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INTERPOLATING SEQUENCES FOR H*(Bpg)
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ABSTRACT. We prove that under the extended Carleson’s condi-
tion, a sequence (z,,) C By is linear interpolating for H*°(By) for
an infinite dimensional Hilbert space H. In particular, we construct
the interpolating functions for each sequence and find a bound for
the constant of interpolation.

1. INTRODUCTION

Let A be a space of bounded functions defined on X. A sequence
(x,) in X is called interpolating for A if for any sequence (a,) € .,
there exists f € A such that f(z,) = a, for all n € N. We consider the
linear and continuous R : A — (., defined by R(f) = (f(x,)). The
sequence (x,) is interpolating for A if and only if there exists a map
T : {0y — Asuch that RoT = Idy. If T is linear, the sequence (z,,) is
said to be linear interpolating for A. For any o = («a;) € €, let M, =
inf {|| flloo : f(z;) =«;, j €N, fe A}. The constant of interpolation
for (z,) is defined by M = sup{M, : a € £ ||a||oc < 1}.

It is a classical result in function theory that a sequence (z,) in the
open unit disc D C C is interpolating for H*, the space of analytic
bounded functions on D, if and only if Carleson’s condition holds, i.

e.:
There is 6 > 0 such that Hp(zk, z;) >0 forany j e N, (1.1)
k#j
where p(z, z;) denotes the pseudohyperbolic distance for points 2y, z; €
D, given by
N — 2k — Zj
p(Zk7Z]) 1_Z_ij .
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Recall the Schwarz-Pick lemma: p(f(2), f(w)) < p(z,w) for any
zyw e D and fe H®, ||f]| < 1. If ¥ is an automorphism of D, then
p(¥(2), Y(w)) = p(z,w).

If we deal with complex Banach spaces E, we denote by Bpg its
open unit ball. A function f : Bg — C is said to be analytic if
it is Fréchet differentiable. Denote by H(Bg) the space of analytic
functions f : Bg — C and by H>(Bg) the space {f : Bg — C :
f is analytic and bounded }, which becomes a uniform Banach algebra
when endowed with the sup-norm || f|| = sup{|f(z)|: = € Bg} and it
is, obviously, the analogue of the space H*™ for an arbitrary Banach
space.

Sufficient conditions for a sequence to be interpolating for H*(Bpg)
where given by the authors in [GM]. Bearing in mind the Davie-
Camelin extension of f € H*®(Bg) to f € H®(Bg-), the authors
proved that a sufficient condition for a sequence (x,,) C B+ to be lin-
ear interpolating for H>°(Bp) is that the sequence of norms (||z,||) is in-
terpolating for H*>°. Examples of sequences which satisfy this condition
are, for instance, those which grow exponentially to the unit sphere,
which we call the Hayman-Newman condition: 1—||zg1]| < e(1—||lxk|])
for some 0 < ¢ < 1 for any k£ € N. Interpolating sequences on H*(Bg)
have been very useful to study the spectra of composition operators on
spaces of analytic functions (see [GGL], [GLR] and [GM2]).

During all the manuscript, we will deal with a complex Hilbert
spaceH. The notion of pseudohyperbolic distance can be carried over
to H>°(By) by considering for any z,y € By,

pu(x,y) = sup{p(f(x), f(y)) - f € H=(Bu), [l fIl <1}, (1.2)

where p(z,w) is the pseudohyperbolic distance in D. B. Berndtsson
[B] showed that a sequence (z,) in the open unit Euclidean ball B,
of C™ is interpolating for H>°(B,,) if the following extended Carleson’s
condition holds:

There is 0 > 0 such that HpH(xj,xk) >0 VjeN. (1.3)
k]

As P. Galindo, T. Gamelin and M. Lindstrom pointed out in [GGL)],
the result given by Berndtsson can be extended to the case of an infinite
dimensional complex Hilbert space H by interpolating on finite subsets
of the sequence with uniform bounds and applying a normal families
argument.

The aim of this paper is to adapt the proof given by Berndtsson
to the infinite dimensional case and prove that under the extended
Carleson’s condition 1.3, a sequence (x,) C By is linear interpolating.




INTERPOLATING SEQUENCES FOR H*(Bpg) 3

In particular, we will construct the interpolating functions for each
sequence and will find a bound for the constant of interpolation.

For our purpose, we will study the automorphisms on By and will
adapt some results given by B. Berndtsson (see [B]) to the infinite
dimensional case.

2. BACKGROUND

The results of this section and further information about the auto-
morphisms of By and the pseudohyperbolic distance on By can be
found in [GR].

Automorphisms on By. Recall that the set of automorphisms on
D is denoted by Aut(D). It is well-known that this set is given by all
the mappings f : D — D which are the composition of rotations with
Mobius transformations m, : D — D given by

a—z

ma(2) for any a € D. (2.1)

T 1-a:
The analogues of Mo&bius transformations on H are ¢, : By —
By ,a € By, defined according to

Soa(x) = (84Qq + Pa)(ma(w» (2'2)
where s, = \/1 —||a||?, m, : By —> Bpy is the analytic map
a—x
)= 2.3
(o) = T (2.3

P, : H — H is the orthogonal projection along the one-dimensional
subspace spanned by a, that is,

x,a

(r,0)

Falw) = (a,a)

and @, : H — H, is the orthogonal complement, ), = Id— P,. Recall
that P, and @, are self-adjoint operators since they are orthogonal
projections, so (P,(x),y) = (z, P,(y)) and (Q.(z),y) = (x, Qu(y)) for
any r,y € H.

The set of automorphisms on By is given by all the mappings ¢ :
By — By which are the composition of such analogous Mébius trans-
formations with unitary transformations U of H. Recall that unitary
transformations U of H are self-maps of H satistying (U(z),U(y)) =
(,y) for all z,y € H.

Remarks on the pseudohyperbolic distance. It is clear by the
definition that for any =,y € By,

p(f(x), f(y) < pu(z,y) forany f € H*(Bg), ||fllo <1, (24)
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It is also well-known that

pu(z,y) = [ley (@) (2.5)

so making some calculations we obtain

2 _ 4 == = Jlyl*)
1= (el

3. RESULTS

pH(I,y>

First, we recall Proposition 2.1 in [GLM]:

Proposition 3.1. Let E be a complex Banach space and (x,) C Bg.
If there exists M > 0 and a sequence of functions (F;) C H*(Bg)
satisfying Fj(x,) = 0jn for any j € N and 3 |Fy(z)| < M for all
x € Bg, then (x,,) is linear interpolating for H*(Bg).

We will call (F,,) a sequence of Beurling functions for (z,). Under
conditions of Proposition 3.1, we have that T": (o, — H*>(Bg) defined
by T((own)) = >, anF, is a well-defined, linear operator such that
IT]| < M and T((aw,))(zg) = oy for any k& € N, so (z,) is linear
interpolating. In particular, the constant M is an upper bound for the
constant of interpolation.

The following calculations are straightforward and can be found in
[GM].

Lemma 3.2. We have the following statements:

l—xz<—-logx forO<uz<l. (3.1)
1 1 — 2 2 .

Re oz =] foranya € D,z € D. (3.2)
1 —az 11— az|?

The following three lemmas are just calculus:

Lemma 3.3. The function u®exp (—ut/8) is bounded from above by
min{1, 25} for 0 <u<1andt> 0.

Lemma 3.4. Let 0 < ¢ < 1 for any k € N and suppose that h(t) is a
non-increasing function on (0,00). Then,

icjh <ch> < /Oo h(t)dt.

The following result will be needed to simplify the proof of Theorem
3.11. The proof is just an exercise.
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Lemma 3.5. Let (a,) C [0,1) such that lim, a, = 1. Then, (a,) can
be reordered into a non-decreasing sequence (b,) such that lim, b, = 1.

Now we provide a lemma which includes some calculations related
to the automorphisms ¢,.

Lemma 3.6. Let v,y € By and ¢p_, : H — H the corresponding
automorphism defined as in 2.2. Then, we have that

L =2 - ()
(py(2), 0y(2)) =1 (1—A{z,y))(1—(y,2))

Proof. Since for any = € By we have ¢, (z) = (5,Qy + P,) (my(x)),
and bearing in mind that P and () are orthogonal, we obtain that

(py(2), 0y(2)) = ((54Qy + By) (my(2)), (5,Qy + P,) (my(2))) =
5§<Qy(my(x))a Qy(my(2))) + (By(my(x)), By (my(2))) =
(1= lyIP)(Qyly — 7), Qy(y — 2)) + (Py(y — ), Py (y — 2))
(1= (z,y)(1 = (2,9))

by (2.3) just making some calculations. Since we have that P, + Q, =
Idy for any a € H, we obtain that

{y =2y —2) — lyl*(Qy(y = 2), Qy(y — 2))
(1= (z,9))(1 = (y,2))
The complement of the orthogonal projection is given by
=)
R T
hence Q,(y — x) = —Q,(z) and Q,(y — z) = —Qy(z). Moreover,

{py(2), py(2)) =

N o ORI
(—=Qy(2), —Qy(2)) = (Qy(x), Qy(2)) = ( v <y7y>y>

1 1 1
(z,2) — w@,yﬂya z) — w@fayﬂy, z) + w@yﬂy, z) =

_ 1, o 22y y) — (@), 2)
<.13,Z> H?JH2< 7y><y7 > ||y||2 .

B (x—y,z—y)— Hsz <xyz)<y,y”>zj‘<2w,y><yvz>
o (D 2N = T )
(1= (z,y))(1 = (y, 2)) '
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Adding and subtracting 1 and arranging terms, we obtain that the

mumerator equals to (1 — (2, y))(1 — (9, 2)) — (1 — {2, 2)) (1 — (. y)).
Therefore, dividing by the denominator and making calculations, we

obtain
0= ()
<90y(x)a gpy(z» =1 1 — (z, 901 — (v, Z>)7
and the lemma is proved. O

Considering z = x, we obtain that formulas 2.5 and 2.6 are the same
expression for the pseudohyperbolic distance for x,y € By.

We will also need some technical lemmas. For the first one, we will
need Proposition 5.1.2 in [R], which is stated as follows,

Lemma 3.7. Let a, b, ¢ be points in the unit ball of a finite dimensional
Hilbert space. Then,

1= (a,0)] < (V1 = (a,)| + V|1 = (b,)])

Then, we obtain the following lemma,

Lemma 3.8. Let H be an infinite dimensional complex Hilbert space
and x1,x9,x3 € By. Then,

11— (@1, 2)| <2([1 = (21, 23)| + [1 — (22, 23)])

and
1 — (@1, w9)| < 2(1 = [(w1, z3)| + 1 — (22, 73) ).

Proof. Let z1, 9,23 € By and set the space H; = span{xy, s, x3}.
We have that H; is itself a Hilbert space and we can consider an or-
thonormal basis {ej, ez, e3} of Hy. Consider for j = 1,2,3 the vec-
tors y; = (y;,47, ;) given by the components of x; in that basis. It
is clear that these vectors are in the unit Euclidean ball of C* and
(xj, ) = (Yj, k), so we apply Lemma 3.7 to deduce

11— {r,22)] < (V1 = (w1, 23)[ + V[ = (o, 23)])? =
1= (wy, @3)| + |1 = (@2, 23)| + 2¢/]1 — (w1, 23)[V/]1 = (2, 25)].
By the arithmetic-geometric means inequality, we have |1 —(x1, z5) | <
1 —(z,23)| + |1 — (29, x
R R ==
2(]1 = (1, z3)| + |1 = (22, 23) ).
To prove the other result, notice that

1—[{zj, 2)| = ,in 11— e (aj,ap).
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We have that 1 — [(z1,23)| = |1 — €*(z1,23) and 1 — [(zq, z3)| =
11 — € (29, z3)| for some «, 8 € [0,27). Then, applying the inequality
above, we have that

1—|(x1,x2>]:1—|(emx1,ewx2>|§|1—<e zy, e’ xo)| <
2(11 — € (wy, w3)| + |1 — € (xa, x3)|) =
2(1 = [(w1,w3)| + 1 = [{zo, 23)|). O

Then, we can prove the following lemma, which extends Lemma 6 in
[B] to the infinite dimensional case. We give the proof for the sake of
completeness.

Lemma 3.9. Let H be a Hilbert space and xy,x; € By. If ||zg] >
lz;l, then

L= (e o)* 11— fla®

T [(ow o) > 81— [y, 2]
Proof. By Lemma 3.8, 1 — |(zg, z;)| < 2(1 — |(zg, z)| + 1 — [(z,2;)]),
and we consider two cases depending on = € By. If 1 — [(zg,x)| >
1 — |(zj,2)], then 1 — [{zx, 2;)|* < 8(1 — |[{zx, x)|) so, bearing in mind
that [z > |z,

(00 ey [COVE TN W W el 1 GO W e % B
= l@ea)P = 8T [l = 8~ 81— [aya)P = 81— [(ay )P
161~ [(or,2)] < 1= [{ay,a)l, then 1= [{ae,)|? < 8(1 ~ [{a,)]) so,
L) 11— l@en) 1 1= fal? 1 1= fa?
T—J(wee)P = 81 [(@wa) = 81— [(ana)] - 81— [(a; o)

for any x € By. (3.3)

so we are done. O

We will also need the following lemma,
Lemma 3.10. Let {x,} C By and 6 > 0 satisfying
HpH(:ck,xj) >0 for all j € N. (3.4)
poy
Then, we have that
> 1
Z(l — ||z ||?) < 210 (6) 1+l for any 7 €N, (3.5)

2 ey ]
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and for any j € N,
- 1\ 1 :
> ) < (14 2085 ) 12 (3.
— 6) 1 —|lz
Proof. Taking squares and logarithms in 3.4 we obtain
- 1
— Zlong(zk,xj)Q < —2logd = 2log 5
k#j

By (3.1), we have that 1—pg (zx, 2;)? < —log py(zk, 2;)? for any k #
J, so bearing in mind (2.6), we obtain

i (L= llel*) (1 — [laz5]*) 1

< 2log —.
In consequence,
1ty = S T Izl = ) [ = (e i)
Z( x| )_Z 1 NE 12 =
=y Py Tk T &
1\ (1 + [|lz])? 1\ 1+ [J]]
2<log—>—j:2 log = | — =
6) 1=l 6/ 1= |la;ll
and the lemma is proved. O

Now we are ready to prove the result for complex Hilbert spaces. In
addition, we will provide an upper estimate for the constant of inter-
polation depending only on §.

Theorem 3.11. Let H be a Hilbert space and (x,) a sequence in By.
Suppose that there exists § > 0 such that (x,) satisfies the general-
ized Carleson condition (1.3) for 6. Then, there exists a sequence of
Beurling functions (F,) for (z,). In particular, the sequence (x,) is
interpolating for H*(By) and the constant of interpolation is bounded
by

128(1 + 2log 3)

ed

Proof. Define, for any k,j € N, k # j, the analytic function g ; :
H — C given by gi () = (@u, (), ¢z, (x;)). For each j € N we
define the function B; : By — C by Bj(x) = [[,; gr,(x). First we
check that the infinite product converges uniformly on rBy = {x €
By i ||z|| £ r} for fixed 0 < r < 1. Let © € rBy. We have, by Lemma
3.6, that
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Since |1 — (z,z;)| <147, |1 —(z,2)| > 1 —r and |1 — (2, z;)| >
1 — ||zi||||lz;]| > 1 — ||x;]|, we have that
L+71— ||ag]?
L—r 1=l
so for any j € N, the series ), oy |1 — g ;(2)| is uniformly convergent
on rBy by Lemma 3.10. In particular, the infinite product [],_; gx ()
converges uniformly on compact sets, so B; € H(Bpy). In addition, no-
tice that for = € By, |Bj(x)| = [Tiz 903 (@)] = iy [ (2), 0 ()] <
Ly 1w (2)l[l0, (z5)]| <1, s0 || Bjoc <1 and we obtain that B; €
H*>(Bpg). It is clear that B;(x;) = 0 for k # j since ¢, () = 0 and,
according to 2.5, we have that

1B(x)| = [ [ gk (@) = [T 1{0ar (1), 0, ()] =

1= gr;(2)] <

k#j k#j
[T 1eeCapl® =TT olan, 25)* = 6°.
k#j k#j

Consider the functions ¢;, A; € H(By) for any k € N defined by

Ll )
0= (1=0g)
A= (L — [l )@ — ll24]") L + (zx, 2)

1 — [{zg, z;)|? 1 — (g, )

{k:llzpl| =]l 1}
The function g; is clearly analytic and bounded. By Lemma 3.5, we
will consider that the sequence (||z,,||) is non-decreasing, so {k : ||zx|| > ||z;||} =
{k : k > j}. Notice also that for 0 < r < 1 and x € rBy we have that
|4 ()] <

/ 1—|z;|? l—r = 1—1r &
k>j k>3

so by Lemma 3.10, the series converges uniformly on rBy and hence
A; € H(Bg). Moreover, exp (—A;) belongs to H>(By) since | exp (—A4,) | =
exp (—Re A;) and using formula 3.2, we have

e O [l B0~ [ )P
Re 40) = 2 0 e )0 — (o )

Consider C5 = 1/(1 + 2log1/d) and for any j € N, the analytic
function Fj : By — C defined by

Fy(a) = g&)) ()7 exp (—Co(Ay () — Ay(,).

> 0.
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It is clear that Fj(z;) = 1 and Fj(x,) = 0 for any k& # j. We claim
that there exists M > 0 such that 37| |Fj(z)| < M for any = € By.
Indeed, by (3.2) that

Re A;(z) =Y (1 — [lz]?) (1 = fla5]2) (1 — |(1’k,x>|2).

& (= o apP) (11— (o, 2)P)
In particular, for = z;, we obtain

Re Aj(z;) =Y (1= llel®) (= [l |*) (X = [Gow, ) ?)

T (= ek z) P (1 = ok 2)?)

Using formula (2.6) we obtain that

Re Aj(w;) =Y (1= pulee,2;)°) = 1+ Y (1= pu(ap, ;)?)
k>j k>j
and by (3.1), we have that Re A;(z;) <
1
- Z log ppr(wy, 2;)* < 1— ZlngH(xk;xj)Q <1+ 2log 5
{E:llog 1> NIz} k#j

Moreover, to estimate fte A;(z) from below we use Lemma 3.9 and
we obtain that

11— [ay]? (1 = [|=]*)?
Re Aj(x>— |QZJ|1_<ZL‘I€’$>|2

SO

Re A;( j Z lqi(x)]. (3.7)

k>j

It is clear that 1 — [(x;,2)|* = (1 + |z, 2)[)(1 — [{x;,z)]) < 2|1 —

(5,3}, 50
2 2
L= |2
<4g|—"A70 = 4b.(2)2.
< (1—|<x,:cj>|2 ()

1= |
o)l = | 1=

<I7xj>
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Using that |B;(z;)| > 6, |B;(z)] < 1, the bound for Re A;(z;) and
3.7, we obtain

\Fj<x>rs%\qxx)rbj(x)?exp( ( )Y lale r——)>g

%Mj(%)\bj(x)%m(—‘céb ) D lan(x )
)

k>j

Since 0 < bg(z) < 1, we consider u = bj(z) and t = Cs ), ; |gr(z)] > 0
and apply Lemma 3.3 to conclude that

F0)] < eCalay@)lh (Caz |qk<a:>|) ,
k>j
where h(t) = min{1,256/e*t*}. Hence, summing on j, we obtain
Z|F (50 ZC(;\qJ )|h (;Cs\% >=
J

and applying Lemma 3.4 | we obtain that

e 4e.32 128
Fi(z h(t)dt = — = ,
Z| - (505/ ( ) e20Cs edCs

Hence , by Proposition 3.1, we conclude that (x,,) is linear interpolat-
ing. 0

Given (z,) C By satisfying the extended Carleson’s condition and
any (an) € loo, the function f(x) = >°72, a; Fj(x), where Fj is defined
as in Theorem 3.11, is well-defined and interpolates the values «,, in
the points z,, for any n € N.

Notice also that the function

I 142logl/d

100) = 5C2 5

is non-increasing for 0 < 6 < 1. Since lim5_>1 f( ) = 1, un upper bound
for the constant of interpolation is close to 128 = 8 if we deal with sequences
satisfying the extended Carleson’s condition with ¢ close to 1. Can the
number % be decreased?
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