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Resumen de la tesis 

Introducción 

Existe una enorme diferencia entre la velocidad del procesador y la de la me

moria. Esta diferencia convierte a la memoria en un cuello de botella que limita el 

rendimiento de los computadores. La jerarquía de memoria se utili^a, para tratar 

de atenuar en lo posible el ef'ecto de este cuello de botella. Se compone de varios 

niveles f'orm^rdos cada uno de ellos por memori^t,s implementadas us^r,ndo diferentes 

tecnologías. La5 rnernorias de los niveles superiores son rnuy r^ipidas, con velocidades 

próxirnrrs a las del procesador, pero su tamairo es pc;queiro. A rnedida que desc^^;nd^^;

mos c;n la jerarquía las mcrnorias se van haciendo rnás lentas pc;ro puc;den alberg^Lr 

una rna,yor cantidad de datos. 

La memoria del nivel más bajo de la jerarquía del computador contiene toda 

la información disponible. A medida qtte ascendemos en la jerarquía, cada nivel 

contiene un subconjunto de la información contenida en el nivel inferior. EI ftmcio

namiento de las jerarquías de memoria es sencillo: cuando el procesador necesita un 

dato solicita al nivel superior de la ,jerarquía el bloque de memoria en el que est^L 

contenido. Si el bloque se encuentra en ese nivel la petición cs satisfecha y s^^; produce 

un acicrto, mientr^r.5 que si el dato no est^r disponible en ese nivel se produce un f^^,llo 

y la petición es trasladada al uivel inferior. Esta petición se propaga hacia abajo eu 

la jerarquía hasta que el dato se encueutra en alguno de los uiveles. En el peor de 

los casos, la peticióu será satisfccha en cl nivel rnás bajo dc la jerarquía. 

La jerarquía de memoria explota el principio de localidad que en ma^^or o menor 

medida cumplen la mayoría de los procesos ejecutados en q n computador. Existen 

dos tipos de localidad: 

. Localidad espacial: si un dato ha sido accedido en un rnomento dado existe 
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una alta probabilidad de que datos cercanos se accedan proximamente. 

n	 Localidad temporal: si un dato ha sido accedido cn un momento dado existe 

una alta probabilidad de que ese misrno dato vuelva a ser accedido próxima

mente. 

Las jerarquías de memoria están diseliadas de tal forma que los bloques de memoria 

más recientemente accedidos van a estar albergados en los niveles superiores de 

la jerarquía. )►stá claro pues que su uso favorece la mejora del rendirniento del 

computador porque un alto porcentaje de los accesos a memoria serán resueltos en 

los niveles superiores de la jerarquía. 

Empczando por el nivel superior, la jerarquía de rnemoria de un computador 

está cotnpucsta típicarnente por: los registros del computador, la rncrnoría caché, 

dividida a su VCZ eIl varios niveles diferentes, la mcmoria principal y finalmente 

el nivel de ahnacenamiento secundario. Una mejora en la localidad del código a 

ejecutar mejoraría el rendilniento de la jerarquía de memoria y en consecuencia la 

del cornputador. 

Existen muchas técnicas que trata^n d<; me,jorar la localidad de los códigos a eje

cutar en un cornputador rne,jorando así el rendimiento de la memoria. Los diferentes 

niveles dc c^t,ché son la parte de la jerarquía de rnetnoria ln^ís usada por el procesador 

después de los registros. Por lo tanto es irnportantc tener técnicas que nos perrni

tan conocer de forma rápida y precisa el comportamiento de las cachés durante la 

ejecución de un código en un determinado computador. Estas técnicas pueden ser 

usadas por ejemplo para guiar procesos de optimización de cara a incrementar la 

localidad en los accesos de los programas. Dada la gran disparidad entre la velocidad 

de acceso a los datos en las caché en la memoria principal esto puede dar lugar a 

grandes reducciones en el tiempo de ejecución. 

Las principales técnicas ctue se usan para estudiar cl renclimierrto dc la memoría 

caché sori: 

n	 Simulación dirigida por traza: Se usa tma traza de las direcciones de memoria 

accedidas durante la ejecución de un código determinado para medir mediante 

tm simulador el comportamiento de la caché durante su ejecución. Los prin

cipales inconvenientes de esta técnica son que es necesario ejecutar el código 

para obtener la tra.za y que la simulación a menudo lleva más tiempo que la 

ejecución del código reaL A cambio; obtenemos buenos niveles de exactitud en 

la rnedición del rendirniento. 
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n	 Contadores hardware: Los contadores hardware existen en algunas arquitectu

ras y miden una gran cantidad de eventos relacionados con el hard^vare; entre 

ellos muchos eventos relacionados con el comportamiento de la caché. Podemos 

usar estos contadores durante la, ejecución del código para estttdiar el compor

tamiento de la caché. El principal inconveniente es que estos contadores están 

presentes sólo en ciertas arquitecturas y que sigue siendo nec,esario ejecutar el 

código para rnedir el cornportamiento de la caché. Como en el caso anterior; 

la precisión dc las mediciones obtenidas es alta. 

n	 viodelado analítico: Podemos utilizar un modelo analítico de la caché pa.ra 

obtener una predicción de stt comportamiento. Como información de entrada 

se puede usar una traza de las direcciones de memoria accedidas por el pro

grama. o el propio código fuente a ejecutar. El tiempo necesario para obtener 

la predicción es menor que en las dos anteriores técnicas; pero en general snele 

tener rnenor precisión en sus predicciones ,y la clase de códigos que podernos 

rnodelar debe tcner tmas características d<^^terminadas. 

El modelo analítico de las PIVIE (Probabilistic Miss Equations) [31] usa como 

información de entrada el código fuente a ejecutar para obtener una estimación rá

pida y fiable del comportamiento de la memoría caché de un computador. El modelo 

PNIE está limitado a códigos en los que los patrones de acceso a las estructuras son 

regulares. Se han propuesto algunos modelados analíticos para códigos irregulares 

concretos basándose en las ideas del modelo PI\^IE [30], pero no existe una estrategia 

automatizable que aborde el modelado del comportamiento de la caché para esta 

clase de códigos. Nuestro propósito es crear tma extensión al modelo Pl^1E que nos 

permita abordar de forma automática el modelado de códigos en los que los accesos 

a algunas estructuras de datos siguen patrones de acceso irregulares. 

Metodología de 1^abajo 

Abordar el modelado de códigos irregulares utilizando como primera referencia 

un código de complejidad excesiva habría sido un enfoque erróneo del problerna. 

L•a lógica impone realizar primero el modelado dc un código sencillo c ir refinando 

sucesivamente el modelado sobre códigos de complejidad creciente. 

Cuando se considera el primer código se propone una estrategia automatizable de 

modelado que trate de cubrir toda la complejidad de la clase de códigos a modelar. 
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Se deriva a mano el modelado para ese código utilizando la estrategia propuesta. Se 

compara la predicción del modelo propuesto con los resultados obtenidos por una 

simulación dirigida por traza considerando distintas configuraciones de la caché y 

distintos tamaños de las estructuras involucradas en el código. Lo más probable es 

que la primera aproximación no funcione bien en todos los casos. En este caso se trata 

de identificar las posibles causas de la divergencia entre el simulador ,y el modelo 

,y se proponen rnodificaciones que me,joren la predicciótt. Una vez se consiga que la 

predicción del modelo sea fiable pa^ra un arnplio rango de config^rraciones caché y 

tamaí`ios de las estructuras involucradas, consideraremos quc mtestro modclo realiza 

bien el modelado de este código concreto. 

Sin embargo, el objetivo de nuestro modelo es cubrir el modelado de cualquier 

código irregular; por lo tanto se elige tm código un poco más complejo ^^ se deriva el 

modelado a mano repitiendo el mismo proceso que en el caso anterior hasta que la 

predicción sea fiable. Es necesario comprobar que cualquier modificación del modelo 

no afecta a la fiabilidad en la predicción para códigos anteriores. Cnando se ha,yan 

modelado con éxito un mírnero razouable de códigos de cornplc,jidad creciente con

sideraremos conseguido el objetivo de tener una estrategia gcneral y autornatizabht 

para el rnodelado de códigos irregulares. 

Contribuciones 

La existencia d^^; una referencia con un patrón de acceso irr^^;gular sc puede deber a 

diversos motivos: refererrcias dependientes dc una o varias sentencias condicionales, 

estructuras indexadas a través de los valores contenidos en otras estructuras de 

datos, la existencia de punteros en el código etc. .. 

En este trabajo hemos considerado dos fuentes principales de irregularidad: la 

existencia de estruc.turas de datos afectadas por condicionales y los accesos a través 

de indirecciones donde una estructura es indexada utilizando los valores contenidos 

en otra estructura diferentc. Se han propuesto cxtensiones autornatizables del rnodclo 

Pl^-IE para arnbos casos. 

En el caso de sentencias condicionales hemos propuesto una. extensión [ i, 8; 11, 

9, 12] capaz de modelar referencias contenidas dentro de una o varias sentencias 

condicionales anidadas cuya verificación se determina dinámicamente; esto es, en 

tiempo de ejecución. Un ejemplo de sentencia de este tipo sería una en la que el 

valor de verdad de la sentencia condicional dependiese a su vez de una expresión en 
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la que apareciese involucrada una referencia a un array cuyo valor solo puede ser 

conocido en tiempo de ejecución. Se impone la restricción de que la probabilidad 

de que se verifique la condición de la sentencia condicional tiene que ser unifonne; 

es decir, tieue que ser siempre la misma cada vez que es evaluada; v sti va.lor debe 

ser stmlinistrado como un parámetro al modelo. En el caso de tener varias setencias 

condicionales, ésta.s deben de ser totalmente independientes entre si; es decir, el valor 

de verdad de una de ellas no depende del valor de verdad de la otra. 

En los códigos con indirecciones hemos utilizado como referencia los códigos que 

realizan computaciones con ►natrices dispersas. Estas matrices son almacenadas uti

lizando diferentes formatos cornprimidos cuya manipulación da lugar a la aparición 

de una gran cantidad cle indirecciones en esta clase de códigos. Hemos propuesto 

una extensión automatizable del modelo PiV1E ^10; 14^ para cubrir códigos con indi

recciones en los que cada posición de la estructura de datos tiene una probabilidad 

tmiforme de ser accedida a través de la indirección. En el ca.so de una matriz dis

persa el que tenga una distribución uniforrne supone que los valores no nulos de la 

misrna est^.n uniformernente distribuídos a lo largo de la matriz. A1 igual que el ctt.5o 

de los condicionales esta probabilidad debe scr suministrada corno un par^,rnetro de 

entrada al rnodelo. 

Examinando los conjuntos de datos de entrada típicamente manipulados por có

digos que realizan comptttación con matrices dispersas; descubrimos que la mayoría 

de las matrices tienen sus valores no nulos concentrados ímicamente sobre tma ban

da limitada de las mismas. En un primer momento propusimos una nueva extensión 

que cuhría el modelado de matrices banda asumiendo que los no nulos dentro de la 

banda estaban distribtúdos uniforrnemente ^14^. Sin erribargo, la ma,yoría de las ma

trices banda no tienen los valores distribuidos de manera uniforrne. Por ello hernos 

propuesto una nueva extensión del modelo ^13^ que perrnite el an^llisis preciso del 

cornportarniento de la caché durante la rnanipulación de esta clrtse de conjuntos de 

entrada. 

Hemos propuesto extensiones automatizables y modtilares para el modelado de 

códigos irregtilares tanto con sentencias condicionales como con indirecciones. La 

automatización efectiva del proceso requiere la extracción de la información utilizada 

por el rnodelo del código a ser analizado. En el caso de códigos irregulares esta 

información a mr,nucío se encuentra enmascarada en cl propio código ^ no contenida 

de forma explícita, por tanto necesitarnos una herrarnierrta de compilación que sca 

capaz de manejar información simbólica y hacer un auálisis avauzado dcl código. Ear 

nuestro trabajo hcrnos utilizado el compilador .•1' ^RK para autornatizar el modelado 
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de códigos con indirecciones con una distribución uniforme (6, 13]. 

Conclusiones 

La mavoría de los modelos analíticos de la caché existentes sólo cubren el mo

delado de códigos qne tienen patrones de acc.eso regulares. El modelado de códigos 

irregulares o bien lia sido realizado ad-ho<; para ciertos códigos o está basa^do en 

heurístic^is que no obtie:rten buenos niveles de precisiórt. En este trabzijo hernos pro

puesto ext,ension^^s que cubren las principales cautias de aparic,ión de irr<^;gularidad 

en los accesos de un código. EI rnanejo de iirforrnación estadística sobre los con,juntos 

de entrada por parte del rnodelo se ha mostrado corno la clave para poder obtener 

buenas estimaciones sobre el comportatnicnto de esta clase de códigos sin necesidad 

de ejecutarlos. 

Por tma parte hemos propuesto una extensión a,utomatizable y modular para 

códigos con sentencias condicionales donde la proba.bilidad de que cada condición 

sea cierta se rn^tirttiene uniforrne en cada evaluación de la, rnisrna. La fiabilidad de 

csta exte^nsión st^^ ha verificado cornpar^tndo lati prt^^dicciones de;l rnodelo con los resiil

tados de sirnulación dirigida por traza aplicando el rnodelo a mano sobre códigos de 

este tipo de creciente c,ornplejidad. La predicc,ión rnediant:e ur ► tnodelo arralítico del 

rendirniento de la caché durante la ejecución dc un código dado es una tarea ect si 

complicada. Considerar patrones de acceso irregulares aumenta considerablemente 

el grado de dificultad de realizar dicha predicción. A pesar de ellos los niveles de 

fiabilidad del modelo para códigos irregulares es alta. Además, a pesar de la mayor 

cotnplejidad computacional de las nuevas fórrnulas con respecto a las derivadas para 

códigos regulares, el tiempo de ejecución del modelo se mantiene extremadarnente 

bajo; en concreto éste está siempre por debajo de un segundo para cada ejecución. 

Hernos realizado otra extensión modular y automatizable para códigos con indi

recciones. Los códigos que hemos t,ornado corno ejemplo para realizar el modelado 

realizan contputación con rnatrices dispersas. En una primera extensión hernos cotr

siderado solamente matrices dispersas uniformes; es decir; en las que los valores no 

nulos de la matriz se encuentran uniformemente esparcidos a lo largo de la misma. 

El modelo propuesto para este caso es capaz de obtener una predicción fiable del 

rendimiento de la caché en un muy corto periodo de tiernpo. En un siguiente pa

so hemos estudiados colecciones como la la Harwell Boeing [28] y la NEP [18] que 

contienen un gran número de matrices típicas utilizadas en computación dispersa. 
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Hemos observado que rm alto porcentaje de las matrices que contienen son banda; 

es decir, la mayoría de los valores no nulos están esparcidos a lo largo de una banda 

limitada de la matriz. Ello nos ha llevado a proponer una aproximación para abordar 

el modelado de códigos que manipulan esta clase dé matrices. En este sentido, he

mos propuesto primero rma pequeña modificación para modelar el comportamiento 

de matrices bo-rnda rmif<^rme ,y posteriormente oY,ra extensión del modelo PI^-IE para 

ana.lizar códigos que maniprilan matrices en la que los valores no rnrlos no están 

uniforrnemente distribuidos dc;ntro de la banda. La validación de estos rnodelos se 

efectuó modelando códigos de crecicnte comple,jidad que utilizan rnatrices dispersas 

tauto sintéticas corno reales y cornparando luego las preclicciorres del rnoclelo con los 

resultados de sirnulaciorres dirigidas por traza. El tiernpo necesa,r•io para la ejecución 

del modelo se mantiene por clebajo de un segundo incluso para casos en los que 

la ejecución del código objeto del auálisis se prolonga durante muchos minutos. La 

fiabilidad cle la predicción obtenida continúa siendo muy alta. 

lina vez realizadas estas extensiones del rnodelo PI\^IE nos propnsirnos hacer la 

autornatización efectiva de algl,ma de ellas. Para ello utilizarnos una herrarni^^;nta 

avanzada de compilación, <^;1 conrpilador lAR,K; capaz de extra^^;r dc los códigos a 

aualizar la informacióu que el rnodelo precisa. Una vez automatizado todo el proce

so, abordarnos el rnodelado autornático de los códigos anteriores y de nucvos códigos 

contenidos dentro de la librería SPaR,SKIT ^43J especializada en el tratarniento de 

matrices dispersas. Los resultados obtenidos muestran que las prediccioncs siguen 

siendo las mismas que las obtenidas cuando habíamos aplicado manualmente las 

ecuaciones sobre los códigos. Una de las preguntas latentes durante la aplicación 

del modelado a mano era cuánto tiempo llevaría construir las ecuaciones del ^node

lo automáticamente utilizando como entrada la información de un compilador. El 

tiempo necesario para extraer la información del código por parte del compilador 

y utilizar ésta para generar una predicción del rendimiento usando el modelo sigue 

siendo realmente bajo y en algunos casos se mantiene varios órdenes de magnitud 

por debajo del tiempo de ejecución del código analizado. 

Lna de las aplicaciones de esta clase de modelos es servir de guía en un proceso 

de optimización. En este sentido; realizamos un experimento que consistió en utilizar 

el modelo P\^1E como guía a la hora de decidir cuál era el ordenamiento óptimo de 

los lazos en el producto entre una matriz dispersa y una matriz densa. Se hicieron 

pruebas utilizando tanto matrices sintéticas como reales de diferentes tamaños; den

sidades y considerando diversas arquitecturas reales con distintas configuraciones de 

la caché. La decisión adoptada guiándonos por el modelo siempre coincidió con la 
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adoptada usando como referencia el tiempo de ejecución del código en la máquina 

real. Incluso en caso de matrices no uniformes; aunque cuantitativamente la predic

ción del modelo era a veces inexacta. la decisión tomada utilizando el modelo como 

gttía era siempre la correcta. 

La ampliación del ámbito de aplicación del modelo PR-IE al campo de los códigos 

irregulares supone un gran paso adelante en la utilización efectiva de los modelos 

analíticos cotno alternativa a las técnicas tradicionales de sitnulación dirigida por 

traza y contadores hard«^are. Los códigos irregulares adolecen de falta de localidad 

y por lo tanto pueden obtener un gran beneficio de la aplicación de técnicas de 

optimización que la mejoren. además estas extensiones mantienen intactas todas 

las características deseables en una técnica, para el estudio del rendimiento de la 

memoria: fiabilidad en la predicción, rapidez en su ejecución y la posibilidad de 

conocer los entresijos del funcionamiento del código en h.igar de simplemente obtener 

una tínic;a cifra indicativa del rendimiento. 

Trabajo F^turo 

En un futuro planeamos abordar cl modelado del comportamiento de la caché en 

arquitecturas multinúcleo ya que éstas empiezan a ser cada vez más frecuentes hoy 

en día. La complejidad y novedad en el análisis de las jerarquías de memoria de estas 

arquitecturas, reside en la existencia de varios procesadores que pueden compartir 

uno o varios niveles de la caché. Trataremos de modelar esta situación usando el 

modelo PI^IE como base. La automatización efectiva del modelo puede mejorarse 

tanto para códigos con indirecciones y una distribución banda de la matriz, como 

para códigos con sentencias condicionales. 

Debio a su exactitud; rapidez y atnplio átnbito de aplicacióu; este tnodelo se 

ha convertido en una poclerosa herramienta para predecir el comportatniento de 

la caché. Planeamos usar el modelo para guiar optimizaciones tanto sobre códigos 

regulares como irregulares, adetnás de las ilustradas en esta tesis. Optimizaciones 

tales como, la selección óptima del tatnatio de bloque en la aplicación de la técnica 

cle blocking o métodos que nos pertnitan guiar la prebúsqueda de datos usando las 

predicciones del modelo. Sería interesante usar las capacidades del modelo en el 

campo de los sistemas embebidos y comprobar como sus predicciones pueden ser 

usadas en esta clase de sistemas para mejorar su renclimiento. Se ha desarrollado 

poco trabajo en este área del modelado del comportamiento de la caché de esta clase 



de sistemas. Intent^,remos derivar estimaciones del mínimo v el má^ximo número de 

fa,llos en código irregulares y usarlos en aplicaciones tales coino el c^,lculo del ^VCET 

(^Vorst Case Execution Time); wi probleina abierto en los sistemas embebidos. 
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Abstract 

The performance of rnemory hierarchies; in which caches play an essential role, 

is critical in nowadays general-purpose and embedded computing systems because 

of the growing memory bottleneck problem. linfortunately, cache behavior is very 

unstable and difficult to predict. This is particularly true in the presence of irregu

lar access patterns, which exhibit little locality. Such patterns are very conunon for 

example in applications in which some references are guarded by conditional state

ments or in which pointers or compressed sparse matrices give place to indirections. 

Nevertheless; cache behavior in the presence of irregular access patterns has not 

been widely studied. In this thesis we present separated extensions of a systematic 

analytical modeling technique based on PNIEs (Probabilistic Nliss Equations) that 

allows the automated analysis of the cache behavior for codes that include data

dependent conditional structures a.nd codes with irregular access patt,erns due to 

indirections; respectively. The model generates very accurate predictions despite 

the irregularities and has ver,y low computing requirernents; being the first rnodel 

that gathers these desirable characteristics that can analyze automatically this kind 

of codes. These properties enable this rnodel to help drivc compiler optimizations. 

The PNIE rnodel extension for codes with indirections has bcen iutegrated in the 

lARK compiler; a research compiler oriented to automatic kerncl recognition in 

scientific codes. We show how to exploit the powerful information-gathering ca

pabilities provided by this compiler to allow automated modeling of loop-oriented 

scientific codes. 
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Preface 

The perforrnance of rnemory hierarchies, iu which caches play an esseutial role, is 

critical in nowadays computing systems because of the growing memory bottleneck 

problem. Unfortunately, cache behavior is very unstable and difficult to predict. 

We need techniques that allow us to study accurately the cache behavior with a 

low cornputational cost, so they can be used for example as a guide in iterative 

opti ►nization processes. Hardware counters and trace-driven simulators have been 

traditionally used to study the cache behavior. These methods are very accurate 

but they have a very high computational cost and they provide us a swnmarized 

characterization of the cache performance bttt not any insights about the studied 

behavior. 

Analytical models try to predict the cache behavior using information from a 

trace of the memory addresses accessed by the code or from the source code to 

execute. Vlost analytical models only cover the modeling of codes with regular 

access patterns. The PNIE (Probabilitic \,iiss Equations) model [31] is an analytical 

model that can provide very accurate predictions of the cache behavior automatically 

with a low computational cost using information extracted fro^n the source code to 

execute. Although the ideas of the P114E model had been used to model some 

irregular kernels ^30^; there was not a general automatic strategy to model this kind 

of codes. This was a very important limitation for the application of this technique 

because irregrrlar codes are relatively common and they have very little locality. As a 

result, a big performance increase can be obtained by applying different optimization 

tecl► niques that improve the locality based on the predictions of a rnodel. The u^ain 

interest of this work is to propose a rnocíular, extensible and autornatic strategy for 

the modeling of codes with irregular access patterns. 

The existence of references with an irregular access pattern can be due to different 

causes: references guarded by one or several conditional statements; arrays indexed 

using the values contained in other arrays; pointers etc...In this ^vork; ^ve have 

1 
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considered t^+^o main sources of irregularity: the existence of references guarded by 

conditional statements and the accesses across indirections where an arra.v is indexed 

using the values contained in another array. Extensions to the P^•IE model have been 

proposed f'or both situations. 

In the case of conditional statements we have proposed an extension [7, 8, 11, 9, 

12] that can model references contained inside one or several conditional statements 

«^hose verification is deterinined dinatnically; that is; at runtime. One exatnple of 

this situation is a conditional statement the fulfillment of whose condition depends 

on an expression which involves a.n array reference whose value can only be deter

mined at runtime. The probability of fulfillment must be uniform; that is, it must 

be the same in each one of its evaluations and its value must be provided to the 

model as a parameter. If there are several conditional statements they must be 

independent, that is the probability of fulfillment of each condition does not depend 

on the fiilfillment of anv other condition. 

In the case of codes with indirections. we have used as a reference the codes that 

perform computations with sparse matrices. These matrices are stored using differ

ent compressed storage methods whose manipulation gives place to a big number of 

indirections. We have proposed an atttomatable extension of the P_l•1E model [10, 14^ 

to cover this kind of codes where each position of the data structure accessed across 

the indirections has the same probability of being accessed. As in the case of the 

codes with conditionals, this probability is an input parameter of the model. In the 

case of an sparse matrix this implies that the non-zero values must be uniformly 

distributed on the matrix. 

^Vhen «^e explore the typical input data collections for codes that perform sparse 

computations; we discover that most of these matrices have the majority of their 

non-zeros concentrated in a limited band. In a first step tti•e proposed an small 

modification of the PME model which considered that the values were uniformlv 

spread along the band [14]. But, most of the banded matrices have their values non

uniformly spread along the band. So a new PA^IE model extesion ^eas proposed (13] 

to cover this situation. 

«'e have proposed automatable and modular extensions for the inodeling of ir

regular codes both due to indirections and conditional statements. The effective 

automation of this proccess requires the extraction of the input data used by the 

►nodel frocn the analyzed code. In the case of irregular codes this infonnation is often 

masked in the code, so we need an advanced compilation tool capable of managing 
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symbolic information and performing an advanced analysis of the studied code. In 

our work we have used the X!^RK compiler framework for the automation of the 

modeling of codes with indirections and an uniform distribution of the va,lues [6, 13^. 

The results of all the stages of this work have been validated by comparing the 

model predictions with the result of trace-driven simulations. The results obtained 

in all the cases reflect that the model is verv accurate and that its execution is 

completed in a short time. The model execution always takes less than one second 

and in soine cases this tirne is several orders of rnagnitude shorter than the one 

necessary for the execution of the analyzed code. 

Ob jectives and Organization of this Thesis 

The scope of application of the Probabilistic h^Iiss Equation (PVIE) [31] model 

was limited to codes with regular access pattern. This work extends its scope to 

codes with irregular access patterns. In order to simplify the modeling, separated 

extensions are proposed for codes with data-dependent conditional statements and 

with indirections. 

The extension for codes with conditional statements allows the PR-IE model to 

predict the cache behavior of references guarded by this kind of sentences. The 

references can be affected by one or more conditionals with any kind of nesting 

between them. The conditions must follow an uniform distribution, that is, they 

must have an uniform probability of being true in each evaluation and if there are 

several conditional statements they must be independent. 

The extension for codes with indirections allows the PA-IE rnoclel to consider 

references in which an array; called the base arra}-, is refereuced using the values 

obtained frorn another array, called the index array. A^Iore than oue level of indirec

tion can be modeled by this extension. The model has been developed considering 

an uniform distribution of the values generated b^r the indirection; that is, all the 

positions in the base array have the same probability of being accessed using the 

indirection. A latter extension in this thesis allows the rnodeling of indirections with 

uniform and non-uniform band distributions. This distribution is very com^non in 

sparse matrices in Compressed Row Storage(CRS) format [19^. The codes that ma

nipulate this kind of matrices are the main source of benchmarks used to test this 

extension. 
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These extensions are fullv automatable and modular. The extension for codes 

with indirections is integrated with the XARK compiler to analyze this kind of codes 

automatically. The XARK compiler extracts the information from the source code 

of the program to analyze and passes it to the P^-IE model implementation. 

This thesis is organized as follows: Chapter 1 is a brief introduction to the 

problem of the cache performance study. It contains information about the differ

ent techniques used for this purpose, their inain advantages and disadvantages. It 

includes a survey of tnost of the existing analy tical models and their main charac

teristics. 

Chapter 2 carttains a description of the original automatable PI^^IE model that 

only covered codes with regular access patterns. The different stages of the PI^IE 

model are described in detaiL the miss probability estimation and the P^IE equation 

construction. No validation is included in this chapter because it belongs to previous 

«^orks and its accuracy has been already demonstrated [31]. 

Chapter 3 describes the PVIE model extension that covers irregular codes due 

to data-dependent conditional statements. In this chapter, the scope of application 

of the extended PVIE rnodel is established. The miss probabilit,y estirnation step is 

adapted to cover the new situation. There is a description of the new t,ype of PvIE 

tltat models the references tha^t are guarded b,y conditional statements. Finall,y; the 

accuracv of this extension is validated. 

In Chapter 4 the PIt-IE model extension for irregular codes due to indirections is 

covered. As in Chapter 3, there are several adaptations that must be done in the 

scope of application and the miss probability estimation process. Besides, new types 

of equations are added to the model to cover the new situations. This extension is 

also validated using several t,ypical kernels that exhibit this kind of access pattern. 

Chapter 5 covers the automation of the P^-IE model extension for codes with 

irregular access patterns due to indirections. The information requirements of the 

P1^^IE model are described, and the interface between the Pl^-iE model and the XaRK 

compiler is described ^15]. The role of the XARK compiler is to extract the informa

tion from the source code and provide it to the PR^IE model in the form established 

by the interface between them. A brief' introduction to the XARK compiler is also 

contained in this chapter. 

Finally, the extension of the P^-IE inodel for irregular codes has given place 

to several publications in the area of the study of the cache performance behavior 
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and prediction. The extension for codes with conditional statements is e^plained 

in [7, 8; 11, 9, 12]. The extension for codes with indirections has been split in several 

contribtttions: some of them covered the modeling for tmiform and banded uniform 

distributions [10, 14] while a. different contribution covered the modeling of non

nniform banded distribntions [13]. The antomzLtion of the PVIE model extension f'or 

codes with indirections nsing the XARK compiler was covered in ^6, 5]. 



Chapter 1 

An Introduction to Cache Modeling 

The gap between processor and memory speed is increasing year by year. Current 

architectures use a hierarchy of levels of inemory ^34^ in order to try to cushion this 

gap. This hierarch,y ha5 fast small memories in t,he top levels and bigger but, slower 

rnernorir;s in the lower k^;vels. ^om top to bottorn, rz t,ypical hierarch,y would be 

composed by the the processor regist<;rs; oue or sevc;ral levels of cache urc;rnory, the 

rnain meuror,y and the secondar,y storage. 

Each level in the hierarchy is divided in blocks. ^^^ hen the processor needs a 

memory item, the block that contains it is searched in the top level of the hierarchy. 

If it is not found, the request proceeds to the next lower level. The request is 

propagated this way down the levels in the hierarchy until the data is found. Once 

the block is found, it is loaded in all the levels above the one where it «^as fowid. 

When a block is found in a rnemory level, tha,t access is considered a hit, otherwise 

it is a rniss. The rniss rate of a level is thc ratio of accesscs that resrlt in a rniss. 

Cache memory blocks are termed lines and they are organized in sets. ^ll the 

sets have the same number of lines. This number is called the degree of associativity 

of the cache. ^^^hen a memory block is loaded in the cache; it can be stored in 

exactly only one set, but any of the lines in the set can hold the line. Depending on 

the possible location of a memory block in the cache we distinguish three types of 

cache organizations: 

n	 Direct mapped: Each set contains only one line; so each block can only be 

stored in exacth^ one line in the cache. This line is usually calciilated as 

¢ddress mod u,u^n wherc address stands for thc memory block address and 
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num stands for the number of lines in the cache. 

n	 Fully associative: If the block can be stored in any cache line because the 

cache has onlv one set that contains all its lines. 

n	 Set-associative: 1 he cache is divided in sets of K cache lines each. where K 

is the degrec of associativit,y. Each rrrerrror,y block can orrl,y be rnapped to a 

specific set. The block can be loaded in an,y linc inside that set. Thc set wherc 

a given block is stored is selected using the function address mod N^, «^here 

address is the block address and N^ is the number of cache sets. 

^`'hen a memory line is brought to the cache, it can be stored in any line of the 

cache (fully associative cache); only in a given line (direct mapped) or in a given set 

of lines (associative cache). If all the candidate lines to store a memory block contain 

valid information then; one of them must be selected to be replaced and make room 

for the ne«^ line. T'his selection is done according to a replacement policy. In our 

work we will use the most common replacement policy; the Less Recently Used 

(LRU) policy; in which the less recently referenced line is selected. 

The three types of cache misses are: 

n	 Cold or compulsory misses: Since data is brought to the ca.che on demand; 

the first access to a memory block restilts necessarily in a miss. 

n	 Capacity miss: If the cache cannot store all the blocks accessed during the pro

gram execution; then; there are blocks that are replaced during the execution. 

Latter references to such blocks result in capacity misses. 

n	 Interfcrence misses: They happen in direct rnapped ancl set-associative caches. 

In these kinds of caches a block can be replaced during the execution because 

many blocks are rnapped to its cache line or set of lines even if there is enough 

space in the cache to hold all the data. 

l^lemory hierarchies store the most recently used memory blocks in the top levels 

exploiting the locality typically found in the memory references of applications. 

Locality aPPears ^t^hen the same data is accessed multiple times in a short period of 

time. There are two types of locality ^4^^: 

n	 Ternporal locality : when a single rnemory item is accessed rrnrltiple tirnes in 

a short period of' time. 
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n	 Spatial locality : when two close memory items belonging to the same hlock 

are accessed in a short period of time. 

The memory performance can be improved by: 

n	 Reducing the miss penalty: the miss penalty is the time required to solve an 

access that misses in a level of the hierarchy. 

n	 Reducing the hit time: the hit time is the tirne necessary Y.o access a data itern 

when the corresponding block is found in a lc;vel of the rncmor,y hierarchy. 

n	 Reducing the miss rate: what can be achieved by improving the locality of the 

code to execute. 

The more the locality of the code is improved; the more data requests from the 

processor will be solved in some of the top levels of the memory hierarchy. In the 

last years a large number of techniques to study the cache behavior have appearecl. 

These techniques can be used in optimization processes [55; 2, 3] for improving the 

locality of a given code or for choosing the optimal cache configuration. 

1.1. Techniques to Study the Cache Behavior 

Three techniques are used no^vadays to study the cache behavior: trace-driven 

simulation; hardware counters and analytical modeling. Each technique is explained 

in turn. 

1.1.1. Trace-driven Simulation 

One of the first techniques proposed to study the cache behavior is trace-driven 

simulation [50, 57]. This technique consists in simulating the behavior of a given 

cache configuration for a sequence of inemory accesses_ This sequence of inemory 

references of a given program is called address trace. The address trace is processed 

using a program that simulates the proposed cache configuration and outputs a 

description of the cache behavior for the considered accesses. Generally; accurate 

estimations can be obtained using this technique; but it presents some problems : 
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n	 Trace collection is not a trivial task in complex scenarios where several different 

processes can be running concurrently, including the operating system and 

where the code is dynamically linked or compiled. an ttsual way to perform 

the trace collection is bv means of an instrumented version of the code whose 

behavior is to be analyzed. 

n	 A reduction of the trace size is often necessarv because the address trace is 

typically very large and it may need several gigabytes of' storage space. 

n	 Trace processing is a time consuming task and it usually requires mttch more 

time than the execution of the original code. Some approaches (38] try to 

reduce the number of instructions simulated by selecting a representative set of 

instructions while trying to avoid a loss of accuracy in the simtrlation. However, 

this still requires more time than the execution of the code to analyze. 

Consequently, trace-driven mernory sirrmlation can generate accurate estimations 

at the eYpensc of a high consurnption of resources and it is thus inadequatc to guide 

compiler optimizations. 

1.1.2. Hardware Counters 

Another technique suitable for studying the cache behavior is the use of hardware 

counters (4, 2^, ^8^; which are available in most current architectures. Hardware 

counters are registers that can take account of information abottt a wide range of 

events during the execution of a given code. There are several registers which can 

track inforrnation about a big number of events related to the cache behavior and 

that can be used in its study. These registers c;an work in t^vo diff^^rent modes : 

n	 In counting mode the registers are used for obtaining aggregate counts of 

occurrences of specific events. 

n	 «'hile in sampling mode the frequency of event occurrences in different scopes 

of the program can be tracked. 

This information can provide a precise picture of what is happening in the cache 

memories. This information is extracted using an interface that is différent in each 

architecture although in the last ,years standard interfaces such as PAPI ^20^ have 

been defined. However, hard«^are connters present a set of associated problems: 
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n	 Hardware cow^ters are present only in sotne architectures, and although they 

are available in most modern architectures there is a wide variation between 

the registers available in different systems. 

n	 The computational cost of this technique is high because it is necessary to 

execute the program to collect the information from the hardware counters. 

n	 The usage of hardware counters introduces an overhead in the execution due 

to extra instructions ancl can cause cache pollution, thus changing the cache 

behavior of the monitored program. 

1.1.3. Analytical Models 

Analytical models try to obtain accurate estimations of the cache behavior with 

a lo«^er computat^nal cost than the two previous approaches. They try to construct 

an analytical mó►lél that ean predict the cache behavior cíuring the execution of a 

given code. There are analytical models that use as their input an address trace of 

the rnernory addresses accessed during the execntion of the code, while other rnodels 

use as inpnt thc source code to cxecutc. 

This technique provides a more detailed insight of the observed cache behavior. 

Its main drawback is its limited scope of application and the limited degree of 

accuracy of some models. l^Iost analytical models only consider codes cvith regular 

access patterns, although the analysis of the Uehavior of codes with irregular access 

patterns is of great interest, as they exhibit less locality, and thus caches cío not 

perform «^ell for them. 

Previous Works in Analytical Modeling 

As ^ve said bcfore; there are mixed techniques based in analytical models that 

use information estracted from an address trace obtained in a previous execution 

of the code, like the technique proposed by :^garwal et al. [1]. This tnodel can 

derive cniss rates for different proposed cache organizations and ^vorkloads frotn the 

information provided in an address trace. The parameters used in this model are the 

probability of access to data or code lines and the probability of accessing consecutive 

positions. This work is mainly focused to a multiprogrammed system and pays a lot 

of attention to the influence of the operative system. F'or this purpose; it considers 

three different categories of misses: the cold misses that happen ^r•hen the cache is 
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initially filled; the non-stationary misses due to a change in the program data set 

and the interference misses due to collisions in random positions in the data sets. 

The model proposed hy ^uong in ^41J uses also information extracted from a 

trace of the rnemory addresses accessed by the program. It also considers that 

each block has an uniform probability of being mapped to each cache set. This 

model considers the misses as a whole set and it is based in the calculation of the 

average region accessed between two consecutive accesses to the same line. However 

it estiinates the nurnber of inisses produced in the instruction cache and not the 

data cache. 

The work proposed by Buck and Singhal in ^21J uses a tracc for stud,ying the 

hehavior of a fully associative cache. It, is based in the Independent R,eference Vlodel 

(IR,h•4) proposed by King in ^3dJ; which assurues that the probability of accessing cach 

line is constant along time. This assumption simplifies the model but it dramatically 

reduces its scope of application, because in the real «^orld programs work only with 

a limited ciata set in each period of time. 

In ^26^ Din and Zhong use information frorn very large address traces obtained 

dnring thc; cxecntion of a prograrn using a giv^^;n input data for pr<^^dicting its bc;havior 

in a fiiturc; prograrn run. The reuse distance betwe;en two consecutive accesses is 

measured using an optimized trec representation. It is only suitablc for programs 

that have a consistent pattern that make it predictable along diffcrcnt program 

executions. 

Another set of inethods try to model the cache behavior using information from 

the source code to execute. Some techniques c,an perform the modeling of a given 

optimization technique applied on a specific code, like the one described by Simecek 

a,nd Tvrdik in ^44^, that is centered in the application of the dynarnical loop rever

sal optimization ovcr the Choh^;sky factorization. This work considers any kind of 

cache configuratioir with Less R,ecentl,y Csed (L^R.L ) block replacernent polic,y. Its 

rnain advantage with respect to other anal,ytical models is that it rnakes a detailed 

modeling of recursive calls not cousidered b,y other works in this field. 

The «^ork presented by Temam et al. in ^47^ is based in the ideas introduced 

in ^48^. Its application is restricted only to direct-mapped caches a,nd codes with 

regnlar access patterns. It considers cold, capacity and interf'erence misses. 

There are some proposals which try to cover the modeling of a wider scope 

of codes. Chatterjee et al. propose in [42^ a detailed model based in Presburger 
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formulas that handles regular codes with either perfectly or non-perfectly nested 

loops giving accurate estimations. The main limitations of this model are its high 

computational cost and that it onl}r supports modest levels of associativity in the 

cache configuration. A different approach was proposed by Harper et aL [33^. T'he 

estimation provided is not so accurate and it supports the modeling of' perfectly 

or non-perfectly nested regular loop constructs for any kind of cache configuration. 

Cache miss equations (CIVIEs) are used by Ghosh et aL ^32^ fi>r analyiing a set 

of perfectly ncsted regular loops considc;ring caclre configurations with any level of 

associativity; its support for nou-perfectly nested loops is wcak. The CNIEs are 

a set of Diophantine equatious that are obtained once for cach considered codc 

arrd the solutions are obtained for every diffcrent situation anal,yzed changing sornc 

of the variables by the corresponding values. CIVIEs are used also by Vera and 

lue [56, 54] for analyzing perfectly nested regular loops. It has a better support for a 

significant subset of non-perfectly nested loops and statically analyzable conditional 

staternents [53[. ^ 

The Probabilistic Miss Equation (PIVIE) rnodel ^31^ is a probabilistic model of 

the source codc capablc of amrl,yzing the cache behavior of scientific codes with both 

perfectly aud non-perfectly nested loops. The model has a low cornputational cost 

and the prediction obtairred is quite accurate, but its scope is limited to codes with 

regular access patterns. 

As for the modeling of codes with irregular access patterns; the models found 

in the bibliography are not systematic enough to be automated or do not provide 

accurate predictions. The method proposed by Temam and .Talhy in ^49^ studies 

the autointerferences in the vector irrvoh^ed in a sparse rnatrit vector product in a 

direct-rnapped cache, but it does not consider the interference with the other dat,a 

structures in the code. The approach described by Ladrrer et al. in [37J is ^.rn ad-hoc 

rnodel ^vhose scope of application is limited only to direct-rnapped caches and it does 

not consider tlrc interaction between different interleaved access patterns. These 

limitations were overcome in the probabilistic model [30^ but it was not systematic 

enough to be automatable. 

Some works have tried to approach the modeling of the cache behavior in codes 

with irregiilar access patterns automaticall,y. The indirect accesses rnodel [22; 24; 23^ 

of Cascaval u.nd Padua is integrated in a compiler frarnc^vork; but it is a simple ancl 

inaccurate heuristic that estimates the nurnber of cache lines acccssed rather than 

the real nurnber of misses. For exarnple; it does not takc into account the distribution 

of the irregular accesses and it does not account for conflict misses; since it assunres 
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Table 1.1: ^-Iain characteristics of the existing analytical models of the cache behav

ior 
Analytical Nlodel Input :^ssociativity Scope Autornatic :^ccuracy 

Agar^val ^1^ Trace rlny Both Y^s Lo«^ 

Quong (41^ Trace Any Both Yés Low 

Buck and Singhal [21] Trace Fully^ Both Yes High 

Ding and Zhong [26J Trace rlny R.egular Yes High 

SPLAT ^46^ Trace An,y Both Yes Lo«^ 

Temam et al. [47] Source Direct Regular No High 

Simececk and Tvrdik [44J Source Any Ad hoc No High 

Ternarn asrd .Ialby ^49^ Source Direct Ad-hoc Yis High 

Chatterjee et aL [42^ Source Low Regttlar No High 

Harper et a. [33] Source Any Regular No Lo^v 

Ghosh et aL [32] Source Any R.egular Yes High 

Vera and lue [56J Source An,y R.egular Y<;s High 

Ladner et al. [37^ Sóurce Direct Both No High 

Cascaval and Padua ^23] Source Any Both Yes Lo«^ 

P1^^IE [31] Source Any Regular 1'es High 
Fraguela et aL [30^ Source Any Ad-hor, No High 

a fully-associative cache. Auother approach is that of SPLAT [46], a tool that 

analyzes codes in several phases: the reuse and volume phases, where compulsory 

and capacity misses are computed respectivelv considering a fully associative cache; 

and the interference phase, where conflict misses are calculated considering a direct

mapped cache. Irregular accesses due to conditional statements and loops with 

a variable number of iterations are modeled using the information derived from a 

previous profiling of the code. 

Table 1.1 coutains a summari^ed overview of the main characteristics of the an

ah^tical models wc have studied in this scction. The first column specifies ^vhether 

the model uses as input the trace of the memory addresses or the source code, the 

second colurnn if it can model the behavior of any cache [1^; only direct mapped 

caches or only caches with a low degree of associativity-. The third column describes 

the scope of application of the model. It classifies a model in one of three categories 

: those that can model the cache behavior of regular codes; irregular codes or both 

types of codes. The fourth column indicates whether that model has been auto

mated, and the fifth one contains the degree of accuracy of the obtained prediction. 

The main drawback in trace-based methods [1, 41, 21, 26; 46^ is their high com
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puta^tional cost, becs,use the rea^l code must be executed to obtain the input trace. 

The source-based methods are more ^.ffected b^^ the problein of the limited scope of 

application. They are mainly limited to regular codes ^47; 44, 42, 33, 32^. Some of 

them cover irregular computn,tion ^37, 23^ but either they are not s,iitomated or the 

^ccur^zcy of the provided prediction is lo«^. 
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The PME Model 

2.1. Introduction . 

The P1VIE (Probabilistic IVliss Equations) rnodel ^31J estimatcs accurately the 

number of rnisses in a cache during thc execution of a given coclc ^vith a low compu

tational cost. Cache misses can be classified into three groups. Conrpulsory or cold 

misses take place the first time a given memory line is accessed, since clata lines are 

loaded in the cache on demand in this first access. Although a nreinory hacl been 

accessed previously, it may not be found in the cache in an attempt to reuse it. 

This can be due to the fact that the cache is not large enough to store all the data 

accessed by the studied code (capacity miss) or due to other data items having been 

mapped to the same cache set and evicting then that line from the cache (interfer

ence miss). In our work; we consider both capacity and interference misses together 

as interference misses because both kinds of misses happen when a line that had 

been referenced previously has been ejected from the cache since its l^LSt access due 

to interferences ^vith other lines mapped to its cache set. An attempt to reuse a line 

results in a miss with a probability that depends on the cachc footprint of the data 

acccssed since the previous refereuce to the cousidcred liue. 

E^ample 1. The code in Figure 2.1; which performs the addition of arrays B and 

C storing the result in array A; will be used to drive the esplanation of some basic 

concepts of the model. The cache represented in this figrire can store 16 elements 

^vith 4 sets of 1 line per set; a.nd each line can store 4 eleme^rts. Considering this 

code and this cache; if the first element of arra^^ A is stored in the first position of a 

lr
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A(1) B(1) C(1) 

DO I=1,10 
A(I)=B(I)+C(I) 

A(2) B(2) C(2) 
A(3) B(3) C(3) 
A a B(a) c(a) 

ENDDO 
R 

euse 
^it 6 A(6) 

it 7 A 7 B^ ^('T) 
it 8 A(8) B(8) C(8) 

A(1) A2) A(i) A(4) A(5) A(6) A(n A(8) A(9) 10) i[ 9 A(9) B(9) C(9) 

Cs=16;Ls=a;k=1 it 10 A(10) B(]0) CQO) 

Figure 2.1: R.euse iu a silnple loop 

mernory line, then the acc,esses to A(1); A(5) and A(9) could give place to cold misses, 

while the acc,esses to the rernaining elemt^nts of the array A are possible interference 

rnisses n 

The Pl-1E model estimates the number of misses generated b^- each static reference 

fotmd in a code by means of an equation, ca^lled Probabilistic, Iv'Iiss Equation, which 

includes the nurnber of differenY lines it accesses (cornpulsory rnisses); the number of 

line reuses it generates, and the interference probability for snch accesses (interfer

ence rnisses) during the execution of the prograrn. 1^orrnall^r; each given line can be 

reused with differeilt rcuse distances, that is, different portions of code are executcd 

in bet«^een dif%rent attempts to reuse the liue. In the case of references found in 

loop nests, ^^^hich is the scope of the PNIE model; each loop enclosing a reference 

gives place to a different reuse distance, which can be measured in terms of loop 

iterations, that (possibly) characteri^es solne of the reuses not captured by inner 

loops. 

Exarrcple 2. The right side of Figure 2.1 colltains the accesses to the three arrays 

involved in the code of the left side of the figure. The accesses belonging to each 

iteration are depicted in a dif%rent line. The equation that calculates the number 

of misses of arra^- A should reflect that the accesses to A(1), A(5) and A(9) are 

colnpulsory misses, while the accesses to the remaining elements of array A will be 

possible interference lnisses. As the access to A is sequential, there is a possible reuse 

of the line of this arra.y accessed in the previous iteration in those accesses that are 

not the first ones to a cache line. The reuse distance for these possible reuses is one 

iteration of the loop. The data accessed since this previous access to the same line 

are alwavs one element from arra^r B and C, respectively n 
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DO I^ =1, N^
 

DO I1 =1, N1
 

DO IZ =1, NZ
 

A(fai(Iai)^ •- , ►a^(IA^))^ ...) 

END DO 

END DO
 

END DO
 

Figure 2.2: \ested loops writh structures accessed using affine functions. 

Our rnodel estimates the nurnber of misses generated by a refcrence b,y exploring 

the loops that enclose it from the imicrmost onc to the outermost one. In each 

loop the inodel builds a partial P\^IE that adds information about the reuses ^vhose 

reuse distance is associated with that loop. Specifically; each partial PVIE estimates 

the number of accesses generated by the reference that cannot exploit reuse in the 

considered loop, the number of accesses whose reuse distance is associated with 

this loop, and the associated miss probability for such reuses. The PA^IE for each 

loop and static reference is expressed recursively in terms of the PA^IE for the same 

reference in the immediatel^T inner loop, so that it contains all the information for 

the behavior of the reference within the loop. Thus; the P\^tE associated with the 

otttermost loop in a nest takes into account all the reuses; and its evaluation yields 

the number of misses generated by the reference during the execution of the loop 

nest. 

In Section 2.2 the scope of application of the PI\^IE model is established. Sec

tion 2.3 contains a detailed description of ho^^- the miss probability of every access 

is ca.lculated. This task is performed in three steps : access pattern identifica

tion; cache impact yuantification and area vectors addition; which are described in 

Sections 2.3.1; 2.3.2 and '2.3.3 respectively. Finalh-; Section 2.4 describes the prob

abilistic miss equation that calculates the number of misses of a given reference. 
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CS Cache size 
LS Line size 

K Associat,ivitv of t,he cache 
DA ^ of dimensions of array A 
D,^^ size of the j-th dimension of arra}^ A 

Clp^ C11rnl11at1Ve Slze Of tllc', ^-tll C11IT1eI1SlOr1 Of arr?1,y A; (^,e,^ _^k_I Dpk 

aR^ constant that multiplies the loop index 

bR^ constant a.dded to a loop index 
Ni ^^-;' of iterations of loop at nesting level i, ^vhose indes is Ii 

SR^ stridc of reference R with respect to the loop at nestirlg level i; SR^ = aR^ • dA„ 

where j is thc dimension of arra}^ A referenccd by R indexed 1>y I^ 

LR^ ^ of different sets of' lines (SOLs) accessed by reference R during 
the execution of the loop at nesting level i 

Table 2.1: tiotatioll used in the Inodel description 

2.2. Scope of Application 

Figure 2.2 depicts the scope of application of the PI\-IE model for regular access 

patterns. _<^ reference to an array follows a regular access pattern when its indexes 

are lincar functions of the loop indices, and neither indirections nor conditional 

statements affect the reference. The figure sho«^s a set of normalized perfectly or 

non-perfectly nested loops in ^rhich the nurnber of iterations of ever^ loop must be 

the salne in every execution of the loop. The reference indexes are affine functions 

fi = azlti + b2 of the loops control variables Ii. 

As for t,he hardware, our model considers set-associative caches of an arbitrar,y 

size Cs, line size Ls arld associativit,y K with LRU replacernent policy, ^^hich is the 

most common situation. Table 2.1 dcpicts these ones and other paramctcrs we will 

make reference to during the explanation of our model. For simplicit^^, in all our 

terms and equations, sizes and strides are expressed in elements of the arra5- whose 

access is being analyzed rather than in bytes. 

2.3. Miss Probability Estimation 

As explained in Section 21, in the study of' a reference the PVIE model computes 

the nurnber of accesses that can reslilt in either a cold or an interference miss. The 

reuse distance is the distance betwec:n an access to a given line and thc previous 
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SURROUNDIN 
LOOPS INFO 

REUSE 

DISTANCE 

ACCESS 
PA7TERN 

mENTIFICATIO , 

ACCESS 

PATCERN 

CACHE 
IMPACT 

QUANTIFICATION 

AREA 

VECTORS 

AREA 
VECTORS 
ADDITION 

MISS 

PROBABILrCY 

REFERENCE 

INDEXES 

Figure 2.3: Procedure for estimating miss probabilities from the code 

access to that line. It is necessary to collect the set of inemor}^ regions that has been 

accessed during a reuse distance. These memory regions, or; conversely, the access 

patterns that reference them; generate a miss probability for the attempts to reuse 

lines by the analyzed reference R. These probabilities are used by the P^-1E model 

to estimate the number of misses of the studied reference. In a K-way set associative 

cache with LRU replacement policy, an attempt to reuse a]ine resnlts in a miss if 

K or rnore different lines accessed since the last reference to the considered line are 

rnapped to its cacht; set. As a result, the miss probability in ^t non-first access is 

equa^l to the probabilit;y that a cache set has received K or more; lines during the 

reuse distance, that is, the portion of code executed since Y,he immcdiately previous 

access to the line. 

Example 3. The cache represented in Figure 2.1 is direct Inapped, so it has an 

associativity degree K= l. As a result, the miss probability in an attempt to reuse 

a given line is calculated as the average probability that 1 or more lines; accessed 

during the reuse distance, are mapped to its cache set n 

The PNIE model follo^^rs the three steps shown in Figure 2.3 to estimate thc 

interference probability associated «^ith a rcuse distancc: 

n	 Access pattern identification: the access pa,tterns followed by the references 

invoh^ed in the reuse distance and the parameters that characterize them are 

inferred from the references indexing functions and the shape of the loops that 

enclose them. The PI\^lE model represents each pattern as a function whose 

out,put is the footprint of the access pattern on the cache. There is one function 

per each typical access pattern (seyuential access, access with constant stride, 

etc.); and its argumeuts provide the quautitative characteri^ation of the access 

pattern. 

Example ^1. In the example of Figllre 2.1; in the rense distance for the possi

ble interference misses of arrav A. 1 iteration. there is one access to one isolated 
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element of arrays B an C respectiveh-, both identified as sequential accesses to 

one element. n 

n	 Cache impact quantification: each access pattern has an associated rniss prob

ability. The lines that belong to a cache set that have received K or more 

lines from this pattern during the reuse distance can not be rcused. So the 

miss probability associated to an access pattern is the ratio of sets that receive 

K or more lines. ^Vhen the access to several arrays is considered together, 

it is important to keep the information about the ratio of sets that received 

1. .. K- 1 lines, because when the effects of these lines from different arrays 

are considered together they can contribute to increase the miss probability. 

So, a vector of probabilities; called Area Vector, is associated to each access 

pattern. 

E.carn^^le ^. Ir ► the example of Figure 2.1, the cache can storc Cg = 16 ele

ments distributed in 4 sets ^^^here every set stores K= 1 cache line of LS = 4 

elements. In the reuse distance one element of arravs B and C is accessed. 

each one of these element will go to 1 of the 4 cache sets. The destination 

set will be determined by the base position of the arrays. It is known that 

for each array; B and C, 1 of the 4 cache sets will receive K= 1 lines while 

the remaining 3 cache sets will not receives any element from the array. So; 

a cache set receive 1 line with a probability 1/4 = 0.25, and that is the miss 

probability associated to that reuse distance for the access to that array n 

. Area vectors addition: once the area vectors for the different access patterns 

have been estimated, they must be added in order to calculate a global area 

vector that represents their summarized impact on the cache. 

Once these three steps are completed; the final interference probability is esti

mated as the ratio of sets that received K or more lines during the reuse distance, 

which is conversely the probability a given set has received K or more lines. This 

va,lue can he extracted from the global area vector associa,ted with the analyzed 

reuse distance. ^^l^e ^-i11 now describe in more detail the three steps of the miss 

probability estirnation process. 
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2.3.1. Access Pattern Identification 

Iu Section 2.1 we sa^v that reuse distances are measured in terrns of the uurnber 

of iterations of a loop. In order to identify the access patteru that a given refcrencc 

R follows during a reuse distance consisting of n iterations of the loop at nesting 

level h; the indexes of each dimension and the number of iterations of each loop 

during this reuse distance are exatnined. The output of this analysis is a D.,^-tuple 

RR(h, n), where DA is the nu^nber of dimensions of the array A referenced by R. 

Each element of this tuple consists in its turn of a 2-tuple RR^ _(M^, S^), where the 

M^ is the ntunber of different points accessed along dimension j a.nd S^ the constant 

stride between two consecutive points. 

The algorithm followed to calculate the 2-tuple associated to dimension j of 

reference R during n iteiations of the loop at nesting level h is described now. 

VlWhen the index of the reference is an afñne ftmction aRj •I1+óR^ of some loop index 

Ii, the set of poirit^ accessed in this dimension by R can be represented as the tuple 

(Itersi(h, n), SR^), where Itersi(h, n) is the number of different values that I2 takes 

during n iterations of the loop in nesting level h. This value is calculated as 

1 ifi<h 

Iters1(h, n) = n if i= h 

Ni ifi>h 

Let us remember that the loops are labeled from the outermost one, at nesting level 

0, to the innermost one using increasing integer values. The value SRt is the stride 

that reference R has with respect to loop i. This stride is a constant, since the index 

we are considering is an affine function of Ii. SRi is calculated as aR^ • d,^^, where j is 

the dimension whose index depends on Ii; aR^ is the scalar that multiplies the loop 

variable in the afñne fimction, and d,^^ is the cumulative sizer of the j-th dimension 

of the arra,y A referenced by R. 

Once the D,^-tuple RR(h, n) that represents the region of array A accessed by 

R during n iterations of the loop at nesting level h has been calculated; some si^n

plifications may be applied between pairs of 2-tuple RR^ that describe tlie access 

1Let A be an N-dimensional array of size DAr x D,^2 x... D,^N; we define the cumulative size 
for its j-th dimension as dA^ _^;=i DA; 
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DO I = 1, M
 

DO K = 1, N
 

DO J = 1, H 
C(I,J) = C(I,J) + A(I,K) * B(K,J)
 

ENDDO
 

ENDDO
 

ENDDO
 

Figure 2.4: Nlatrix Product 

pattern in different dimensions of' the array: 

((1, S^), (M^, S^)) _ (M^, S^) 

((M^, S^), (Mk, M^ • S^)) _(M^ ' M^, S^) 

^ft<^r these sirnplifications a single 2-tuph^; (Ms, S8) that describes the region 

accessed by the reference is typicall,y obtained. 

Rather than this description of the memory region accessed, the output of the 

access pattern identification step is a function that characterizes the a,ccess pattern 

whose output is the area vector associated to it. Depending on the values of S8 in 

a tuple RR^, two kinds of access pattern fimct,ions can be identified: 

1. If Ss = 1, it is an access to M,, consecutive elements. «-e denote the func

tion that calculates the area vector associated to a region of M3 consecutive 

elements as IiegS(MS). 

2. Otherwise it is an access to a set of M8 regions of one clernent separated 

b,y a constaut stride S9. Such access pattcrn is represented by the function 

R.eg^(M9,1, S9)• 

Finally; although the access pattern functions have been presented based on the 

values of a single tuple RR^; it is not always possible to reduce RR(h, n) to a single 

tuple. All the cases of this kind we have f'ound in the codes we have analy^ed 

had the form RR(h, n) _((Mr, 1), (M2, S2)), which can be represented by fnnction 

Reg,.(M2, Mr, S2). It represents an access to M2 separate groups of Mr consecutive 

elcrnents separated by a constant stride S2. 
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Example 6. VVe will use the code in Figure 2.4 as a driving example to illustrate 

the different steps of the PI\^fE model. This code performs the product between 

two matrices A and B and stores the result in matrix C. The calculation of the 

miss proba.bility associated to an access whose reuse distance is one iteration of 

loop K must consider the effects of all the accesses that take place dnring that reuse 

distance. In one iteration of this loop there are accesses to arra,ys A; B and C: 

n	 R.eference C(I, J): The first dinrension of reference C(I, J) is inclexed l^y the 

index of the outerrnost loop I at nest ►rg level0, so the tuple RRr that describes 

its access is (Itcrso(1,1), SRr), being Iterso(l, 1) = 1 and SRl = 1. The sccond 

dimension is indexed by the index of the innermost loop J at nesting level 2 so 

RR2 =(Iters2(1,1), SR2) being Iters2(1,1) = N2 = H where N2 is the number 

of iterations of the loop at nesting level 2, and SR2 = M. So, RR(1, 1), the 

pair of tuples that define the access to each dimension of the array C in 1 

iteration of n;esting level 1, is ((1, 0), (H, M)) which can be simplified to the 

tuple (H, M)'^ This tuple will be identified as a region Regr(H,1, M), that is, 

H groups of 1 element separated by a distance M. 

n	 R.eference A(I, K): The first dimension in reference A(I, K) is indexed also b,y 

the index of the outermost loop I, so the tuple that characterizes the access 

in this dimension is also (1, 0). The seconcl dimension is indexed by the index 

of the current loop K, so Itersr(1,1) = n= 1 and SRr = H; resulting in the 

tuple (1, H). These two tuples can also be simplified to the tuple (1, H), which 

can be identified as a region RegS(1) the access to one element of this data 

structure. 

n	 Reference B(K, J): This rc;ference is indexed by the irtdex of loop K in its first 

dimension, so the associated tuple is (1,1); while the second dirnension is 

indexed by the index of the inner loop J, so Itersz(1, 1) = H and SR2 = N, 

resulting in the tuple (H, N). Both tuples can be rnerged and the resulting 

tuplc is (H, N); which can be identified as a region R,eg^(H, 1, N), the access 

to H groups of 1 elernent separated by a distance N n 

2.3.2. Cache Impact Quantification 

The functions identified in the previous step are evalnated in order to yield 

vectors of probabilities called area vectors that represent the irnpact on the cache of 

the access they represent. The area vector V associated with a given set of accesses 
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H	 ^ l^ 
Cache sets 

VSe^=(0,14/15,1/15)Vcross=(^/g^l/S,0) 

Figure 2.5: Cross and sef interference area vectors for a footprint on a 2-«-ay asso
ciative cache with 8 sets 

on a cache with associativity K consists of K+ 1 probabilities Vo, Vl, ..., VK. The 

P1^-IE model considers two kinds of area vectors: 

n	 Cross interference area vectors represent the impact on the cache of the 

considered access pattern as viewed by lines not invohted in the access. In 

these vectors, V, K>_ i> 0 is the ratio of sets that hold K- i lines of the 

accessed region, and Vo is the ratio of sets that hold K or more lines. These 

ratios are also conversely the probabilities. For example Vo, is the probability 

that a set in the cache has received K or more lines accessed by the pattern, 

Vi is the probabilit^ a cache set has received K- 1 lines, and so on. 

n	 Self interference area vectors represeut the impact of the footprint on 

the probability of reuse for the lines it involves. In these vectors, Vo is the 

probability that a line of the footprint is competing in its cache set with other 

K or more lines of the footprint. For K> i> 0, V is the probability a line of 

the footprint shares its cache set with other K- i lines of the access. 

E^ample 7. As an example let us consider a 2-^^^ay associative cache with eight 

sets and a reference that h^^s ,just accessed 15 lines sequentially. As a resizlt, seven 

of the eight sets contain two of' the lines referenced, while the other set contains 

,just one line; as it is illustrated in Figure 2.5. Thc cross interference area vector 

generated by this access is (7^8, 1^8, 0); as 7 out of the 8 sets have received two or 

cnore lines frorn the access; ot► ly one set received a single line; and no sets received 

zero lines. These ratios are conversely the probabilities a randonil}^ chosen set has 

two or more; one; or zero lines in it, respectively. 

The self' interference area vector for this access is (0, 14^15, 1^15). The first 

component is zero, as none of the lines involved in the access has to compete for 
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Regs(10) 

Regr(3,1,4) q q q 

Figure 2.6: Footprints of' the most common regular a^cc,ess patterns 

its c<rchc set with other two or more ot,he;r lines frorrr the footprint. The second 

componcnt is the ratio of lines of th^^; footprint that share their cach<^; set with exactly 

one line (14 out of 15). Finall,y; accordirrg to thc third component; only one of the 

15 lines of the footpriut docs uot sharc its set u^ith auy other liue of the footprirrt. 

These ratios are conversely the probabilities a randomly chosen linc of the footprint 

has to compete in its set with two or more; one; or no lines; respectively n 

The equations and algorithms developed to estimate the cross and the self in

terference area vectors associated to the sequential access and the access ^^ith a 

constant stride access patterns are presented now. 

Sequential access to n consecutive words Regs(n) 

The sequential access to n consecutive words Regs(n) (see Figure 2.6) genero-tites 

a cross interfcrence area vector AV3: 

AVscK-^^^^ (n) =1- (Z - L^J ) 
AVscK-^u-1^(n) = l - LlJ
AVS,(n)=o o<Z<x-LaJ-I,x-L^J<2<x 

where l = max{K, (n + LS - 1)/(LSNK)} is the maximum of K and the average 

number of lines placed in each set. In t,his expression, L3 sta.rrds for the line size and 

NK for the numbcr of cache sets. The nurnber of cachc sets NK can be calcrdatc;d 

a.5 CS/LSK. The terrn LS - 1 added to n stancls for the average extra ^vords brought 

to the cache in the first and last accessed lines. 

Expression AVS(C(n)C8k) calculates the autointerference area vector of this ac

cess; being Csk = CS/K. The autointerference that affects to each line is equal to 

the cross interference of an array of C(n)(C8k) elements; where C(n) is the number 

of lines of the array competing by the same cache set. This arra}- ^corrld add C(n) 

lincs to each set. The method to calculatc C(n) is detailed in the next section. 
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Number of lines of a vector competing for the same cache set 

^^'e need a function to corupui;e the average rrurnber of different lines that cornpete 

^^^ith a givcn line for the same cache set. This value will be used in the calculation 

of the self-interference probability. For a data structure of n consecutive words, this 

function is defined as: 

G,(n) = LvJ (v - LvJ ) ( LvJ + 1) + ( LvJ _ 1) ^1 _ (v - lvJ ) ( LvJ + 1) 
l (2.2) 

_ ^vJ (2v - ^vJ -1)
v 

where v= n/C,k is the avera,ge number of the data structure associated to a given 

cache set. If v> 1, in the (v- Lv J) x 100 % of the cache sets, the number of lines of the 

data structure competing with another one is wJ. In this area the h-1^Iv«vl+il x 100 

% lines of the data st,ructure are located. In the rernaining cache, the rnrmber of lines 

that cornpetes is wJ - 1. Using this average valne, the equation ( 2.2) is obtained. 

Besides it r,an bc chec;ked that if v< 1, that is, when the data structure c,overs a 

mrrnber of lines nriYror or cqual than the number of cache set,s, this expression takes 

the value 0, because there is no self-intcrference. 

Access with a constant stride Reg,.(N,.,T,.S,.) 

The estimation of the area vector associated to an access to several elements 

of the data structure ^i^ith a, consta.nt stride is performed through a mixed method 

that im-olves the calcula,tion of' the starting and ending points of each region on the 

cache; from which we obtain the arithmetic mean of the number of' lines mapped to 

each cache set. The corresponding area vector is obtained from t,hese vahres. 

Let us consider the access to N^ regions of size Tr with a constant stride Sr 

between two consecutive regions R.eg^(N^, T^, S^)(see Figure 2.6). In the first step 

the positions C2 and Fi corresponding to the start and the end of each region in the 

cache are calculated; considering that: 

Co=O 

C2 =(Ci_r + Sn) mod (C5/K), 0< i< Nn (2.3) 

Fi=(Ct+Ta-1)mod(C,/K),0<i<Nn 

where CS is the cache size and K is the degree of associativit}-. Frorn now on 
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CS^; = CS/K. In two vectors C^' and FV of size Cyk, initialized to zero, we add one 

unit for each position associated with a Ci or an Fi; respectiveb. They are then 

analyzed calculating the average number of lines of the access corresponding to each 

set of L, positions in these vectors, that is to say; to a line of a cache set. Three 

values are used to do this. The first one is given hy: 

Csk-1 

Lc(^) _ ^(T^ - 1)/Csk^Nr+ ^ CV(i) (2.^1) 

i=Csk-(T -1) mod Csk 

that stands for the number of lines corresponding to different regions that are guar

anteed to be associa,ted to the first set in the considered cache. These lines come 

from all of the regions if T^ > Csk; which is the first term in the addition; a,nd/or 

from those regions that start in preceding sets and whose end has not heen reached. 

For a set starting in position j this value is recalculat<^:d as: 

Lc(j) = Lc(j - 1) + CV(j - 1) - FV(j - 1) (2.5) 

On thc other hand; we have LF(j), the av<^;rage nurnber of lines ^r.5sociated to regions 

that end in the set starting in position j of the cach^^; having chosc^;n Co = 0, but 

that with shifts Co = 1, ... LS - 1 rnight fiuish in the ncxt set. It is calculated as: 

j+Ls-i 

(2.6)LF(j) _ ^ FV(2)(2 -7)lLS 
i=j 

The nurnber of regions that start in a given cache set rnnst be taken into account to 

calculate the average nurnb<^^r of lines associated to it. This reqnires using a w^^^ight 

similar to the one used in (2.6) to take into accorurt the possibility that with diffcrent 

starting positions for Co the regions start in the next set. This value Lc would be 

calculated for each set starting in position j as: 

j-}-L,-1 

Lc(j) _ ^ CV (z)(LS - (z -7))lLs 
i=j
 

We are now in a position to calculate thc averagc rnrmbc;r of lines associated to the 

cache sets starting in positions j= 0, L5i ..., Csk - LS ^^.s: 

L(j) = Lc(j) + LF((j + Csk - LS) mod Csk) + Lc(j) (2.8) 
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Finallv. the cross interference area ^^ector associated to this access would be calcu

]ated from these values as: 

NK-1
 

AVr(Nr,Tr,Sr) = ÑK ^ AVS(L(iLs)Csk) (2.9) 
i=0 

becausc; an av<^xage of L(iLs) lines will be rnapped to the i-th cache set; and the 

cross interference area vecl:or associated to an interference with n diíferent lines is 

AVS (nCsk ) . 

The calcula,tion of the self-interference area vector is performed as follows: 

NK-1
 

^ AVs(max{0, L(iLy) - 1}C,k)L(iLy) 

(2.10)AVra(Nr^Tr^Sr) = a-0 
NK-1 

^ L(iL5) 
á=0 

The same idea is applied but considering that e^tch line in the i-th set cornpetes 

with othe^r L(iLs) -1 lir)es. The s(,If-int(^^rference area vc;ctor for cach set is rnultiplied 

b,y the numbcr of lines that go to that set, obtaining the final vector averaged b,y 

liue. 

2.3.3. Area Vectors Addition 

The prececling step generates an ^,rea vector per data structure accessed during a 

reuse distance. Each component ol' one of these area vectors V yields the probabilit^

a given cache set will hold K or more (Vo); or K- 1 (Vl), etc. lines becattse of the 

accesses t.o the corresponding dat^z structure that can interf'ere ^vith the reuses of 

the reference whose beha^^ior is being analyzed. In this final step of' the process 

thes^^; are;a vectors are added in order to get a global interfere;nce arr;a vector that 

represents the total impact on thc cache of all the accesses that take place during 

the considered reuse distauce. The component 0 of this global area vector is the 

miss probabilit,y we arc ttying to estimate. Given two area vectors V,^ and Vn, their 

addition; represented by the operator U, is calculated as 

(V^ U VB)^ - ^^ 0 (V^i ^^0^ VB;) (2.11) 
0 G 2 < K(V^ U Vn)1 -^K i V^iVa(K+;-i) 
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This method is based on the addition as independent probabilities of the area 

ratios, which means that it does not take into account the relative positions of 

the program data structures in memory. This approach a.llows the PR1E model 

to provide reasonable estimations in many situations in which the base addresses of 

the data structures are not known at compile time (e.g. physicalhl-addressed caches, 

dynamically allocated data structures, ...); something that; a.5 far as we kno^v, no 

other rnodel supports. Wlren those base addresses are known at cornpile tirne; each 

area vc;ctor is scaled before its addition b^r rneans of a cocfficient that represents 

the arnount of overlapping bet;ween the regiou it represents aucl the data structure 

a.5sociated to the referenr,e whose PI\-1E is being calculated in the cache. See ^31^ for 

rnore details. 

2.4. Building Probabilistic Miss Equations 

^ partial PA4E FR= is built for each static reference R in the code and loop at 

nesting level i that encloses such reference. This PA^IE estimates the nurnber of 

misses that R generates during a complete execution of this loop as a summatory of 

the number of accesses that enjoy each possible reuse distance associated with this 

loop multiplied by the miss probability that the memory regions ac ► essed during 

that reuse distance generate. Of course every access that is the first one to a line in 

this loop, cannot resrrlt in reuses of lines already accessed in the current e^ecution of 

t,he loop, thus their miss probability cannot be, rr.ssociated to reirse distances within 

the loop. The miss probabilities for those accesses correspond either to (a,) reuse 

distances that are associated with outer loops; or (b) reuse distzurces with respect 

to accesses to the sarne data in previous loops in the sarrre nesting levcl; «-hen we 

consider rron-perfectly nested loops; or (c) when the loop is the outerrnost one ( i= 0) 

and there are no prcceding loops that could give place to reuses, thc miss probability 

is simply one; sincc every first access to a line in this loop is indeed a first access 

to the line, unable to etiploit any reuse, which results in a compulsory miss. Since 

PNIEs are built beginning in the innermost loop and proceeding out^va.rds; and their 

evaluation depends on rnemory regions associated «ritlr reuses that are calculated 

in outer or previous loops; the general espression of a PA^IE is FR;(RegIn); where 

RegIn stands for the memory regions accessed during the reuse distance for what 

in this level of the nest happen to be first accesses. The esception are the P1^IEs 

for outermost loops F^; in which no reuse from previous accesses is possible. For 

their evaluation we use as RegIn a mernory region ^ahose associated miss probabilit}^ 
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is one, so that the first-time accesses to a line in the nest are predicted as misses. 

In general we can define the input parameter RegIn of a PNIE FR1 as the memory 

region accessed since the immediately previous access to any of the lines that R 

references in loop i in the moment the execution of the loop begins. 

If the variable Ii associated with loop i does not index the array A or it indexes 

it directly across an afñne function, the access pattern of R is regular with respect 

to loop i. Thus, the behavior of R in this nesting level is modeled by the regular 

access PI\-IE explained in [31]: 

FRZ(RegIn) = LR2 • FR^i+r^(RegIn) + (Ni - LRz) • FR^i+l}(RegR2(1)) , (2.1.2) 

where Ni is the number of iterations of the loop at the nesting level i, and LR1 is 

the number of iterations in which there is no possible reuse for the lines referenced 

by R from the point of view of this loop. RegRz(j) stands f•or the memory region 

accessed during j iterations of the loop in the nesting level i that can interfere «^ith 

the accesses of• R in the cache. 

The equation calculates the total number of misses for reference R in nesting 

level i as the sum of two values. The first one is the number of misses produced by 

the LRi iterations in which the accesses of R cannot exploit reuse in this loop. The 

miss probability for these iterations depends on reuse distances generated in outer or 

preceding loops; thus the number of misses generated in these iterations is obtained 

evaluating FR^i+r^, the PA^1E for the immediately inner loop, passing as parameter f'or 

the calculation of• the miss probability of its first accesses the value RegIn provided 

by those external loops. The second vah^e corresponds to the iterations in wl^^ich 

therc can b^^; rcuse with respect to the accesses in thc previous iteration in this loop. 

Tlre miss probability for the first accesses in the evaluation of the P_I^IE for the 

irnmediately inner level det^rends in this casc on the rnernory regions accessed during 

one iteration of loop i. 

^^'hen this equation is applied to the innermost loop containing reference R the 

end of the recursivity is achieved substituting FR^i+t^(Reg) l^y A[/o(Reg); that is, 

the rniss probability associated with region Reg. In the innermost loop thesc LR^ 

iterations correspond to lines: the,y nrean that during one cornplete execution of the 

Ni iterations of the innerrnost loop, R reall,y accesses LRZ different lines, the other 

accesses being thus reuses. ^Vhen the loop analyzed is not the innermost one, the 

iterations of the loop define sets of lines (SOLs) accessed by R in the irmer loops. 

For example; if a bidimensional M x N FORTRAI\ array is accessed ro«^ by row 
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(that is, the innermost loop of the access sweeps through the N columns of a given 

row), in the analvsis of the outer loop that controls the row index of the reference; 

each iteration of this loop is associated to the access to the set of lines that hold 

the elements of a ro^v of the matrix. As FORTRAN stores the arrays b^r columns; 

if M> L5; ^vhere LS is the cache line size measured in elements; ^vhich is the most 

usual situation, each set of lines will be rnade up of N different lines. In this case, LRz 

iterations of this outer loop givc place to accesses to new scas of ]incs (SOLs); while 

the other Ni - LRz iterations generate reuses of the SOLs accessed in the previous 

iteration. In what follows we will talk in geueral about sets of lines (SOLs), in the 

understanding that in the innermost loop each one of these sets consists of a single 

line. 

The number of iterations of loop i that cannot exploit either spatial or tempor^>Z 

locality is given b,y-
I N1-1 

- L^zi = 1 + (2.13){L max Ly /SRi^ 1} ' 

where Ls is the line size rneasured in elernents of the array refc;rc;nced by R and SRz 

is stride that reference R has with respect to loop i. 

Exa^rtple 8. In the driving example of Figure 2.4 the reference B(K, J) is contained 

in the innermost loop J at nesting level 2. In this nesting level the loop inde^ J 

indeses the second dimension using the affine function O+J. The number of different 

lines of B accessed; L^, is calculated using the Equation 2.13, being NZ = H and 

S^ = d,^2 = N; so LR2 = H assuming that L5 <_ N. The resulting equation for 

this nesting level is F^(RegIn) = H• F^(RegIn). As it is the innermost level 

F^(RegIn) = AVo(RegIn). 

In the nesting level l, the loop index K inde^:es the first dimcnsion of B using the 

affine function O+K. SRl = d^1 = 1 and Nl = N; so the number of different SOLs 

accessed is LRr = 1+ L(N - 1)/LSJ. The final equation for this nesting level is 

FRl(RegIn) _ (1+^(N - 1)/LSJ)•F^(RegIn)+(N-(1+^(N - 1)/LSJ))•F^(Reg^(1)) 

In the outermost level the loop index does not index an}^ dimension of the array 

B. SRp = 0 and No = M; so L^ = 1 and the final equation that characterizes the 

access in this nesting level is F^(RegIn) = FRr(RegIn)+(M-1)•FRI(Reg^(1)) n 
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Model Extension to Handle Codes 

with Conditional Statements 

The original PI^IE model described in the previous chapter can only ana.lyze codes 

with regular access patterns. This thesis covers the extension of the PNIE model 

to model irregular access patterns. Different extensions are proposed depending 

on whether the irregularity is due to the presence of data-dependent conditional 

statements or indirections. This chapter contains a description of the PiV1E model 

extension for codes with irregular access pattern due to data-dependent conditional 

stat,enrents. 

Data-dependent conditional staternents are a significant subset of the conditional 

structures whose outcome depends on computations made at run-time; and where 

the pattern of the condition is highly irregular. These statements are not statically 

analyzable and their truth values can not be determined at compile time, that is; 

it can not determined if the conditional statement will be true or false in each one 

of their evaluations. Furthermore, their truth values can change between different 

executions of the program if the input data vary. In this PVIE model extension we 

^vill consider codes ^vith any kind and nurnher of conditional sentences, even ^vith 

referenccs and whole loop nests controlled by several nestcd conditionals; and nested 

in any arbitrary way. Only two restrictions are set on the conditions. The first one 

is that their verification must follow an uniform distribution. The second one is that 

the conditions must be independent; that is; the probability that a giveu condition 

is fulfilled is not influenced by the fact that any other condition(s) are fulfilled or 

not. 

35
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In regular codes there is a statically^ determinable sequence of accesses associ

ated to a reference in a nesting level. These accesses generate a series of possible 

reuses of lines accessed in previous iterations of the loop or previous loops. The 

miss probability measures the probabilit^- that each reuse attempt results in a miss 

using the probabilistic nature of the PIt-IE• model. ^ti'hen one or more conditional 

statements guard a reference in the code, there is a sequence of potential accesses 

associated to this reference. In this case, each ac,cess takes place onh when the con

ditions of the conditional statements that girard the reference arc^^ fiilfilled. So; there 

are different possible reuse distances and each one of thern has its associated rrllss 

probabilit3r. The probabilistic capabilities of the PME model are used for deterrnin

ing the probabilit,y of each reuse distarrce usiug the probability that each potential 

access generated by the reference actually takes place. 

Some extensions are required to consider irregular accesses due to conditionals. 

One is the identification of ne«^ access patterns that give place to footprints not con

sidered by the original PVIE model, and fi^r which new methods rnust be developed 

in order to estirnate their corresponding area vectors. Sorne steps of the rniss prob

ability estirnation process need also some adaptations to cover these new situations. 

A new kind of P1•1Es is also needed. In these PIV1Es reuses ta^ke place onl,y with a 

given proba^bility; and their reuse distarrce varies depending on the behavior of the 

conditional sentences found in the nest. 

Section 3.1 describes the extended scope of' application of the PR-IE model. In 

Section 3.2, the miss probabilit^ estimation process is adapted to cover also ref

erences guarded by conditional statements. Section 3.3 describes a new type of 

PIVIE equation to charac;terize the cache behavior of codes guarded by conditionals. 

Finallv. Section 3.4 contains the results of the validation of this modcl extension. 

3.1. Scope of Application 

The scope of application of the extended model is sho«^n in Fig. 3.1. ^^'e now 

consider any number of arbitrarily nested conditional statements; with an arbitrar^

number of atomic conditions that involve an^^ nwnber of data elements. The figure 

only shows one data element per condition for simplicit^. The IF statements condi

tion the execution of isolated references or complete loops or nests. The restrictions 

in the PVIE model of constant number of' loop iterations and affine indexing continue 

to hold. Also; our current syst,ematic strategy to model irregular access patterns 
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DO Io=1, No, Lo
 

DO I1=1, N1, L1
 

IF cond(D(fpr(Ipl), .. , f^(ID^))) 

DO IZ=1, NZ, LZ
 

A(fai(Iar), • • , faaa(Iaaa)) 

IF cond(B(fei(Isi), • • , feaa(Isas))) 

C(fcr(Ici) ^ • • . fcac(Icac)) 

END DO
 

END DO
 

END DO
 

Figurc 3.l:^Loop ncst with data-dependent conditional statements. 

requires tlre conditions in the code to follow an uniform distribution and to he in

dependent. This latter restriction rneans that the probabilit,y that a given condition 

is fiilfilled does not depend on the verification of other couditions in the code. The 

different conditiorrs may be fulfilled with different probabilities each. 

3.2. Miss Probability Estimation in Irregular Codes 

In Section 2.3, three diffcrent steps wcre described to estirnatc: thc rniss probabil

ity associated to a given reuse distance: access pattern identification, cache irnpact 

quantification and area vectors addition. Some changes must be done in the access 

pattern identification and cache impact quantification steps to cover the cxistence 

of conditional statements in the code. The area vectors addition step does not need 

any adaptation. 

3.2.1. Access Pattern Identification 

In Section 2.3.1 we established that in order to identify the access pattern that 

a given reference R follows during a reuse distance consisting of n iterations of the 

loop at nesting level h; the indexes of each dimension and the number of iterations of 
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each loop during this reuse distance are examined. The output of this analysis is a 

D^-tuple RR(h, n), where D,^ is the number of dimensions of the array A referenced 

by R. Each element of this tuple consisted in its turn of a 2-tuple RR^ _(M^, S^), 

^^^here the M^ is the number of different points accessed along dimension j and S^ the 

constant stride between two consecutive points. This method allowed to describe 

any regiilar access pattern on an arrav indexed using aífine fimctions of the loop 

indices. If the array is guarded by a conditional statc;ntent; we need an additional 

output to this anal•ysis that is the probability PR(h, n) that each element of the 

arra,y is accessed during n iterations of the loop of nesting level h. 

This probability PR(h, n) depends not only on the access pattern of the reference 

in this nesting level, but also in the inner ones. As a result; its calculation takes 

into accotmt all the loops from the h-th down to the one containing the reference. 

If fact; this probabilit,y is calculated recnrsively in the following ^^^ay: 

n	 If h is the innermost loop containing R, then PR(h, n) = ph being ph the prod

uct of all the probabilities associated to the conditiona] sentences controlling 

R in nesting level h. 

n	 If h is not the innermost loop containing R and the loop index is not used in the 

references fotmd in conditions that control R or does not index anv dimension 

of' the array accessed in R; then PR(h, n) = phPR(h+ 1, Nh+l), being Nh+l the 

number of iterations of the loop h-I- 1. 

n	 Utlle,t'^ñ'1SE',, PR(h, n) = phPR(h -{' 1, Nh-}-1) • 

The same rules used in 2.3.1 can be used to reduce the D^-tuple RR(h, n) to an 

unique tuple (Ms, Ss) that describes the «-hole access. Lsing this formal description 

of the memory region accessed; a fi^nction must be obtained that characterizes the 

access pattern and «^hose output is the area vector associated to it. This process 

must be also extended to cover the irregular access patterns produced by the presence 

of conditional statements. In the case of references «^ith regular acc.ess patterns; 

PR(h, n) = 1; thc; translation rernains thc; samc; as the one cxplained itt Section 2.3.1. 

But when the probabilit,y PR(h, n) < 1, as cach point involved in the pattern has 

ouly a. certaiu probability of being actually accessed, the follo^virig rules are applicd. 

1. If SS = 1, it is an access to M consecutive elements in ^vhich each element 

ie accessed with a probabilit,y PR(h, n). The function that <;alculates the area 

vector for this accc;ss is R.egsP(Ms, PR(h, n)). 
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DO I = 1, M
 

DOK=1, N
 

IF (A(I,K) . NEQ. 0)
 

DO J = 1, H
 

IF (B(K,J) .NEQ. 0) THEN
 

C(I,J) = C(I,J) + A(I,K) * B(K,J)
 

ENDIF
 

ENDDO
 

ENDIF
 

ENDDO
 

ENDDO
 

Figure 3.2: Optirnized product of matrices 

2. Otherwise the access affects Ms different points separated by a constant stride 

S3, which each element is accessed with a probability PR(h, n). The area vector 

associated to this access pattern is estimated by function Reg,^,(MS,1, Ss, PR(h, n)). 

As we see, the existence of conditional accesses define probabilistic counterparts 

for R.egs and R,eg^, that characterize those access patterns in which each elcrnc;nt is 

accessed with a certain probability. The rnost general finiction is R.eg^P, all thc other 

oaies being specializations of this one. Sirnilarly, R,egs functions are specializations 

for S= 1 of their Reg^ counterparts; and the area vector functions that depend on 

a probability of access P yield the same output as their regular counterparts for 

PR(h, n) = 1. Still, «^e find this distinction useful because regular access patterns 

enable simpler and faster algorithms for the calculation of their associated area 

vector than irregular access patterns, and the same happens «^ith the Regs functions 

«^ith respect to their R.eg^ counterparts with input stride one. 

Sometirnes RR(h, n) can not be reduced to a single tuple. All the cases of 

this kind «^e ha^-e found in the codes we ha^^e analyzed had the form RR(h, n) _ 

((Ml, 1), (M2i Sz)), which can be represented by function Reg^^(M2i Ml, Sz, PR(h, n)), 

as they are an access to Mz separate groups of Ml consecutive elements each ^^^hich 

are separated by a constant stride S2, in which each individual element of the region 

has a probability PR(h,n) 

Example 9. The code in Figtire 3.2 implements the product of t«^o matrices, A and 

B, which rnay ha^=e man}^ zero entries. As an optimization; ^r•hen the element of A 

to be used in the current product is 0; then all its products with the corresponding 
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elements of B are not performed. Also; if the element of B to be used in the current 

product is 0 then that operation is not performed either. This avoids two floating 

point operations and the load and storage of C( I, J) . The innermost conditional 

sta.tement has an uniform probability p2 of being fulfilled while the outermost one 

has a probability pl. 

Just as in the modeling of the code of Figure 3.2, without loss of generality, we 

assume a compiler that maps scalar variables to registers and which tries to reuse 

the memory values recently read in processor registers. Lnder these conditions; the 

code in Figure 3.2 contains three reference to memory: C(I, J);A(I, K) and B(K, J). 

The first dimension of array C is indexed by the index of the outermost loop 0 using 

the afñne function O+I, so Iterso(0,1) = 1, SRl = d.^l = 1 resulting in the tuple 

(1,1). The sec,ond dimension is indexed h•yr the index of the innermost loop using 

the affine function O-I-J, Iterso(0, 1) = N2 = H, SR2 = d^2 = M resulting in the 

tuple (H, M). These two tuples will be sirnplified to the tuple (H, M). About the 

calculation of the probabilit,y PR(0, 1) of accessing each element of array C in one 

iteration of level 0, in that level, the reference is a^ffected by the loop index I so 

PR(0, 1) = 1-(1 - p1PR(l, 1))N because Nl = N. In the inner levcl 1, the loop 

indes K does not af%ct to the reference C(I, J), so PR(1, 1) = PR(2,1) as pl = l. 

Level 2 is the innermost level containing that reference and PR(2, 1) = p2. So, 

PR(0, 1) can be calculated as 1-(1 - plp2)N This will be mapped as an access 

R,egrP(M, 1, H, PR(0, 1)) to M regions of 1 element separated by a distance H where 

each element has a probability 1-(1 - plp2)N of being accessed. 

The first refcrence to array A, A(I, K); is located iuside loop K. There is a second 

reference in the innermost loop that will not produce a new memory access because 

it is considered to be satisfied from the processor registers. The first dimension of 

this reference is indexed by the loop index of the outermost loop, so the tuple that 

describes the access is (1, 1). The second dimension is indexed by the loop index of 

the inner loop K so the tuple for this dimension is (N, M). These two tuples can be 

merged in the tuple (N, M) that is mapped to an access R,egr(N, l, M), N groups 

of 1 element separated by a distance M. 

The reference B(K, J) is coutained in the innermost loop. The tuples for the 

first and second dimension are (N, 1) a.nd (H, N) respectively. The probability 

PR(0, 1) that each element this reference could access is actually accessed is pl. 

They can not be simplified to an unique tuple but it can be identified as an access 

Ii.egrp(H, N, N, p1), access to H groups of N elements separated by a distance N. 

This region can be identified as the special case of R.egsp(HN,pl) the access to HN 
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consecutive elements with a given probability n 

3.2.2. Cache Impact Quantification in Irregular Codes 

The two access patterns usually found in codes with regular access that werc 

described in Section 2.3.2 are the sequential access and the access to groups of con

secutive elements of the same size that are separated by a constant. stride. Their 

irregular counterparts; when uniform probabilities of access are consiclerecL are cle

scribed in a similar way, with the important difference that now each one of the 

elements involved in the pattern is accessed with a given probability p that is the 

same one for each element. The modeling of these new access patterns; which we 

detail below, depends on the cache parameters. Let us remember that a cache is 

defined by its total size CS, its line size L5; and its associativity K. For simplicity, 

both CS and LS are me^LSUred in elements or words of the access we are considering. 

Two derived parameters that help simplifj^ some etpressions are the mimber of sets 

in the cache, NK = Cg/(KLs), and C&k = Cs/K, the cache size devoted to each le;vel 

of rrssociativitv. 

Sequential access with uniform probability RegsP(n,p) 

«e denote as AVS^,(n, p) the cross interference area vector associated to ^in access 

Regsp(n, p) t,o n consecutive elements in which each one of thern has a probahility p 

of being r<^;ferenced. Thc; K-}- 1 elemcnts of this vector are calciilated ^rs 

AVSp^(n,p)=P(X=K-i) m<i<K 

AVsPm (n, p) = P(X _> K- m) -

AVSp^ (n, p) = 0 0 < i< m 

where X E B(n/C5k,1 -(1 - p); ); being B(n, p) the binomial distributionl and 

m= max{0, K- ^n/Csk^ }. The equation is based on the fact that; on average; 

there are n/Csk lines of the footprint associated to each cache set. Since this is a 

consecutive memory region, the maximum nnmber of lines a cache set can receive is 

^n/Csk^, so the area vector elernents AVSp^(n, p) for 0< i < m mnst be zero. Also; 

because of the uniform distribution of the accesses; we know tlrat the numbcr of 

cache lines per set belongs to a binomial B(n/Csk, l-(1- p)LS). Thc probability of 

1 we define the binomial distribution on a non integer number of elements n as P(X = x), X E 

B(n,p) _(P(x = x), x E B(LnJ,P))(^ -(n - LnJ)) +(p(x = 2), -Y E B( f++l ,p))(n - lnJ) 
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access per line of this binomial is easy to calculate; as since each individual element 

in a cache line has a probability p of begin accessed, and a line holds L5 elements; 

then the proba,bility that at least one of the elements of the line receives a reference 

is 1- (1- p)L5. Since position i; i > 0, in the area vector represents the ratio of' sets 

that receive K- i lines in the access, its value will be the probability t.he variable 

^rssociated to this binomial takes the valne K- i. The lowest element in the area 

vector with non-zero probabilit^, m, is the probability the nurnber^ of lines acassed 

is K- m or rnore. 

As this is the counterpart of the sequential access described in Section 2.3.2; the 

autointerference area vector is calculated analogously as AVsP(C(n)Csk) being C(n) 

the average number of lines of' the studied vector each line competes with in its 

associated set, which cal<;ulation is described in Section 2.3.2. 

Access to groups of elements separated by a constant stride with uniform 

probability Reg,.P (N,., T,., L,., p) 

^Ve d<^;note as AV^p(N^, T^, Lr, p) the cross interference ar^^^a vector associ^zted 

to an acc^^ss Regrp(N,., T,., L^, p) to N,. regions of T,. consecutivic elenrents eaclr and 

separat,ed 1>y a constarrt stride of L^ elernents, in «^hich each individual elernent has 

a probability p of being referenced. This area vector is calculated in t^vo phases: 

n	 In a first phase, the region potentially afFected by the references is consid

ered. This region allows to measure the impact of the access on the cache by 

calculating the number of lines that are mapped to e^tich c.ache set. 

• Since accesses really happen with a given probability p; a second phase is 

rreeded where the different cornbinations of accesses are weighted with thc 

probabilit,y that the,y happen. 

Calculation of the code footprint ^^-e first define the helper function pos(i) = i 

mod Csk; which calculates which position in the cache corresponds to an arbitrary 

memory posit,ion i. 

In a first step, the first position C,; of every region i that compounds the pattern 

mappecl on a. cache of size CSk; is calculated as 

C1 = 0
 

Ci = pos(Ci_1 + L^),1 < i< N^ 
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In the following; CV(i) will stand for the nttmber of regions that begin in the 

position i of the cache. Now we calctilate for every cache set; 1< j< NK; the 

number of different lines mapped to the considered cache set j in which e^actly i 

of their elements may be referenced by this access pattern. This is the set of values 

N(j, i), where 1< i< LS. 

The value of N(j, i) for i < min(T^, Lç) is calculated as 

N( j, i) = CV (pos ( j Ls - T^ + z) )+ CV (pos ( j Ls + LS - i) ) 

since only the regions that begin exactly T^ - i positions before the beginning of the 

considered set or in the i-th position of the set can contribute with a line where only 

i of its elements may be referenced by the access pattern. 

The calculation of the remaining N(j,i) depends on whether T^ < Lg. If this is 

the case, theu 
N(j,T^)= ^t'^T CV(pos(jLs+t)) 

N( j, i) = 0, Tr < i< LS 

since the regions beginning in the first LS - T^ + 1 positions of the set will have 

one line in which T^ of its elernents ma,y be accessed, and given that T< < Ls, it is 

irnpossible that there are rcgions with lines ^^hc.re rnore than T^ elcmcnts rntzy be 

accessed. 

Finally; if T^ > LS, all the N(j, i) but N(j, L,) have been calculated. The value 

for the latter is calculated as 

T 

N( j, Ly) _^ CV (pos( j LS - T^ + t) ) 
t=Ls 

because any region that begins either in the first position of the set or in the T^-LS-1 

irnmediately preceding positions will have one line mapped to the considered set j 

in which all of its elements may be affected by the access pattern. 

Weighting the accesses probabilities In the previous phase we have estimated 

the footprint of this access pattern withottt taking into account the probability that 

each element in the footprint is really referenced. Let us remember that the footprint 

is represented by the values N(j,i); which are the number of lines mapped to set j 

that contain i words affected by the access pattern. Since the access to each element 

happens only with probability p; this is an upper boimd of the real mimber of lines 
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that are accessed. This way, the purpose of this phase is to estimate how many lines 

are really accessed taking into account that the probability of access to each element 

in the region is p. 

Our strategy to estimate the total area vector for this access pattern is to calcu

late the area vector for each set j independently and to average them. The area vec

tor for each single set j, S„ represents the distribution of probability that the access 

generated references to l different lines mapped to this set for 0< l< K in the posi

tions S^^K_l^ of the vector, or to K or more different lines, in the position S^o. This 

distribution of probability is calculated from Ly binomial variables, X^zi l<_ i<_ L5, 

where X^2 is the number of lines that are really accessed out of the N(j, i) ones that 

are mapped to set j and which contain exactly i positions that can be referenced by 

the access pattern analyzed. This way; X^z E B(N(j, i),1 -(1 - p)2), where B(n, p) 

stands for the binorni^rl distribution. The probabilit•y of the binomial is given 1>y the 

fact that if in a given line only i positions rnay bc^; sub,j<;ct to access, and the acc^^ss 

to cach position only happens with probability p, then the probability the line has 

really been accessed is 1-(1 - p)i. As a result, if we define X^ _^i'r X^i; then 

the area vector for the set j can be estimated as S^^K_^^ = P(X^ = l); 0< l< K 

and S^o = P(X^ > K). 

The autointerference is calculated in the same way but the nnmber of lines 

mapped to each cache set j that contains i words is max(N(j, i) - 1, 0) instead 

of sirnply N(j, i). 

3.3. Condition I^ependent PME 

In order to consider the probabilities that the diíf'erent conditional statements 

that may cont,rol a given reference R in its nest, hold, we extend the PIV1E that 

estima,tes the behavior of' a rel'erence R in a loop i with a, new argument p. This 

vector contains in its position j tlre probability p^ that the (possiblc) conditionals 

that guard the execution of the reference R in nesting level j are verified. If a given 

loop contains no conditional structures, thcn p^ = 1, which rneans the execution 

in this level is unconditionaL When therc are sevcral nested IF staternents in the 

same nesting level, p^ is the product of the probabilities of holding their respective 

conditions. 

^Ve have found that FRz(RegIn,p) ma,y take t«-o diíf'erent f^^rnrs ^vhen considering 

codes with data-dependent conditional staternents. If the referencc is not controlled 
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by am- conditional sentence or if the variable that indexes loop i does not index am- of 

the references found in the condition(s) of the conditional(s) sentence(s) that control 

the execution of R, then the PvIE takes the form described in the Equation( 2.12) 

of Section 2.4. This kind of P\,IE disregards its inpttt p; which is not used in the 

computations. But if this is not the case, that is, if the variable of the loop is used in 

the indexing of a data array involved in a condition^Ll that controls the execution of 

the reference R that iti being stndied; then a new kind of PNIE rnust he used. Frorn 

rrow on wc: will distinguish both kinds of PIt^IE b,y c^tllir ► g the forrner one Conrlition 

ha^le^endent PME and these new one Condit,io^a De^^eraderat PME. 

Just as we did in Section 2.4. we wil] now describe the construction of Condition 

Dependent PVIE for references that carry no reuse with other references. «'e will 

do it in two steps. First, we will develop the general form of' a Condition Dependent 

PNIE. This PVIE is based on the probability that the reference that is being ana,lyzed 

actually accesses each one of the SOLs of' t,he set that the ref'erence can potentially 

o-ticcess during one iteration of the loop i we are considering. In a second step, an 

algorithrn to derive this probability will be pres<;nted. 

General form of a condition dependent PME 

A Pl^1E must be built for each loop i enclosing a reference R. The PA-IE is 

basically a summatory where each term is the product of the number of accesses 

that have a given reuse distance, nn^ltiplied by the P^1E for the lower level when the 

input footprint corresponds to that rettse distance. ^Vheu reference R is controlled 

by data-dependent, conditionals; this is; ^vhen one or more IF statements that depend 

on the input data control the reference, tl ► ere is not an unique reuse distance for 

each line. Depending on the pattern of verification of thc^ conditions that control 

the esecution of the refercnce; the accesses of R rnay try to reuse SOLs (sets of lines) 

with very different distances. These reuse distances ^vill have differcnt probabilities 

of happeuing; depending on the distribution of probability of the verification of the 

conditionals that control the execution of the reference. This way; the PA-IEs for this 

kind of references will use probabilities not only to represent the miss probability for 

a given reuse distance, as those in Section 2.4 did; but also to estirnate ho^v many 

accesses take place ^vith each possible reuse distance. \^otice that Pi\íEs measure 

the reuse distance in terms of iterations of the loop they are associated to; and the 

unit of reuse ín a cache is the line. ^s a result; the base probability to weight the 

different reuse distances must be the probability that the reference that is being 
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analyzed accesses one of the SOLs it may potentially access during each iteration of 

the loop i that is being considered. In general; ^vhen the conditionals do not follo^v 

an uniform distribution, a. set of different probabilities for different iterations and,/or 

SOLs must be used. As the scope of this analysis is restricted to conditionals that 

follow an uniform distribution, in this work this probability is a single parameter; 

PlR1(p), that htts the sarne vahte for ever,y iteration of the loop i and for every SOL 

that R rnay access. This wa,y, the condition depend^^nt PNIE for loop i and refer^^nce 

R has the form 

GRi 

FR1(RegIn, p) = paLRz ^ WMRRZ(RegIn, j, p) , (3.1) 
^=t 

where LRz is the number of iterations in which new different SOLs would be accessed 

by reference R due to the stride in loop i if it were not subject to conditional execu

tion. Its calculation is detailed in Section 2.4. pi is the probability the conditional 

sentences that control the execution of R in this loop level are true. The product of 

these two terms gives the average number of iterations in «rhich R accesses difl'erent 

SOLs due to its stride for this loop. This number of iterations must be multiplied 

by the PNIE for the immediately lower level evaluated with the appropriate reuse 

distance area vector; ^^hich is what the term WMRR1 stands for; a weighted num

ber of misses for a reference in level i. As stated before, because of the contro] by 

data-dependent conditionals, a, range of différent reuse dista^nces with différent prob

abilities may take place. This range has an average upper bonnd GRz, the nurnber 

of iterations that c^tn pot^^^ntially reuse th<^^ SOLs accessed in the LR^ iterations that 

give place to accesses to new SOLs. The product of both t<^:rms rnust be equal to 

t,he number of iterations of the loop, thus GR^ = Ni^LR^. 

Let us now develop the value of WMRR1(RegIn, j, p"), the weighted m^mber of 

misses generated by reference R in loop i when RegIn is the region accessed since 

the last access to any of the SULs aff^cted by the reference of R bef'ore loop i begins 

its execution, and the SOL is used in the j-th possible iteration in which the SOL 

could be accessed. This fimction is cornputed as 

WMRR;,(RegIn, j, p) =PIR^(p)^-tFR^i+t^(RegIn U RegRi(j - 1),p")+ 
^-1 

k-1
 
^Plai(p)Pla^(p) Fn(i+il(RegRz(^),p) , 
k=1 

^vhc;re PIRs(p); the probability that R accesscs during one iteration of loop i one of 
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the SOLs tha.t belong to its potential access pattern, is used to weight the proba

bilities that the different reuse distances take place. In this equation p stands for 

1- p, this is; the converse probability of p. Let us remember that RegRti(n) stands 

for the regions accessed during n iterations of the loop i that may interfere with 

the accesses of R. The first term in (3.2) considers the case that the SOL has not 

been accessed during an,y of the previous j- 1 iterations. In this case; the RegIn 

region that cotild generate interference with th^^: new access to the SOL when the 

execution of the loop begins; nnrst be .added to the regions accessed during thcse 

j^ - 1 previous iterations of the loop in order to estirnate the cornplete interference 

region. The references to different data structures often overlap. It is necessary to 

merge thern in only one region in order to avoid having overlapped tnemory regions 

considered several times as a source of interference. This addition is performed us

ing the regions union represented by the symbol U• The second term weights the 

probability that the last access took place in each of the j- 1 previous iterations of 

the considered loop. 

The probability PIRZ(p^ that reference R accesses one of the SOLs that belong 

to thc region that it can potentially acccss during one iteration of loop i is a basic 

parameter to derive FR2(RegIn,p); as we have just seen. This probability depends 

not only on the access pattern of the reference in this nesting level; but also in the 

inner ones, so its calculation takes into account all the loops from the i-th down to 

the one containing the reference. If fact, this proba.bility is calculated recursively in 

the following way: 

. If i is the innermost loop containing R; then 

( 1 if the accesses of R are consecutive with respect to loop i 
PIRi(p^ - Sl pt otherwise 

where a consecutive access with respect to a given loop implies that the accesses 

that take place in consecutive iterations of the loop do reference consecutive 

memory positions. The condition for this to happen even when the accesses 

of R depend on an IF statement is that the index for the first dimension of R 

only makes (sequential) progress within the same IF statement that controls 

R.
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n If i is not the innermost loop containing R, then 

if the index of loop i+ 1 is not used in thepaPlR1^+I) (p) 
references found in conditions that control RPIR^(p) _ 

-^^:+^ otherwis<,pzPla(i+i) (p^ 

where we rnust relnelnber that p= 1- p and that p1 is the product of all the 

pr01)al)lllt,l(',S aS50Clated t0 tll(' COI1d1t10I1a1 SCIIT,F',I1CCS COI1tI'O111I1g R lIl Ile5tlIlg 1('.vel 2. 

ETam,ple 10. As an example, ^ve describe no^^^ how the equations that model the 

cache behavior of t}le^ reference B(K, J) in t,he code of Figure 3.2 are derived. The 

innerrnost loop containing this rr^f<^^rence; is ^Llso t.he inn^^^rrnost 1^w^^^l. The variable 

that controls this loop; J, i.5 not used in the inde;xing of referenced found in conditions 

that control the exer,ution of this reference, thus Equa-tion (2.12) is applied. As this 

is thc illllennost loop containing the referellce; iIl the evaluation of this equatioll; 

FR3(RegIn, p^ = AVo(Regln). Since SRZ = N and LR2 = H, the equation for this 

nesting^level is 

FRZ(RegIn, p) = HAVa(Regln) 

The next level is level one. In this level; the loop index indexes ref^:rences in 

the two conditional statements th^tit control onr referenc;e, so Equ^Ition ( 3.1) applies 

n,g^Lin. In this case, SRl = 1, LRi = 1+ ^(N-1)^Ls^ and GRI ^_^ Ls, so the eqnation 

1S 
Ls
 

FRl (RegIn, p") = pl (1 + L(N - 1)/L5^ )^ WMRRl ( RegIn, j, p") . 
,j=I 

When WMRRl is calculated PRl (p) = pl 

In the outermost level; the variable of the loop indexes a refe.rence in one of the 

conditions, so we have to apply again Equation (3.1). )?or this loop and reference; 

SRO = 0; LRO = 1 and GRO = M, so the equntion is 

M 

F^(RegIn, p) = po ^ WMRRO(RegIn, j, p) . 
,j=I 

nIn this loop, WMRRO is a function of PRO(p) = 1-( 1 - pl)Ls 
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posB = 1 

DO I = 1, N 

DO I = 1,M offB(I) = posB
 

X = A(I) DO J = 1, M
 

DO J = 1,N IF (A(I,J) .NEQ. 0) THEN
 

Y = B(J) B(posB) = A(I,J)
 

IF (B(J) .GT. K) THEN jB(posB) = J
 

C(J) =X+Y posB = posB + 1
 

ENDIF ENDIF
 

ENDDO ENDDO
 

ENDDO ENDDO
 

Figiire 3.3: Synthetic kernel code Figure 3.4: CRS Storage Algorithm 

3.4. Validation 

Our validation of the model is based on tkre comparison of its caclre rniss pr^^^dic

tions with the result of tracc-driven sirnulatioiis. We have used thrce sirnple kenicls 

show^n in Figures 3.3; 3.4 and 3.2. The code in Figurc 3.3 is s,ynthctic kernel with a 

conditional seutence that control the access to a data structure C. Then, Figure 3.4 

implements the storage of a matrix in CR,S format (Compressed R.o^v Storage), 

which is widely used to store sparse matrices in a compressed form. The code has 

two nested loops and a conditional sentence that controls three of the references. 

Finally; Figure 3.2 is an optimized product of matrices that contains references in

side several nested conditional sentences. These conditionals try to avoid unuseful 

computations when one of their inputs is a zero. 

In order to validate our rnodel its predictions were compared ^vith tlie results 

of trace drive sirnulations using different cache coufiguratious; problern sizes and 

probabilities for the fulfillment of the conditionals for the three example codes. The 

combinations used to validate the model for each code are shown in Table 3.1. R,ows 

M; N and H correspond to the problem size, this is, the nurnber of iterations of 

each loop; expressed as the value of its upper limit. Then come the probabilities 

p; that the conditional sentences found in the codes are true. The s^-nthetic and 

the CRS codes have a single conditional and no H loop; thus ro^r•s H and pz are 

empty for them. Then; the cache configurations used in the validation are shown 

in the format (CS - LS - K); this is, (cache size-line size-associativit^^). The cache 

and linc sizes are expressed in b^tes. Then; Table 3.1 sho«^s the total number of 
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Table 3.1: Parameter combinations used for the validation and average and maxi
mum miss rate prediction error 

Kernel 
Parameter Svnthetic CRS ^-latrix Product 

M 9^0,1750;2000, 1000,1200,1400, 350,550, 
4500,G000 1600,1800 400;600 

N 1200,2500;3000, 1250,1350,24^0, 250;350 
4000,9^00 26^0,3000 450;650 

H - - 600,700;750;800 

pr 0.1;0.2,0.3,0.4;0.5 0.1,0.2,0.3,0.4;0.5 0.1,0.2,0.3,0.4 

p2 - - 0.1,0.2,0.3,0.4 

32K-32-1 32K-32-1 32K-32-1 
Cache 32K-32-2 32K-32-2 32K-32-2 

Configurations 64K-32-1 64K-32-1 -
(CS - LS - K) 64K-32-2 64K-32-2 64K-32-2 

128K-64-2 128K-64-2 128K-64-2 

Combinations 625 625 4096 

:wg OMR 0.22%0 1.43% 2.23% 
_l^1ax OMR 3.81% 8.05% 11.32% 

parameter combinations tried for each code taking into account the previous ro«-s. 

For each one of these combinations a total of 2^ different simulations were made 

using different base addresses for the data structures. 1 his improves the validation 

of the inodel by taking into account many clifferent relative positions for the mapping 

on the cache of the different data structures. The last two rows in the table show 

the average and the maximum value for each code of the metric D,yR that we use 

to measure the accuracy of the modeL This metric is the average of the absolute 

value of the diff'erence between the predicted and the measured miss rate (\-tR) 

expressed as a percentage in each one of the 25 simulations performed f'or each 

parameter cornhination. As expected, the average and rnaxirnurn errors grow with 

the complexit,y of thc code. Still; we consider that a maximum absolute c;rror of 

only about 11% is very satisfactor;y. Also, the large difference between the average 

ai ► d the maximurn ^MR shows that (relatively) large errors a^re very infrequent and, 

in general, the predictions estima-te well the cache behavior. 

Tables 3.2, 3.3 and 3.4 show the validation results for some randomly chosen 

combinations of the problem size, the conditional probabilities a.nd the cache con

figurations for the three codes proposed in Figs. 3.3; 3.4 and 3.2; respectivel,y. The 
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Table 3.2: ^^álidation data for the synthetic kernel in Fig. 3.3 for several cache 
configurations, problein sizes and condition probabilities 

M ^ p ^%s Ls K OMR Tsim Texe Tmod 

50000 47500 0.4 128K 64 2 0.015 182.211 68.022 0.005 

50000 47500 0.2 64K 256 4 0.004 138.187 50.003 0.005 

22000 14500 0.4 256K 128 4 0.001 28.244 7.033 0.003 
22000 14500 0.4 64K 64 1 0.067 65.002 r.129 0.004 
18000 22000 0.2 256K 128 2 0.574 23.021 7.586 0.004 

18000 22000 0.1 128K 64 2 0.076 22.112 6.012 0.004 

18000 22000 0.3 32K 256 4 0.141 95.223 8.01.0 0.004 

14500 19500 0.7 128K G4 8 0.000 32.224 7.697 0.005 
14500 19500 0.2 128K 32 2 0.252 20.269 5.331 0.005 

14500 19500 0.3 64K 32 1 0.124 20.901 6.465 0.004 

1750 1750 0.4 64K 4 69 0.000 1.123 1.000 0.003 

1750 1750 0.7 64K 8 32 0.000 0.988 0.322 0.003 

colunms in the three tables have thc s<z^me meaning as the respective ro^^^5 in Ta

ble 3.1. Nlany of the cornbinations chosen in these tables do iiot bcloug to thc set 

of experirnents described by Tablc 3.1, so that the behavior of the inodcl can be 

analyzed for a wider scope of parameters. The last thrcc colunnis in each tablc 

correspond, respectively, to the simulation time; execution tiine and ^nodeliug times 

expressed in seconds and measured in a Athlon 2400 processor-based system (2,08G 

GHz). As ^^e see; modeling times are inuch shorter than trace-clriven simulation 

times despite the fact that we use a very fast and simple simulator. In fact, many 

times they are even faster than the native execution times. Furthermore; sometimes 

modeling times are several orders of magnitude shorter than trace-driven simtilation 

and even execution times. The modeling time does not include the time required to 

build the equations for the example codes as the equations are developed by hand. 

The time necessary to execute the model is ahvati-s less than 1 second. 

Figures 3.5 and 3.6 sho^v the evolution of both the number of misses and the miss 

rate measured and predicted for different cache configurations and probabilities of 

the conditionals for the CIi.S and the matrix product codes, respectively. The figures 

show; as the previous tables, that the model is successful in predicting the behavior 

of the cache. A ne^ti interesting conclusion ^ve can dra^v from these figures is that our 

extended model is indeed required to predict correctly the behavior of the memory 

hierarchy when irregular access patterns are im-olved. ^Ve can see that a simplified 



52 Chapter 3. Nlodel >►xtension to Handle Codes with Conditional Statements 

Table 3.3: ^-álidation data for the CRS code in Fig. 3.4 for several cache confgura
tions, problem sizes and condition probabilities 

M N 1^ ^%s Ls K OMR Tsim Texe Tmod 

6200 10150 0.4 256K 64 4 0.01 16.308 4.022 1.225 
4200 17150 0.1 32K 32 2 0.04 14.797 6.401 0.246 

1G220 7200 0.2 128K 32 2 0.03 27.477 5.011 3.646 
G200 14250 0.3 512K 64 4 0.00 21.089 5.891 1.221 
9200 14250 0.1 32K 32 8 0.04 37.768 11.001 1.196 
1100 15550 0.5 32K 32 8 0.02 2.724 1.668 0.021 
2900 17250 0.3 256K 128 4 0.17 10.363 4.573 0.572 
8900 9250 0.1 25GK 64 4 0.64 17.119 11.228 2.516 
4200 12150 0.1 32K 32 2 0.04 9.364 3.880 0.246 
^000 15000 0.3 256K 64 4 0.11 17.8^2 10.330 0.804 
7200 1.2250 0.1 32K 32 8 0.04 18.224 9.646 0.721 

model that did not support irregular access patterns and ^vhich chose to make all 

probabilities either 0 or 1(the two extremes cases) would yield predictions very 

different from the real values obtained for intermediate probabilities like 01, shown 

in the figures. This justifies the interest of our research. 

Figure 3.7 compares the miss rate measured and the iniss rate predictecl for the 

CR.S storage and inatrix product codes when the probahility of verification of the 

condition takes different values bet^veen 0.1 and 0.9. The accuracy of the prediction 

is good in all the situations, while the cniss rate of the code is highly dependent 

on the probabilit^- of the conditions in the code. The miss rate is higher «=hen the 

probability of verification is lower because accesses are much more irregula.r. This 

way; it is important to feed the model with the right values of the probabilities of 

the conditional statements because the miss rate can be mispredicted otherwise. 

Finally, Figure 3.8 contains the evolutiori of ^MR for the CRS storage and the 

optimized matrix product respectively for different cache configurations and matrix 

sizes. The prediction is more accurate in the CRS storage code, but it is still good 

for the product of matrices. 
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Table 3.4: Validation data for the optimized ttiatrix prodWU;t codc in Fig. 3.2 for 

several cache coufigurations, probleiu sizcs aud coi ► ditioii probahilities 

M N H p^ 7^2 CS LS K ONrR Tsim T^e Tmod 
750 750 1000 0.2 0.1 128K 64 8 0.79 24.444 11.233 0.203
 

750 750 1000 0.8 0.3 128K 128 16 1.31 86.845 72.069 0.987 

900 850 900 0.9 0.1 512K 64 8 0.59 85.358 65.266 U.990 
900 950 1500 0.1 0.4 256K 64 4 6.62 31.768 16.201 0.511 

900 950 1500 0.8 0.3 128K 32 2 2.04 171.755 8^.023 0.149 

1000 850 900 0.7 0.5 32K 64 2 3.13 110.328 108.21.1 0.1.39 

200 250 150 0.8 0.2 128K 32 2 0.48 0.764 0.550 1.034 

200 250 150 0.1 0.3 256K 64 4 5.91 0.134 0.112 0.301 

200 250 150 0.3 0.1 32K 32 8 1.45 0.406 0.323 0.030 

100 350 90 0.8 0.5 32K 32 8 0.14 0.500 0.201 0.031 

100 350 90 0.4 0.4 64K 64 4 0.40 0.218 0.122 0.586 

100 350 90 0.2 0.3 32K 64 2 0.05 0.104 0.101 0.309 

s 100 
np-o measured ^p=0 measured 

p=o Pradicted ^P=o vreaicmd 
q^0.1 measured ^p=0.1 measured 

qp-0.1 predicted qp=0.1 predicted
^ 1.5 

qp=1 measured ©p=1 measured 

q^1 ptedicted m qp=1 prediCted 
$ 1 f̂ ^̂^
 
E
 
^
 
Z 0.5
 

.,.-,rv^ ^^fIE1fY^ 
p^ _w, 0^-^°^̂...,` ^^IWIIMI ^^IUIIWI 

1 28'2 ^4^K^2' ^K.128-2 ^K 2,̀;SK321C^^ 1 ?S6K'^^K^, 128K,1 K^ 128K'^ 
CaGre coMgurotion Cad^e configuration 

(a) ^+umbcr of misses (b) A^Iiss rate 

Figure 3.5: A4easured versus predicted (a) misses and (b) miss rates for several cache 
configurations and different probabilities of verification of the conditionals for the 
CRS code (see Figure 3.4) with M= 1500 aud N= 10000. Thc cachc configuratious 

are expressed as (Cs-Ls-K); with sizes in bytes. 
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, 

^p=0 measured 
W 2.5 
m ^ Qp=O Predicted 
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Cache configuration
 

(b) n-liss rate 

Figure 3.6: \^}easured versus predicted (a) misses and (b) miss rates for several 
cache configurations and différent probabilities of verification of the conditionals for 
the optimized matri^: product code (see Figure 3.2) rvith M= 300, N= 300 a,nd 
H= 300. The cache configurations are expressed as (Cs-Ls-K), with sizes in bytes. 
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Figure 3.7: Nleasnred versus predicted rniss rates for differerrt proh^^bilities of ver
ifica,tion of the conditionals for the CRS stor^ig^e code ^^nd the optimized matrix 
product a. 2-^vay cache of ^12 KBytes ^-ith 64 bytes per cache line. The m^itrix si^es 
^^rere M= N= 10000 in the CRS storage code and M= N= H= 1000 in the 
optimized product of matrices. 
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Figurc 3.8: Surfaces representing the OMR evolution for different cache configura
tions and rnatrices sizes in ttre CR.S storagc; and optirnized rnatrix product, codes. 
Ttrc cactre configur^Ltion is denoted using the notatiotr (CS,Ls,k). 



Chapter 4 

Model Extension to Handle Codes 

with Indirections 

In the previous chapter we proposed an extension to the PI\^IE model to consider 

codes with irregular access patterns due to conditional statements. They constitute 

an important subset of the codes with irregular access patterns. 

Another important source of irregularity is the existence of indirections, that 

is, references where the indexing of an arra^-; called the base array, is done across 

the values contained in another array known as the index array. This array can be 

also accessed using an indirection; so, more than one level of indirection is possible. 

For example, the management of compressed matrix storage methods used in sparse 

computation gives place to a big numer of indirections. 

Our rnodel considers indirections in which all the elernents of the arra,y accessed 

by means of the indirection have the sarne probability of being accesscd, i.e.; where 

the irregular access is uniformly distributed on the referenced array. In sparse com

putation this implies that the nonzeros should be uniformly distributed along the 

sparse matrix. This restriction eases the treatment of the problem in this first at

tempt to model automatically the cache behavior of codes with indirections; while 

allowing to represent the inost iinportant problems that irregular access patterns 

pose for their modeling. The model is also extended to cover an important class of 

non-uniform irregular access patterns. Namely; ^ve consider the indirections gener

ated by the compressed storage of realistic banded matrices; a ver^• common distri

bution in sparse matrices ^2-^^. 

^^
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DO Ip =1, Np
 

DO I1 =1, N1
 

DO IZ =1, NZ
 

A(far(Iar), ..., .fa^(B(far(Isr)))^ ...) 

END DO 

END DO
 

END DO
 

Figure 4.1: Nested loops with structures accessed using indirections. 

Section 4.1 contains a description of the extended scope of applir,ation of the 

PNIE. Separated extensions are proposed for the modeling of codes with indirections 

when the data involved follows an unifoa^rn distribution and when banded matrices 

are managed. Section 4.2 is devoted to the model extension for uniform distributions 

«^hile Section 4.3 covers the treatment of banded matrices. 

4.1. Scope of Application 

Figure 4.1 depic,ts the scope of application of our extended model. It shows 

a set of normalized perfectl,y or non-perfectl,y nested loops in which the number 

of iterations of every loop must be thc saure in ever,y execution of' the loop. The 

reference indexes are afñne fiinctions f^ either of the loops control variables Iz or of 

values read from arra,ys. ^^'c call index or indirection array thc one whose values are 

used to index another array, which we call the base array of the indirection. Index 

arrays can be themseh^es indexed by other arrays, which gives place to several lcvels 

of indirection. 

4.2. Model Extension for Uniform Distributions 

In the first extension proposed in this chapter, the probability that a component 

of the base rrrray of an indirection ie accessed is uniform. This rrieans the^- all have 

the sarne probability of being accessed. Some adaptations rnust be donc to the rnodcl 
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function RegR;(n) I
 

Regset = 0 

foreach array A involved in the code I
 

RA = 0 

foreach reference R^ to array A in loop i r loops nested inside it I
 

RA = merge(region_acceaaed(R, i, n), QR^ RA)
 

regA.region_fune = acceaayattern(RA) 

regA.ia_aelj_interJerence = (A == array(R)) 

RegSet = RegSet U regA 

return RegSet
 

Figure 4.2: Calculation of RegR1(n), the set of regions that can interfere with the 

attempts of reuse of reference R generated during n iterations of the loop at nesting 

level i. 

to cover this ne^r situation. The iniss probabilit,y estirnation process is adapted in 

Section 4.2.1 to cover the access pattern recognition of codcs ^aith indirectiorrs. New 

equations are proposed in Section 4.2.2 for codes with indirections R^itlr an uniform 

distribution. In Section 4.2.3 a small moclification to )noclel codcs involving banded 

matrices with a uniform distribution of the values inside the band, is proposed. 

Section 4.2.4 shows the main validation results achieved with this )noclel e^tension. 

4.2.1. Miss Probability Estimation in Codes with Indirec

tions 

As we established in Section 2.3; the rniss probability estirnation is a process that 

can be divided in three steps : the access pattern identification, the cache impact 

quantification and the area vectors union. In the previous chapter; some adaptations 

were proposed to the two first steps to cover the modeling of irregular codes due 

to conditional statements. In the access pattern identification we introduced some 

changes to identify correctly the irregular access pattern due to conditional state

ments. «^e also introduced in the cache impact quantification step two new types 

of irregular regions that allo^ved us to measure the cache impact of irregular access 

patterns. Finally; the area vectors union did not suffer any change. Figure 4.2 shows 

the pseudocode for the calculation of the interference region of reference R during 

the execution of n iterations of nesting level i: the access pattern of the references 

to each arra}^ A found within the loop is identified in turn and added to the set of 
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functian acceaa^nttern(R) ( 

if R==(M,S,P) ( 

if P == l.o 
iF S == 1 

return Regs(M) 

else 

function region_accesaed(R,h,n) I return Regr(M,1,S) 

A = array(R) else 

foreach dimension j of A{ if S == 1 

s = loop_ehnt_indexes_dimenaion(R,j) return Regap(M, P) 

if not indexed_by_indirection(R,j) ( elae 

RR^ (h, n) _(itera_regsslnr(i, h, n), SR;, 1) return Regrp(M, 1, S, P) 

l else ( 1 else l 

Rgj (h, n) _(itera_irregsslar(i, h, n), Sg;, if R==((M1^1,P3),(M3,S2^P2)) 

proó(R, i, h, n)) return Regrp(M2, Ml, S2, Pl ^ P2) 

else 

return error(UNKOWN) 

return ssmplifg(RR(h,n)) 

(a) Calculation of RR(h, n), the tuple-based (b) ldentification of the access pattern 

representation of the region accessed by ref- associated to the memory region de

erence R during n itcrations of thc loop at scribcd by the tuple(s) R. 

nestiug level h. 

Figure ^L3: Identification of the access pattern f<)llowed b^ the references during a 
reuse distance. 

regions accessed. The memory regions associated to the same array R accesses are 

marked because its cache impact qnantification step is difEérent. 

In this extension for codes with indirections the last two steps of this process 

remain the same. The irregular access patterns followed by the references due to 

the existence of indirections are the same as those ones identified in codes with 

conditional statements. However, the access pattern identification step needs some 

modifications to identify correctly the irregular access patterns due to indirections. 

Access Pattern Identification 

Figure 4.3 shows the two steps involved in the identification of the access pattern 

that references follow during a reuse distance consisting of n iterations of the loop 

at nesting level h. Function region_accessed analyzes the indexes of the studied 

reference R to obtain a numerical representation of its access pattern during the 

considered period of the execution of' the code. In fhnction access_pattern; this 

representation is mapped to a given access pattern. 
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In function region_accessed, for each reference R the indexes of each dimension 

and the number of iterations of each loop during this reuse distance are examined. 

The output of this analysis is a D;^-tuple RR(h, n); as in the case of regrilar codes 

described in Section 2.3.1, where D,^ is the number of dimensions of the array A 

referenced by R. In regular codes each element of this tuple consisted in its tttrn of a 

2-tuple RRj(h, n) _(Mj, Sj) where the Mj is the nurnber of diffPrent points accessed 

along dim^;nsion j and Sj the constant stride betwe^^;n two consecutive points. In 

codes with indirections this tuple has a third component Pj tlrat stands for the 

probabilit,y each one of these points is actually accessed by R. If the access is not 

indexed using an indirection Pj = 1. Function access_pattern uses the information 

contained in this tuple to determine the access pattern followed by that reference. 

The algorithm followed to calculate the 3-tuple associated to dimension j of 

reference R during n iterat,ions of the loop at nesting level h is described now. V^%hen 

the indexing of dirnension j is not done across art indirection then the rnethod used 

to calculate this tuple is the one described in Sec,tion 2.3.1 for the regular case with 

P= l. But when the indexing of dimension j depends on an ilidirection; that 

is, wherr the index has a forrn aRj•B(f(Ii))+^Rj, we assume that the accesses are 

spread uniformly on the dimension j of the array. Since our indirection is multiplied 

by some constant aRj (usually one), there are LDAj/c>!RjJ different points in the 

dimension that can be actually accessed (e.g. reference A(2*B(I)) can only access 

the even elements of array A), where Daj is the number of elements in dimension 

j. Each point has an uniform probability 1/LD,^j/aRjJ of being the one accessed 

because of each given value read from the index array. As a result, if Itersi(h, n) 

(see Section 2.3.1) différent values have been read from the index array B during n 

iterations of the loop at nesting level h; where i is the nesting level of' t,he loop whose 

index controls the accesses to the index arra,y B, the average probability each that 

each one of the points that R can access in the j-th dirnension of' its base arra,y has 

been accessed at least once is 1-(1 - 1/LD.,^j/aRjJ)Iter^;(h,n), thus 

Iters;(h,n)
 
I D^j I 1
 

(`l.l)^R!(h^ n) - ^L^Rj J SRi^ 1 - ^1 - LD^.7/aRjJ / 

Once RR(h, n) has been calculatcd for the referencc that reads the irrdeting array 

B; it is straightfor^vard that the number of different points the refcrence accesses is 

^°Br MkPk, i.e, the product. of the number of different points it may access in cach 

dimension multiplied by the probability each one of such accesses actually takes 
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place. 

As irr Section 2.3.1, there are possible sirnplifications in between pairs of 3-tuples 

RR^ (h, n) that describe the access pattern iu different dirnensions of the array: 

((1, S„ P^), (M^, Sk, P^)) _(Mk, S^, P^ • Pr^) 
((M„ S^, P^), (M^, My ' S^, P^)) _(M^ ' M^, S^, P^ ' Pk) 

After these sirnplifications a single 3-tuple (Ms, Ss, P3) that describes the region 

accessed by the reference is typically obtained. 

The notation described above suffices for the representation of inemory regions in 

c,odes in ^vhich there is a single reference per data structure. In codes in ^vhich several 

references access the sarne data strnctnre, the regions the,y access will often overlap 

or be ac^jacent, so we have developed simple algorithrns to merge the descriptors 

for overlapping or adjacent regions. This way, lines that are accessed by diff►rent 

references are not taken into account several times as source of interferenr,es. In 

order to perforrn this merging, one more parameter is used to describe the region 

affected by a given reference R: the position QR with respect to the beginning of the 

array of the first element it contains. The merging algorithm is applied in function 

merge in Figure 4.2 and it is described in [31]. 

^s Section 2.3 explains, rather than this description of• the rnemory region ac, 

cessed, the output of the ac,r,css pattern identification step is a func,tion that charac

terizes the access pattern whose output is the area ver,tor associated to it. Depending 

ou the values of S3 and Ps in a tuple RR^ (h, n); four kinds of access pattern functions 

can be identified (see Figure 4.3(b)): 

l. ^Vhen PS = 1; it is a regular access pattern so the process described in Sec

tion 2.3.1 is followed, based on Ms and Ss. 

2. ^^- hen P3 < 1 the access pattern is irregular; as each point involved in the 

pattern has only a certain probability of being actually accessed: 

a) If SS = 1, it is an acccss to M3 consecutive elements in r^^hich each elc;ment 

is accessed with a probabilit^^ Ps. The function that calculates the area 

vector for this access is R.egsp(Ms, Ps). 

b) Otherwise the access affects Ms different points separated b,y a constant 

stride Ss, which cach element is accessed ^rith a probability Ps. The 
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DO I=1,M
 

REG=O
 

DO J=R(I), R(I+1) - 1
 

REG = REG + A(J) * X(C(J))
 

ENDDO
 

D(I)=REG
 

ENDDO
 

Figure 4.4: Sparse Nlatrix-^^'ector Product 

area vector associated to this access pattern is estimated by fimction 

Reg^P(Ms, l, S9, PS). 

Sornetimes it is not possible to reducc RR(h, n) to a single tuple. All the 

cases of this kind we have found in t,he codes we havc analyzed had the form 

RR(h, n) _((Mi, l, Pr), (M2, Sz, Pz)), which can be represented by the function 

Reg^p(M2i Ml, S2, Pr •P2), as thcy are an access to M2 separate groups of Mr consecu

tive elements each that are separated by a constant stride S2, having each individual 

element of the region a probability Pr • P2 of being accessed. 

ExamPle 11. Let us consider the code of Figure 4.4; ^vhich is part of the Sparskit 

toolkit [43]. This code performs the product of an sparse matrix stored in CRS 

format and a vector. The CRS format stores sparse matrices by rows in a compressed 

way using three vectors. One vector stores the nonzeros of the sparse matrix ordered 

by rows, another vector stores the column indexes of the corresponding nonzeros, 

and finally another vector stores the position in the other t^vo vectors in which the 

data of the nonzeros of each ro^^ begins. In our codes ^re ahvays call these vector A, C 

and R respectively. The codes which manipulate compressed sparse matrices contain 

many indirections. ^Ve will illustrate the extended access pattern identification step 

for codes that contain indirections identifying the memory regions accessed during 

one iteration of the outermost loop (loop I) of this code. 

In each iteration of loop I a^vhole execution of the loop J takes place. The 

average number of iterations of this loop is Nl. Since it s^veeps along the elements 

of a row of the sparse matrix; its value is Nr = Nnz/M, where Nnz is the number of 

nonzeros in the sparse matrix and M its number of rows, let's remember we assume 

an uniform distribution of the nonzeros. The number of nonzeros can be assumed 

from the size declared for the arrays A and C; or be part of a directive to the compiler 

or be extracted from a profiling of the input data. Reference A(J) is indeted by the 
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variable that controls this loop, so it sweeps along Nt different elements with stride 

1«^ith probability one. Thus, its RRt(0, 1) _(Nt, l, 1), «^hose area vector can be 

estimated by RegS(Nt) 

R.eference C(J) follo«^s exactly the same access pattern, thus it also accesses a 

region (Nt, 1, 1) whose associated area vector is estimated by Regs(Nt). 

Reference X(C(J)) is indexed b,y t,he variable of the loop indirectly, through a 

read frorn vector C. This wa,y; appl,y-ing Equation (4.1), its RRt(0, 1) is estimated 

as (Dxi, l, 1-(1 - 1/Dxt)`^^). The simplest function that c,an estirnate the area 

vector for this access pattern is R,egsP(Dxt, l-(1 - 1/Dxt)Nl); where D^t is the 

first dimension of arrav X. 

Also; during one iteration of loop I; reference D(I) accesses a single element of 

vector D; thus its RRt(0, 1) _(1, 1, 1), «^hose area vector is given by Regs(1) n 

4.2.2. PMEs for Codes with Indirections 

The P\-IE model for regular codes has an tmique equation that can characterize 

the cache behavior of any reference with a regular access pattern. In the previous 

chapter, an additional equation was proposed to co^^er the modeling of references 

guarded by one or rnore condit,ional statcrnents. These t«^o equations allow to modcl 

codes with irrcgular access patterns due to data-dependent conditional statements. 

In the extension of the P^-1E model to cover codes «^ith indirections. the con

struction of FRa depends on whether the control variable for loop i, I2i is used in 

the indexes of index arrays found in the reference or not. 

If Ii does not appear in R, or if it only appears in the indexes that do not depend 

on indirections; i.e., indexes of the form aIi + ó, the access pattern of R is regular 

«^ith respect to loop i; so the P\-1E for this loop is built using the Equation 2.12 in 

Section 2.4. 

^Vhen the control ^-ariable for loop i; Ii, indexes an index arra,y in an indirection, 

the access pa^ttern on the base array of our reference R is irregular with respect to 

loop i. The reason is that the position accessed by R no longer depends directly on 

Ii, but on the value read from the array that Ii indexes either directly or through 

more levels of indirection. 

The distribution of the values read frorn the index arravs on the dimension of 
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the base array they index determines the accesses; the reuses, and thus the PI\^[E 

that models the reference-cache interaction. In our modeling we assume that this 

distribution is uniform; that is; all the elements of the base array have the same 

probability of being accessed in each iteration of the considered loop. 

^Ve have found that two classes of irregular access patterns arise clepending on 

whether the values of the considered index array are ordered or not. IVIOIlOtoI11C 

irregular access PA-IEs model the situation when the accesses generated by the incli

rection are orderecl, i.e., when the values reacl from the inclex array are Inonotonieally 

increasing or decreasing. When this condition does not hold or we simply do not 

have information about the indexing values, non-monotonic irregular access PI\-IEs 

are going to be applied. ^Ve now explain the two kinds of Pl^lEs in turn. 

Monotonic Irregular Access PME 

^Vhen they are ordered, the sequence of accesses produced by the indirection 

can be characterized as a monotonically increasing or decreasing function. In this 

case; the reuses in the considered loop i can only take place with respect to the 

line referenced in the immediately previous iteration. This way; the PIt^IE for reg

ular access patterns explained in Section 2.4 (Equation (2.12)) can be used in this 

situation, the difference being that LR^, the nurnber of it.erations of this loop that 

cannot exploit reuse, or conversely, the number of different sets of lines (SOLs) that 

R accesses during the execution of the loop, cannot be estilnated as ►l the regular 

acccss pattern case. In a Inonotonic irregular access pattern, 

(4.2)
LRi = DRi(1 - (1 - LRii/DRi)N^) 

^ahere DRi is the number of different SOLs that R can potentially access during 

the execution of the loop i and LR1, is the number of SOLs accessed during one 

iteration of loop i. The rational for Equation (4.2) is that if in each iteration of the 

loop i, on average LRi, different SOLs are accessed out of the DRt ones that R could 

access, then each one of them has the same uniform probability PR= = Lgil/DR= of 

being accessed in each iteration of the loop. Thus, the probabilit}' that a SOL has 

been accessed at least once during the Ni iterations of the loop is 1-(1 - pRt)N^. 

A4ultiplying this probability by the number of SOLs yields the average number LR; 

of different SOLs that are actuallv referenced. So this is the number of iteration of 

the loop in which no reuse is possible. Because the values in the inclex a.rra}^ are 

monotonically increasing (or decreasing), the othcr N; - LR= iterations of the loop 
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attempt to reuse the SOL accessed in the immediatehr previous iteration, with a 

reuse distance of one iteration of the loop; as Pl-lE (2.12) reflects. 

The number LRi^ of differer^t SOLs acccssed during one iteration of loop i is 

trivially one in the innermost loop z that contains R. For any other loop i, LRiI is 

LR^; with k = min{v/i < v < z/^ DimInd(v) = DimInd(i)}, i.e., it is the LR for 

the outermost loop k nested inside loop i such that its index variable Ik indexes 

(indirectly) the same dimension of the base array A referenced by our reference R as 

the variable Ii of the considered loop i. If no such loop exists; then; aga.in; LRiI = 1. 

Another way to express it is that the number of dif%rent SOLs accessed in one 

iteration of loop i is the ntmlber of' SOLs accessed during the complete execution of 

the outermost loop nested inside loop i that indexes, indirectly, the same dimension 

of the affected base array as Ii. This definition allows to handle correctly those 

cases in which, for exarnple, the indirection for a given dirnension in R depends on 

several loop index variables, e. g.: in A(B ( I, J) ) both I and J itidex indirectl,y the 

only dimcnsion of vector A. Another exainplc for this situation is often found in the 

codes in which indirections arc generated h,y sparse tnatrices because of the forrnats 

used to store thern. 

E^amPle 12. If tve analyze the sparse matrix-vector product code in Figure 4.4, we 

see that vector X is accessed indirectly through C(J) in the innermost loop; ^ahose 

index variable is precisely J. In that loop; trivially, LRlI = 1 for reference X(C (J) ). 

If we analyze the outer loop on I, we can see that this variable indexes R(I); v-hich 

defines the values for J. ?^s as result the indexes of both loops index indirectly the 

only dimension of vector X, and thus; for the outermost loop 0; LROI = LRl. e 

^^'e complete our modeling for this access pattern with the expression of DRi : 

_ DA^d,^^ 
(4.3)

DR2 max{SRi^ L }s
 

where SRi = aR^ • d,^^ and d..^^ are defined as in the preceding section, a.nd D^^ is the 

size or number of elements along the j-th dimension of the array A referenced hy R. 

Let us remember that j is the dimension that is indexed; in this case indirectly, by 

Ii. This also means that in this ca5e the constant aR^ is multiplying the indirection 

indexed b,y Ii rather than the variahle Ii itself. 

Fxarraple 13. Frorn the shape of the loops displ^^yed in Figure 4.4 a cornpiler can 

speculate that R stores the indices for the beginning of thc; data of c^ach row of 
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the sparse matrix in A and C; which hold the nonzeros and their corresponding 

columns; respectively. another possibility to extract this information would be to 

include a directive to the compiler in the code reporting which is the role of each 

array in the storage of the sparse matrix. ^^^ith this knowledge we can also infer 

that the sparse matrix has M rows and ^ve can speculate that the values in C are 

ordered for each row. If this were the case we could conclude thaY. the values read 

in Figure 4.4 by C(J) are rnonotonically increasing during eacl^r whole execntion of 

the loop J; at nesting level 1. As a result, the acccss pattern of X(C(J)) in this 

loop can be rnodeled by a rnouotonic irregtilar acccss PNIE. This Pl^•1E has the forrn 

of Equation ( 2.12), with its LRt calculated according to Equation (4.2). The latter 

expression is a function of, DRr, the number of different SOLs that R can poteutially 

access during the execution of the loop J, and LRtI; the number of SOLs accessed 

during each iteration of this loop. 

Equation (4.3) allows to calculate DRt knowing that (a) the indirection tak^^s 

place in the first dirnension of the basc arra,y X(j = 1), ( b) the c;unmlative size for 

the first dirnension of any array is always one (dxr = 1), (c) the stride SRr of our 

reference ^vith respcct to its indirection is one (SRr = aRr • d.^r = 1• 1), and (d) the 

size of the first ( and only) dimension of X is a value DXr our compiler extracts from 

the definition of the vector in the code. With these data we evaluate Equation (4.3) 

as DRr = ^Dxr/LS^. This means that during each iteration of the loop J; X(C(J)) 

could potentially access any of the ^Dxr/L5^ lines that constitute X. 

Both in our general explanation about the calculation of LRt, and in our pre

ceding eharnple, we cxplained that trivially; in the irnrermost loop that contains a 

reference R with an indirection, LR=, = 1; which is the case for X(C (J) ) in loop J. 

With these two pieces of data we can evaluate Equation (4.2): 

LRr = ^Dxr/Lsl I i - (^ -
1 

rDx r /LS^ 

This expression assumes that each one of the ^Dxr/LS^ lines of X has the same 

uniform probability of being accessed during each one of the Nr iterat.ions of loop J. 

As a result; after the Nr iterations; each line has a probability 1- (1-1/ ^Dar/L5^ )Nl 

of having been accessed at least once. Thus multiplying this probability by the 

number of lines ^ve get the number of different lines that werc actually accessed on 

average. As for the average number of iterations of this loop Nr; since it swceps 

along the elements of a ro^v of the sparse matrix; its value is Ni = Nnz/M; ^vhere 
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Nnz is the number of nonzeros in the sparse matrix and M its number of rows. The 

number of nonzeros ca.n be assumed from the size declared for the arrati^s A and C; 

or be part of a directive to the compiler or be extracted from a profiling of the input 

data. 

Once we have calculated the number LRl of different SOLs we access in each 

execution of the loop (with each SOL consisting of a single line in this case), we 

can replace it in Equation (2.12). This equation will consider the LRt first accesses 

to a different line with a miss probability that depends on reuses that take place 

«^ith respect to accesses outside the loop; while the remaining Nl - LRr accesses 

necessarily try to rettse the line accessed in the immediately preceding iteration. As 

a result, the miss probability for them is associated to the regions accessed dttring 

one iteration if' this loop n 

Non-Monotonic Irregular Access PME 

^Vhen the indexing values are not monotonic, or we have no information about 

their ordering; the last access of a reference to a given line, or in general; set of 

lines (SOL), in the considered nesting level i mati have happened an indeterrninate 

rnrrnber of iterations ago. The mmrber of loop iterations betw<^^^^n two accesses of 

the reference to the sam^^; SOL is not a fixed value; since evcr,y SOL can bc; accessed 

with a given probability in each iteration of the loop. Thus, a probabilistic approach 

rnust be followed to estimatc the number of misses taking into account that each 

potential reuse distance happens now ^^^ith a different probability. 

In the presence of uniform probabilities; each one of the DRz diíferent SOLs that 

R can potentially access during each ^^;xecution of the loop has the sarne probabilit,y 

pR^ = LR^^^DR^ of being accessed in a given iteration, no rnatter thc accesses are 

rnonotonic or not. Also, ever,y SOL has this probabilit,y of access in each one of the 

Ni iterations of the loop. As a result, the number of misses generated by a non

monotonic irregular access pattern during the execution of loop i can be estimated 

by means in a summatory in «rhich each term estimates the number of misses that 

the accesses of R can generate in the j-th iteration of the loop: 

N;
 

FR1(RegIn) _ ^ WMRi(RegIn, j), (4.^) 
^=r 

where WMR;,(RegIn, j) ,yields th<: weighted rrumber of rnisses generated in the j-th 
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potentia.l access of R to the SOLs it defines in loop i. In this expression, R.egIn 

stands for the region accessed since the last reference to the SOLs that R accesses 

in this loop when the execution of this loop begins, as usual. This mnnber of misses 

is calculated a.s 

WMRs(RegIn, j) =( 1 - pRa)^-I ' Frt(z+I^(RegIn U RegR1(j - 1))+ 
^-I 

^pRY • (1 - pRa)h-I ' FR(i+Il(Regxz(h)) ^ 
h=1
 

aS explallled lIl the previous scctiou; yields the probability^i'llere p1qi = 1•R21^DR2J 

that a given SOL of the base array that R can potentially access during thc execution 

of loop i is indeed accessed during one iteration of that loop. 

The first term in (4.6) considers the case tho-lt the SOL has not heen accessed 

in any of the previous j- 1 iterations, which is (1 - pRz)^-I given that pR2 is the 

probabilit,y of access in each iterat,ion. In this c^r.5e, the RegIn region that could 

generat,e interference with the new access to the lille when thc executioll of the loop 

begins must be added to the RegR2(j -1) regions accessed during these j-1 previous 

iterations of the loop in order to account for the complete interference region. This 

addition is represented by means of the U operator. The second tercn ^veights the 

probability that the last access took place in each one of the j-1 previous iterations 

of loop i. The probability that the last access to a given SOL was exactly h iterations 

before the current iteration is pRz •(1 -pR=)h-I that is; the probability there was an 

access to the SOL h iterations ago; but there w'ere no accesses to it cluring the last 

h- 1 iterations. In this case; the regions that can generate interferences with the 

attempt to reuse the SOL in the current iteration are those accesses during those h 

intermediate iterations, RegR=(h). 

E^ample 14. «^hen the reference X(C (J) ) in our example code of Figure 4.4 is 

analyzed in the context of the outer loop I at nesting level 0; the values read from 

the indirection are no longer guaranteed to be ordered throughout the execution 

of the loop. That is; the values read from C during a single iteration of the loop 

I correspond to the column indexes of the elements of a single row; which we can 

assume that have been stored in a given order; but when the ^vhole loop I is taken 

into account; the values read from C are not ordered among different iterations 

of loop I. As a result; the non-monotonic irregular access P^^IE of Equation (4.5) 

characterizes the access to X in this loop. In that equation; the number of iterations 

of the loop is No = M in our case; and WM^(R.egIn, j) is calculated follou-ing 
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Equation (4.G). In order to evaluate the latter equation we must calculate pRO, that 

is, the individual probability each SOL of X is accessed in each iteration of loop 

L.^s we have expla,ined, this value is derived as pRO = Lxo^/DRO, ^^'here LROI is 

the number of different SOLs our reference accesses on average in each iteration 

of the loop; ^tnd DRO is the mrmber of different SOLs it could actually access. In 

example 12 we explained and calcnlated that for this reference LRO, = LRi, and the 

valuc; of LRr was estirnated in Equation (4.4) in exarnple 13. R,egardirrg DRO, it is 

calcula^ted according to Equation (4.3). As we explained in exarnple 12; while the 

variable I that controls the loop ^t-e are analy^ing does uot appear iu the expression 

of our reference X(C(J)), this variable indexes R(I), ^^hich defines the values for 

J. This way; I indexes indirectly the indirection «^e are analy^ing in the first (and 

only) dimension of array X and Equation (4.3) can be evaluated using the same 

parameters used in example 13, which results in DRO = DRr = ^Dxl/LS^. That is; 

any of the ^Dxl/Ls^ lines of X can be accessed during the execution of loop I, where 

we remind the reader that Dxr is the length of vector X and L, is the number of 

elements of vector X a cache line can hold 

This example helps us also illustrate the meaning and usage of the R.egIn input 

for the PA-1Es. The PA-1E FRO for reference R=X(C(J)) we have just built is 

based on Equation (4.5). In its development in Equation (4.6) we can see how, as 

always, this PIVIE is expressed in terms of the PI\^IE for the same reference in the 

inmediately inner loop. In our case this PI^^IE is FRr; built in example 13; which 

models the behavior of the accesses to X during the product by a row of the sparse 

matrix. The evaluations of FR^ti+l^ in FR^ receive as RegIn the set of' regions accessed 

during the reuse distance associated to that evaluation. In our example; attending 

t^ Equat,ion (4.6), FRO evalu^Ltes FRl through WMRO(RegIn, j) ^vith t^vo kinds of 

reuse distances. The inpnt for the first appeo-trance of FRi in this expression depends 

on the R.egIn for FRO itself, because it is not associated to reuses within the loop. 

R.ather, it corresponds to the first accesses to lines of X during the execution of the 

loop, which will result in cold n►sses. The rnodel predicts this correctly because (a) 

R,egIn for outer loops ^^ith no preceding accesses is a region with an associated miss 

probability 1 and (b) as we can see the model propagates this region down to the 

PNIE FRl for the innermost loop for the evaluation of the rnisses generated in the 

very first accesses to these lines. 

The remaining evaluations of FRi in Equation (^.6) correspond to reuses within 

loop 0 with a reuse distarrce of exac;tly h iterations of this loop each. Such evalua

tions are rnultiplied b,y the probability this situation actuall,y- takes place to predict 
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correctly the ntnnber of misses they generate. Their RegIn is RegRO(h), i.e.; the 

interference region generated during those h iterations in which a line of X has not 

been accessed. In our example this corresponds to the acesses that take place dur

ing the product of h rows of our sparse matrix b^- the vector. The RegIn of FRt 

determines the miss probability for the first accesses to YhP. lines of' X during an 

isolated iteration of the innerrnost loop. assigning this value to RegIn ensures such 

probability d^^:pe;nds in fact on the cache footprint of thc accesses perforrned since 

the intnediatel,y preceding access to those lines; which took place cxactly h iterations 

of the loop on I ago. 

The calculation of regions of interference and the quatitative evaluation of PNIEs 

are considered in Section 4.2.1. n 

4.2.3. Model Extension for Uniform Banded Matrices 

lintil now we have considered the case in which a.ll the elements of the base array 

have the same probabilit^- of being accessed, but our model can be extended to cover 

situations in which the distribution is not uniform. For example; a very common 

source of indirections are accesses generated by sparse matrices that are stored in 

some compressed format like CRS ^19^. One of the most usual situations b,y f'ar is 

tl► at such rnatrices are banded' , so it is valuable to extend our rnodel to considcr 

irregular accesses that are are uniformly distributed in a litnited band or area of the 

basc array. In Section 4.3 we will describe a diffcrent model extension for banded 

matrices where the values a^re not uniforrnly distributed inside thc band. In this 

case, the formulas described in the Sections 2.4 and 4.2.2 can be used making t^vo 

small changes to adapt them to this new situation: 

n	 ^rhen PMEs for the indirect accesses generated b^^ the column indices of a 

banded matrix are built; the term DA^ in Equation (4.3) must be replaced by 

the size of the band of the studied matriti; since the accesses are not uniformly 

distributed on the whole j-th dimension of the base array; but on1^- of the 

region associated with the band B of the matrix. 

n	 since the nonzeros are onl^^ distributed along B ro^vs in each column and B 

columns in each row; when the probabilit^^ of reuse of a group of SOLs with 

respect to the preceding iterations is considered in Equation (4.^); the upper 

1 A is banded with band^r•idth B= 2p -{- 1 if a11 the nonzeros are contained within the first p 
super and first p subdiagonals. (A;^ = o, ^i - j^ > p) 
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DO I= 1,M
 

DO K= R(I), R(I+1) - 1
 

REGO=A(K)
 

REG1=C(K)
 

DO J= 1,H
 

D(I,J)=D(I,J)+REGO*B(REG1,J)
 

ENDDO
 

ENDDO
 

ENDDO
 

Figure 4.5: Sparse A-latrix - Dense Vlatrix Product with IKJ order 

bound of the summatory is not Ni, the size of the sparse matrix along the 

considered dimension that gives place to the attempts of reuse, but B, since 

only along B ro^vs/colmm^s can be the same SOL of the hase array be reused. 

ExamPle 15. The model derived for matrices with an uniform distribution for our 

example code in Figure 4.4 is applicable to banded matrices except in two points. 

First; in the calculation of DRO and DRl for reference X(C(J)) we must substitute 

the value of Dxl with the band size. Also; in the expression FRO that characterizes 

the behavior of this reference in the outer loop at nesting level 0(the one indexed 

by I), which has the shape of eq. (4.5); the upper bound of the stmimatory must 

no longer be M, the total number of' rows of the sparse matrix, but its b<tnd size 

B; since only along the processing of B different rows of' the input matrix can we 

exploit reuse of a^ given line of the base array X of' this reference. The size of the 

band would havc to be provided by a^ directive to the cornpiler or be extract^^;d b,y 

an analysis of the input data. n 

4.2.4. Validation 

Our validation relies on eleven kernels of different complexities that conta.in in

directions derived from the manipulation of sparse matrices stored in compressed 

formats such as the CRS (19^ format. The first code is the Sparse Alatrix - ^-PC

tor Product (SPVIX^') 'shown in Figure 4.4. The next three codes are the Sparse 

A-latrix-Dense 1\-latrix Product (SPNItDII-I) with the three different loop orderings 

this operation allo^^s: IJK, JIK and IK.I, where the first index is the one for the 

outer loop and the last index the one for the innerrnost loop in the nest. In the three 
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1 DO I=2,N+1
 

RT(I)=0 4 DO I=1, M
 

END DO DO K=R(I), R(I+1)-1
 

J=C(K)
 

2 DO I=1, R(M+1)-1 P=RT(J)
 

J=C(I)+2 CT(P)=I
 

RT(J)=RT(J)+1 AT(P)=A(K)
 

END DO RT(J)=P+1
 

END DO
 
RT(1)=1
 END DO
 
RT(2)=1
 

3 DO I=3, N+1
 

RT(I)=RT(I)+RT(I-1)
 

END DO
 
y
 

Figure 4.6: Transposition of a sparse matria. 

orderings I indexes the rows of the sparse n ► atrix, K its coluirms, and J thc colun ► i ► s 

of the dense rnatrix. As an example, thc IK.I loop ordcring is shown in Figure 4.5. 

Finall,y, Figure 4.6 shows a sparse matrix transposition (TR,ANSPOSE) where both 

the original and the transposed inatrix are stored using the CRS inethod. This code 

is particularly complex, as it contains four loop nests; there are accessed with several 

levels of indirection in loop 4; and it involves more data structures than the other 

examples (six). Besides, some structures appear in several loop nests, so there may 

be reuses bet^veen the access to a line in one loop nest and another access in another 

loop nest. 

The rernaining five kernels have been extracted frorn the set of routines matvec . f 

of the ^vell-kno^vn SP^R.SKIT ^43^ library. This set of routines contaius different 

routines that perform the product bet^veen an sparse rnatrix and a vector, ^vhere the 

sparse matrix to multiply has bcen stored using different compresscd storage formats. 

The routines analyzed are: AA^IU\i\^IS, :^`TA4Ut; ATA•IUlR; AA-1U1D, al\ILlE and 

:^l\4L;1J. In A^^ILXVIS the sparse matrix is stored in the \-1SR (\^lodified Sparse Row 

Storage) method; ATViUX and ATMUIR use again the CItS format but the input 

matrix is transposed; AA^iUlD uses a matrix stored in the DI^ (Diagonal Storage 

Fonnat) format; in ^1^IL\E the matrix is stored in the ELL ( Ellpack Itpack) format, 

and finally in AD^ILlJ it is stored using the JAD (Jagged-Diagonal Storage) format. 

^11 these storage formats are described in ^43^. 
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Code MRs^m MRn^toa OMR m^(OMR) 

SP^'IXV 9.64% 9.45% 0.92% 8.23% 
SPI\-IXDA-IIK.I 48.95% 47.92% 1.41% 1L48% 

SPI\-IXD1\'II.IK 22.20% 21.42% 0.79% 3.56% 
SPA-IXD1\'IJIK 11.68% 11.28% 0.70% 6.65% 
TR.ANSPOSE 18.98% 19.22% 1.60% 11.72% 

AVIUXNIS 6.20% 5.91% 0.77%r, 8.78I 

AT_l4UX 5.27% 4.82% 0.63%; 11.20%^ 
AT^4UXR 5.24% 4.77% 0.61% 10.10% 
AVIUXD 4.62% 4.81% 0.78% 7.76% 
A1^-1tiXE 5.69% 5.84% 0.37% 7.05I 
A\-II^XJ 5.84%0 6.47%r, 1.10% 9.97%r. 

Table 4.1: Averagc measured (MRs;,,,) and predicted (MRMoa) rniss rates, averagc 

value O,NR of the absolute difference between the predicted and the measured miss 
rate in each experiment; and maximum value of this difference max(O,^R). 

Validation with Synthetic Matrices 

The integration of our model in the XARK compiler ^15^, which will be discussed 

in Chapter 5, has allowed us to apply it automatically to the validation kernels. 

The rniss rate predicted by the rnodel was cornpared with the results of trace-driven 

sirnulations using s,y-nthetic matrices with an uniforrn distribntion of their nonzero 

elerneirts. Over 10000 t<^^sts wer^^: perforrncd for each code changing the sizes and 

starting addresses of thc different arra,y-s, the cache configuration and the density of 

the sparse rnatrix. Tablc 4.1 gives arr idea of thc accurac,y of the rrrodel. Columus 

MRs;m and MRtitoa contain the average values of the miss rate simulated and the 

miss rate predicted in the set of experiments; respectiveh. Then, column O,NR 

contains the average value of the absolute value D,yR of the difference between 

the predicted and the measured miss rates for each experiment. ^^'e use absolute 

values, so that negative errors are not compensated with positive errors. Cohtmn 

max(^MR) contains the largest value of ^MR observed in the set of experiments. 

Tables 4.2; 4.3 and 4.4 show some raudorn representative validation results for 

the Sparse ^^Iatrix - V"ector Product; the Sparse Nlatrix - Dense Nlatrix Product 

^^^ith IKJ loop ordering and the Sparse 1^-latrix Transposition codes; respectively, 

displaying a wide range of possible validation parameters ancl the result obtained. 

In the three tables; the first two columns, M and N, show the nurnber of rows 
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M N a CS LS K MRS;^, MR^.to^1 OMR T„^o^ 

1000 1000 4.00 8Ii 32 1 30.11 30.00 0.11 0.015 

1500 1100 12.12 32K 32 2 18.17 18.34 0.17 0.021 

1600 1500 8.33 32K 64 4 8.44 8.60 0.15 0.010
 

1300 1400 13.74 64K 128 1 5.21 5.31 0.10 0.012 

1700 1500 9.SU 64K 64 2 8.67 8.82 0.15 0.032
 

1100 1000 22.73 128K 128 2 4.21 4.42 0.21 0.021 

750 750 7.00 512K 128 8 4.23 5.13 0.90 0.014 

5500 5500 0.28 1024K 64 8 8.77 8.86 0.09 0.035 

3000 3000 L 19 2048K 128 4 4.26 5.64 1.38 0.033 

1000 1200 16.67 128K 128 1 10.82 4.87 5.96 0.025 

Table 4.2: Validation data. and times for the Sparse Nlatrix - Vector Product code 
for several cache configurations; matrix sizes and sparse matrix densit}r 

M N a H Cs LS K MRS;m MR^,^^^ OMR T^„^^ 

900 900 22.22 500 32K 64 1 89.27 88.27 1.00 0.019 

^00 500 3.20 600 64K 64 4 81.97 81.61 0.36 O.Oll 

700 700 31.43 500 64K 64 8 29.66 23.30 6.36 0.015 

1100 1100 14.55 500 128K 64 8 30.76 29.88 0.88 0.02 r 

1000 1000 15.00 750 128K 64 4 31.18 29.59 1.58 0.038 

700 700 27.14 500 256K 64 2 21.25 20. r 1 0.54 0.019 

1000 1000 24.00 500 512K 64 2 23.18 22.45 0.73 0.023 

700 700 2.86 500 1024K 32 2 32.89 32.56 0.33 0.027 

1000 1000 1.58 1000 2048K 64 4 38.10 36.13 1.97 0.052 

600 600 30.00 500 32K 32 8 76.68 65.20 11.48 0.032 

Table 4.3: V"alidation data and times for the Sparse \^IatriY - Dense \^IatriY Product 
IK.J code for se^^eral cache confignrations; matrix sizes and sparse matrix densit}^ 
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M N a CS LS K MRS;,,, MRn,to^ ^MR Tmod 
600 600 3^.00 16K 32 2 32.49 32.91 0.43 0.029 
700 700 34.29 32K 32 1 28.02 26.14 1.89 0.02^ 

3000 2000 2.50 64K 32 2 27.00 29.86 2.86 0.031 
5000 2000 3.00 64K 128 1 26.^3 27.47 0.93 0.027 
1000 1000 15.00 128K 128 1 17.77 19.21 1.44 0.03^ 
800 800 57.5 ► 256K 64 4 5.3^ ^.17 0.18 0.034 
500 ^00 46.80 512K 128 8 2.18 3.00 0.82 0.03 7 

2900 2900 0.47 1024K 64 1 7.91 10.29 2.38 0.043 
500 ^00 1^.75 2048K 64 4 3.08 4.36 1.28 0.042 

5000 1000 9.OU 128K 64 4 1L^0 23.22 11.72 0.023 

Table 4.4: Validation data and times for the 1\-fatrix Transposition code, f'or several 
cache configurations, matrix sizes and sparse matrix density 

and columns of the sparse rnatri.x involved in the code, respectively. Then, column 

a is the density or percentage of positions in the sparse matrix «^ith nonzeros. In 

table 4.3, column H shows the number of columns of the dense matrix involved in 

the product. The cache configuration is given in the three tables by C5f the cache 

size in bytes, Ls, the line size in bytes; and K; the degree of associativity of the 

cache. La,rger cache lines and associa^tivities tend to be associated to larger caches 

in general in the tables, as this is the most common situation. Fór each comhination 

of the input problem parameters and cache configurations the tables display the miss 

rate MRs,m rneasnred bv the simulations, the rniss rate MRhro^ predicted by our 

rnodel, and OMR, the absolute value of the difference between thcrn. These three 

values are expressed as percentages bet^veen 0 and 100. The la.st entry in every table 

conta•is the data for thc experinrent that generated the largest O,^R. 

Finally, the last column in the three tables, T,,,o^, reflects the corresponding 

modeling times in seconds in a 2,08 GHz ^IVID K7 processor-based system, respec

tivel,y. A-lodeling tirnes, which «^ere alwrLys helo^t- one second, are several orders of 

rnagnitude shorter than trrrce-drivr;n sirnulation f^>r the sparse rnat.rix-dens^^, rnatrix 

products, and noticeably shorter in the cas^^; of the other code;s. 

Validation with real banded matrices 

In order to va.lidate our model for unif'orm banded ma,trices we used the Sparse 

1\-lat,rix - Vector Product code sho^vn in Figure 4.4, the Sparse ^^latrix - Dense 1\-latrix 



77
4.2 Nlodel Extension for Lniform Distiributions 

_^ atr^x
 
Narne Size B a CS LS K MRs^^„ MRprea OMR T^,o^ 

jpwh991 991 155 0.61 64Ii 64 4 9.37 8.84 0.53 U.U14 

jpwh991 991 155 0.61 321i 32 2 18.77 17.72 1.U5 O.U13 

jpwh991 991 155 0.61 32K 64 1 10.29 9.84 0.45 0.012 

bcsstk05 153 20 10.35 32K G4 1 9.57 9.11 0.46 0.009 

bcsstk05 153 20 1U.35 256K 16 4 3^.04 34.13 0.91 O.UU9 

bcsstk0^ 153 20 10.35 256K 32 2 17.54 1 r.07 0.48 U.UU9 

bcsstrnl0 1086 71 1.87 32K 64 1 9.12 9.29 0.17 0.013 

bcsstml0 1086 71 1.87 256K 16 4 34.66 33.91 0.74 0.017 

bcsstml0 1086 71 1.87 1024K 64 4 8.67 8.48 0.19 0.015 

jpwh991 991 155 0.61 8K 16 1 43.79 40.45 3.33 O.U13 

Table 4.5: Validation data and times for the Sparse A-latrix - Vector Product code 
for several cache configurations and different Harwell-Boeing matrices with uniform 

band distribution 

atnx 
Narne Size B a H CS LS K MRs„n MRr«d OMR TR,od 

jpwh991 991 1^^ 0.61 200 32K 64 1 93.08 93.UG U.02 0.011 

jpwh991 991 13^ 0.61 153 16K 32 2 88.61 88.2-r 0.33 0.010 

jpwh991 991 155 0.61 1086 32K 32 4 97.30 98.52 1.21 0.017 
jpwh991 991 lb5 0.61 350 64K 64 4 91.26 92.10 0.83 0.011 

bcsstkUS 1^3 20 10.35 153 32K 32 4 1G.49 16.84 0.35 U.U09 

bcsstk05 1^3 20 10.35 153 16K 32 2 45.34 43.30 2.04 0.009 

bcsstrnl0 1086 71 1.87 153 16K 64 4 74.22 ^4.32 0.10 0.010 

bcsstml0 1086 71 1.87 153 32K 128 1 63.73 62.59 1.13 0.011 

bcsstml0 1U86 71 1.87 153 512K 64 4 0.-^0 O.GS U.05 U.014 

bcsstml0 1086 71 1.87 200 1024K 64 8 0.68 0.35 0.13 0.058 

bcsstk05 153 20 10.35 350 32K 64 1 72.96 61.30 11.67 0.011 

Table 4.6: V"alidation data and times for the Sparse ^^latrix - Dense ^latrix Product 
IKJ code for several cache configurations and different Harwell-Boeing matrices ^vith 

uniform band distribution 
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Product in Figure 4.5, and the Sparse 1\-Iatrix Transposition in Figure ^1.6 and we 

applied them to real matrices from the Harwell-Boeing collection [28] rather than to 

synthetic matrices. The results of some randomly chosen validation experiments are 

sho«^n in Tables 4.5 and 4.6 for the first two codes considered; respectively. In both 

tables the first coh^mns contain the name of' the matrix used in every test, follo^^^ed 

by the characteristics of the matrix such as, the number of' rows and columns si^e 

(we used square rnatrices); the band size B and; in the case of sparse rnatrix 

densc matrix product code; the nurnber of' colnnms H of thc dense matrix. c^ is 

the percentage of positions in the sparsc rnatrix with rronzeros. The uscd c;ache 

coufiguratiou Cs, Ls and K, follo^^^s. again, for each experimcnt we show both the 

measured MRti;m and the predicted MR^,^^^ miss rates and the absolute value of the 

difference between them; OMR. Nlany dif%rent experiments were performed using 

different cache configurations; the results shown in these tables are only a small 

representative subset of these tests. The last entry in every table contains again the 

data for the experiment that generated the largest O,^R. 

For the sparse matrix - vector product code «^c perfornred d10 different tests 

changing the used matrix; the cache configuration, and the base address of the data 

structures involved in the code, obtaining an average value for the O,^R of 0.66% 

and a maxirnurn value of 3.33%, the average value of the relative error OMR was 

3.96%. The rnetric OMR stands for the relative error of our prediction: it is the 

absolute value of the dif£erence between the miss rate measured bv the sinmlation 

and the miss rate predicted by the model (^,^R) divided by the miss rate measured 

by the simulation and expressed as a percentage, that is OMR = O,uR^MRs;,i, x 100. 

For thc sparsc matrix - densc rnatrix product codc wc perforrned 5100 differcnt 

tests, changing the same pararneters as for the sparse matrix - vector product code 

as ^vell as the number H of colurnns of the dense matrix involved in the code. VVe 

obtainecl an average value for OMR of 2.55% and a maximum value of 11.67%. The 

average value of the relative error 0,^ R was 6.60%. 

Finall,y; we performed i;he sanre set of 510 tests for sparse rnatrix transposition 

as for sparsc rnatrix-vector product. Iu this case the avcrage O,^R was 1.78%; and 

its maximum was 7.30%, being the average value of the relative error OMR 11.35%. 

Again; these validation results obtained using a wide range of' parameter com

binations; and t^^hich are very sirnil^Lr to the ones ohta,ined for the rnodel with a 

cornplet,ely nniforrn distribut,ion displa;y^^;d in Tabl^^^ 4.1, rnake us think that our 

rnod^^,l is a good estirnator of the behavior of' a code with irregular access patterns 
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under the assumed conditions. 

Finally; as in the previous tests; the lr^st colunm in Tables 4.5 ^id 4.6; Tmod, rep

resents the tinie consurned b,y our inodel. The rnodel is several orders of niagrlltude 

faster than the simulation. 

Discussion 

Thc; rnodcl workt^;d well for the spars<; rnatrix - vector product of' Figur^^; ^.4. The 

results were somewhat worse for the sparse matrix - dense rnatrix product code in 

Figure 4.5 for both kinds of rnatrices, although tlre model «-as still very accurate in 

general. Predicting the rcuse for the reference B(C (K) , J) that generates irregular 

accesses in this code is possibly rnore complex than for thc refcrences subject to 

irregular access patterns in the other codes. The reason is that in this case each 

value of the indirection controls a whole set of tightly coupled accesses of B(C(K) ,J) 

to different lines with a regular stride for J=1, ..., H, «^hile in the other codes each 

individual indirection only controls the access to one line. lt is good to see that in 

such a complex situation, the predictions of the model are still good. The behavior 

of the model for the sparse matriY-dense matrix products in which the inner loop 

is K is similar to the one observed for the sparse matrix - vector product as we see 

in Table 4.1. Finally, the transposition of a sparse matrix in Figure 4.6 turned out 

to be the most difficult code to predict; as it is not a perfectly nested loop like the 

previous examples, and it displays several levels of indirection in its fonrth loop. 

Still, the predictions of the model were ver,y^ reasonable. 

The tendencies of the accuracy of the rnodel with respect to the parameters of 

the caches and the density of the sparse matrix are displayed in Figure 4.7; in ^ahich 

we have used cache configurations that are similar or equal to real level 1 and level 2 

caches of current computers. Cache configurations are expressed as CS;LS,K, where 

CS is the cache size in bytes; LS is the line size in b,ytes and K is the associativity. 

The rnost in^rportant couchrsion is that in general, highcr densitics lead to more 

.^ccurate predictions. That is an espected result, sincc the lo^ver density; the more 

irregular the accesscs. Also, notice that this higher irregularity leads to higher miss 

rates (as an example, see experiment in Figure 4.8), which dilute thc largcr values 

of OMR. 

As for the time required to compute its predictions; the rnodel takes more tirne 

^=hen the size of the problem (size of the im^olved data stnrctures) is bigger, a5 ex
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, 

^,^^. ^ c^xco^fi^^n^;^a^^Ty 
(a) Sparse matrix-vcctor prodttct, with M= 

N = 750 

..t,^ ^,^ w tQ'a 
Mavix Densidity ^^e Carbe Crn^figmuán 

(b) Sparse rnatrix-dense utatrix product (IKJ), (c) Sparse rnatrix transpositiou, with M= N= 

with M= N= H = 750 750 

Figure 4.7: O,yIR as a f'unction of' the spa,rse matrix density and the cache configu
ration in différent codes. Cache configura.tions are expressed as CS,LS,K; where CS 
is the cache size in bytes, LS is the line size in bytes and K is the associativity 
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Figure 4.8: It-Iiss rate measured and predicted following different strategies as a 
function of the ^natrix density for the sparse matrix-cíense matrix product (IKJ); 

where M= N= H= 500 in a cache of 64Kbytes with a line size of 64 bytes ancí 

associativity degree 4. 

pected; and whcn the cache associativity is higher. The reason for the latter behavior 

is that the complexity algorithm for calculating the area vector for sorne patterns 

depends directly on this argument. Still, modeling times are ahvays below one sec

ond. In general; we can say that our model provides quite accurate estimations with 

a very low cornputing cost. 

Tlre sparse matrix-dense matrix product with IJK loop ordcring is used in Fig

ure 4.8 to cornpare the rniss rate obtaincd l^y a trace-drivcn simulation, t.he miss 

rate predicted by the PA^IE rnodel, an upper bound of the prediction obtained by 

a simplified version of our model that considers all the irregular accesses as misses; 

and a lorner bound obtained by ignoring the irregular accesses that appear in the 

code. The sizes of the data structures involved in the code ancl the cache configura

tion were kept constant while the density of the sparse matrix took values between 

1% and 100%. The figure reflects that the PI\^IE model estimates the miss rate ac

curately, while simplified versions provide very poor estimations. This justifies the 

interest of our model. 

A mom detailed stud,y of ho^r changes in any of the cache configuration paranr

eters can affect the cache perforrnance can be perfor ► ned for any code. For this 

purpose ^ve considered the AA+IUlA^IS code which performs the product bet^+^een 

an spa.rse matrix and a vector; the base cache configuration has a total size of ^12 

KBytes a line size of 32 bytes and an degree of associativity of 4. ^•Ve tracked the evo

lution of the miss rate rneasured and the miss rate predicted by the rnoclel changing 

separetely each one of these parameters. The results of these experiments; reflected 

in Figure 4.9; were obtained using an square sparse matrix of 500x^00 and 50000 
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Figure 4.9: lbliss rate measnred and miss rate predicted for i;he ANIUINIS code. In 
the first graphic the assor,itivity degree is changed; thc second graphic modifies line 
size; the third graphic consid^^;rs diff<^^rent caches sizes. 

non-zero values uniforntl,y distributed along the rr ► atrix. Iu the first experiment the 

degree of associativity takes values 1; 2, 4 aud 8 respectively. The direct, mapped 

cache has a bigger miss rate than thosc caches t^^ith larger degrees of associativity. 

This improvement decreases as the associativity grows. Even, in some cases for large 

associativities like 8; there is a slight performance reduction. The second experi

rnent considers line sizes of 32, 64, 128 and 256 bytes respectively. ^ bigger line size 

produces a significant miss rate decrease. But ^a^hen the line si^e is big enough this 

improvement is attenuated because although bigger lines reduce the number of cold 

misses; very big lines can increase the interference between different data structures 

stored in the cache. The third experiment changes the total cache size which takes 

va.lues of 8, 16, 32; 64; 128, 256 and 512 KBytes respectivel•y. Alwa,ys, the bigger 

the cache size, the smaller the miss rate because there is more room for storing the 

data stnictures managed by the program, but this effi^ct is diminished in ver,y big 

caches. The reason is that there is less and less room for improvernent as the cache 

size approaches the problern size. In all these experirnents the model predictions 

^;^ere very accurate. 

«'e also; compa.red the cache behavior when the different anah^zed codes to per

form an sparse matrix-vector product were ran. ^^'e consider an sparse matrix of 

1000x1000 with 100000 non-zero values uniformly spread along the matrix. The com
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Figure 4.10: Number of accesses, nurnber of rnisses rneasured and predictecl for an 
sparse matrix-vector product usiiig different cotnpressed storage forim^,ts. The cache 
configuration considers a cache size of 32 KB,yte^, a linc; size of 64 bytes and an 
^^ssociativit,y degree of 4. . 

pared codes are the SPMYV; AI^^IUX\^IS, ATMUX; A1^^ILXD;A\^fUXE and AA-IUXJ 

(AT\^IUXR. is omitted because its characteristics are very similar to ATh^ILX as it 

was seen in Table 4.1). These codes perform an sparse matrix-vector product when 

the matrix is stored using different compressed storage inethods. The graph in Fig

ure 4.10 represents the number of accesses, the number of inisses measured ancl the 

number of misses predicted by the model for each code. The prediction of the model 

are ahvavs verv accurate. It can be seen how some codes like the Al^-1LXD and 

AA4L;XE perform much worse than the other ones because they are designed for 

banded matrices with very few diagonals, so their performance ( in terms of cache 

misses) when applied to an uniform matrix is really poor. The other codes obtain a 

very similar performance. 

Finaly; ^ve have also inquired into ^vhat happens «-hen the model is applied to 

matrices with a non-uniform distribution of the entries. In order to quantify this 

behavior, «•e run experiments on 320 randomly chosen matrices from the Harwell-

Boeing [28] and \iEP [18^ collections; using 10 different cache configurations for 

each one «rith sizes ranging from 16 KBytes to 2^^IBytes; thus yielding a total 

of 3200 experiments per analyzed kernel_ Figure 4.11 summarizes the results of 

these experiments classifying our experiments in four buckets according to the ^MR 
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Figure 4.ll: Percentage of the number of experiments in which the OMR is below 
2.5%, between 2.^% and 5%; between 5% and 10%, or larger than 10% when real 
matrices with a non-uniform distribution of the entries are used. 

achieved: below 2.5%, bet^^een 2.5% and 5%, between 5% and 10%; and larger than 

10%0. «%e see that SP1^-I^V; SPI\^I^DII-I with JIK loop ordering and TRAI\SPOSE 

yield reasonable estimations in the vast majority of' the cases, ^^rhile SPIVIXDIVI with 

the IKJ and LJK orderings is less reliable. ^Vhen irregnlar accesses are not tmiformly 

distributed, the,y- tend to be grotrped in clusters, ^^^hich increases the locality. So in 

these cases, our rnodel can still help understand the behavior of th<^; cache, although 

tlre miss rate it predic;i;s nnrst 1>e considered an upper bound rather than an accurate 

estirnation. 

4.3. Model Extension for Non-Uniform Banded Ma

trices 

^Iost real data involved in irregular computations due to the existence of in

directions does not follow ^Ln uniforrn distribution. The banded distribution is a^n 

example of non-uniform distribution present in rnany rnatrices. This distribution 

is very cornmon in sparse computations, the main source of th^^: codes used in the 

validation of our model. As we saw in thc validation in Section 4.2.4 the model 

PNIE extension for codes involving uniform banded rnatrices is not suitable for the 

rnodeling of rnatrices ^+-ith a non-uniform distribution of the values inside the band. 

The modeling of this kind of' non-uniform distributions is very complex. The 

equations for references with regular access patterns are relatively simple because 

all the accesses that can result in a cold miss have an unique interference probability, 
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Figure 4.12: Banded sparse matrix 

and a different unique interference probability is applied for the accesses that can 

result in an interference miss, as all the reuses have the same constant reuse clistance. 

In an irregular pattern; every access has a set of diffi^rent possible reuse distances 

with art associated interference probability that is weight,ed «rith the probahility t,hat 

each considered reuse attc;rnpt happens. If th^; distribution of the acc^^sses is unifornl, 

the same set of interference regions can be used for all the accessed lines and r,hey 

all have the sarne probability of reuse associated to each reusc distalrce. ^-1^hen this 

is uot thc case, that is, when different lines have differeut probabilities of being 

acccssed; a different set of interference regions must be calculatcd for each accessed 

line and different lines will have different probabilities of reuse for the same reuse 

distance. 

We will illustrate these ideas with the code in Fig^Ire 9.4; which performs the 

product between a sparse matrix stored in CRS forrnat ^19^ and a vector; and «^hich 

is part of SPAR.SKIT ^43^. Let us rernernber that thc CR,S forrnat, st,ores sparse 

IrlatrlCes bV r0^^'S ln a CO1npI'eSSed Way 11s1I1g tllree VCCtOPS. ^Ile VCCtOr stOl'GS tlle 

nonzeros of the sparse Inatrix ordered b,y rows, anothcr vector stores the cohrmn 

indcxes of the corresponding non^eros; and finalh- another vector stores the position 

in the other two vectors in which the data of the nonzeros of each row begins. 

In our codes we always call these vector A, C and R respectively. The innermost 

loop of the code in Figure 4.4 performs the product bet^+^een vector X and ro^r• I of 

the sparse matrix. In this code reference X(C(J)) performs an irregular access on 

vector X only in the positions in which the matrix row contains nonzeros. Let us 

suppose that the sparse matrix that is being multiplied is a banded matrix like the 

one sho^vn in Figure 4.12; in ^vhich the W= 5 diagonals that constitute its band 
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have been labeled and black and white elements represent non-zero and zero values 

elements, respectively. During the processing of each row of the sparse matrix, 

a maximum of W different elements of X will be accessed. Each one of these W 

elements has a different probability of being accessed that depends on the density 

of the corresponding dia,gonal in the banded matrix. The set of elements eligible for 

access is displaced one posit,ion in the processing of'each new ro^v. Also, each element 

of X will be accessed a rnaxirnurn of W tirnes dnriug the execution of' the code; as a 

maxirnunr of W rows rnay havc; nonzeros in thc: corresponding colurrrn. Interestingl,y, 

the probability of access is not uniform along those W rows. For e^ample; every 

first potential access during the processing of t.his matrix in this <;ode will take place 

for sure; while every secorrd potential access to arr elcment of X will happen with a 

probability of 30%. This is because all the positions in the fifth diagonal ( d5) keep 

nonzeros; while in the fourth diagonal (d4) of the band 3 out of its 9 positions keep 

nonzeros; which is a density of nonzeros of 30% 

The number of elernents of the vector accessed in the processing of a row can 1>e 

averaged using the densities of the diagonals of the band matrix. Every Ls elernents 

of the vector are stored in a differeut linc, the probability of accessing that line 

can be calculated as a function of the corresponding densities in the diagonals of 

the sparse matrix. In every iteration of the outermost loop, a different row of the 

sparse matrix is selected. It is possible to reuse lines of the vector between different 

iterations of the ontermost loop. Lr the processing of a given row of the sparsé matrix 

some values of the vector mapped inside the band are accessed, in the processing of 

the next row the situation is repeated but the area covered by the band is shifted 

one position to the right; this has to be taken in account for the calculation of the 

possible reuse between the processing of différent rows. 

The situation depicted in our example is clearly more common than the extension 

performed in Section 4.2.3; in which we only considered irregular access patterns 

which had an uniform probability of access for each element of the dereferenced 

data structure, and in which such probability did not change during the execution 

of the code. It is very usual that the diagonals of banded matrices have different 

densities; with the distribution of the nonzeros within each diagonal being relatively 

uniform. :^s a result, we have extended our model to cope with this important 

class of matrices, which enables to model automatically and accurately the cache 

behavior of codes with irregular access patterns in the presence of' a la.rge number of 

rettl sparse matrices; as the evaluation proves. ^^'e will characterize the distribution 

of nonzeros in these m^Ltrices b,y a vector d of W probabilities ^vhere di contaius the 
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density of the i- th diagonal; that is, the probability a position belonging to the 

i- th diagonal of the band contains a nonzero. This extension can be automated 

using a compiler framework that satisfies its information requirements. The vector d 

of diagonal densities is the onh, additional information we need in this work. These 

values are obtained from an analysis of the input data that can be provided by the 

nser; or obt,ained b,y means of' runtime profiling. 

Section 4.3.1 contains the new equations added to cover this situation, while 

Section 4.3.2 contains a description of the validation of this estension. 

4.3.1. PME equations for Banded Matrices 

The PA^IEs are a function of input memory regions calculated in outer or preced

ing loops that are associated to the reuses of the sets of lines (SOLs) accessed by R 

in loop i whose immediately preceding access took place before the loop began its 

execution. The uniforrnity of' the accesse5 in all our previons extensions f^^r covering 

irregula,r cornputat,ion allowc;d to use a single region Reg for this purpose, that is, all 

the SOLs had the sarne reuse distancc whenever a loop began. This lrappened be

cause all the considered lines had urriforrn probabilities of access; and thus thcy also 

en,jo,yed equal average reuse distances and rniss probabilities. The lack of uniforrnity 

of the accesses rnakes it uecessary to considcr a separate rcgion of irrterfereuce for 

each SOL. Thus we extend the PNIEs to receive as input a vector R^eg of inemory 

regions. The element Reg^ of this vector is the mernory region accessed during the 

reuse distance for what in this ]evel of the nest happen to be first access to the 

l-th SOL that R can access. Another way to express it is that Reg^ is the set of 

memory regions that could generate interferences with an attempt to reuse the l-th 

SOL right when the loop begins its execution. This way; R^eg has as many elements 

a5 SOLs defines R dttring the execution of the considered loop. 

The shape of PNIE FRt depends on the access pattern followed by R in loop i. 

This section contains a description of the formulas ^n^e have developed for references 

with irregular access patterns generated by indirections due to the compressed stor

age of banded matrices in which the distribution of non-zeros ^vithin the bartd is not 

uniform. A different formula will be applied depending on whether the values read 

from the index array are known to be monotonic or not. They are monotonic when, 

given two iterations of the current loop i and j and being f(i) and f(j) the values 

generated by the index array in these iterations, for all i< j then f(i) < f(j) or 

for all i< j then f(i) > f(j). «'hen the index values are known to be monotonic 
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a more accurate estima.tion can be obtained because we known that if our reference 

R reuses a SOL of the base array in a given iteration; this SOL is necessarily the 

one accessed in the previous iteration of the loop. 

PME for irregular monotonic access with non-uniform band distribution 

If we assume that the nonzeros within each row have been stored ordered b^^ 

their column index in our sparse matrix in CRS format, reference X(C(J)) generates a 

monotonic irregular access on the base array X during the execution of the innermost 

loop in Figure 4.9. Let us remember that the index array C stores the column indexes 

of the nonzeros of the row of the sparse matrix that is being multiplied by X in this 

loop. 

The general equation that estimates the number of misses generated by a ref

erence R in nesting level i that exhibits an irregular monotonic access ^vith a non

uniform band distribution is 

LRi-1 

FR2(Reg) _ ^ pz(rcRi)FR(i+r)(Regi) +
 
a=o
 
W LR;-1 

^ dr - ^ p^(ccRi) FR(^+i)(IntRegn^(1)) 
l=r l=0 

The interference region from the outer level is different for each set of lines (SOL) 

accessed and it is represented as a vector R^eg of LRZ different components, where 

LR1 is the total number of difl'erent SOLs of the base array A that R can access in this 

nesting level. LR; is calculated as ^W/GRa^ being W the band size a,nd GRZ is the 

average. number of positions in the band that give place to accesses of R to a same, 

SOL of the base array A. This value is calculated as ^LS/SRz^ ; being SRz = aR^ • dA^ 
^vhere j is the dirnension ^vhose index depends on the loop variahle Ii through thc 

indirection; Ls is thc cache line size; aR^ is thc scalar that nrultiplies the index array 

in the aHine firnction, and dA^ is the curnulative size^ of the j-th dirnensiou of the 

array A refereuced b,y R. 

Err,nrra^le 16. If we consider reference X(C(J)) in Fignre 9.9, while processing the 

rnatrix in Figure 9.12, with a cache lint; size LS = 2; in the irmerrnost level d^i = 1 

'-'Let A be an N-ditnensional arra,y of size DAr x Dp2 x ... D,^N, we define the cumulative size 

for its j-th dimension as d,^^ _^;=i D,^ti 
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and aRl = 1. Each GR= = 2 consecutive positions in the band give place to accesses 

to the same SOL of X. Consequently, since W= 5, the number of different SOLs of 

X accessed would be LRi = ^5/2^ = 3. n 

The vector of probabilities pi has W positions. Position s of this vector keeps the 

probability that at least one of the diagonals s to s+ GRa - 1 has a nonzero; that is, 

it is the probability they generate at least one access to the SOL of the base a.rray 

that would be accessed if there were nonzeros in these diagonals. Each component 

of this vector is computed as : 

min(W,s+GR;-1) 

^ (1 - d^) (^1.8) 
d=s 

Let us remember that d is a vector of W probabilities; d9 being the density of the 

s- th diagonal in the band as it is reflected in Figure 412. 

In Equation 4.7 each SOL l of the base array that R can access in nesting level 

i has a probabilit,y pi(iGR;) of being accessed, where IGRz is thc first baixl that can 

generat,c accesses to the l- th SOL. Thc miss probability iti the first access to each 

SOL l depends on the interfereuce region from the outer lcvcl associatcd to that 

SOL Regi. The remaining accesses are non-first accesses during the execution of 

the loop, and because the access is monotonic, their reuse clistance is necessarily on 

iteration of the loop. As a result, the interference region ^vill be IntRegR1(1); the 

interference region of reference R in 1 iteration of nesting level i. The number of 

potential reuses of SOLs by R in the loop is calculated as ^W 1 di -^ió-1 p1(^cR,), 
where the first term estimates the number of different accesses generated by R during 

the processing of a row or a column of a band while the seconcí term is the average 

number of different SOLs that R accesses during this processing. 

Example 17. Examples 13 and 14 contained the derivation of the PIV1E eyuations 

that describe the cache behavior of the reference X(C(J)) in the code of Figure 4.^1 in 

loops I and J respectively; assuming that the values generated by the index array C 

follow an uniform distribution. This code performs the product between a matrix; 

stored in CR.S format; and a vector X. In example 13 it was established that the 

values generated by the index array during each complete e^ecution of the innerniost 

loop are monotonically increasing. If we consider that the CR.S matri^ used as input 

data is a banded matri.r; then the Equation( 4.-^) must be applied. :^s loop J 1S thP, 
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innermost level for this reference, the resulting equation is; 

LFti-1 

FRl(Re9) _ ^ pl(dGni)AVO(Re9d) ^

d=0 

W Lni-1
 

^dd - ^ pi(dca^) A[/o(IntRegRl(1)) 
d-i d=o 

«^here LRl is calculated as ^W/GRl^, being GRl = ^Ly/SRl^. The stride is SRl = 
dxl = 1 as the array X is indexed ttsing the affine function 1xC(I)+0. The probabil

ities ptd are calculated using the Equation( 4.8) n 

PME for irregular non-monotonic access with non-uniform band distri

bution 

A data structure stored in a compressed format, such as CR.S ^19^, is t^-picallv 

accessed using an offset and length constructiou [39^. ln this situation; very common 

in sparse matrix computations, the knowledge that the values accessed across the 

indirection follow a banded distribution can be used to increase the accuracv of the 

prediction using a specific equation. For example, in the code of Figure 4.4 the 

reference X(C(J)) accesses the structure C using an offset and length construction. 

The values generated by the index array C in the innermost loop are monotonic but 

the values read across dif^erent iterations of the outermost loop are non-monotonic 

because a diíferent row is processecl in each iteration of this loop. L^'hen this situation 

is detected and t^^e are in the presence of a bandecl matrix, the behavior of the 

referenc,e in the outer loop can be estimated as 

FR1(Regln) = NiFR(i+t)(Reg(Regln)) (4.10) 

In this equation the N;, iterations in the current nesting level are considered to repeat 

the satne behavior. Although the W- 1 first and last iterations have a different 

behavior thau the others as for exainple their baud is uot W positious ^vicle, w-e have 

checked experitnentall,y that the lost of accurac,y incurrcd when not considering this 

is not significant. This is expected, as usually thc band siie W is much smallcr than 

N1; ^vhich is the number of ro^vs or coluinns of the sparse matrix. 

An average interference region for each one of the LR^ SOLs accessed in the inner 

level rrmst be calcnlated. This average interference region takes account of all the 
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possible reuses that can take place with respect to a previous iteration of the current 

loop depending on the different possible combinations of accesses to the studied base 

array. The interference region associated with each possible reuse distance must be 

added to the average region ^veighted ^vith the probability an attempt of reuse ^vith 

this reuse distance happens. The expression that estimates the interference region 

associated to the l- th SOL that R can access in this loop is, 

w 
Reg^(Regln) _ ^ (1 - p1z )(Regln U IntRegRi(W - IGRi - 1)+ 

z=lGa;+t 
(4.11)

w 9-i
 

IntRegRi(s - lGxi)^ pis ^ (1 - piZ) 
B=^GRi+1 Z=^GRi+1 

In the previous section we saw that IGRi is the first diagonal that could gencrate an 

access to the l-th SOL in a given iteration and pi(^GR,) the probability of accessing 

that SOL during the processing of a row or column of the matrix. As the bancl is 

shifted one position to the right every ro^+^, in general, the probability that the same 

SOL of the base array is accessed by R m iterations before the current iteration is 

T^i(IGR;+m)• ^^s a result, rjw1GR^+1(1 - p1z) calculates the probability that the l- th 

SOL has not been accessed in any previous iteration of this loop. In this case the 

interference region is equal to the ttnion of the input region from the outer level a.nd 

the region associated to the accesses that take place in the W- IGRi - 1 previons 

it,erations. The addition of a, region to the average region weighted by its corre

sponding probabilit,y is perforrned adding the region weighted b}^ thc corresponding 

probability to the average region. Regarding thc reuses within loop i, thc probability 

that the last access to a SOL took placc cxactly m iterations ago is calculated nuilti

plying the probability of bcing accessed in that iteratiou pi(tGR;+„^) by thc product of 

the probabilities of not being accesscd in any of the iterations bet^vecn that iteration 

and the current iteration rj^GR'+m-t(1 - ) The interference re ion associatecl toZ-tcR:+i piz • g 
this attempt of reuse will be the region covered by the accesses that take place in 

those m iterations of the current loop. In this equation LR; = LR^; GRi = GR^ 
and the vector pi =^^; being j the innermost nesting level of the offset and length 

construction. 

Exaraple 18. In exarnple 14 the access done in the cocle in Fig^^re 4.4 by the ref

erence X(C(J)) in the outermost loop was dctermined to be non-monotonical. ^Vhen 
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(^,) AF23560 J'i=N=23560 (b) lnsp3937 IbI=N=3937 (c;) CURTIS5^ nI=N=54 

Iln'L=^IÓ^► J6 L^•"=60^ nll'L= ► 54U! «'=I6ó nn'L=`29I `^^=43 

Figure 4.13: Esamples of matrices in the Harwell-Boeing set, NI and N stands for 
the matrix dimension, nnz is the number of nonzeros and ^^' is the band size. 

the CRS matrix is banded the Fomula 4.3.1 nnist be applied, as a resnlt, 

FRO(Regln) = MFRt(Reg(Regln)) (4.12) 

As the innermost nesting level of the offset and length is level l, LRO = Lai,Gtto = 
GRt and po = pt, so they talce the same values calciilated in Exarnple 17. The LRo 
values of the vc^;ctor Reg(Regln) arc; calculated using Equation ^l.ll. 

4.3.2. Validation for Codes with Non-Uniform Banded Ma

trices 

The validation ^vas done applying bv hand the PI\^IE model to: the sparse-matrix 

vector product,; in Figure 4.4; the sparse-matrix dense-matrix product with IK.1 

(see Fignre 4.5), IJK and .IIK order; and the sparse-matrix tra,nsposition, shown in 

Figure 4.6. 

The model was validated again comparing its predictions with the results of 

trace-driven simula.tions. For every code, 10 different cache configurations ^vere 

tried with caches of sizes from 16 KBytes to 2 1\-IBytes, line sizes from 16 to G4 bytes 

and associativity degrees 1, 2; 4 and 8. The input data set ^vere the 177 matrices 

from the Harwell-Boeing ^28^ and the \EP ^18^ sets that we found to be banded or 

mostly banded (a few nonzeros could be outside the band). These matrices represent 

^2 /o of t,he t,otal number of matrices contained in these collections. 
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Code MRs;m ►̂̂m 
Unifonn Bancls \^Iodel 

MR^toa 
OMR 

_ \"on-Uniform Bands \^Iodel 

MRMo^r OMR 

SPA^ílV 14.00% 0.08% 15.57% 1.80% 14.45% 0.70% 
SPl^^IlDNIIKJ 27.66% 2.02% 45.62% 26.81% 28.85% 4.19% 

SPl^^I1DIVILIK 8.62% 0.29% 27.48% 17.23% 10.91% 3.10% 

SPNIXD1bIJIK 7.87% 0.43% 10.63%0 3.23% 8.36%0 0.78%0 

TRA\SPOSE 10.31% 0.33% 11.38% 3.55% 9.52% 3.23% 

Table 4.7: werage measured ( MRs;m) rniss rate; average t,ypical deviation ( Q^;,,,) of 

the measured rniss rate, averagc predicted (MRn^iod) miss rate and the avcrage vrllue 
OMR of the absolute diffcreuce bet^vicen the predicted an •í the rnea5ured miss rate 
in e;aclr experirnent. 

The matrices used are a heterogeneous set of' input data. Some matrices have 

all their entries uniformly spread along a hand; like the AF23560 matrix in Fig

ure 4.13(a). The LNSP3937 matrix shown in Figure 4.13(b), has o-tll its values spread 

along a band of the rnatrix but not unif'orrnl,y. Finrill,y; therc; are sorne nt^itrices likc^ 

CURTIS54, sho^vn in Figurc; 4.13(c;), ^t^here not all t,he values are sprc;ad along a 

barrd but a siguificarrt percentage of them are lirnited to this area. 

Table 4.7 summarizes data giving an idea of the accuracy of the model. The 

results were obta.ined for the benchmarks performing 1770 tests considering 10 dif

ferent cache configurations of each one of the 177 matrices of the Harwell-Boeing 

and the ^IEP sets. For each matrix and cache coníiguration 10 different simulations 

^vere performed changing the base address of the data structures involved in each 

code. In the case of the three orderings of the sparse-rnatrix dense-rnatrix product 

the numbcr of colurnns of' the dense rnatrix is always a half of' its nurnber of' rows. 

Thr, cache configizrations have cache sizes (CS) from 16 KBytes to 2 MBytes, line 

sizes (LS) from 16 to 64 bytes and associativity degrees (K) 1; 2, 4 and 8. Column 

MRs;m contains the average value of the rniss rate sirnulated in the set of experi

ments. Column Q^;m is the average typical deviation of the miss rate obtained in 

the 10 sirnulations performed changing the base address of the data structtrres. The 

table compares the precision of the predictions achieved using the simple model for 

banded matrices assuming an uniform distribtttion of nonzeros introduced in Sec

tion 4.2 and the improved model presented in this paper. The table shows for each 

model; MRrso^ the average value of the miss rated predicted; and OMR the average 

value of the absolute value OMR of the difference bet^r•een the predicted and the 

measured miss rates for each experiment. ^^'e use absolutc values; so that negative 
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errors are not compensated with positive errors. These results show that the im

proved model is much mode accurate in the presence of real heterogeneous input 

banded matrices than the original model. The small values of Q^;R, point out that 

the base addresses of the data structures play a minor role in the cache behavior. 

Figure 4.14 contains a comparison of the miss rate obtained in the simulation, 

the miss rate obtained bv the uniform bands model and the miss rate obtained 

by the non-uniform bands model during the execution of the sparse matrix-dense 

matrix procluct with IJK ordering using some matrices from the Harwell-Boeing 

and the NEP collections. The number of columns of the dense matrix used in the 

multiplication was al^c^ays one half of the number of rows of the sparse matrix. 

Figure 4.14(a) shows the results obtained using a t}rpical level 1 cache configuration, 

while a typical level 2 cache configuration is used in Figure 4.14(b). The cache 

configuration parameters are: Cs the total cache size; Ls the line size and K the 

degree of associativityr. Tl ► e non-uniforrn bands rnodel almost alwa,yrs estirnates rnore 

accurately the miss rate. The difference is bigger iu the level 2 cache configuration. 

The reason for the poor estirnations obtained using the uniform bands rnodel is that 

in matrices with widc bands but in which most of the values are concentrated in 

a few diagonals, therc is a lot of reuse that is not captured by the uniform bands 

model, as it assumes that the entries are uniformly spread along all the diagonals in 

the band. The predictions for matrices such as sherman^, gre343 and ash292 are less 

accurate because they do not fit exactly in the form described in 4.12, as in some of 

their diagonals the density of the nonzeros is not uniform, that is, some diagonals 

exhibit different densities along their length. The predictions for the level 1 cache 

configurations using the uniforms band model are sometimes relatively accurate. 

The reason is that although this model often mispredicts the reuse dista,nce for the 

accesses with an irregular access pattern, the associated miss probability is so high 

in this c,ache fc>r some matrices even for short, reuse distances that this error does 

not, aff'ect the accuracy of' the prediction as mu<;h as in the case of' a higger cache 

like the typical level 2 cache config^iration. 
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(b) Simulation and modeling for a typical le^^el 2 cache configuration 

Figure 4.14: Comparison of the rniss rates obtained by the simulation; thc uniform 
bands model and the non-uniform ban<Is rnodel during the execution of the sparse 
matrix-dense matrix product ^cith LJK ordering for several real matrices. 



Chapter 5 

Automated Implementation in a 

Compiler Framework 

The original PME model was only automatable for cocíes with regular access 

patterns. In the previous chapters; automatable extensions of the Pl•IE model were 

proposed to cover irregular codes due to both data-dependent conditional statements 

(described in Chapter 3) and indirections ( described in Chapter 9). 

A fully automatic tool was built using the ideas of the original PI\^IE model ca

pable of predicting the cache behavior in regular codes [31]. This chapter describes 

the full autoination of the PA^IE tnodel extension for irregular codes due to indirec

tions and a unifortn distribution of the values. The information retrieval is harder 

to perform in irregular codes than in regular codes. For this purpose, we use the 

\AIiK compiler [15], an extensible framework for automatic kernel recognition that 

can be used as a powerful and efficient information-gathering tool [16, 17]. In order 

to characterize the access patterns followed by the references in the codes, a subset 

of the well-known chains-of-recurrences formalism was implemented in the compiler. 

Section 5.1 presents a motivating example that will be used throughout this 

chapter. Section d.2 introduces chains of recurrences for the characterization of 

the access patterns. Section 5.3 describes the algorithm to build the PA-IE model 

automaticall^r from the point of view of the information to be retrieved by the l_^I^.K 

compiler. Section 5.4 provides and overview of the internals of the \ARK compiler 

and presents an extension of \AR.K that retrieves the information reyuired by the 

model. Finally; Section 5.5 shows an example of how the automated PR-IE model 

can be used to guide an optimizatio q process succesfully. 

9r
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5.1. Motivating Example 

The development of the PA-IE model extensions for irregular codes has been 

driven by a set, of «ell-kno^vn codes that contain regular and irregular access pat

terns. %^ n^rarnral analvsis of such codes revealed that the automation of the mode] 

frorn scratch is a difficiilt ttr,5k, speciall,y in th^^^ scope of irregular applications; as 

advanced syrnbolic analysis is nc;eded to retrieve thc: necessar,y inforrnation. 

For illustrative purposes; consider the code of Figure 4.5 for the computation of 

the product of a Il-IxN sparse matrix in CItS format [l9] and a 1\xH dense matrix. 

The outermost loop dor presents array references with regular access patterns. The 

expressions used for their indexing can be rewritten as affine f'unctions of the en

closing loop indices. For instance; the subticript of R(I + 1) takes inereasing values 

in thc: interval ^2,M -}- 1^. Current cornrnercial and rescarch cornpilers can gather this 

inforrnation. However; irregular acc^^^ss patterns due to indirectiorrs requir^^; advanced 

s,yrnbolic analysis techrriques. For exarnple; reference B(REG1, J) follows an irregular 

access pattern becausc the values of REG1 are determined by C(K), «^hose values are 

not known at cornpile-tiine. ^^ote that K introduces a higher level of irrdirection be

cause it takes values in the interval [R(I),R(I + 1) - 1] in each doI iteration. Further 

analysis of the headers of doi and doK reveals that the code traverses the whole array 

of row indices of the sparse CRS tnatrix. The recognition of this progrannning con

struct, usually referred in the literature as offset and length ^39]; leads to conclude 

that K takes a strictly monotonically increasing set of values during the execution 

of doI and, thus, different elements of' array C are referenced at rtm-time. The accu- 0 

racy of the model would increase if the compiler c.ould retrieve this information. The 

XARK cornpiler represents access patterna b,y rneans of the chains-of=recurrences for

rnalisrn, which will be introduced in Section 5.2. F^om these chain5 of recurrences 

th^^; PVIE model will build the equations that characte;rize the cache behavior for 

such access patterns. The corresponding algorithrn will be described at high level 

in Section 5.3. The details about the recoguition of prograrnming constructs such 

as offset and length will be preseuted in Section 5.4. 

5.2. Chains of Recurrences 

Chains of ^•er,^ir^•ercces (CR^ is a formalism to represent closed-forrn functions ^^9^ 

that is used in different computer algebra s,ystems, optinrizing cornpilers and stand
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alone libraries. Chains of recurrences have been successfirlly used to expedite func

tion evaluation at a number of points in a regular interval. Given a consta.nt ^o; a 

function g defined over the natural nrmlbers and zero; N^Z U{0}; and the operator 

-{-, a Basic Recurrence (BR) f, represented by the tuple f={^o, +, g}, is defined 

as a firnction over N„^ U{0} by 

á-r 

{^o, +, 9}(2) = Qio +^ 9(j) ^vith i E N„^ U{0} (5.1) 

j=0 

Exarrcple 19. For exarnple, the loop index of doI in Figure 4.5 takes integer values 

in the rc;gular interval ^1,M^. The BR, f ={1,+, 1} provides a closed-forrn fimction 

to cornpute the valuc of I at each dor iteration and thus l;o deternllne the affine 

rnernory access pattern I of arra,y reference R(I) n 

The algebraic properties of BR's provide rules for combining several BR's into a 

single BR by means of arithmetic operations Let f= {^o, O, g} and g= {µo, ®, gr } 

be BR's and c be a constant. Then, 

{^o, ^-, 9} f c = {^o f c, +, g} (5.2) 

{^o, +, g} * c = {^o * c, +, c * g} (5.3) 

{^0^+^9}+{µo^+^9r} _ {^o+µo^-^^9+9r} (5.4) 

(5.5){^o^ +^ 9} * {µ-o^ -I-^ 9r} _ {^oµo, *^ ►9r -k- 99 + 99r} 

Example 20. Consider the access pattern of' array reference R(I ^- 1). The BR of 

the subscript expression I-}- 1 is computed by apph-ing equality (5.2) to the constant 

1 and the BR {1, +,1} that represents the loop index I. Thns, the subscript I+ 1 

is represented by the BR, {2,+, 1} n 

Multidimensional Chains of Recurrences (MCR) [36] provide a formalism to de

scribe memory access patterns of multidimensional arrays. In the following; an 

intuitive description of ViCRs based on their interpretation is presented. 

Example 21. Consider the bi-dimensional array reference D(I, J) of Figrrre 4.5. In 

the scope of dor; a row-major traversal of matrix D is performed; M and H being 

the nurnber of rows and columns; respectively. As both rows and cohrmr • s are 

accessed sequentially one after another; the BR, {1, -}-,1} captures thc access pattcrn 
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defined by the subscript expressions I and J. However, from the point of view of 

the cache behavior, the description of the access pattern of the multidimensional 

array mapped onto a linear memory model is requirecí. Assuming column-major 

storage which is the case in Fortran, the It-ICR J{I{1, -}-,1}, -i-, M}, composed of' two 

nested BRs, provides such inf'orma,tion as follo^vs. First, the inner BR I{1,+, 1} is 

evaluated according to equation (5.1) in order to locate the beginning of row rnrrnber 

I. Nc;xt, the outermost BR. J{I, -^, M} is ^^waluated to acc;ess the row elc;ments stored 

irr mernor,y locations with stridc M. bVithin NICRs; the subscript on the left of each 

BR, indicates the source code variable used to evaluate the BR. n 

In this work only BRs and NICRs with a constaart g functiorr are used as the,y 

enable the representation of the access patterns handled by thc PNIE modeL Note 

that CRs provide a powerful representation that will capture more complex cases 

that are expected to appear in full-scale real applications, like triangular access 

patterns. Besides, chains of recurreuces is a«^ell-kno^^^n and widely used formalism 

that has an extensive research associa.ted to it which can be used in future extensions 

of our work. 

Figure 5.1 surnrnarizes thc; inforrnation requirernents of' the P^-1E model f'or the 

code of Figure 4.5. For ear,h loop, a graph of dependence relations (represented as 

use-def chairrs) between array refererrces and loop indices is depicted. Lse-def chains 

starting frorn array rcfererrces are labeled ^^^ith the array dinrerrsion where the target 

reference appears. BRs that capture loop index values and access patterns for each 

dimension of each array reference are shown. When enough information is available, 

rnulticlimensional arrays are also annotated with ^^1CRs and linearized ^1CRs. The 

superscript on the right of the BRs represents an average of Lhe number of times 

that the BR is evaluated. The notation ? within BRs reflects that the corresponding 

information ca.nnot be determined to be a constant expression at compile-time. 

5.3. Information Requirements of Extended PME 

Model 

This section describes a high-level algorithm of the PVIE model as well as the 

information requirements of its implementation in a compiler. Sec,tion 5.3.1 f<^cuses 

on the construction of the equations of the ruodel and Section ^.3.2 on the cornputa

tion of the interference regions, that is, the mernory regions accessed 1>y ea.ch givc;n 
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BR MCR Linearized MCR 

I {1,+,1)M
 
K {1,+,1}^
 
J {1,+,1}"
 

R(1) R({I,+,1}^) 

R([+1) R({2,+,1}„)
 

A(K) p({1,+,1}^) .
 

C(K) C((1,+,1}®) 

D(1J) D((1,+,1}^,{I,+,1}^ D(^{ ^{1,+,1}•,+,M}^) D((1,+,1}^) 

B(REG1.}) B({(2,+,2p,{l,+,l}") 

D(I,J) D({1,+,1}^,{l,+,l}^ D(^{ ^(1,+,1}^,+,M}^) D((1,+,1}M") 

K (R(I),t,l}^ 
J (1,+,1}" 

A(K) A({R(I),+,1}^)
 

C(K) moIIOlAII1C C({R(I),+,1}°^)
 

D(I,]) D({I},{l,+,l}") D(^(^{I},+,M}^) D({7,+,M}^) 

B({7,+,7}*,{1,+,1}")
 

D(1,1) D({I},{3,+,1}") D(^{^{I},+,M}'^`) D((7,+,M}^) 

J {1,+,1}"
 
D(1J) D(^{^{I},+,M}^D({I},{l,+,l}e) D((2,+,M}^ 

B(REG1J) B({{REGl},(1,+,1}^ B(^{^{REGI},+,M}^ B({REGI,+,M}^ 

DUJ) D({(},(1,+,1}^ D(^{^{I},+,M}^ D({7,+,M}^ ^ 

:r^utinn ieve;l 
^V'ectln9 3ave' I 

\ostln 

Figure ^.1: Information requirements of the P\'fE model for the code of Figure 4.5. 
The symbol nnz stands for the number of nonzeros of the sparse matrix; and (j is 
the average number of iterations of dox 
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reference during a period of the execution of the code. 

5.3.1. Constructing the Equations 

The pseudo-code of Figure ^.2 gives an overview of the P1^-IE model. As shown 

in the top-level procedure analyze_code, the references that appear in each loop 

nest of the source code are studied one by one. Each reference R is analyzed in 

several scopes. r1t each nesting level, the procedure number_of_misses computes 

an equation that calculates the number of misses produced by that reference in that 

nesting level. This equation is expressed in terms of the equation of the immediately 

inner loop and use the fttnction RegRz(n) definecí in Figure 4.2 for calculating the 

interference region. A reference may exhibit different access patterns with respect to 

diff'erent loops. These access patterns are modeled by the f'ollowing equations: the 

^•egv,l,ar ar,cess PME for regular patterns, the rn.orant,o7aic irreg^elr^r o,cr,ess PME for 

irregular patterns that access a ntonotonic scqnence of inernor,y positions, and th^^^ 

reon-rraonotonic irregular access PME for irregular patterns that cannot b^^; predicted 

at compile-time. Procedure number_of_misses selects the appropriate equation 

by analyzisig the BRs associated with each d ►nension of R as follows: 

n	 The regular access P\^IE is applied if the BR ^natches {^o, +, g} with constant 

function g. 

n	 The rnonotonic irregular access PNIE is applied if (1) a BR, characteriziiig one 

of the dimensious has a iion-constant g, and (2) there is a path of use-def 

chains bet^vicen R and the loop indcx of thc current loop that contains at lcast 

another different array reference. The first step of this path must be a use

def chain with a target array reference ^vhose values can be determined to be 

monotonic. 

n	 Otherwis^^^, the non-rnonotonic irrc:gular access P^^IE is selected. 

Example 22. As an example, consider the arra.y reference B(REG1, J) in Figure 4.^. 

In the analysis of the itmermost loop doJ; the BRs that describe every dimension 

of the reference are explored. as shown in Figure ^.1; the BR {REG1}, simplified 

representation of {REGl, +, 0}, that describes the access pattern in the first dimen

sion, is an invariant BR. In addition, as the BR {1, +,1} associated with the second 

dimension has a constant fi^nction g= 1; the suhscript is kno«^n to be an affine 
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procedure annlyze_code() I
 

1 foreach loop_neat of the code 1
 

2 foreach reference in the loop_neat i
 

3 miaaea}=numóer_of_msaaea(reference,outermoat_loop(loop_neat),Rf„p) 

4 I 

procedure numóer_of_miaaea(referen e,loop,region) { 

1 if i _regular(reference,loop) l 

2 return regulor_acceaa_PM E(rejerence,loop,region) 

3 1 else { 

4 if i _ onotonic(reference,loop) ( 

5 retuzn irregular_monotonic_acceea_PME(referen e,loop,region) 

6 1 elee I 

7 return irregular_nonmonatonie_aceeaa_PM E(referen e,[oop,region) 

8 1 

9 

procedure irregular_monotonic_ncceaa_PM E(reference,loop,region) {
 

1 if i _ nermoat_loop_cantaining(loop,reference) {
 

2 return LR; ^ cache_impact_quantificatíon(region) }(Ni - LR;) W cache_impact_quantification(RegRtooy(1)) 

3 f elae I 

4 misae8^0.0
 

5 foreach inner_loop in snn r_loopa_containing(loop,reference){
 

6 miaaee} = LR;^ numóer_of_miaeee(reference,inner_loop,region)
 

7 }(Ni - LR;) ^ number_of_miaaea(reference, inner_loop, RegRloop(1)) 

9 return miasea
 

10 1
 

Figure ^.2: The PNIE model algorithin 
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function of J. Thus; a regular access PNIE models the behavior of the reference in 

this loop. 

a different situation arises in the scopc of doK at nesting level one. The BR. 

for the first dimension has unkno«^n ^o and g, ^^hich is represented as {?, +, ?} in 

Figure ^.1. Besides, the graph of dependence relations depicted in Figure ^.1 shows 

that there is a path from the first dimension of B(REG1, J) to loop index K that 

contains another array reference C(K) whose values are stored in the scalar REG1 (see 

lines 2, 4 and 6 of Figure 4.5). Thus, the subscript REG1 is known to be irregular. 

The accuracy of the prediction can be raised by taking advantage of the knowledge 

that C is the column array of a sparse CRS matrix since, assuming that the column 

indices are ordered «^ithin each matrix row; the sequence of' values of' C(K) is known 

to be monotonic. As a result, the monotonic irregular access Pl31E is applied. Note 

that such inf'ormation is not, available in the scope of the outermost loop because C(K) 

i5 not monotonic a^cross different iterations of doi. In this casc^;, the non-rnonotonic 

irrcgular access PI\^IE is used n 

Two parameters are required to build a PA^IE at nesting level i: N2, the number 

of iterations of the loop, and SR2, the stride bet^-een the elements that reference 

R accesses in two consecutive loop iterations. In the case of regular accesses and 

monotonic irregular accesses LRz, the mm^ber of loop iterations for which R cannot 

exploit any reuse, must be calculated too. In ottr algorithm, Ni is the upper bound 

of the BR that chaxacterizes the values of' the loop index. As for SR^, if there is not 

any dependence path bet^veen the reference and the loop index; SRZ = 0. Other^vise, 

it is c^ilculated ^us the product of the constant g of the BR associo-a^ted with the loop 

indr^x by the distauce between two consecutive elerncnts of the arr^Ly referenc^^;d by 

R in the dim^:nsion index^^,d b,y the loop index. This latter value is calculat<^,d using 

the dimensions of the indexed array aud the mapping of the arra,y into the liuear 

rnemor,y rnodel (i.e., ro^^-ma•jor or colutnn-tna,jor). Finally, LRz is calculated using 

Equation 2.13 ^vhen the access is regular or using Equation 4.2 when the access is 

irregular monotonic. 

Exnmple 23. In regular codes, Ni is sometimes available at compile time, and 

thus the upper bowid of the BR of the loop index can be computed (see the BR 

{1,+, 1}H of doJ in Figure 5.7.). However, this is not a very common siti.tation in 

irregular codes. Consider the loop index K of the offset and length construct of 

Figure 4.5. In the scope of doi; K is used in A(K) and C ( K) to access the tivhole 

sparse CR.S matrix. TYnis, N^ is the nurnber of nonzeros nnz; ^us shown in the 
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BR {1,+,1}nnz of Figure 5.1. In contrast; in the scope of dox, Ni is given by the 

symbolic expression R(I + 1) - R(I). In general, this expression takes a different 

value in each iteration of the outer loop doI. However; from a statistical point of 

vie^v, N= _/.j = nM can be a good approximation for CRS sparse matrices ^vith 

a unif'orm distribntion of the entries; M being the ntunber of ro^vs of the sparse 

matrix. Thus, as doK t,raverses the elernents of a row of' the CRS rnatrix, the values 

taken b,y K could be repre^sc;nted b,y {R(I), +,1}Rkr>+R. This situztition a.lso affects 

the cakculation of the stride for the arra,y reference C(K) in thc scope of doi. Loop 

inde^ I indexes C(K) through its dependence with the loop index K. as a result, thc 

stride of C(K) with respect to loop dor will be the number of iterations of doK (i.e., 

,(3), because both loops define an offset and length construct n 

5.3.2. Computing the Interference Regions 

In Section 2.3, three steps were described to estirnate the miss probabilit,y asso

ciated to a given reuse distanecr. access pattern identification, cachc; irnpact quan

tification and area vectors addition. The c;achc impact yuantification stcp uses the 

results generated k^y the access pattern identific;ation step; ^vhich in its turn retrieves 

information directly frorn the source code. As explained in Section 4.2.L the access 

pattern identification step for codes with indirections generates as intermediate rep

resentation of the access pattern of each reference R a Da-tuple RR(h, n); where 

DA is the number of dimensions of the array A referenced by R. Each element of 

this tuple consists in its turn of a 3-tuple RR^(h, n) _(M^, S^, P^); where the M^ 

is the number of different points accessed along dimension j, S^ the constant stride 

between two consecutive points and P^ the probability each one of these points is 

actually accessed by R. 

The information supplied by the BRs, the ^r1CRs and the use-def-chains repre

sented in Figure ^.1 is used to generate this D,^-tuple RR(h, n). The first step to 

build RR^ (h, n) is to determine whether the indexing of dimension j is done across 

an indirection. This is the case if the use-def-chain path between the j-th dimension 

of this reference and the loop inde^ on which it depends includes another array refer

ence. If the indesing of the studied dimension is not done across an indirection, then 

the access is regular and the algorithm followed to calculate the j-th component of 

^ZR(h, n) is the one described in Section 2.3. In this case the index of the referenc;e 

is an affine function aR^•I; -f- 8R^ of some loop incíex I;. The iclentity of I; can be 

found out exploring the use-def-chain paths. The set of points accessed in this di
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mension by R can be represented as the tuple (Iters1(h, n), SR;,1.0), where for the 

calculation of Itersi(h, n) (see Sections 2.3.1, 4.2.1) the only additional information 

we need to extract from the code is Ni; the number of' iterations of nesting level i. 

As for SR^; it is the stride that reference R has with respect to loop i. As in this 

case the index of dimension j is an affine function of Ii, then SRz = aR^ • d:^^, where 

d.^^ is tlre accumulative size of the j-th dirnension of the array A referenced by R 

and aR^ is the scalar that rmrltipliee the loop variable in thc affinc fimction. dA^ ca^n 

be calculated in this case using the sizes of the different dirnensions of the arra,y A 

while aR^ carr be extracted from the expression that irrdexes to the j-th dirnension 

of the reference R. 

^^^hen the indexing of' dimension j depends on an indirection, that is; the index 

has a form aR^ •B ( f(I2) )+SR^, we a5sume that the accesses are spread uniformly 

on the indexed dimension of the arra,y. The identity of the index array B can be 

obtained using thc use-def-chairt path, and the inforrnation about the value of aR^ 

can be retrieved in the sarne wa,y as in the regular casc. The values of M^;S^ and P^ 

can be calculated using the equations describcd in Section 4.2.1. Once the D,^-tuple 

RR(h, n) has becn generated and simplified; the rules described in that section are 

used to identify the kind of region associated to the accesses of that reference. 

The inf'orma,tion supplied by the BRs and \^ICRS can help us perform the access 

pattern identification step easier. ^^Iost of the accesses to data strnctures of one or 

two dirnensions gencrate a srnall set of possible BRs and ^'ICRs that can be easil,y 

identific;d and translated to their corrc^sponding regions. For this purpose; we have 

developed the following rules. 

n	 Let {^o, +, g}r be the BR of a unidimensional array reference. If g= 1, a 

region Rs(P) is computed. Other^^ise a region R,.(9,1,g) is associa,ted with 

the array reference. 

n	 In the case of multi-dimensional arrays, the analysis focuses on the NICR 

that represents the access pattern once the array has been mapped onto the 

linear memory model. For the sake of the explanation, consider the I^-ICR 

{{¢t,+,gr}rl,+,gz}r2 of a bi-dimensional array reference, where ^r; gl and 

I't are associated with the first arra,y dimension, and gz and I'z ^vith the second 

dimension. In this ca.se, a region R,.( ► , ► ,gz) is computed. Sometimes a 

simplified representation of' the, access pattern described by t,he ^4CR can be 

obtained by lineari^ing the NICR. The resiilting BR is processed as described 

for unidirnensional arra,ys. 
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Columntnajor mapping intn memory MCR :{^{l,+l}^ +,5}^ RR(4,2,5)
REAL D(5,4) 

coll cal2 co13 mN
 

Cache Size=16 elements; Line 5ze=4 elements; Associativity Degree=l 
BR : D((1,+,1}?{1,+,1}^) 

(a) (b)
 
Nesting Level 0 

Figure 5.3: IVlatrix mapping in memory and in cache for referencc D(I, J) of Fig
ure 4.5 during 2 iterations of loop dol 

Whenever all the accesses affect consecutive rnernor,y positions the mapping and the 

traversal of the array are equal, the MCR can be simplified to the BR {1, +, 1}iá^`^t^*h^`^t^ 

Once the ^nernory region accessed by a given reference is identified; the impact 

quantification step estimates numerically the cache impact of the access to this 

region in the cache. 

Exam7^le 24. In the example code of Figure 4.5, during the analysis of the reference 

D(I, J) in the scope of the loop doJ, the BR for the first dimension {I} indicates 

that the index is a loop invariant, while that of the second dimension {1,+, 1}H 

shows that the subscript J takes consecutive values in the regular interval [l, H]. As 

shown in Figure 5.1; the VICR ^{I{I}, +, M}"*" of D(I, J) can be linearized as the BR 

{?, -}-, M}M'H, the rmknown ^o indicating that do^ is analyzed in the scope of an 

undetermined doI iteration. Applying the rule of unidinrensional arra}^ refcrences; 

the rnernory mgion R,.(H, 1, M) of a row of array D is cornputed. ^^'hen the access 

pattern for D(I, J) is analyzed in the next outer loop doK, at nesting level 1, the 

BRs and ^1CRs for both dimensions are the same ones as in the innermost loop do^ 

because noue of the dimensions depends on loop index K. Thus; the same region 

R,.(H, 1, M) is computed. A different situation arises in the scope of the outerrnost 

loop, where there is a different BR {1, +, 1}" for the first dimension. As the M rows 

of the matrix are accessed; th^linearized A^ICR {1, +, 1}"'H contains a^o = 1 that 

reflects the access to the ^vhole arra}- D resulting in a region Re(M x H). Figure 5.3 

sho^vs how an access to the array D during two iterations of the outermost loop is 

mapped into the memor}^ and the cache. n 
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5.4. XARK Extension for the PME Model Automa

tion 

The automation of the PNIE model is addressed using the XAIi.K compiler [17, 

15^, an extensible framework for the automatic recognition of programming con

structs that are frequentlv used by software developers (from no^^^ on; computational 

kernels). It was originally developed to detect parallel loops in irregular codes, where 

a,rray references with subscripted subscripts reduce the effec,tiveness of most, depen

dertce anal,yzers. Lsing the inforrnation provided by the kernel recognition engine, 

K^R,K was extended to provide a powerful inforrnation-gathering tool that supports 

the irnph^;mentation of parall<^^lizing code transforrn^ttione [16^. ?^^R.K operates on 

top of a high-level interrnediate representation resembling the original source code 

that consists of the forest of abstract syntax trees (ASTs) that represent the state

ments of the Gated Single Assignment (GSA) form of the code. GSA is an extension 

of the ^vell-known Static Single Assignment (SSA) form ^vhere reaching definition 

information is represented syntactically. L nlike SS:^; GSA captures the flow of val

ues in a program for both scalar and array variables. In addition; the intermediate 

representation contains predicates that capture the conditions of if-endif constructs. 

These properties enable to implement the recognition engine efñciently, and ^viden 

the collection of computational kernels that can be recognized by compiler. In an 

aST; a tree represents an operation so that the root node is the operator (e.g., 

assignment, scalar fetch; array reference, plus; product) and its children a,re the 

operands. The intermediate representation is completed with use-def chains that 

eahibit the dependences between the statements of the code. 

X AI3.K performs a demand-driven analysis that proceeds as follows. A post

order traversal is carried out on each ^ST. At each nocle, a transfer function that 

gathers information about each operator in the program is applied once the analysis 

of the children subtrees has finished. ^^'hen an occurrence of a variable defined 

in a dif%rent AST is found, the post-order traversal is stopped until the analysis 

of the latter AST is completed. This demand-driven Uehavior assures that all the 

information needed at a, given node has been computed before the transfer fimction 

is actuallv executed. 

Transfer functions are organized in layers devoted to specific tasks. The bottom 

layer addresses the recognition of the kernels computed in the source code (e.g.; 

generalized induction variables, irregttlar reductions; array recurrences), which in

cludes the characterization of the regular and irregular access patterns of the array 



109 5.4 NARK Extension for the PA-IE tilodel Automation 

references that appear in the source code. Upper layers implement extensions of the 

lAR,K compiler that benefit from the information recognized in the source code. 

Information interchange between layers is carried out by means of three containers 

that are available in all the transfer fttnctions: pgm holds information at the program 

unit level; stm at the statement level; and node in the scope of a node of the AST 

of a sT,atement. The pseudo-code of the extension Y.hat builds the interface bet^veen 

ZARK and the P1bIE rnodel is shown in Figure 5.4. Due to space lirnita.tions, the 

details about the computation of the BRs and thc VICRs has been ornitte;d frorn the 

transfer fimctions. The containers arc represented as data structures whose fields 

correspond to picces of information retrieved frotn the source code. 

In order to illustrate the operation of XAR,K; consider the forest of ASTs and 

the use-def chains (dashed arrows) depicted in Figure ^.5. The details about the 

GSA form have been omitted for the sake of claritv. The picture shows the last 

step of the post-order traversal of the AST that represents the loop header DO 

K=R(I) ,R(I+1)-1. Hatched nodes highlight expressions and staternents whose anal

,ysis has alread,y bcen cornpleted. When transfer fimction T^ is applied, thc kerncl 

recognition layer characterizes R( I) and R( I+1) -1 as loop-variant expressions whose 

value is not known at compile-time. This is denoted by the annotation subscripted 

in the corresponding nodes of the AST. Expressions corresponding to itrvariant and 

linear access patterns are annotated as invariant and linear, respectively. To 

each node it is also attached the BIt that captures the interval in which the ex

pression takes values, which is computed by applying the rules defined in the CR. 

algebra [59] (see the example in Section 5.2). Next; the extension of T^ presented in 

Figure 5.4 is executed. First; the loop header DO K=R(I) ,R(I+1)-1 is recognized as 

an offset and length consT,ruct because R(I) and R(I+1)-1 are suhscripted accesses 

to consecutive elements of a unique array R, a.nd each expression is the source of a 

use-def chain whose target is the outerrnost loop doi. Under these conditions; T^ 

rewrites the BR. {R(I), ^-, 1}^li+ll-1 as {l, -^, 1}^ to iudicate that the loop index 

K travcrses the whole sparse matrix during the execution of doi (scc litics 2 to 6 

of procedure T^ in Figure 5.4). The demand-driven analysis of the forest of ASTs 

continues; and the access pattern of array reference C(K) is characterized as a linear 

pattern given by the BR, {1, -^,1}^. 
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atruct i... atruee ^... atruct ^...
 

graph_of_array_refe; aet_af_nrrny_refa; aee_af_array_refa;
 

I node;
f p9a: I stm;
 

procedure Ta(a1 en) ^ // Extensions of transfer function of array references
 

1 insert a(s1,...,e„) in pgm.graph_of_array_refe
 

2 foreach a, with subscripted access pattern ^
 

3 foreach reference E nodea^.aet_of_n ray_refs (
 

9 insert a use-def chain trom a(s1,...,s„) to reference in pgm.graph_oJ_arrag_refe
 

5 F
 

6
 

7 insert a(a1,...,an) in node.aeL_of_array_refa
 

proceduze Ty ( // Extensions of transfer function of identifiers
 

1 if x is not invariant (
 

2 foreach reference E eet_of_nrray_refe of the definition statement of x ^
 

3 insert re/erence in node.eet_oJ_nrrap_reja
 

9 r
 

procedure Tdo ( // Extensiona of transfer function of loop headera
 

1 stm.eet_of_n ray_refs = node;,,it.aet_of_arrag_refa U node;^,,,^t.aet_of_array_refa U nodeetep.aet_of_array_refa
 

2 if stm is an offset and length conatruct 1
 

3 if aLm at nesting level 1(
 

4 rewrite symbolic BA {R(f),},1}R(f}1)-1 ae {1,},1}nn:
 

5 I
 

6
 

1
 

procedure Tetm [ // Extensiona of transfer function of asaignment statements
 

atm.aet_of_a ray_refa = noderha.set_of_array_refs
 

Figure ^.4: Extension of XARK f'or building the interface ^;^ith the P^•1E model 



111 ^.4 1r1RK Eatensiou for the PA-IE Vlodel Autouration 

invariant : ^ 1 ^ 

invariant:,?) Linear : ^ 2, +,1 ^^+' 

invariant: ^?) 
®® subscripted : ^ ? , +, i ^ 

invariant:^l^ 

A 
subscripted : I ?,+, ?^'

^ subscripted : ( ? , +, ?^' 

O
^

subscripted :(R (I ), +, 
1IR^,+U-' I linear: I 1,+, 1 ^^ 

T^ 
pgm.graphof arrayrefs=^R(I),R(!+1)} 

. set of array_refs ^ ^C(K)? 

To(.t....J 

tm.set of array refs=^C(K)) 

I T.,,^ 

^izecr . set.of _ asraY-re.f^s =^ C ( K)I 

IT^ 

Figure 3.5: Forest of ASTs and use-def chaius of the offset ancl leugth construct aud 
the array refererrce B(REG1, J) of tlre exaruple codc of Figurc 4.^. 
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5.4.1. Construction of the Graph of References 

Apart fronr the charactcrization of the access patterns of arr^zy refercnces; the 

interface between XAR.K and the P^^1E nrodel exhibits the dependence relationships 

between array references a^nd loop indices. ^1s shown in Section 5.3, such information 

is used to build the equations that capture the cache behavior of the source code. The 

graph of dependences is built as follows. Each time the transfer function of array 

references Ta^sl,.,,,s„^ is esecuted; the corresponding array reference is inserted in 

pgm.graph_of _array_refs (see line 1 of procedure Ta^s,,,,.,s„^ in Figure ^.4). Thus, 

when T^ is applied in Figure 5.5, pgm.graph_of_array_refs is {R(I),R(I -}- 1)}. 

As a result. a list of all arrav references in the source code has been built. 

In order to construct the graph; it is necessary to identify indirections as ^^^ell as 

the array references that appear in subscript expressions. This task is accomplished 

by taking advantage of the access pattern characterization provided by the kernel 

recognition layer. 

The code is anal,yzed trying to recognize s,yntactical variation of a set of spa^rse 

cornputational kernels that ar<^^ frequently used in frill-scale applications; for instance; 

operations ^vith sparse vec;tors and rnatric:es. This recognition is perf'orrned by taking 

into account the sernarrtics of the prograrn. Thc cornpiler rrrust detec;t ocr.urrences irr 

the code of different kernel t,ypes as: induction variables, sr,alar reduction operations, 

linked list-traversal and rnasked and arraw operations. These detections teclnriques 

suffer two rnain problems: source quality and difficult to analyze complex control 

constructs. The ^ARK cornpiler uses an extension of the classification scheme of the 

technique proposed by Gerlek, Stoltz and Wolfe ^40^ capable of recognizing complex 

induction variables even in loops that have a cornplicated control flo^a^. Induction 

va.riables can be substituted by closed form expressions. This extension can deal 

with both scalar values and arrays. 

The dernand-driven nature of 1^R,K assures that the access pattern of each sub

script s^ (1 <_ l_< n) has been characterized before the transfer function is applied. 

Thus; Ta^sl,,..,s„^ recognizes array references that are not indirections by checking that 

there is not any subscripted access pattern; and inserts the reference in the container 

available for each node of the ASTs; in particular, in node.set_of _array_refs (line 

7 of Ta^sl,...,,,,,^ in Figure ^.4). If' an indirection is recognized, the demand-driven 

a,nalysis carried out by YARK assures th^rt nodes^.set_o f_array_re f s contains 

the arra,y referenc.e5 that appear in the snbscript expression of the .j -th array di

rnension. ^1ext, Ta^91,,,,,s„^ inserts in pgm.graph_of_array_refs a set of use-def 
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chains whose source is a(sr, ..., sn) and whose targets are the array references in

cluded in node9^.set_of_array_refs (lines 2-6 of TQ^sI,.•,,s„^ in Figure 5.4). Note 

that the sets of array references are transferred through scalar definition statements 

and loop headers. On the one hand, Tx transfers information from the container of 

the AST where x is defined (see lines 2-4 of Tx in Fignre 5.4) to the local container 

node associated with the node where x is referenced. On the other hand; Tst„^ and 

T^ annotatc the statements of the code with the list of array referr;nces t,hat app^:ar 

as operands of the right-haud side operators (see node,.hs, nodeznzt, nodel1mzt and 

nodestep in Figure ^.4). As the ASTs are analyzed only once cluring the clernand

driven analysis; the annotation of statemeuts enables the retrieval of the set of array 

references for different occurrences of a scalar variable. 

For illustrative purposes; consider the construction of the graph depicted in Fig

ure 5.1 for the scope doK. In particular, f<^cus on the subscript REG1 of the first 

dirnension of B(REG1, J). When the AST of REG1 = C(K) is anal}^zed; Ta^s,,.._,s„^ 

inserts C(K) iu node,.hs.set_of_array_refs aud lar,er Tst,,,, anrrotates the state

ment by copying C(K) into stm.set_of_array_refs. Next; the occurrerrce REG1 

in B(REGi, J) is processed by Ty; which obtains C(K) from the AST corrtainer of the 

statement where REGi is defined. As a result, the array reference C(K) is available at 

Tx, which copies C(K) in the local container nodeRE^r.set_of_array_refs to ex

pose such information to Ta^81,,,,,s„^. Finally; Ta^s,,,..,s„^ updates the global container 

ygm.gráph_of_array_refs «^ith a use-def chain from B(REG1,J) to C(K). 

5.5. Experimental Results 

The accuracv of the automated PR^IE model for codes «^ith indirections inte

grated in the xARK compiler ^;^as «^idely proved ^;rith the experiments describecl in 

Section 4.2.4 (see Table 4.1). The ability to apply automatically the Ph-1E model to 

a wide range of codes; and its high degree of accuracy make it a powerful tool to 

guide compiler optimizations. 

5.5.1. Driving compiler optimizations 

Analytical models can be nsed to provide insights about the cache memory be

havior of codes and can grride optimizations in a compiler or interactive tool based 

on their predictions. \arnely; decisions can be taken based on a cost function that 
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Ll Parameters L2 Parameters L3 Parameters 
Architecture
 

(C5^ ^ Ls^ ^ Ki, Wi) (CS2^ L52, Ka^Wa) (csa^ Lss^ K3^W3) 

Itanium 2 (16K;64;4,8) (256K,128, 8, 24) (61\-IB,128;24,120) 

PowerPC 7447A (32K;32;8,9) (512K,64,8,150) 

Table 5.1: ^•Iemory hir;rarch,y paranreters in the architectures used (sizes in bytes), 

rniss «^eights W in CPU c,yclc;s. 

considers the relative costs of' the rnisses in each rnenrory level as well ^rs the CPU 

c}-cles. ^•Iemor,y stall time can br^: estirnated b,y applying the model to the different 

levels of the rnernory hierarch,y of the cornputer sirnultaneously aud multipl,ying th<^^ 

mnuber of misses estimated for each level by its miss penalty. The <:yc;les spent 

in the CPU can be estimated usirrg CPU models such as Delphi [24J, which carr 

apply heuristics to accouut for the properties of current high ILP superscalars. Sev

eral papers in the bibliography illustrate the success of this approach for different. 

optirni^ations such as padding [^2] or tiling [51, 29] in codes with regular access 

patterns. 

^s a sirnple experiment airncd to prove that our rnodel can be used to optirnize 

codes with irregular access patterns due to indirections, we used its predictions to 

decide which was the best loop ordering for the sparse rnai;rix-derrse rnatrix product 

using two ver.y clifferent architectures and memor,y hierarchics: Itanium 2 at 1.5GH^ 

and a PowerPC 7447A at 1.5GH^. Table 5.1 shows the configuration of their memory 

hierarchies using the ^^^ell-kno^vn uotation C^, L5 and K; using bytes to measure sizes. 

A new parameter W, the cost in CPU cycles of a miss in the considered memory 

hierarchy level, is also taken into account. Notice that the first level cache of the 

Itanium 2 does not store floating point data; so it is only used for the study of the 

behavior of the references to arrays of integers. Also; the PowerPC does not have a 

third level cache. 

Our model predicted the same behavior in both architectures for every sparse 

matrix: the JIK ordering ^i^ould be the one that «-ould give place to the best perfor

mance; while IKJ would be the ordering that would generate more misses in all the 

levels of the memory hierarchy; thus yielding the worst performance. This matches 

the global results displayed in Table 4.1.. The predictions were first validated execut

ing the three versions of the sparse matrix-dense matrix product code for synthetic 

sparse matrices with an uniform distribution of the entries of sizes N x N that were 

multiplied by a N x N dense matrix ^-ith N= i x 500 for i= 1, 2, 3, 4, 5 and 6, and 

a percenta.ge of nonzeros in the sparse matrix from 1% to 19% in steps of' 2%0. The 
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Svnthetic unifortn matrices Real non-uniform matrices 
Architecture Loop ordering Loop ordering 

IKJ JIK IJK IKJ JIK IJK 

Itanium 2 172.264 41.016 142.389 4.814 2.078 2.115 

PowcrPC 7447A 338.538 29.256 ^4.272 12.585 L990 3.688 

Table 5.2: Average execution time in seconds for the sparse matrix-dense tnatri_^ 
product as a function of the loop ordering. 

codes were compiled using g77 3.4.3 ^vith level of optimi^ation -03. The execution 

times reflected systematically the predictions of the model: the JIK version alwa^-s 

outperfortned the IJK version; being the IKJ code the slowest one. ^^'e also run a 

test multiplying each one of the 320 real matrices used in the preceding section by 

a dense matrix with 1500 columns using the three loop orderings in both machines. 

In the Itanium 2, the JIK ordering was the best one for 307 of the matrices, IJK 

for ten; and IKJ for just three of them; while in the PowerPC the .JIK ordering was 

the fastest one in all but one of the cases, in which IJK outperformed it. Our model 

ahvays chose the JIK order (see Table 4.1) in both architectures. The tests were 

also perforrned using all the banded rnatrices frorn the Ha.rwell-Boeing and the ^1EP 

collections, in multiplications with dense rnatric^^^s with 1500 colutntts. Tl^^esc tests 

agreed with the predictions of the n ► odel: the .IIK version wtts the fastest one in 

95.9% and 99.7% of the experiment,s in both architectures. Table 5.2 displa}-s the 

avcrage execution timc for the three loop orderings in thc two sets of expcrimcnts 

for both architectures in order to give au idca of the accuracy of thc predictions of 

the model, as well as the impact of this optimization in thc esccution tinic. 
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Conclusions 

vlost of the existing analytical tnodels of the cache behavior only cover the 

modeling of codes with regular access patterns. The modeling of irregular codes 

has been only been achieved successfully for some specific kernels. The attempts 

to obtain an automatic approach to model the cache behavior in the presence of 

irregular access patterns are mainly based in heuristics and they do not obtain good 

degrees of accuracy. In this work, we have proposed some extensions of the P\-1E 

model that cover some of the main sources of irregularity in the accesses of a code. 

The management of statistical information about the input data is the key idea to 

model this kind of codes «=ithout resorting to execute them. 

^Ve have proposed an automatable and modular extension for codes ^vith condi

tional statements in which the probability that the condition is true is uniform in 

each one of their evaluations. The accuracy of this extension has been verified by 

comparing the model predictions with the results of trace-driven simulations. Ttie 

model has been applied by hand to several codes of increasing complexity. Predict

ing the cache behavior using an analytical model is itself a very complex task even if 

the access patterns it presents are regular. The presence of irregttlar access pattertrs 

increases the difficulty associated to this task. Despite this complexity, the degree 

of accuracy of the predictions of our model is still high. Also; although the modeling 

of these codes is more demanding computationall}= than that of reg^tlar codes, the 

execution tirne of the n ► odel is very short; always less tl ► an one second. 

We have also extended the model for codes with indirections. The main source 

of codes considered in this extension are those that perform sparse computations. 

First; we considered sparse matrices in ^vhich the non zero values of the matrix are 

uniformly spread along the structure. The extension proposed for this situation 

11^
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obtained a good degree of accurac}- in its predictions. \evertheless, an exploration 

of well-known collections of sparse matrices like the Harwell Boeing and NEP col

lections, revealed that a high percentage of these matrices are banded, that is; most 

of their non zero values are spread along a limited band of the matrix. This fact 

led us to propose an approach that covers the modeling of this kind of matrices. 

First; a small modific:ation f'or tmiform banded matrices ^vas proposed. Later, an 

addition^rl extension was proposed for banded matrices with a non-uniforrn distri

bution of the values alorrg the band. The accurac,y of the mod^^^l was verified using 

codes of increasing complexit,y that perform sparse computa^tions by cornparing the 

predictions of tlre model ^i^ith the results of trace-driven simulations. The predic,

tions of the rnodel were ver.y accurate despite the short tirne required to evaluate 

it. Namely; it provides its predictions al^^ays in less than one second, even for the 

cases in «^hich the execution of the analvzed code takes several minutes. 

The next step ^^as to implement the effective autom^Ltion of one of these exten

sions. Specificall,y; the one for codes with indirections and an uniform distril»rtion 

of the values was chosen. For t,his purpose we used an advane^^,d compilation frarne

work, the XARK cornpiler. This compiler can extract the information needed b,y th^^; 

model fi•om the source code of the analyzed prograrn. The automation of the whole 

process allo^t^ed us to rnodel both the codes used iu the mauual validation of this 

extcnsion and ne^^^ codes frorn the SPAR.SKIT library. The results show that the 

predictions are the same as those obtained when the model ^vas applied hy hand. 

Up to this point, the time required to appl}^ the model did not include the time 

needed to derive the formulas, as these ones «-ere derived by hand. Once this task 

can be performed automatically, the time necessary to execute the «^hole ^nodeling 

process is still short, and in many cases severa] orders of magnitude shorter than 

the time necessary to execute the analyzed code. 

One of the rnain applications of this kind of models is to help guidc optirrllzat,ion 

processes. Thus; we performed an experiment in which we used the PVIE model to 

select the optimal nesting order for the sparse matrix-dense rnatris product. Several 

tests ^vere performed considering different architectures «^ith different cache config

urations and changing the densities and matrices sizes. The selection of the P^1E 

model al^rays matched the best order according to the timing of the execution of the 

analyzed codes in the corresponding architectures. These tests ^^ere perforrned using 

l^oth synthetic and real matrices. This experiment sho^vs that although the quan

titative estimation performed by the model for real matrices (with a non-uniform 

distribution) is not ver^^ accurate; it predictions can be used successfully to guide 
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an optimization process. 

The extension of thc scopc of application of the PA^IE^ rnodel to irregular codes is 

a big step forward in the effective utilization of analytical modeling as a method to 

predict the cache behavior instead of traclitional techniques like trace-driven simula

tion and hardware counters. This research is of great interest; since irregular cocíes 

usually lack locality ancl thus their performance can be improvecl by increasing their 

locality guided by models like the one we have developed. These extensions keep all 

the desirable characteristics in a technique to study the cache Uehavior: accuracy; 

short execution time and the ability to provide insights into the reasons for the 

observed cache behavior 

Future Work 

In the futurc we plan to rnodel the cache behavior of rnulticorc architectures 

since they are becorning rnore and more comrnon nowadays. The cornplexit,y and 

novelty in the analysis of the rnernory hierarchy of thesc architectures lies irr the 

existence of several processors that can share one or several cache levels. ^^'e ^vill tr.}^ 

to model this situation using the PNIE rnodel as a basis. In this work it has only be 

implemented an effective automations of the PVIE moclel extension for cocles ^vith 

indirections and an uniform distribution. The effective autornation of the model can 

be improved both for codes with indirections for banded matrices; and for codes 

with conditional statements. 

Due to its accuracy, speed and wide scope of application, this rnodel has become 

a po^ererful tool to predict the cache bc;havior. We are planning to use the rnodel 

to guidc optirnizations on both regular or irregular codcs, besides those ah•cady 

illustrated in this thesis. Thc model will guide optimizations such as optimal tile 

size selection in the tiling technique or methods to guide the data prefetching using 

the model predictions. It would also be interesting to use the capabilities of the 

model in the field of the embedded systems and to improve their perforrnance taking 

advantage of its predictions. Little work has been developed in the field of the 

memory behavior rnodeling of this kind of systems. «'e plan to derive estimations 

of the minimum and maximum number of misses in both regular and irregular 

codes and use them in applications such as the calculation of the ^^^'CET (^^'ors 

Case Execution Time); an open problem in embedded systems. 
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