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Abstract

The PDE under study here is a general fourth-order linear elliptic Partial Dif-

ferential Equation. Having prescribed the boundary control points, we provide

the explicit expression of the whole control net of the associated PDE Bézier

surface.

In other words, we obtain the explicit expressions of the interior control

points as linear combinations of free boundary control points. The set of scalar

coefficients of these combinations works like a mould for PDE surfaces. Thus,

once this mould has been computed for a given degree, real-time manipulation of

the resulting surfaces becomes possible by modifying the prescribed information.

Keywords: Partial Differential Equation, PDE surface, Surface Generation,

Tensor product Bézier surface, Biharmonic surface, Explicit solution.

1. Introduction

Techniques that allow interactive design are always welcome for computer-

aided design. Therefore, the purpose of this paper is to describe a method of

surface generation for PDE surfaces in the Bézier language of CAGD. A Bézier

surface is defined by

−→x (u, v) =

n∑
i,j=0

Bn
i (u)B

n
j (v)Pi,j
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where Bn
i (t) are the Bernstein basis polynomials Bn

i (t) =
(
n
i

)
ti(1 − t)n−i, and

Pi,j are the control points. Consequently, a Bézier surface is determined by a

net of control points. Our aim is therefore to offer the explicit expression of a

PDE Bézier surface control net.5

PDE surfaces are used in geometric modelling and computer graphics to

create smooth surfaces conforming to a given boundary configuration. Such

surfaces enable the designer to model complex shapes in an easy and predictable

fashion, without the need to enter the control points one by one, and to avoid

consequent irregularities in the resulting surface. Their areas of application10

include computer-aided design, interactive design, parametric design, computer

animation, computer-aided physical analysis and design optimization. Tools

that enable differential equations to be solved are also a valuable aid in both

the academic world and the engineering industry; in fact, there are companies

such as Explicit Solutions that specialize in providing researchers with explicit15

solutions to ordinary differential equations.

We have developed a wide programme of research about PDE surfaces from

the CAGD point of view. Our first steps were [12] and [13], where it was shown

that, surprisingly, a unique harmonic Bézier surface is determined by prescribing

only two boundary curves (not the four boundaries) of a tensor product Bézier20

surface. The second step was to extend this result to the biharmonic case ([14])

and to a class of more general 4-th order PDE ([15]). In these cases it was shown

that by prescribing the four boundaries a unique Bézier surface satisfying the

corresponding PDE was determined. Furthermore, the tetraharmonic case was

studied in [9], whereas the triangular cases were studied in [1], [2], [3], [4] and [5].25

Note that in [11] and [16] some of the formulas that appear in the cited papers

were cleaned of mistakes and typos and some of the results were extended.

In all these previous steps, the algorithms to compute the Bézier surface from

prescribed boundary control points were based on the recursive resolution of a

more or less complicated auxiliary system of linear equations whose unknowns30

were the coefficients of the polynomial surface in the power basis. A new step

was paper [7], where we were able to solve those auxiliary systems of linear
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equations explicitly. We obtained explicit polynomial PDE surfaces but again

in the power basis of polynomials. Therefore, translation from the power basis

to the Bernstein basis was still needed. This is the goal we achieve here. Up35

until now a change in the prescribed control points meant having to start the

computation of the PDE surface from the beginning.

The importance of our results in this work lies in the fact that control points

have geometric meaning, while the power basis coefficients do not. Now we ob-

tain the explicit expressions of the interior control points as linear combinations40

of prescribed points. Once the set of scalars of these linear combinations has

been computed, PDE surfaces can be generated easily. This is why we say these

scalars act like a pattern or a mould for PDE surfaces.

In our last work, [6], we introduced a new point of view and considered

harmonicity in a more theoretical way. Instead of working with a polynomial45

surface of a particular degree, we took the approach involving the use of gener-

ating functions. We constructed a set of harmonic generating functions whose

derivatives are the harmonic Bézier functions that have as their control points

the scalars on the linear combinations we are looking for.

Unfortunately, generating functions are not easily obtained, not even for50

the biharmonic case. Hence, here we obtain the explicit expressions of interior

control points of a quite general PDE surface in terms of boundary control

points, but the scalars of the linear combinations in these expressions are not

deduced from any generating function. Biharmonic surfaces are a particular

case of the PDE surfaces in our study.55

Now, for a given degree and only once, we compute the set of scalar co-

efficients, α, β, γ, δ, ξ, τ, η, σ, of the linear combination, which is a set for any

interior control point.

Pk,� =
n−1∑
w=1

αk,�,w P0,w +
n−1∑
w=1

βk,�,w Pn,w +
n−1∑
w=1

γk,�,w Pw,0 +
n−1∑
w=1

δk,�,w Pw,n

+ξk,� P0,0 + τk,� P0,n + ηk,� Pn,0 + σk,� Pn,n.

(1)

This set of scalars works like a pattern and allows real-time manipulation of
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the resulting surfaces. Thus, to compute the control point Pk,�, we only have

to multiply the matrix of scalar coefficients by the matrix of boundary control

points entry by entry.

ξk,� αk,�,1 · · · αk,�,n−1 τk,�

γk,�,1 δk,�,1

γk,�,2 δk,�,2
...

...

γk,�,n−2 δk,�,n−2

γk,�,n−1 δk,�,n−1

ηk,� βk,�,1 · · · βk,�,n−1 σk,�

P0,0 P0,1 · · · P0,n−1 P0,n

P1,0 P1,n

P2,0 P2,n

...
...

Pn−2,0 Pn−2,n

Pn−1,0 Pn−1,n

Pn,0 Pn,1 · · · Pn,n−1 Pn,n

The goal we achieve here is to work with the Bézier basis. We compute the

Bézier surface control points, which have geometric meaning, while the power

basis coefficients do not. In order to show how interactive design could be per-

Figure 1: Working with the Bézier control net allows direct control over the shape of the

surface, which is the advantage of the Bézier basis over the power basis of polynomials.

formed, we have implemented our method in Mathematica and it is available on-

line at Wolfram Demonstrations Project, http://demonstrations.wolfram.com.60

In the second section of this paper we will recall the fourth-order linear

elliptic Partial Differential Equation we introduced and studied in [7]. This

PDE is the Euler-Lagrange equation of a quadratic functional defined by a
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norm, and therefore we can state that, in addition, the PDE surface minimizes

the associated functional. In the third section we give the explicit control net65

formulas.

2. A Fourth-Order Linear Elliptic PDE

A tensor product Bézier surface can be written both in the power and the

Bernstein basis:

−→x (u, v) =

n∑
k,�=0

ak,�

k!
!
ukv� =

n∑
i,j=0

Bn
i (u)B

n
j (v)Pi,j

where Bn
i (t) =

(
n
i

)
ti (1− t)n−i are the Bernstein polynomials. As we have said

earlier, here our aim is to find the explicit control net Pi,j of the PDE surface

that satisfies the general equation

ρ2−→x uuuu + 2ρ cos t−→x uuuv + (1 + ρ2)−→x uuvv + 2ρ cos t−→x uvvv +
−→x vvvv = 0 (2)

for 0 ≤ t ≤ 2π.

We introduced this equation in [7]. It is the Euler-Lagrange equation of a

kind of quadratic functional defined by a norm, and so, in addition, we can state70

that the PDE surface minimizes the associated functional. Now we are looking

for the control net.

In the cited paper we gave the polynomial form of its explicit solution, that

is, the coefficients ak,� of the PDE surface in terms of the power basis of poly-

nomials. First, in Lemma 1 in [7], we gave the explicit solution after prescribing75

the boundary curve −→x (u, 0) and its first three transversal partial derivatives.

Lemma 1. (Lemma 1, [7]) The solution to the linear system,

0 = ρ2ak+4,� + 2ρ cos t ak+3,�+1 + (1 + ρ2)ak+2,�+2 + 2ρ cos t ak+1,�+3 + ak,�+4,

(3)

for all k, 
 ∈ N in terms of the first four columns of coefficients is given by,

ak,� = A� ak+�,0 +B� ak+�−1,1 + C� ak+�−2,2 +D� ak+�−3,3, 
 > 3, (4)
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where,

An = −ρ2Dn−1, Bn = sin
nπ

2
+Dn, Cn = − cos

nπ

2
− ρ2Dn−1,

Dn =
(ρ2 − 1) sin nπ

2 − 2ρ cos t cos nπ
2 + (−ρ)n−1 csc t (ρ2 sin(n− 2)t+ sinnt)

1 + ρ4 + 2ρ2 cos 2t
.

(5)

At this point, the procedure we adopted was to interchange the third and

fourth columns of coefficients ak,� with the first two rows, thus solving the linear

system,

a0,k+� = Ak+� ak+�,0 +Bk+� ak+�−1,1 + Ck+� ak+�−2,2 +Dk+� ak+�−3,3,

a1,k+�−1 = Ak+�−1 ak+�,0 +Bk+�−1 ak+�−1,1 + Ck+�−1 ak+�−2,2 +Dk+�−1 ak+�−3,3,

with ak+�−2,2, ak+�−3,3 as unknowns and then substituting the solution into

Eq.(4).

Proposition 2. (Proposition 1, [7]) The solution to the linear system in Eq.(3)

for all k, 
 ∈ N in terms of the first two rows and the first two columns of

coefficients is given by,

ak,� = Ak,� ak+�,0 +Bk,� ak+�−1,1 + Ck,� a1,k+�−1 +Dk,� a0,k+� (6)

for all k, 
 > 1, where,

Ak,� = 1
Mk+�(C,D) (A� Mk+�(C,D) − C� Mk+�(A,D) +D� Mk+�(A,C)),

Bk,� = 1
Mk+�(C,D) (B� Mk+�(C,D) − C� Mk+�(B,D) +D� Mk+�(B,C)),

Ck,� = 1
Mk+�(C,D) (−C� Dk+� +D� Ck+�),

Dk,� = 1
Mk+�(C,D) (C� Dk+�−1 −D� Ck+�−1),

where, A�, B�, C�, D� are defined in Eq.(5) and

Mn(X,Y ) = det

⎛
⎝ Xn Y n

Xn−1 Y n−1

⎞
⎠ .

6



3. Bézier Solutions to Fourth-Order Linear Elliptic PDEs

As we have already stated in the introduction, our aim is to work with80

the Bézier basis instead of with the power basis coefficients. PDE surfaces

are advantageous in CAGD, since they enable the designer to model smooth

surfaces conforming to a given boundary without the need to enter the whole

control net. Our purpose here is to obtain the PDE surface control net by

prescribing only the boundary control points. We want to know a set of scalar85

coefficients, α, β, γ, δ, ξ, τ, η, σ, for any control point; see Eq.(1.)

In the following subsection we can see that a PDE Bézier surface associated

to our PDE in Eq.(1) has some symmetries in the scalar coefficients, which in

general we have denoted with Greek letters. This will lead us later to a change

of notation.90

3.1. The control net symmetries

Suppose that Pk,� are the control points of a tensor product Bézier PDE

surface −→x (u, v) satisfying Eq.(1).

If we define Qk,� = Pn−k,n−�, we obtain the control net of the Bézier surface

−→y (u, v) = −→x (1 − u, 1 − v) that also fulfils the PDE. Therefore, if the control

net Qk,� satisfies Eq.(1), then we have that

Qk,� =
n−1∑
w=1

αk,�,w Q0,w +
n−1∑
w=1

βk,�,w Qn,w +
n−1∑
w=1

γk,�,w Qw,0 +
n−1∑
w=1

δk,�,w Qw,n

+ξk,� Q0,0 + τk,� Q0,n + ηk,� Qn,0 + σk,� Qn,n.

that is,

Pn−k,n−� =

n−1∑
w=1

αk,�,w Pn,n−w +

n−1∑
w=1

βk,�,w P0,n−w

+

n−1∑
w=1

γk,�,w Pn−w,n +

n−1∑
w=1

δk,�,w Pn−w,0

+ξk,� Pn,n + τk,� Pn,0 + ηk,� P0,n + σk,� P0,0.

(7)
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But according to Eq.(1), we have that

Pn−k,n−� =

n−1∑
w=1

αn−k,n−�,w P0,w +

n−1∑
w=1

βn−k,n−�,w Pn,w

+

n−1∑
w=1

γn−k,n−�,w Pw,0 +

n−1∑
w=1

δn−k,n−�,w Pw,n

+ξn−k,n−� P0,0 + τn−k,n−� P0,n

+ηn−k,n−� Pn,0 + σn−k,n−� Pn,n.

(8)

Therefore by comparing Eqs. (8) and (7) we obtain

αk,�,w = βn−k,n−�,n−w γk,�,w = δn−k,n−�,n−w

ξk,� = σn−k,n−� τk,� = ηn−k,n−�

(9)

In the following subsection we will state a proposition in which we will denote

the remaining four different coefficients, βk,�,w and δk,�,w, by {z
i
k,�,w}

2
i=1 and

ηk,�, σk,� by {zik,�}
4
i=3, respectively. Let us remark that the coefficients that

appear with corner control points in Eq.(1) do not depend on w, and we added

this variable in order to give a unique definition of zik,�,w. Therefore, we should

have in mind that

zik,� = zik,�,w when i = 3, 4 ∀w,

whereas zik,�,w for i = 1, 2 of course do depend on w.

A control point will be defined from now on as follows,

Pk,� =

n−1∑
w=1

z1n−k,n−�,n−w P0,w +

n−1∑
w=1

z1k,�,w Pn,w

+

n−1∑
w=1

z2n−k,n−�,n−w Pw,0 +

n−1∑
w=1

z2k,�,w Pw,n

+z3n−k,n−� P0,0 + z4n−k,n−� P0,n + z4k,� Pn,0 + z3k,� Pn,n.

3.2. The control net95

Before presenting the control net result we must outline several lemmas.

First, we recall the basis conversion in the following Lemma.
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Lemma 3. Let us consider a polynomial surface, −→x (u, v), in terms of the power

basis of polynomials and in its Bézier form,

−→x (u, v) =

n∑
k,�=0

ai,j

i!j!
uivj =

n∑
k,�=0

Bn
k (u)B

n
� (v)Pk,�.

The coefficients ai,j are related with the control points Pk,� through the following

equations,

ai,j = i!j!

(
n

i

)(
n

j

)
ΔiP0,0, with Δi,jP0,0 =

i,j∑
s,t=0

(
i

s

)(
j

t

)
(−1)i+j−s−tPs,t

and conversely

Pk,� =

k∑
s=0

�∑
t=0

(
k
s

)(
�
t

)(
n
s

)(
n
t

) as,t
s!t!

.

In the following lemma we give the explicit solution to a quite general matrix

system, whose coefficient matrices depend on Bk,�, Ck,�, which we defined in

Proposition 2. This result will be needed to prove our next Proposition.100

Lemma 4. The matrix system

p = M̃x+ Ñy

q = Mx+Ny

⎫⎬
⎭

where M = (b�,m), N = (c�,m), and M̃ = (̃b�,m) = (bm−�+1,m), Ñ = (c̃�,m) =

(cm−�+1,m) are (n− 1)× (n− 1) matrices with

b�,m =
Bm−�+1,�

(m− 
+ 1)!
!
, c�,m =

Cm−�+1,�

(m− 
+ 1)!
!

,m = 2, ..., n,

has a unique solution.

Proof. First of all, note that M̃ is a regular matrix. Since it is an upper

triangular matrix whose diagonal elements are 1
j! for j = 2, ..., n, we have |M̃ | =∏n

j=2
1
j! , and so we can compute x in the first equation,

x = M̃−1(p− Ñy).

Now if we substitute x in the second equation, we obtain

y = A−1(q−MM̃−1p).
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This can always be done, since A = N−MM̃−1Ñ is an upper triangular matrix

too, with the same diagonal as M̃ and is therefore regular.

�

We can now give the explicit formula of each interior control point of a PDE105

Bézier surface satisfying Eq.(1).

Proposition 5. The control net of a Bézier PDE surface that satisfies

ρ2−→x uuuu + 2ρ cos t−→x uuuv + (1 + ρ2)−→x uuvv + 2ρ cos t−→x uvvv +
−→x vvvv = 0

can be determined in terms of its boundary control points,

Pk,� =

n−1∑
w=1

z1n−k,n−�,n−w P0,w +

n−1∑
w=1

z1k,�,w Pn,w

+

n−1∑
w=1

z2n−k,n−�,n−w Pw,0 +

n−1∑
w=1

z2k,�,w Pw,n

+z3n−k,n−� P0,0 + z4n−k,n−� P0,n + z4k,� Pn,0 + z3k,� Pn,n,

(10)

where

zik,�,w = δ4i

k∑
s=0

(
k
s

)(
�

n−s

)
(

n
n−s

) As,n−s +

k,�∑
s,t=1

(
k
s

)(
�
t

)
s! t!

(
n
s

)(
n
t

) (
Bs,t x

4,w
s+t−1 + Cs,t y

4,w
s+t−1

)
(11)

where δji is the Kronecker delta, and {xi,w
m , yi,wm }4i=1 are the derivatives of {am,1, a1,m}

with respect to Pn,w, Pw,n, Pn,n, Pn,0 respectively.

The value of xi,w
1 = y

i,w
1 is given by

x
i,w
1 = y

i,w
1 = −

n∑
k=2

x
i,w
k

k!

except for i = 1, w = 1 and for the case i = 3, ∀w, which is given by

x
1,1
1 = y

1,1
1 = −

n∑
�=2

y
1,1
�


!
x
3,w
1 = y

3,w
1 = −

n∑
�=2

y
3,w
�


!
.

The value of {xi,w
m , yi,wm }4i=1 for m = 2, ..., n is given by Lemma 4 with the

constant terms,110
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i = 1 p = 0 q = qw

i = 2 p = qw q = 0

i = 3 p = Q1 q = q0 + q2

i = 4 p = qn q = qn

where qw = {qn,w� }n�=2, with q
n,w
� =

(
n
�

)(
�
w

)
(−1)�−w and Q1 = {−

(
n
�

)
A�,n−�}

n
�=2,

Q2 = {−
(
n
�

)
An−�,�}

n
�=2. Ak,�, Bk,�, Ck,� are defined in Proposition 2.

Proof. Having in mind Lemma 3 and Proposition 2, we have that a con-

trol point can be written in terms of coefficients as,t at the first two rows and

columns,

Pk,� =

k∑
s=0

�∑
t=0

(
k
s

)(
�
t

)(
n
s

)(
n
t

) as,t
s!t!

=

�,k∑
t,s=0

(
k
s

)(
�
t

)(
n
s

)(
n
t

) As,t ∂as+t,0 +Bs,t ∂as+t−1,1 + Cs,t ∂a1,s+t−1 +Ds,t ∂a0,s+t

s!t!
.

Moreover, since coefficients as,t depend on the control points too, Lemma 3,

we can compute {zik,�,w}
4
i=1 by taking derivatives of Eq.(10). For example,

z1k,�,w =
∂Pk,�

∂Pn,w

=
∂

∂Pn,w

�∑
t=0

k∑
s=0

(
k
s

)(
�
t

)(
n
s

)(
n
t

) as,t
s!t!

=

�,k∑
t,s=1

(
k
s

)(
�
t

)(
n
s

)(
n
t

) 1

s!t!

(
Bs,t

∂as+t−1,1

∂Pn,w

+ Cs,t

∂a1,s+t−1

∂Pn,w

)

=

�,k∑
t,s=1

(
k
s

)(
�
t

)(
n
s

)(
n
t

) 1

s!t!

(
Bs,t x

1,w
s+t−1 + Cs,t y

1,w
s+t−1

)
.

And the same would be done for {zik,�,w}
4
i=2.

Now we must compute the derivatives of am,1 and a1,m. We introduce the115

notation {xi,w
m , yi,wm }4i=1 for the derivatives of {am,1, a1,m} with respect to Pn,w,

Pw,n, Pn,n and Pn,0 respectively. Nevertheless, let us remark that for i = 3, 4

we have no dependence on w, for example, x3,w
m =

∂am,1

∂Pn,n
and y3,wm =

∂a1,m

∂Pn,n
for

all w.

In order to determine these derivatives, {xi,w
m , yi,wm }4i=1, let us start with

{x1,w
m , y1,wm }. We study the boundary curves, which are given data. The bound-

11



ary curves −→x (0, v) and −→x (u, 0) only depend on control points in the first row

and column, and from Lemma 3, we have

a0,j = j!

(
n

j

)
Δ0jP0,0, ai,0 = i!

(
n

i

)
Δi0P0,0. (12)

On the other hand, we have the boundary curves

−→x (u, 1) =

n∑
k=0

(
n

k

)
Δk0P0,n u

k =

n∑
�=0

a0,�


!
+

n∑
�=0

a1,�


!
u+

n∑
k=2,�=0

ak,�

k!
!
uk

−→x (1, v) =

n∑
�=0

(
n




)
Δ0�Pn,0 v

� =

n∑
k=0

ak,0

k!
+

n∑
k=0

ak,1

k!
v +

n∑
k=0,�=2

ak,�

k!
!
v�.

(13)

If we consider Eq.(13) for k, 
 = 2, ..., n(
n
k

)
Δk0P0,n =

∑n
�=0

ak,�

k!�!

(
n
�

)
Δ0�Pn,0 =

∑n
k=0

ak,�

k!�!

⎫⎪⎪⎬
⎪⎪⎭ (14)

and take derivatives with respect to Pn,w,Pw,n,Pn,n and Pn,0, we obtain ma-120

trix systems involving xi,w = {xi,w
m }nm=2, y

i,w = {yi,wm }nm=2 for i = 1, 2, 3, 4,

respectively, as we will see.

To illustrate this, let us take derivatives, for example, with respect to Pn,w

in some detail. Thus, we take derivatives in Eq.(14) having in mind again Eq.(6)

in Proposition 2, then

0 =
∑n

�=0
1

k!�!

(
Bk,�

∂ak+�−1,1

∂Pn,w
+ Ck,�

∂a1,k+�−1

∂Pn,w

)
(
n
�

)(
�
w

)
(−1)�−w =

∑n

k=0
1

k!�!

(
Bk,�

∂ak+�−1,1

∂Pn,w
+ Ck,�

∂a1,k+�−1

∂Pn,w

)
⎫⎪⎪⎬
⎪⎪⎭

that is,

0 =
∑n

m=2

(
bm−k+1,m x1,w

m + cm−k+1,m y1,wm

)
(
n
�

)(
�
w

)
(−1)�−w =

∑n
m=2

(
b�,m x1,w

m + c�,m y1,wm

)
⎫⎪⎪⎬
⎪⎪⎭

where,

b�,m =
Bm−�+1,�

(m− 
+ 1)!
!
, c�,m =

Cm−�+1,�

(m− 
+ 1)!
!
.

As we have said, it is a matrix system like the one we solved in Lemma 4, with

the unknowns x1,w = {x1,w
m }nm=2 and y1,w = {y1,wm }nm=2 and with the constant

terms p = 0, q = qw = {qn,w� }n�=2, with q
n,w
� =

(
n
�

)(
�
w

)
(−1)

�−w
.125

12



Analogously, we would take the derivatives in Eq.(14) with respect to Pw,n,

Pn,n and Pn,0 to obtain matrix systems as defined in Lemma 4 with constant

terms,

p = qw q = 0

p = qn q = qn

p = Q1 q = q0 +Q2

respectively, being Q1 = {Qn
� }

n
�=2, Q

2 = {Qn
n−�}

n
�=2 with Qn

� = −
(
n
�

)
A�,n−�.130

At this point we have just computed {xi,w
m , yi,wm }nm=2. We will now compute

x
i,w
1 = y

i,w
1 , which is the derivative of a1,1 with respect to Pn,w,Pw,n,Pn,n and

Pn,0. We consider the system in Eq.(13) with k = 1, 
 = 1, respectively,

n (P1,n −P0,n) =
∑n

�=0
a1,�

�!

n (Pn,1 −Pn,0) =
∑n

k=0
ak,1

k!

⎫⎪⎪⎬
⎪⎪⎭ .

If we take the derivatives above, we get a pair of formulas with which to obtain

any element in {
∂a1,1

∂Pn,w
,

∂a1,1

∂Pw,n
,

∂a1,1

∂Pn,n
,
∂a1,1

∂Pn,0
}. For example, if we take derivatives

with respect to Pn,n, we find that,

∂a1,1

∂Pn,n
= −

∑n

�=2
y
4,w

�

�!

∂a1,1

∂Pn,n
= −

∑n

k=2
x
4,w

k

k!

⎫⎪⎪⎬
⎪⎪⎭ .

In sum

x
i,w
1 = y

i,w
1 = −

n∑
k=2

x
i,w
k

k!

except for i = 1, w = 1 and for the case i = 3, ∀w. These derivatives are given

by

x
1,1
1 = y

1,1
1 =

∂a1,1

∂Pn,1
= −

n∑
�=2

y
1,1
�


!
x
3,w
1 = y

3,w
1 =

∂a1,1

∂Pn,0
= −

n∑
�=2

y
3,w
�


!
.

�

From all the previous discussion, the algorithm for generating a PDE surface

Bézier control net explicitly can be formulated as follows.
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Define An, Bn, Cn, and Dn by Eq. (5).

Define Ak,�, Bk,� and Ck,� by Proposition 2.135

Define the matrices M , N , Ñ , Ñ , A and the vectors x and y by

Lemma 5.

Define the constant terms p and q by Proposition 6.

Define xi,w
m and yi,wm by Proposition 6.

Define zik,�,w by Eq. (11).140

Compute the control points Pk,� by Eq. (10).

We have finally achieved our purpose: We now have the explicit expression

of any interior control point as a linear combination of boundary control points.

Nevertheless, it would be desirable to obtain a generating function, as we did145

in [6] for the harmonic case. If a generating function is known, the linear

combinations of boundary control points that describe the whole control net

are obtained more easily from this function. Unfortunately, for the time being

we are unable to do that, not even for the biharmonic case.

Therefore, as could be expected, the linear combinations of boundary control150

points that describe a harmonic control net imply a lower computational cost

in comparison to the PDE surfaces satisfying the general fourth-order PDE we

compute here. In any case, as we have said before, given the degree of the Bézier

surface the set of scalar factors in the linear combinations that describe interior

control points only needs to be calculated once: one pattern for any given155

degree. Once we have this pattern associated to the given degree, a change in

the boundary control points can be made freely without significantly increasing

our computational cost.

In the following subsections we will consider the modified biharmonic and

the biharmonic equation, which are particular cases of our general fourth-order160

PDE.
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3.3. The modified biharmonic case.

In [7] we can find the polynomial form of the explicit solution to the modified

biharmonic equation,

−→x uuuu + 2α2−→x uuvv + α4−→x vvvv = 0, (15)

where α ∈ R. For k, 
 > 1,

ak,� =
1[

k
2

]
+

[
�
2

] (
(−

1

α2
)[

�
2 ]

[
k

2

]
a
k+2[ �2 ],� mod 2 + (−α2)[

k
2 ]

[



2

]
a
k mod 2,2[ k2 ]+�

)
.

(16)

This expression of the power basis coefficients of the PDE surface, ak,�,

simplifies our work to find the Bézier solution of the modified biharmonic case.

Moreover, in this special case we find some more symmetry relations. As before,

we have that

αk,�,w = z1n−k,n−�,n−w γk,�,w = z2n−k,n−�,n−w

ξnk,� = z4n−k,n−� τnk,� = z3n−k,n−�

But, in addition, if we suppose that Pk,� are the control points of a Bézier

PDE surface, −→x (u, v), satisfying Eq.(15) and we define Qk,� = Pn−k,�, we get

the control net of the surface −→y (u, v) = −→x (1−u, v) that also fulfils the modified

biharmonic equation. Thus, following the same reasoning as before, we obtain

some more symmetrical coefficients,

z3k,� = z4k,n−�.

Therefore, in sum, we would only have to compute three different coefficients,

Pk,� =

n−1∑
w=1

z1n−k,n−�,n−w P0,w +

n−1∑
w=1

z1k,�,w Pn,w

+
n−1∑
w=1

z2n−k,n−�,n−w Pw,0 +
n−1∑
w=1

z2k,�,w Pw,n

+z4n−k,n−� P0,0 + z4n−k,� P0,n + z4k,n−� Pn,0 + z4k,� Pn,n.

In order to compute zik,�,w by means of Eq.(11), we find the matrix system

we solved in Lemma 4 again, but now we can give an easier formula of the
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matrices involved since

Bs,t =
(− 1

α2 )[
t
2 ]

[
s
2

]
tmod 2[

s
2

]
+

[
t
2

] Cs,t =
(−α2)[

s
2 ]

[
t
2

]
smod 2[

s
2

]
+

[
t
2

]
for s, t = 2, ..., n and with B1,1 = 0 and C1,1 = 1.

At http://demonstrations.wolfram.com/AlphaBiharmonicBezierSurfaces

we have implemented a Bézier α−biharmonic surfaces generator (see Figure 2).165

There, the reader can compute his or her own examples. Some resulting bihar-

monic surfaces are shown in Figure 3.

Figure 2: A Bézier surface generator for the modified biharmonic case can be found at

http://demonstrations.wolfram.com/AlphaBiharmonicBezierSurfaces/.

3.3.1. The Biharmonic case.

This case is a particular case of the previous one with α = 1. In [14] the

existence of the solution was proved and in [7] we gave it explicitly in terms of

the power basis. For k, 
 > 1,

ak,� =
1[

k
2

]
+

[
�
2

] (
(−1)[

�
2 ]

[
k

2

]
a
k+2[ �2 ],� mod 2 + (−1)[

k
2 ]

[



2

]
a
k mod 2,2[ k2 ]+�

)
.
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Figure 3: These are some biharmonic examples obtained thanks to the surface generator

mentioned above. Once the initialization has been evaluated for a given degree, although the

general biharmonic case takes a longer time than the harmonic, interactive design is possible.

As in the modified biharmonic case, we can add some symmetry properties.

In fact it will be enough to compute two coefficients,

Pk,� =

n−1∑
w=1

z1n−k,n−�,n−w P0,w +

n−1∑
w=1

z1k,�,w Pn,w

+

n−1∑
w=1

z1n−�,n−k,n−w Pw,0 +

n−1∑
w=1

z1�,k,w Pw,n

+z4n−k,n−� P0,0 + z4n−k,� P0,n + z4k,n−� Pn,0 + z4k,� Pn,n.

4. Conclusion

In this paper we show how elliptic PDEs can be used as an intuitive surface170

generation and manipulation tool.

Our previous work in this field consists in, first, finding out how many control

points are free for prescription in order to determine a PDE surface and, second,

obtaining explicit PDE surfaces in the power basis of polynomials. Now, our

third step is to provide explicit PDE surfaces in Bézier formulation.175

We have compared computational times in order to show the advantages

of obtaining an explicit PDE surface in its Bézier form, although improving

computational cost was not our main reason for solving this problem. In essence

our motivation comes from a theoretical point of view: explicit formulas are
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wanted as a Bézier characterization of PDE surfaces and as a direct method to180

avoid the three-step algorithm involving the standard basis of polynomials:

1. Compute the standard basis coefficients, ak,�, prescribed by the given

boundary control points.

2. Determine those ak,� still unknown with the explicit solution in the power

basis of polynomials we gave in [7] and which we recalled in Proposition 2185

(Explicit Power Basis Formulas) or by directly solving the linear system

associated to the PDE (No explicit solution).

3. Come back to the Bézier basis.

Our goal here was to gain explicit knowledge of the scalars that characterize

a PDE surface control net, and then avoid the change of basis.190

Obviously, since we are solving general fourth-order PDEs, the expressions

we obtain are not easy to read. Nevertheless, we hope they could help to solve

other problems, such us finding a generating function at least for the easier case

of biharmonic surfaces, as we did in [6] for harmonic surfaces.

Reduction of computational cost is an additional advantage. The following195

table shows a comparison between methods for computing our PDE surfaces.

We have compared execution times, on a personal computer, of our Mathematica

8.0 programs for computing a PDE surface, corresponding to three equivalent

methods. In the first column of the following table we show the computational

time with our method described in this paper, Explicit PDE Bézier surfaces.200

Furthermore, there are two methods following the three-step algorithm involving

the standard basis of polynomials: first with the use of the explicit solution in

Proposition 2 (Explicit Power Basis Formulas) and the second one substituting

this step by directly solving the linear system associated to the PDE (No explicit

solution). Let us remark that we did not consider solving the linear system205

associated to the PDE in Bézier basis directly because the times required are

extremely long.
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n Explicit PDE Explicit Power No explicit

Bézier surface Basis Formulas solution

4 1.079 4.578 0.328

5 1.656 7.281 2.172

6 3.672 15. 13.344

7 10.5 28.625 20.609

8 36.422 53.812 61.719

9 120.75 109.891 1881.13

10 404.234 270.844 14737.8

We can see that our new method improves computation times for degrees smaller

than 9, which is good since Bézier surfaces of small degrees are the most com-

monly used in CAGD. When more complex surfaces are required, B-Spline sur-210

faces are generally used instead of increasing the degree of a Bézier surface.

In any case, all of these methods allow interactive design equivalently since,

for a given degree, all of them lead us to the expression of inner control points as

a linear combination of boundary control points. Once these expressions have

been computed for a given degree, with the corresponding speed afforded by the215

method, the PDE surface can be obtained in real time and freely changing the

boundary.

Smooth surfaces conforming to a given boundary can be modelled taking

advantage of working with PDE surfaces, without the need to enter the whole

control net, but only the boundary control points.220
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