-
cantly outperform the Do-nothing strategy, irrespectively of

 0

 2

 4

 6

 8

 10

 12

 14

 0  5  10  15  20
 0

 20

 40

 60

 80

 100

N
um

be
r 

of
 d

at
a 

se
ts

P
er

ce
nt

ag
e 

of
 d

at
a 

se
ts

Relative error improvement, θe (%)

Most Relevant
Least Relevant

Fig. 5 Evolution of the number of times the three proposed strategies
outperformed, for varying thresholds θe of the relative error improve-
ment, the baseline case for the confidence-based 5-NN classifier for the
delayed attribute being the least or the most relevant



9

 1

 1.5

 2

 2.5

 3

 3.5

 4

SVM 1−NN Conf. NN

ra
nk

s 
[m

ea
n 

an
d 

st
d.

 e
rr

or
]

Classifier

Do Nothing
Put & Reclassify

Wait & Classify
Reference Set

 1

 1.5

 2

 2.5

 3

 3.5

 4

SVM 1−NN Conf. NN

ra
nk

s 
[m

ea
n 

an
d 

st
d.

 e
rr

or
]

Classifier

Do Nothing
Put & Reclassify

Wait & Classify
Reference Set

Fig. 6 Averaged ranks of final classification errors when the delayed attribute is the least (left) or the most (right) relevant. A measure of the rank
variance, the standard error, is shown as an interval around each average rank

the classifier used. It is also interesting to note that there is
not a significant difference between the two active strategies.

4 Conclusions

We have presented a preliminary study for handling on-line
data where the complete attribute vector arrives with a con-
stant delay. More specifically, we have explored three strate-
gies for learning from streaming data with a single delayed
attribute. Besides, three classifiers have been tested and com-
bined with these strategies. Interestingly, in the proposed
approach, the strategies and the classifiers are kept highly
independent, which simplifies the design of the system. In
spite of their simplicity, the results of the three strategies
have shown some gains in performance when compared to
the use of the initial reference set, especially in the case of
incorporating some confidence measure into the classifier.
Although these benefits are still marginal in some data sets,
the most important finding is that it seems possible to design
some method to consistently handle the incomplete data in
on-line classification of data streams.

There are several very interesting open research ques-
tions to work on. For instance, while recent results [15] sug-
gest that different strategies may be differently sensitive to
different amounts of time delays, a more thorough and ex-
tensive analysis on this influence deserves further future con-
sideration. Other issues include the design of smarter strate-
gies which can better cope with missing/delayed attributes,
and consider a time-varying environment (concept change
or concept drift).
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Castelló – Bancaixa under grant P1–1B2009–04.

References

1. Agarwal C (2004) On-Demand Classification of Data Streams. In:
Proc. ACM International Conference on Knowledge Discovery and
Data Mining, pp. 503–508 (2004).

2. Agarwal C (2007) Data Streams: Models and Algorithms. Springer,
New York.

3. Asuncion A, Newman DJ (2007) UCI Machine Learning Repos-
itory. School of Information and Computer Science, University of
California, Irvine, CA. http://archive.ics.uci.edu/ml/.

4. Babcock B, Babu S, Datar M, Motwani R, Widom J (2002) Models
and Issues in Data Stream Systems. In: Proc. 21st ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems,
pp. 1–16.

5. Bruzzone L, Roli R, Serpico SB (1995) An Extension of the
Jeffreys–Matusita Distance to Multiclass Cases for Feature Selec-
tion. IEEE Trans. on Geoscience and Remote Sensing 33(6):1318–
1321.

6. Chang CC, Lin CJ (2001) LIBSVM: a library for support vector
machines. Software available at http://www.csie.ntu.edu.tw/

~cjlin/libsvm
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