

Department of Electronics and Systems

University of A Coruña, Spain

PxD THESIS

Systematic Analysis of the Cache

Behavior of Irregular Codes

Diego Andrade Canosa

Januar,y of' 2007

PhD ^d^^isors:

Basilio B. Fraguel^ Rodríguez

nnd R,^,m6n Doallo Bien ► pic^,

Dr. Basilio B. Fraguela Rodríguez Dr. Ramón Doallo Biempica

Profesor Titular de Universidad Catedrático de L;niversidad

Dpto. de Electrónica y Sistemas Dpto. de Electrónica y Sistemas

Universidad de A Coruña Universidad de A Coruña

CERTIFICAN

Que la memoria titulada "Systematic Analysis of the Cache Behavior of Irregzilccr

Codes" ha sido realizada por D. Diego Andrade Canosa bajo nuestra dirección en el

Departamento de Electrónica y Sistemas de la Universidad de A Coruña y concluye

la Tesis Doctoral que presenta para optar al grado de Doctor en Informática.

A Coruña. 20 dc Dicietnbre del 2006

Fdo.: Basilio B. Fraguela Rodríguez Fdo.: Ramón Doallo Biempica

Codirector de la Tesis Doctoral Codirector de la Tesis Doctoral

Fdo.: Luís Castedo R.ibas

Director del Dpto. de Electrónica y Sistemas

Resumen de la tesis

Introducción

Existe una enorme diferencia entre la velocidad del procesador y la de la me

moria. Esta diferencia convierte a la memoria en un cuello de botella que limita el

rendimiento de los computadores. La jerarquía de memoria se utili^a, para tratar

de atenuar en lo posible el ef'ecto de este cuello de botella. Se compone de varios

niveles f'orm^rdos cada uno de ellos por memori^t,s implementadas us^r,ndo diferentes

tecnologías. La5 rnernorias de los niveles superiores son rnuy r^ipidas, con velocidades

próxirnrrs a las del procesador, pero su tamairo es pc;queiro. A rnedida que desc^^;nd^^;

mos c;n la jerarquía las mcrnorias se van haciendo rnás lentas pc;ro puc;den alberg^Lr

una rna,yor cantidad de datos.

La memoria del nivel más bajo de la jerarquía del computador contiene toda

la información disponible. A medida qtte ascendemos en la jerarquía, cada nivel

contiene un subconjunto de la información contenida en el nivel inferior. EI ftmcio

namiento de las jerarquías de memoria es sencillo: cuando el procesador necesita un

dato solicita al nivel superior de la ,jerarquía el bloque de memoria en el que est^L

contenido. Si el bloque se encuentra en ese nivel la petición cs satisfecha y s^^; produce

un acicrto, mientr^r.5 que si el dato no est^r disponible en ese nivel se produce un f^^,llo

y la petición es trasladada al uivel inferior. Esta petición se propaga hacia abajo eu

la jerarquía hasta que el dato se encueutra en alguno de los uiveles. En el peor de

los casos, la peticióu será satisfccha en cl nivel rnás bajo dc la jerarquía.

La jerarquía de memoria explota el principio de localidad que en ma^^or o menor

medida cumplen la mayoría de los procesos ejecutados en q n computador. Existen

dos tipos de localidad:

. Localidad espacial: si un dato ha sido accedido en un rnomento dado existe

v

VI

una alta probabilidad de que datos cercanos se accedan proximamente.

n	 Localidad temporal: si un dato ha sido accedido cn un momento dado existe

una alta probabilidad de que ese misrno dato vuelva a ser accedido próxima

mente.

Las jerarquías de memoria están diseliadas de tal forma que los bloques de memoria

más recientemente accedidos van a estar albergados en los niveles superiores de

la jerarquía.)►stá claro pues que su uso favorece la mejora del rendirniento del

computador porque un alto porcentaje de los accesos a memoria serán resueltos en

los niveles superiores de la jerarquía.

Empczando por el nivel superior, la jerarquía de rnemoria de un computador

está cotnpucsta típicarnente por: los registros del computador, la rncrnoría caché,

dividida a su VCZ eIl varios niveles diferentes, la mcmoria principal y finalmente

el nivel de ahnacenamiento secundario. Una mejora en la localidad del código a

ejecutar mejoraría el rendilniento de la jerarquía de memoria y en consecuencia la

del cornputador.

Existen muchas técnicas que trata^n d<; me,jorar la localidad de los códigos a eje

cutar en un cornputador rne,jorando así el rendimiento de la memoria. Los diferentes

niveles dc c^t,ché son la parte de la jerarquía de rnetnoria ln^ís usada por el procesador

después de los registros. Por lo tanto es irnportantc tener técnicas que nos perrni

tan conocer de forma rápida y precisa el comportamiento de las cachés durante la

ejecución de un código en un determinado computador. Estas técnicas pueden ser

usadas por ejemplo para guiar procesos de optimización de cara a incrementar la

localidad en los accesos de los programas. Dada la gran disparidad entre la velocidad

de acceso a los datos en las caché en la memoria principal esto puede dar lugar a

grandes reducciones en el tiempo de ejecución.

Las principales técnicas ctue se usan para estudiar cl renclimierrto dc la memoría

caché sori:

n	 Simulación dirigida por traza: Se usa tma traza de las direcciones de memoria

accedidas durante la ejecución de un código determinado para medir mediante

tm simulador el comportamiento de la caché durante su ejecución. Los prin

cipales inconvenientes de esta técnica son que es necesario ejecutar el código

para obtener la tra.za y que la simulación a menudo lleva más tiempo que la

ejecución del código reaL A cambio; obtenemos buenos niveles de exactitud en

la rnedición del rendirniento.

VII

n	 Contadores hardware: Los contadores hardware existen en algunas arquitectu

ras y miden una gran cantidad de eventos relacionados con el hard^vare; entre

ellos muchos eventos relacionados con el comportamiento de la caché. Podemos

usar estos contadores durante la, ejecución del código para estttdiar el compor

tamiento de la caché. El principal inconveniente es que estos contadores están

presentes sólo en ciertas arquitecturas y que sigue siendo nec,esario ejecutar el

código para rnedir el cornportamiento de la caché. Como en el caso anterior;

la precisión dc las mediciones obtenidas es alta.

n	 viodelado analítico: Podemos utilizar un modelo analítico de la caché pa.ra

obtener una predicción de stt comportamiento. Como información de entrada

se puede usar una traza de las direcciones de memoria accedidas por el pro

grama. o el propio código fuente a ejecutar. El tiempo necesario para obtener

la predicción es menor que en las dos anteriores técnicas; pero en general snele

tener rnenor precisión en sus predicciones ,y la clase de códigos que podernos

rnodelar debe tcner tmas características d<^^terminadas.

El modelo analítico de las PIVIE (Probabilistic Miss Equations) [31] usa como

información de entrada el código fuente a ejecutar para obtener una estimación rá

pida y fiable del comportamiento de la memoría caché de un computador. El modelo

PNIE está limitado a códigos en los que los patrones de acceso a las estructuras son

regulares. Se han propuesto algunos modelados analíticos para códigos irregulares

concretos basándose en las ideas del modelo PI\^IE [30], pero no existe una estrategia

automatizable que aborde el modelado del comportamiento de la caché para esta

clase de códigos. Nuestro propósito es crear tma extensión al modelo Pl^1E que nos

permita abordar de forma automática el modelado de códigos en los que los accesos

a algunas estructuras de datos siguen patrones de acceso irregulares.

Metodología de 1^abajo

Abordar el modelado de códigos irregulares utilizando como primera referencia

un código de complejidad excesiva habría sido un enfoque erróneo del problerna.

L•a lógica impone realizar primero el modelado dc un código sencillo c ir refinando

sucesivamente el modelado sobre códigos de complejidad creciente.

Cuando se considera el primer código se propone una estrategia automatizable de

modelado que trate de cubrir toda la complejidad de la clase de códigos a modelar.

VIII

Se deriva a mano el modelado para ese código utilizando la estrategia propuesta. Se

compara la predicción del modelo propuesto con los resultados obtenidos por una

simulación dirigida por traza considerando distintas configuraciones de la caché y

distintos tamaños de las estructuras involucradas en el código. Lo más probable es

que la primera aproximación no funcione bien en todos los casos. En este caso se trata

de identificar las posibles causas de la divergencia entre el simulador ,y el modelo

,y se proponen rnodificaciones que me,joren la predicciótt. Una vez se consiga que la

predicción del modelo sea fiable pa^ra un arnplio rango de config^rraciones caché y

tamaí`ios de las estructuras involucradas, consideraremos quc mtestro modclo realiza

bien el modelado de este código concreto.

Sin embargo, el objetivo de nuestro modelo es cubrir el modelado de cualquier

código irregular; por lo tanto se elige tm código un poco más complejo ^^ se deriva el

modelado a mano repitiendo el mismo proceso que en el caso anterior hasta que la

predicción sea fiable. Es necesario comprobar que cualquier modificación del modelo

no afecta a la fiabilidad en la predicción para códigos anteriores. Cnando se ha,yan

modelado con éxito un mírnero razouable de códigos de cornplc,jidad creciente con

sideraremos conseguido el objetivo de tener una estrategia gcneral y autornatizabht

para el rnodelado de códigos irregulares.

Contribuciones

La existencia d^^; una referencia con un patrón de acceso irr^^;gular sc puede deber a

diversos motivos: refererrcias dependientes dc una o varias sentencias condicionales,

estructuras indexadas a través de los valores contenidos en otras estructuras de

datos, la existencia de punteros en el código etc. ..

En este trabajo hemos considerado dos fuentes principales de irregularidad: la

existencia de estruc.turas de datos afectadas por condicionales y los accesos a través

de indirecciones donde una estructura es indexada utilizando los valores contenidos

en otra estructura diferentc. Se han propuesto cxtensiones autornatizables del rnodclo

Pl^-IE para arnbos casos.

En el caso de sentencias condicionales hemos propuesto una. extensión [i, 8; 11,

9, 12] capaz de modelar referencias contenidas dentro de una o varias sentencias

condicionales anidadas cuya verificación se determina dinámicamente; esto es, en

tiempo de ejecución. Un ejemplo de sentencia de este tipo sería una en la que el

valor de verdad de la sentencia condicional dependiese a su vez de una expresión en

Ix

la que apareciese involucrada una referencia a un array cuyo valor solo puede ser

conocido en tiempo de ejecución. Se impone la restricción de que la probabilidad

de que se verifique la condición de la sentencia condicional tiene que ser unifonne;

es decir, tieue que ser siempre la misma cada vez que es evaluada; v sti va.lor debe

ser stmlinistrado como un parámetro al modelo. En el caso de tener varias setencias

condicionales, ésta.s deben de ser totalmente independientes entre si; es decir, el valor

de verdad de una de ellas no depende del valor de verdad de la otra.

En los códigos con indirecciones hemos utilizado como referencia los códigos que

realizan computaciones con ►natrices dispersas. Estas matrices son almacenadas uti

lizando diferentes formatos cornprimidos cuya manipulación da lugar a la aparición

de una gran cantidad cle indirecciones en esta clase de códigos. Hemos propuesto

una extensión automatizable del modelo PiV1E ^10; 14^ para cubrir códigos con indi

recciones en los que cada posición de la estructura de datos tiene una probabilidad

tmiforme de ser accedida a través de la indirección. En el ca.so de una matriz dis

persa el que tenga una distribución uniforrne supone que los valores no nulos de la

misrna est^.n uniformernente distribuídos a lo largo de la matriz. A1 igual que el ctt.5o

de los condicionales esta probabilidad debe scr suministrada corno un par^,rnetro de

entrada al rnodelo.

Examinando los conjuntos de datos de entrada típicamente manipulados por có

digos que realizan comptttación con matrices dispersas; descubrimos que la mayoría

de las matrices tienen sus valores no nulos concentrados ímicamente sobre tma ban

da limitada de las mismas. En un primer momento propusimos una nueva extensión

que cuhría el modelado de matrices banda asumiendo que los no nulos dentro de la

banda estaban distribtúdos uniforrnemente ^14^. Sin erribargo, la ma,yoría de las ma

trices banda no tienen los valores distribuidos de manera uniforrne. Por ello hernos

propuesto una nueva extensión del modelo ^13^ que perrnite el an^llisis preciso del

cornportarniento de la caché durante la rnanipulación de esta clrtse de conjuntos de

entrada.

Hemos propuesto extensiones automatizables y modtilares para el modelado de

códigos irregtilares tanto con sentencias condicionales como con indirecciones. La

automatización efectiva del proceso requiere la extracción de la información utilizada

por el rnodelo del código a ser analizado. En el caso de códigos irregulares esta

información a mr,nucío se encuentra enmascarada en cl propio código ^ no contenida

de forma explícita, por tanto necesitarnos una herrarnierrta de compilación que sca

capaz de manejar información simbólica y hacer un auálisis avauzado dcl código. Ear

nuestro trabajo hcrnos utilizado el compilador .•1' ^RK para autornatizar el modelado

x

de códigos con indirecciones con una distribución uniforme (6, 13].

Conclusiones

La mavoría de los modelos analíticos de la caché existentes sólo cubren el mo

delado de códigos qne tienen patrones de acc.eso regulares. El modelado de códigos

irregulares o bien lia sido realizado ad-ho<; para ciertos códigos o está basa^do en

heurístic^is que no obtie:rten buenos niveles de precisiórt. En este trabzijo hernos pro

puesto ext,ension^^s que cubren las principales cautias de aparic,ión de irr<^;gularidad

en los accesos de un código. EI rnanejo de iirforrnación estadística sobre los con,juntos

de entrada por parte del rnodelo se ha mostrado corno la clave para poder obtener

buenas estimaciones sobre el comportatnicnto de esta clase de códigos sin necesidad

de ejecutarlos.

Por tma parte hemos propuesto una extensión a,utomatizable y modular para

códigos con sentencias condicionales donde la proba.bilidad de que cada condición

sea cierta se rn^tirttiene uniforrne en cada evaluación de la, rnisrna. La fiabilidad de

csta exte^nsión st^^ ha verificado cornpar^tndo lati prt^^dicciones de;l rnodelo con los resiil

tados de sirnulación dirigida por traza aplicando el rnodelo a mano sobre códigos de

este tipo de creciente c,ornplejidad. La predicc,ión rnediant:e ur ► tnodelo arralítico del

rendirniento de la caché durante la ejecución dc un código dado es una tarea ect si

complicada. Considerar patrones de acceso irregulares aumenta considerablemente

el grado de dificultad de realizar dicha predicción. A pesar de ellos los niveles de

fiabilidad del modelo para códigos irregulares es alta. Además, a pesar de la mayor

cotnplejidad computacional de las nuevas fórrnulas con respecto a las derivadas para

códigos regulares, el tiempo de ejecución del modelo se mantiene extremadarnente

bajo; en concreto éste está siempre por debajo de un segundo para cada ejecución.

Hernos realizado otra extensión modular y automatizable para códigos con indi

recciones. Los códigos que hemos t,ornado corno ejemplo para realizar el modelado

realizan contputación con rnatrices dispersas. En una primera extensión hernos cotr

siderado solamente matrices dispersas uniformes; es decir; en las que los valores no

nulos de la matriz se encuentran uniformemente esparcidos a lo largo de la misma.

El modelo propuesto para este caso es capaz de obtener una predicción fiable del

rendimiento de la caché en un muy corto periodo de tiernpo. En un siguiente pa

so hemos estudiados colecciones como la la Harwell Boeing [28] y la NEP [18] que

contienen un gran número de matrices típicas utilizadas en computación dispersa.

\I

Hemos observado que rm alto porcentaje de las matrices que contienen son banda;

es decir, la mayoría de los valores no nulos están esparcidos a lo largo de una banda

limitada de la matriz. Ello nos ha llevado a proponer una aproximación para abordar

el modelado de códigos que manipulan esta clase dé matrices. En este sentido, he

mos propuesto primero rma pequeña modificación para modelar el comportamiento

de matrices bo-rnda rmif<^rme ,y posteriormente oY,ra extensión del modelo PI^-IE para

ana.lizar códigos que maniprilan matrices en la que los valores no rnrlos no están

uniforrnemente distribuidos dc;ntro de la banda. La validación de estos rnodelos se

efectuó modelando códigos de crecicnte comple,jidad que utilizan rnatrices dispersas

tauto sintéticas corno reales y cornparando luego las preclicciorres del rnoclelo con los

resultados de sirnulaciorres dirigidas por traza. El tiernpo necesa,r•io para la ejecución

del modelo se mantiene por clebajo de un segundo incluso para casos en los que

la ejecución del código objeto del auálisis se prolonga durante muchos minutos. La

fiabilidad cle la predicción obtenida continúa siendo muy alta.

lina vez realizadas estas extensiones del rnodelo PI\^IE nos propnsirnos hacer la

autornatización efectiva de algl,ma de ellas. Para ello utilizarnos una herrarni^^;nta

avanzada de compilación, <^;1 conrpilador lAR,K; capaz de extra^^;r dc los códigos a

aualizar la informacióu que el rnodelo precisa. Una vez automatizado todo el proce

so, abordarnos el rnodelado autornático de los códigos anteriores y de nucvos códigos

contenidos dentro de la librería SPaR,SKIT ^43J especializada en el tratarniento de

matrices dispersas. Los resultados obtenidos muestran que las prediccioncs siguen

siendo las mismas que las obtenidas cuando habíamos aplicado manualmente las

ecuaciones sobre los códigos. Una de las preguntas latentes durante la aplicación

del modelado a mano era cuánto tiempo llevaría construir las ecuaciones del ^node

lo automáticamente utilizando como entrada la información de un compilador. El

tiempo necesario para extraer la información del código por parte del compilador

y utilizar ésta para generar una predicción del rendimiento usando el modelo sigue

siendo realmente bajo y en algunos casos se mantiene varios órdenes de magnitud

por debajo del tiempo de ejecución del código analizado.

Lna de las aplicaciones de esta clase de modelos es servir de guía en un proceso

de optimización. En este sentido; realizamos un experimento que consistió en utilizar

el modelo P\^1E como guía a la hora de decidir cuál era el ordenamiento óptimo de

los lazos en el producto entre una matriz dispersa y una matriz densa. Se hicieron

pruebas utilizando tanto matrices sintéticas como reales de diferentes tamaños; den

sidades y considerando diversas arquitecturas reales con distintas configuraciones de

la caché. La decisión adoptada guiándonos por el modelo siempre coincidió con la

xII

adoptada usando como referencia el tiempo de ejecución del código en la máquina

real. Incluso en caso de matrices no uniformes; aunque cuantitativamente la predic

ción del modelo era a veces inexacta. la decisión tomada utilizando el modelo como

gttía era siempre la correcta.

La ampliación del ámbito de aplicación del modelo PR-IE al campo de los códigos

irregulares supone un gran paso adelante en la utilización efectiva de los modelos

analíticos cotno alternativa a las técnicas tradicionales de sitnulación dirigida por

traza y contadores hard«^are. Los códigos irregulares adolecen de falta de localidad

y por lo tanto pueden obtener un gran beneficio de la aplicación de técnicas de

optimización que la mejoren. además estas extensiones mantienen intactas todas

las características deseables en una técnica, para el estudio del rendimiento de la

memoria: fiabilidad en la predicción, rapidez en su ejecución y la posibilidad de

conocer los entresijos del funcionamiento del código en h.igar de simplemente obtener

una tínic;a cifra indicativa del rendimiento.

Trabajo F^turo

En un futuro planeamos abordar cl modelado del comportamiento de la caché en

arquitecturas multinúcleo ya que éstas empiezan a ser cada vez más frecuentes hoy

en día. La complejidad y novedad en el análisis de las jerarquías de memoria de estas

arquitecturas, reside en la existencia de varios procesadores que pueden compartir

uno o varios niveles de la caché. Trataremos de modelar esta situación usando el

modelo PI^IE como base. La automatización efectiva del modelo puede mejorarse

tanto para códigos con indirecciones y una distribución banda de la matriz, como

para códigos con sentencias condicionales.

Debio a su exactitud; rapidez y atnplio átnbito de aplicacióu; este tnodelo se

ha convertido en una poclerosa herramienta para predecir el comportatniento de

la caché. Planeamos usar el modelo para guiar optimizaciones tanto sobre códigos

regulares como irregulares, adetnás de las ilustradas en esta tesis. Optimizaciones

tales como, la selección óptima del tatnatio de bloque en la aplicación de la técnica

cle blocking o métodos que nos pertnitan guiar la prebúsqueda de datos usando las

predicciones del modelo. Sería interesante usar las capacidades del modelo en el

campo de los sistemas embebidos y comprobar como sus predicciones pueden ser

usadas en esta clase de sistemas para mejorar su renclimiento. Se ha desarrollado

poco trabajo en este área del modelado del comportamiento de la caché de esta clase

de sistemas. Intent^,remos derivar estimaciones del mínimo v el má^ximo número de

fa,llos en código irregulares y usarlos en aplicaciones tales coino el c^,lculo del ^VCET

(^Vorst Case Execution Time); wi probleina abierto en los sistemas embebidos.

Publicaciones

n	 D. Andrade; B.B. Fraguela; and R. Doallo. EfFicient and accurate analytical

modeling of the cache behavior of complete scientific codes. In IASTED hatl.

Conf. on Applied Simnlation and Modelling 2005; pages 106-111, 1\4arbella;

September 2003.

n	 D. Andrade, B.B. Fraguela, and R. Doallo. \^Iodelado de caches ante códigos

con condicionales dependientes de datos. In Actas rle las XIV Jornadas de

Paralelismo, pages 281-286; Leganés; September 2003.

n	 D. Andrade; B. B. Fraguela, and R. Doallo. Cache behavior modeling of codes

with data-dependent conditionals. In Springer-Verlag, editor, In Proceedin^s

of Workshop on Software and Compilers for Embedded S^stems, volume 2826 of

Lecture Notes in Computer Science, pages 373-387, Vienna, Austria; Septem

ber 2003.

n	 D. Andrade; B.B. Fraguela; and R. Doallo. ^Iodeling the cache behavior

of codes with arbitrary data-dependent conditional structures. In Springer-

Verlag, editor, In Pror,eedinqs nf the Asia,-Po,cifir, Compzct,er S^st,ems Arch.it,ec

t^cre Conference, volume 3189 of Ler.tzire Not,es in Comp^et,er Scienr,e, pages

44-57; Bei.jing; Chintr; Septernber 2004.

n	 D. Andrade; B.B. Fraguela; and R. Doallo. A^Iodelado analítico autom^ítico

del comportamiento de la caché para códigos con indirecciones. In Actas de

las XVI Jornada.s de Paralelisrr^o, pages 321-328; Granada; Septernber 2005.

n	 D. Andrade; \^I. Arenaz; B. B. Fraguela; J. Touriño; and R. Doallo. ^utomated

and accurate cache behavior analysis for codes with irregular access patterns.

In Praceedinys of Workshop on Cornpilers for Parallel Corrap^iters; pages 179

193; A Conrña, Spain, .Ianuary 2006.

w

^VI

n	 D. Andrade; B. B. Fraguela, and R. Doallo. .^nalytical modeling of codes

with arbitrary data-dependent conditional structures. Journal of Systems

Architecture, 52(7):394-^110; July 2006.

. D. Andrade, B. B. Fraguela, and R. Doallo. Cache behati^ior modeling for codes

involving banded matrices. In Proc. of the 19t/a Intl Workshop on La^aguages

and Compilers for Parallel Computing, \ew Orleans; November 2006.

n	 D. Andrade; B. B. Fraguela; and R. Doallo. Precise automatable analytical

modeling of the cache behavior of coctes «^ith indirections. ACM Transactions

on Arclaitecture and Code Optimizatio^a; 2007. :^ccepted for publication.

n	 D. Andrade, I^-I. Arenaz, B. B. Fraguela; J. Touririo, and R,. Doallo. Autornated

and accurate cache behavior analysis for codes ^vith irregular access patterns.

Concurrency and Computation: Practice and E^perience, 2007. Accepted for

publication.

Abstract

The performance of rnemory hierarchies; in which caches play an essential role,

is critical in nowadays general-purpose and embedded computing systems because

of the growing memory bottleneck problem. linfortunately, cache behavior is very

unstable and difficult to predict. This is particularly true in the presence of irregu

lar access patterns, which exhibit little locality. Such patterns are very conunon for

example in applications in which some references are guarded by conditional state

ments or in which pointers or compressed sparse matrices give place to indirections.

Nevertheless; cache behavior in the presence of irregular access patterns has not

been widely studied. In this thesis we present separated extensions of a systematic

analytical modeling technique based on PNIEs (Probabilistic Nliss Equations) that

allows the automated analysis of the cache behavior for codes that include data

dependent conditional structures a.nd codes with irregular access patt,erns due to

indirections; respectively. The model generates very accurate predictions despite

the irregularities and has ver,y low computing requirernents; being the first rnodel

that gathers these desirable characteristics that can analyze automatically this kind

of codes. These properties enable this rnodel to help drivc compiler optimizations.

The PNIE rnodel extension for codes with indirections has bcen iutegrated in the

lARK compiler; a research compiler oriented to automatic kerncl recognition in

scientific codes. We show how to exploit the powerful information-gathering ca

pabilities provided by this compiler to allow automated modeling of loop-oriented

scientific codes.

To m^ big f'amil^.

Acknowledgements

This thesis is not the result only of tny own effort; there are tnany people involved

in this work whose support and dedication I want to acknowledge. First, I want to

acknowledge my PhD supervisors Basilio and Ramón for the confidence they placed

on me; and the support they gave me along all these years. I camiot forget my

colleagues in the Department of Electronics and Systems because they made easier

my experience in the lab during all these years; specially to l^-Ianuel Arenaz with

whom i worked in the integration of the X.ARK compiler with the PA^IE model.

Finally, I want to acknowledge my parents because they have always been there.

I gratefully thank to thc following institutions for funding this work: Depa7•trraent

of Electro^eics and Syste^rts of A Coruña for the hunian and rnaterial support, U7ci

versity of A Coruña for financing my attendance at some conferences, and Xunta

de Galicia and Spanish Covernment for the projects 1FD97-0118-C02-02, TIC2001

3694-C02-02, TIN2004-07797-C02-02 and PGIDIT03-TIC10502PR.

Diego Andrade

"Le diable se cache dans les détails ", Swi.s.s Prover^

Contents

Preface 1

l. An Introduction to Cache Modeling 7

1.1. Techniques to Study the Cache Behavior 9

1.1.1. Trace-driven Sirnulation . 9

1.1.2. Hardware Counters . 10

1.1.3. Analytical \^odels . 11

2. The PME Model 17

2.1. Introduction . 17

2.2. Scopc of Application . 20

2.3. A4iss Probability Estimation . 20

2.3.1. Access Pattern Identification 23

2.3.2. Cache Impact Quantification 25

2.3.3. Area Vectors Addition . 30

2.4. Building Probabilistic ^^liss Equations 31

3. Model Extension to Handle Codes with Conditional Statements 35

3.1. Scope of Application . 36

\\V

xxvt CO^TENTS

3.2. Il-liss Probability Estimation in Irregular Cocles 37

3.2.L Access Pattern Identification 37

3.2.2. Cache Irnpact ^uantification in Irregular Codes 41

3.3. Condition Dependent PI\^IE . 44

3.4. ^^'a,lidation . 49

4. Model Extension to Handle Codes with Indirections 57

4.1. Scope of Application . ^8

4.2. Nlodel Ext,ension for Lniform Distributions 58

4.2.1. IV'Iiss Probability Estimation in Codes with Indirections 59

4.2.2. PIV1Es for Codes with Indirections 64

4.2.3. 1\-lodel Extension for Uniform Banded it-latrices 71

4.2.4. ^^'alidatiou . 72

4.3. Nlodel Extension for \on-Uniforrn Banded 1^-latrices 84

4.3.1. P1^-IE equations f'or Banded 1\-latrices 87

4.3.2. ^^'alidation for Codes ^ti^ith Non-U^riforrrr Banded I^-latrices ... 92

5. Automated Implementation in a Compiler Framework 97

5.L I^-fotivating Example 98

5.2. Chains of R.ecurrences . 98

5.3. Information Requirements of Extended PV1E 1\^Iodel l0U

5.3.L Constructing the Equations 102

5.3.2. Cornputing the Intcrfcreucc R.egious 105

5.4. XAIZK Extension for the PArIE 1^4ode1 Automation 108

5.4.1. Construct,ion of the Graph of References 112

CONTE\^TS 1^^'II

5.^. Experimental Itesults . 113

5.5.1. Driving compiler optiinizations 113

References 121

List of Tables

1.1. Nlain characteristics of the existing analytical models of the cache

belravior . 14

2.1. Notation used in the rnodcl dcscription 20

3.1. Parameter combinations used for the validation and average and ma,.x

imum rniss rate prediction error . b0

3.2. Validation data for the synthetic kernel in Fig. 3.3 for several cache

configurations; problem sizes and condition probabilities ^1

3.3. Validation data for the CRS code in Fig. 3.4 for several cache config

urations; problem sizes and condition probabilities 52

3.4. \-álidation data for the optimized matrix product codc in Fig. 3.2 for

several cache configurations, problem sizes and condition probabilities ^3

4.1. Average measured (MRs;m) and predicted (MR^.i^^) miss rates, aver

age value O,KR of the absolute difference between the predicted and

the measured miss rate in each experirnent, and m^u:imurn v<tihre of

this difference max(OMR). 74

4.2. \-álidation data and times for the Sparse ^latrix -\%ector Product

code for several cache configurations; matrix sizes and sparse matrix

densitv . ^5

\.l'I\

xxx LIST OF T:^BLES

4.3. Validation data and times for the Sparse ^-latrix - Dense l^latrix Prod-_

uct IK.I code for several cache configuratiorts; rnatrix sizes and sparse

matrix densitv . 7^

4.4. Validation data and tirnes for the Vlatrix Transposition code, for sev

eral cache configurations, matrix sizes and sparse matrix density ... 76

4.5. Validation data and times for the Sparse Nlatrix - Vector Product code

for several cache configurations and different Harwell-Boeing matrices

^vith unif'orrn band distribution . 77

4.6. Validation data and times for the Sparse ^-latrix - Dense ^,latrix Prod

uct IKJ code for several cache coufiguratious and different Harwell-

Boeing matrices with uniform band distribution 77

4.7. :^verage measured (MRs;m) miss rate, average t,ypical deviation (Q^;,n)

of the measured miss rate, average predicted (MR^,^od) miss rate and

the average value OMR of the absolute difference between the pre

dicted and the rneasnred miss rate in each experirnent. 93

5.1. Nlemory hierarchy paranreters in the architectures used (sizes in bytes),

miss weights W in CPU cycles . ll4

5.2. Average execution time in seconds for the sparse matrix-dense matrix

product as a fimction of the loop ordering 115

List of Figures

2.1. Reuse in a simple loop . 18

2.2. Nested loops with structures accessed using affine functions. 19

2.3. Procedure for estiinating miss probabilities froin the code 21

2.4. Nlatrix Product . 24

2.^. Cross and sef interference area vectors for a footprint on a 2-way

associative cache «^ith 8 sets . 26

2.6. Footprints of the most common regular access patterns 27

3.1. Loop nest with data-dependent conditional statements. 37

3.2. Optirnized product of rnatrices . 39

3.3. Synthetic kernel code . 49

3.4. CR,S Storage ^lgorithm . 49

3.^. Measured versus predicted (a) misses and (b) miss rates for scveral

cache configurations and different probabilities of verification of the

conditionals for the CRS code (see Figure 3.4) with M = 1500 and

N= 10000. The cache configurations are expressed as (Cs-Ls-K);

^vith sizes in bytes . 53

?^xxI

xxxtt LIST OF FIGLRES

3.6. 1^-leasured versus predicted (a) misses and (b) miss rates for several

cache configurations and different probabilities of verific,ation of the

conditionals for the optimized matrix product code (see Figure 3.2)

«^ith M= 300; N= 300 and H = 300. The cache configurations are

expressed as (Cs-Ls-K), with sizes in b•ytes 54

3.7. h-Ieasured versus predicted miss rates for different probabilities of ver

ification of the conditionals for the CR,S storage code and the opti

mized matrix product a 2-way cache of 512 KBti-tes with 64 b^^tes

per cache line. The matrix sizes were M= N= 10000 in the CRS

storage code and M = N= H= 1000 in the optimized product of

rnatrices . 54

3.8. Surfaces representing the OMR evolution f'or different cache configu

rations and matrices sizes in the CR.S storage and optimized rnatrix

product codes. The cache configuration is denoted using the notation

(CS,Ls;k) . 55

4.1. Nested loops with structures accessed using indirections. 58

4.2. Calculation of RegRz(n), the set of regions that ca.n interfere with the

atternpts of reuse of reference R generated during n iterations of the

loop at nesting level i . 59

4.3. Identification of the access pattern followed by the referenc.es during

a reuse distance . 60

4.4. Sparse A^Iatrix-Vector Product . 63

4.5. Sparse l^•Iatrix - Dense I^-latrix Product «^ith IKJ order 72

4.6. Transposition of a sparse matrix . 73

4.7. D,^R as a firnction of the sparse matris density and the c,ache con

figuration in different codes. Cache configurations are expressed as

C,;LS,K, where C5 is the cache size in bytes, LS is the line size in

bytes and K is the associativit^ . 80

LIST OF FIGURES x^^iil

4.8. 1bliss rate measured and predicted following different strategies as a

function of the matrix density for the sparse rnatrix-dense rnatrix

product (IKJ); where M = N= H= 500 in a cache of 64Kbytes

with a line size of 64 bytes and associativity degree 4. 81

4.9. Nliss rate rneasured and rniss rate predicted for the AA•IUlII^IS code.

In the first graphic the associtivity degree is changed; the second

graphic modifies line size; the third graphic considers different caches

sizes. 82

4.10. Number of accesses, number of misses measured and predicted for

an sparse matrix-vector product using different compressed storage

forrnats. The cache configuration considcrs a cachc size of 32 KBytes;

a line size of 64 bytes and an associativity degree of 4. 83

411. Percentage of the number of experiments in ^^hich the OMR is below

2.^%, between 2.5% and 5%0, between 5% and 10%, or larger than 10%

when real matrices with a non-uniforrn distribution of the cntries arc

used 84

4.12. Banded sparse matrix . 85

4.13. Examples of rnatrices in the Harwell-Boeing sct; 1\^I and 1^ stands for

the matrix dimension, nnz is the number of nonzeros and ^^' is the

band size . 92

4.14. Cornparison of the miss rates obtained by the sinrulation, the urriforrn

bands model and the non-uniform bands model during the execution

of the sparse matrix-dense matrix product with LIK ordering for sev

eral real matrices . 95

51. Inforrnation requirements of the PIt4E model for the code of Fig

ure 4.5. The svmbol nnx stands for the number of nonzeros of the

sparse matrix, and /3 is the average nurnber of iterations of doK 101

5.2. The PME model algorithm . 103

xxxiv LIST OF FIGLRES

5.3. It-'fatrix ma.pping in memor}^ and in cache for reference D(I, J) of Fig

nre 4.5 dnring 2 iterations of loop doI 107

5.4. Extension of XaRK for building the interface with the P^•SE model . 110

5.^. Forest of ASTs and use-def chains of the offset and length construct

and the array reference B(REG1, J) of the example code of' Fignre 4.^. 111

Preface

The perforrnance of rnemory hierarchies, iu which caches play an esseutial role, is

critical in nowadays computing systems because of the growing memory bottleneck

problem. Unfortunately, cache behavior is very unstable and difficult to predict.

We need techniques that allow us to study accurately the cache behavior with a

low cornputational cost, so they can be used for example as a guide in iterative

opti ►nization processes. Hardware counters and trace-driven simulators have been

traditionally used to study the cache behavior. These methods are very accurate

but they have a very high computational cost and they provide us a swnmarized

characterization of the cache performance bttt not any insights about the studied

behavior.

Analytical models try to predict the cache behavior using information from a

trace of the memory addresses accessed by the code or from the source code to

execute. Vlost analytical models only cover the modeling of codes with regular

access patterns. The PNIE (Probabilitic \,iiss Equations) model [31] is an analytical

model that can provide very accurate predictions of the cache behavior automatically

with a low computational cost using information extracted fro^n the source code to

execute. Although the ideas of the P114E model had been used to model some

irregular kernels ^30^; there was not a general automatic strategy to model this kind

of codes. This was a very important limitation for the application of this technique

because irregrrlar codes are relatively common and they have very little locality. As a

result, a big performance increase can be obtained by applying different optimization

tecl► niques that improve the locality based on the predictions of a rnodel. The u^ain

interest of this work is to propose a rnocíular, extensible and autornatic strategy for

the modeling of codes with irregular access patterns.

The existence of references with an irregular access pattern can be due to different

causes: references guarded by one or several conditional statements; arrays indexed

using the values contained in other arrays; pointers etc...In this ^vork; ^ve have

1

2 PREF.^CE

considered t^+^o main sources of irregularity: the existence of references guarded by

conditional statements and the accesses across indirections where an arra.v is indexed

using the values contained in another array. Extensions to the P^•IE model have been

proposed f'or both situations.

In the case of conditional statements we have proposed an extension [7, 8, 11, 9,

12] that can model references contained inside one or several conditional statements

«^hose verification is deterinined dinatnically; that is; at runtime. One exatnple of

this situation is a conditional statement the fulfillment of whose condition depends

on an expression which involves a.n array reference whose value can only be deter

mined at runtime. The probability of fulfillment must be uniform; that is, it must

be the same in each one of its evaluations and its value must be provided to the

model as a parameter. If there are several conditional statements they must be

independent, that is the probability of fulfillment of each condition does not depend

on the fiilfillment of anv other condition.

In the case of codes with indirections. we have used as a reference the codes that

perform computations with sparse matrices. These matrices are stored using differ

ent compressed storage methods whose manipulation gives place to a big number of

indirections. We have proposed an atttomatable extension of the P_l•1E model [10, 14^

to cover this kind of codes where each position of the data structure accessed across

the indirections has the same probability of being accessed. As in the case of the

codes with conditionals, this probability is an input parameter of the model. In the

case of an sparse matrix this implies that the non-zero values must be uniformly

distributed on the matrix.

^Vhen «^e explore the typical input data collections for codes that perform sparse

computations; we discover that most of these matrices have the majority of their

non-zeros concentrated in a limited band. In a first step tti•e proposed an small

modification of the PME model which considered that the values were uniformlv

spread along the band [14]. But, most of the banded matrices have their values non

uniformly spread along the band. So a new PA^IE model extesion ^eas proposed (13]

to cover this situation.

«'e have proposed automatable and modular extensions for the inodeling of ir

regular codes both due to indirections and conditional statements. The effective

automation of this proccess requires the extraction of the input data used by the

►nodel frocn the analyzed code. In the case of irregular codes this infonnation is often

masked in the code, so we need an advanced compilation tool capable of managing

3 PREF^CE

symbolic information and performing an advanced analysis of the studied code. In

our work we have used the X!^RK compiler framework for the automation of the

modeling of codes with indirections and an uniform distribution of the va,lues [6, 13^.

The results of all the stages of this work have been validated by comparing the

model predictions with the result of trace-driven simulations. The results obtained

in all the cases reflect that the model is verv accurate and that its execution is

completed in a short time. The model execution always takes less than one second

and in soine cases this tirne is several orders of rnagnitude shorter than the one

necessary for the execution of the analyzed code.

Ob jectives and Organization of this Thesis

The scope of application of the Probabilistic h^Iiss Equation (PVIE) [31] model

was limited to codes with regular access pattern. This work extends its scope to

codes with irregular access patterns. In order to simplify the modeling, separated

extensions are proposed for codes with data-dependent conditional statements and

with indirections.

The extension for codes with conditional statements allows the PR-IE model to

predict the cache behavior of references guarded by this kind of sentences. The

references can be affected by one or more conditionals with any kind of nesting

between them. The conditions must follow an uniform distribution, that is, they

must have an uniform probability of being true in each evaluation and if there are

several conditional statements they must be independent.

The extension for codes with indirections allows the PA-IE rnoclel to consider

references in which an array; called the base arra}-, is refereuced using the values

obtained frorn another array, called the index array. A^Iore than oue level of indirec

tion can be modeled by this extension. The model has been developed considering

an uniform distribution of the values generated b^r the indirection; that is, all the

positions in the base array have the same probability of being accessed using the

indirection. A latter extension in this thesis allows the rnodeling of indirections with

uniform and non-uniform band distributions. This distribution is very com^non in

sparse matrices in Compressed Row Storage(CRS) format [19^. The codes that ma

nipulate this kind of matrices are the main source of benchmarks used to test this

extension.

4 PREF.^CE

These extensions are fullv automatable and modular. The extension for codes

with indirections is integrated with the XARK compiler to analyze this kind of codes

automatically. The XARK compiler extracts the information from the source code

of the program to analyze and passes it to the P^-IE model implementation.

This thesis is organized as follows: Chapter 1 is a brief introduction to the

problem of the cache performance study. It contains information about the differ

ent techniques used for this purpose, their inain advantages and disadvantages. It

includes a survey of tnost of the existing analy tical models and their main charac

teristics.

Chapter 2 carttains a description of the original automatable PI^^IE model that

only covered codes with regular access patterns. The different stages of the PI^IE

model are described in detaiL the miss probability estimation and the P^IE equation

construction. No validation is included in this chapter because it belongs to previous

«^orks and its accuracy has been already demonstrated [31].

Chapter 3 describes the PVIE model extension that covers irregular codes due

to data-dependent conditional statements. In this chapter, the scope of application

of the extended PVIE rnodel is established. The miss probabilit,y estirnation step is

adapted to cover the new situation. There is a description of the new t,ype of PvIE

tltat models the references tha^t are guarded b,y conditional statements. Finall,y; the

accuracv of this extension is validated.

In Chapter 4 the PIt-IE model extension for irregular codes due to indirections is

covered. As in Chapter 3, there are several adaptations that must be done in the

scope of application and the miss probability estimation process. Besides, new types

of equations are added to the model to cover the new situations. This extension is

also validated using several t,ypical kernels that exhibit this kind of access pattern.

Chapter 5 covers the automation of the P^-IE model extension for codes with

irregular access patterns due to indirections. The information requirements of the

P1^^IE model are described, and the interface between the Pl^-iE model and the XaRK

compiler is described ^15]. The role of the XARK compiler is to extract the informa

tion from the source code and provide it to the PR^IE model in the form established

by the interface between them. A brief' introduction to the XARK compiler is also

contained in this chapter.

Finally, the extension of the P^-IE inodel for irregular codes has given place

to several publications in the area of the study of the cache performance behavior

PREFACE ^

and prediction. The extension for codes with conditional statements is e^plained

in [7, 8; 11, 9, 12]. The extension for codes with indirections has been split in several

contribtttions: some of them covered the modeling for tmiform and banded uniform

distributions [10, 14] while a. different contribution covered the modeling of non

nniform banded distribntions [13]. The antomzLtion of the PVIE model extension f'or

codes with indirections nsing the XARK compiler was covered in ^6, 5].

Chapter 1

An Introduction to Cache Modeling

The gap between processor and memory speed is increasing year by year. Current

architectures use a hierarchy of levels of inemory ^34^ in order to try to cushion this

gap. This hierarch,y ha5 fast small memories in t,he top levels and bigger but, slower

rnernorir;s in the lower k^;vels. ^om top to bottorn, rz t,ypical hierarch,y would be

composed by the the processor regist<;rs; oue or sevc;ral levels of cache urc;rnory, the

rnain meuror,y and the secondar,y storage.

Each level in the hierarchy is divided in blocks. ^^^ hen the processor needs a

memory item, the block that contains it is searched in the top level of the hierarchy.

If it is not found, the request proceeds to the next lower level. The request is

propagated this way down the levels in the hierarchy until the data is found. Once

the block is found, it is loaded in all the levels above the one where it «^as fowid.

When a block is found in a rnemory level, tha,t access is considered a hit, otherwise

it is a rniss. The rniss rate of a level is thc ratio of accesscs that resrlt in a rniss.

Cache memory blocks are termed lines and they are organized in sets. ^ll the

sets have the same number of lines. This number is called the degree of associativity

of the cache. ^^^hen a memory block is loaded in the cache; it can be stored in

exactly only one set, but any of the lines in the set can hold the line. Depending on

the possible location of a memory block in the cache we distinguish three types of

cache organizations:

n	 Direct mapped: Each set contains only one line; so each block can only be

stored in exacth^ one line in the cache. This line is usually calciilated as

¢ddress mod u,u^n wherc address stands for thc memory block address and

8 Chapter 1. An Introduction to Cache Nlodeling

num stands for the number of lines in the cache.

n	 Fully associative: If the block can be stored in any cache line because the

cache has onlv one set that contains all its lines.

n	 Set-associative: 1 he cache is divided in sets of K cache lines each. where K

is the degrec of associativit,y. Each rrrerrror,y block can orrl,y be rnapped to a

specific set. The block can be loaded in an,y linc inside that set. Thc set wherc

a given block is stored is selected using the function address mod N^, «^here

address is the block address and N^ is the number of cache sets.

^`'hen a memory line is brought to the cache, it can be stored in any line of the

cache (fully associative cache); only in a given line (direct mapped) or in a given set

of lines (associative cache). If all the candidate lines to store a memory block contain

valid information then; one of them must be selected to be replaced and make room

for the ne«^ line. T'his selection is done according to a replacement policy. In our

work we will use the most common replacement policy; the Less Recently Used

(LRU) policy; in which the less recently referenced line is selected.

The three types of cache misses are:

n	 Cold or compulsory misses: Since data is brought to the ca.che on demand;

the first access to a memory block restilts necessarily in a miss.

n	 Capacity miss: If the cache cannot store all the blocks accessed during the pro

gram execution; then; there are blocks that are replaced during the execution.

Latter references to such blocks result in capacity misses.

n	 Interfcrence misses: They happen in direct rnapped ancl set-associative caches.

In these kinds of caches a block can be replaced during the execution because

many blocks are rnapped to its cache line or set of lines even if there is enough

space in the cache to hold all the data.

l^lemory hierarchies store the most recently used memory blocks in the top levels

exploiting the locality typically found in the memory references of applications.

Locality aPPears ^t^hen the same data is accessed multiple times in a short period of

time. There are two types of locality ^4^^:

n	 Ternporal locality : when a single rnemory item is accessed rrnrltiple tirnes in

a short period of' time.

9 1.1 Techniques to Study the Gache Behavior

n	 Spatial locality : when two close memory items belonging to the same hlock

are accessed in a short period of time.

The memory performance can be improved by:

n	 Reducing the miss penalty: the miss penalty is the time required to solve an

access that misses in a level of the hierarchy.

n	 Reducing the hit time: the hit time is the tirne necessary Y.o access a data itern

when the corresponding block is found in a lc;vel of the rncmor,y hierarchy.

n	 Reducing the miss rate: what can be achieved by improving the locality of the

code to execute.

The more the locality of the code is improved; the more data requests from the

processor will be solved in some of the top levels of the memory hierarchy. In the

last years a large number of techniques to study the cache behavior have appearecl.

These techniques can be used in optimization processes [55; 2, 3] for improving the

locality of a given code or for choosing the optimal cache configuration.

1.1. Techniques to Study the Cache Behavior

Three techniques are used no^vadays to study the cache behavior: trace-driven

simulation; hardware counters and analytical modeling. Each technique is explained

in turn.

1.1.1. Trace-driven Simulation

One of the first techniques proposed to study the cache behavior is trace-driven

simulation [50, 57]. This technique consists in simulating the behavior of a given

cache configuration for a sequence of inemory accesses_ This sequence of inemory

references of a given program is called address trace. The address trace is processed

using a program that simulates the proposed cache configuration and outputs a

description of the cache behavior for the considered accesses. Generally; accurate

estimations can be obtained using this technique; but it presents some problems :

10 Chapter 1. An Introduction to Cache IVlodeling

n	 Trace collection is not a trivial task in complex scenarios where several different

processes can be running concurrently, including the operating system and

where the code is dynamically linked or compiled. an ttsual way to perform

the trace collection is bv means of an instrumented version of the code whose

behavior is to be analyzed.

n	 A reduction of the trace size is often necessarv because the address trace is

typically very large and it may need several gigabytes of' storage space.

n	 Trace processing is a time consuming task and it usually requires mttch more

time than the execution of the original code. Some approaches (38] try to

reduce the number of instructions simulated by selecting a representative set of

instructions while trying to avoid a loss of accuracy in the simtrlation. However,

this still requires more time than the execution of the code to analyze.

Consequently, trace-driven mernory sirrmlation can generate accurate estimations

at the eYpensc of a high consurnption of resources and it is thus inadequatc to guide

compiler optimizations.

1.1.2. Hardware Counters

Another technique suitable for studying the cache behavior is the use of hardware

counters (4, 2^, ^8^; which are available in most current architectures. Hardware

counters are registers that can take account of information abottt a wide range of

events during the execution of a given code. There are several registers which can

track inforrnation about a big number of events related to the cache behavior and

that can be used in its study. These registers c;an work in t^vo diff^^rent modes :

n	 In counting mode the registers are used for obtaining aggregate counts of

occurrences of specific events.

n	 «'hile in sampling mode the frequency of event occurrences in different scopes

of the program can be tracked.

This information can provide a precise picture of what is happening in the cache

memories. This information is extracted using an interface that is différent in each

architecture although in the last ,years standard interfaces such as PAPI ^20^ have

been defined. However, hard«^are connters present a set of associated problems:

11 1.1 Techniques to Study the Cache Behavior

n	 Hardware cow^ters are present only in sotne architectures, and although they

are available in most modern architectures there is a wide variation between

the registers available in different systems.

n	 The computational cost of this technique is high because it is necessary to

execute the program to collect the information from the hardware counters.

n	 The usage of hardware counters introduces an overhead in the execution due

to extra instructions ancl can cause cache pollution, thus changing the cache

behavior of the monitored program.

1.1.3. Analytical Models

Analytical models try to obtain accurate estimations of the cache behavior with

a lo«^er computat^nal cost than the two previous approaches. They try to construct

an analytical mó►lél that ean predict the cache behavior cíuring the execution of a

given code. There are analytical models that use as their input an address trace of

the rnernory addresses accessed during the execntion of the code, while other rnodels

use as inpnt thc source code to cxecutc.

This technique provides a more detailed insight of the observed cache behavior.

Its main drawback is its limited scope of application and the limited degree of

accuracy of some models. l^Iost analytical models only consider codes cvith regular

access patterns, although the analysis of the Uehavior of codes with irregular access

patterns is of great interest, as they exhibit less locality, and thus caches cío not

perform «^ell for them.

Previous Works in Analytical Modeling

As ^ve said bcfore; there are mixed techniques based in analytical models that

use information estracted from an address trace obtained in a previous execution

of the code, like the technique proposed by :^garwal et al. [1]. This tnodel can

derive cniss rates for different proposed cache organizations and ^vorkloads frotn the

information provided in an address trace. The parameters used in this model are the

probability of access to data or code lines and the probability of accessing consecutive

positions. This work is mainly focused to a multiprogrammed system and pays a lot

of attention to the influence of the operative system. F'or this purpose; it considers

three different categories of misses: the cold misses that happen ^r•hen the cache is

12 Chapter 1. an Introduction to Cache LVlodeling

initially filled; the non-stationary misses due to a change in the program data set

and the interference misses due to collisions in random positions in the data sets.

The model proposed hy ^uong in ^41J uses also information extracted from a

trace of the rnemory addresses accessed by the program. It also considers that

each block has an uniform probability of being mapped to each cache set. This

model considers the misses as a whole set and it is based in the calculation of the

average region accessed between two consecutive accesses to the same line. However

it estiinates the nurnber of inisses produced in the instruction cache and not the

data cache.

The work proposed by Buck and Singhal in ^21J uses a tracc for stud,ying the

hehavior of a fully associative cache. It, is based in the Independent R,eference Vlodel

(IR,h•4) proposed by King in ^3dJ; which assurues that the probability of accessing cach

line is constant along time. This assumption simplifies the model but it dramatically

reduces its scope of application, because in the real «^orld programs work only with

a limited ciata set in each period of time.

In ^26^ Din and Zhong use information frorn very large address traces obtained

dnring thc; cxecntion of a prograrn using a giv^^;n input data for pr<^^dicting its bc;havior

in a fiiturc; prograrn run. The reuse distance betwe;en two consecutive accesses is

measured using an optimized trec representation. It is only suitablc for programs

that have a consistent pattern that make it predictable along diffcrcnt program

executions.

Another set of inethods try to model the cache behavior using information from

the source code to execute. Some techniques c,an perform the modeling of a given

optimization technique applied on a specific code, like the one described by Simecek

a,nd Tvrdik in ^44^, that is centered in the application of the dynarnical loop rever

sal optimization ovcr the Choh^;sky factorization. This work considers any kind of

cache configuratioir with Less R,ecentl,y Csed (L^R.L) block replacernent polic,y. Its

rnain advantage with respect to other anal,ytical models is that it rnakes a detailed

modeling of recursive calls not cousidered b,y other works in this field.

The «^ork presented by Temam et al. in ^47^ is based in the ideas introduced

in ^48^. Its application is restricted only to direct-mapped caches a,nd codes with

regnlar access patterns. It considers cold, capacity and interf'erence misses.

There are some proposals which try to cover the modeling of a wider scope

of codes. Chatterjee et al. propose in [42^ a detailed model based in Presburger

13 1.1 Techniques to Study the Cache Behavior

formulas that handles regular codes with either perfectly or non-perfectly nested

loops giving accurate estimations. The main limitations of this model are its high

computational cost and that it onl}r supports modest levels of associativity in the

cache configuration. A different approach was proposed by Harper et aL [33^. T'he

estimation provided is not so accurate and it supports the modeling of' perfectly

or non-perfectly nested regular loop constructs for any kind of cache configuration.

Cache miss equations (CIVIEs) are used by Ghosh et aL ^32^ fi>r analyiing a set

of perfectly ncsted regular loops considc;ring caclre configurations with any level of

associativity; its support for nou-perfectly nested loops is wcak. The CNIEs are

a set of Diophantine equatious that are obtained once for cach considered codc

arrd the solutions are obtained for every diffcrent situation anal,yzed changing sornc

of the variables by the corresponding values. CIVIEs are used also by Vera and

lue [56, 54] for analyzing perfectly nested regular loops. It has a better support for a

significant subset of non-perfectly nested loops and statically analyzable conditional

staternents [53[. ^

The Probabilistic Miss Equation (PIVIE) rnodel ^31^ is a probabilistic model of

the source codc capablc of amrl,yzing the cache behavior of scientific codes with both

perfectly aud non-perfectly nested loops. The model has a low cornputational cost

and the prediction obtairred is quite accurate, but its scope is limited to codes with

regular access patterns.

As for the modeling of codes with irregular access patterns; the models found

in the bibliography are not systematic enough to be automated or do not provide

accurate predictions. The method proposed by Temam and .Talhy in ^49^ studies

the autointerferences in the vector irrvoh^ed in a sparse rnatrit vector product in a

direct-rnapped cache, but it does not consider the interference with the other dat,a

structures in the code. The approach described by Ladrrer et al. in [37J is ^.rn ad-hoc

rnodel ^vhose scope of application is limited only to direct-rnapped caches and it does

not consider tlrc interaction between different interleaved access patterns. These

limitations were overcome in the probabilistic model [30^ but it was not systematic

enough to be automatable.

Some works have tried to approach the modeling of the cache behavior in codes

with irregiilar access patterns automaticall,y. The indirect accesses rnodel [22; 24; 23^

of Cascaval u.nd Padua is integrated in a compiler frarnc^vork; but it is a simple ancl

inaccurate heuristic that estimates the nurnber of cache lines acccssed rather than

the real nurnber of misses. For exarnple; it does not takc into account the distribution

of the irregular accesses and it does not account for conflict misses; since it assunres

14 Chapter 1. An Introduction to Cache Modeling

Table 1.1: ^-Iain characteristics of the existing analytical models of the cache behav

ior
Analytical Nlodel Input :^ssociativity Scope Autornatic :^ccuracy

Agar^val ^1^ Trace rlny Both Y^s Lo«^

Quong (41^ Trace Any Both Yés Low

Buck and Singhal [21] Trace Fully^ Both Yes High

Ding and Zhong [26J Trace rlny R.egular Yes High

SPLAT ^46^ Trace An,y Both Yes Lo«^

Temam et al. [47] Source Direct Regular No High

Simececk and Tvrdik [44J Source Any Ad hoc No High

Ternarn asrd .Ialby ^49^ Source Direct Ad-hoc Yis High

Chatterjee et aL [42^ Source Low Regttlar No High

Harper et a. [33] Source Any Regular No Lo^v

Ghosh et aL [32] Source Any R.egular Yes High

Vera and lue [56J Source An,y R.egular Y<;s High

Ladner et al. [37^ Sóurce Direct Both No High

Cascaval and Padua ^23] Source Any Both Yes Lo«^

P1^^IE [31] Source Any Regular 1'es High
Fraguela et aL [30^ Source Any Ad-hor, No High

a fully-associative cache. Auother approach is that of SPLAT [46], a tool that

analyzes codes in several phases: the reuse and volume phases, where compulsory

and capacity misses are computed respectivelv considering a fully associative cache;

and the interference phase, where conflict misses are calculated considering a direct

mapped cache. Irregular accesses due to conditional statements and loops with

a variable number of iterations are modeled using the information derived from a

previous profiling of the code.

Table 1.1 coutains a summari^ed overview of the main characteristics of the an

ah^tical models wc have studied in this scction. The first column specifies ^vhether

the model uses as input the trace of the memory addresses or the source code, the

second colurnn if it can model the behavior of any cache [1^; only direct mapped

caches or only caches with a low degree of associativity-. The third column describes

the scope of application of the model. It classifies a model in one of three categories

: those that can model the cache behavior of regular codes; irregular codes or both

types of codes. The fourth column indicates whether that model has been auto

mated, and the fifth one contains the degree of accuracy of the obtained prediction.

The main drawback in trace-based methods [1, 41, 21, 26; 46^ is their high com

1.1 Techniques to Study the Cnclie Behavior 1^

puta^tional cost, becs,use the rea^l code must be executed to obtain the input trace.

The source-based methods are more ^.ffected b^^ the problein of the limited scope of

application. They are mainly limited to regular codes ^47; 44, 42, 33, 32^. Some of

them cover irregular computn,tion ^37, 23^ but either they are not s,iitomated or the

^ccur^zcy of the provided prediction is lo«^.

Chapter 2

The PME Model

2.1. Introduction .

The P1VIE (Probabilistic IVliss Equations) rnodel ^31J estimatcs accurately the

number of rnisses in a cache during thc execution of a given coclc ^vith a low compu

tational cost. Cache misses can be classified into three groups. Conrpulsory or cold

misses take place the first time a given memory line is accessed, since clata lines are

loaded in the cache on demand in this first access. Although a nreinory hacl been

accessed previously, it may not be found in the cache in an attempt to reuse it.

This can be due to the fact that the cache is not large enough to store all the data

accessed by the studied code (capacity miss) or due to other data items having been

mapped to the same cache set and evicting then that line from the cache (interfer

ence miss). In our work; we consider both capacity and interference misses together

as interference misses because both kinds of misses happen when a line that had

been referenced previously has been ejected from the cache since its l^LSt access due

to interferences ^vith other lines mapped to its cache set. An attempt to reuse a line

results in a miss with a probability that depends on the cachc footprint of the data

acccssed since the previous refereuce to the cousidcred liue.

E^ample 1. The code in Figure 2.1; which performs the addition of arrays B and

C storing the result in array A; will be used to drive the esplanation of some basic

concepts of the model. The cache represented in this figrire can store 16 elements

^vith 4 sets of 1 line per set; a.nd each line can store 4 eleme^rts. Considering this

code and this cache; if the first element of arra^^ A is stored in the first position of a

lr

18 Chapter 2. The P1^-IE ^-lodel

A(1) B(1) C(1)

DO I=1,10
A(I)=B(I)+C(I)

A(2) B(2) C(2)
A(3) B(3) C(3)
A a B(a) c(a)

ENDDO
R

euse
^it 6 A(6)

it 7 A 7 B^ ^('T)
it 8 A(8) B(8) C(8)

A(1) A2) A(i) A(4) A(5) A(6) A(n A(8) A(9) 10) i[9 A(9) B(9) C(9)

Cs=16;Ls=a;k=1 it 10 A(10) B(]0) CQO)

Figure 2.1: R.euse iu a silnple loop

mernory line, then the acc,esses to A(1); A(5) and A(9) could give place to cold misses,

while the acc,esses to the rernaining elemt^nts of the array A are possible interference

rnisses n

The Pl-1E model estimates the number of misses generated b^- each static reference

fotmd in a code by means of an equation, ca^lled Probabilistic, Iv'Iiss Equation, which

includes the nurnber of differenY lines it accesses (cornpulsory rnisses); the number of

line reuses it generates, and the interference probability for snch accesses (interfer

ence rnisses) during the execution of the prograrn. 1^orrnall^r; each given line can be

reused with differeilt rcuse distances, that is, different portions of code are executcd

in bet«^een dif%rent attempts to reuse the liue. In the case of references found in

loop nests, ^^^hich is the scope of the PNIE model; each loop enclosing a reference

gives place to a different reuse distance, which can be measured in terms of loop

iterations, that (possibly) characteri^es solne of the reuses not captured by inner

loops.

Exarrcple 2. The right side of Figure 2.1 colltains the accesses to the three arrays

involved in the code of the left side of the figure. The accesses belonging to each

iteration are depicted in a dif%rent line. The equation that calculates the number

of misses of arra^- A should reflect that the accesses to A(1), A(5) and A(9) are

colnpulsory misses, while the accesses to the remaining elements of array A will be

possible interference lnisses. As the access to A is sequential, there is a possible reuse

of the line of this arra.y accessed in the previous iteration in those accesses that are

not the first ones to a cache line. The reuse distance for these possible reuses is one

iteration of the loop. The data accessed since this previous access to the same line

are alwavs one element from arra^r B and C, respectively n

19 2.2 Scope of Application

DO I^ =1, N^

DO I1 =1, N1

DO IZ =1, NZ

A(fai(Iai)^ •- , ►a^(IA^))^ ...)

END DO

END DO

END DO

Figure 2.2: \ested loops writh structures accessed using affine functions.

Our rnodel estimates the nurnber of misses generated by a refcrence b,y exploring

the loops that enclose it from the imicrmost onc to the outermost one. In each

loop the inodel builds a partial P\^IE that adds information about the reuses ^vhose

reuse distance is associated with that loop. Specifically; each partial PVIE estimates

the number of accesses generated by the reference that cannot exploit reuse in the

considered loop, the number of accesses whose reuse distance is associated with

this loop, and the associated miss probability for such reuses. The PA^IE for each

loop and static reference is expressed recursively in terms of the PA^IE for the same

reference in the immediatel^T inner loop, so that it contains all the information for

the behavior of the reference within the loop. Thus; the P\^tE associated with the

otttermost loop in a nest takes into account all the reuses; and its evaluation yields

the number of misses generated by the reference during the execution of the loop

nest.

In Section 2.2 the scope of application of the PI\^IE model is established. Sec

tion 2.3 contains a detailed description of ho^^- the miss probability of every access

is ca.lculated. This task is performed in three steps : access pattern identifica

tion; cache impact yuantification and area vectors addition; which are described in

Sections 2.3.1; 2.3.2 and '2.3.3 respectively. Finalh-; Section 2.4 describes the prob

abilistic miss equation that calculates the number of misses of a given reference.

20 Chapter 2. The PNIE ^-lodel

CS Cache size
LS Line size

K Associat,ivitv of t,he cache
DA ^ of dimensions of array A
D,^^ size of the j-th dimension of arra}^ A

Clp^ C11rnl11at1Ve Slze Of tllc', ^-tll C11IT1eI1SlOr1 Of arr?1,y A; (^,e,^ _^k_I Dpk

aR^ constant that multiplies the loop index

bR^ constant a.dded to a loop index
Ni ^^-;' of iterations of loop at nesting level i, ^vhose indes is Ii

SR^ stridc of reference R with respect to the loop at nestirlg level i; SR^ = aR^ • dA„

where j is thc dimension of arra}^ A referenccd by R indexed 1>y I^

LR^ ^ of different sets of' lines (SOLs) accessed by reference R during
the execution of the loop at nesting level i

Table 2.1: tiotatioll used in the Inodel description

2.2. Scope of Application

Figure 2.2 depicts the scope of application of the PI\-IE model for regular access

patterns. _<^ reference to an array follows a regular access pattern when its indexes

are lincar functions of the loop indices, and neither indirections nor conditional

statements affect the reference. The figure sho«^s a set of normalized perfectly or

non-perfectly nested loops in ^rhich the nurnber of iterations of ever^ loop must be

the salne in every execution of the loop. The reference indexes are affine functions

fi = azlti + b2 of the loops control variables Ii.

As for t,he hardware, our model considers set-associative caches of an arbitrar,y

size Cs, line size Ls arld associativit,y K with LRU replacernent policy, ^^hich is the

most common situation. Table 2.1 dcpicts these ones and other paramctcrs we will

make reference to during the explanation of our model. For simplicit^^, in all our

terms and equations, sizes and strides are expressed in elements of the arra5- whose

access is being analyzed rather than in bytes.

2.3. Miss Probability Estimation

As explained in Section 21, in the study of' a reference the PVIE model computes

the nurnber of accesses that can reslilt in either a cold or an interference miss. The

reuse distance is the distance betwec:n an access to a given line and thc previous

21 2.3 Nliss Probabilitv Estirnation

SURROUNDIN
LOOPS INFO

REUSE

DISTANCE

ACCESS
PA7TERN

mENTIFICATIO ,

ACCESS

PATCERN

CACHE
IMPACT

QUANTIFICATION

AREA

VECTORS

AREA
VECTORS
ADDITION

MISS

PROBABILrCY

REFERENCE

INDEXES

Figure 2.3: Procedure for estimating miss probabilities from the code

access to that line. It is necessary to collect the set of inemor}^ regions that has been

accessed during a reuse distance. These memory regions, or; conversely, the access

patterns that reference them; generate a miss probability for the attempts to reuse

lines by the analyzed reference R. These probabilities are used by the P^-1E model

to estimate the number of misses of the studied reference. In a K-way set associative

cache with LRU replacement policy, an attempt to reuse a]ine resnlts in a miss if

K or rnore different lines accessed since the last reference to the considered line are

rnapped to its cacht; set. As a result, the miss probability in ^t non-first access is

equa^l to the probabilit;y that a cache set has received K or more; lines during the

reuse distance, that is, the portion of code executed since Y,he immcdiately previous

access to the line.

Example 3. The cache represented in Figure 2.1 is direct Inapped, so it has an

associativity degree K= l. As a result, the miss probability in an attempt to reuse

a given line is calculated as the average probability that 1 or more lines; accessed

during the reuse distance, are mapped to its cache set n

The PNIE model follo^^rs the three steps shown in Figure 2.3 to estimate thc

interference probability associated «^ith a rcuse distancc:

n	 Access pattern identification: the access pa,tterns followed by the references

invoh^ed in the reuse distance and the parameters that characterize them are

inferred from the references indexing functions and the shape of the loops that

enclose them. The PI\^lE model represents each pattern as a function whose

out,put is the footprint of the access pattern on the cache. There is one function

per each typical access pattern (seyuential access, access with constant stride,

etc.); and its argumeuts provide the quautitative characteri^ation of the access

pattern.

Example ^1. In the example of Figllre 2.1; in the rense distance for the possi

ble interference misses of arrav A. 1 iteration. there is one access to one isolated

22 Chapter 2. The PIt-1E ^•1ode1

element of arrays B an C respectiveh-, both identified as sequential accesses to

one element. n

n	 Cache impact quantification: each access pattern has an associated rniss prob

ability. The lines that belong to a cache set that have received K or more

lines from this pattern during the reuse distance can not be rcused. So the

miss probability associated to an access pattern is the ratio of sets that receive

K or more lines. ^Vhen the access to several arrays is considered together,

it is important to keep the information about the ratio of sets that received

1. .. K- 1 lines, because when the effects of these lines from different arrays

are considered together they can contribute to increase the miss probability.

So, a vector of probabilities; called Area Vector, is associated to each access

pattern.

E.carn^^le ^. Ir ► the example of Figure 2.1, the cache can storc Cg = 16 ele

ments distributed in 4 sets ^^^here every set stores K= 1 cache line of LS = 4

elements. In the reuse distance one element of arravs B and C is accessed.

each one of these element will go to 1 of the 4 cache sets. The destination

set will be determined by the base position of the arrays. It is known that

for each array; B and C, 1 of the 4 cache sets will receive K= 1 lines while

the remaining 3 cache sets will not receives any element from the array. So;

a cache set receive 1 line with a probability 1/4 = 0.25, and that is the miss

probability associated to that reuse distance for the access to that array n

. Area vectors addition: once the area vectors for the different access patterns

have been estimated, they must be added in order to calculate a global area

vector that represents their summarized impact on the cache.

Once these three steps are completed; the final interference probability is esti

mated as the ratio of sets that received K or more lines during the reuse distance,

which is conversely the probability a given set has received K or more lines. This

va,lue can he extracted from the global area vector associa,ted with the analyzed

reuse distance. ^^l^e ^-i11 now describe in more detail the three steps of the miss

probability estirnation process.

23 2.3 1\'Iiss Probability Estimation

2.3.1. Access Pattern Identification

Iu Section 2.1 we sa^v that reuse distances are measured in terrns of the uurnber

of iterations of a loop. In order to identify the access patteru that a given refcrencc

R follows during a reuse distance consisting of n iterations of the loop at nesting

level h; the indexes of each dimension and the number of iterations of each loop

during this reuse distance are exatnined. The output of this analysis is a D.,^-tuple

RR(h, n), where DA is the nu^nber of dimensions of the array A referenced by R.

Each element of this tuple consists in its turn of a 2-tuple RR^ _(M^, S^), where the

M^ is the ntunber of different points accessed along dimension j a.nd S^ the constant

stride between two consecutive points.

The algorithm followed to calculate the 2-tuple associated to dimension j of

reference R during n iteiations of the loop at nesting level h is described now.

VlWhen the index of the reference is an afñne ftmction aRj •I1+óR^ of some loop index

Ii, the set of poirit^ accessed in this dimension by R can be represented as the tuple

(Itersi(h, n), SR^), where Itersi(h, n) is the number of different values that I2 takes

during n iterations of the loop in nesting level h. This value is calculated as

1 ifi<h

Iters1(h, n) = n if i= h

Ni ifi>h

Let us remember that the loops are labeled from the outermost one, at nesting level

0, to the innermost one using increasing integer values. The value SRt is the stride

that reference R has with respect to loop i. This stride is a constant, since the index

we are considering is an affine function of Ii. SRi is calculated as aR^ • d,^^, where j is

the dimension whose index depends on Ii; aR^ is the scalar that multiplies the loop

variable in the afñne fimction, and d,^^ is the cumulative sizer of the j-th dimension

of the arra,y A referenced by R.

Once the D,^-tuple RR(h, n) that represents the region of array A accessed by

R during n iterations of the loop at nesting level h has been calculated; some si^n

plifications may be applied between pairs of 2-tuple RR^ that describe tlie access

1Let A be an N-dimensional array of size DAr x D,^2 x... D,^N; we define the cumulative size
for its j-th dimension as dA^ _^;=i DA;

24 Chapter 2. The PA-IE Vlodel

DO I = 1, M

DO K = 1, N

DO J = 1, H
C(I,J) = C(I,J) + A(I,K) * B(K,J)

ENDDO

ENDDO

ENDDO

Figure 2.4: Nlatrix Product

pattern in different dimensions of' the array:

((1, S^), (M^, S^)) _ (M^, S^)

((M^, S^), (Mk, M^ • S^)) _(M^ ' M^, S^)

^ft<^r these sirnplifications a single 2-tuph^; (Ms, S8) that describes the region

accessed by the reference is typicall,y obtained.

Rather than this description of the memory region accessed, the output of the

access pattern identification step is a function that characterizes the a,ccess pattern

whose output is the area vector associated to it. Depending on the values of S8 in

a tuple RR^, two kinds of access pattern fimct,ions can be identified:

1. If Ss = 1, it is an access to M,, consecutive elements. «-e denote the func

tion that calculates the area vector associated to a region of M3 consecutive

elements as IiegS(MS).

2. Otherwise it is an access to a set of M8 regions of one clernent separated

b,y a constaut stride S9. Such access pattcrn is represented by the function

R.eg^(M9,1, S9)•

Finally; although the access pattern functions have been presented based on the

values of a single tuple RR^; it is not always possible to reduce RR(h, n) to a single

tuple. All the cases of this kind we have f'ound in the codes we have analy^ed

had the form RR(h, n) _((Mr, 1), (M2, S2)), which can be represented by fnnction

Reg,.(M2, Mr, S2). It represents an access to M2 separate groups of Mr consecutive

elcrnents separated by a constant stride S2.

2.3 Nliss Probability Estimation 2^

Example 6. VVe will use the code in Figure 2.4 as a driving example to illustrate

the different steps of the PI\^fE model. This code performs the product between

two matrices A and B and stores the result in matrix C. The calculation of the

miss proba.bility associated to an access whose reuse distance is one iteration of

loop K must consider the effects of all the accesses that take place dnring that reuse

distance. In one iteration of this loop there are accesses to arra,ys A; B and C:

n	 R.eference C(I, J): The first dinrension of reference C(I, J) is inclexed l^y the

index of the outerrnost loop I at nest ►rg level0, so the tuple RRr that describes

its access is (Itcrso(1,1), SRr), being Iterso(l, 1) = 1 and SRl = 1. The sccond

dimension is indexed by the index of the innermost loop J at nesting level 2 so

RR2 =(Iters2(1,1), SR2) being Iters2(1,1) = N2 = H where N2 is the number

of iterations of the loop at nesting level 2, and SR2 = M. So, RR(1, 1), the

pair of tuples that define the access to each dimension of the array C in 1

iteration of n;esting level 1, is ((1, 0), (H, M)) which can be simplified to the

tuple (H, M)'^ This tuple will be identified as a region Regr(H,1, M), that is,

H groups of 1 element separated by a distance M.

n	 R.eference A(I, K): The first dimension in reference A(I, K) is indexed also b,y

the index of the outermost loop I, so the tuple that characterizes the access

in this dimension is also (1, 0). The seconcl dimension is indexed by the index

of the current loop K, so Itersr(1,1) = n= 1 and SRr = H; resulting in the

tuple (1, H). These two tuples can also be simplified to the tuple (1, H), which

can be identified as a region RegS(1) the access to one element of this data

structure.

n	 Reference B(K, J): This rc;ference is indexed by the irtdex of loop K in its first

dimension, so the associated tuple is (1,1); while the second dirnension is

indexed by the index of the inner loop J, so Itersz(1, 1) = H and SR2 = N,

resulting in the tuple (H, N). Both tuples can be rnerged and the resulting

tuplc is (H, N); which can be identified as a region R,eg^(H, 1, N), the access

to H groups of 1 elernent separated by a distance N n

2.3.2. Cache Impact Quantification

The functions identified in the previous step are evalnated in order to yield

vectors of probabilities called area vectors that represent the irnpact on the cache of

the access they represent. The area vector V associated with a given set of accesses

26 Chapter 2. The PNIE ^•1ode1

H	 ^ l^
Cache sets

VSe^=(0,14/15,1/15)Vcross=(^/g^l/S,0)

Figure 2.5: Cross and sef interference area vectors for a footprint on a 2-«-ay asso
ciative cache with 8 sets

on a cache with associativity K consists of K+ 1 probabilities Vo, Vl, ..., VK. The

P1^-IE model considers two kinds of area vectors:

n	 Cross interference area vectors represent the impact on the cache of the

considered access pattern as viewed by lines not invohted in the access. In

these vectors, V, K>_ i> 0 is the ratio of sets that hold K- i lines of the

accessed region, and Vo is the ratio of sets that hold K or more lines. These

ratios are also conversely the probabilities. For example Vo, is the probability

that a set in the cache has received K or more lines accessed by the pattern,

Vi is the probabilit^ a cache set has received K- 1 lines, and so on.

n	 Self interference area vectors represeut the impact of the footprint on

the probability of reuse for the lines it involves. In these vectors, Vo is the

probability that a line of the footprint is competing in its cache set with other

K or more lines of the footprint. For K> i> 0, V is the probability a line of

the footprint shares its cache set with other K- i lines of the access.

E^ample 7. As an example let us consider a 2-^^^ay associative cache with eight

sets and a reference that h^^s ,just accessed 15 lines sequentially. As a resizlt, seven

of the eight sets contain two of' the lines referenced, while the other set contains

,just one line; as it is illustrated in Figure 2.5. Thc cross interference area vector

generated by this access is (7^8, 1^8, 0); as 7 out of the 8 sets have received two or

cnore lines frorn the access; ot► ly one set received a single line; and no sets received

zero lines. These ratios are conversely the probabilities a randonil}^ chosen set has

two or more; one; or zero lines in it, respectively.

The self' interference area vector for this access is (0, 14^15, 1^15). The first

component is zero, as none of the lines involved in the access has to compete for

27 2.3 N1iss Probability Estimation

Regs(10)

Regr(3,1,4) q q q

Figure 2.6: Footprints of' the most common regular a^cc,ess patterns

its c<rchc set with other two or more ot,he;r lines frorrr the footprint. The second

componcnt is the ratio of lines of th^^; footprint that share their cach<^; set with exactly

one line (14 out of 15). Finall,y; accordirrg to thc third component; only one of the

15 lines of the footpriut docs uot sharc its set u^ith auy other liue of the footprirrt.

These ratios are conversely the probabilities a randomly chosen linc of the footprint

has to compete in its set with two or more; one; or no lines; respectively n

The equations and algorithms developed to estimate the cross and the self in

terference area vectors associated to the sequential access and the access ^^ith a

constant stride access patterns are presented now.

Sequential access to n consecutive words Regs(n)

The sequential access to n consecutive words Regs(n) (see Figure 2.6) genero-tites

a cross interfcrence area vector AV3:

AVscK-^^^^ (n) =1- (Z - L^J)
AVscK-^u-1^(n) = l - LlJ
AVS,(n)=o o<Z<x-LaJ-I,x-L^J<2<x

where l = max{K, (n + LS - 1)/(LSNK)} is the maximum of K and the average

number of lines placed in each set. In t,his expression, L3 sta.rrds for the line size and

NK for the numbcr of cache sets. The nurnber of cachc sets NK can be calcrdatc;d

a.5 CS/LSK. The terrn LS - 1 added to n stancls for the average extra ^vords brought

to the cache in the first and last accessed lines.

Expression AVS(C(n)C8k) calculates the autointerference area vector of this ac

cess; being Csk = CS/K. The autointerference that affects to each line is equal to

the cross interference of an array of C(n)(C8k) elements; where C(n) is the number

of lines of the array competing by the same cache set. This arra}- ^corrld add C(n)

lincs to each set. The method to calculatc C(n) is detailed in the next section.

28 Chapter 2. The PNIE Viodel

Number of lines of a vector competing for the same cache set

^^'e need a function to corupui;e the average rrurnber of different lines that cornpete

^^^ith a givcn line for the same cache set. This value will be used in the calculation

of the self-interference probability. For a data structure of n consecutive words, this

function is defined as:

G,(n) = LvJ (v - LvJ) (LvJ + 1) + (LvJ _ 1) ^1 _ (v - lvJ) (LvJ + 1)
l (2.2)

_ ^vJ (2v - ^vJ -1)
v

where v= n/C,k is the avera,ge number of the data structure associated to a given

cache set. If v> 1, in the (v- Lv J) x 100 % of the cache sets, the number of lines of the

data structure competing with another one is wJ. In this area the h-1^Iv«vl+il x 100

% lines of the data st,ructure are located. In the rernaining cache, the rnrmber of lines

that cornpetes is wJ - 1. Using this average valne, the equation (2.2) is obtained.

Besides it r,an bc chec;ked that if v< 1, that is, when the data structure c,overs a

mrrnber of lines nriYror or cqual than the number of cache set,s, this expression takes

the value 0, because there is no self-intcrference.

Access with a constant stride Reg,.(N,.,T,.S,.)

The estimation of the area vector associated to an access to several elements

of the data structure ^i^ith a, consta.nt stride is performed through a mixed method

that im-olves the calcula,tion of' the starting and ending points of each region on the

cache; from which we obtain the arithmetic mean of the number of' lines mapped to

each cache set. The corresponding area vector is obtained from t,hese vahres.

Let us consider the access to N^ regions of size Tr with a constant stride Sr

between two consecutive regions R.eg^(N^, T^, S^)(see Figure 2.6). In the first step

the positions C2 and Fi corresponding to the start and the end of each region in the

cache are calculated; considering that:

Co=O

C2 =(Ci_r + Sn) mod (C5/K), 0< i< Nn (2.3)

Fi=(Ct+Ta-1)mod(C,/K),0<i<Nn

where CS is the cache size and K is the degree of associativit}-. Frorn now on

2.3 1^•liss Probability Estimation ^^

CS^; = CS/K. In two vectors C^' and FV of size Cyk, initialized to zero, we add one

unit for each position associated with a Ci or an Fi; respectiveb. They are then

analyzed calculating the average number of lines of the access corresponding to each

set of L, positions in these vectors, that is to say; to a line of a cache set. Three

values are used to do this. The first one is given hy:

Csk-1

Lc(^) _ ^(T^ - 1)/Csk^Nr+ ^ CV(i) (2.^1)

i=Csk-(T -1) mod Csk

that stands for the number of lines corresponding to different regions that are guar

anteed to be associa,ted to the first set in the considered cache. These lines come

from all of the regions if T^ > Csk; which is the first term in the addition; a,nd/or

from those regions that start in preceding sets and whose end has not heen reached.

For a set starting in position j this value is recalculat<^:d as:

Lc(j) = Lc(j - 1) + CV(j - 1) - FV(j - 1) (2.5)

On thc other hand; we have LF(j), the av<^;rage nurnber of lines ^r.5sociated to regions

that end in the set starting in position j of the cach^^; having chosc^;n Co = 0, but

that with shifts Co = 1, ... LS - 1 rnight fiuish in the ncxt set. It is calculated as:

j+Ls-i

(2.6)LF(j) _ ^ FV(2)(2 -7)lLS
i=j

The nurnber of regions that start in a given cache set rnnst be taken into account to

calculate the average nurnb<^^r of lines associated to it. This reqnires using a w^^^ight

similar to the one used in (2.6) to take into accorurt the possibility that with diffcrent

starting positions for Co the regions start in the next set. This value Lc would be

calculated for each set starting in position j as:

j-}-L,-1

Lc(j) _ ^ CV (z)(LS - (z -7))lLs
i=j

We are now in a position to calculate thc averagc rnrmbc;r of lines associated to the

cache sets starting in positions j= 0, L5i ..., Csk - LS ^^.s:

L(j) = Lc(j) + LF((j + Csk - LS) mod Csk) + Lc(j) (2.8)

30 Chapter 2. The Pll-IE ^^1ode1

Finallv. the cross interference area ^^ector associated to this access would be calcu

]ated from these values as:

NK-1

AVr(Nr,Tr,Sr) = ÑK ^ AVS(L(iLs)Csk) (2.9)
i=0

becausc; an av<^xage of L(iLs) lines will be rnapped to the i-th cache set; and the

cross interference area vecl:or associated to an interference with n diíferent lines is

AVS (nCsk) .

The calcula,tion of the self-interference area vector is performed as follows:

NK-1

^ AVs(max{0, L(iLy) - 1}C,k)L(iLy)

(2.10)AVra(Nr^Tr^Sr) = a-0
NK-1

^ L(iL5)
á=0

The same idea is applied but considering that e^tch line in the i-th set cornpetes

with othe^r L(iLs) -1 lir)es. The s(,If-int(^^rference area vc;ctor for cach set is rnultiplied

b,y the numbcr of lines that go to that set, obtaining the final vector averaged b,y

liue.

2.3.3. Area Vectors Addition

The prececling step generates an ^,rea vector per data structure accessed during a

reuse distance. Each component ol' one of these area vectors V yields the probabilit^

a given cache set will hold K or more (Vo); or K- 1 (Vl), etc. lines becattse of the

accesses t.o the corresponding dat^z structure that can interf'ere ^vith the reuses of

the reference whose beha^^ior is being analyzed. In this final step of' the process

thes^^; are;a vectors are added in order to get a global interfere;nce arr;a vector that

represents the total impact on thc cache of all the accesses that take place during

the considered reuse distauce. The component 0 of this global area vector is the

miss probabilit,y we arc ttying to estimate. Given two area vectors V,^ and Vn, their

addition; represented by the operator U, is calculated as

(V^ U VB)^ - ^^ 0 (V^i ^^0^ VB;) (2.11)
0 G 2 < K(V^ U Vn)1 -^K i V^iVa(K+;-i)

31 2.4 Building Probabilistic V1iss Equations

This method is based on the addition as independent probabilities of the area

ratios, which means that it does not take into account the relative positions of

the program data structures in memory. This approach a.llows the PR1E model

to provide reasonable estimations in many situations in which the base addresses of

the data structures are not known at compile time (e.g. physicalhl-addressed caches,

dynamically allocated data structures, ...); something that; a.5 far as we kno^v, no

other rnodel supports. Wlren those base addresses are known at cornpile tirne; each

area vc;ctor is scaled before its addition b^r rneans of a cocfficient that represents

the arnount of overlapping bet;ween the regiou it represents aucl the data structure

a.5sociated to the referenr,e whose PI\-1E is being calculated in the cache. See ^31^ for

rnore details.

2.4. Building Probabilistic Miss Equations

^ partial PA4E FR= is built for each static reference R in the code and loop at

nesting level i that encloses such reference. This PA^IE estimates the nurnber of

misses that R generates during a complete execution of this loop as a summatory of

the number of accesses that enjoy each possible reuse distance associated with this

loop multiplied by the miss probability that the memory regions ac ► essed during

that reuse distance generate. Of course every access that is the first one to a line in

this loop, cannot resrrlt in reuses of lines already accessed in the current e^ecution of

t,he loop, thus their miss probability cannot be, rr.ssociated to reirse distances within

the loop. The miss probabilities for those accesses correspond either to (a,) reuse

distances that are associated with outer loops; or (b) reuse distzurces with respect

to accesses to the sarne data in previous loops in the sarrre nesting levcl; «-hen we

consider rron-perfectly nested loops; or (c) when the loop is the outerrnost one (i= 0)

and there are no prcceding loops that could give place to reuses, thc miss probability

is simply one; sincc every first access to a line in this loop is indeed a first access

to the line, unable to etiploit any reuse, which results in a compulsory miss. Since

PNIEs are built beginning in the innermost loop and proceeding out^va.rds; and their

evaluation depends on rnemory regions associated «ritlr reuses that are calculated

in outer or previous loops; the general espression of a PA^IE is FR;(RegIn); where

RegIn stands for the memory regions accessed during the reuse distance for what

in this level of the nest happen to be first accesses. The esception are the P1^IEs

for outermost loops F^; in which no reuse from previous accesses is possible. For

their evaluation we use as RegIn a mernory region ^ahose associated miss probabilit}^

32 Chapter 2. The Pl^•1E Vlodel

is one, so that the first-time accesses to a line in the nest are predicted as misses.

In general we can define the input parameter RegIn of a PNIE FR1 as the memory

region accessed since the immediately previous access to any of the lines that R

references in loop i in the moment the execution of the loop begins.

If the variable Ii associated with loop i does not index the array A or it indexes

it directly across an afñne function, the access pattern of R is regular with respect

to loop i. Thus, the behavior of R in this nesting level is modeled by the regular

access PI\-IE explained in [31]:

FRZ(RegIn) = LR2 • FR^i+r^(RegIn) + (Ni - LRz) • FR^i+l}(RegR2(1)) , (2.1.2)

where Ni is the number of iterations of the loop at the nesting level i, and LR1 is

the number of iterations in which there is no possible reuse for the lines referenced

by R from the point of view of this loop. RegRz(j) stands f•or the memory region

accessed during j iterations of the loop in the nesting level i that can interfere «^ith

the accesses of• R in the cache.

The equation calculates the total number of misses for reference R in nesting

level i as the sum of two values. The first one is the number of misses produced by

the LRi iterations in which the accesses of R cannot exploit reuse in this loop. The

miss probability for these iterations depends on reuse distances generated in outer or

preceding loops; thus the number of misses generated in these iterations is obtained

evaluating FR^i+r^, the PA^1E for the immediately inner loop, passing as parameter f'or

the calculation of• the miss probability of its first accesses the value RegIn provided

by those external loops. The second vah^e corresponds to the iterations in wl^^ich

therc can b^^; rcuse with respect to the accesses in thc previous iteration in this loop.

Tlre miss probability for the first accesses in the evaluation of the P_I^IE for the

irnmediately inner level det^rends in this casc on the rnernory regions accessed during

one iteration of loop i.

^^'hen this equation is applied to the innermost loop containing reference R the

end of the recursivity is achieved substituting FR^i+t^(Reg) l^y A[/o(Reg); that is,

the rniss probability associated with region Reg. In the innermost loop thesc LR^

iterations correspond to lines: the,y nrean that during one cornplete execution of the

Ni iterations of the innerrnost loop, R reall,y accesses LRZ different lines, the other

accesses being thus reuses. ^Vhen the loop analyzed is not the innermost one, the

iterations of the loop define sets of lines (SOLs) accessed by R in the irmer loops.

For example; if a bidimensional M x N FORTRAI\ array is accessed ro«^ by row

33 2.4 Building Probabilistic Viiss Equations

(that is, the innermost loop of the access sweeps through the N columns of a given

row), in the analvsis of the outer loop that controls the row index of the reference;

each iteration of this loop is associated to the access to the set of lines that hold

the elements of a ro^v of the matrix. As FORTRAN stores the arrays b^r columns;

if M> L5; ^vhere LS is the cache line size measured in elements; ^vhich is the most

usual situation, each set of lines will be rnade up of N different lines. In this case, LRz

iterations of this outer loop givc place to accesses to new scas of]incs (SOLs); while

the other Ni - LRz iterations generate reuses of the SOLs accessed in the previous

iteration. In what follows we will talk in geueral about sets of lines (SOLs), in the

understanding that in the innermost loop each one of these sets consists of a single

line.

The number of iterations of loop i that cannot exploit either spatial or tempor^>Z

locality is given b,y-
I N1-1

- L^zi = 1 + (2.13){L max Ly /SRi^ 1} '

where Ls is the line size rneasured in elernents of the array refc;rc;nced by R and SRz

is stride that reference R has with respect to loop i.

Exa^rtple 8. In the driving example of Figure 2.4 the reference B(K, J) is contained

in the innermost loop J at nesting level 2. In this nesting level the loop inde^ J

indeses the second dimension using the affine function O+J. The number of different

lines of B accessed; L^, is calculated using the Equation 2.13, being NZ = H and

S^ = d,^2 = N; so LR2 = H assuming that L5 <_ N. The resulting equation for

this nesting level is F^(RegIn) = H• F^(RegIn). As it is the innermost level

F^(RegIn) = AVo(RegIn).

In the nesting level l, the loop index K inde^:es the first dimcnsion of B using the

affine function O+K. SRl = d^1 = 1 and Nl = N; so the number of different SOLs

accessed is LRr = 1+ L(N - 1)/LSJ. The final equation for this nesting level is

FRl(RegIn) _ (1+^(N - 1)/LSJ)•F^(RegIn)+(N-(1+^(N - 1)/LSJ))•F^(Reg^(1))

In the outermost level the loop index does not index an}^ dimension of the array

B. SRp = 0 and No = M; so L^ = 1 and the final equation that characterizes the

access in this nesting level is F^(RegIn) = FRr(RegIn)+(M-1)•FRI(Reg^(1)) n

Chapter 3

Model Extension to Handle Codes

with Conditional Statements

The original PI^IE model described in the previous chapter can only ana.lyze codes

with regular access patterns. This thesis covers the extension of the PNIE model

to model irregular access patterns. Different extensions are proposed depending

on whether the irregularity is due to the presence of data-dependent conditional

statements or indirections. This chapter contains a description of the PiV1E model

extension for codes with irregular access pattern due to data-dependent conditional

stat,enrents.

Data-dependent conditional staternents are a significant subset of the conditional

structures whose outcome depends on computations made at run-time; and where

the pattern of the condition is highly irregular. These statements are not statically

analyzable and their truth values can not be determined at compile time, that is;

it can not determined if the conditional statement will be true or false in each one

of their evaluations. Furthermore, their truth values can change between different

executions of the program if the input data vary. In this PVIE model extension we

^vill consider codes ^vith any kind and nurnher of conditional sentences, even ^vith

referenccs and whole loop nests controlled by several nestcd conditionals; and nested

in any arbitrary way. Only two restrictions are set on the conditions. The first one

is that their verification must follow an uniform distribution. The second one is that

the conditions must be independent; that is; the probability that a giveu condition

is fulfilled is not influenced by the fact that any other condition(s) are fulfilled or

not.

35

36 Chapter 3. 1^-Iodel Extension to Handle Codes with Conditional Statements

In regular codes there is a statically^ determinable sequence of accesses associ

ated to a reference in a nesting level. These accesses generate a series of possible

reuses of lines accessed in previous iterations of the loop or previous loops. The

miss probability measures the probabilit^- that each reuse attempt results in a miss

using the probabilistic nature of the PIt-IE• model. ^ti'hen one or more conditional

statements guard a reference in the code, there is a sequence of potential accesses

associated to this reference. In this case, each ac,cess takes place onh when the con

ditions of the conditional statements that girard the reference arc^^ fiilfilled. So; there

are different possible reuse distances and each one of thern has its associated rrllss

probabilit3r. The probabilistic capabilities of the PME model are used for deterrnin

ing the probabilit,y of each reuse distarrce usiug the probability that each potential

access generated by the reference actually takes place.

Some extensions are required to consider irregular accesses due to conditionals.

One is the identification of ne«^ access patterns that give place to footprints not con

sidered by the original PVIE model, and fi^r which new methods rnust be developed

in order to estirnate their corresponding area vectors. Sorne steps of the rniss prob

ability estirnation process need also some adaptations to cover these new situations.

A new kind of P1•1Es is also needed. In these PIV1Es reuses ta^ke place onl,y with a

given proba^bility; and their reuse distarrce varies depending on the behavior of the

conditional sentences found in the nest.

Section 3.1 describes the extended scope of' application of the PR-IE model. In

Section 3.2, the miss probabilit^ estimation process is adapted to cover also ref

erences guarded by conditional statements. Section 3.3 describes a new type of

PIVIE equation to charac;terize the cache behavior of codes guarded by conditionals.

Finallv. Section 3.4 contains the results of the validation of this modcl extension.

3.1. Scope of Application

The scope of application of the extended model is sho«^n in Fig. 3.1. ^^'e now

consider any number of arbitrarily nested conditional statements; with an arbitrar^

number of atomic conditions that involve an^^ nwnber of data elements. The figure

only shows one data element per condition for simplicit^. The IF statements condi

tion the execution of isolated references or complete loops or nests. The restrictions

in the PVIE model of constant number of' loop iterations and affine indexing continue

to hold. Also; our current syst,ematic strategy to model irregular access patterns

37 3.2 It^Iiss Prohability Estirnatiou in Irregular Codes

DO Io=1, No, Lo

DO I1=1, N1, L1

IF cond(D(fpr(Ipl), .. , f^(ID^)))

DO IZ=1, NZ, LZ

A(fai(Iar), • • , faaa(Iaaa))

IF cond(B(fei(Isi), • • , feaa(Isas)))

C(fcr(Ici) ^ • • . fcac(Icac))

END DO

END DO

END DO

Figurc 3.l:^Loop ncst with data-dependent conditional statements.

requires tlre conditions in the code to follow an uniform distribution and to he in

dependent. This latter restriction rneans that the probabilit,y that a given condition

is fiilfilled does not depend on the verification of other couditions in the code. The

different conditiorrs may be fulfilled with different probabilities each.

3.2. Miss Probability Estimation in Irregular Codes

In Section 2.3, three diffcrent steps wcre described to estirnatc: thc rniss probabil

ity associated to a given reuse distance: access pattern identification, cache irnpact

quantification and area vectors addition. Some changes must be done in the access

pattern identification and cache impact quantification steps to cover the cxistence

of conditional statements in the code. The area vectors addition step does not need

any adaptation.

3.2.1. Access Pattern Identification

In Section 2.3.1 we established that in order to identify the access pattern that

a given reference R follows during a reuse distance consisting of n iterations of the

loop at nesting level h; the indexes of each dimension and the number of iterations of

38 Chapter 3. 1\•1ode1 Extension to Handle Codes ^vith Conditional Statements

each loop during this reuse distance are examined. The output of this analysis is a

D^-tuple RR(h, n), where D,^ is the number of dimensions of the array A referenced

by R. Each element of this tuple consisted in its turn of a 2-tuple RR^ _(M^, S^),

^^^here the M^ is the number of different points accessed along dimension j and S^ the

constant stride between two consecutive points. This method allowed to describe

any regiilar access pattern on an arrav indexed using aífine fimctions of the loop

indices. If the array is guarded by a conditional statc;ntent; we need an additional

output to this anal•ysis that is the probability PR(h, n) that each element of the

arra,y is accessed during n iterations of the loop of nesting level h.

This probability PR(h, n) depends not only on the access pattern of the reference

in this nesting level, but also in the inner ones. As a result; its calculation takes

into accotmt all the loops from the h-th down to the one containing the reference.

If fact; this probabilit,y is calculated recnrsively in the following ^^^ay:

n	 If h is the innermost loop containing R, then PR(h, n) = ph being ph the prod

uct of all the probabilities associated to the conditiona] sentences controlling

R in nesting level h.

n	 If h is not the innermost loop containing R and the loop index is not used in the

references fotmd in conditions that control R or does not index anv dimension

of' the array accessed in R; then PR(h, n) = phPR(h+ 1, Nh+l), being Nh+l the

number of iterations of the loop h-I- 1.

n	 Utlle,t'^ñ'1SE',, PR(h, n) = phPR(h -{' 1, Nh-}-1) •

The same rules used in 2.3.1 can be used to reduce the D^-tuple RR(h, n) to an

unique tuple (Ms, Ss) that describes the «-hole access. Lsing this formal description

of the memory region accessed; a fi^nction must be obtained that characterizes the

access pattern and «^hose output is the area vector associated to it. This process

must be also extended to cover the irregular access patterns produced by the presence

of conditional statements. In the case of references «^ith regular acc.ess patterns;

PR(h, n) = 1; thc; translation rernains thc; samc; as the one cxplained itt Section 2.3.1.

But when the probabilit,y PR(h, n) < 1, as cach point involved in the pattern has

ouly a. certaiu probability of being actually accessed, the follo^virig rules are applicd.

1. If SS = 1, it is an access to M consecutive elements in ^vhich each element

ie accessed with a probabilit,y PR(h, n). The function that <;alculates the area

vector for this accc;ss is R.egsP(Ms, PR(h, n)).

39
3.2 I3Iiss Probability Estimation in Irregular Codes

DO I = 1, M

DOK=1, N

IF (A(I,K) . NEQ. 0)

DO J = 1, H

IF (B(K,J) .NEQ. 0) THEN

C(I,J) = C(I,J) + A(I,K) * B(K,J)

ENDIF

ENDDO

ENDIF

ENDDO

ENDDO

Figure 3.2: Optirnized product of matrices

2. Otherwise the access affects Ms different points separated by a constant stride

S3, which each element is accessed with a probability PR(h, n). The area vector

associated to this access pattern is estimated by function Reg,^,(MS,1, Ss, PR(h, n)).

As we see, the existence of conditional accesses define probabilistic counterparts

for R.egs and R,eg^, that characterize those access patterns in which each elcrnc;nt is

accessed with a certain probability. The rnost general finiction is R.eg^P, all thc other

oaies being specializations of this one. Sirnilarly, R,egs functions are specializations

for S= 1 of their Reg^ counterparts; and the area vector functions that depend on

a probability of access P yield the same output as their regular counterparts for

PR(h, n) = 1. Still, «^e find this distinction useful because regular access patterns

enable simpler and faster algorithms for the calculation of their associated area

vector than irregular access patterns, and the same happens «^ith the Regs functions

«^ith respect to their R.eg^ counterparts with input stride one.

Sometirnes RR(h, n) can not be reduced to a single tuple. All the cases of

this kind «^e ha^-e found in the codes we ha^^e analyzed had the form RR(h, n) _

((Ml, 1), (M2i Sz)), which can be represented by function Reg^^(M2i Ml, Sz, PR(h, n)),

as they are an access to Mz separate groups of Ml consecutive elements each ^^^hich

are separated by a constant stride S2, in which each individual element of the region

has a probability PR(h,n)

Example 9. The code in Figtire 3.2 implements the product of t«^o matrices, A and

B, which rnay ha^=e man}^ zero entries. As an optimization; ^r•hen the element of A

to be used in the current product is 0; then all its products with the corresponding

^0 Chapter 3. 13^1ode1 Extension to Handle Codes with Conditional Statements

elements of B are not performed. Also; if the element of B to be used in the current

product is 0 then that operation is not performed either. This avoids two floating

point operations and the load and storage of C(I, J) . The innermost conditional

sta.tement has an uniform probability p2 of being fulfilled while the outermost one

has a probability pl.

Just as in the modeling of the code of Figure 3.2, without loss of generality, we

assume a compiler that maps scalar variables to registers and which tries to reuse

the memory values recently read in processor registers. Lnder these conditions; the

code in Figure 3.2 contains three reference to memory: C(I, J);A(I, K) and B(K, J).

The first dimension of array C is indexed by the index of the outermost loop 0 using

the afñne function O+I, so Iterso(0,1) = 1, SRl = d.^l = 1 resulting in the tuple

(1,1). The sec,ond dimension is indexed h•yr the index of the innermost loop using

the affine function O-I-J, Iterso(0, 1) = N2 = H, SR2 = d^2 = M resulting in the

tuple (H, M). These two tuples will be sirnplified to the tuple (H, M). About the

calculation of the probabilit,y PR(0, 1) of accessing each element of array C in one

iteration of level 0, in that level, the reference is a^ffected by the loop index I so

PR(0, 1) = 1-(1 - p1PR(l, 1))N because Nl = N. In the inner levcl 1, the loop

indes K does not af%ct to the reference C(I, J), so PR(1, 1) = PR(2,1) as pl = l.

Level 2 is the innermost level containing that reference and PR(2, 1) = p2. So,

PR(0, 1) can be calculated as 1-(1 - plp2)N This will be mapped as an access

R,egrP(M, 1, H, PR(0, 1)) to M regions of 1 element separated by a distance H where

each element has a probability 1-(1 - plp2)N of being accessed.

The first refcrence to array A, A(I, K); is located iuside loop K. There is a second

reference in the innermost loop that will not produce a new memory access because

it is considered to be satisfied from the processor registers. The first dimension of

this reference is indexed by the loop index of the outermost loop, so the tuple that

describes the access is (1, 1). The second dimension is indexed by the loop index of

the inner loop K so the tuple for this dimension is (N, M). These two tuples can be

merged in the tuple (N, M) that is mapped to an access R,egr(N, l, M), N groups

of 1 element separated by a distance M.

The reference B(K, J) is coutained in the innermost loop. The tuples for the

first and second dimension are (N, 1) a.nd (H, N) respectively. The probability

PR(0, 1) that each element this reference could access is actually accessed is pl.

They can not be simplified to an unique tuple but it can be identified as an access

Ii.egrp(H, N, N, p1), access to H groups of N elements separated by a distance N.

This region can be identified as the special case of R.egsp(HN,pl) the access to HN

3.2 Nliss Probability Estimation in Irregular Codes ^I1

consecutive elements with a given probability n

3.2.2. Cache Impact Quantification in Irregular Codes

The two access patterns usually found in codes with regular access that werc

described in Section 2.3.2 are the sequential access and the access to groups of con

secutive elements of the same size that are separated by a constant. stride. Their

irregular counterparts; when uniform probabilities of access are consiclerecL are cle

scribed in a similar way, with the important difference that now each one of the

elements involved in the pattern is accessed with a given probability p that is the

same one for each element. The modeling of these new access patterns; which we

detail below, depends on the cache parameters. Let us remember that a cache is

defined by its total size CS, its line size L5; and its associativity K. For simplicity,

both CS and LS are me^LSUred in elements or words of the access we are considering.

Two derived parameters that help simplifj^ some etpressions are the mimber of sets

in the cache, NK = Cg/(KLs), and C&k = Cs/K, the cache size devoted to each le;vel

of rrssociativitv.

Sequential access with uniform probability RegsP(n,p)

«e denote as AVS^,(n, p) the cross interference area vector associated to ^in access

Regsp(n, p) t,o n consecutive elements in which each one of thern has a probahility p

of being r<^;ferenced. Thc; K-}- 1 elemcnts of this vector are calciilated ^rs

AVSp^(n,p)=P(X=K-i) m<i<K

AVsPm (n, p) = P(X _> K- m) -

AVSp^ (n, p) = 0 0 < i< m

where X E B(n/C5k,1 -(1 - p);); being B(n, p) the binomial distributionl and

m= max{0, K- ^n/Csk^ }. The equation is based on the fact that; on average;

there are n/Csk lines of the footprint associated to each cache set. Since this is a

consecutive memory region, the maximum nnmber of lines a cache set can receive is

^n/Csk^, so the area vector elernents AVSp^(n, p) for 0< i < m mnst be zero. Also;

because of the uniform distribution of the accesses; we know tlrat the numbcr of

cache lines per set belongs to a binomial B(n/Csk, l-(1- p)LS). Thc probability of

1 we define the binomial distribution on a non integer number of elements n as P(X = x), X E

B(n,p) _(P(x = x), x E B(LnJ,P))(^ -(n - LnJ)) +(p(x = 2), -Y E B(f++l ,p))(n - lnJ)

42 Chapter 3. Nlodel Extension to Handle Codes with Conditional Statements

access per line of this binomial is easy to calculate; as since each individual element

in a cache line has a probability p of begin accessed, and a line holds L5 elements;

then the proba,bility that at least one of the elements of the line receives a reference

is 1- (1- p)L5. Since position i; i > 0, in the area vector represents the ratio of' sets

that receive K- i lines in the access, its value will be the probability t.he variable

^rssociated to this binomial takes the valne K- i. The lowest element in the area

vector with non-zero probabilit^, m, is the probability the nurnber^ of lines acassed

is K- m or rnore.

As this is the counterpart of the sequential access described in Section 2.3.2; the

autointerference area vector is calculated analogously as AVsP(C(n)Csk) being C(n)

the average number of lines of' the studied vector each line competes with in its

associated set, which cal<;ulation is described in Section 2.3.2.

Access to groups of elements separated by a constant stride with uniform

probability Reg,.P (N,., T,., L,., p)

^Ve d<^;note as AV^p(N^, T^, Lr, p) the cross interference ar^^^a vector associ^zted

to an acc^^ss Regrp(N,., T,., L^, p) to N,. regions of T,. consecutivic elenrents eaclr and

separat,ed 1>y a constarrt stride of L^ elernents, in «^hich each individual elernent has

a probability p of being referenced. This area vector is calculated in t^vo phases:

n	 In a first phase, the region potentially afFected by the references is consid

ered. This region allows to measure the impact of the access on the cache by

calculating the number of lines that are mapped to e^tich c.ache set.

• Since accesses really happen with a given probability p; a second phase is

rreeded where the different cornbinations of accesses are weighted with thc

probabilit,y that the,y happen.

Calculation of the code footprint ^^-e first define the helper function pos(i) = i

mod Csk; which calculates which position in the cache corresponds to an arbitrary

memory posit,ion i.

In a first step, the first position C,; of every region i that compounds the pattern

mappecl on a. cache of size CSk; is calculated as

C1 = 0

Ci = pos(Ci_1 + L^),1 < i< N^

43 3.2 Miss Probability Estiination in Irregular Cocíes

In the following; CV(i) will stand for the nttmber of regions that begin in the

position i of the cache. Now we calctilate for every cache set; 1< j< NK; the

number of different lines mapped to the considered cache set j in which e^actly i

of their elements may be referenced by this access pattern. This is the set of values

N(j, i), where 1< i< LS.

The value of N(j, i) for i < min(T^, Lç) is calculated as

N(j, i) = CV (pos (j Ls - T^ + z))+ CV (pos (j Ls + LS - i))

since only the regions that begin exactly T^ - i positions before the beginning of the

considered set or in the i-th position of the set can contribute with a line where only

i of its elements may be referenced by the access pattern.

The calculation of the remaining N(j,i) depends on whether T^ < Lg. If this is

the case, theu
N(j,T^)= ^t'^T CV(pos(jLs+t))

N(j, i) = 0, Tr < i< LS

since the regions beginning in the first LS - T^ + 1 positions of the set will have

one line in which T^ of its elernents ma,y be accessed, and given that T< < Ls, it is

irnpossible that there are rcgions with lines ^^hc.re rnore than T^ elcmcnts rntzy be

accessed.

Finally; if T^ > LS, all the N(j, i) but N(j, L,) have been calculated. The value

for the latter is calculated as

T

N(j, Ly) _^ CV (pos(j LS - T^ + t))
t=Ls

because any region that begins either in the first position of the set or in the T^-LS-1

irnmediately preceding positions will have one line mapped to the considered set j

in which all of its elements may be affected by the access pattern.

Weighting the accesses probabilities In the previous phase we have estimated

the footprint of this access pattern withottt taking into account the probability that

each element in the footprint is really referenced. Let us remember that the footprint

is represented by the values N(j,i); which are the number of lines mapped to set j

that contain i words affected by the access pattern. Since the access to each element

happens only with probability p; this is an upper boimd of the real mimber of lines

44 Chapter 3. 1^•1ode1 Extension to Handle Codes with Conditional Statements

that are accessed. This way, the purpose of this phase is to estimate how many lines

are really accessed taking into account that the probability of access to each element

in the region is p.

Our strategy to estimate the total area vector for this access pattern is to calcu

late the area vector for each set j independently and to average them. The area vec

tor for each single set j, S„ represents the distribution of probability that the access

generated references to l different lines mapped to this set for 0< l< K in the posi

tions S^^K_l^ of the vector, or to K or more different lines, in the position S^o. This

distribution of probability is calculated from Ly binomial variables, X^zi l<_ i<_ L5,

where X^2 is the number of lines that are really accessed out of the N(j, i) ones that

are mapped to set j and which contain exactly i positions that can be referenced by

the access pattern analyzed. This way; X^z E B(N(j, i),1 -(1 - p)2), where B(n, p)

stands for the binorni^rl distribution. The probabilit•y of the binomial is given 1>y the

fact that if in a given line only i positions rnay bc^; sub,j<;ct to access, and the acc^^ss

to cach position only happens with probability p, then the probability the line has

really been accessed is 1-(1 - p)i. As a result, if we define X^ _^i'r X^i; then

the area vector for the set j can be estimated as S^^K_^^ = P(X^ = l); 0< l< K

and S^o = P(X^ > K).

The autointerference is calculated in the same way but the nnmber of lines

mapped to each cache set j that contains i words is max(N(j, i) - 1, 0) instead

of sirnply N(j, i).

3.3. Condition I^ependent PME

In order to consider the probabilities that the diíf'erent conditional statements

that may cont,rol a given reference R in its nest, hold, we extend the PIV1E that

estima,tes the behavior of' a rel'erence R in a loop i with a, new argument p. This

vector contains in its position j tlre probability p^ that the (possiblc) conditionals

that guard the execution of the reference R in nesting level j are verified. If a given

loop contains no conditional structures, thcn p^ = 1, which rneans the execution

in this level is unconditionaL When therc are sevcral nested IF staternents in the

same nesting level, p^ is the product of the probabilities of holding their respective

conditions.

^Ve have found that FRz(RegIn,p) ma,y take t«-o diíf'erent f^^rnrs ^vhen considering

codes with data-dependent conditional staternents. If the referencc is not controlled

3.3 Condition Dependent PIt^1E 4^

by am- conditional sentence or if the variable that indexes loop i does not index am- of

the references found in the condition(s) of the conditional(s) sentence(s) that control

the execution of R, then the PvIE takes the form described in the Equation(2.12)

of Section 2.4. This kind of P\,IE disregards its inpttt p; which is not used in the

computations. But if this is not the case, that is, if the variable of the loop is used in

the indexing of a data array involved in a condition^Ll that controls the execution of

the reference R that iti being stndied; then a new kind of PNIE rnust he used. Frorn

rrow on wc: will distinguish both kinds of PIt^IE b,y c^tllir ► g the forrner one Conrlition

ha^le^endent PME and these new one Condit,io^a De^^eraderat PME.

Just as we did in Section 2.4. we wil] now describe the construction of Condition

Dependent PVIE for references that carry no reuse with other references. «'e will

do it in two steps. First, we will develop the general form of' a Condition Dependent

PNIE. This PVIE is based on the probability that the reference that is being ana,lyzed

actually accesses each one of the SOLs of' t,he set that the ref'erence can potentially

o-ticcess during one iteration of the loop i we are considering. In a second step, an

algorithrn to derive this probability will be pres<;nted.

General form of a condition dependent PME

A Pl^1E must be built for each loop i enclosing a reference R. The PA-IE is

basically a summatory where each term is the product of the number of accesses

that have a given reuse distance, nn^ltiplied by the P^1E for the lower level when the

input footprint corresponds to that rettse distance. ^Vheu reference R is controlled

by data-dependent, conditionals; this is; ^vhen one or more IF statements that depend

on the input data control the reference, tl ► ere is not an unique reuse distance for

each line. Depending on the pattern of verification of thc^ conditions that control

the esecution of the refercnce; the accesses of R rnay try to reuse SOLs (sets of lines)

with very different distances. These reuse distances ^vill have differcnt probabilities

of happeuing; depending on the distribution of probability of the verification of the

conditionals that control the execution of the reference. This way; the PA-IEs for this

kind of references will use probabilities not only to represent the miss probability for

a given reuse distance, as those in Section 2.4 did; but also to estirnate ho^v many

accesses take place ^vith each possible reuse distance. \^otice that Pi\íEs measure

the reuse distance in terms of iterations of the loop they are associated to; and the

unit of reuse ín a cache is the line. ^s a result; the base probability to weight the

different reuse distances must be the probability that the reference that is being

46 Chapter 3. 1^•Iodel Extension to Handle Codes ^vith Conditional Statements

analyzed accesses one of the SOLs it may potentially access during each iteration of

the loop i that is being considered. In general; ^vhen the conditionals do not follo^v

an uniform distribution, a. set of different probabilities for different iterations and,/or

SOLs must be used. As the scope of this analysis is restricted to conditionals that

follow an uniform distribution, in this work this probability is a single parameter;

PlR1(p), that htts the sarne vahte for ever,y iteration of the loop i and for every SOL

that R rnay access. This wa,y, the condition depend^^nt PNIE for loop i and refer^^nce

R has the form

GRi

FR1(RegIn, p) = paLRz ^ WMRRZ(RegIn, j, p) , (3.1)
^=t

where LRz is the number of iterations in which new different SOLs would be accessed

by reference R due to the stride in loop i if it were not subject to conditional execu

tion. Its calculation is detailed in Section 2.4. pi is the probability the conditional

sentences that control the execution of R in this loop level are true. The product of

these two terms gives the average number of iterations in «rhich R accesses difl'erent

SOLs due to its stride for this loop. This number of iterations must be multiplied

by the PNIE for the immediately lower level evaluated with the appropriate reuse

distance area vector; ^^hich is what the term WMRR1 stands for; a weighted num

ber of misses for a reference in level i. As stated before, because of the contro] by

data-dependent conditionals, a, range of différent reuse dista^nces with différent prob

abilities may take place. This range has an average upper bonnd GRz, the nurnber

of iterations that c^tn pot^^^ntially reuse th<^^ SOLs accessed in the LR^ iterations that

give place to accesses to new SOLs. The product of both t<^:rms rnust be equal to

t,he number of iterations of the loop, thus GR^ = Ni^LR^.

Let us now develop the value of WMRR1(RegIn, j, p"), the weighted m^mber of

misses generated by reference R in loop i when RegIn is the region accessed since

the last access to any of the SULs aff^cted by the reference of R bef'ore loop i begins

its execution, and the SOL is used in the j-th possible iteration in which the SOL

could be accessed. This fimction is cornputed as

WMRR;,(RegIn, j, p) =PIR^(p)^-tFR^i+t^(RegIn U RegRi(j - 1),p")+
^-1

k-1

^Plai(p)Pla^(p) Fn(i+il(RegRz(^),p) ,
k=1

^vhc;re PIRs(p); the probability that R accesscs during one iteration of loop i one of

47 3.3 Condition Dependent PA^IE

the SOLs tha.t belong to its potential access pattern, is used to weight the proba

bilities that the different reuse distances take place. In this equation p stands for

1- p, this is; the converse probability of p. Let us remember that RegRti(n) stands

for the regions accessed during n iterations of the loop i that may interfere with

the accesses of R. The first term in (3.2) considers the case that the SOL has not

been accessed during an,y of the previous j- 1 iterations. In this case; the RegIn

region that cotild generate interference with th^^: new access to the SOL when the

execution of the loop begins; nnrst be .added to the regions accessed during thcse

j^ - 1 previous iterations of the loop in order to estirnate the cornplete interference

region. The references to different data structures often overlap. It is necessary to

merge thern in only one region in order to avoid having overlapped tnemory regions

considered several times as a source of interference. This addition is performed us

ing the regions union represented by the symbol U• The second term weights the

probability that the last access took place in each of the j- 1 previous iterations of

the considered loop.

The probability PIRZ(p^ that reference R accesses one of the SOLs that belong

to thc region that it can potentially acccss during one iteration of loop i is a basic

parameter to derive FR2(RegIn,p); as we have just seen. This probability depends

not only on the access pattern of the reference in this nesting level; but also in the

inner ones, so its calculation takes into account all the loops from the i-th down to

the one containing the reference. If fact, this proba.bility is calculated recursively in

the following way:

. If i is the innermost loop containing R; then

(1 if the accesses of R are consecutive with respect to loop i
PIRi(p^ - Sl pt otherwise

where a consecutive access with respect to a given loop implies that the accesses

that take place in consecutive iterations of the loop do reference consecutive

memory positions. The condition for this to happen even when the accesses

of R depend on an IF statement is that the index for the first dimension of R

only makes (sequential) progress within the same IF statement that controls

R.

48 Chapter 3. l^-lodel Extension to Handle Codes with Conditional Statements

n If i is not the innermost loop containing R, then

if the index of loop i+ 1 is not used in thepaPlR1^+I) (p)
references found in conditions that control RPIR^(p) _

-^^:+^ otherwis<,pzPla(i+i) (p^

where we rnust relnelnber that p= 1- p and that p1 is the product of all the

pr01)al)lllt,l(',S aS50Clated t0 tll(' COI1d1t10I1a1 SCIIT,F',I1CCS COI1tI'O111I1g R lIl Ile5tlIlg 1('.vel 2.

ETam,ple 10. As an example, ^ve describe no^^^ how the equations that model the

cache behavior of t}le^ reference B(K, J) in t,he code of Figure 3.2 are derived. The

innerrnost loop containing this rr^f<^^rence; is ^Llso t.he inn^^^rrnost 1^w^^^l. The variable

that controls this loop; J, i.5 not used in the inde;xing of referenced found in conditions

that control the exer,ution of this reference, thus Equa-tion (2.12) is applied. As this

is thc illllennost loop containing the referellce; iIl the evaluation of this equatioll;

FR3(RegIn, p^ = AVo(Regln). Since SRZ = N and LR2 = H, the equation for this

nesting^level is

FRZ(RegIn, p) = HAVa(Regln)

The next level is level one. In this level; the loop index indexes ref^:rences in

the two conditional statements th^tit control onr referenc;e, so Equ^Ition (3.1) applies

n,g^Lin. In this case, SRl = 1, LRi = 1+ ^(N-1)^Ls^ and GRI ^_^ Ls, so the eqnation

1S
Ls

FRl (RegIn, p") = pl (1 + L(N - 1)/L5^)^ WMRRl (RegIn, j, p") .
,j=I

When WMRRl is calculated PRl (p) = pl

In the outermost level; the variable of the loop indexes a refe.rence in one of the

conditions, so we have to apply again Equation (3.1).)?or this loop and reference;

SRO = 0; LRO = 1 and GRO = M, so the equntion is

M

F^(RegIn, p) = po ^ WMRRO(RegIn, j, p) .
,j=I

nIn this loop, WMRRO is a function of PRO(p) = 1-(1 - pl)Ls

49 3.4 Validation

posB = 1

DO I = 1, N

DO I = 1,M offB(I) = posB

X = A(I) DO J = 1, M

DO J = 1,N IF (A(I,J) .NEQ. 0) THEN

Y = B(J) B(posB) = A(I,J)

IF (B(J) .GT. K) THEN jB(posB) = J

C(J) =X+Y posB = posB + 1

ENDIF ENDIF

ENDDO ENDDO

ENDDO ENDDO

Figiire 3.3: Synthetic kernel code Figure 3.4: CRS Storage Algorithm

3.4. Validation

Our validation of the model is based on tkre comparison of its caclre rniss pr^^^dic

tions with the result of tracc-driven sirnulatioiis. We have used thrce sirnple kenicls

show^n in Figures 3.3; 3.4 and 3.2. The code in Figurc 3.3 is s,ynthctic kernel with a

conditional seutence that control the access to a data structure C. Then, Figure 3.4

implements the storage of a matrix in CR,S format (Compressed R.o^v Storage),

which is widely used to store sparse matrices in a compressed form. The code has

two nested loops and a conditional sentence that controls three of the references.

Finally; Figure 3.2 is an optimized product of matrices that contains references in

side several nested conditional sentences. These conditionals try to avoid unuseful

computations when one of their inputs is a zero.

In order to validate our rnodel its predictions were compared ^vith tlie results

of trace drive sirnulations using different cache coufiguratious; problern sizes and

probabilities for the fulfillment of the conditionals for the three example codes. The

combinations used to validate the model for each code are shown in Table 3.1. R,ows

M; N and H correspond to the problem size, this is, the nurnber of iterations of

each loop; expressed as the value of its upper limit. Then come the probabilities

p; that the conditional sentences found in the codes are true. The s^-nthetic and

the CRS codes have a single conditional and no H loop; thus ro^r•s H and pz are

empty for them. Then; the cache configurations used in the validation are shown

in the format (CS - LS - K); this is, (cache size-line size-associativit^^). The cache

and linc sizes are expressed in b^tes. Then; Table 3.1 sho«^s the total number of

Chapter 3. 1^-lodel Extension to Handle Codes with Conditional Statements

Table 3.1: Parameter combinations used for the validation and average and maxi
mum miss rate prediction error

Kernel
Parameter Svnthetic CRS ^-latrix Product

M 9^0,1750;2000, 1000,1200,1400, 350,550,
4500,G000 1600,1800 400;600

N 1200,2500;3000, 1250,1350,24^0, 250;350
4000,9^00 26^0,3000 450;650

H - - 600,700;750;800

pr 0.1;0.2,0.3,0.4;0.5 0.1,0.2,0.3,0.4;0.5 0.1,0.2,0.3,0.4

p2 - - 0.1,0.2,0.3,0.4

32K-32-1 32K-32-1 32K-32-1
Cache 32K-32-2 32K-32-2 32K-32-2

Configurations 64K-32-1 64K-32-1 -
(CS - LS - K) 64K-32-2 64K-32-2 64K-32-2

128K-64-2 128K-64-2 128K-64-2

Combinations 625 625 4096

:wg OMR 0.22%0 1.43% 2.23%
_l^1ax OMR 3.81% 8.05% 11.32%

parameter combinations tried for each code taking into account the previous ro«-s.

For each one of these combinations a total of 2^ different simulations were made

using different base addresses for the data structures. 1 his improves the validation

of the inodel by taking into account many clifferent relative positions for the mapping

on the cache of the different data structures. The last two rows in the table show

the average and the maximum value for each code of the metric D,yR that we use

to measure the accuracy of the modeL This metric is the average of the absolute

value of the diff'erence between the predicted and the measured miss rate (\-tR)

expressed as a percentage in each one of the 25 simulations performed f'or each

parameter cornhination. As expected, the average and rnaxirnurn errors grow with

the complexit,y of thc code. Still; we consider that a maximum absolute c;rror of

only about 11% is very satisfactor;y. Also, the large difference between the average

ai ► d the maximurn ^MR shows that (relatively) large errors a^re very infrequent and,

in general, the predictions estima-te well the cache behavior.

Tables 3.2, 3.3 and 3.4 show the validation results for some randomly chosen

combinations of the problem size, the conditional probabilities a.nd the cache con

figurations for the three codes proposed in Figs. 3.3; 3.4 and 3.2; respectivel,y. The

3.4 Validation J1

Table 3.2: ^^álidation data for the synthetic kernel in Fig. 3.3 for several cache
configurations, problein sizes and condition probabilities

M ^ p ^%s Ls K OMR Tsim Texe Tmod

50000 47500 0.4 128K 64 2 0.015 182.211 68.022 0.005

50000 47500 0.2 64K 256 4 0.004 138.187 50.003 0.005

22000 14500 0.4 256K 128 4 0.001 28.244 7.033 0.003
22000 14500 0.4 64K 64 1 0.067 65.002 r.129 0.004
18000 22000 0.2 256K 128 2 0.574 23.021 7.586 0.004

18000 22000 0.1 128K 64 2 0.076 22.112 6.012 0.004

18000 22000 0.3 32K 256 4 0.141 95.223 8.01.0 0.004

14500 19500 0.7 128K G4 8 0.000 32.224 7.697 0.005
14500 19500 0.2 128K 32 2 0.252 20.269 5.331 0.005

14500 19500 0.3 64K 32 1 0.124 20.901 6.465 0.004

1750 1750 0.4 64K 4 69 0.000 1.123 1.000 0.003

1750 1750 0.7 64K 8 32 0.000 0.988 0.322 0.003

colunms in the three tables have thc s<z^me meaning as the respective ro^^^5 in Ta

ble 3.1. Nlany of the cornbinations chosen in these tables do iiot bcloug to thc set

of experirnents described by Tablc 3.1, so that the behavior of the inodcl can be

analyzed for a wider scope of parameters. The last thrcc colunnis in each tablc

correspond, respectively, to the simulation time; execution tiine and ^nodeliug times

expressed in seconds and measured in a Athlon 2400 processor-based system (2,08G

GHz). As ^^e see; modeling times are inuch shorter than trace-clriven simulation

times despite the fact that we use a very fast and simple simulator. In fact, many

times they are even faster than the native execution times. Furthermore; sometimes

modeling times are several orders of magnitude shorter than trace-driven simtilation

and even execution times. The modeling time does not include the time required to

build the equations for the example codes as the equations are developed by hand.

The time necessary to execute the model is ahvati-s less than 1 second.

Figures 3.5 and 3.6 sho^v the evolution of both the number of misses and the miss

rate measured and predicted for different cache configurations and probabilities of

the conditionals for the CIi.S and the matrix product codes, respectively. The figures

show; as the previous tables, that the model is successful in predicting the behavior

of the cache. A ne^ti interesting conclusion ^ve can dra^v from these figures is that our

extended model is indeed required to predict correctly the behavior of the memory

hierarchy when irregular access patterns are im-olved. ^Ve can see that a simplified

52 Chapter 3. Nlodel >►xtension to Handle Codes with Conditional Statements

Table 3.3: ^-álidation data for the CRS code in Fig. 3.4 for several cache confgura
tions, problem sizes and condition probabilities

M N 1^ ^%s Ls K OMR Tsim Texe Tmod

6200 10150 0.4 256K 64 4 0.01 16.308 4.022 1.225
4200 17150 0.1 32K 32 2 0.04 14.797 6.401 0.246

1G220 7200 0.2 128K 32 2 0.03 27.477 5.011 3.646
G200 14250 0.3 512K 64 4 0.00 21.089 5.891 1.221
9200 14250 0.1 32K 32 8 0.04 37.768 11.001 1.196
1100 15550 0.5 32K 32 8 0.02 2.724 1.668 0.021
2900 17250 0.3 256K 128 4 0.17 10.363 4.573 0.572
8900 9250 0.1 25GK 64 4 0.64 17.119 11.228 2.516
4200 12150 0.1 32K 32 2 0.04 9.364 3.880 0.246
^000 15000 0.3 256K 64 4 0.11 17.8^2 10.330 0.804
7200 1.2250 0.1 32K 32 8 0.04 18.224 9.646 0.721

model that did not support irregular access patterns and ^vhich chose to make all

probabilities either 0 or 1(the two extremes cases) would yield predictions very

different from the real values obtained for intermediate probabilities like 01, shown

in the figures. This justifies the interest of our research.

Figure 3.7 compares the miss rate measured and the iniss rate predictecl for the

CR.S storage and inatrix product codes when the probahility of verification of the

condition takes different values bet^veen 0.1 and 0.9. The accuracy of the prediction

is good in all the situations, while the cniss rate of the code is highly dependent

on the probabilit^- of the conditions in the code. The miss rate is higher «=hen the

probability of verification is lower because accesses are much more irregula.r. This

way; it is important to feed the model with the right values of the probabilities of

the conditional statements because the miss rate can be mispredicted otherwise.

Finally, Figure 3.8 contains the evolutiori of ^MR for the CRS storage and the

optimized matrix product respectively for different cache configurations and matrix

sizes. The prediction is more accurate in the CRS storage code, but it is still good

for the product of matrices.

53 3.4 Validation

Table 3.4: Validation data for the optimized ttiatrix prodWU;t codc in Fig. 3.2 for

several cache coufigurations, probleiu sizcs aud coi ► ditioii probahilities

M N H p^ 7^2 CS LS K ONrR Tsim T^e Tmod
750 750 1000 0.2 0.1 128K 64 8 0.79 24.444 11.233 0.203

750 750 1000 0.8 0.3 128K 128 16 1.31 86.845 72.069 0.987

900 850 900 0.9 0.1 512K 64 8 0.59 85.358 65.266 U.990
900 950 1500 0.1 0.4 256K 64 4 6.62 31.768 16.201 0.511

900 950 1500 0.8 0.3 128K 32 2 2.04 171.755 8^.023 0.149

1000 850 900 0.7 0.5 32K 64 2 3.13 110.328 108.21.1 0.1.39

200 250 150 0.8 0.2 128K 32 2 0.48 0.764 0.550 1.034

200 250 150 0.1 0.3 256K 64 4 5.91 0.134 0.112 0.301

200 250 150 0.3 0.1 32K 32 8 1.45 0.406 0.323 0.030

100 350 90 0.8 0.5 32K 32 8 0.14 0.500 0.201 0.031

100 350 90 0.4 0.4 64K 64 4 0.40 0.218 0.122 0.586

100 350 90 0.2 0.3 32K 64 2 0.05 0.104 0.101 0.309

s 100
np-o measured ^p=0 measured

p=o Pradicted ^P=o vreaicmd
q^0.1 measured ^p=0.1 measured

qp-0.1 predicted qp=0.1 predicted
^ 1.5

qp=1 measured ©p=1 measured

q^1 ptedicted m qp=1 prediCted
$ 1 f̂ ^̂^

E

^

Z 0.5

.,.-,rv^ ^^fIE1fY^
p^ _w, 0^-^°^̂...,` ^^IWIIMI ^^IUIIWI

1 28'2 ^4^K^2' ^K.128-2 ^K 2,̀;SK321C^^ 1 ?S6K'^^K^, 128K,1 K^ 128K'^
CaGre coMgurotion Cad^e configuration

(a) ^+umbcr of misses (b) A^Iiss rate

Figure 3.5: A4easured versus predicted (a) misses and (b) miss rates for several cache
configurations and different probabilities of verification of the conditionals for the
CRS code (see Figure 3.4) with M= 1500 aud N= 10000. Thc cachc configuratious

are expressed as (Cs-Ls-K); with sizes in bytes.

^4 Chapter 3. 1^^Iode1 Extension to Handle Codes with Conditional Statements

,

^p=0 measured
W 2.5
m ^ Qp=O Predicted

m.^ ^p=0.1 measured

ó 1.5
^p=0.1 predicted

►
_p=1 measured

^ 1 ^p=1 predicted

z
U.5

0
32K,32'^128K^ ^K,12^K,12$-`^tC.

Cache configuration

(a) \ umber of misses

,oo

20

, j;^^ i
^ '^ ^ ^^ ''' ^

Z^K^1^2 ^K^

32K^^1^12BK'^ ^29K^12

Cache configuration

(b) n-liss rate

Figure 3.6: \^}easured versus predicted (a) misses and (b) miss rates for several
cache configurations and différent probabilities of verification of the conditionals for
the optimized matri^: product code (see Figure 3.2) rvith M= 300, N= 300 a,nd
H= 300. The cache configurations are expressed as (Cs-Ls-K), with sizes in bytes.

eo x 9o x
nM W rete maeaurad nMW rete meeaured
qwros rate oredwa.d eo x OYW reto predktad

7o x

so x
0
W so x

ao x

a
m 4o x
f

so x

so x a9 x

tox 1o x

0%
0.1 02 03 0.4 OS 0.6 0.7 09 0.9 0 x 0.1 02 0.3 0.4 0.5 0.6 09 0.9

Probability Probabiliry

(a) (b)

Figure 3.7: Nleasnred versus predicted rniss rates for differerrt proh^^bilities of ver
ifica,tion of the conditionals for the CRS stor^ig^e code ^^nd the optimized matrix
product a. 2-^vay cache of ^12 KBytes ^-ith 64 bytes per cache line. The m^itrix si^es
^^rere M= N= 10000 in the CRS storage code and M= N= H= 1000 in the
optimized product of matrices.

3.4 Validation JJ

MxM

xetrnc slm cecrr Contip^uetlon CecM CaAipuretbn YeMx Sln

(a) (b)

Figurc 3.8: Surfaces representing the OMR evolution for different cache configura
tions and rnatrices sizes in ttre CR.S storagc; and optirnized rnatrix product, codes.
Ttrc cactre configur^Ltion is denoted using the notatiotr (CS,Ls,k).

Chapter 4

Model Extension to Handle Codes

with Indirections

In the previous chapter we proposed an extension to the PI\^IE model to consider

codes with irregular access patterns due to conditional statements. They constitute

an important subset of the codes with irregular access patterns.

Another important source of irregularity is the existence of indirections, that

is, references where the indexing of an arra^-; called the base array, is done across

the values contained in another array known as the index array. This array can be

also accessed using an indirection; so, more than one level of indirection is possible.

For example, the management of compressed matrix storage methods used in sparse

computation gives place to a big numer of indirections.

Our rnodel considers indirections in which all the elernents of the arra,y accessed

by means of the indirection have the sarne probability of being accesscd, i.e.; where

the irregular access is uniformly distributed on the referenced array. In sparse com

putation this implies that the nonzeros should be uniformly distributed along the

sparse matrix. This restriction eases the treatment of the problem in this first at

tempt to model automatically the cache behavior of codes with indirections; while

allowing to represent the inost iinportant problems that irregular access patterns

pose for their modeling. The model is also extended to cover an important class of

non-uniform irregular access patterns. Namely; ^ve consider the indirections gener

ated by the compressed storage of realistic banded matrices; a ver^• common distri

bution in sparse matrices ^2-^^.

^^

^8 Chapter 4. Nlodel Extension to Handle Codes with Indirections

DO Ip =1, Np

DO I1 =1, N1

DO IZ =1, NZ

A(far(Iar), ..., .fa^(B(far(Isr)))^ ...)

END DO

END DO

END DO

Figure 4.1: Nested loops with structures accessed using indirections.

Section 4.1 contains a description of the extended scope of applir,ation of the

PNIE. Separated extensions are proposed for the modeling of codes with indirections

when the data involved follows an unifoa^rn distribution and when banded matrices

are managed. Section 4.2 is devoted to the model extension for uniform distributions

«^hile Section 4.3 covers the treatment of banded matrices.

4.1. Scope of Application

Figure 4.1 depic,ts the scope of application of our extended model. It shows

a set of normalized perfectl,y or non-perfectl,y nested loops in which the number

of iterations of every loop must be thc saure in ever,y execution of' the loop. The

reference indexes are afñne fiinctions f^ either of the loops control variables Iz or of

values read from arra,ys. ^^'c call index or indirection array thc one whose values are

used to index another array, which we call the base array of the indirection. Index

arrays can be themseh^es indexed by other arrays, which gives place to several lcvels

of indirection.

4.2. Model Extension for Uniform Distributions

In the first extension proposed in this chapter, the probability that a component

of the base rrrray of an indirection ie accessed is uniform. This rrieans the^- all have

the sarne probability of being accessed. Some adaptations rnust be donc to the rnodcl

59 4.2 131ode1 Extension for t^niform Distributions

function RegR;(n) I

Regset = 0

foreach array A involved in the code I

RA = 0

foreach reference R^ to array A in loop i r loops nested inside it I

RA = merge(region_acceaaed(R, i, n), QR^ RA)

regA.region_fune = acceaayattern(RA)

regA.ia_aelj_interJerence = (A == array(R))

RegSet = RegSet U regA

return RegSet

Figure 4.2: Calculation of RegR1(n), the set of regions that can interfere with the

attempts of reuse of reference R generated during n iterations of the loop at nesting

level i.

to cover this ne^r situation. The iniss probabilit,y estirnation process is adapted in

Section 4.2.1 to cover the access pattern recognition of codcs ^aith indirectiorrs. New

equations are proposed in Section 4.2.2 for codes with indirections R^itlr an uniform

distribution. In Section 4.2.3 a small moclification to)noclel codcs involving banded

matrices with a uniform distribution of the values inside the band, is proposed.

Section 4.2.4 shows the main validation results achieved with this)noclel e^tension.

4.2.1. Miss Probability Estimation in Codes with Indirec

tions

As we established in Section 2.3; the rniss probability estirnation is a process that

can be divided in three steps : the access pattern identification, the cache impact

quantification and the area vectors union. In the previous chapter; some adaptations

were proposed to the two first steps to cover the modeling of irregular codes due

to conditional statements. In the access pattern identification we introduced some

changes to identify correctly the irregular access pattern due to conditional state

ments. «^e also introduced in the cache impact quantification step two new types

of irregular regions that allo^ved us to measure the cache impact of irregular access

patterns. Finally; the area vectors union did not suffer any change. Figure 4.2 shows

the pseudocode for the calculation of the interference region of reference R during

the execution of n iterations of nesting level i: the access pattern of the references

to each arra}^ A found within the loop is identified in turn and added to the set of

60 Chapter 4. 1^4ode1 Extension to Handle Codes with Indirections

functian acceaa^nttern(R) (

if R==(M,S,P) (

if P == l.o
iF S == 1

return Regs(M)

else

function region_accesaed(R,h,n) I return Regr(M,1,S)

A = array(R) else

foreach dimension j of A{ if S == 1

s = loop_ehnt_indexes_dimenaion(R,j) return Regap(M, P)

if not indexed_by_indirection(R,j) (elae

RR^ (h, n) _(itera_regsslnr(i, h, n), SR;, 1) return Regrp(M, 1, S, P)

l else (1 else l

Rgj (h, n) _(itera_irregsslar(i, h, n), Sg;, if R==((M1^1,P3),(M3,S2^P2))

proó(R, i, h, n)) return Regrp(M2, Ml, S2, Pl ^ P2)

else

return error(UNKOWN)

return ssmplifg(RR(h,n))

(a) Calculation of RR(h, n), the tuple-based (b) ldentification of the access pattern

representation of the region accessed by ref- associated to the memory region de

erence R during n itcrations of thc loop at scribcd by the tuple(s) R.

nestiug level h.

Figure ^L3: Identification of the access pattern f<)llowed b^ the references during a
reuse distance.

regions accessed. The memory regions associated to the same array R accesses are

marked because its cache impact qnantification step is difEérent.

In this extension for codes with indirections the last two steps of this process

remain the same. The irregular access patterns followed by the references due to

the existence of indirections are the same as those ones identified in codes with

conditional statements. However, the access pattern identification step needs some

modifications to identify correctly the irregular access patterns due to indirections.

Access Pattern Identification

Figure 4.3 shows the two steps involved in the identification of the access pattern

that references follow during a reuse distance consisting of n iterations of the loop

at nesting level h. Function region_accessed analyzes the indexes of the studied

reference R to obtain a numerical representation of its access pattern during the

considered period of the execution of' the code. In fhnction access_pattern; this

representation is mapped to a given access pattern.

61 4.2 Nlodel Extension for L;niform Distributions

In function region_accessed, for each reference R the indexes of each dimension

and the number of iterations of each loop during this reuse distance are examined.

The output of this analysis is a D;^-tuple RR(h, n); as in the case of regrilar codes

described in Section 2.3.1, where D,^ is the number of dimensions of the array A

referenced by R. In regular codes each element of this tuple consisted in its tttrn of a

2-tuple RRj(h, n) _(Mj, Sj) where the Mj is the nurnber of diffPrent points accessed

along dim^;nsion j and Sj the constant stride betwe^^;n two consecutive points. In

codes with indirections this tuple has a third component Pj tlrat stands for the

probabilit,y each one of these points is actually accessed by R. If the access is not

indexed using an indirection Pj = 1. Function access_pattern uses the information

contained in this tuple to determine the access pattern followed by that reference.

The algorithm followed to calculate the 3-tuple associated to dimension j of

reference R during n iterat,ions of the loop at nesting level h is described now. V^%hen

the indexing of dirnension j is not done across art indirection then the rnethod used

to calculate this tuple is the one described in Sec,tion 2.3.1 for the regular case with

P= l. But when the indexing of dimension j depends on an ilidirection; that

is, wherr the index has a forrn aRj•B(f(Ii))+^Rj, we assume that the accesses are

spread uniformly on the dimension j of the array. Since our indirection is multiplied

by some constant aRj (usually one), there are LDAj/c>!RjJ different points in the

dimension that can be actually accessed (e.g. reference A(2*B(I)) can only access

the even elements of array A), where Daj is the number of elements in dimension

j. Each point has an uniform probability 1/LD,^j/aRjJ of being the one accessed

because of each given value read from the index array. As a result, if Itersi(h, n)

(see Section 2.3.1) différent values have been read from the index array B during n

iterations of the loop at nesting level h; where i is the nesting level of' t,he loop whose

index controls the accesses to the index arra,y B, the average probability each that

each one of the points that R can access in the j-th dirnension of' its base arra,y has

been accessed at least once is 1-(1 - 1/LD.,^j/aRjJ)Iter^;(h,n), thus

Iters;(h,n)

I D^j I 1

(`l.l)^R!(h^ n) - ^L^Rj J SRi^ 1 - ^1 - LD^.7/aRjJ /

Once RR(h, n) has been calculatcd for the referencc that reads the irrdeting array

B; it is straightfor^vard that the number of different points the refcrence accesses is

^°Br MkPk, i.e, the product. of the number of different points it may access in cach

dimension multiplied by the probability each one of such accesses actually takes

62 Chapter 4. Nlodel Extension to Handle Codes with Indirections

place.

As irr Section 2.3.1, there are possible sirnplifications in between pairs of 3-tuples

RR^ (h, n) that describe the access pattern iu different dirnensions of the array:

((1, S„ P^), (M^, Sk, P^)) _(Mk, S^, P^ • Pr^)
((M„ S^, P^), (M^, My ' S^, P^)) _(M^ ' M^, S^, P^ ' Pk)

After these sirnplifications a single 3-tuple (Ms, Ss, P3) that describes the region

accessed by the reference is typically obtained.

The notation described above suffices for the representation of inemory regions in

c,odes in ^vhich there is a single reference per data structure. In codes in ^vhich several

references access the sarne data strnctnre, the regions the,y access will often overlap

or be ac^jacent, so we have developed simple algorithrns to merge the descriptors

for overlapping or adjacent regions. This way, lines that are accessed by diff►rent

references are not taken into account several times as source of interferenr,es. In

order to perforrn this merging, one more parameter is used to describe the region

affected by a given reference R: the position QR with respect to the beginning of the

array of the first element it contains. The merging algorithm is applied in function

merge in Figure 4.2 and it is described in [31].

^s Section 2.3 explains, rather than this description of• the rnemory region ac,

cessed, the output of the ac,r,css pattern identification step is a func,tion that charac

terizes the access pattern whose output is the area ver,tor associated to it. Depending

ou the values of S3 and Ps in a tuple RR^ (h, n); four kinds of access pattern functions

can be identified (see Figure 4.3(b)):

l. ^Vhen PS = 1; it is a regular access pattern so the process described in Sec

tion 2.3.1 is followed, based on Ms and Ss.

2. ^^- hen P3 < 1 the access pattern is irregular; as each point involved in the

pattern has only a certain probability of being actually accessed:

a) If SS = 1, it is an acccss to M3 consecutive elements in r^^hich each elc;ment

is accessed with a probabilit^^ Ps. The function that calculates the area

vector for this access is R.egsp(Ms, Ps).

b) Otherwise the access affects Ms different points separated b,y a constant

stride Ss, which cach element is accessed ^rith a probability Ps. The

63 4.2 Model Extension for L niform Distributions

DO I=1,M

REG=O

DO J=R(I), R(I+1) - 1

REG = REG + A(J) * X(C(J))

ENDDO

D(I)=REG

ENDDO

Figure 4.4: Sparse Nlatrix-^^'ector Product

area vector associated to this access pattern is estimated by fimction

Reg^P(Ms, l, S9, PS).

Sornetimes it is not possible to reducc RR(h, n) to a single tuple. All the

cases of this kind we have found in t,he codes we havc analyzed had the form

RR(h, n) _((Mi, l, Pr), (M2, Sz, Pz)), which can be represented by the function

Reg^p(M2i Ml, S2, Pr •P2), as thcy are an access to M2 separate groups of Mr consecu

tive elements each that are separated by a constant stride S2, having each individual

element of the region a probability Pr • P2 of being accessed.

ExamPle 11. Let us consider the code of Figure 4.4; ^vhich is part of the Sparskit

toolkit [43]. This code performs the product of an sparse matrix stored in CRS

format and a vector. The CRS format stores sparse matrices by rows in a compressed

way using three vectors. One vector stores the nonzeros of the sparse matrix ordered

by rows, another vector stores the column indexes of the corresponding nonzeros,

and finally another vector stores the position in the other t^vo vectors in which the

data of the nonzeros of each ro^^ begins. In our codes ^re ahvays call these vector A, C

and R respectively. The codes which manipulate compressed sparse matrices contain

many indirections. ^Ve will illustrate the extended access pattern identification step

for codes that contain indirections identifying the memory regions accessed during

one iteration of the outermost loop (loop I) of this code.

In each iteration of loop I a^vhole execution of the loop J takes place. The

average number of iterations of this loop is Nl. Since it s^veeps along the elements

of a row of the sparse matrix; its value is Nr = Nnz/M, where Nnz is the number of

nonzeros in the sparse matrix and M its number of rows, let's remember we assume

an uniform distribution of the nonzeros. The number of nonzeros can be assumed

from the size declared for the arrays A and C; or be part of a directive to the compiler

or be extracted from a profiling of the input data. Reference A(J) is indeted by the

64 Chapter 4. 1^1ode1 Extension to Handle Codes with Indirections

variable that controls this loop, so it sweeps along Nt different elements with stride

1«^ith probability one. Thus, its RRt(0, 1) _(Nt, l, 1), «^hose area vector can be

estimated by RegS(Nt)

R.eference C(J) follo«^s exactly the same access pattern, thus it also accesses a

region (Nt, 1, 1) whose associated area vector is estimated by Regs(Nt).

Reference X(C(J)) is indexed b,y t,he variable of the loop indirectly, through a

read frorn vector C. This wa,y; appl,y-ing Equation (4.1), its RRt(0, 1) is estimated

as (Dxi, l, 1-(1 - 1/Dxt)`^^). The simplest function that c,an estirnate the area

vector for this access pattern is R,egsP(Dxt, l-(1 - 1/Dxt)Nl); where D^t is the

first dimension of arrav X.

Also; during one iteration of loop I; reference D(I) accesses a single element of

vector D; thus its RRt(0, 1) _(1, 1, 1), «^hose area vector is given by Regs(1) n

4.2.2. PMEs for Codes with Indirections

The P\-IE model for regular codes has an tmique equation that can characterize

the cache behavior of any reference with a regular access pattern. In the previous

chapter, an additional equation was proposed to co^^er the modeling of references

guarded by one or rnore condit,ional statcrnents. These t«^o equations allow to modcl

codes with irrcgular access patterns due to data-dependent conditional statements.

In the extension of the P^-1E model to cover codes «^ith indirections. the con

struction of FRa depends on whether the control variable for loop i, I2i is used in

the indexes of index arrays found in the reference or not.

If Ii does not appear in R, or if it only appears in the indexes that do not depend

on indirections; i.e., indexes of the form aIi + ó, the access pattern of R is regular

«^ith respect to loop i; so the P\-1E for this loop is built using the Equation 2.12 in

Section 2.4.

^Vhen the control ^-ariable for loop i; Ii, indexes an index arra,y in an indirection,

the access pa^ttern on the base array of our reference R is irregular with respect to

loop i. The reason is that the position accessed by R no longer depends directly on

Ii, but on the value read from the array that Ii indexes either directly or through

more levels of indirection.

The distribution of the values read frorn the index arravs on the dimension of

4.2 Nlodel Extension for L; niform Distributions G^

the base array they index determines the accesses; the reuses, and thus the PI\^[E

that models the reference-cache interaction. In our modeling we assume that this

distribution is uniform; that is; all the elements of the base array have the same

probability of being accessed in each iteration of the considered loop.

^Ve have found that two classes of irregular access patterns arise clepending on

whether the values of the considered index array are ordered or not. IVIOIlOtoI11C

irregular access PA-IEs model the situation when the accesses generated by the incli

rection are orderecl, i.e., when the values reacl from the inclex array are Inonotonieally

increasing or decreasing. When this condition does not hold or we simply do not

have information about the indexing values, non-monotonic irregular access PI\-IEs

are going to be applied. ^Ve now explain the two kinds of Pl^lEs in turn.

Monotonic Irregular Access PME

^Vhen they are ordered, the sequence of accesses produced by the indirection

can be characterized as a monotonically increasing or decreasing function. In this

case; the reuses in the considered loop i can only take place with respect to the

line referenced in the immediately previous iteration. This way; the PIt^IE for reg

ular access patterns explained in Section 2.4 (Equation (2.12)) can be used in this

situation, the difference being that LR^, the nurnber of it.erations of this loop that

cannot exploit reuse, or conversely, the number of different sets of lines (SOLs) that

R accesses during the execution of the loop, cannot be estilnated as ►l the regular

acccss pattern case. In a Inonotonic irregular access pattern,

(4.2)
LRi = DRi(1 - (1 - LRii/DRi)N^)

^ahere DRi is the number of different SOLs that R can potentially access during

the execution of the loop i and LR1, is the number of SOLs accessed during one

iteration of loop i. The rational for Equation (4.2) is that if in each iteration of the

loop i, on average LRi, different SOLs are accessed out of the DRt ones that R could

access, then each one of them has the same uniform probability PR= = Lgil/DR= of

being accessed in each iteration of the loop. Thus, the probabilit}' that a SOL has

been accessed at least once during the Ni iterations of the loop is 1-(1 - pRt)N^.

A4ultiplying this probability by the number of SOLs yields the average number LR;

of different SOLs that are actuallv referenced. So this is the number of iteration of

the loop in which no reuse is possible. Because the values in the inclex a.rra}^ are

monotonically increasing (or decreasing), the othcr N; - LR= iterations of the loop

66 Chapter 4. Nlodel Extension to Handle Codes ^vith Indirections

attempt to reuse the SOL accessed in the immediatehr previous iteration, with a

reuse distance of one iteration of the loop; as Pl-lE (2.12) reflects.

The number LRi^ of differer^t SOLs acccssed during one iteration of loop i is

trivially one in the innermost loop z that contains R. For any other loop i, LRiI is

LR^; with k = min{v/i < v < z/^ DimInd(v) = DimInd(i)}, i.e., it is the LR for

the outermost loop k nested inside loop i such that its index variable Ik indexes

(indirectly) the same dimension of the base array A referenced by our reference R as

the variable Ii of the considered loop i. If no such loop exists; then; aga.in; LRiI = 1.

Another way to express it is that the number of dif%rent SOLs accessed in one

iteration of loop i is the ntmlber of' SOLs accessed during the complete execution of

the outermost loop nested inside loop i that indexes, indirectly, the same dimension

of the affected base array as Ii. This definition allows to handle correctly those

cases in which, for exarnple, the indirection for a given dirnension in R depends on

several loop index variables, e. g.: in A(B (I, J)) both I and J itidex indirectl,y the

only dimcnsion of vector A. Another exainplc for this situation is often found in the

codes in which indirections arc generated h,y sparse tnatrices because of the forrnats

used to store thern.

E^amPle 12. If tve analyze the sparse matrix-vector product code in Figure 4.4, we

see that vector X is accessed indirectly through C(J) in the innermost loop; ^ahose

index variable is precisely J. In that loop; trivially, LRlI = 1 for reference X(C (J)).

If we analyze the outer loop on I, we can see that this variable indexes R(I); v-hich

defines the values for J. ?^s as result the indexes of both loops index indirectly the

only dimension of vector X, and thus; for the outermost loop 0; LROI = LRl. e

^^'e complete our modeling for this access pattern with the expression of DRi :

_ DA^d,^^
(4.3)

DR2 max{SRi^ L }s

where SRi = aR^ • d,^^ and d..^^ are defined as in the preceding section, a.nd D^^ is the

size or number of elements along the j-th dimension of the array A referenced hy R.

Let us remember that j is the dimension that is indexed; in this case indirectly, by

Ii. This also means that in this ca5e the constant aR^ is multiplying the indirection

indexed b,y Ii rather than the variahle Ii itself.

Fxarraple 13. Frorn the shape of the loops displ^^yed in Figure 4.4 a cornpiler can

speculate that R stores the indices for the beginning of thc; data of c^ach row of

67 4.2 IVlodel Extension for t;niform Distributions

the sparse matrix in A and C; which hold the nonzeros and their corresponding

columns; respectively. another possibility to extract this information would be to

include a directive to the compiler in the code reporting which is the role of each

array in the storage of the sparse matrix. ^^^ith this knowledge we can also infer

that the sparse matrix has M rows and ^ve can speculate that the values in C are

ordered for each row. If this were the case we could conclude thaY. the values read

in Figure 4.4 by C(J) are rnonotonically increasing during eacl^r whole execntion of

the loop J; at nesting level 1. As a result, the acccss pattern of X(C(J)) in this

loop can be rnodeled by a rnouotonic irregtilar acccss PNIE. This Pl^•1E has the forrn

of Equation (2.12), with its LRt calculated according to Equation (4.2). The latter

expression is a function of, DRr, the number of different SOLs that R can poteutially

access during the execution of the loop J, and LRtI; the number of SOLs accessed

during each iteration of this loop.

Equation (4.3) allows to calculate DRt knowing that (a) the indirection tak^^s

place in the first dirnension of the basc arra,y X(j = 1), (b) the c;unmlative size for

the first dirnension of any array is always one (dxr = 1), (c) the stride SRr of our

reference ^vith respcct to its indirection is one (SRr = aRr • d.^r = 1• 1), and (d) the

size of the first (and only) dimension of X is a value DXr our compiler extracts from

the definition of the vector in the code. With these data we evaluate Equation (4.3)

as DRr = ^Dxr/LS^. This means that during each iteration of the loop J; X(C(J))

could potentially access any of the ^Dxr/L5^ lines that constitute X.

Both in our general explanation about the calculation of LRt, and in our pre

ceding eharnple, we cxplained that trivially; in the irnrermost loop that contains a

reference R with an indirection, LR=, = 1; which is the case for X(C (J)) in loop J.

With these two pieces of data we can evaluate Equation (4.2):

LRr = ^Dxr/Lsl I i - (^ -
1

rDx r /LS^

This expression assumes that each one of the ^Dxr/LS^ lines of X has the same

uniform probability of being accessed during each one of the Nr iterat.ions of loop J.

As a result; after the Nr iterations; each line has a probability 1- (1-1/ ^Dar/L5^)Nl

of having been accessed at least once. Thus multiplying this probability by the

number of lines ^ve get the number of different lines that werc actually accessed on

average. As for the average number of iterations of this loop Nr; since it swceps

along the elements of a ro^v of the sparse matrix; its value is Ni = Nnz/M; ^vhere

68 Chapter 4. hlodel Extension to Handle Codes with Indirections

Nnz is the number of nonzeros in the sparse matrix and M its number of rows. The

number of nonzeros ca.n be assumed from the size declared for the arrati^s A and C;

or be part of a directive to the compiler or be extracted from a profiling of the input

data.

Once we have calculated the number LRl of different SOLs we access in each

execution of the loop (with each SOL consisting of a single line in this case), we

can replace it in Equation (2.12). This equation will consider the LRt first accesses

to a different line with a miss probability that depends on reuses that take place

«^ith respect to accesses outside the loop; while the remaining Nl - LRr accesses

necessarily try to rettse the line accessed in the immediately preceding iteration. As

a result, the miss probability for them is associated to the regions accessed dttring

one iteration if' this loop n

Non-Monotonic Irregular Access PME

^Vhen the indexing values are not monotonic, or we have no information about

their ordering; the last access of a reference to a given line, or in general; set of

lines (SOL), in the considered nesting level i mati have happened an indeterrninate

rnrrnber of iterations ago. The mmrber of loop iterations betw<^^^^n two accesses of

the reference to the sam^^; SOL is not a fixed value; since evcr,y SOL can bc; accessed

with a given probability in each iteration of the loop. Thus, a probabilistic approach

rnust be followed to estimatc the number of misses taking into account that each

potential reuse distance happens now ^^^ith a different probability.

In the presence of uniform probabilities; each one of the DRz diíferent SOLs that

R can potentially access during each ^^;xecution of the loop has the sarne probabilit,y

pR^ = LR^^^DR^ of being accessed in a given iteration, no rnatter thc accesses are

rnonotonic or not. Also, ever,y SOL has this probabilit,y of access in each one of the

Ni iterations of the loop. As a result, the number of misses generated by a non

monotonic irregular access pattern during the execution of loop i can be estimated

by means in a summatory in «rhich each term estimates the number of misses that

the accesses of R can generate in the j-th iteration of the loop:

N;

FR1(RegIn) _ ^ WMRi(RegIn, j), (4.^)
^=r

where WMR;,(RegIn, j) ,yields th<: weighted rrumber of rnisses generated in the j-th

69 4.2 Nlodel Extension for Lniform Distributions

potentia.l access of R to the SOLs it defines in loop i. In this expression, R.egIn

stands for the region accessed since the last reference to the SOLs that R accesses

in this loop when the execution of this loop begins, as usual. This mnnber of misses

is calculated a.s

WMRs(RegIn, j) =(1 - pRa)^-I ' Frt(z+I^(RegIn U RegR1(j - 1))+
^-I

^pRY • (1 - pRa)h-I ' FR(i+Il(Regxz(h)) ^
h=1

aS explallled lIl the previous scctiou; yields the probability^i'llere p1qi = 1•R21^DR2J

that a given SOL of the base array that R can potentially access during thc execution

of loop i is indeed accessed during one iteration of that loop.

The first term in (4.6) considers the case tho-lt the SOL has not heen accessed

in any of the previous j- 1 iterations, which is (1 - pRz)^-I given that pR2 is the

probabilit,y of access in each iterat,ion. In this c^r.5e, the RegIn region that could

generat,e interference with the new access to the lille when thc executioll of the loop

begins must be added to the RegR2(j -1) regions accessed during these j-1 previous

iterations of the loop in order to account for the complete interference region. This

addition is represented by means of the U operator. The second tercn ^veights the

probability that the last access took place in each one of the j-1 previous iterations

of loop i. The probability that the last access to a given SOL was exactly h iterations

before the current iteration is pRz •(1 -pR=)h-I that is; the probability there was an

access to the SOL h iterations ago; but there w'ere no accesses to it cluring the last

h- 1 iterations. In this case; the regions that can generate interferences with the

attempt to reuse the SOL in the current iteration are those accesses during those h

intermediate iterations, RegR=(h).

E^ample 14. «^hen the reference X(C (J)) in our example code of Figure 4.4 is

analyzed in the context of the outer loop I at nesting level 0; the values read from

the indirection are no longer guaranteed to be ordered throughout the execution

of the loop. That is; the values read from C during a single iteration of the loop

I correspond to the column indexes of the elements of a single row; which we can

assume that have been stored in a given order; but when the ^vhole loop I is taken

into account; the values read from C are not ordered among different iterations

of loop I. As a result; the non-monotonic irregular access P^^IE of Equation (4.5)

characterizes the access to X in this loop. In that equation; the number of iterations

of the loop is No = M in our case; and WM^(R.egIn, j) is calculated follou-ing

70 Chapter 4. 1^-1ode1 Extension to Handle Codes ^vith Indirections

Equation (4.G). In order to evaluate the latter equation we must calculate pRO, that

is, the individual probability each SOL of X is accessed in each iteration of loop

L.^s we have expla,ined, this value is derived as pRO = Lxo^/DRO, ^^'here LROI is

the number of different SOLs our reference accesses on average in each iteration

of the loop; ^tnd DRO is the mrmber of different SOLs it could actually access. In

example 12 we explained and calcnlated that for this reference LRO, = LRi, and the

valuc; of LRr was estirnated in Equation (4.4) in exarnple 13. R,egardirrg DRO, it is

calcula^ted according to Equation (4.3). As we explained in exarnple 12; while the

variable I that controls the loop ^t-e are analy^ing does uot appear iu the expression

of our reference X(C(J)), this variable indexes R(I), ^^hich defines the values for

J. This way; I indexes indirectly the indirection «^e are analy^ing in the first (and

only) dimension of array X and Equation (4.3) can be evaluated using the same

parameters used in example 13, which results in DRO = DRr = ^Dxl/LS^. That is;

any of the ^Dxl/Ls^ lines of X can be accessed during the execution of loop I, where

we remind the reader that Dxr is the length of vector X and L, is the number of

elements of vector X a cache line can hold

This example helps us also illustrate the meaning and usage of the R.egIn input

for the PA-1Es. The PA-1E FRO for reference R=X(C(J)) we have just built is

based on Equation (4.5). In its development in Equation (4.6) we can see how, as

always, this PIVIE is expressed in terms of the PI\^IE for the same reference in the

inmediately inner loop. In our case this PI^^IE is FRr; built in example 13; which

models the behavior of the accesses to X during the product by a row of the sparse

matrix. The evaluations of FR^ti+l^ in FR^ receive as RegIn the set of' regions accessed

during the reuse distance associated to that evaluation. In our example; attending

t^ Equat,ion (4.6), FRO evalu^Ltes FRl through WMRO(RegIn, j) ^vith t^vo kinds of

reuse distances. The inpnt for the first appeo-trance of FRi in this expression depends

on the R.egIn for FRO itself, because it is not associated to reuses within the loop.

R.ather, it corresponds to the first accesses to lines of X during the execution of the

loop, which will result in cold n►sses. The rnodel predicts this correctly because (a)

R,egIn for outer loops ^^ith no preceding accesses is a region with an associated miss

probability 1 and (b) as we can see the model propagates this region down to the

PNIE FRl for the innermost loop for the evaluation of the rnisses generated in the

very first accesses to these lines.

The remaining evaluations of FRi in Equation (^.6) correspond to reuses within

loop 0 with a reuse distarrce of exac;tly h iterations of this loop each. Such evalua

tions are rnultiplied b,y the probability this situation actuall,y- takes place to predict

4.2 IV1ode1 Extension for Lniforin Distributions ^1

correctly the ntnnber of misses they generate. Their RegIn is RegRO(h), i.e.; the

interference region generated during those h iterations in which a line of X has not

been accessed. In our example this corresponds to the acesses that take place dur

ing the product of h rows of our sparse matrix b^- the vector. The RegIn of FRt

determines the miss probability for the first accesses to YhP. lines of' X during an

isolated iteration of the innerrnost loop. assigning this value to RegIn ensures such

probability d^^:pe;nds in fact on the cache footprint of thc accesses perforrned since

the intnediatel,y preceding access to those lines; which took place cxactly h iterations

of the loop on I ago.

The calculation of regions of interference and the quatitative evaluation of PNIEs

are considered in Section 4.2.1. n

4.2.3. Model Extension for Uniform Banded Matrices

lintil now we have considered the case in which a.ll the elements of the base array

have the same probabilit^- of being accessed, but our model can be extended to cover

situations in which the distribution is not uniform. For example; a very common

source of indirections are accesses generated by sparse matrices that are stored in

some compressed format like CRS ^19^. One of the most usual situations b,y f'ar is

tl► at such rnatrices are banded' , so it is valuable to extend our rnodel to considcr

irregular accesses that are are uniformly distributed in a litnited band or area of the

basc array. In Section 4.3 we will describe a diffcrent model extension for banded

matrices where the values a^re not uniforrnly distributed inside thc band. In this

case, the formulas described in the Sections 2.4 and 4.2.2 can be used making t^vo

small changes to adapt them to this new situation:

n	 ^rhen PMEs for the indirect accesses generated b^^ the column indices of a

banded matrix are built; the term DA^ in Equation (4.3) must be replaced by

the size of the band of the studied matriti; since the accesses are not uniformly

distributed on the whole j-th dimension of the base array; but on1^- of the

region associated with the band B of the matrix.

n	 since the nonzeros are onl^^ distributed along B ro^vs in each column and B

columns in each row; when the probabilit^^ of reuse of a group of SOLs with

respect to the preceding iterations is considered in Equation (4.^); the upper

1 A is banded with band^r•idth B= 2p -{- 1 if a11 the nonzeros are contained within the first p
super and first p subdiagonals. (A;^ = o, ^i - j^ > p)

72 Chapter 4. I^•iodel Extension to Handle Codes with Indirections

DO I= 1,M

DO K= R(I), R(I+1) - 1

REGO=A(K)

REG1=C(K)

DO J= 1,H

D(I,J)=D(I,J)+REGO*B(REG1,J)

ENDDO

ENDDO

ENDDO

Figure 4.5: Sparse A-latrix - Dense Vlatrix Product with IKJ order

bound of the summatory is not Ni, the size of the sparse matrix along the

considered dimension that gives place to the attempts of reuse, but B, since

only along B ro^vs/colmm^s can be the same SOL of the hase array be reused.

ExamPle 15. The model derived for matrices with an uniform distribution for our

example code in Figure 4.4 is applicable to banded matrices except in two points.

First; in the calculation of DRO and DRl for reference X(C(J)) we must substitute

the value of Dxl with the band size. Also; in the expression FRO that characterizes

the behavior of this reference in the outer loop at nesting level 0(the one indexed

by I), which has the shape of eq. (4.5); the upper bound of the stmimatory must

no longer be M, the total number of' rows of the sparse matrix, but its b<tnd size

B; since only along the processing of B different rows of' the input matrix can we

exploit reuse of a^ given line of the base array X of' this reference. The size of the

band would havc to be provided by a^ directive to the cornpiler or be extract^^;d b,y

an analysis of the input data. n

4.2.4. Validation

Our validation relies on eleven kernels of different complexities that conta.in in

directions derived from the manipulation of sparse matrices stored in compressed

formats such as the CRS (19^ format. The first code is the Sparse Alatrix - ^-PC

tor Product (SPVIX^') 'shown in Figure 4.4. The next three codes are the Sparse

A-latrix-Dense 1\-latrix Product (SPNItDII-I) with the three different loop orderings

this operation allo^^s: IJK, JIK and IK.I, where the first index is the one for the

outer loop and the last index the one for the innerrnost loop in the nest. In the three

73 4.2 Nlodel Eatension for Cniform Distributions

1 DO I=2,N+1

RT(I)=0 4 DO I=1, M

END DO DO K=R(I), R(I+1)-1

J=C(K)

2 DO I=1, R(M+1)-1 P=RT(J)

J=C(I)+2 CT(P)=I

RT(J)=RT(J)+1 AT(P)=A(K)

END DO RT(J)=P+1

END DO

RT(1)=1
 END DO

RT(2)=1

3 DO I=3, N+1

RT(I)=RT(I)+RT(I-1)

END DO

y

Figure 4.6: Transposition of a sparse matria.

orderings I indexes the rows of the sparse n ► atrix, K its coluirms, and J thc colun ► i ► s

of the dense rnatrix. As an example, thc IK.I loop ordcring is shown in Figure 4.5.

Finall,y, Figure 4.6 shows a sparse matrix transposition (TR,ANSPOSE) where both

the original and the transposed inatrix are stored using the CRS inethod. This code

is particularly complex, as it contains four loop nests; there are accessed with several

levels of indirection in loop 4; and it involves more data structures than the other

examples (six). Besides, some structures appear in several loop nests, so there may

be reuses bet^veen the access to a line in one loop nest and another access in another

loop nest.

The rernaining five kernels have been extracted frorn the set of routines matvec . f

of the ^vell-kno^vn SP^R.SKIT ^43^ library. This set of routines contaius different

routines that perform the product bet^veen an sparse rnatrix and a vector, ^vhere the

sparse matrix to multiply has bcen stored using different compresscd storage formats.

The routines analyzed are: AA^IU\i\^IS, :^`TA4Ut; ATA•IUlR; AA-1U1D, al\ILlE and

:^l\4L;1J. In A^^ILXVIS the sparse matrix is stored in the \-1SR (\^lodified Sparse Row

Storage) method; ATViUX and ATMUIR use again the CItS format but the input

matrix is transposed; AA^iUlD uses a matrix stored in the DI^ (Diagonal Storage

Fonnat) format; in ^1^IL\E the matrix is stored in the ELL (Ellpack Itpack) format,

and finally in AD^ILlJ it is stored using the JAD (Jagged-Diagonal Storage) format.

^11 these storage formats are described in ^43^.

74 Chapter 4. Model Extension to Handle Codes with Indirections

Code MRs^m MRn^toa OMR m^(OMR)

SP^'IXV 9.64% 9.45% 0.92% 8.23%
SPI\-IXDA-IIK.I 48.95% 47.92% 1.41% 1L48%

SPI\-IXD1\'II.IK 22.20% 21.42% 0.79% 3.56%
SPA-IXD1\'IJIK 11.68% 11.28% 0.70% 6.65%
TR.ANSPOSE 18.98% 19.22% 1.60% 11.72%

AVIUXNIS 6.20% 5.91% 0.77%r, 8.78I

AT_l4UX 5.27% 4.82% 0.63%; 11.20%^
AT^4UXR 5.24% 4.77% 0.61% 10.10%
AVIUXD 4.62% 4.81% 0.78% 7.76%
A1^-1tiXE 5.69% 5.84% 0.37% 7.05I
A\-II^XJ 5.84%0 6.47%r, 1.10% 9.97%r.

Table 4.1: Averagc measured (MRs;,,,) and predicted (MRMoa) rniss rates, averagc

value O,NR of the absolute difference between the predicted and the measured miss
rate in each experiment; and maximum value of this difference max(O,^R).

Validation with Synthetic Matrices

The integration of our model in the XARK compiler ^15^, which will be discussed

in Chapter 5, has allowed us to apply it automatically to the validation kernels.

The rniss rate predicted by the rnodel was cornpared with the results of trace-driven

sirnulations using s,y-nthetic matrices with an uniforrn distribntion of their nonzero

elerneirts. Over 10000 t<^^sts wer^^: perforrncd for each code changing the sizes and

starting addresses of thc different arra,y-s, the cache configuration and the density of

the sparse rnatrix. Tablc 4.1 gives arr idea of thc accurac,y of the rrrodel. Columus

MRs;m and MRtitoa contain the average values of the miss rate simulated and the

miss rate predicted in the set of experiments; respectiveh. Then, column O,NR

contains the average value of the absolute value D,yR of the difference between

the predicted and the measured miss rates for each experiment. ^^'e use absolute

values, so that negative errors are not compensated with positive errors. Cohtmn

max(^MR) contains the largest value of ^MR observed in the set of experiments.

Tables 4.2; 4.3 and 4.4 show some raudorn representative validation results for

the Sparse ^^Iatrix - V"ector Product; the Sparse Nlatrix - Dense Nlatrix Product

^^^ith IKJ loop ordering and the Sparse 1^-latrix Transposition codes; respectively,

displaying a wide range of possible validation parameters ancl the result obtained.

In the three tables; the first two columns, M and N, show the nurnber of rows

4.2 1^rIodel Estension for LniE'orm Distributions !J

M N a CS LS K MRS;^, MR^.to^1 OMR T„^o^

1000 1000 4.00 8Ii 32 1 30.11 30.00 0.11 0.015

1500 1100 12.12 32K 32 2 18.17 18.34 0.17 0.021

1600 1500 8.33 32K 64 4 8.44 8.60 0.15 0.010

1300 1400 13.74 64K 128 1 5.21 5.31 0.10 0.012

1700 1500 9.SU 64K 64 2 8.67 8.82 0.15 0.032

1100 1000 22.73 128K 128 2 4.21 4.42 0.21 0.021

750 750 7.00 512K 128 8 4.23 5.13 0.90 0.014

5500 5500 0.28 1024K 64 8 8.77 8.86 0.09 0.035

3000 3000 L 19 2048K 128 4 4.26 5.64 1.38 0.033

1000 1200 16.67 128K 128 1 10.82 4.87 5.96 0.025

Table 4.2: Validation data. and times for the Sparse Nlatrix - Vector Product code
for several cache configurations; matrix sizes and sparse matrix densit}r

M N a H Cs LS K MRS;m MR^,^^^ OMR T^„^^

900 900 22.22 500 32K 64 1 89.27 88.27 1.00 0.019

^00 500 3.20 600 64K 64 4 81.97 81.61 0.36 O.Oll

700 700 31.43 500 64K 64 8 29.66 23.30 6.36 0.015

1100 1100 14.55 500 128K 64 8 30.76 29.88 0.88 0.02 r

1000 1000 15.00 750 128K 64 4 31.18 29.59 1.58 0.038

700 700 27.14 500 256K 64 2 21.25 20. r 1 0.54 0.019

1000 1000 24.00 500 512K 64 2 23.18 22.45 0.73 0.023

700 700 2.86 500 1024K 32 2 32.89 32.56 0.33 0.027

1000 1000 1.58 1000 2048K 64 4 38.10 36.13 1.97 0.052

600 600 30.00 500 32K 32 8 76.68 65.20 11.48 0.032

Table 4.3: V"alidation data and times for the Sparse \^IatriY - Dense \^IatriY Product
IK.J code for se^^eral cache confignrations; matrix sizes and sparse matrix densit}^

76 Chapter 4. Nlodel Extension to Handle Codes «^ith Indirections

M N a CS LS K MRS;,,, MRn,to^ ^MR Tmod
600 600 3^.00 16K 32 2 32.49 32.91 0.43 0.029
700 700 34.29 32K 32 1 28.02 26.14 1.89 0.02^

3000 2000 2.50 64K 32 2 27.00 29.86 2.86 0.031
5000 2000 3.00 64K 128 1 26.^3 27.47 0.93 0.027
1000 1000 15.00 128K 128 1 17.77 19.21 1.44 0.03^
800 800 57.5 ► 256K 64 4 5.3^ ^.17 0.18 0.034
500 ^00 46.80 512K 128 8 2.18 3.00 0.82 0.03 7

2900 2900 0.47 1024K 64 1 7.91 10.29 2.38 0.043
500 ^00 1^.75 2048K 64 4 3.08 4.36 1.28 0.042

5000 1000 9.OU 128K 64 4 1L^0 23.22 11.72 0.023

Table 4.4: Validation data and times for the 1\-fatrix Transposition code, f'or several
cache configurations, matrix sizes and sparse matrix density

and columns of the sparse rnatri.x involved in the code, respectively. Then, column

a is the density or percentage of positions in the sparse matrix «^ith nonzeros. In

table 4.3, column H shows the number of columns of the dense matrix involved in

the product. The cache configuration is given in the three tables by C5f the cache

size in bytes, Ls, the line size in bytes; and K; the degree of associativity of the

cache. La,rger cache lines and associa^tivities tend to be associated to larger caches

in general in the tables, as this is the most common situation. Fór each comhination

of the input problem parameters and cache configurations the tables display the miss

rate MRs,m rneasnred bv the simulations, the rniss rate MRhro^ predicted by our

rnodel, and OMR, the absolute value of the difference between thcrn. These three

values are expressed as percentages bet^veen 0 and 100. The la.st entry in every table

conta•is the data for thc experinrent that generated the largest O,^R.

Finally, the last column in the three tables, T,,,o^, reflects the corresponding

modeling times in seconds in a 2,08 GHz ^IVID K7 processor-based system, respec

tivel,y. A-lodeling tirnes, which «^ere alwrLys helo^t- one second, are several orders of

rnagnitude shorter than trrrce-drivr;n sirnulation f^>r the sparse rnat.rix-dens^^, rnatrix

products, and noticeably shorter in the cas^^; of the other code;s.

Validation with real banded matrices

In order to va.lidate our model for unif'orm banded ma,trices we used the Sparse

1\-lat,rix - Vector Product code sho^vn in Figure 4.4, the Sparse ^^latrix - Dense 1\-latrix

77
4.2 Nlodel Extension for Lniform Distiributions

_^ atr^x

Narne Size B a CS LS K MRs^^„ MRprea OMR T^,o^

jpwh991 991 155 0.61 64Ii 64 4 9.37 8.84 0.53 U.U14

jpwh991 991 155 0.61 321i 32 2 18.77 17.72 1.U5 O.U13

jpwh991 991 155 0.61 32K 64 1 10.29 9.84 0.45 0.012

bcsstk05 153 20 10.35 32K G4 1 9.57 9.11 0.46 0.009

bcsstk05 153 20 1U.35 256K 16 4 3^.04 34.13 0.91 O.UU9

bcsstk0^ 153 20 10.35 256K 32 2 17.54 1 r.07 0.48 U.UU9

bcsstrnl0 1086 71 1.87 32K 64 1 9.12 9.29 0.17 0.013

bcsstml0 1086 71 1.87 256K 16 4 34.66 33.91 0.74 0.017

bcsstml0 1086 71 1.87 1024K 64 4 8.67 8.48 0.19 0.015

jpwh991 991 155 0.61 8K 16 1 43.79 40.45 3.33 O.U13

Table 4.5: Validation data and times for the Sparse A-latrix - Vector Product code
for several cache configurations and different Harwell-Boeing matrices with uniform

band distribution

atnx
Narne Size B a H CS LS K MRs„n MRr«d OMR TR,od

jpwh991 991 1^^ 0.61 200 32K 64 1 93.08 93.UG U.02 0.011

jpwh991 991 13^ 0.61 153 16K 32 2 88.61 88.2-r 0.33 0.010

jpwh991 991 155 0.61 1086 32K 32 4 97.30 98.52 1.21 0.017
jpwh991 991 lb5 0.61 350 64K 64 4 91.26 92.10 0.83 0.011

bcsstkUS 1^3 20 10.35 153 32K 32 4 1G.49 16.84 0.35 U.U09

bcsstk05 1^3 20 10.35 153 16K 32 2 45.34 43.30 2.04 0.009

bcsstrnl0 1086 71 1.87 153 16K 64 4 74.22 ^4.32 0.10 0.010

bcsstml0 1086 71 1.87 153 32K 128 1 63.73 62.59 1.13 0.011

bcsstml0 1U86 71 1.87 153 512K 64 4 0.-^0 O.GS U.05 U.014

bcsstml0 1086 71 1.87 200 1024K 64 8 0.68 0.35 0.13 0.058

bcsstk05 153 20 10.35 350 32K 64 1 72.96 61.30 11.67 0.011

Table 4.6: V"alidation data and times for the Sparse ^^latrix - Dense ^latrix Product
IKJ code for several cache configurations and different Harwell-Boeing matrices ^vith

uniform band distribution

78 Chapter 4. Model Extension to Haaidle Codes with Indirections

Product in Figure 4.5, and the Sparse 1\-Iatrix Transposition in Figure ^1.6 and we

applied them to real matrices from the Harwell-Boeing collection [28] rather than to

synthetic matrices. The results of some randomly chosen validation experiments are

sho«^n in Tables 4.5 and 4.6 for the first two codes considered; respectively. In both

tables the first coh^mns contain the name of' the matrix used in every test, follo^^^ed

by the characteristics of the matrix such as, the number of' rows and columns si^e

(we used square rnatrices); the band size B and; in the case of sparse rnatrix

densc matrix product code; the nurnber of' colnnms H of thc dense matrix. c^ is

the percentage of positions in the sparsc rnatrix with rronzeros. The uscd c;ache

coufiguratiou Cs, Ls and K, follo^^^s. again, for each experimcnt we show both the

measured MRti;m and the predicted MR^,^^^ miss rates and the absolute value of the

difference between them; OMR. Nlany dif%rent experiments were performed using

different cache configurations; the results shown in these tables are only a small

representative subset of these tests. The last entry in every table contains again the

data for the experiment that generated the largest O,^R.

For the sparse matrix - vector product code «^c perfornred d10 different tests

changing the used matrix; the cache configuration, and the base address of the data

structures involved in the code, obtaining an average value for the O,^R of 0.66%

and a maxirnurn value of 3.33%, the average value of the relative error OMR was

3.96%. The rnetric OMR stands for the relative error of our prediction: it is the

absolute value of the dif£erence between the miss rate measured bv the sinmlation

and the miss rate predicted by the model (^,^R) divided by the miss rate measured

by the simulation and expressed as a percentage, that is OMR = O,uR^MRs;,i, x 100.

For thc sparsc matrix - densc rnatrix product codc wc perforrned 5100 differcnt

tests, changing the same pararneters as for the sparse matrix - vector product code

as ^vell as the number H of colurnns of the dense matrix involved in the code. VVe

obtainecl an average value for OMR of 2.55% and a maximum value of 11.67%. The

average value of the relative error 0,^ R was 6.60%.

Finall,y; we performed i;he sanre set of 510 tests for sparse rnatrix transposition

as for sparsc rnatrix-vector product. Iu this case the avcrage O,^R was 1.78%; and

its maximum was 7.30%, being the average value of the relative error OMR 11.35%.

Again; these validation results obtained using a wide range of' parameter com

binations; and t^^hich are very sirnil^Lr to the ones ohta,ined for the rnodel with a

cornplet,ely nniforrn distribut,ion displa;y^^;d in Tabl^^^ 4.1, rnake us think that our

rnod^^,l is a good estirnator of the behavior of' a code with irregular access patterns

79 4.2 IVlodel Extension for Lniform llistributions

under the assumed conditions.

Finally; as in the previous tests; the lr^st colunm in Tables 4.5 ^id 4.6; Tmod, rep

resents the tinie consurned b,y our inodel. The rnodel is several orders of niagrlltude

faster than the simulation.

Discussion

Thc; rnodcl workt^;d well for the spars<; rnatrix - vector product of' Figur^^; ^.4. The

results were somewhat worse for the sparse matrix - dense rnatrix product code in

Figure 4.5 for both kinds of rnatrices, although tlre model «-as still very accurate in

general. Predicting the rcuse for the reference B(C (K) , J) that generates irregular

accesses in this code is possibly rnore complex than for thc refcrences subject to

irregular access patterns in the other codes. The reason is that in this case each

value of the indirection controls a whole set of tightly coupled accesses of B(C(K) ,J)

to different lines with a regular stride for J=1, ..., H, «^hile in the other codes each

individual indirection only controls the access to one line. lt is good to see that in

such a complex situation, the predictions of the model are still good. The behavior

of the model for the sparse matriY-dense matrix products in which the inner loop

is K is similar to the one observed for the sparse matrix - vector product as we see

in Table 4.1. Finally, the transposition of a sparse matrix in Figure 4.6 turned out

to be the most difficult code to predict; as it is not a perfectly nested loop like the

previous examples, and it displays several levels of indirection in its fonrth loop.

Still, the predictions of the model were ver,y^ reasonable.

The tendencies of the accuracy of the rnodel with respect to the parameters of

the caches and the density of the sparse matrix are displayed in Figure 4.7; in ^ahich

we have used cache configurations that are similar or equal to real level 1 and level 2

caches of current computers. Cache configurations are expressed as CS;LS,K, where

CS is the cache size in bytes; LS is the line size in b,ytes and K is the associativity.

The rnost in^rportant couchrsion is that in general, highcr densitics lead to more

.^ccurate predictions. That is an espected result, sincc the lo^ver density; the more

irregular the accesscs. Also, notice that this higher irregularity leads to higher miss

rates (as an example, see experiment in Figure 4.8), which dilute thc largcr values

of OMR.

As for the time required to compute its predictions; the rnodel takes more tirne

^=hen the size of the problem (size of the im^olved data stnrctures) is bigger, a5 ex

80 Chapter 4. Nlodel Extension to Handle Codes with Indirections

,

^,^^. ^ c^xco^fi^^n^;^a^^Ty
(a) Sparse matrix-vcctor prodttct, with M=

N = 750

..t,^ ^,^ w tQ'a
Mavix Densidity ^^e Carbe Crn^figmuán

(b) Sparse rnatrix-dense utatrix product (IKJ), (c) Sparse rnatrix transpositiou, with M= N=

with M= N= H = 750 750

Figure 4.7: O,yIR as a f'unction of' the spa,rse matrix density and the cache configu
ration in différent codes. Cache configura.tions are expressed as CS,LS,K; where CS
is the cache size in bytes, LS is the line size in bytes and K is the associativity

81 4.2 l^•Iodel Extension for Cniform Distributions

-$ÍRA1^911On

• PME model estimalion

aUpper bound PME model

$LOwer bound PME model

Metnc^ Densiry

Figure 4.8: It-Iiss rate measured and predicted following different strategies as a
function of the ^natrix density for the sparse matrix-cíense matrix product (IKJ);

where M= N= H= 500 in a cache of 64Kbytes with a line size of 64 bytes ancí

associativity degree 4.

pected; and whcn the cache associativity is higher. The reason for the latter behavior

is that the complexity algorithm for calculating the area vector for sorne patterns

depends directly on this argument. Still, modeling times are ahvays below one sec

ond. In general; we can say that our model provides quite accurate estimations with

a very low cornputing cost.

Tlre sparse matrix-dense matrix product with IJK loop ordcring is used in Fig

ure 4.8 to cornpare the rniss rate obtaincd l^y a trace-drivcn simulation, t.he miss

rate predicted by the PA^IE rnodel, an upper bound of the prediction obtained by

a simplified version of our model that considers all the irregular accesses as misses;

and a lorner bound obtained by ignoring the irregular accesses that appear in the

code. The sizes of the data structures involved in the code ancl the cache configura

tion were kept constant while the density of the sparse matrix took values between

1% and 100%. The figure reflects that the PI\^IE model estimates the miss rate ac

curately, while simplified versions provide very poor estimations. This justifies the

interest of our model.

A mom detailed stud,y of ho^r changes in any of the cache configuration paranr

eters can affect the cache perforrnance can be perfor ► ned for any code. For this

purpose ^ve considered the AA+IUlA^IS code which performs the product bet^+^een

an spa.rse matrix and a vector; the base cache configuration has a total size of ^12

KBytes a line size of 32 bytes and an degree of associativity of 4. ^•Ve tracked the evo

lution of the miss rate rneasured and the miss rate predicted by the rnoclel changing

separetely each one of these parameters. The results of these experiments; reflected

in Figure 4.9; were obtained using an square sparse matrix of 500x^00 and 50000

82 Chapter 4. i^^iodel Extension to Handle Codes with Indirections

Measured

1 Predicted

2 4
Associativity

^^ ^

32 64 128 256

Ls (Bytes)

î
32 64 128 256

Size (KBVtes)

Figure 4.9: lbliss rate measnred and miss rate predicted for i;he ANIUINIS code. In
the first graphic the assor,itivity degree is changed; thc second graphic modifies line
size; the third graphic consid^^;rs diff<^^rent caches sizes.

non-zero values uniforntl,y distributed along the rr ► atrix. Iu the first experiment the

degree of associativity takes values 1; 2, 4 aud 8 respectively. The direct, mapped

cache has a bigger miss rate than thosc caches t^^ith larger degrees of associativity.

This improvement decreases as the associativity grows. Even, in some cases for large

associativities like 8; there is a slight performance reduction. The second experi

rnent considers line sizes of 32, 64, 128 and 256 bytes respectively. ^ bigger line size

produces a significant miss rate decrease. But ^a^hen the line si^e is big enough this

improvement is attenuated because although bigger lines reduce the number of cold

misses; very big lines can increase the interference between different data structures

stored in the cache. The third experiment changes the total cache size which takes

va.lues of 8, 16, 32; 64; 128, 256 and 512 KBytes respectivel•y. Alwa,ys, the bigger

the cache size, the smaller the miss rate because there is more room for storing the

data stnictures managed by the program, but this effi^ct is diminished in ver,y big

caches. The reason is that there is less and less room for improvernent as the cache

size approaches the problern size. In all these experirnents the model predictions

^;^ere very accurate.

«'e also; compa.red the cache behavior when the different anah^zed codes to per

form an sparse matrix-vector product were ran. ^^'e consider an sparse matrix of

1000x1000 with 100000 non-zero values uniformly spread along the matrix. The com

83 4.2 Nlodel Extension for L;niform Distributions

5
. Accesses

^ Misses measured

^4
E
^
c
^ 3
3
Ó

Misses predicted

^2
Q

1

0

SPMXV AMUXMS ATMUX AMUXD AMUXE AMUXJ

Code

Figure 4.10: Number of accesses, nurnber of rnisses rneasured and predictecl for an
sparse matrix-vector product usiiig different cotnpressed storage forim^,ts. The cache
configuration considers a cache size of 32 KB,yte^, a linc; size of 64 bytes and an
^^ssociativit,y degree of 4. .

pared codes are the SPMYV; AI^^IUX\^IS, ATMUX; A1^^ILXD;A\^fUXE and AA-IUXJ

(AT\^IUXR. is omitted because its characteristics are very similar to ATh^ILX as it

was seen in Table 4.1). These codes perform an sparse matrix-vector product when

the matrix is stored using different compressed storage inethods. The graph in Fig

ure 4.10 represents the number of accesses, the number of inisses measured ancl the

number of misses predicted by the model for each code. The prediction of the model

are ahvavs verv accurate. It can be seen how some codes like the Al^-1LXD and

AA4L;XE perform much worse than the other ones because they are designed for

banded matrices with very few diagonals, so their performance (in terms of cache

misses) when applied to an uniform matrix is really poor. The other codes obtain a

very similar performance.

Finaly; ^ve have also inquired into ^vhat happens «-hen the model is applied to

matrices with a non-uniform distribution of the entries. In order to quantify this

behavior, «•e run experiments on 320 randomly chosen matrices from the Harwell-

Boeing [28] and \iEP [18^ collections; using 10 different cache configurations for

each one «rith sizes ranging from 16 KBytes to 2^^IBytes; thus yielding a total

of 3200 experiments per analyzed kernel_ Figure 4.11 summarizes the results of

these experiments classifying our experiments in four buckets according to the ^MR

84 Chapter 4. IV1ode1 Extension to Handle Codes ^vith Indirections

q^

% ^

. ,

^.

_-.....^

..

^dMRQ.S%

Q25%<MARó%

^59L<dMR<10%

r]dMR>10%

X

Y.

x

x

x

0
SPMXV SPM%DMIKJ SPM)mMJIK SPM%DMIJK TRANSPOSE

Figure 4.ll: Percentage of the number of experiments in which the OMR is below
2.5%, between 2.^% and 5%; between 5% and 10%, or larger than 10% when real
matrices with a non-uniform distribution of the entries are used.

achieved: below 2.5%, bet^^een 2.5% and 5%, between 5% and 10%; and larger than

10%0. «%e see that SP1^-I^V; SPI\^I^DII-I with JIK loop ordering and TRAI\SPOSE

yield reasonable estimations in the vast majority of' the cases, ^^rhile SPIVIXDIVI with

the IKJ and LJK orderings is less reliable. ^Vhen irregnlar accesses are not tmiformly

distributed, the,y- tend to be grotrped in clusters, ^^^hich increases the locality. So in

these cases, our rnodel can still help understand the behavior of th<^; cache, although

tlre miss rate it predic;i;s nnrst 1>e considered an upper bound rather than an accurate

estirnation.

4.3. Model Extension for Non-Uniform Banded Ma

trices

^Iost real data involved in irregular computations due to the existence of in

directions does not follow ^Ln uniforrn distribution. The banded distribution is a^n

example of non-uniform distribution present in rnany rnatrices. This distribution

is very cornmon in sparse computations, the main source of th^^: codes used in the

validation of our model. As we saw in thc validation in Section 4.2.4 the model

PNIE extension for codes involving uniform banded rnatrices is not suitable for the

rnodeling of rnatrices ^+-ith a non-uniform distribution of the values inside the band.

The modeling of this kind of' non-uniform distributions is very complex. The

equations for references with regular access patterns are relatively simple because

all the accesses that can result in a cold miss have an unique interference probability,

4.3 Model Extension for l^^on-Uniforrn Banded 1\^Iatrices óJ

Matrix 1Ox10; W=5
. .. .

• . d4 .
• d2 . d4 .

S dl . . d4 .

T
O
R
E

dl d2 . . ^ •

. . . d4 .

dl d2 . d4 •
dl . . d4 •

. d2 . . .
dl . .

Figure 4.12: Banded sparse matrix

and a different unique interference probability is applied for the accesses that can

result in an interference miss, as all the reuses have the same constant reuse clistance.

In an irregular pattern; every access has a set of diffi^rent possible reuse distances

with art associated interference probability that is weight,ed «rith the probahility t,hat

each considered reuse attc;rnpt happens. If th^; distribution of the acc^^sses is unifornl,

the same set of interference regions can be used for all the accessed lines and r,hey

all have the sarne probability of reuse associated to each reusc distalrce. ^-1^hen this

is uot thc case, that is, when different lines have differeut probabilities of being

acccssed; a different set of interference regions must be calculatcd for each accessed

line and different lines will have different probabilities of reuse for the same reuse

distance.

We will illustrate these ideas with the code in Fig^Ire 9.4; which performs the

product between a sparse matrix stored in CRS forrnat ^19^ and a vector; and «^hich

is part of SPAR.SKIT ^43^. Let us rernernber that thc CR,S forrnat, st,ores sparse

IrlatrlCes bV r0^^'S ln a CO1npI'eSSed Way 11s1I1g tllree VCCtOPS. ^Ile VCCtOr stOl'GS tlle

nonzeros of the sparse Inatrix ordered b,y rows, anothcr vector stores the cohrmn

indcxes of the corresponding non^eros; and finalh- another vector stores the position

in the other two vectors in which the data of the nonzeros of each row begins.

In our codes we always call these vector A, C and R respectively. The innermost

loop of the code in Figure 4.4 performs the product bet^+^een vector X and ro^r• I of

the sparse matrix. In this code reference X(C(J)) performs an irregular access on

vector X only in the positions in which the matrix row contains nonzeros. Let us

suppose that the sparse matrix that is being multiplied is a banded matrix like the

one sho^vn in Figure 4.12; in ^vhich the W= 5 diagonals that constitute its band

86 Chapter 4. 1^-lodel Extension to Handle Codes with Indirections

have been labeled and black and white elements represent non-zero and zero values

elements, respectively. During the processing of each row of the sparse matrix,

a maximum of W different elements of X will be accessed. Each one of these W

elements has a different probability of being accessed that depends on the density

of the corresponding dia,gonal in the banded matrix. The set of elements eligible for

access is displaced one posit,ion in the processing of'each new ro^v. Also, each element

of X will be accessed a rnaxirnurn of W tirnes dnriug the execution of' the code; as a

maxirnunr of W rows rnay havc; nonzeros in thc: corresponding colurrrn. Interestingl,y,

the probability of access is not uniform along those W rows. For e^ample; every

first potential access during the processing of t.his matrix in this <;ode will take place

for sure; while every secorrd potential access to arr elcment of X will happen with a

probability of 30%. This is because all the positions in the fifth diagonal (d5) keep

nonzeros; while in the fourth diagonal (d4) of the band 3 out of its 9 positions keep

nonzeros; which is a density of nonzeros of 30%

The number of elernents of the vector accessed in the processing of a row can 1>e

averaged using the densities of the diagonals of the band matrix. Every Ls elernents

of the vector are stored in a differeut linc, the probability of accessing that line

can be calculated as a function of the corresponding densities in the diagonals of

the sparse matrix. In every iteration of the outermost loop, a different row of the

sparse matrix is selected. It is possible to reuse lines of the vector between different

iterations of the ontermost loop. Lr the processing of a given row of the sparsé matrix

some values of the vector mapped inside the band are accessed, in the processing of

the next row the situation is repeated but the area covered by the band is shifted

one position to the right; this has to be taken in account for the calculation of the

possible reuse between the processing of différent rows.

The situation depicted in our example is clearly more common than the extension

performed in Section 4.2.3; in which we only considered irregular access patterns

which had an uniform probability of access for each element of the dereferenced

data structure, and in which such probability did not change during the execution

of the code. It is very usual that the diagonals of banded matrices have different

densities; with the distribution of the nonzeros within each diagonal being relatively

uniform. :^s a result, we have extended our model to cope with this important

class of matrices, which enables to model automatically and accurately the cache

behavior of codes with irregular access patterns in the presence of' a la.rge number of

rettl sparse matrices; as the evaluation proves. ^^'e will characterize the distribution

of nonzeros in these m^Ltrices b,y a vector d of W probabilities ^vhere di contaius the

87 4.3 1\^Iodel Extension for 1\on-Uniforrn Banded A^Iatrices

density of the i- th diagonal; that is, the probability a position belonging to the

i- th diagonal of the band contains a nonzero. This extension can be automated

using a compiler framework that satisfies its information requirements. The vector d

of diagonal densities is the onh, additional information we need in this work. These

values are obtained from an analysis of the input data that can be provided by the

nser; or obt,ained b,y means of' runtime profiling.

Section 4.3.1 contains the new equations added to cover this situation, while

Section 4.3.2 contains a description of the validation of this estension.

4.3.1. PME equations for Banded Matrices

The PA^IEs are a function of input memory regions calculated in outer or preced

ing loops that are associated to the reuses of the sets of lines (SOLs) accessed by R

in loop i whose immediately preceding access took place before the loop began its

execution. The uniforrnity of' the accesse5 in all our previons extensions f^^r covering

irregula,r cornputat,ion allowc;d to use a single region Reg for this purpose, that is, all

the SOLs had the sarne reuse distancc whenever a loop began. This lrappened be

cause all the considered lines had urriforrn probabilities of access; and thus thcy also

en,jo,yed equal average reuse distances and rniss probabilities. The lack of uniforrnity

of the accesses rnakes it uecessary to considcr a separate rcgion of irrterfereuce for

each SOL. Thus we extend the PNIEs to receive as input a vector R^eg of inemory

regions. The element Reg^ of this vector is the mernory region accessed during the

reuse distance for what in this]evel of the nest happen to be first access to the

l-th SOL that R can access. Another way to express it is that Reg^ is the set of

memory regions that could generate interferences with an attempt to reuse the l-th

SOL right when the loop begins its execution. This way; R^eg has as many elements

a5 SOLs defines R dttring the execution of the considered loop.

The shape of PNIE FRt depends on the access pattern followed by R in loop i.

This section contains a description of the formulas ^n^e have developed for references

with irregular access patterns generated by indirections due to the compressed stor

age of banded matrices in which the distribution of non-zeros ^vithin the bartd is not

uniform. A different formula will be applied depending on whether the values read

from the index array are known to be monotonic or not. They are monotonic when,

given two iterations of the current loop i and j and being f(i) and f(j) the values

generated by the index array in these iterations, for all i< j then f(i) < f(j) or

for all i< j then f(i) > f(j). «'hen the index values are known to be monotonic

88 Chapter 4. 1^-1ode1 Extension to Handle Codes ^vith Indirections

a more accurate estima.tion can be obtained because we known that if our reference

R reuses a SOL of the base array in a given iteration; this SOL is necessarily the

one accessed in the previous iteration of the loop.

PME for irregular monotonic access with non-uniform band distribution

If we assume that the nonzeros within each row have been stored ordered b^^

their column index in our sparse matrix in CRS format, reference X(C(J)) generates a

monotonic irregular access on the base array X during the execution of the innermost

loop in Figure 4.9. Let us remember that the index array C stores the column indexes

of the nonzeros of the row of the sparse matrix that is being multiplied by X in this

loop.

The general equation that estimates the number of misses generated by a ref

erence R in nesting level i that exhibits an irregular monotonic access ^vith a non

uniform band distribution is

LRi-1

FR2(Reg) _ ^ pz(rcRi)FR(i+r)(Regi) +

a=o

W LR;-1

^ dr - ^ p^(ccRi) FR(^+i)(IntRegn^(1))
l=r l=0

The interference region from the outer level is different for each set of lines (SOL)

accessed and it is represented as a vector R^eg of LRZ different components, where

LR1 is the total number of difl'erent SOLs of the base array A that R can access in this

nesting level. LR; is calculated as ^W/GRa^ being W the band size a,nd GRZ is the

average. number of positions in the band that give place to accesses of R to a same,

SOL of the base array A. This value is calculated as ^LS/SRz^ ; being SRz = aR^ • dA^
^vhere j is the dirnension ^vhose index depends on the loop variahle Ii through thc

indirection; Ls is thc cache line size; aR^ is thc scalar that nrultiplies the index array

in the aHine firnction, and dA^ is the curnulative size^ of the j-th dirnensiou of the

array A refereuced b,y R.

Err,nrra^le 16. If we consider reference X(C(J)) in Fignre 9.9, while processing the

rnatrix in Figure 9.12, with a cache lint; size LS = 2; in the irmerrnost level d^i = 1

'-'Let A be an N-ditnensional arra,y of size DAr x Dp2 x ... D,^N, we define the cumulative size

for its j-th dimension as d,^^ _^;=i D,^ti

89 4.3 b-lodel Extension for 1\on-Uniforin Banded A^Iatrices

and aRl = 1. Each GR= = 2 consecutive positions in the band give place to accesses

to the same SOL of X. Consequently, since W= 5, the number of different SOLs of

X accessed would be LRi = ^5/2^ = 3. n

The vector of probabilities pi has W positions. Position s of this vector keeps the

probability that at least one of the diagonals s to s+ GRa - 1 has a nonzero; that is,

it is the probability they generate at least one access to the SOL of the base a.rray

that would be accessed if there were nonzeros in these diagonals. Each component

of this vector is computed as :

min(W,s+GR;-1)

^ (1 - d^) (^1.8)
d=s

Let us remember that d is a vector of W probabilities; d9 being the density of the

s- th diagonal in the band as it is reflected in Figure 412.

In Equation 4.7 each SOL l of the base array that R can access in nesting level

i has a probabilit,y pi(iGR;) of being accessed, where IGRz is thc first baixl that can

generat,c accesses to the l- th SOL. Thc miss probability iti the first access to each

SOL l depends on the interfereuce region from the outer lcvcl associatcd to that

SOL Regi. The remaining accesses are non-first accesses during the execution of

the loop, and because the access is monotonic, their reuse clistance is necessarily on

iteration of the loop. As a result, the interference region ^vill be IntRegR1(1); the

interference region of reference R in 1 iteration of nesting level i. The number of

potential reuses of SOLs by R in the loop is calculated as ^W 1 di -^ió-1 p1(^cR,),
where the first term estimates the number of different accesses generated by R during

the processing of a row or a column of a band while the seconcí term is the average

number of different SOLs that R accesses during this processing.

Example 17. Examples 13 and 14 contained the derivation of the PIV1E eyuations

that describe the cache behavior of the reference X(C(J)) in the code of Figure 4.^1 in

loops I and J respectively; assuming that the values generated by the index array C

follow an uniform distribution. This code performs the product between a matrix;

stored in CR.S format; and a vector X. In example 13 it was established that the

values generated by the index array during each complete e^ecution of the innerniost

loop are monotonically increasing. If we consider that the CR.S matri^ used as input

data is a banded matri.r; then the Equation(4.-^) must be applied. :^s loop J 1S thP,

90 Chapter 4. Nlodel Extension to Handle Codes ^^^ith Indirections

innermost level for this reference, the resulting equation is;

LFti-1

FRl(Re9) _ ^ pl(dGni)AVO(Re9d) ^

d=0

W Lni-1

^dd - ^ pi(dca^) A[/o(IntRegRl(1))
d-i d=o

«^here LRl is calculated as ^W/GRl^, being GRl = ^Ly/SRl^. The stride is SRl =
dxl = 1 as the array X is indexed ttsing the affine function 1xC(I)+0. The probabil

ities ptd are calculated using the Equation(4.8) n

PME for irregular non-monotonic access with non-uniform band distri

bution

A data structure stored in a compressed format, such as CR.S ^19^, is t^-picallv

accessed using an offset and length constructiou [39^. ln this situation; very common

in sparse matrix computations, the knowledge that the values accessed across the

indirection follow a banded distribution can be used to increase the accuracv of the

prediction using a specific equation. For example, in the code of Figure 4.4 the

reference X(C(J)) accesses the structure C using an offset and length construction.

The values generated by the index array C in the innermost loop are monotonic but

the values read across dif^erent iterations of the outermost loop are non-monotonic

because a diíferent row is processecl in each iteration of this loop. L^'hen this situation

is detected and t^^e are in the presence of a bandecl matrix, the behavior of the

referenc,e in the outer loop can be estimated as

FR1(Regln) = NiFR(i+t)(Reg(Regln)) (4.10)

In this equation the N;, iterations in the current nesting level are considered to repeat

the satne behavior. Although the W- 1 first and last iterations have a different

behavior thau the others as for exainple their baud is uot W positious ^vicle, w-e have

checked experitnentall,y that the lost of accurac,y incurrcd when not considering this

is not significant. This is expected, as usually thc band siie W is much smallcr than

N1; ^vhich is the number of ro^vs or coluinns of the sparse matrix.

An average interference region for each one of the LR^ SOLs accessed in the inner

level rrmst be calcnlated. This average interference region takes account of all the

91 4.3 Nlodel Extension for 1\on-Uniform Bandecl 1\^Iatrices

possible reuses that can take place with respect to a previous iteration of the current

loop depending on the different possible combinations of accesses to the studied base

array. The interference region associated with each possible reuse distance must be

added to the average region ^veighted ^vith the probability an attempt of reuse ^vith

this reuse distance happens. The expression that estimates the interference region

associated to the l- th SOL that R can access in this loop is,

w
Reg^(Regln) _ ^ (1 - p1z)(Regln U IntRegRi(W - IGRi - 1)+

z=lGa;+t
(4.11)

w 9-i

IntRegRi(s - lGxi)^ pis ^ (1 - piZ)
B=^GRi+1 Z=^GRi+1

In the previous section we saw that IGRi is the first diagonal that could gencrate an

access to the l-th SOL in a given iteration and pi(^GR,) the probability of accessing

that SOL during the processing of a row or column of the matrix. As the bancl is

shifted one position to the right every ro^+^, in general, the probability that the same

SOL of the base array is accessed by R m iterations before the current iteration is

T^i(IGR;+m)• ^^s a result, rjw1GR^+1(1 - p1z) calculates the probability that the l- th

SOL has not been accessed in any previous iteration of this loop. In this case the

interference region is equal to the ttnion of the input region from the outer level a.nd

the region associated to the accesses that take place in the W- IGRi - 1 previons

it,erations. The addition of a, region to the average region weighted by its corre

sponding probabilit,y is perforrned adding the region weighted b}^ thc corresponding

probability to the average region. Regarding thc reuses within loop i, thc probability

that the last access to a SOL took placc cxactly m iterations ago is calculated nuilti

plying the probability of bcing accessed in that iteratiou pi(tGR;+„^) by thc product of

the probabilities of not being accesscd in any of the iterations bet^vecn that iteration

and the current iteration rj^GR'+m-t(1 -) The interference re ion associatecl toZ-tcR:+i piz • g
this attempt of reuse will be the region covered by the accesses that take place in

those m iterations of the current loop. In this equation LR; = LR^; GRi = GR^
and the vector pi =^^; being j the innermost nesting level of the offset and length

construction.

Exaraple 18. In exarnple 14 the access done in the cocle in Fig^^re 4.4 by the ref

erence X(C(J)) in the outermost loop was dctermined to be non-monotonical. ^Vhen

92 Chapter 4. Nlodel Extension to Handle Codes with Indirections

«« ..
 .- t.^ .

»

: ^.^.

i i^I;^ .
!!

,^M

(^,) AF23560 J'i=N=23560 (b) lnsp3937 IbI=N=3937 (c;) CURTIS5^ nI=N=54

Iln'L=^IÓ^► J6 L^•"=60^ nll'L= ► 54U! «'=I6ó nn'L=`29I `^^=43

Figure 4.13: Esamples of matrices in the Harwell-Boeing set, NI and N stands for
the matrix dimension, nnz is the number of nonzeros and ^^' is the band size.

the CRS matrix is banded the Fomula 4.3.1 nnist be applied, as a resnlt,

FRO(Regln) = MFRt(Reg(Regln)) (4.12)

As the innermost nesting level of the offset and length is level l, LRO = Lai,Gtto =
GRt and po = pt, so they talce the same values calciilated in Exarnple 17. The LRo
values of the vc^;ctor Reg(Regln) arc; calculated using Equation ^l.ll.

4.3.2. Validation for Codes with Non-Uniform Banded Ma

trices

The validation ^vas done applying bv hand the PI\^IE model to: the sparse-matrix

vector product,; in Figure 4.4; the sparse-matrix dense-matrix product with IK.1

(see Fignre 4.5), IJK and .IIK order; and the sparse-matrix tra,nsposition, shown in

Figure 4.6.

The model was validated again comparing its predictions with the results of

trace-driven simula.tions. For every code, 10 different cache configurations ^vere

tried with caches of sizes from 16 KBytes to 2 1\-IBytes, line sizes from 16 to G4 bytes

and associativity degrees 1, 2; 4 and 8. The input data set ^vere the 177 matrices

from the Harwell-Boeing ^28^ and the \EP ^18^ sets that we found to be banded or

mostly banded (a few nonzeros could be outside the band). These matrices represent

^2 /o of t,he t,otal number of matrices contained in these collections.

93
4.3 NIodel Extension for Non-Uniform Banded It^Iatrices

Code MRs;m ►̂̂m
Unifonn Bancls \^Iodel

MR^toa
OMR

_ \"on-Uniform Bands \^Iodel

MRMo^r OMR

SPA^ílV 14.00% 0.08% 15.57% 1.80% 14.45% 0.70%
SPl^^IlDNIIKJ 27.66% 2.02% 45.62% 26.81% 28.85% 4.19%

SPl^^I1DIVILIK 8.62% 0.29% 27.48% 17.23% 10.91% 3.10%

SPNIXD1bIJIK 7.87% 0.43% 10.63%0 3.23% 8.36%0 0.78%0

TRA\SPOSE 10.31% 0.33% 11.38% 3.55% 9.52% 3.23%

Table 4.7: werage measured (MRs;m) rniss rate; average t,ypical deviation (Q^;,,,) of

the measured rniss rate, averagc predicted (MRn^iod) miss rate and the avcrage vrllue
OMR of the absolute diffcreuce bet^vicen the predicted an •í the rnea5ured miss rate
in e;aclr experirnent.

The matrices used are a heterogeneous set of' input data. Some matrices have

all their entries uniformly spread along a hand; like the AF23560 matrix in Fig

ure 4.13(a). The LNSP3937 matrix shown in Figure 4.13(b), has o-tll its values spread

along a band of the rnatrix but not unif'orrnl,y. Finrill,y; therc; are sorne nt^itrices likc^

CURTIS54, sho^vn in Figurc; 4.13(c;), ^t^here not all t,he values are sprc;ad along a

barrd but a siguificarrt percentage of them are lirnited to this area.

Table 4.7 summarizes data giving an idea of the accuracy of the model. The

results were obta.ined for the benchmarks performing 1770 tests considering 10 dif

ferent cache configurations of each one of the 177 matrices of the Harwell-Boeing

and the ^IEP sets. For each matrix and cache coníiguration 10 different simulations

^vere performed changing the base address of the data structures involved in each

code. In the case of the three orderings of the sparse-rnatrix dense-rnatrix product

the numbcr of colurnns of' the dense rnatrix is always a half of' its nurnber of' rows.

Thr, cache configizrations have cache sizes (CS) from 16 KBytes to 2 MBytes, line

sizes (LS) from 16 to 64 bytes and associativity degrees (K) 1; 2, 4 and 8. Column

MRs;m contains the average value of the rniss rate sirnulated in the set of experi

ments. Column Q^;m is the average typical deviation of the miss rate obtained in

the 10 sirnulations performed changing the base address of the data structtrres. The

table compares the precision of the predictions achieved using the simple model for

banded matrices assuming an uniform distribtttion of nonzeros introduced in Sec

tion 4.2 and the improved model presented in this paper. The table shows for each

model; MRrso^ the average value of the miss rated predicted; and OMR the average

value of the absolute value OMR of the difference bet^r•een the predicted and the

measured miss rates for each experiment. ^^'e use absolutc values; so that negative

94 Chapter 4. I^-1ode1 Extension to Handle Codes ^vith Indirections

errors are not compensated with positive errors. These results show that the im

proved model is much mode accurate in the presence of real heterogeneous input

banded matrices than the original model. The small values of Q^;R, point out that

the base addresses of the data structures play a minor role in the cache behavior.

Figure 4.14 contains a comparison of the miss rate obtained in the simulation,

the miss rate obtained bv the uniform bands model and the miss rate obtained

by the non-uniform bands model during the execution of the sparse matrix-dense

matrix procluct with IJK ordering using some matrices from the Harwell-Boeing

and the NEP collections. The number of columns of the dense matrix used in the

multiplication was al^c^ays one half of the number of rows of the sparse matrix.

Figure 4.14(a) shows the results obtained using a t}rpical level 1 cache configuration,

while a typical level 2 cache configuration is used in Figure 4.14(b). The cache

configuration parameters are: Cs the total cache size; Ls the line size and K the

degree of associativityr. Tl ► e non-uniforrn bands rnodel almost alwa,yrs estirnates rnore

accurately the miss rate. The difference is bigger iu the level 2 cache configuration.

The reason for the poor estirnations obtained using the uniform bands rnodel is that

in matrices with widc bands but in which most of the values are concentrated in

a few diagonals, therc is a lot of reuse that is not captured by the uniform bands

model, as it assumes that the entries are uniformly spread along all the diagonals in

the band. The predictions for matrices such as sherman^, gre343 and ash292 are less

accurate because they do not fit exactly in the form described in 4.12, as in some of

their diagonals the density of the nonzeros is not uniform, that is, some diagonals

exhibit different densities along their length. The predictions for the level 1 cache

configurations using the uniforms band model are sometimes relatively accurate.

The reason is that although this model often mispredicts the reuse dista,nce for the

accesses with an irregular access pattern, the associated miss probability is so high

in this c,ache fc>r some matrices even for short, reuse distances that this error does

not, aff'ect the accuracy of' the prediction as mu<;h as in the case of' a higger cache

like the typical level 2 cache config^iration.

4.3 Niodel Exteusion for \on-Uniform Banded A^Iatrices

Cs : 16 kB, Ls : 32, k: 2
Slmulatlon

Unlform Band model

^ Non-uNforrn band model

1

a^ ^r

6

9re_3á3^eóDEZ ca css^sh192
`^i -SJ ñ^J

(3312,20793,2213) (1000,3750,201)(343,1435,68)(961,4681,63) (161,1377,131)(420,7252,93) (292.2208,47) (960,15844,87)

Matrlx name

ox shermans^ ^a ^

(size, non-zeros,band size)

(a) Simulation and modeling for a typical lcvcl 1 cachc configuration

wx

Cs:2MB,1s:64,k:32 Simulatlon

bbY ^ -J UniTorm Band model

C^ Non-unlfonn Dand model

b0Y

PSx

T

isx

iox

bx

-^,^Lns ^I ^I I (^nf-1 L"l^ ^r-, n^ ^n ^..., n , ^ ^_ ^bxl ^5 ertna sa r3 gre}43 CODE2 can bcsstrn07 ash292 nos3
(3312,20793,2213)(1000,3750,201)(343,1435 201)(961,46a1,63)(161,1377,131)(420,7252,93)(292,2208,47)(960,15844,87)

Matrix name
(size,non-zeros,band size)

(b) Simulation and modeling for a typical le^^el 2 cache configuration

Figure 4.14: Comparison of the rniss rates obtained by the simulation; thc uniform
bands model and the non-uniform ban<Is rnodel during the execution of the sparse
matrix-dense matrix product ^cith LJK ordering for several real matrices.

Chapter 5

Automated Implementation in a

Compiler Framework

The original PME model was only automatable for cocíes with regular access

patterns. In the previous chapters; automatable extensions of the Pl•IE model were

proposed to cover irregular codes due to both data-dependent conditional statements

(described in Chapter 3) and indirections (described in Chapter 9).

A fully automatic tool was built using the ideas of the original PI\^IE model ca

pable of predicting the cache behavior in regular codes [31]. This chapter describes

the full autoination of the PA^IE tnodel extension for irregular codes due to indirec

tions and a unifortn distribution of the values. The information retrieval is harder

to perform in irregular codes than in regular codes. For this purpose, we use the

\AIiK compiler [15], an extensible framework for automatic kernel recognition that

can be used as a powerful and efficient information-gathering tool [16, 17]. In order

to characterize the access patterns followed by the references in the codes, a subset

of the well-known chains-of-recurrences formalism was implemented in the compiler.

Section 5.1 presents a motivating example that will be used throughout this

chapter. Section d.2 introduces chains of recurrences for the characterization of

the access patterns. Section 5.3 describes the algorithm to build the PA-IE model

automaticall^r from the point of view of the information to be retrieved by the l_^I^.K

compiler. Section 5.4 provides and overview of the internals of the \ARK compiler

and presents an extension of \AR.K that retrieves the information reyuired by the

model. Finally; Section 5.5 shows an example of how the automated PR-IE model

can be used to guide an optimizatio q process succesfully.

9r

98 Chapter ^. Automated Implementation in a Compiler Framework

5.1. Motivating Example

The development of the PA-IE model extensions for irregular codes has been

driven by a set, of «ell-kno^vn codes that contain regular and irregular access pat

terns. %^ n^rarnral analvsis of such codes revealed that the automation of the mode]

frorn scratch is a difficiilt ttr,5k, speciall,y in th^^^ scope of irregular applications; as

advanced syrnbolic analysis is nc;eded to retrieve thc: necessar,y inforrnation.

For illustrative purposes; consider the code of Figure 4.5 for the computation of

the product of a Il-IxN sparse matrix in CItS format [l9] and a 1\xH dense matrix.

The outermost loop dor presents array references with regular access patterns. The

expressions used for their indexing can be rewritten as affine f'unctions of the en

closing loop indices. For instance; the subticript of R(I + 1) takes inereasing values

in thc: interval ^2,M -}- 1^. Current cornrnercial and rescarch cornpilers can gather this

inforrnation. However; irregular acc^^^ss patterns due to indirectiorrs requir^^; advanced

s,yrnbolic analysis techrriques. For exarnple; reference B(REG1, J) follows an irregular

access pattern becausc the values of REG1 are determined by C(K), «^hose values are

not known at cornpile-tiine. ^^ote that K introduces a higher level of irrdirection be

cause it takes values in the interval [R(I),R(I + 1) - 1] in each doI iteration. Further

analysis of the headers of doi and doK reveals that the code traverses the whole array

of row indices of the sparse CRS tnatrix. The recognition of this progrannning con

struct, usually referred in the literature as offset and length ^39]; leads to conclude

that K takes a strictly monotonically increasing set of values during the execution

of doI and, thus, different elements of' array C are referenced at rtm-time. The accu- 0

racy of the model would increase if the compiler c.ould retrieve this information. The

XARK cornpiler represents access patterna b,y rneans of the chains-of=recurrences for

rnalisrn, which will be introduced in Section 5.2. F^om these chain5 of recurrences

th^^; PVIE model will build the equations that characte;rize the cache behavior for

such access patterns. The corresponding algorithrn will be described at high level

in Section 5.3. The details about the recoguition of prograrnming constructs such

as offset and length will be preseuted in Section 5.4.

5.2. Chains of Recurrences

Chains of ^•er,^ir^•ercces (CR^ is a formalism to represent closed-forrn functions ^^9^

that is used in different computer algebra s,ystems, optinrizing cornpilers and stand

99 5.2 Chains of Recurrences

alone libraries. Chains of recurrences have been successfirlly used to expedite func

tion evaluation at a number of points in a regular interval. Given a consta.nt ^o; a

function g defined over the natural nrmlbers and zero; N^Z U{0}; and the operator

-{-, a Basic Recurrence (BR) f, represented by the tuple f={^o, +, g}, is defined

as a firnction over N„^ U{0} by

á-r

{^o, +, 9}(2) = Qio +^ 9(j) ^vith i E N„^ U{0} (5.1)

j=0

Exarrcple 19. For exarnple, the loop index of doI in Figure 4.5 takes integer values

in the rc;gular interval ^1,M^. The BR, f ={1,+, 1} provides a closed-forrn fimction

to cornpute the valuc of I at each dor iteration and thus l;o deternllne the affine

rnernory access pattern I of arra,y reference R(I) n

The algebraic properties of BR's provide rules for combining several BR's into a

single BR by means of arithmetic operations Let f= {^o, O, g} and g= {µo, ®, gr }

be BR's and c be a constant. Then,

{^o, ^-, 9} f c = {^o f c, +, g} (5.2)

{^o, +, g} * c = {^o * c, +, c * g} (5.3)

{^0^+^9}+{µo^+^9r} _ {^o+µo^-^^9+9r} (5.4)

(5.5){^o^ +^ 9} * {µ-o^ -I-^ 9r} _ {^oµo, *^ ►9r -k- 99 + 99r}

Example 20. Consider the access pattern of' array reference R(I ^- 1). The BR of

the subscript expression I-}- 1 is computed by apph-ing equality (5.2) to the constant

1 and the BR {1, +,1} that represents the loop index I. Thns, the subscript I+ 1

is represented by the BR, {2,+, 1} n

Multidimensional Chains of Recurrences (MCR) [36] provide a formalism to de

scribe memory access patterns of multidimensional arrays. In the following; an

intuitive description of ViCRs based on their interpretation is presented.

Example 21. Consider the bi-dimensional array reference D(I, J) of Figrrre 4.5. In

the scope of dor; a row-major traversal of matrix D is performed; M and H being

the nurnber of rows and columns; respectively. As both rows and cohrmr • s are

accessed sequentially one after another; the BR, {1, -}-,1} captures thc access pattcrn

100 Chapter ^. Automated Implementation in a Compiler Frame^vork

defined by the subscript expressions I and J. However, from the point of view of

the cache behavior, the description of the access pattern of the multidimensional

array mapped onto a linear memory model is requirecí. Assuming column-major

storage which is the case in Fortran, the It-ICR J{I{1, -}-,1}, -i-, M}, composed of' two

nested BRs, provides such inf'orma,tion as follo^vs. First, the inner BR I{1,+, 1} is

evaluated according to equation (5.1) in order to locate the beginning of row rnrrnber

I. Nc;xt, the outermost BR. J{I, -^, M} is ^^waluated to acc;ess the row elc;ments stored

irr mernor,y locations with stridc M. bVithin NICRs; the subscript on the left of each

BR, indicates the source code variable used to evaluate the BR. n

In this work only BRs and NICRs with a constaart g functiorr are used as the,y

enable the representation of the access patterns handled by thc PNIE modeL Note

that CRs provide a powerful representation that will capture more complex cases

that are expected to appear in full-scale real applications, like triangular access

patterns. Besides, chains of recurreuces is a«^ell-kno^^^n and widely used formalism

that has an extensive research associa.ted to it which can be used in future extensions

of our work.

Figure 5.1 surnrnarizes thc; inforrnation requirernents of' the P^-1E model f'or the

code of Figure 4.5. For ear,h loop, a graph of dependence relations (represented as

use-def chairrs) between array refererrces and loop indices is depicted. Lse-def chains

starting frorn array rcfererrces are labeled ^^^ith the array dinrerrsion where the target

reference appears. BRs that capture loop index values and access patterns for each

dimension of each array reference are shown. When enough information is available,

rnulticlimensional arrays are also annotated with ^^1CRs and linearized ^1CRs. The

superscript on the right of the BRs represents an average of Lhe number of times

that the BR is evaluated. The notation ? within BRs reflects that the corresponding

information ca.nnot be determined to be a constant expression at compile-time.

5.3. Information Requirements of Extended PME

Model

This section describes a high-level algorithm of the PVIE model as well as the

information requirements of its implementation in a compiler. Sec,tion 5.3.1 f<^cuses

on the construction of the equations of the ruodel and Section ^.3.2 on the cornputa

tion of the interference regions, that is, the mernory regions accessed 1>y ea.ch givc;n

^.3 Information Requirelnents of Extencled P^^fE 1\^Ioclel 101

BR MCR Linearized MCR

I {1,+,1)M

K {1,+,1}^

J {1,+,1}"

R(1) R({I,+,1}^)

R([+1) R({2,+,1}„)

A(K) p({1,+,1}^) .

C(K) C((1,+,1}®)

D(1J) D((1,+,1}^,{I,+,1}^ D(^{ ^{1,+,1}•,+,M}^) D((1,+,1}^)

B(REG1.}) B({(2,+,2p,{l,+,l}")

D(I,J) D({1,+,1}^,{l,+,l}^ D(^{ ^(1,+,1}^,+,M}^) D((1,+,1}M")

K (R(I),t,l}^
J (1,+,1}"

A(K) A({R(I),+,1}^)

C(K) moIIOlAII1C C({R(I),+,1}°^)

D(I,]) D({I},{l,+,l}") D(^(^{I},+,M}^) D({7,+,M}^)

B({7,+,7}*,{1,+,1}")

D(1,1) D({I},{3,+,1}") D(^{^{I},+,M}'^`) D((7,+,M}^)

J {1,+,1}"

D(1J) D(^{^{I},+,M}^D({I},{l,+,l}e) D((2,+,M}^

B(REG1J) B({{REGl},(1,+,1}^ B(^{^{REGI},+,M}^ B({REGI,+,M}^

DUJ) D({(},(1,+,1}^ D(^{^{I},+,M}^ D({7,+,M}^ ^

:r^utinn ieve;l
^V'ectln9 3ave' I

\ostln

Figure ^.1: Information requirements of the P\'fE model for the code of Figure 4.5.
The symbol nnz stands for the number of nonzeros of the sparse matrix; and (j is
the average number of iterations of dox

102 Chapter ^. Automated Implementatiou in a Compiler Frame^vork

reference during a period of the execution of the code.

5.3.1. Constructing the Equations

The pseudo-code of Figure ^.2 gives an overview of the P1^-IE model. As shown

in the top-level procedure analyze_code, the references that appear in each loop

nest of the source code are studied one by one. Each reference R is analyzed in

several scopes. r1t each nesting level, the procedure number_of_misses computes

an equation that calculates the number of misses produced by that reference in that

nesting level. This equation is expressed in terms of the equation of the immediately

inner loop and use the fttnction RegRz(n) definecí in Figure 4.2 for calculating the

interference region. A reference may exhibit different access patterns with respect to

diff'erent loops. These access patterns are modeled by the f'ollowing equations: the

^•egv,l,ar ar,cess PME for regular patterns, the rn.orant,o7aic irreg^elr^r o,cr,ess PME for

irregular patterns that access a ntonotonic scqnence of inernor,y positions, and th^^^

reon-rraonotonic irregular access PME for irregular patterns that cannot b^^; predicted

at compile-time. Procedure number_of_misses selects the appropriate equation

by analyzisig the BRs associated with each d ►nension of R as follows:

n	 The regular access P\^IE is applied if the BR ^natches {^o, +, g} with constant

function g.

n	 The rnonotonic irregular access PNIE is applied if (1) a BR, characteriziiig one

of the dimensious has a iion-constant g, and (2) there is a path of use-def

chains bet^vicen R and the loop indcx of thc current loop that contains at lcast

another different array reference. The first step of this path must be a use

def chain with a target array reference ^vhose values can be determined to be

monotonic.

n	 Otherwis^^^, the non-rnonotonic irrc:gular access P^^IE is selected.

Example 22. As an example, consider the arra.y reference B(REG1, J) in Figure 4.^.

In the analysis of the itmermost loop doJ; the BRs that describe every dimension

of the reference are explored. as shown in Figure ^.1; the BR {REG1}, simplified

representation of {REGl, +, 0}, that describes the access pattern in the first dimen

sion, is an invariant BR. In addition, as the BR {1, +,1} associated with the second

dimension has a constant fi^nction g= 1; the suhscript is kno«^n to be an affine

103 ^.3 Inforination Requirelnents of Extended P\^fE Ajlodel

procedure annlyze_code() I

1 foreach loop_neat of the code 1

2 foreach reference in the loop_neat i

3 miaaea}=numóer_of_msaaea(reference,outermoat_loop(loop_neat),Rf„p)

4 I

procedure numóer_of_miaaea(referen e,loop,region) {

1 if i _regular(reference,loop) l

2 return regulor_acceaa_PM E(rejerence,loop,region)

3 1 else {

4 if i _ onotonic(reference,loop) (

5 retuzn irregular_monotonic_acceea_PME(referen e,loop,region)

6 1 elee I

7 return irregular_nonmonatonie_aceeaa_PM E(referen e,[oop,region)

8 1

9

procedure irregular_monotonic_ncceaa_PM E(reference,loop,region) {

1 if i _ nermoat_loop_cantaining(loop,reference) {

2 return LR; ^ cache_impact_quantificatíon(region) }(Ni - LR;) W cache_impact_quantification(RegRtooy(1))

3 f elae I

4 misae8^0.0

5 foreach inner_loop in snn r_loopa_containing(loop,reference){

6 miaaee} = LR;^ numóer_of_miaeee(reference,inner_loop,region)

7 }(Ni - LR;) ^ number_of_miaaea(reference, inner_loop, RegRloop(1))

9 return miasea

10 1

Figure ^.2: The PNIE model algorithin

104 Chapter ^. Automated Implementation in a Compiler Framework

function of J. Thus; a regular access PNIE models the behavior of the reference in

this loop.

a different situation arises in the scopc of doK at nesting level one. The BR.

for the first dimension has unkno«^n ^o and g, ^^hich is represented as {?, +, ?} in

Figure ^.1. Besides, the graph of dependence relations depicted in Figure ^.1 shows

that there is a path from the first dimension of B(REG1, J) to loop index K that

contains another array reference C(K) whose values are stored in the scalar REG1 (see

lines 2, 4 and 6 of Figure 4.5). Thus, the subscript REG1 is known to be irregular.

The accuracy of the prediction can be raised by taking advantage of the knowledge

that C is the column array of a sparse CRS matrix since, assuming that the column

indices are ordered «^ithin each matrix row; the sequence of' values of' C(K) is known

to be monotonic. As a result, the monotonic irregular access Pl31E is applied. Note

that such inf'ormation is not, available in the scope of the outermost loop because C(K)

i5 not monotonic a^cross different iterations of doi. In this casc^;, the non-rnonotonic

irrcgular access PI\^IE is used n

Two parameters are required to build a PA^IE at nesting level i: N2, the number

of iterations of the loop, and SR2, the stride bet^-een the elements that reference

R accesses in two consecutive loop iterations. In the case of regular accesses and

monotonic irregular accesses LRz, the mm^ber of loop iterations for which R cannot

exploit any reuse, must be calculated too. In ottr algorithm, Ni is the upper bound

of the BR that chaxacterizes the values of' the loop index. As for SR^, if there is not

any dependence path bet^veen the reference and the loop index; SRZ = 0. Other^vise,

it is c^ilculated ^us the product of the constant g of the BR associo-a^ted with the loop

indr^x by the distauce between two consecutive elerncnts of the arr^Ly referenc^^;d by

R in the dim^:nsion index^^,d b,y the loop index. This latter value is calculat<^,d using

the dimensions of the indexed array aud the mapping of the arra,y into the liuear

rnemor,y rnodel (i.e., ro^^-ma•jor or colutnn-tna,jor). Finally, LRz is calculated using

Equation 2.13 ^vhen the access is regular or using Equation 4.2 when the access is

irregular monotonic.

Exnmple 23. In regular codes, Ni is sometimes available at compile time, and

thus the upper bowid of the BR of the loop index can be computed (see the BR

{1,+, 1}H of doJ in Figure 5.7.). However, this is not a very common siti.tation in

irregular codes. Consider the loop index K of the offset and length construct of

Figure 4.5. In the scope of doi; K is used in A(K) and C (K) to access the tivhole

sparse CR.S matrix. TYnis, N^ is the nurnber of nonzeros nnz; ^us shown in the

105 ^.3 Inforrnation Requirements of Eatended P\-^E A-lodel

BR {1,+,1}nnz of Figure 5.1. In contrast; in the scope of dox, Ni is given by the

symbolic expression R(I + 1) - R(I). In general, this expression takes a different

value in each iteration of the outer loop doI. However; from a statistical point of

vie^v, N= _/.j = nM can be a good approximation for CRS sparse matrices ^vith

a unif'orm distribntion of the entries; M being the ntunber of ro^vs of the sparse

matrix. Thus, as doK t,raverses the elernents of a row of' the CRS rnatrix, the values

taken b,y K could be repre^sc;nted b,y {R(I), +,1}Rkr>+R. This situztition a.lso affects

the cakculation of the stride for the arra,y reference C(K) in thc scope of doi. Loop

inde^ I indexes C(K) through its dependence with the loop index K. as a result, thc

stride of C(K) with respect to loop dor will be the number of iterations of doK (i.e.,

,(3), because both loops define an offset and length construct n

5.3.2. Computing the Interference Regions

In Section 2.3, three steps were described to estirnate the miss probabilit,y asso

ciated to a given reuse distanecr. access pattern identification, cachc; irnpact quan

tification and area vectors addition. The c;achc impact yuantification stcp uses the

results generated k^y the access pattern identific;ation step; ^vhich in its turn retrieves

information directly frorn the source code. As explained in Section 4.2.L the access

pattern identification step for codes with indirections generates as intermediate rep

resentation of the access pattern of each reference R a Da-tuple RR(h, n); where

DA is the number of dimensions of the array A referenced by R. Each element of

this tuple consists in its turn of a 3-tuple RR^(h, n) _(M^, S^, P^); where the M^

is the number of different points accessed along dimension j, S^ the constant stride

between two consecutive points and P^ the probability each one of these points is

actually accessed by R.

The information supplied by the BRs, the ^r1CRs and the use-def-chains repre

sented in Figure ^.1 is used to generate this D,^-tuple RR(h, n). The first step to

build RR^ (h, n) is to determine whether the indexing of dimension j is done across

an indirection. This is the case if the use-def-chain path between the j-th dimension

of this reference and the loop inde^ on which it depends includes another array refer

ence. If the indesing of the studied dimension is not done across an indirection, then

the access is regular and the algorithm followed to calculate the j-th component of

^ZR(h, n) is the one described in Section 2.3. In this case the index of the referenc;e

is an affine function aR^•I; -f- 8R^ of some loop incíex I;. The iclentity of I; can be

found out exploring the use-def-chain paths. The set of points accessed in this di

106 Chapter ^. Automated Implementation in a Compiler Fra^mework

mension by R can be represented as the tuple (Iters1(h, n), SR;,1.0), where for the

calculation of Itersi(h, n) (see Sections 2.3.1, 4.2.1) the only additional information

we need to extract from the code is Ni; the number of' iterations of nesting level i.

As for SR^; it is the stride that reference R has with respect to loop i. As in this

case the index of dimension j is an affine function of Ii, then SRz = aR^ • d:^^, where

d.^^ is tlre accumulative size of the j-th dirnension of the array A referenced by R

and aR^ is the scalar that rmrltipliee the loop variable in thc affinc fimction. dA^ ca^n

be calculated in this case using the sizes of the different dirnensions of the arra,y A

while aR^ carr be extracted from the expression that irrdexes to the j-th dirnension

of the reference R.

^^^hen the indexing of' dimension j depends on an indirection, that is; the index

has a form aR^ •B (f(I2))+SR^, we a5sume that the accesses are spread uniformly

on the indexed dimension of the arra,y. The identity of the index array B can be

obtained using thc use-def-chairt path, and the inforrnation about the value of aR^

can be retrieved in the sarne wa,y as in the regular casc. The values of M^;S^ and P^

can be calculated using the equations describcd in Section 4.2.1. Once the D,^-tuple

RR(h, n) has becn generated and simplified; the rules described in that section are

used to identify the kind of region associated to the accesses of that reference.

The inf'orma,tion supplied by the BRs and \^ICRS can help us perform the access

pattern identification step easier. ^^Iost of the accesses to data strnctures of one or

two dirnensions gencrate a srnall set of possible BRs and ^'ICRs that can be easil,y

identific;d and translated to their corrc^sponding regions. For this purpose; we have

developed the following rules.

n	 Let {^o, +, g}r be the BR of a unidimensional array reference. If g= 1, a

region Rs(P) is computed. Other^^ise a region R,.(9,1,g) is associa,ted with

the array reference.

n	 In the case of multi-dimensional arrays, the analysis focuses on the NICR

that represents the access pattern once the array has been mapped onto the

linear memory model. For the sake of the explanation, consider the I^-ICR

{{¢t,+,gr}rl,+,gz}r2 of a bi-dimensional array reference, where ^r; gl and

I't are associated with the first arra,y dimension, and gz and I'z ^vith the second

dimension. In this ca.se, a region R,.(► , ► ,gz) is computed. Sometimes a

simplified representation of' the, access pattern described by t,he ^4CR can be

obtained by lineari^ing the NICR. The resiilting BR is processed as described

for unidirnensional arra,ys.

107^.3 Inforrnation Requirements of E^tended P\^1E A^fodel

Columntnajor mapping intn memory MCR :{^{l,+l}^ +,5}^ RR(4,2,5)
REAL D(5,4)

coll cal2 co13 mN

Cache Size=16 elements; Line 5ze=4 elements; Associativity Degree=l
BR : D((1,+,1}?{1,+,1}^)

(a) (b)

Nesting Level 0

Figure 5.3: IVlatrix mapping in memory and in cache for referencc D(I, J) of Fig
ure 4.5 during 2 iterations of loop dol

Whenever all the accesses affect consecutive rnernor,y positions the mapping and the

traversal of the array are equal, the MCR can be simplified to the BR {1, +, 1}iá^`^t^*h^`^t^

Once the ^nernory region accessed by a given reference is identified; the impact

quantification step estimates numerically the cache impact of the access to this

region in the cache.

Exam7^le 24. In the example code of Figure 4.5, during the analysis of the reference

D(I, J) in the scope of the loop doJ, the BR for the first dimension {I} indicates

that the index is a loop invariant, while that of the second dimension {1,+, 1}H

shows that the subscript J takes consecutive values in the regular interval [l, H]. As

shown in Figure 5.1; the VICR ^{I{I}, +, M}"*" of D(I, J) can be linearized as the BR

{?, -}-, M}M'H, the rmknown ^o indicating that do^ is analyzed in the scope of an

undetermined doI iteration. Applying the rule of unidinrensional arra}^ refcrences;

the rnernory mgion R,.(H, 1, M) of a row of array D is cornputed. ^^'hen the access

pattern for D(I, J) is analyzed in the next outer loop doK, at nesting level 1, the

BRs and ^1CRs for both dimensions are the same ones as in the innermost loop do^

because noue of the dimensions depends on loop index K. Thus; the same region

R,.(H, 1, M) is computed. A different situation arises in the scope of the outerrnost

loop, where there is a different BR {1, +, 1}" for the first dimension. As the M rows

of the matrix are accessed; th^linearized A^ICR {1, +, 1}"'H contains a^o = 1 that

reflects the access to the ^vhole arra}- D resulting in a region Re(M x H). Figure 5.3

sho^vs how an access to the array D during two iterations of the outermost loop is

mapped into the memor}^ and the cache. n

108 Chapter ^. Automated Implementatiou in a Coinpiler Framework

5.4. XARK Extension for the PME Model Automa

tion

The automation of the PNIE model is addressed using the XAIi.K compiler [17,

15^, an extensible framework for the automatic recognition of programming con

structs that are frequentlv used by software developers (from no^^^ on; computational

kernels). It was originally developed to detect parallel loops in irregular codes, where

a,rray references with subscripted subscripts reduce the effec,tiveness of most, depen

dertce anal,yzers. Lsing the inforrnation provided by the kernel recognition engine,

K^R,K was extended to provide a powerful inforrnation-gathering tool that supports

the irnph^;mentation of parall<^^lizing code transforrn^ttione [16^. ?^^R.K operates on

top of a high-level interrnediate representation resembling the original source code

that consists of the forest of abstract syntax trees (ASTs) that represent the state

ments of the Gated Single Assignment (GSA) form of the code. GSA is an extension

of the ^vell-known Static Single Assignment (SSA) form ^vhere reaching definition

information is represented syntactically. L nlike SS:^; GSA captures the flow of val

ues in a program for both scalar and array variables. In addition; the intermediate

representation contains predicates that capture the conditions of if-endif constructs.

These properties enable to implement the recognition engine efñciently, and ^viden

the collection of computational kernels that can be recognized by compiler. In an

aST; a tree represents an operation so that the root node is the operator (e.g.,

assignment, scalar fetch; array reference, plus; product) and its children a,re the

operands. The intermediate representation is completed with use-def chains that

eahibit the dependences between the statements of the code.

X AI3.K performs a demand-driven analysis that proceeds as follows. A post

order traversal is carried out on each ^ST. At each nocle, a transfer function that

gathers information about each operator in the program is applied once the analysis

of the children subtrees has finished. ^^'hen an occurrence of a variable defined

in a dif%rent AST is found, the post-order traversal is stopped until the analysis

of the latter AST is completed. This demand-driven Uehavior assures that all the

information needed at a, given node has been computed before the transfer fimction

is actuallv executed.

Transfer functions are organized in layers devoted to specific tasks. The bottom

layer addresses the recognition of the kernels computed in the source code (e.g.;

generalized induction variables, irregttlar reductions; array recurrences), which in

cludes the characterization of the regular and irregular access patterns of the array

109 5.4 NARK Extension for the PA-IE tilodel Automation

references that appear in the source code. Upper layers implement extensions of the

lAR,K compiler that benefit from the information recognized in the source code.

Information interchange between layers is carried out by means of three containers

that are available in all the transfer fttnctions: pgm holds information at the program

unit level; stm at the statement level; and node in the scope of a node of the AST

of a sT,atement. The pseudo-code of the extension Y.hat builds the interface bet^veen

ZARK and the P1bIE rnodel is shown in Figure 5.4. Due to space lirnita.tions, the

details about the computation of the BRs and thc VICRs has been ornitte;d frorn the

transfer fimctions. The containers arc represented as data structures whose fields

correspond to picces of information retrieved frotn the source code.

In order to illustrate the operation of XAR,K; consider the forest of ASTs and

the use-def chains (dashed arrows) depicted in Figure ^.5. The details about the

GSA form have been omitted for the sake of claritv. The picture shows the last

step of the post-order traversal of the AST that represents the loop header DO

K=R(I) ,R(I+1)-1. Hatched nodes highlight expressions and staternents whose anal

,ysis has alread,y bcen cornpleted. When transfer fimction T^ is applied, thc kerncl

recognition layer characterizes R(I) and R(I+1) -1 as loop-variant expressions whose

value is not known at compile-time. This is denoted by the annotation subscripted

in the corresponding nodes of the AST. Expressions corresponding to itrvariant and

linear access patterns are annotated as invariant and linear, respectively. To

each node it is also attached the BIt that captures the interval in which the ex

pression takes values, which is computed by applying the rules defined in the CR.

algebra [59] (see the example in Section 5.2). Next; the extension of T^ presented in

Figure 5.4 is executed. First; the loop header DO K=R(I) ,R(I+1)-1 is recognized as

an offset and length consT,ruct because R(I) and R(I+1)-1 are suhscripted accesses

to consecutive elements of a unique array R, a.nd each expression is the source of a

use-def chain whose target is the outerrnost loop doi. Under these conditions; T^

rewrites the BR. {R(I), ^-, 1}^li+ll-1 as {l, -^, 1}^ to iudicate that the loop index

K travcrses the whole sparse matrix during the execution of doi (scc litics 2 to 6

of procedure T^ in Figure 5.4). The demand-driven analysis of the forest of ASTs

continues; and the access pattern of array reference C(K) is characterized as a linear

pattern given by the BR, {1, -^,1}^.

110 Chapter ^. Automated Implementation in a Compiler Frame^vork

atruct i... atruee ^... atruct ^...

graph_of_array_refe; aet_af_nrrny_refa; aee_af_array_refa;

I node;
f p9a: I stm;

procedure Ta(a1 en) ^ // Extensions of transfer function of array references

1 insert a(s1,...,e„) in pgm.graph_of_array_refe

2 foreach a, with subscripted access pattern ^

3 foreach reference E nodea^.aet_of_n ray_refs (

9 insert a use-def chain trom a(s1,...,s„) to reference in pgm.graph_oJ_arrag_refe

5 F

6

7 insert a(a1,...,an) in node.aeL_of_array_refa

proceduze Ty (// Extensions of transfer function of identifiers

1 if x is not invariant (

2 foreach reference E eet_of_nrray_refe of the definition statement of x ^

3 insert re/erence in node.eet_oJ_nrrap_reja

9 r

procedure Tdo (// Extensiona of transfer function of loop headera

1 stm.eet_of_n ray_refs = node;,,it.aet_of_arrag_refa U node;^,,,^t.aet_of_array_refa U nodeetep.aet_of_array_refa

2 if stm is an offset and length conatruct 1

3 if aLm at nesting level 1(

4 rewrite symbolic BA {R(f),},1}R(f}1)-1 ae {1,},1}nn:

5 I

6

1

procedure Tetm [// Extensiona of transfer function of asaignment statements

atm.aet_of_a ray_refa = noderha.set_of_array_refs

Figure ^.4: Extension of XARK f'or building the interface ^;^ith the P^•1E model

111 ^.4 1r1RK Eatensiou for the PA-IE Vlodel Autouration

invariant : ^ 1 ^

invariant:,?) Linear : ^ 2, +,1 ^^+'

invariant: ^?)
®® subscripted : ^ ? , +, i ^

invariant:^l^

A
subscripted : I ?,+, ?^'

^ subscripted : (? , +, ?^'

O
^

subscripted :(R (I), +,
1IR^,+U-' I linear: I 1,+, 1 ^^

T^
pgm.graphof arrayrefs=^R(I),R(!+1)}

. set of array_refs ^ ^C(K)?

To(.t....J

tm.set of array refs=^C(K))

I T.,,^

^izecr . set.of _ asraY-re.f^s =^ C (K)I

IT^

Figure 3.5: Forest of ASTs and use-def chaius of the offset ancl leugth construct aud
the array refererrce B(REG1, J) of tlre exaruple codc of Figurc 4.^.

ll2 Chapter ^. ^utomated Implenientation in a Compiler Framework

5.4.1. Construction of the Graph of References

Apart fronr the charactcrization of the access patterns of arr^zy refercnces; the

interface between XAR.K and the P^^1E nrodel exhibits the dependence relationships

between array references a^nd loop indices. ^1s shown in Section 5.3, such information

is used to build the equations that capture the cache behavior of the source code. The

graph of dependences is built as follows. Each time the transfer function of array

references Ta^sl,.,,,s„^ is esecuted; the corresponding array reference is inserted in

pgm.graph_of _array_refs (see line 1 of procedure Ta^s,,,,.,s„^ in Figure ^.4). Thus,

when T^ is applied in Figure 5.5, pgm.graph_of_array_refs is {R(I),R(I -}- 1)}.

As a result. a list of all arrav references in the source code has been built.

In order to construct the graph; it is necessary to identify indirections as ^^^ell as

the array references that appear in subscript expressions. This task is accomplished

by taking advantage of the access pattern characterization provided by the kernel

recognition layer.

The code is anal,yzed trying to recognize s,yntactical variation of a set of spa^rse

cornputational kernels that ar<^^ frequently used in frill-scale applications; for instance;

operations ^vith sparse vec;tors and rnatric:es. This recognition is perf'orrned by taking

into account the sernarrtics of the prograrn. Thc cornpiler rrrust detec;t ocr.urrences irr

the code of different kernel t,ypes as: induction variables, sr,alar reduction operations,

linked list-traversal and rnasked and arraw operations. These detections teclnriques

suffer two rnain problems: source quality and difficult to analyze complex control

constructs. The ^ARK cornpiler uses an extension of the classification scheme of the

technique proposed by Gerlek, Stoltz and Wolfe ^40^ capable of recognizing complex

induction variables even in loops that have a cornplicated control flo^a^. Induction

va.riables can be substituted by closed form expressions. This extension can deal

with both scalar values and arrays.

The dernand-driven nature of 1^R,K assures that the access pattern of each sub

script s^ (1 <_ l_< n) has been characterized before the transfer function is applied.

Thus; Ta^sl,,..,s„^ recognizes array references that are not indirections by checking that

there is not any subscripted access pattern; and inserts the reference in the container

available for each node of the ASTs; in particular, in node.set_of _array_refs (line

7 of Ta^sl,...,,,,,^ in Figure ^.4). If' an indirection is recognized, the demand-driven

a,nalysis carried out by YARK assures th^rt nodes^.set_o f_array_re f s contains

the arra,y referenc.e5 that appear in the snbscript expression of the .j -th array di

rnension. ^1ext, Ta^91,,,,,s„^ inserts in pgm.graph_of_array_refs a set of use-def

113 5.5 Experimental Results

chains whose source is a(sr, ..., sn) and whose targets are the array references in

cluded in node9^.set_of_array_refs (lines 2-6 of TQ^sI,.•,,s„^ in Figure 5.4). Note

that the sets of array references are transferred through scalar definition statements

and loop headers. On the one hand, Tx transfers information from the container of

the AST where x is defined (see lines 2-4 of Tx in Fignre 5.4) to the local container

node associated with the node where x is referenced. On the other hand; Tst„^ and

T^ annotatc the statements of the code with the list of array referr;nces t,hat app^:ar

as operands of the right-haud side operators (see node,.hs, nodeznzt, nodel1mzt and

nodestep in Figure ^.4). As the ASTs are analyzed only once cluring the clernand

driven analysis; the annotation of statemeuts enables the retrieval of the set of array

references for different occurrences of a scalar variable.

For illustrative purposes; consider the construction of the graph depicted in Fig

ure 5.1 for the scope doK. In particular, f<^cus on the subscript REG1 of the first

dirnension of B(REG1, J). When the AST of REG1 = C(K) is anal}^zed; Ta^s,,.._,s„^

inserts C(K) iu node,.hs.set_of_array_refs aud lar,er Tst,,,, anrrotates the state

ment by copying C(K) into stm.set_of_array_refs. Next; the occurrerrce REG1

in B(REGi, J) is processed by Ty; which obtains C(K) from the AST corrtainer of the

statement where REGi is defined. As a result, the array reference C(K) is available at

Tx, which copies C(K) in the local container nodeRE^r.set_of_array_refs to ex

pose such information to Ta^81,,,,,s„^. Finally; Ta^s,,,..,s„^ updates the global container

ygm.gráph_of_array_refs «^ith a use-def chain from B(REG1,J) to C(K).

5.5. Experimental Results

The accuracv of the automated PR^IE model for codes «^ith indirections inte

grated in the xARK compiler ^;^as «^idely proved ^;rith the experiments describecl in

Section 4.2.4 (see Table 4.1). The ability to apply automatically the Ph-1E model to

a wide range of codes; and its high degree of accuracy make it a powerful tool to

guide compiler optimizations.

5.5.1. Driving compiler optimizations

Analytical models can be nsed to provide insights about the cache memory be

havior of codes and can grride optimizations in a compiler or interactive tool based

on their predictions. \arnely; decisions can be taken based on a cost function that

114 Chapter ^. Automated Irnplementation in a Compiler Frame^vork

Ll Parameters L2 Parameters L3 Parameters
Architecture

(C5^ ^ Ls^ ^ Ki, Wi) (CS2^ L52, Ka^Wa) (csa^ Lss^ K3^W3)

Itanium 2 (16K;64;4,8) (256K,128, 8, 24) (61\-IB,128;24,120)

PowerPC 7447A (32K;32;8,9) (512K,64,8,150)

Table 5.1: ^•Iemory hir;rarch,y paranreters in the architectures used (sizes in bytes),

rniss «^eights W in CPU c,yclc;s.

considers the relative costs of' the rnisses in each rnenrory level as well ^rs the CPU

c}-cles. ^•Iemor,y stall time can br^: estirnated b,y applying the model to the different

levels of the rnernory hierarch,y of the cornputer sirnultaneously aud multipl,ying th<^^

mnuber of misses estimated for each level by its miss penalty. The <:yc;les spent

in the CPU can be estimated usirrg CPU models such as Delphi [24J, which carr

apply heuristics to accouut for the properties of current high ILP superscalars. Sev

eral papers in the bibliography illustrate the success of this approach for different.

optirni^ations such as padding [^2] or tiling [51, 29] in codes with regular access

patterns.

^s a sirnple experiment airncd to prove that our rnodel can be used to optirnize

codes with irregular access patterns due to indirections, we used its predictions to

decide which was the best loop ordering for the sparse rnai;rix-derrse rnatrix product

using two ver.y clifferent architectures and memor,y hierarchics: Itanium 2 at 1.5GH^

and a PowerPC 7447A at 1.5GH^. Table 5.1 shows the configuration of their memory

hierarchies using the ^^^ell-kno^vn uotation C^, L5 and K; using bytes to measure sizes.

A new parameter W, the cost in CPU cycles of a miss in the considered memory

hierarchy level, is also taken into account. Notice that the first level cache of the

Itanium 2 does not store floating point data; so it is only used for the study of the

behavior of the references to arrays of integers. Also; the PowerPC does not have a

third level cache.

Our model predicted the same behavior in both architectures for every sparse

matrix: the JIK ordering ^i^ould be the one that «-ould give place to the best perfor

mance; while IKJ would be the ordering that would generate more misses in all the

levels of the memory hierarchy; thus yielding the worst performance. This matches

the global results displayed in Table 4.1.. The predictions were first validated execut

ing the three versions of the sparse matrix-dense matrix product code for synthetic

sparse matrices with an uniform distribution of the entries of sizes N x N that were

multiplied by a N x N dense matrix ^-ith N= i x 500 for i= 1, 2, 3, 4, 5 and 6, and

a percenta.ge of nonzeros in the sparse matrix from 1% to 19% in steps of' 2%0. The

115 ^.5 Esperimental Results

Svnthetic unifortn matrices Real non-uniform matrices
Architecture Loop ordering Loop ordering

IKJ JIK IJK IKJ JIK IJK

Itanium 2 172.264 41.016 142.389 4.814 2.078 2.115

PowcrPC 7447A 338.538 29.256 ^4.272 12.585 L990 3.688

Table 5.2: Average execution time in seconds for the sparse matrix-dense tnatri_^
product as a function of the loop ordering.

codes were compiled using g77 3.4.3 ^vith level of optimi^ation -03. The execution

times reflected systematically the predictions of the model: the JIK version alwa^-s

outperfortned the IJK version; being the IKJ code the slowest one. ^^'e also run a

test multiplying each one of the 320 real matrices used in the preceding section by

a dense matrix with 1500 columns using the three loop orderings in both machines.

In the Itanium 2, the JIK ordering was the best one for 307 of the matrices, IJK

for ten; and IKJ for just three of them; while in the PowerPC the .JIK ordering was

the fastest one in all but one of the cases, in which IJK outperformed it. Our model

ahvays chose the JIK order (see Table 4.1) in both architectures. The tests were

also perforrned using all the banded rnatrices frorn the Ha.rwell-Boeing and the ^1EP

collections, in multiplications with dense rnatric^^^s with 1500 colutntts. Tl^^esc tests

agreed with the predictions of the n ► odel: the .IIK version wtts the fastest one in

95.9% and 99.7% of the experiment,s in both architectures. Table 5.2 displa}-s the

avcrage execution timc for the three loop orderings in thc two sets of expcrimcnts

for both architectures in order to give au idca of the accuracy of thc predictions of

the model, as well as the impact of this optimization in thc esccution tinic.

Conclusions and Future Work

Conclusions

vlost of the existing analytical tnodels of the cache behavior only cover the

modeling of codes with regular access patterns. The modeling of irregular codes

has been only been achieved successfully for some specific kernels. The attempts

to obtain an automatic approach to model the cache behavior in the presence of

irregular access patterns are mainly based in heuristics and they do not obtain good

degrees of accuracy. In this work, we have proposed some extensions of the P\-1E

model that cover some of the main sources of irregularity in the accesses of a code.

The management of statistical information about the input data is the key idea to

model this kind of codes «=ithout resorting to execute them.

^Ve have proposed an automatable and modular extension for codes ^vith condi

tional statements in which the probability that the condition is true is uniform in

each one of their evaluations. The accuracy of this extension has been verified by

comparing the model predictions with the results of trace-driven simulations. Ttie

model has been applied by hand to several codes of increasing complexity. Predict

ing the cache behavior using an analytical model is itself a very complex task even if

the access patterns it presents are regular. The presence of irregttlar access pattertrs

increases the difficulty associated to this task. Despite this complexity, the degree

of accuracy of the predictions of our model is still high. Also; although the modeling

of these codes is more demanding computationall}= than that of reg^tlar codes, the

execution tirne of the n ► odel is very short; always less tl ► an one second.

We have also extended the model for codes with indirections. The main source

of codes considered in this extension are those that perform sparse computations.

First; we considered sparse matrices in ^vhich the non zero values of the matrix are

uniformly spread along the structure. The extension proposed for this situation

11^

118 Chapter ^. Automated Implementation in a Compiler Framework

obtained a good degree of accurac}- in its predictions. \evertheless, an exploration

of well-known collections of sparse matrices like the Harwell Boeing and NEP col

lections, revealed that a high percentage of these matrices are banded, that is; most

of their non zero values are spread along a limited band of the matrix. This fact

led us to propose an approach that covers the modeling of this kind of matrices.

First; a small modific:ation f'or tmiform banded matrices ^vas proposed. Later, an

addition^rl extension was proposed for banded matrices with a non-uniforrn distri

bution of the values alorrg the band. The accurac,y of the mod^^^l was verified using

codes of increasing complexit,y that perform sparse computa^tions by cornparing the

predictions of tlre model ^i^ith the results of trace-driven simulations. The predic,

tions of the rnodel were ver.y accurate despite the short tirne required to evaluate

it. Namely; it provides its predictions al^^ays in less than one second, even for the

cases in «^hich the execution of the analvzed code takes several minutes.

The next step ^^as to implement the effective autom^Ltion of one of these exten

sions. Specificall,y; the one for codes with indirections and an uniform distril»rtion

of the values was chosen. For t,his purpose we used an advane^^,d compilation frarne

work, the XARK cornpiler. This compiler can extract the information needed b,y th^^;

model fi•om the source code of the analyzed prograrn. The automation of the whole

process allo^t^ed us to rnodel both the codes used iu the mauual validation of this

extcnsion and ne^^^ codes frorn the SPAR.SKIT library. The results show that the

predictions are the same as those obtained when the model ^vas applied hy hand.

Up to this point, the time required to appl}^ the model did not include the time

needed to derive the formulas, as these ones «-ere derived by hand. Once this task

can be performed automatically, the time necessary to execute the «^hole ^nodeling

process is still short, and in many cases severa] orders of magnitude shorter than

the time necessary to execute the analyzed code.

One of the rnain applications of this kind of models is to help guidc optirrllzat,ion

processes. Thus; we performed an experiment in which we used the PVIE model to

select the optimal nesting order for the sparse matrix-dense rnatris product. Several

tests ^vere performed considering different architectures «^ith different cache config

urations and changing the densities and matrices sizes. The selection of the P^1E

model al^rays matched the best order according to the timing of the execution of the

analyzed codes in the corresponding architectures. These tests ^^ere perforrned using

l^oth synthetic and real matrices. This experiment sho^vs that although the quan

titative estimation performed by the model for real matrices (with a non-uniform

distribution) is not ver^^ accurate; it predictions can be used successfully to guide

^.5 Experimental Results 1is

an optimization process.

The extension of thc scopc of application of the PA^IE^ rnodel to irregular codes is

a big step forward in the effective utilization of analytical modeling as a method to

predict the cache behavior instead of traclitional techniques like trace-driven simula

tion and hardware counters. This research is of great interest; since irregular cocíes

usually lack locality ancl thus their performance can be improvecl by increasing their

locality guided by models like the one we have developed. These extensions keep all

the desirable characteristics in a technique to study the cache Uehavior: accuracy;

short execution time and the ability to provide insights into the reasons for the

observed cache behavior

Future Work

In the futurc we plan to rnodel the cache behavior of rnulticorc architectures

since they are becorning rnore and more comrnon nowadays. The cornplexit,y and

novelty in the analysis of the rnernory hierarchy of thesc architectures lies irr the

existence of several processors that can share one or several cache levels. ^^'e ^vill tr.}^

to model this situation using the PNIE rnodel as a basis. In this work it has only be

implemented an effective automations of the PVIE moclel extension for cocles ^vith

indirections and an uniform distribution. The effective autornation of the model can

be improved both for codes with indirections for banded matrices; and for codes

with conditional statements.

Due to its accuracy, speed and wide scope of application, this rnodel has become

a po^ererful tool to predict the cache bc;havior. We are planning to use the rnodel

to guidc optirnizations on both regular or irregular codcs, besides those ah•cady

illustrated in this thesis. Thc model will guide optimizations such as optimal tile

size selection in the tiling technique or methods to guide the data prefetching using

the model predictions. It would also be interesting to use the capabilities of the

model in the field of the embedded systems and to improve their perforrnance taking

advantage of its predictions. Little work has been developed in the field of the

memory behavior rnodeling of this kind of systems. «'e plan to derive estimations

of the minimum and maximum number of misses in both regular and irregular

codes and use them in applications such as the calculation of the ^^^'CET (^^'ors

Case Execution Time); an open problem in embedded systems.

Bibliography

^1^ A. Agarwal. Anal,ysis of Caciae Performarace for Operatirag Systerres ared M^^clti

programminy. PhD thesis, Department of Electrical Engineering; Lniversity of

Stanford, 1987. pages 11, 14

^2^ A. V. r1ho; R,. Sethi; and J. D. IIlltrran. Corra7rilers: Principles; Ti;r.•laniques, arLd

Tools. 1986. pagcs 9

^3^ R. Allen and K. Kenned,y. Opt,irrcizirag Corrapiler•s for Mnder•ra Arr.hit,ect,zares.

2002. pages 9

G. Ammons, T. Ball, and J. R. Larus. Exploiting Hardware Performance Cotmf41
ters with Flow and Context Sensitive Profiling. In SIGPLAN Conf. nn Pro

grarrcrreinq Language Desigra ared Implernerctatiora; pages 85-96; 1997. pages 10

f51	 D. Andrade, ; 1\-[. Arenaz, B. B. Fraguela; T. J.; and R. Doallo. Automated

and accurate cache behavior analysis for codes with irregular access patterns.

Conr,ierrenr.y and Cnmpnt,ation: Practir,e and Eaperience; 2007. (Submitted on

December 2006). pages 5

^6^ D. Andrade, A^I. Arenaz; B. B. Fragtrela, J. Touriño; and R. Doallo. Automated

and accurate cache behavior analysis for codes with irregular access patterns.

In In Prnceedings of Workshop on Cnmpilr.rs for Parallel Cnnzp^cters; pages

179-193; A Conrña; Spain; Januar}- 2006. pages x, 3; ñ

D. Andrade; B. Fraguela; and R. Doallo. Efficient and accurate anal^-tical f71
modeling of the cache behavior of complete scientific codes. In IASTED Intl.

Conf. on Applied Simulation and Modelling 2003, pages 106-111; Arlarbella;

September 2003. pages v^l ► ; 2; ^

121

122 BIBLIOGRAPHY

[8] D. Andrade; B. Fraguela; and R. Doa11o. A-lodelado de ca.ches ante códigos

con condicionales dependientes de datos. In Actas de las XIV Jornadas de

Paralelismo; pages 281-286, Lega,nés, Septiembre 2003. pages vnl, 2; 5

[9J D. Andrade, B. Fraguela, and R.. Doallo. R-lodcling the cache behavior of codes

with arbitrary data-dependent conditional structures. In Springer-Verlag, edi

tor; In Proceedings of the Asia-Pacific Computer Systems Arclaitecture Co^afer

ence; volume 3189 of Lecture Notes in Computer Science, pages 44-57, Beijing,

China, September 2004. pages vIII, 2; ^

[10^ D. Andr<zdc; B. Fraguela, and R.. Doallo. Vlodelado analítico auton^iático del

cornportacr►ento de la caché para códigos cou indirecciones. In Ar,t,as de las XVI

Jorraadas de Paralelis^ao, pagcs 321-328, Granada, Septiernbre 2005. pages Ix;

2. 5

[11] D. Andrade, B. B. Fraguela; and R. Doallo. Cache behavior modeling of codes

with data-dependent conditionals. In Springer-Verlag; editor, In Proceedings of

Worksh,op an Soft,ware, and Compiler.s for Embedded Syst,ems, volume 2826 of

Ler,t,nre Not,es in Comp^et,er Scien,r.e; pages 373-387; Vienna.; Nustria; September

2003. pages vlli; 2, 5

[12] D. rlndrade, B. B. Fraguela, and R. Doallo. Analytical modeling of codes with

arbitrar3^ data-dependent conditional structures. Journal of Systems Architec

ture, 52:394-410, July 2006. pages vI11, 2; ^

[13] D. ^ndrade, B. B. Fragucla; and R,. Doallo. Cachc beha^^ior modelling for codes

invoh^ing banded matrices. In Proc. af tlae 19t1e Intl Warkshap on Lan,yuages

a^ad Cornpilers for Parallel Computing, New Orleans, November 2006. pages

Ix; x, 2, 3; 5

[14] D. Andrade, B. B. Fragiiela, and R. Doallo. Precise automatable analytical

modeling of' the cache behavior of codes with indirections. ACM Tran,sa,ct,ions

on Arr.h,it,ect,^irn. n,nd, Cod.e Opt,i7raizat,io^a; 2007. Acceptcd for pnblication. pages

Ix; Ix; 2, 5

[l5] 1^1. Arenaz; J. Touriño, and R. Doallo. 1?^R,K: .^n eltensible framework for

:^utomatic Iiecognition of computational Kernels. ACM 73-ans. Prog. Lang.

Syst. (Submitted on December 200G). pages 4, 74; 97, 108

123 BIBLIOGRAPHY

[16] ^^1. Arenaz, J. Touririo, and R. Doallo. Compiler support for parallel code

generation through kernel recognition. In 18th Int. Parallel and Distributed

Processing Symposium; Santa Fe, April 2004. pages 97, 108

[17] VI. Arenaz, J. Tourií`io, and R.. Doallo. A gsa-based compiler infrastructure to

estract parallelism from complex loops. In 17t/a ACM Int. Conf. o^a Supercom

puting, pages 193-204; San Francisco, June 2004. pages 97; 108

[18] Z. Bai, D. Day, J. Demmel, and .I. Dongarra. A test matrix collection for

non-Hermitian eigenvahte problerns, release L0; Sept,ernber 1996. pages ^, 83,

92

[19] R. Barret, VI. Berry, T. Chan; J. Demmel, J. Donato; J. Dongarra, V. Eijkhout;

R. Pozo, C. Romine; and H. van der ^-órst. Templates for the solution of linear

systems: Bttilding blocks for iterative rnethods. SIAM Press, 1994. pages 3; 71,

72, 85, 90, 98

[20J A. Bayona, K. Londou, S. Nloore, P. A^Iucci, VI. Nieto, L. Sala,yandia; P. Teller;

and D. Terpstra. Papi deploymcnt; evaluation, and eatcnsions. Proc. of the

User Group Conference; ^OO^i, pages 349-353. pages 10

[21] D. Buck and A^I. Singhal. An Analytic Study of Caching in Computer Systems.

J. nf Parallel and Dist,ribut,ed Comput,ing, 32(2):205-219, Feb. 1996. pages 12,

14

[22] C. Cascaval and D. Padua. Estimating cache rnisses and locality using stack dis

tances. In In ICS '03: Proceedings of the 17th annual internationcal conference

on Supercomputing; pages 150-159, \^e«^ York, 2003. pages 13

[23] C. C^tsca^^al; L. D. R.ose; D. A. Pacíua; and D. A. Reed. Cornpile-time ba5cd

performance prediction. In Lar^yua,yes arad Corrapilers for Parallel Corrcputiny;

pages 365-379, 1999. pages 13; 14, 15

[24] G. Cascaval. Compile-time Performance Prediction of Scientific Programs. PhD

thesis; Dept. of Computer Science, University of Illinois at Urbana-Champaign;

2000. pages 13, 114

[25] J. Dean, J. Hicks, C. ^Valdspurger, ^^'. ^tieilrl, and G. Chrysos. Profilerne:

Hard«^are support for instruction-level profiling on out-of-order processors-. In

Proceedings of the 30th Annuad IEEE/ACM International Symposium Microar

chitecture; pages 292-302, December 1997. pages 10

124 BIBLIOGRAPHY

[26] C. Ding and Y. Zhong. Predicting whole-program locality through reuse dis

tance analysis. In Proc. ACM Conference on Programming Languages Design

and Implementation, 2003. pages 12, 14

[27^ I. Duff, A. Erisrnnn, rrnd .J. Reid. Direr,t, Met,h,ods fo•r Sparse Matr•ices. Oxford

Sci^;nce Publications; 1986. pages 57

[28] L S. Duff; R.. G. Grimes, and J. G. Lewis. Users' guide for the Harwell-Boeing

sparse matrix collection (Release I). Technical Report CERFACS TR-PA-92-9G,

October 1992. pages x; 78, 83; 92

[29] B. B. Fraguela; A1. G. Carmueja, and D. Andrade. Optimal tile size selection

guided by analytical models. In Procs. of Parallel Computing; volume 33, pages

565-572; \-lalaga, Spain, September 2005. Publication Series of the John von

Neumann Institute for Computing (NIC). pages 114

[30] B. B. Fraguela, R,. Doallo, and E. L. Zapata. IVlodeling Set Associative Caches

Behavior for Irregular Computations. ACM Perfor^raunce EvaGu.at,ion R.evieru

(Proc. SIGMETR,ICS/PER,FOR,MANCE'98), 26(1):192-201, June 1998. pages

VII,1;13,14

[31] B. B. Fraguela, R. Doallo, and E. L. Zapata. Probabilistic \-1iss Equations:

Evaluating h•Iemory Hierarchy Performance. IEEE Transactions on Computers,

^2(3):321-336, A-Iarch 2003. pages vII; 1, 3, 4. 13, 14, 17; 31, 32, 62; 97

[32] S. Ghosh, \-1. 1\^Iartonosi; and S. Vlalik. Cache 1^1iss Equations: A Compiler

FrrLmework for :1nal,yzing and Tuning l^-lemory Behavior. ACM Transar,t,inns

on Pr•ogram,rn,ing Lan,yuages anr1, S3^st,ern.s, 21(4):702-745, .July 1999. pag^^^s 13;

14, 15

[33] J. S. Harper, D. J. Kerbyson; and G. R,. Nudd. Analytical ^•lodeling of Set-

Associative Cache Behavior. IEEE Transactions on Co^rzputers, 48(10):1009

1024, October 1999. pages 13; 14, 15

[34] J. L. Henness^r and D. .A. Patterson. Computer Architecture: A Quantitative

Approach. It'Iorgan Kaufma,nn Publishers, 4 edition, 2006. pages 7

^35^ ^^'. King. .^nalysis of' paging algorithrns. In Pror.eedings of IFIP Coragress;

pages 485-490; August 1972. pages 12

125 BIBLIOGRAPHI'

[36] V". Kislenkov, V. It^Iitrofanov, and E. Zima. A gsa-based compiler infrastructure

to estract parallelism from complex loops. In Proc. Int. Symposium on Sy^nbolic

and Algebraic Contputation; pages 199-206; Rostock; Germany; 1998. pages 99

[37] R.. E. Ladner, J. D. Fix, and A. LaNlarca. Cachc perforrnancc analysis of

traversals and random accesses. In Proc. of the IOt/t annual ACM-SIAM Syna

posium on Discrete Algoritlt^ns (SODA99), pages 613-622, Philadelphia, PA;

USA, 1999. Society for Industrial and Applied 1\^Iathematics. pages 13, 14; 15

[38] N1. Laurenzano, B. Sirnon, A. Snavel,y, and 1\•'L Guun. Low cost trace-driven

rnernor,y sirrnrlation nsing simpoint. ACM SIGARCH Corrtp^tt,er Arch,it,ect,uT•e

News, 33(5):81-86; Deccrnber 2005. pages 10

[39] Y. Lin and D. Padua. On the automatic parallelization of sparse and irregtilar

fortran programs. In Languages, Compilers, and 1Zun-Ti^ne Systems for Scalable

Co^nputers, pages 41-56, Pittsburgh, 1998. pages 90; 98

[40) E. S. ^2ichael P. Gerlek and l^I. ^Volfe. Be,yond induction variables: Detecting

and classifying sequences using a demand-driven ssa. ACM Transactions on

Prograntming Languages and Systents, TOPLAS; 1(17):85-122, 1995. pages

112

]41] R. W. Quong. Expected I-Cache 1\-Iiss Rates via the Gap ^-lodel. In Prncr,edíngs

of t,h,e ^lst, ArLnual Irtterrtatiortal S?/rn,posiu•rrt o^t Cnrrtp^tt,Pr• Arc,ltit,er.t,vcre, pages

372-383; Chicago, IL; i^SA, Apr. 1994. IEEE Comput^,r Societ}' Press. pages

12, 14

[42] P. J. H. S. Chatterjee, E. Parker and A. R. Lebeck. Exact analysis of the cache

behavior of nested loops. In Programming Language Design and Implementa

tion, pages 286-297, 2001. pages 12, 14, 15

[43J Y. Saad. SPAR.SKIT: A basic tool kit for sparse rnatrix coruputations. Techuical

R.eport 90-20; N ASA Ames Research Center; \^Ioffett Field; CA; 1990. pages

^t, 63; 73, 85

[44] I. Simecek and P. Tvrdik. Analytical model for analysis of cache behavior

during cholesky. International Canference an Parallel Prnr,essing Workshops,

2004 (ICPP 200/). pages 12; 14; 15

(45] A. Smith. Cache memories. ACM Computing Surveys, 14(3):473-^3; Septernber

1982. pages 8

126 BIBLIOGRAPHY

[46] J. Sá^nchez a.nd A. Gónzalez. :^na.lyzing data locality in numeric applications.

IEEE Micro, 20(4):^8-66, August 2000. pages].4

[47] O. Temam, C. Fricker; and ^1'. Jalby. Impact of cache interferences on usual nu

merical dense loop nests. In Proceedings of the IEEE, special issue on Computer

Performance Evaluation, 1993. pages 12, 14, 15

^48^ O. T^^^rnarn, C. Fricker, and ^^r. Jall>y. Cachc^ Interf^^.r^^;nce Phenomena. In Pr•or,.

Siyrrtet,rirs Cortference ort Measurern,ertt, artd Modelirtg of Corn,put,er S,yst,crrts;

pages 261-271. ACIt-^I Press, M^^y 1994. pages 12

[49] O. Temam and ^^-. Jalby. Characterizing the behavior of sparse algorithms on

caches. In Supercom,puting; pages 578-587, 1992. pages 13; 14

[50] R. Uhlig and T. N. Nludge. Trace-driven memory simulation: :^ survey. ACM

Computing Surveys; 29(2):128-170, 1997. pages 9

[51] X. Vera; J. Abella; A. Gonzalez, and .T. Llosa. Optirnizing prograrn localit,y

through CNIEs and GAs. In Pr•oc. 12t,h Intl. Co•rtf. on Pa,rallel Archit,ectur•es

artd Cornpilatiort Techniyaes (PACT'03^, pages 68-78, Aew Orleans, Louisiana;

October 2003. pages 114

[52] X. Véra, J. Llosa, and A. Gonzalez. Near-optimal pa.dding for removing confíict

misses. In Proc. Language.s and, Com,pilers for Parallel Cnmput,ers (LCPC02);

vohirne 2481 of Lect,^cre Not,es in Cnrn,pv.t,er Science, pages 329-343, College

Park, Nlaryland, .1uh^ 2005. LNCS - Springer Verlag. pages 114

[53] X. Vera and J. Xue. Efficient Compile-Time Analysis of Cache Behaviour for

Programs with IF Statements. In 5th Int. Conf. on Algorithms and Architec

tures for Parallel Processing, pages 396-40^; October 2002. pages 13

[54] X. Vera and J. Xue. Let's Study ^^^ hole-Program Behaviour Analytically. In

Proc. of the 8th Int. Symposium on Iligh-Performance Computer Architecture

(HPCAS), pages 175-18G; February 2002. pages 13

[55] NI. Wolfe. Hiyit perforrrtance cornpilers fnr parallel r,orrtput,ing. Addison-Wesley;

R.edwood City, 1996. pages 9

[56] J. Xue a,nd X. V'era. Efficient and accurate ana,lytical modeling of whole

program data cache behavior. IEEE Trans. Conaput.; 53(5):547-566, 2004.

pages 13, 14

127 BIBLIOGRAPI'_Y

^57^ J. J. 1'i; L. Eeckhout; D. J. Lilja, B. Calder, L. K. John, ancl J. E. Smith.

The future of simulation: A field of dreams? IFFF Conc7^^ct.er, pages 22 -29,

November 200G. pages 9

^58^ _1^1. Lagha, B. Larson, ancl S. Turner. Performauce analysis «sing the rnips

r1.0000 perfonnance counters. In Proceedings of the Snperco^za1^^ct,i^a^ Corz,fe7•ence,

pages 17-22; November 199G. pages 10

[59^ E. Zirna. Simplification and optimization of transformatious of chairzs of re

currences. In Proc. Int. Symposium on S^mbolic and Algebraic Conap^ct,al,ioza,

pages 42-50; Nlontreal, Canada, 1995. pages 98, 109

