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Abstract

An approach that uses the scene information acquired by means of
a 3D Synthetic Aperture Integral Imaging system is presented. This
method generates a depth map of the scene through a voting strategy.
In particular, we consider the information given by each camera of the
array for each pixel, and also the local information in a neighbourhood
of that pixel. The proposed method obtains consistent results for any
type of object surfaces as well as very sharp boundaries.

In addition, we also contribute in this paper with a repository of
a set of synthetic integral images generated by 3DS Max where the so
called ground truth (real-true depth map) is available. This resource
can be used as a benchmark to test any Integral Imaging based range
estimation method.

1 Introduction

Three-dimensional (3D) optical image sensing and visualization technologies
are currently applied in areas like TV broadcasting, 3D displays, entertain-
ment, medical sciences and robotics [3,31,38]. An advantage of 3D in relation
to traditional 2D imaging techniques is their capability to capture the spatial
(structural) information of different objects that are in a scene. One promis-
ing 3D approach is based on Integral Imaging or Integral Photography, which
is an autostereoscopic imaging method used to capture 3D information and to
visualize it in 3D space, either optically or computationally [2,5,20,28,32,48].

Integral Imaging operates under incoherent or ambient light. This is an
advantage as compared to other sensing techniques like holography or Ladar,

1



which require an active illumination system [6,16]. Integral Imaging can also
provide the 3D profile and range of the objects in the scene, being therefore
attractive for 3D object recognition [26,36]. Three-dimensional sensing with
an Integral Imaging architecture has specific benefits over conventional 2D
imaging as well as stereo imaging. The number of cameras, the total num-
ber of pixels and the sensing parallax which are optimum for image pick
up depend on a number of parameters, including object size, distance, and
depth. However, and considering these common restrictions, the use of In-
tegral Imaging proves advantageous and may outperform 2D imaging and
stereo imaging for specific applications such as segmentation of objects from
heavy background, and imaging through obscuration and scattering medium
(see e.g. [10–12,18,37] for details).

Authors in [14] propose a methodology to estimate the depth of objects
in a scene using a minimum variance principle approach (hereafter Min-Var
method). This is a well-known approach in Integral Imaging (II) literature.
Spectral Radiation Pattern (SRP) in object space can be used to establish
the relationship to different perspective images and thus infer depth of Lam-
bertian surfaces. In this work, the statistical variance of a SRP function
is defined on each voxel1 from each camera. On the basis that the higher
the correlation among pixels of different cameras, the most likely that in-
formation comes from an object surface point, the approach selects those z
values from a range, z ∈ [Zmin . . . Zmax], where the variance among these
voxels is minimum. The main drawbacks of this methodology is that i) the
accuracy of depth estimation is sensitive to the types of object surfaces (no
Lambertian surfaces), presenting artifacts on shiny objects or light reflexes.
Moreover, ii) this methodology is especially noisy at the boundaries of the
objects [45].

In this paper, we present an approach that uses the scene information
acquired by means of a 3D Integral Imaging system and generates a depth
map of the scene through a voting strategy. This voting strategy is performed
on the basis of the local information for each pixel, obtaining thus consistent
results for any type of object surfaces and showing very sharp boundaries.
In addition, we also contribute in this paper with a repository of a set of
synthetic integral images generated by the 3DS Max2 where the ground
truth of the depth on each pixel is available. This resource can be used for
performing Integral Imaging and Range Estimation.

The rest of this paper is organised as follows. Section 2 provides an
overview of 3D Integral Imaging. Section 3 explains the new methodology
proposed in this paper to do robust depth estimation. Section 4 shows the
results applied on a series of real and synthetic integral imaging scenes.
Section 5 discusses the results obtained and conclusions are given in Section

1Besides the x, y coordinates of the pixel, depth is used as the third coordinate.
2Autodesk 3DS Max 2015
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Figure 1: Principle of Integral Imaging capture and display. The object
depth information is encoded into lateral relative shift between different
views of the scene known as elemental images.

6.

2 Overview of 3D Integral Imaging

The historical origins of integral photography may be linked to Sir Wheat-
stone invention of stereoscopic viewing device which uses the principle of
disparity for 3D visualization [44]. With some exceptions [8, 21, 22, 34, 39],
there was no substantial activity in integral photography for most of the
twentieth century due to the lack of technologies that may be able to make
this acquisition and visualization strategy, a reality. With the important
advances in optical detectors such as CCD and CMOS technologies, display
devices such as Liquid Crystal Devices (LCDs), consumer electronics, and
computer hardware, II has been significantly boosted. II has been applied
to a wide variety of fields [4, 19, 24, 25, 29, 30, 33, 40, 41], and it is considered
as a promising technology for 3D acquisition and visualisation [1, 46].

2.1 Capture and display stages of Integral Imaging

Acquisition and visualization of 3D objects using II can be divided into two
different stages, called pickup and reconstruction. Figure 1 illustrates the
principle of II for both acquisition and display purposes. In the pickup
stage, multiple 2D images (referred to as elemental images) are captured
through an array of small lenses (lenslet array) or an array of cameras. Each
lenslet contains a unique projective transformation that maps the 3D object
space onto 2D elemental images. As a result, an array of inverted real im-
ages is formed on the image sensor. In the reconstruction stage, 3D scene
reconstruction can be made optically or computationally. Computational
reconstruction of the 3D image can be achieved by simulating the optical
back-projection of elemental images in the computer. This reconstruction
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Figure 2: Synthetic aperture Integral Imaging principle. Left part of the fig-
ure shows the acquisition strategy using a camera array (or a camera moving
on a grid). Right part of the figure shows 3D scene reconstruction by back
projecting the elemental images through virtual pinholes. Each elemental
image is back-projected through its own viewpoint and the superposition of
the ray cones projected from the elemental images reconstructs the 3D scene.

method uses a computer synthesized virtual pinhole array for inverse map-
ping of each elemental image into the object space. All elemental images
are computationally overlapped afterwards. With this process, the intensity
distribution can be reconstructed at arbitrary planes inside the 3D object
volume.

There are alternative ways to capture 3D information to the lenslet-based
approach. For instance, an array of image sensors distributed in an homo-
geneous or (alternatively) random grid such as Synthetic Aperture Integral
Imaging (SAII) [23]. The acquisition strategy used in this work (Figure
2(left)) is SAII in a homogeneous distributed case. The superposition of
properly shifted elemental images provides the 3D reconstructed images as
follows [17] (Figure 2(right)):

I(x, y, z) =
1

O(x, y)

K−1∑
i=0

L−1∑
j=0

Eij

[
x′, y′

]
, (1)

with
x′ = x− k Nx · p

cx ·M
,

y′ = y − l Ny · p
cy ·M

,

where I(x, y, z) represents the intensity of the reconstructed 3D image at
depth z, x and y are the indexes of the pixel, Eij represents the intensity
of the ith row (0 ≤ i < K) and jth column (0 ≤ j < L) elemental image,
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Nx×Ny is the total number of pixels for each elemental image,M is the mag-
nification factor

(
M = z

f

)
, cx × cy is the physical size of the camera sensor,

O(x, y) is the overlapping number matrix, p is the pitch of the cameras.
The proposed II approach is also intrinsically different from stereo vision

approaches in the sense that a higher number of cameras are used, and
they are usually located in a rectangular or square grid, providing also some
straightforward properties for the visualisation of 3D scenes with full parallax
and the capability to deal with occlusions [46]. In II the photo-consistency
assumption can be better exploited due to the rather large number of views
and the geometrical setup, which allow to deal with the depth discontinuities
and partial occlusions.

2.2 Depth estimation using variance minimisation

A methodology to estimate the depth objects in a scene using a minimum
variance criterion is proposed in [14]. Firstly, by utilizing all the elemental
images and back-projection technique, 3D objects are volumetrically recon-
structed by means of a stack of 3D planes with the weighted average of all
the overlapped and shifted elemental images.

Let us suppose a Spectral Radiation Pattern (SRP) function described
as L(θ, φ, λ), that is the radiation intensity for a certain point in a 3D space
(x, y, z), where (θ, φ) determine the radiation intensity direction and λ is the
wavelength. The statistical variance of this function L for a voxel (x, y, z) is
defined as

V (x, y, z) =

3∑
c=1

K−1∑
k=0

L−1∑
l=0

[
L(θkl, φkl, λc)− L̄(θ, φ, λc)

]2
(x,y,z)

3

for certain image sensors located in a K × L plane. L̄ denotes the mean of
the SRP functions over all the image sensors and the variance is the average
over the three colour channels (c). If a 3D point belongs to an object surface,
then the SRP samples are expected to be correlated with each other and the
variance V should reach a minimum along all the possible depth levels (Z).
Formally,

ẑ(x, y) = argmin
z∈Z

V (x, y, z)

However, depth estimation accuracy will degrade when object surfaces
do not satisfy the Lambertian assumption or when concave surfaces exist.
In addition, sensor position uncertainties may also contribute to the increase
in the depth estimation error [45].
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3 Photoconsistency-based maximum voting approach

In this section, a voting process to estimate depth information in 3D II is
described. Despite state-of-the-art approaches that base this estimation on
minimising the variance for each pixel at each depth level [14,45], in this ap-
proach a soft-voting procedure that takes into account the level of agreement
(similarity) among the different camera views is proposed (hereafter Max-
Voting method), more in the line of the approaches presented in [15,43]. The
rationale behind this voting process is the fact that, when an object is in
focus at a certain depth level z, the pixels that form part of the object also
appear sharper or clearer. This means that the cameras agree on focusing
that object or, in other words, the pixel intensity values from each camera
view are very similar, that is, they are photoconsistent. On the contrary,
when an object is not in focus, its pixels are blurred in the II reconstruction,
which means that each camera is focusing on a different depth, being the
pixel intensity values from each camera view very different.

Let us consider an II reconstruction process where, at a certain depth
level z ∈ Z (being Z all the possible depth levels for each pixel of the scene),
the pixel at the position (i, j) of the image I and its square surrounding
window W are defined as follows:

Wij = { I(i+ x, j + y) : − τ ≤ x, y ≤ τ }

where τ directly relates to the size of the window W .
Let us suppose an odd and squared rack of cameras C, being ‖C‖ the

number of cameras whose central camera is R ∈ C. Let us also suppose I
as the reconstructed image at the depth level z. For each pixel (i, j) and
its neighbouring pixels (x, y) within the window Wij (i.e. ∀(x, y) ∈ Wij),
we propose a photoconsistency criterion based on a voting procedure where
each camera votes in favour of the pixel (i, j) at depth level z depending
on how similar the intensities of the pixels of each camera Ck ∈ C and the
reference camera R pixel intensities are. Note that we suppose an odd and
squared rack of cameras in order to assume the central camera as an obvious
reference, however, it can be easily generalised to any other camera as a
reference.

Therefore, a camera votes in favour of a certain depth level depending
on a similarity measure and a threshold value (THR) that denotes whether
this similarity is good enough. Let us measure the similarity in terms of
the Euclidean distance d inferred from the intensity values of each pixel. A
hard-voting procedure might be considered at this point if each camera’s vote
depends on whether the distance d is below the threshold or not (see Figure
3, left). However, we propose a soft-voting procedure where each camera’s
vote is weighted depending on this distance d, being maximal (i.e. equal to
1) when the distance is zero and decreasing exponentially until 0 (i.e. not to
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vote in favour) when the distance exceeds the threshold THR (see Figure 3,
right).
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Figure 3: Hard-voting (left) and soft-voting (right) options for weighting the
vote of each camera (y-axis) depending on the distance value (x-axis).

Formally, let us consider each elemental image E(p1, p2, p3), with p1 and
p2 as the pixel coordinates and p3 as the camera number. Thus, centred
on the pixel position (i, j), for each neighbourhood pixel (x, y) ∈ Wij and
∀ Ck ∈ C, distance dij is defined as the Euclidean distance among the pixel
(i, j) from camera R and the pixels (x, y) from each camera Ck:

dij(x, y) =

√√√√‖C‖∑
k

(E(x, y, Ck)− E(i, j, R))
2 (2)

Note that the central camera R is always the same, being considered as the
reference camera for the correct intensities on each pixel of the scene.

Distance dij is worked out for the pixel (i, j) at each position of the
window Wij and accumulated in V as follows,

V (i, j, z) =

∑Wij

(x,y) e
−(dij(x,y))

2

THR

CoKij
(3)

Note that, in addition to the soft-voting function, the voting value is also
weighted by CoKij in order to take into account only those cameras that
“see” the pixel (i, j), that is, some positions of the scene in the reference
camera R are only seen by certain cameras and, therefore, the number of
votes is averaged by the number of cameras that are able to properly vote
at this position.

After assessing all the possible V (i, j, z), ∀z ∈ Z, a vector V (i, j, Zmin)
. . . V (i, j, Zmax) is obtained on each pixel (i, j). The proposed Max-Voting
method estimates the depth parameter z for each pixel position (i, j) on the
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basis of the maximum number of votes obtained when the previous process
is applied at each depth level z.

ẑ(i, j) = argmax
z∈Z

V (i, j, z)

Therefore, the z value where the number of votes in V (i, j, z) is maximal
is selected for the pixel (i, j) and this is done for all the pixels of the reference
image R, creating thus a depth map of the scene.

3.1 Colour space

As a colour discriminant measure, we have used an Euclidean distance in the
L*a*b* colour space in order to calculate the distance between two colours.
This assumption is taken because, unlike RGB colour space, in L*a*b* the
distances between two colours are approximately proportional to the human
perceptual difference between them. Moreover, L*a*b* colour space appears
to possess more uniform perceptual properties than other perceptual CIE
spaces [9].

Only the chroma values of each pixel (a*b* planes) are taken into account
when the Euclidean distance is worked out, using this distance to measure the
colour difference between two pixels. It is important to emphasize that we
have decided not to take into account the intensity plane L* but the chroma
planes a*b* because it somehow involves a special invariance to brightness
and shadows.

3.2 Post-processing

TheMax-Voting algorithm obtains a vector of real values V (i, Zmin) . . . V (i, Zmax)
representing the votes on pixel i for each depth z as described previously.
However, there exist some points where this vector does not have a clear
maximum and even ties can be found, being the 3D reconstruction on these
points ambiguous. These uncertain points have a very low variance across
the vector V (i, Zmin) . . . V (i, Zmax) and are often found in those objects (or
part of the reconstructed image) whose boundaries are out of the scene. As
we will see in our experimental section, this is generally consistent with those
pixels that belong to the background of the image.

To overcome this problem, a heuristic post-processing stage has also been
included in our approach. On those pixels (i, j) where there is no clear maxi-
mum in the number of votes for each level of depth, we take into account their
variances in terms of pixel intensity at each reconstructed image I(i, j, z). If
these variances along all the z results is less than 1 for a certain pixel, we
consider that pixel with a high level of uncertainty and it is assigned to the
background (z = max(Z)).
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Although no better depth map can be guaranteed after applying this
post-process, the results presented on this work show a significant improve-
ment of the depth estimation.

4 Results

Two groups of experiments have been conducted to highlight the advan-
tages of the Max-Voting methodology. One of them is based on images from
real-world scenarios [42, 49] (Fig.4). The other group is obtained by simu-
lating the real integral imaging pickup process in 3DS Max, using the same
methodology as in [45,47]. For these synthetic images3, the ground truth of
the depth map (Z-buffer) is available and a quantitative analysis of the re-
sults can be performed (Fig.5). Z-buffering or depth buffering of an image is
the process of obtaining a two-dimensional array with the depth coordinates.
This process also decides which elements of the rendered scene are visible,
and which are hidden. The Z-buffer obtained from the 3DS Max returns the
depth level of each pixel in terms of graphical units (GU). We have trans-
formed these graphical units to a standard metric taking into account the
actual measurements that could be expected from the objects of the scene.
This transformation has resulted in the equivalence 1GU ≡ 1mm.

The results obtained by the Max-Voting method have been compared
with the results obtained by the Min-Var method [14]. Table 1 shows the
image set-up used for the experiments. Second and third columns show the
camera rack configuration and the depth range from Zmin to Zmax with a
step size of Zstep. Note that the Zstep has been set to 1 cm for the Head and
Beethoven images because higher precision for the depth estimation is needed
on these cases. Fourth to fifth columns give the specifications details for the
II pickup process. See Fig.2 for nomenclature details for physical size of the
camera sensor (cx, cy) and pitch of cameras (p). A focal length (f = 50mm)
has always been applied except for PersonHand image (f = 8mm).

Figure 4 shows the input images (central camera view) used for the ex-
periments with real images. These images show a scene with unknown illu-
mination, irregular background and in the presence of occlusions. The first
two images (CarsBrushes and CarsHelicopter) have cars, an helicopter and
forest plants whereas the third one (in grey) shows a person with an out-
stretched arm. Elemental (multiview) images for these scenes are captured
as illustrated in [42,49].

Figure 5 shows the elemental images from the central camera of the
synthetic images used in this work. The depth information generated by the
3D Max is shown in the first column of the Figure 8. The synthetic images
show three indoor spaces (Livingroom, Bathroom and Toysroom) and two

3In http://www.vision.uji.es/IntegralImaging/, synthetic images and their ground
truth images are available. Parameters of how they have been created are also offered.
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Image name C-rack Zmin:Zstep:Zmax (cx, cy) p

CarsBrushes 5×5 200:10:2000 (36,24) 10
CarsHelicopter 7×7 200:10:650 (36,24) 10
PersonHand 3×3 350:10:1850 (4.76,3.57) 3.0,3.5
Livingroom 7×7 370:10:900 (36,36) 5
Bathroom 7×7 220:10:830 (36,36) 5
Toysroom 7×7 220:10:750 (36,36) 5
Head 7×7 190:1:341 (36,36) 5
Beethoven 7×7 139:1:341 (36,36) 5

Table 1: Experimental set-up features. The first three images are real world
scenarios whereas the following ones are synthetic images created in 3DS
Max. Units for the three last columns in centimetres. PersonHand image
has a different pitch on each axis (x-axis and y-axis respectively).

Figure 4: Real images. CarsBrushes image (left), CarsHelicopter image (cen-
ter) and PersonHand image (right).

foreground images, Head and Beethoven. On the one hand, the three indoor
spaces are ideally designed for evaluating the performance of the algorithms
with many objects of different shapes and sizes and in different depths. On
the other hand, the two foreground images are suited for evaluating how
precise the algorithms could be.

Figure 5: Synthetic images. From left to right, Livingroom, Bathroom,
Toysroom, Head and Beethoven images.
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4.1 Studying the influence of the local parameters

As explained in Sect. 3, our approach proposes an evaluation on a pixel
level basis of the photoconsistency among the cameras. Hence, both i) the
threshold applied to measure the difference between two pixels (i.e. when
two cameras agree) and ii) the size of the local window applied on each pixel
are important parameters in our approach. Regarding the former, a very
restrictive value (THR = 1) has been set up.

Table 2 shows how the pixel differences in terms of intensity values relate
to the vote of each camera in terms of the soft-voting strategy proposed in
this work (Eqs. 2 and 3). Let us suppose that the values from the first row
(d) are the Euclidean distances between the intensity values of two pixels4.
From these values, the vote value (V ) of a single camera is shown in the
second row, given THR = 1. As it can be seen, the V distribution is not
linear but exponential. Moreover, there is no camera contribution when the
intensity differences between two pixels is greater than 3, i.e. d ≥ 3.

d 0 0.3 0.6 0.9 1.2 1.5 ...
V 1 0.91 0.69 0.44 0.24 0.10 ...
d ... 1.8 2.1 2.4 2.7 3
V ... 0.039 0.012 0.003 0.0006 0

Table 2: Voting values related to the intensity value differences between two
pixels. For a single camera and for just one position of the local window, first
row shows hypothetical values applying Eq.2 whereas the second row shows
the contribution of the vote of the camera to the total vote of all cameras
(Eq.3).

The window size parameter needs a more detailed explanation. Figure 6
shows the results for the Bathroom image, where different window sizes has
been applied (for a constant THR = 1 value). From left to right and top
to bottom, we show the generated depth map by the Max-Voting algorithm
with the following window sizes: 3×3, 5×5, 7×7, 9×9, 11×11 and 13×13. It
can be seen a smoothing behaviour whose degree increases with the window
size used. However, this smoothing also makes some object details to get
lost. Note how the boundaries of the easy chair or the plant are well-shaped
for the 3×3 and even 5×5 windows whereas, when the size of the window
increases, there exists an important loss on these details.

Using real images generally implies assuming certain level of noise. Com-
puter vision processes are sensitive to this noise level, which is imperceptible
for human eye. Therefore, on real images we have applied a restrictive 3× 3
window size whereas on synthetic images, which are cleaner than the real

4This difference is worked out using the chroma planes (a*b*) from the L*a*b* colour
space.
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Figure 6: Results applying different window sizes on Bathroom image. From
left to right and top to bottom, window sizes of 3×3, 5×5, 7×7, 9×9, 11×11
and 13×13.

ones, we have been able to relax this parameter and a 5× 5 window size has
been used.

4.2 Results on real images

Let us compare in this section the results obtained by the Min-Var method
against the results obtained by the Max-Voting method using real images.
On real images, a 3×3 window size has been applied with THR = 1. Figure
7 shows the results for the CarsBrushes, CarsHelicopter and PersonHand
images. Note that PersonHand image is a grey image and no L*a*b* trans-
formation has therefore been done in this case. The first column shows the
results obtained by the Min-Var method whereas the two following ones
show respectively the results obtained by the Max-Voting algorithm and by
the Max-Voting algorithm when the post-processing stage is applied, respec-
tively.

As we can see, Max-Voting results are generally less noisy than the ones
produced by the Min-Var method. Also, note how the post-processing step
has improved a lot the estimation of the depth of those pixels that belong to
the background in the two first images. In the third image (PersonHand),
this is not so obvious but almost a 10% of the pixels have been modified in
the post-processing stage, especially at the limits of the image.
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Figure 7: Results for CarsBrushes image (top), CarsHelicopter image (cen-
ter) and PersonHand image (bottom) in pseudo-color. From left to right
columns, we show the depth map using approach in [14], our proposal with
no post-processing and our proposal with post-processing, respectively.

4.3 Results on synthetic images with ground truth

The results from Sect.4.2 only allow us to visually compare the Min-Var and
Max-Voting results. In this section, we compare the results obtained by both
methodologies using synthetic images where the ground truth of the depth
level is available and a quantitative evaluation of the results can therefore
be done. On synthetic images, a 5×5 window size has been applied with
THR = 1. In addition, in order to ensure a fair comparison among both
methodologies, no post-processing stage has been applied to our results for
the case of synthetic images.

Figure 8 shows the results for the Livingroom, Bathroom, Toysroom, Head
and Beethoven images. The first column shows the ground truth for the
depth information of each scene. The second column shows the results ob-
tained by the Min-Var method and the third column shows the results ob-
tained by the Max-Voting method.

In order to quantitatively evaluate the results, the Root Mean Square
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Figure 8: Depth maps results. From left to right columns, ground-truth of
the depth map, results obtained by theMin-Var method and results obtained
by the Max-Voting method.

Error (RMSE) figure of merit has been chosen, since it is a commonly-used
error measure, and in fact, RMSE has widely been used to quantitatively
compare the performance of different depth map operators [35].

Let us consider two depth maps, the ground truth G and the estimated
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depth map Z, both obtained from a Nx × Ny image. The RMSE metric is
defined as,

RMSE =

√√√√ 1

Nx ·Ny

∑
(i,j)

(G(i, j)− Z(i, j))2 (4)

In Sect. 4.1, we show how the different window sizes affect to the results
obtained by our proposal. For synthetic images where the ground truth is
available, a quantitative analysis about the influence of this window size pa-
rameter can be performed. Thus, it is worth saying that, in terms of RMSE,
the results are progressively getting better while the size of the window is
getting larger (see Table 3).

Window size W3 W5 W7 W9 W11 W13
Bathroom (RMSE) 77.98 64.45 59.09 56.32 54.89 54.02

Table 3: RMSE results for the Bathroom image while the window size in-
creases. From left to right, the window size is increasing from 3×3 to 13×13.
As second row shows, the larger the window, the better the RMSE value.

Tables 4 and 5 show the depth estimation error results obtained using the
Min-Var method and theMax-Voting method. Table 4 shows the percentage
of pixels that have high errors when the z value has been estimated. The
threshold value for considering high errors has been set to 100cm for all
images but for the images marked with an asterisk, where the threshold is
equal to 50cm.

Table 5 shows the RMSE values (expressed in centimetres or millimetres
depending on the image) and the RMSE obtained if those pixels with high
errors are not taken into account. The Hi-Error column from Table 4 shows
the percentage of the image pixels where the estimation can be considered
unacceptable. By the RMSE * column, we expect to demonstrate that most
of the RMSE error made by the algorithms is concentrated on few pixels.
Thus, if these few pixels are removed and the RMSE is re-calculated, the
real performance of the methods substantially improves.

Finally, it is important to point out that in the foreground images (marked
with an asterisk) only those pixels that belong to the object have been taken
into account, both for the RMSE value and for the percentage of high errors.

5 Discussion

As the previous section shows, the proposed maximum voting approach has
shown a significant improvement with regard to the Min-Var method both
in terms of a qualitative and a quantitative assessment. We have shown the
results obtained using real images acquired in a laboratory set-up, where our
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Image name Min-Var Hi-Error Max-Voting Hi-error
Livingroom(cm) 13.48% 13.97%
Bathroom(cm) 12.60% 8.32%
Toysroom(cm) 54.13% 16.12%
Head*(mm) 3.42% 11.47%
Beethoven*(mm) 49.01% 6.29%

Table 4: Quantitative results on synthetic images (I). From left to right, in
blocks, images, results for the Min-Var approach and results for the Max-
Voting approach. Hi-Error column shows the percentage of pixels that have
experimented high errors when the z value has been estimated.

Image name Min-Var Max-Voting
RMSE RMSE* RMSE RMSE*

Livingroom(cm) 87.35 26.40 83.48 26.53
Bathroom(cm) 85.14 28.10 64.45 27.16
Toysroom(cm) 172.24 44.15 92.95 33.84
Head*(mm) 10.94 10.78 29.15 15.79
Beethoven*(mm) 81.85 45.66 43.63 43.25

Table 5: Quantitative results on synthetic images (II). From left to right, in
blocks, images, results for the Min-Var approach and results for the Max-
Voting approach. Second and third blocks show the RMSE values obtained
on each image (RMSE column) and the RMSE obtained if pixels with high
errors are not taken into account (RMSE * column).

proposal with the post-processing stage has found fine details at boundaries,
less pixels with high errors in their depth estimation and a significant en-
hancement in the background. Note also that the level of improvement is
quite more noticeable in the colour images than in the grey one (PersonHand
image) where no L*a*b* transformation has been done.

Results on artificial images where the true depth map is available have
also been shown. The results obtained by our proposal show higher precision
on boundaries. This fact is recognisable in the indoor scenes, where the
objects that are closer to the camera set-up show very sharp edges (this is
especially clear in the Bathroom image). In addition, there are less high-
depth errors in our proposal in terms of percentage of pixels when compared
with the Min-Var method. Note how the Min-Var method shows problems
in the indoor images in areas such as the window at the background of the
Livingroom image, the mirror of the Bathroom image or the foot board of
the bed and the wallpaper clouds in the Toysroom image.

Figure 9 supports these facts by showing the resulting images of sub-
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tracting the ground truth values from the results obtained by the Min-Var
method (center) and the Max-Voting method (right). It is shown how the
pixels around most of the important object boundaries in Min-Var method
present a higher number of artifacts than inMax-Voting method with respect
to the depth estimation. In addition, Min-Var method also presents some
problems with reflections as it can be seen with the mirror at the background
of the scene.

Regarding the foreground images, on the one hand, the Min-Var algo-
rithm has obtained a poor result for the depth estimation of the Beethoven
image. Indeed, a high percentage of the bust has been considered background
by the algorithm. On the other hand, the Max-Voting method has obtained
a worse result for the Head image.

Figure 9: Synthetic images comparison by ground truth subtraction. From
left to right, the ground truth image and the results of the Min-Var and
Max-Voting methods, respectively.

It is also important to point out that a small proportion of the RMSE
value obtained on each image (especially for the indoor images) comes from
the size of the Zstep used in our experimentation. A ground truth value
between two consecutive z values in our depth range, that is between zj and
zk where zk−zj = Zstep, can not be exactly estimated neither theMax-Voting
method nor the Min-Var method.

Quantitatively, in terms of RMSE and percentage of pixels that show high
error on their estimation, our proposal has substantially improved the results
obtained by the Min-Var method in three out of the five images (Bathroom,
Toysroom and Beethoven), being slightly better in the Livingroom image and
worse in the Head image.

As it has been shown in Table 3, larger windows sizes generate a lose of
detail on some object boundaries. However, in terms of RMSE, this fact is
compensated by the noise removal produced by these larger windows. Re-
garding this balance between noise removal and detailed boundaries, we have
decided to apply a quite restrictive 3×3 and 5×5 window sizes to keep clear
edges. As explained in our introduction, the Min-Var method is especially
noisy at boundaries. Thus, in order to improve this point in our algorithm,
those very restrictive window sizes has been applied since, in our opinion,
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the loss of detail in boundaries is too significant from a window size of 7×7 or
higher, although the RMSE value for our proposal would get better results
using larger window sizes.

Regarding the Head and Beethoven images, the fact of focusing only on
foreground pixels allows us to obtain a more accurate estimation of the error
made by each methodology since it avoids misrepresenting the given values
adding a large amount of pixels from the background where the depth has
been estimated correctly.

Finally, it important to emphasise how the proposed algorithm behaves
against occlusions and noise. On the one hand, the use of local information
(neighbourhood of a pixel) together with the majority voting mechanism, al-
lows the method to cope with occlusions and depth discontinuities at a local
level. See for instance the result on real images shown in Figure 7, where the
depth discontinuities (and therefore occlusion areas) are well-defined with
sharper object boundaries in the result of the post-processed outcome of our
approach with respect to the minimum variance approach, particularly in
the CarsBrushes and CarsHelicopter images. On the other hand, the visual
quality of the input images can be improved by noise filtering techniques [13].
However, the goal of the presented technique is to be an input for a higher
level processing for a global approach that can regularize the result at this
level, using for instance a Random Markov Field regularization [27] or En-
ergy Minimization with regularization [7]. At a local level, regularization,
and therefore noise reduction, can be obtained by varying the window (pixel
neighbourhood) size. In this sense, as already discussed, note the experimen-
tal result with respect to RMSE error for different windows sizes in Table 3,
which shows the effect when increasing the neighbourhood size.

6 Conclusions

We have presented an approach that uses the scene information acquired
by means of a 3D Integral Imaging system and generates a depth map of
the scene through a voting strategy based on a photoconsistency criterion.
This voting strategy is performed on the basis of the image local infor-
mation obtained from all the cameras in the array. The results obtained
are generally consistent for any type of object surfaces, also defining ac-
curate enough boundaries. We also contribute with a repository (http:
//www.vision.uji.es/IntegralImaging/) with the materials presented in
this work. Synthetic images and ground truth images (generated by the 3DS
Max), set-up parameters and the source code for the here proposed maxi-
mum voting approach are available in this repository. This resource can be
used for performing Integral Imaging and Range Estimation.
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