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Abstract 

The cell surface hydrophobicity (CSH) is an assessable physicochemical property used to evaluate the 

microbial adhesion to the surface of biomaterials, which is an essential step in the microbial biofilm 

formation and pathogenesis. For the present in vitro fermentation experiment, the CSH of ruminal mixed 

microbes was considered, along with other data records of pH, ammonia-nitrogen concentration, and neutral 

detergent fibre digestibility, conditions of surface tension and specific surface area in two different time 

scales. A dataset of 170,707 perturbations of input variables, grouped into two blocks of data, was 

constructed. Next, Expected Measurement Moving Average – Machine Learning (EMMA-ML) models were 

developed in order to predict CSH after perturbations of all input variables. EMMA-ML is a Perturbation 

Theory method that combines the ideas of Expected Measurement, Box-Jenkins Operators/Moving Average, 

and Time Series Analysis. Seven regression methods have been tested: Multiple Linear regression, 

Generalized Linear Model with Stepwise Feature Selection, Partial Least Squares regression, Lasso 

regression, Elastic Net regression, Neural Networks regression, and Random Forests (RF). The best 

regression performance has been obtained with RF (EMMA-RF model) with an R-squared of 0.992. The 

model analysis has shown that CSH values were highly dependent on the in vitro fermentation parameters of 

detergent fibre digestibility, ammonia – nitrogen concentration, and the expected values of cell surface 

hydrophobicity in the first time scale. 
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1. Introduction 

Microbial adhesion to the surface of substrates is a key factor and an essential step in the 

metabolism dynamics of microbes (Yoda et al., 2014) and pathogenesis of bacteria (Christensen et 

al., 1985 and Shida et al., 2013). Cell surface hydrophobicity (CSH) has been recognised as an 

assessable physicochemical property to evaluate the microbial adhesion to the surface of 

biomaterials (Zita & Hermansson, 1997). For instance, Ukuku et al. have found a linear correlation 

between bacterial CSH and the strength of bacterial attachment to biomaterial surfaces (Ukuku & 

Fett, 2002). In addition, the high CSH in microbes is usually accompanied by high adherence 

ability and microbial metabolism ability (Drumm, Neumann, Policova, & Sherman, 1989). 

Rosenberg el al. has developed a simple method for measuring the CSH values based on the ability 

of microbial adherence to hydrocarbons (MATH) (Rosenberg, Gutnick, & Rosenberg, 1980). 

Moreover, Gallardo-Moreno et al. have also reported the CSH measurement of Candida 

parapsilosis by comparing MATH with macroscopic techniques of contact angles using atomic 

force microscopy ( Gallardo-Moreno et al., 2002). 

 

The physicochemical properties of environments and biomaterials related to microbes also play 

vital roles in the microbial adhesion to biomaterials. Surface tension (ST) of the suspending liquid 

has proven to influence the adherence of piliated organisms to hydrophobic or hydrophilic 

materials Drumm et al., 1989). Brown and Jaffe have reported that CSH of Sphingomonas sp 

changes with the concentrations of nonionic surfactants (which can change ST to a great extent) ( 

Brown & Jaffé, 2006). The hydrophilic pore structures in lipid layers are changed with the ST 

levels (Leontiadou, Mark, & Marrink, 2004). On the other hand, the specific surface area (SSA) of 

solid phase is also vital during microbial adhesion to biomaterials (Liu, Ran, Tan, Tang, & Wang, 

2013). However, there are few studies concerning the influence of ST and SSA on the CSH of 

ruminal microbiomes. In previous works, the effects of ST and SSA on pH, ammonia nitrogen 

(NH3-N) and digestibility of neutral detergent fibre (NDF) in vitro ( Liu et al., 2013) have been 

reported. It has been shown for the first time that CSH experimental values are changeable with 

the interaction of ST and SSA during the in vitro fermentation processes. In the current work, all 

the data obtained from this experiment and previous works have been used to develop a general 

predictive model for CSH under the same experimental conditions (cj), within two different time 

scales (tk and tk2), integrating the physicochemical properties with experimental variables. 

 

Both Autoregressive Integrated Moving Average (ARIMA) and Machine Learning (ML) are 

used to predict time series data in environmental science. Wang et al. have highlighted the 

importance of accurate and reliable forecasting for the sustainable management of ecosystems (Liu 

et al., 2013). They have studied fourteen variables relating to hydrologic, ecological and 

meteorological time series. Furthermore, Turias et al. have modelled the time series of air pollutant 

levels in different towns using carbon monoxide, sulphur dioxide and suspended particulate matter 

as input variables (Turias, González, Martin, & Galindo, 2008). ML techniques with data from 

libraries can make predictions of perovskite catalyst design (Oskoui et al., 2013) and enantiomeric 

excess resulted from the molecular structures (Aires-de-Sousa & Gasteiger, 2005). In all these 

cases, ML models are meanwhile compared with ARIMA models. 

 

Furthermore, ARIMA and ML algorithms can be combined to build hybrid ARIMA–ML 

models for the prediction of time series data. According to Babu and Reddy (2014), many hybrid 

ARIMA-ML models can apply an ARIMA model to a given time series data, considering the 

errors between the original and the ARIMA-predicted data as a nonlinear component, and 

modelling it using an ML in different ways. Moving Average (MA) component of ARIMA models 

developed by Box and Jenkins (1968) is a useful operator to pre-process data for ML analysis. 

Babu and Reddy (2014) have used MA filters based on the ARIMA-ML model in their study to 

forecast time series data. In another work, Barba, Rodríguez, and Montt (2014) smoothing 

strategies combined with ARIMA and ML models have been to improve the forecasting of time 

series. 
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In addition, Perturbation Theory (PT) can use a mathematical method to look for an 

approximate solution for an existing problem, by setting an exact solution of a related but simpler 

problem (ref. or initial stage). It means that the PT method can be constructed on an exact 

given/known solution of a problem by adding corrections. The output is a function f(εi) of more 

than one property (εi) for a given set of conditions (cj) (Gonzalez-Diaz et al., 2013). In our 

previous works, the use of MA has been proposed to measure the deviations of input variables 

(
i
Vp) in PT models based on molecular biosystems (Kleandrova et al., 2014), including fatty acid 

distribution and methane production in the rumen microbiome (Liu et al., 2015; Liu et al., 2016) 

and binary micelle nanoparticles (Messina, Besada-Porto, González-Díaz, & Ruso, 2015). In 

addition, the perturbation ideas have been widely used in other fields, like nanochemistry (Su & 

Yan, 2010), and controlling protein release using biomaterial libraries (Li, Petersen, Broderick, 

Narasimhan, & Rajan, 2011). 

 

In the current work, a new experimental study of CSH values for the ruminal microbiome is 

presented. The CSH assay is carried out at different points in time during the in vitro fermentation 

processes. Different experimental factors are taken into account: SSA, ST, pH, digestibility (D) of 

NDF, ammonia-nitrogen fibre digestibility (c_NH3N), etc. A new PT method is also proposed for 

Time Series Analysis of CSH. This new model is called EMMA-ML: Expected-Measure Moving 

Average – Machine Learning. The method uses two types of variables as input: the first type is the 

expected measure (EM) of CSH for different conditions of SSA × ST; the second type refers to 

MA operators of different experimental factors. It is a PT method because it starts with the EM of 

CSH under a given set of conditions (value of reference) and there are added “small” corrections 

in the form of MA. Consequently, MA operators are used herein to account for deviations 

(perturbations) on different experimental factors. The best EMMA-ML time series model predicts 

CSH using 170,707 perturbations in experimental conditions in a time span of 0–72 h. 

2. Materials and methods 

2.1. Experimental design 

This experiment consisted of the time estimation of the CSH values of ruminal mixed microbes 

under different levels of ST and SSA of the in vitro fermentation. In this study, the ruminal mixed 

microbes were chosen as the sophisticated integrated ecosystems playing a vital role in the 

digestion and metabolism of nutrients for ruminants. A factorial design with 12 different 

combinations of ST and SSA (4 levels of ST × 3 levels of SSA) was carried out. In addition, 6 

point-in-time (tk) × 3 runs (replicates) of each combination were conducted in an individual sealed 

bottle under the same fermentation conditions. The time series (tk) included 6, 12, 24, 36, 48 and 

72 h of fermentation. 

 

Finally, 216 individual ruminal fermented microbial samples were collected after fermentation 

for the determination of CSH (consisting of 4 ST × 3 SSA × 6 points in time × 3 runs = 216 

samples). As described in our previous work (Liu et al., 2016), the fermentation of the neutral 

detergent fibre (NDF, 500 ± 50 mg) was carried out with inoculum (50 mL ruminal liquid mixed 

with buffer in a ratio of 1:2 (v/v)) under different combinations of ST and SSA at 39 °C in an 

individual incubator. Each inoculum sample was collected after fermentation from the 

corresponding incubator. In short, the supernatant (10 mL) of each bottle was centrifuged at 

500 rpm at 4 °C for 10 min to remove the NDF residue particles. The supernatant was collected as 

microbial samples to determine the microbial hydrophobicity, and other conventional fermentation 

parameters (Liu et al., 2013), such as concentration of ammonia nitrogen (c_NH3N), pH, and 

digestibility of NDF, etc. 
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2.1.1. Experimental factors 

In the current study, the ST of the in vitro fermentation liquid and SSA of the substrate were 

considered as experimental factors. The ST of fermentation liquid was accomplished by providing 

the exogenous non-ionic surfactant, alkyl polyglucoside (APG general chemical structure 

presented in Fig. 1). APG is a strong surfactant with a ST of 28.7 dynes/cm, whereas the ST of 

water is 71.97 dynes/cm at 25 °C. Meanwhile, the ST of rumen buffer solution was 

53.96 dynes/cm. Thus, the various gradients of ST were obtained by adding different dosages of 

APG. ST was changed with the concentration of APG in a format of minus exponent, and the 

addition of 0.12% APG (v/v) reached the lowest ST value. Therefore, by adding 0, 0.02, 0.05 and 

0.12% APG, four gradients of ST values were obtained: 53.95, 46.09, 42.78, and 36.07 dynes/cm, 

and presented as ST1, ST2, ST3 and ST4, respectively. 

 
 

 
Fig. 1. The general chemical structure of alkyl polyglucoside (APG). 

Neutral detergent fibre (NDF) extracted from rice straw was used as a fermentation substrate 

material. SSA of NDF was the second experimental factor. NDF with three different particle sizes 

was obtained using a grinder with three screen sizes (0.15, 0.25 and 0.84 mm). These particle sizes 

were used to represent the known digested particle distribution in the rumen of goat (Li and Jiang, 

2001 and Zhen and Ma, 1998). The SSA of the particles was determined by a Surface Area 

Analyzer (Quadrasorb-SI, Quantachrome Inc. Florida, CA, USA). Finally, NDF was obtained with 

different SSA values of 3.37, 3.73, and 4.44 cm
2
/g, represented as SSA1, SSA2, and SSA3, 

respectively. 

2.1.2. Cell surface hydrophobicity assay 

In the present work, the number of cell suspension for each fermentation bottle was varied 

from 1.0 × 10
9
 to 2.6 × 10

10
 per mL, depending on the fermentation time. This is in agreement with 

the aim of the current study about the changes in the hydrophobicity of all microbes at different 

fermentation time points. The CSH of rumen mixed microbes was assessed as described in two 

previous works (Li and McLandsborough, 1999 and Sweet, MacFarlane and Samaranayake, 

1987), using the microbial adhesion to hydrocarbon assay (MATH) (Rosenberg, Gutnick and 

Rosenberg, 1980 and Yang et al., 2010). Briefly, 2 mL of fermenting liquid from each bottle (216 

samples = 4 ST × 3 SSA × 6 point-in-time × 3 replicates) were centrifuged (10,000 × g, 4 °C for 

10 min) to obtain pellets from rumen mixed microbes. Then, the microbial pellets were washed 

twice and resuspended in 6 mL of 0.1 M KNO3 phosphate-buffered saline solution (pH 6.6). A 

high salt buffer solution was used to minimise the electrostatic effects for the determination of 

CSH. The resuspended solution containing the microbial pellet was homogenised by vortex 

oscillation for 2 min, and 2 mL of suspension was used for the optical density (OD400) 

measurement using an ultraviolet spectrophotometer (recorded as A0). Next, 2 mL of hexadecane 

were added to new tubes containing 2 mL of suspension, followed by 2 min of homogenisation 

and, finally, they were equilibrated at room temperature for 10 min. After the mixture was 
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completely separated into two phases, 2 mL of the lower aqueous phase were carefully collected 

and measured for the OD400 (recorded as A1). The hydrophobicity was calculated as follows:  

 

CSH(%) = 100 ×
A0 − A1
A0

 
(1) 

 

CSH is defined as the difference between the percentage of cells retained by the hydrocarbon 

and aqueous layers. A0 represents the absorbance of the OD value at 400 nm before the addition of 

hexadecane, and A1 represents the absorbance of the OD value at 400 nm after the addition of 

hexadecane. 

2.2. Experimental data 

The current CSH experimental values obtained for the first time and the data obtained in one of 

our previous works (Liu et al., 2013) were used as an integrated dataset to develop a predictive 

model. Common fermentation variables, such as pH, digestibility (D) of NDF, concentration of 

ammonia nitrogen (c_NH3N) and gas production (Vg) under the same experimental conditions 

(the combinations of 4 ST × 3 SSA) were collected from two time scale series (tk and tk2). For the 

CSH, D, pH, and c_NH3N variables, the time series (CSH sampling) were tk = 6, 12, 24, 36, 48, 

and 72 h of fermentation. For the variables of Vg, volume of bottle used for gas production (Vb), 

particle size (Mesh) and the concentration of APG (c_APG), the time series (Vg sampling) was 

tk2 = 0, 1, 2, 3, 4, 6, 8, 10, 12, 16, 24, 30, 32, 34, 36, 38, 40, 48, 54, 58, 62, and  72 h of 

fermentation. The data resource flowchart of the experimental section is shown in Fig. 2. Thus, the 

initial dataset features are SSA, ST, tk/tk2, D, c_NH3N, pH, Mesh, c_APG, Vb, and Vg. 

 
 

 
Fig. 2. Flowchart of the experimental section used to construct the dataset. 
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2.3. Modelling dataset 

The experiment considered 12 initial levels (4 ST × 3 SSA) of environmental conditions for all 

experimental variables. The time series were composed by different point-in-time and time scales, 

such as tk: 6–72 h and tk2: 0–72 h of fermentation. In order to study non-linear effects of 

perturbations over CSH, the input dataset was assembled in such a way to form a combination of 

different variables measured in two different time series. A dataset with two blocks depending on 

two time series (tk and tk2) was constructed in a set of random cases (170,707 cases, without 

duplicate). This dataset included almost all perturbation cases of 171,072 = 216 n1 × 792 n2 

(n1 = the experimental cases in the time series tk; n2 = those in the time series tk2). 

2.4. EMMA-ML models 

In the present work, a predictive model was developed for the CSH values of ruminal 

microbiome as a function of perturbations of input experimental variables such as pH, c_NH3N, 

Vg and D. In the next step, some input terms were incorporated to measure deviations of data from 

the expected values (data dispersion). Thus, some variables such as Vq(tk) and V'q(tk2) were 

defined, where the subscript q or ‘q indicated the different types of input variables, tk or tk2 (the 

input variables in the corresponding time scales). Furthermore, 〈CSH〉 and dVq(tk) were 

introduced. 〈CSH〉 represents the expected (average) values of CSH, formed by the expected 

measurement (EM) components used to account for the total expected value. dVq(tk) represents 

the Box-Jenkins Operators / perturbations (see Eq. (2)), the components used to account for the 

variable dispersion. Similarly, 〈Vq(tk)〉 represents the moving average of the variable “q” 

according to the experimental conditions (Gonzalez-Diaz et al., 2013). For each variable, such as 

pH, c_NH3N, Vg or D, its average value was calculated according to the different experimental 

conditions (conditions of ST × SSA). For instance, the moving average of 〈pH〉 included the 

average values under the conditions of ST1 × SSA1, ST1 × SSA2 … ST4 × SSA3. For other input 

variables, the moving average was also calculated according to the different conditions.  

 

dVq(tk) = Vq(tk) −〈Vq(tk)〉 (2) 

 

These terms were added as corrections to the EM of cell surface hydrophobicity, 〈CSH〉. For 

Eq. (3) and the model dataset, the notation of eCSH was employed for 〈CSH〉 (expected 

measurement). The coefficient a1 refers to the weighted value of the expected measurement 〈

CSH〉. Therefore, the new model combined Perturbation Theory, Box-Jenkins Operators, and 

Time Series Analysis (Fisher, 1936). The general formula of the model proposed is presented 

below: 

 

CSHpred = a0 + a1 · 𝑒CSH

+∑bq · dVq(tk) + ∑ b ′q · dV ′q(tk2)

′q= ′qmax

′q=1

q=qmax

q=1

 

(3) 

 

CSHpred represents the predicted values of CSH using the model. The subscript “q” represents the 

variables in the time series of tk: D, pH, and c_NH3N. The subscript “'q” represents the variables 

in the time series of tk2: Vb, Vg, Mesh, and c_APG. Therefore, the coefficients “bq” and “b'q” in 

Eq. (3) represent the weighted values of the corresponding input variables. Thus, 170,707 cases 

and 12 features (pool) defined the final dataset: eCSH, dSSA, dST, dtk, dD, dc_NH3N, dpH, dtk2, 

dMesh, dc_APG, dVb, and dVg. 
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Seven state-of-the-art regression methods were tested: Multiple Linear regression (LM), 

Generalized Linear Model with Stepwise Feature Selection (GLM) (Hocking , 1976), Partial Least 

Squares Regression (PLS) (Wold, Ruhe, Wold, & Dunn, 1984), Lasso regression (Lasso) (R., 

1994), Elastic Net regression (ENET) (H. & T., 2005), Neural Networks regression (NN) (Bishop, 

1995), and Random Forest (RF) (Breiman, 2001). The simplest method is LM. The variable 

selection could improve the regression models and, therefore, GLM selects variables by 

minimizing Akaike information criterion (AIC) score (Akaike, 1974). Lasso and ENET select 

features via an embedded minimisation process. PLS is a coefficient optimisation algorithm 

directed to high variance and high correlation paths. The next methods are Machine Learning 

algorithms: NN and RF. NN represents a network of connected artificial neurons (simple 

processing units similar to the real neurons) which is able to generate precise 

regressions/classifications even if data are complex or incomplete. RF is a decision tree-based 

bagging method using a random subspace method. We run our experiments in R (Team, 2016) and 

we enhanced the models using the Caret Package (Kuhn et al., 2016) in order to find the best 

parameters automatically by repeating 10 times a 10-fold experiment for each freedom degree 

using a grid approach. 

 

The workflow of theoretical section for the development of EMMA-ML models could be 

summarised in Fig. 3: 

 

(1) Collection of the experimental data (initial dataset): tk/tk2, c_NH3N, D, pH, Mesh, c_APG, 

Vb, Vg; 

(2) Application of PT, MA, Time series to obtain the dataset, with the output variable as 

observed CSH and 12 input features: eCSH, dtk, dc_NH3N, dD, dpH, dtk2, dMesh, 

dc_APG, dVb, and dVg; 

(3) Manual dataset split into training (75%) and test (25%) sets: 

https://dx.doi.org/10.6084/m9.figshare.3189352.v1. 

(4) Calculation of all possible regression models: LM, GLM, PLS, Lasso, ENET, NN and RF; 

(5) Selection of the best EMMA-ML regression model using R-squared and Root-Mean-Square 

Error values to predict CSH as a general function: CSHpred = f(eCSH, dSSA, dSA, dtk, 

dc_NH3N, dD, dpH, dtk2, dMesh, dc_APG, dVb, dVg); 

 
 

 
Fig. 3. Flow chart of experimental and theoretical sections of the EMMA-ML model for CSH. 
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The best regression model can be used to predict the CSH values using new in vitro 

fermentation conditions. 

 

The dataset was divided into two subsets: 75% of the cases as training set and 25% of the cases 

as test set. The training set is used to obtain the model without the participation of the test set, 

which is employed to validate the power of the prediction model. Thus, our models were trained 

using a dataset with 128,031 perturbations and 42,676 perturbations unknown for the models were 

maintained in order to perform a final validation/test of the models. We performed our 

experiments with a 10-fold cross-validation approach in order to train our models with the training 

data and ensure that our findings will generalize with our independent test set and to avoid 

problems such as overfitting. The original dataset was separated in a 75–25 proportion for the 

training-test process and an internal 10-fold cross-validation process was performed with the 

aforementioned 75% of the data (Simon, Subramanian, Li, & Menezes, 2011). Our experiments 

were designed with an external set of unknown perturbations in order to detect and avoid a 

possible selection bias (Ambroise & McLachlan, 2002) by using our Machine Learning algorithms 

with the remaining 25%. We have a mixture of continuous and categorical features in our dataset, 

so we used a number of pre-processing steps in order to scale and transform the data: taking the 

logarithm of the count data (or categorical) and subtracting the mean and dividing by the standard 

deviation (standardization) in order to scale the data and thus, all the ML methods can deal with 

the dataset. No highly significant differences were found in the performance results across several 

experiments, therefore it was decided to present the results of one run. The efficiency of the 

regression models was tested using R-squared (R
2
) and root-mean-square error (RMSE) of training 

and test/validation tests. R
2
 measures how close the data are to the fitter regression line, and 

RMSE accumulates the differences between the predicted and observed values of the output 

variable (CSH). The models used all 12 features, without any previous feature selection or data 

filter. We run all the experiments in our HPC cluster called BioCAI. A cluster version of the 

RRegrs package (Tsiliki et al., 2015a, b) was created as an open GitHub repository entitled 

batchRRegrs (https://github.com/cafernandezlo/batchRRegrs/). 

3. Results and discussion 

3.1. Experimental cell surface hydrophobicity 

The average experimental values of CSH for each condition in the first time scale (tk) are 

presented in Table 1. The values of CSH changed with ST of the fermentation medium and SSA of 

the substrate materials. Generally, all conditions (ST, SSA and time) were important for the CSH 

experimental values. For instance, the CSH values were significantly increased (P < 0.01) with the 

enhancement of SSA. They were also individually influenced by the ST of the fermentation 

medium (P < 0.05), and the SSA × time interaction (P < 0.05). The CSH values of the rumen 

microbiome were decreased with fermentation time for SSA of 3.37 and 3.73 m
2
/g, while it 

increased at 24 h for SSA of 4.44 m
2
/g. 
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Table 1. The experimental measurements of cell membrane hydrophobicity (CSH). 

Experimental condition 
 

CSH (%) in the time series (tk) 

SSA (m2/g) ST (dynes/cm) 
 

6 h 12 h 24 h 36 h 48 h 72 h 

         

3.37 53.95  28.6 12.3 13.3 32.1 4.1 14.7 

 
46.09  30.3 20.5 14.1 39.5 4.3 13.1 

 
42.78  32.9 19.5 14.6 32.2 8.6 16.5 

 
36.07  29.1 14.6 10.5 30.7 4.5 17.8 

3.73 53.95  25.9 20.5 13.0 27.8 13.2 16.6 

 
46.09  31.0 14.1 15.8 18.3 12.6 22.0 

 
42.78  31.7 19.8 14.1 13.2 4.3 15.3 

 
36.07  28.7 20.1 19.8 28.5 9.3 20.0 

4.44 53.95  33.0 12.3 17.2 32.2 4.9 22.5 

 
46.09  33.8 22.1 17.3 35.8 4.9 24.0 

 
42.78  34.5 18.5 23.5 32.9 7.4 26.0 

 
36.07  29.4 24.2 30.5 35.9 7.9 33.2 

         

 

The cell adhesion of rumen bacteria to a substrate is the prerequisite for microbial colonisation 

and proliferation. The CSH of microbes is considered an important factor during the adhesion of 

microorganisms to material surfaces (Ascencio, Johansson and Wadström, 1995, Balazs et al., 

2003, Katsikogianni and Missirlis, 2004 and Marshall and Cruickshank, 1973), and the strains 

with higher hydrophobicity have stronger adhesive capability (Moser and Schröder, 1997, Nguyen, 

Turner and Dykes, 2011 and Pan, Li and Liu, 2006). Our results showed that the CSH of microbes 

was enhanced with the increase of SSA, and it was higher in the initial fermentation stage than in 

the later stage. This suggested that the higher substrate values of SSA could positively enhance the 

microbial CSH, and further increase the adhesion of bacteria to forage. It also implied that the 

adherence of bacteria to substrate could be changed with the fermentation time. As the previous 

research studies have proven, the surface hydrophobicity property of bacteria depends on the 

material composition and cell physiological components, such as the cell surface protein (Parker & 

Munn, 1984), polysaccharides (Devasia, 1993), phospholipids (Rosenberg, 1991), capsule and 

slime layer (Hogt, 1983). Baselga et al. (1992) observed that the hydrophobicity of ruminant 

mastitis Staphylococcus aureus can be increased during the logarithmic growth phase, and freshly 

isolated strains are more hydrophobic than old strains. Zhang et al. (2010) also reported that the 

surface hydrophobicity of a Serratia spp. strain decreased with time after the logarithmic phase 

during fermentative growth. 

3.2. EMMA-ML models 

This work proposed a general predictive model for CSH based on the data of the current study 

under the conditions of ST and SSA and data reported in our previous work (Liu et al., 2013). The 

scientists are always looking for connections between different experimental systems and 

theoretical studies in order to replace the traditional partial researches with the macroscopic view 

of the integral ecosystems, obtaining new rules and knowledge. However, combining diverse 

experimental conditions into an integral ecosystem is an issue that every scientist has to overcome. 

Table 2 summarises the definition of all the applied features of cell surface hydrophobicity. 
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Table 2. Dataset features for the prediction models of cell surface hydrophobicity (CSH). 

Feature 
notation 

Feature description 
Feature 
notation 

Feature description 

    

eCSH Expected cell surface hydrophobicity as the 

average of experimental CSH by the experimental 

conditions 

dpH Moving average of pH 

dSSA Moving average of specific surface area dtk2 Moving average of the second time scale 

dST Moving average of suspending liquid surface 

tension   

dMesh Moving average of particle size 

dtk Moving average of the first time scale dc_APG Moving average of the concentration of alkyl 

polyglucoside (exogenous non-ionic 

surfactant) 

dD Moving average of neutral detergent fibre 

digestibility 

dVb Moving average of the volume of bottle used 

for gas production 

dc_NH3N Moving average of ammonia – nitrogen 
concentration 

dVg Moving average of gas production 

    

 

Thus, the use of PT, MA, and ML was proposed in order to develop theoretical models to reduce 

the deviations or variations of different conditions on the experimental values of input parameters 

in the situation of dual-time scales. Our attempt was to develop for the first time a unified EMMA-

ML model that was able to merge all these properties, such as CSH and parameters/variables of 

fermentation performance. The EMMA-ML model developed herein was able to directly predict 

the output properties of CSH after perturbations under the experimental conditions. The results for 

seven ML regression methods are presented in Table 3: LM, GLM, PLS, LASSO, ENET, NN, and 

RF. The values of R
2
 and RMSE for test/validation set were used to choose the best CSH 

prediction model. The parameters and function name for each method are presented in Table 4. All 

the regression methods used the same default settings, such as 10-fold cross-validation, 10 repeats 

and RMSE metrics. The full code sources and example inputs and outputs can be downloaded 

from the open GitHub repository entitled batchRRegrs  

(https://github.com/cafernandezlo/batchRRegrs/). 
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Table 3. EMMA-ML models. 

   
Training 

 
Test 

Reg. 
method 

No. of 
features 

Features RMSE R2 
 
RMSE R2 

        

LM 12 Pool 0.8952 0.1985  0.8978 0.1944 

GLM 12 Pool 0.8951 0.1985  0.8977 0.1945 

PLS 12 Pool 0.9121 0.1678  0.9152 0.1627 

Lasso 6 eCSH, dSSA, dtk, dD, dc_NH3N, dpH 0.8954 0.1981  0.8981 0.1939 

ENET 9 eCSH, dSSA, dtk, dD, dc_NH3N, dpH, dMesh, dc_APG, 
dVb 

0.8955 0.1985  0.8978 0.1924 

NN* 12 Pool 0.3611 0.8697  0.3455 0.8810 

RF 12 Pool 0.0942 0.9925  0.0959 0.9922 

        

 
Note: R2 = R-squared, RMSE = Root-mean-square error, LM = Multiple linear regression, GLM = Generalized linear 
model with stepwise feature selection, PLS = Partial least squares regression, LASSO = Lasso regression, ENET = Elastic 

net regression, NN = Neural network, RF = Random Forest; Pool = eCSH, dSSA, dST, dtk, dD, dc_NH3N, dpH, dtk2, 

dMesh, dc_APG, dVb, dVg 

  



Table 4. Parameters for the regression function in batchRRegrs. 

Regression 

Method 

Regression function in 

batchRRegrs 
Parameters 

   

LM LMreg Tuning parameters: 

  
Intercept (intercept, logical) 

GLM GLMreg Using package MASS with no tuning parameters 

PLS PLSreg Using package pls with tuning parameters: 

  
Number of components (ncomp, numeric) 

  

Code: 
floor.param<-floor((dim(my.data.train)[2]-1)/5) if(floor.param<1){floor.param 

<- 1} 

tuneGrid = expand.grid(.ncomp = c(1:floor.param))) 

Lasso LASSOreg Using package elasticnet with tuning parameters: 

  
Fraction of full solution (fraction, numeric) 

  
Code: 
tuneGrid = expand.grid(.fraction = seq(0.1,1,by= 0.1)) 

ENET ENETreg Using package glmnet with tuning parameters: 

  
Mixing percentage (alpha, numeric) 

  
Regularization parameter (lambda, numeric) 

  
Code: 
tuneGrid = expand.grid(.alpha = seq(0.1,1,length = 10), .lambda = 99) 

NN NNreg MaxNWts = 20,000 

  
Using package nnet with tuning parameters: 

  
Number of hidden units (size, numeric) 

  
Weight decay (decay, numeric) 

  
Code: 
tuneGrid = expand.grid(.size = c(200,300,400),.decay = c(0,0.01,0.2,0.1))) 

RF RFreg ntree = 50 

  
Using package randomForest with tuning parameters: 

  
Number of randomly selected predictors (mtry, numeric) 

  
Code:tuneParam = data.frame(.mtry = c(2:12)) 

   

 

  



The difference in quantitative terms using RMSE and R
2
 during the cross-validation process 

for all the regression methods is shown in Fig. 4. The plot demonstrates that all the methods are 

stable. 

 
 

 
Fig. 4. Boxplot showing the stability of the regression methods during the 10-

fold cross-validation process. 

In addition, the results showed that the simple methods LM, GM, PLS, Lasso and ENET 

provided poor models with R
2
 < 0.20 for both training and test series. For NN, the addition of 

artificial neurons in the hidden layer was explored (with different values for the weight decay of 

the neural net) in order to improve the results (see Fig. 5). We found that increasing the number of 

elements in the hidden layer over 200 just increase the error rate. Thus, this parameter is the 

performance limit for this method. Finally, the R
2
 of 0.88 was obtained with the test dataset. 

 
 

 
Fig. 5. (a) RMSE and (b) R-squared (R2) performance of NN according to the number of artificial neurons in the hidden 
layer. 
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Only Lasso and ENET were able to reduce the number of features to 6 and, respectively, 9, 

with similar performance as LM and GLM using 12 features. PLS obtained the worst performance, 

with R
2
 of 0.16. The differences between the models are presented in Fig. 6. 

 
 

 
Fig. 6. Differences of the models obtained using the RMSE and R2 of all pairwise model comparisons: average 
performance value (dot) with two-sided confidence limits computed by Student t-test with Bonferroni multiplicity 

correction. 

The RF model is based on the original implementation of the Random Forest algorithm by 

Breiman (2001), widely used in ML. This method generates multiple bootstrapped versions of the 

data and fits a decision tree for each data subset. In the end, the RF uses each decision tree in order 

to give the final solution to the problem. This particular ML model is known to perform very well 

with high-dimensional datasets, avoiding overfitting due to its particular characteristic, allowing 

an averaging effect across all the single models (Chen & Ishwaran, 2012). A number of trees were 

built based on bootstrapped samples (for training), where a random sample of predictors (features) 

is chosen as the candidates from the full set of features p of the dataset. Each time, a fresh set of 

features was taken into account, thus the algorithm is not allowed to consider most of the available 

features, only a square root of the total number of predictors in classification and p/3 in regression. 

As shown in Fig. 7(a), the fitted versus observed plot of the best model (in red) was very close to 

the expected regressed diagonal line (in blue). Fig. 7(b) shows that the best number of trees for the 

RF, in order to avoid overfitting was 50 trees with 6 randomly selected parameters according to 

the R
2
 results as it reached the plateau. During the 10-fold cross validation process, the results 

shown in Fig. 7(c) were obtained. Furthermore, Fig 7(d) shows that three of the features are more 

important for the model: dtk, dD and dc_NH3N. This was calculated using IncNodePurity, a 

measure of the decrease of the impurity in the nodes from different bootstrapped splits, averaged 

over all trees. Therefore, it can be observed that the variation of the first time scale dtk is very 

important for the model. The neutral detergent fibre digestibility (dD) influences the cell surface 

properties, and the ammonia-nitrogen concentration (dc_NH3N) is also important for the CSH, 

which has similarly been proven in previous works ( Liu et al., 2013). 
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Fig. 7. (a) The fitted versus observed plot, (b) the R-squared results according to the number of trees, (c) 

the results during the 10-fold cross-validation process, and finally, (d) the importance of each feature for 

the best model EMMA-RF. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.) 

Several experimental runs were performed to find the best combination of number of trees and 

randomly selected parameters in order to avoid overfitting. It was found that 50 trees was the 

optimum amount (Biau, 2012 ;  Mayumi Oshiro, Santoro Perez and Augusto Baranauskas, 2012) 

with 6 randomly selected parameters. In general, the more trees one used, the better the results. 

However, in the case of our dataset, the regression improvement decreased as the number of trees 

increased. Thus, at a certain point, the benefit in prediction performance from learning more trees 

was lower than the cost in computation time for learning these additional trees. In addition, a trend 

of overfitting in the model was also observed, although it seemed that most of the times was not 

significant (Breiman, 2001). The code in R of the RF regression function is described below: 
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RFreg < function(my.datf.train,my.datf.test, 
 sCV,iSplit=1,fDet=F,outFile="") {  
#===============================  
# Basic RandomForest  
#===============================  
# make available the names of variables from        
 training dataset  
net.c = my.datf.train[,1]  
RegrMethod <- "rf" # type of regression 
 
# Define the CV conditions  
ctrl<- trainControl(method=sCV,number=10,         
 repeats=10,summaryFunction=defaultSummary) 
tuneParam = data.frame(.mtry=c(2:12)) 
 
# Train the model using only training set  
rf.fit<- train(net.c∼.,data=my.datf.train, 
 method=′rf′,trControl=ctrl,          
 metric=′RMSE′,ntree=50,tuneGrid=tuneParam)  
…  
} 

 

The full code sources and example inputs and outputs can be downloaded from the open 

Github repository entitled batchRRegrs (the cluster version of RRegrs (Tsiliki et al., 2015b), 

https://github.com/cafernandezlo/batchRRegrs/). 

 

An additional study of the positive and negative correlation between all the features/output 

variables for the current dataset (training and test) is presented in Fig. 8. It should be pointed out 

that the ruminal in vitro gas production (dVg) is not strongly related to the expected CSH values of 

ruminal mixed microbes. The positive correlation between dtk and dD, dc_NH3N is a natural 

consequence of the fermentation process. In addition, the positive correlation between digestibility 

(dD) and dc_NH3N should also be emphasised, along with the negative correlation between dpH 

and dD, dC_NH3N. The positive correlation between dVg and dtk2 is explained by the fact that in 

time the gas production increases. The plot shows that there are no significant correlations 

between the observed CSH values and the features of the model, demonstrating the lack of a linear 

prediction model for this dataset. 

  

http://www.sciencedirect.com/science/article/pii/S0957417416306017#bib0051
https://github.com/cafernandezlo/batchRRegrs/
http://www.sciencedirect.com/science/article/pii/S0957417416306017#fig0008


 
 

 
Fig. 8. Correlations between dataset features/CSH observed values (CSH) 

obtained with corrplot package from R. 

Breiman stated that RF did not overfit, so it could be said that one can use as many trees as 

they want, taking into consideration only the size of the dataset and the computational costs of the 

experiments. However, Segal (2004) found that RF overfitted for some noisy datasets, especially 

in regression. 

 

The best EMMA-ML model was obtained using the most complex method, RF (EMMA-RF). 

The model is based on all 12 features and it is characterised by R
2
 and RMSE values of 0.99 and 

0.09, respectively, for test set (on a dataset > 170 000 perturbation cases). The optimised model for 

the CSH prediction is able to predict the effects of perturbations under the experimental conditions 

or variables Vq(tk) over CSH of ruminal microbes. It showed that both time series (tk and tk2) 

contributed to the prediction of CSH with the RF model. 

4. Conclusions 

The current work presented for the first time an EMMA-ML model to forecast the CSH values, 

a Perturbation Theory model that used the Expected Measure (EM) of CSH as input variables 

combined with the theory of Box-Jenkins Operators and Time Series Analysis. Perturbations were 

used in all input variables (SSA, ST, pH, c_NH3N, D, Vb, and Vg) in dual-time series with 

various scales. The best CSH prediction model used the RF method (EMMA-RF) and it was based 

on 12 input variables, with the test R
2
 of 0.992. On the one hand we found that simple models such 

as LM, GLM, PLS, Lasso and ENET are unable to deal with a huge dataset like the one proposed 

in this paper. On the other hand, we found that complex, state-of-the-art NN and RF, a well-known 

powerful nonparametric statistical method, considers this dataset enough informative to learn the 

inherent complexity of the data in terms of number of cases. 

  

http://www.sciencedirect.com/science/article/pii/S0957417416306017#bib0044


The objective of the current work was to develop a model able to rationalise and predict the 

effect of all the input variables, such as SSA, ST, pH, fibre digestibility, etc. over the cell surface 

hydrophobicity of the microbiome by using samples of mix microbiome (bacteria and protozoa 

together). A future direction of our research could be the differentiation of the effect on different 

types of cells, such as positive gut bacteria, pathogen bacteria, pathogen protozoa, etc. under 

different feeding treatments. This could open new ways of improving feeding quality for animals. 

 

The model demonstrated the increased importance of the in vitro fermentation parameters such 

as CSH expected value (eCSH), digestibility (dD) and ammonia – nitrogen concentration 

(dc_NH3N) for the prediction of the cell surface hydrophobicity. 
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