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V

"Es, pues, de saber, que este sobredicho hidalgo, los ratos que estaba

ocioso -que eran los más del año-, se daba a leer libros de caballerías con

tanta afición y gusto, que olvidó casi de todo punto el ejercicio de la caza,

y aun la administración de la hacienda; y llegó a tanto su curiosidad y
desatino en esto, que vendió muchas hanegas de tierra de sembradura para
comprar libros de caballerías en que leer, y así, llevó a su casa todos cuantos
pudo haber dellos... Con estas razones perdía el pobre caballero el juicio,
y desvelbase por entenderlas y desentrañarles el sentido que no se lo sacara
ni las entendiera el mesmo Aristóteles, si resucitara para sólo ello... En

resolución, él se enfrascó tanto en su lectura, que se le pasaban las noches

leyendo de claro en claro, y los días de turbio en turbio; y así, del poco
dormir y del mucho leer se le secó el cerebro, de manera que vino a perder

el juicio" .

El ingenioso hidalgo Don Quijote de la Mancha, cap. 1.

Graciaŝ Raquel.

"Nós creemos que a auga doce dos ríos pode facer doce a auga salgada do
mar; que a morte, enchéndose de vidas, será vida; que a"nada" , enchéndose

de ilusións, será "todo" ..."

Alfonso R. Castelao

Gracias mon.
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Chapter 1

Introduction

At the end of the 1970's, the relational model [Cod80] was quickly becoming
the database model of choice among researchers of the database field. At

about the same time, some researchers started to report on the limitations
of query languages over relational databases. One example is a paper by

Aho and Ullman [AU79] describing the inability of those query languages to
express the transitive closure problem. Due to this limited expressive power
of relational query languages, a strong movement towards investigating new

models started to develop.
In order to solve the problems found in the relational query languages,

several researchers focused in logic. Note that the relational model has
a strong logical basis. In fact, in this model, information is considered
implicitly as an interpretation of a first order theory [NG77]. This connection
was not explicitly exploited in the design of the relational query languages.
However, some researchers saw the power and advantages that a more
explicit relationship of logic and databases would bring:

"Mathematical logic provides a conceptual framework for many
diíferent areas of science. It has been recognized recently that
logic is also significant for databases." [GM77]

^ This is the foreword of the book "Logic and Databases" edited by
Gallaire and Minker. This text is a collection of papers that were presented
at a workshop held in Tolouse, ^ance, on November 1977. This foreword
continued: "...It will be seen that logic can be used as a programming
language, as a query language, to perform deductive searches, to maintain
the integrity of databases, to provide a formalism for handling negative
information, to generalize concepts in knowledge representation, and to

1



2 CHAPTER 1. INTRODUCTION

represent and manipulate data structures. Thus, logic provides a powerful

tool for databases that is accomplished by no other approach developed to
date [GM77]." That workshop, whose main subject was the interaction
of logic and databases, is considered by most researchers as the birth
of "deductive databases." Since then, the term ded^ctive databases has
been used to denote database systems whose data manipulation language is
expressed using logic clauses (i.e., rules).

Two decades after the birth of deductive databases, there is some
consensus that this field has reached maturity. A large body of research
exists [U1188, U1189, AH88, Min88a, Min88b] and several prototypes have

been developed in order to demonstrate the feasibility of this database
model [U1189, RBSS90]. Most of the prototypes use datalog as query
language. Informally, datalog can be seen as Prolog without function
symbols.

It is not difficult to argue that datalog, as a query language, is more

convenient than the languages based on the relational model. To start with,

the extent of predicates in a datalog program can be naturally interpreted

as relations. Therefore, datalog can be seen as a powerful extension to the
relational model.

The expressive power in datalog is based mainly in its ability to define
relations in terms of themselves; that is, it can express recursive queries
(something that could not be done in the relational query languages until
SQL99).

There has been much research in datalog since deductive databases were
first mentioned as a viable database framework. However, several problems

remain to be solved. While the field is mature, there is need for research in
several areas like integrity constraint satisfaction and query optimization.

Q^ery optirrcization is a general term for referring to techniques used to
speed up queries in database management systems. In datalog, optimizing
queries is very important since its ability to express recursive queries may
result in slow response time. Thus, query optimization has been a very
active research area in datalog.

The recent appearance of the new SQL standard SQL99 [MS02, UW97]

reaffirms the necessity of research in this area, given that SQL99 includes

queries with linear recursion (that is the type of recursion that we study

in this work). Previous standards of SQL did not include recursion, thus

now it is necessary to increase the research in query optimization to provide

the suitable algorithms that will be included in the query optimizers of

the database management systems in order to speed up the execution of

recursive queries.
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Nóte that as we pointed out, datalog can be seen as an extension of the

relational model, thus even though we use in this dissertation datalog syntax,

our results are applicable to DBM5 with SQL99 syntax straightforward.

In order to optimize recursive datalog programs, the first approach was to
try to see if it is possible to remove the recursion [Var88]; this is equivalent to
testing whether there is a non-recursive datalog program that is equivalent
to the recursive one. If this is the case, the recursive program is said to

be boundeda [Nau86, NS87]. In general, the problem of testing whether

a datalog program is bounded is known to be undecidable even for linear

programs with one intensional predicate [GMSV87].

If the program is not known to be bounded, an attractive alternative

approach is to see if we can somehow transform the program to make the

recursion "smaller" and "cheaper" to evaluate. One possibility to do that

is the semantic query o^timizatiort that uses integrity constraints associated

with databases in order to improve the efficiency of the query evaluation

[CGM88].

In this work, we use a semantic query optimization-approach to optimize
datalog programs when the input databases satisfy an important class of
integrity constraints, the functional dependencies (fds).

Two of our main contributions in this dissertation are two algorithms

developed in order to speed up the execution of datalog programs: the chase

of datalog ^rograrras (ChaseF(P)) and the cyclic chase of datalog Prograrras

(CChaseF(P)). The chase of datalog programs is introduced in Chapter
5 and the cyclic chase of datalog programs is showed in Chapter 6. Both
algorithms have as their input a linear recursive datalog program P and a

set of fds F, and the output is a program P' equivalent to P when both (P

and P') are evaluated over databases satisfying F. The algorithms do not

optimize an execution of a datalog program over a certain database, rather
they provide an alternative program that is obtained in compile time since
the new program is independent of the database to which it will be applied.
The new program is equivalent to the original one when it is applied to any
database that satisfies the set of fds used to compute such a program.

The new programs are cheaper to evaluate than the original one.
However, when they do not obtain a program that is cheaper to evaluate
than the original one, that means that the output of the algorithms is the
program provided as input. That is, they never make things worst.

gA datalog program P is bonnded when there is a non-recursive datalog program
equivalent to P. Intiutively, it is very easy to see that it is much more cheaper to evaluate
a bounded datalog program than a unbounded one.
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Both algorithms have their roots in the "chase", a term that appears

for the first time in the lossless join test of Aho, Beeri, and Ullman

[ABU79, U1188]. Despite the original objective of the chase, we use its main

idea (the equalization of symbols following functional dependencies) with a
different target. Our algorithms obtain, from a datalog program P and a

set of fds F, an equivalent program P' where its recursive rules may have

less different variables and, sometimes, less atoms. That is, our algorithms
obtain a program where the variables may be equated among them due to

the eñect of funcional dependencies. Moreover, due to those equalizations of
variables, an unbounded datalog program P may become a bounded datalog
program!

The reader may wonder why do we develop two algorithms that have the

same objective. The reason is that depending on the datalog program P that

we are trying to optimize and the set F of functional dependencies involved,
it would be more suitable either the ChaseF(P) or the CChaseF(P).
However, it is possible the combination of both algorithms. Given datalog

program P and a set of functional dependencies F, it is mandatory to
apply first the chase of datalog programs (ChaseF (P) ) and then, over the
result (say P'), it is possible to apply the cyclic chase of datalog programs
(CChaseF (P') ) to obtain a new program P" that obtains benefits from both
algorithms.

With the next examples, we give an intuitive idea of how our algorithms
optimize datalog programs. At this point we do not show how the algorithms
work, but only the advantages of the programs they output with respect to
the original ones.

E^ample 1. 0.1 Let P= {ro, rl }, where:
ro - p(X, Y) :- e(X, Y)

rl = p(X, Y) :- a(X, Z), e(Z, Y), a(X, X), p(Z, Y)

Note that P is an unbounded datalog program.
Let F be the set of fds F= {e :{1} -^ {2}, a:{1} ^{2}}. The fd

e:{1} ^{2} indicates that the set of facts over the predicate e satisfies
that the values of the first argument determiñe the values in the second
position. . The other functional dependency has a similar meaning. For
example, the atoms e(1, 3) and e(1, 4) violate the fd e:{1} -^ {2}.

As we shall show later, ChaseF(P) obtains, in this case, a bounded
program P' _{so, sl } with less variables and less atoms:

so = p(X, Y) :- e(X, Y)
sl = p(X, Y) :-a(X, X), e(X, Y), p(X, Y)
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Note that sl has only two different variables and three atoms whereas
rl has three different variables and four atoms.

It is obvious that P' is less expensive to evaluate. If we observe P', the

rule sl has the atom e(X, Y) (the atom in the body of so) in its body and
the head is equal to the head of so thus it does not obtain any fact that it

is not obtained by so. Then it is easy to see that P' is bounded!
So far, our algorithm does not remove sl, however another algorithms

have been developed in order to remove redundant atoms and rules [Sag87].
q

E^ample 1. 0.,2 Let P={ro, rl } be:

ro: p(X,Y,Z,A,B,C) :- e(X,Y,Z,A,B,C)
rl: p(X,Y,Z,A,B,C) :- e(Y,X,Y,C,A,D),p(Z,X,Y,B,C,D)

Let F be {e : {6} -^ {1}, e: {6} -^ {4}}. The ChaseF(P) does not
introduce any optimization in this case, however the CChaseF(P) produces

an optimized datalog program P' _{sp, sl, s2, s3}:

so:

si:

sa:

S3:

p(X,Y,Z,A,B,C) :- e(X,Y,Z,A,B,C)
p(X,Y,Y,A,B,B) :- e(Y,A',Y,B,A,D),e(Y,X,Y,B,B,D)
p(X,X,Z,A,B,C) :- e(^',X,X,C,A,C),e(X,Z,X,C,B,D1),e(X,Z,X,C,C,D1)
p(X,X,X,A,B,C) :- e(X,X,X,C,A,D),p(X,X,X,B,C,D)

Notice that in rl, there are six dif%rent variables whereas in s3 (the only

recursive rule of P') there are only four diíferent variables. The reader may
note that the algorithin adds rules, but those rules are non-recursive rules,

and all of them have some variables equated. O

Other aspect of this Thesis (shown in Chapter 7) obtains results in the

area of integrity constraint satisfaction. Integrity constraints are general

laws that databases must satisfy [U1188]. They arise naturally in practical
applications and restrict the domain of the input databases to a subset of all
the possible input databases. Functional dependencies [U1188] are a type of
integrity constraints that all valid databases are required to fulfill through

time.
Research in satisfaction of functional dependencies is very important.

Note that for example, violations of other types of constraints as t^cple

generating dependency are due to the lack of complete information about
the world (i.e., the lack of certain facts asserted by the tuple-generating
dependency), and therefore they can be removed by adding more information
to make it complete, such as by treating all given tuple-generating
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dependencies as additional rules of the program. On the other hand,
violations of constraints as the functional dependencies are due to the

presence of certain "incorrect" information in the databasé, such as the

same social security number assigned to two persons. There is no way to

remove such violations without undoing updates or discardiñg some original

information. In the latter case, it is no always clear what portion should

be discarded. Therefore, more attention should be paid to enforcement of
constraints of this kind.

One of the most well known problems related with functional
dependencies satisfaction in datalog is the preservation of ficnctional
dependencies. Given a datalog program, the fact that an input database

satisfies a given set of functional dependencies does not necessarily imply

that the output database still satisfies these fds. Thus, it is interesting to
know whether the output satisfies or not the given fds.

Other interesting problem is the implication of f^cnctional dependencies
(also known as the FD-FD implication problem). This próblem has to do
with the discover of new functional dependencies. That is, given a datalog
program P and a set of fds F satisfied by the input database, the output of
this program with such database as input may produce a database satisfying

a new set of functional dependencies. Then, the new set of fds satisfied by
the output are implied by F (in P).

We use again the basic idea of the chase (i.e. the equalization of symbols
following functional dependencies) to tackle the FD-FD implication problem.

In this work we provide two methods to check if a given set of fds will be
satisfied by the output database without computing such database. With
such objective, we introduce a syntactic condition that serves us to decide
if a program, which is in a subclass of linear datalog programs, implies a fd
(from a given set of fds). Besides, provided that the scheme of the database
is in Boyce Codd Normal Form with respect to the functional dependencies,
we offer a syntactic condition that serves us to identify programs that do
not imply a specific fd.

The following two examples illustrate the FD-FD implication problem
and show us its difficulty.

E^ample 1. 0. ^ Let P= {ro, rl }, where
ro : p(X, X, Y) :-e(X, Y).

rl : p(X, Y, Y) :-e(Y, Y), p(X, X, Y)•

Let F={e :{ 1}-^ {2} }. We shall consider only databases that satisfy
F. Let f= p: { 1}-^ {3} . We shall see that P implies f.
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Let us suppose that d contains the following facts:

e(1,2)
e(2, 4)
e(4, 4)

Note that these facts trivially satisfy F. If we apply P to d, the output

(P(d)) contains:

e(1, 2) p(1,1, 2)
e(2, 4) p(2, 2, 4)
e(4, 4) p(4, 4, 4)

p(2, 4, 4)

We can see that the atoms defined over p satisfy the fd f . In fact, we

can see that if d satisfies F, P(d) will always satisfy f. This is true given

that positions 1 and 3 of the two p-atoms of rl have the same variables (and
in the same order) and positions 1 and 3 of the p-atom of ro have the same

variables (and in the same order) as positions 1 and 2 of the e-atom in the

body of the rule. q

E^ample 1. 0.l^ Let P= {ro, rl } the typical chain program, ^ where:

ro : p(X, Y) : -e(X, Y).
rl : p(X, Y) :-e(X, Z), p(Z, Y) •

Let F={e : {1} ^{2}} and f= p:{1} ^{2}. We shall see that P

does not imply f. Let us assume that d contains the following facts:

e(1, 2)
e(2, 3)

If we apply P to d, P(d) contains:

e(1, 2) p(1, 2)

e(2, 3) p(2, 3)
p(1, 3)

In this case, we can see that the atoms defined over p do not satisfy the

fd f, because p(1, 2) and p(1, 3) violates p: {1} ^{2}. q

The ^outline of this dissertation is as follows. In Chapter 2, we give the
basic definitions and some basic results related to our work. In Chapter

3, we define the chase of rules and trees and some results related to these
definitions are given.
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In Chapter 4, we introduce a concept very important in this Thesis,
equalization chains. In this chapter can be found several results that we
developed for this Thesis. Although, those results can be used in other
works, the main contributions of this Thesis are in the following three
chapters.

In Chapter 5, we introduce our first algorithm to optimize datalog
programs, the chase of dcztalog programs (ChaseF(P)). In Chapter 6, we
show the second algorithm that optimizes datalog programs, thé cyclic chase
of datalog Programs (CChaseF(P)). In Chapter 7, we present our results
related to the FD-FD implication problem.

^ Finally, in Chapter 8, we present our conclusions and directions for future
work.



Chapter 2

Basic Definitions

Although the aim of this dissertation is to provide algorithms to be included
in commercial DBMS (which use SQL99 syntax), we use datalog syntax that
is easier to manipulate than the SQL syntax. Note that since the underlying
mathematical model of data for datalog is essentially that of the relational
model, therefore any datalog query can be implemented as sequencé of steps

in relational algebra [U1188] .

In fact, as we will see in this chapter, with the new standard SQL99, the

translation from some recursive datalog programs to a SQL99 query can be

done in just one step.

The outline of this chapter is as follows. In Section 2.1, we define the
syntax of datalog. In Section 2.3, we give definitions related to databases.
In Section 2.4, we define datalog programs and we provide several definitions
relatéd with them. In Section 2.5, we give definitions related to functional
dependencies. Finally, in Section 2.6, we define what a tree is and we provide
some results and definitions related to them.

2.1 Datalog

Datalog is one of the most popular query languages for deductive databases.
Informally, datalog can be seen as a version of Prolog suitable for database
systems. Indeed, datalog is basically equal to Prolog without function
symbols.

The underlying mathematical model of data for datalog is essentially
that of the relational model. A predicate r^ame ( predicate symbol or just
simply predicate) in datalog defines a relation as in the relational model.
However, as in the formal definition of relational algebra, these relations do

9



10 CHAPTER 2. BASIC DEFINITIONS

not have attributes to name their columns. Rather they are relations in the
set-of-lists sense, where components appear in a fixed order, and reference
to a column is only by its position among the arguments of a given predicate
symbol.

We shall assume that each predicate symbol is associated with a
particular number of arguments that it takes. Therefore, for each predicate
name p we assume the existence of a total function, denoted by a, from p
to the set of strictly positive integers. If a(p) = n, we say that the arity of
p is n, that is, such predicate has n attributes.

A term is a constant or a variable. An atomic form^la (or just simply
atom), is an expression of the form p(tl, ..., tn) where p is a predicate name
of arity n and each of the ti's, 1< i_< n, is a term. Sometimes, when we
refer to an atom over the predicate name p, we call it p- atom.

Basically, a predicate is the name of a function that returns a Boolean
value. If P is a relation with n attributes in a fixed order, we use p as
the name of a predicate correspondent to this relation. Let al, a2, ..., an
be constants. Then, the atom p(al, a2, ..., an) is TRUE, if (al, a2, ..., an)
is a tuple of P; likewise, if (al, a2, ... , an) is not a tuple of P, then
p(d1, a2, •••, an) is FALSE.

A predicate may contain variables and constants as terms. If an atom
contains variables in one or more of its terms, it will be a function that
returns TRUE or FALSE depending on the values assigned to the variables
when the predicate is evaluated over a database.

E^ample ,2.1.1 If p is a predicate with arity 2, and the relation of p is:

^B

1

3

3

2

4

3

Then, p(X, Y) is a function that shows that, for all X and Y, whether
the tuple X, Y is in the relation P. For example, p(X, Y) returns TRUE if
X= 1 and Y = 2 whereas if X = 2 and Y= 2, p(X, Y) returns FALSE.

Note that p(X, X) can only be TRUE when X= 3.

O

Another distinction between the relational model and the datalog model

is that in datalog there are two types of relations that can be defined. A
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predicate whose relation is stored in the database is called an e^tensional

database (EDB) relation, whereas one defined by logical rules is called an
intensional database (IDB) relation. We assume that each predicate symbol
either denotes an EDB relation or an IDB relation, but not both.

In relational model, all relations are EDB relations.
We use the following convention when we talk about predicates, variables

and constants. We denote variables by stririgs of characters starting with
a capital letter, and constants and predicate names by strings of characters

starting with a lower case letter. Two constants (respectively, variables,

predicate names) are distinct unless they are syntactically the same (they

have the same name).

Given an atom q of the form p(tl, ..., t^), we say that q[n], 1< n< k,

is the n-th component of q. Given a set of argument positions m and a
predicate q, q[m] denotes the tuple formed by the terms in the positions

defined by m.

E^ample ,2.1.,2 Consider the atom ql = e(X, Y, a). ql [1] = X, ql [{2, 3}] _

91 [2^ 3] _ (Y, a). q

A literal is either an atomic formula or a negated atomic formula. A

negated atomic formula is a negative literal and an atomic formula is a

positive literal. We denote negative literals by ^q, where q is an atom. A

cla^cse is a formula of the form:

b'Xl . . . `dXs(L1 V . . . V L„z)

where the Li's are literals and the X^'s are the variables that appear in

the LZ's.

A Horn cla^cse is a clause with at most one positive literal. A horn clause
is thus either:

1. A single positive literal, e.g., p(X, Y), which we regard as a fact. When
all the terms in the fact are constants, we say that it is a ground fact.

2. A positive literal and one or more negative literals, which is a rnle.

3. One or more negative literals, with no positive literal, which is an
integrity constraint, and which will not be considered in our discussion.

We shall use Prolog notation to represent Horn clauses.
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E^ample ,2.1.3 Consider the following Horn clause:

b'XdYb'Z(^p(X, Z) V^p(Z, Y) V p(X, Y))

We represent it as:

p(X, Y) :-p(X, Z), p(Z, Y) •

The head of a(datalog) rule is the atom to the left of the symbol ":-" .
The body of a rule is the list (conjunction) of atoms to the right of ":-" .

A rule is safe if each of the variables in the head of the rule appears
in one of the atoms in the body of the rule. Any predicate that appears
in the head of a rule is called an IDB predicate; all others are called EDB
predicates.

An atom is an EDB (IDB) atom if its predicate name is an EDB (IDB)
predicate.

Given a rule r, all variables that appear in the head of r are called
distingnished; all other variables of r are called non-distinguished.

2.2 Substitutions

A substitution is a finite set of pairs of the form Xi /ti where Xi is a variable
and t2 is a term, which is either a variable or a constant.

The result of applying a substitution, say 9, to an atom A, denoted by
B(A), is the atom A with each occurrence of X replaced by t for every pair
X/t in 9. For example, consider B={X/a, Y/b} and the atom p(X, Y),
then B(,v(X, Y)) will be p(a, b). A substitution 8 can be applied to a set of
atoms, to a rule or to a tree to get another set of atoms, rule or tree with
each occurrence X replaced by t for every X/t in B.

Given a rule r, e (r), an instantiation of r, is the rule obtained from r by
replacing each literal li in r by B(li). An instantiation of r is gro^cnd if for
all pairs X/t in 9, t is a constant.

Let Q and 9 be two substitutions. In order to obtain the composition of
Q and 9 (Q(B)), first apply 9 and over the result, apply Q.

2.3 Databases and Relations

A datalog database schema is a finite set of predicates. We assume that all
predicates used in the rest of this dissertation are implicitly in Lf, a fixed
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datalog database schema.
Given a predicate e, the relation associated with e is a finite set of ground

facts about e. A database is a finite set of ground facts about predicate

names in Ll. An e^tensional database (EDB) is a database that does not

contain facts about IDB predicates.

2.4 Datalog Programs

A(datalog) program is a finite set of rules. A program is safe if all the

rules in the program are safe. We only consider safe datalog programs; we

shall refer to them simply as programs. We denote the set of predicates in a

program by pred(P), the set of EDB predicates in the program by EDB(P),

and the set of IDB predicates in the program by IDB(P).

For simplicity, we do not allow constants in the programs.

We say that a program P defines a predicate p if p is the only IDB

predicate in pred(P). A single recursive r^cle program (sir^p) [CK86] is a

program that consists of exactly one recursive rule and several non-recursive

rules and the program defines a predicate p. A 1-sir^cp is a program that

consists of exactly one recursive rule and it does not have any non-recursive

rule. A,2-sir^cp is a sirup that contains only one non-recursive rule (and one
recursive rule) and the non-recursive rule has only one atom in its body. A

rule is linear if there is at most one IDB atom in its body. A linear sir^cp

(lsirup) [Var88] is a sirup such that its rules are linear. A 1-lsir^cp (,2-lsir^cp)

is a 1-sirup (2-sirup, respectively) such that its rules are linear. That is, a

2- lsir^cp is a program defining a predicate p with one non-recursive rule,

which has only one atom in its body, and one recursive rule, which has only

one IDB atom in its body.

From now on, we denote with rl the recursive rule in a 2- lsirnp whereas

we use ro to denote the non-recursive rule.

In the next subsection we are going to give a brief and intuitively idea

of the operations that can be done with a 2- lsir^cp. For an extended

explanation see [U1188] .

2.4.1 F^om relational algebra to datalog

The relational algebra operators can be replicated by one or more datalog
rules. In this section, we analyze each relational operator in order to
illustrate that 2- lsirups include all basic relational algebra operators.
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Intersection

The intersection of two relations is expressed with a rule that contains two
atoms in the body, one for each relation, and with the same variables in the
correspondent positions.

E^ample ,2.,^.1 Let us use the relations:

r(name, address, gender, birthdate)

s(name, address, gender, birthdate)

The intersection of those relations in datalog is obtained by the following
datalog rule:

i(N,A,G,B) : -r(N,A,G,B),s(N,A,G,B)

Here, i is an IDB predicate that obtains r (^ s. 0

Union

The union of two relations is obtained with two rules. Both rules should
have the same IDB predicate in the head.

E^ample ,2.,^.,2 The union of the relations r and s of Example 2.4.1 is:

u(N, A, G, B) :-r(N, A, G, B)

n(N, A, G, B) :-s(N, A, G, B)

q

Pro jection

In order to obtain the projection of a relation, the IDB atom in the head of

the rule contains only the variables corresponding to the desired attributes.

E^ample ,2..^.3 We want the name and the address of the persons in relation
r of Example 2.4.1:

p(N, A) :-r(N, A, G, B)
0



2.4. DATALOG PROGRAMS 15

Selection

The selection are covered by two strategies. One is the use of built-in

predicates, and the other strategy is the repetition of variables in atoms.

We do not consider built-in predicates in this work, but our results are

applicable also to programs with built-in predicates.

E^ample ,2./^..^ If we want to obtain the persons from relation r of Example

2.4.1 that are male:

m(N, A, G, B) :-r(N, A, G, B), G="male"
0

E^ample ^.4.5 Let us suppose the following two relations of scheme

n(name, addres, city, birthplace)
c(city, co^cntry)

We want to obtain persons who live in the same city where they were

born:

p(N) : -n(N, A, C, C)

Notice that in order to obtain tuples that have the same value in the

attributes city and birthplace, we put, in the atom in the body of the rule,
the same variable in the terms that correspond to such attributes. This
would be equivalent to p(N) :-n(N, A, C, B), C= B.

Cartesian product

The cartesian product can be expressed in a datalog rule. It should have
two atoms in the body, one for each relation in the product. Those atoms
in the body have dif^£erent variables, one for each attribute of the relations.
The IDB predicate in the head must have all the variables in the atoms of

the body.

E^ample ,2.4.6 The cartesian product of the relations of Example 2.4.1 is:

p(A, B, C, D, W, X, Y, Z) :-r(A, B, C, D), s(W, X, Y, Z)
0
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Join

The join is very similar to the cartesian product, we only have to put the
same variable(s) in the positions of the predicates that define the join.

E^ample 2..^. 7 Using the relations of Example 2.4.5 we want the information
about persons including the country where they live.

p(N, A, G, B, C) :-n(N, A, G, B), c(G, C)

Observe that in order to obtain the country where persons live, we put in
both atoms (in the body of the rule) the same variable (G) in the positions
of the attribute city.

2.4.2 Recursion in SQL99

In this section, we are going to focus our attention in SQL99 [MS02, UW97].
Previous SQL standards did not include recursive queries, now SQL99
includes such facility and some commercial products start to include this
type of queries. In SQL99, only linear recursion is obligatory. Note that
linear recursion is the type of recursion that is considered by the results of
this dissertation.

SQL99 has a proposition which is introduced with the key word WITH.
This proposition allows to define IDB relations.

WITH R AS <definition of R> <query that includes R>

E^ample ,2..^.8 Let us define an EDB relation f lights that has the
information of flights of airlines:

f lights(airline, f rom, to, departs, arrives)

The meaning of the attributes are clear. Let us suppose that we want
to compute the pairs of cities such that it is possible to flight from one to
another. The query can be expressed with a 2- lsir^p:

reaches(X, Y) :- f lights(A, X, Y, D, R)
reaches(X, Y) :- f lights(A, X, Z, D, R), reaches(Z, Y)

In SQL99 the query could be issued as:
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WITH
RECURSIVE reaches(frm, to) AS

(SELECT frm, to FROM flights)
UNION
(SELECT R1.FRM, R2.T0
FROM flights AS Rl, reaches AS R2
WHERE R1.to=R2.frm)

SELECT * FROM reaches;

17

0

In other words, it is defined a temporal relation R that is used later in

a query. More generally, it is possible to define several relations after the

WITH, separating their definitions by commas. Any of these definitions may
be recursive. Several defined relations may be defined from other definition,
even from themselves. Any relation that is involved in a recursion must be
preceded by the key word RECURSIVE. Thus, a WITH statement has the form: .

1. The key word WITH.

2. One or more definitions. Definitions are separated by commas and

each definition consists of

(a) An optional keyword RECURSIVE, which is required if the relation

being defined is recursive.

(b) The name of the relation being defined.

(c) The keyword AS.

(d) The query that defines the relation.

3. A query, which may refer to any of the prior definitions and, it is the

result of the WITH statement.

Definitions of relations in WITH statements can be only used inside of
such proposition.

Hence, we have illustrated that 2- lsirups (among other datalog
programs) can be translated to SQL99 straightforward.

2.4.3 G: a special class of 2 - lsirups

We define a special class of 2 - lsirups denoted by G and formed by the
2- lsirups where the predicate name of the atom in the body of the non-
recursive rule does not appear in the recursive rule.
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E^ample ,2.,^. 9 Let P={r°i rl }, where:

r0 = p(X ^ Y) ^ - Ĵ (X ^ Y)
rl = p(X, Y) :- a(X, z) , a(z, Y), e(X, X), p(z, Y)

P is a program in class G.

0

2.4.4 Semantics of datalog Program Evaluation

In this dissertation we use the proof-theoretic interpretation of rules. That
is, from a set of rules (datalog program) the "proof-theoretic meaning" of

such set of rules is the set of facts derivable from the given set of facts, or

database facts, using the rules in the "forward" direction only, that is, by

inferring left sides (consequents or conclusions) from right sides (antecedents
or hypothesis).

However, proof-theoretic, model-theoretic and fi^-point interpretations
coincide for datalog programs [U1188, AHV95].

In the literature about the field, the evaluation method shown below is
known as a naive bottom-up evaluation.

Given a program P and a database d, the non-recnrsive application of
P to d, denoted by P1(d), consists of the set of facts derivable from d by
applying the rules in P as follows: A fact q is in P1(d) if one of the following
two cases is true:

1. q is in d.

2. There is a substitution 6 and a rule r in P of the form po : -pl, ..., pn,
such t hat B( pi ) E d, 1< i< rt and q= 9( po ).

Let P° (d) = d and Pi+l (d) = P1(Pi (d) ). Then P(d), the output of P
with input d, is UZ^o Pi (d), that is, the set of all facts that can be derived
from d by repeated ñon-recursive applications of P. Note that P(d) always
contains d. It is well known that the set P(d) is finite (we are dealing with
finite databases, and the application of P to d does not create new terms).
This means that for a given program P there exists an integer k >_ 0, that
depends on d, that P^(d) = P(d) [CH82].

A datalog program P is bo^cnded [Nau86, NS87] if there is a constant
c such that for any extensional database d over EDB(P) the number
of non-recursive applications of P is less than c. Clearly, if a program
is bounded it is essentially non-recursive, although it may appear to be
recursive syntactically.
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Sometimes, we just refer to the output of a rule. Let r be a rule, and

let d be a database, r(d) denotes the output of r with input d. Observe

that a rule can be considered a program, thus r(d) is equal to P(d), where

P = {r}.

E^ample ,2.l^.10 Let P={rp, rl}, where

ro : p(X, X, Y) :-e(X, Y).
rl : p(X, Y, Y) :-e(Y, Y), p(X, X, Y)•

Let us suppose that d contains the following facts:

e(1, 2)
e(2, 4)
e(4, 4)

P1(d) is:

e(1, 2) p(1,1, 2)
e(2, 4) p(2, 2, 4)
e(4, 4) p(4, 4, 4)

Note that in the computation of Pl (d) only ro was used. It is the only

choice, given that in order to apply rl it is needed the presence of p-atoms

in the input database. Hence, clearly rl cannot be applied in P1(d).

In the computation of PZ (d), rl is applied since P1(d) contains facts

about p, thus a new fact, p(2, 4, 4), is obtained using rl with P1(d) as input

database. Eventually, P2 (d) is:

e(1, 2) p(1,1, 2)
e(2, 4) p(2, 2, 4)
e(4, 4) p(4, 4, 4)

p(2, 4, 4)

At this point, it is clear that it is not possible to obtain any new atom,
thus P2(d) is P(d). 0

2.4.5 Equivalence of datalog programs

Let Pl and P2 be programs. P2 contains Pl, written Pl C P2, iíf Pl (d) C

P2 (d) for all EDBs d. Pl and P2 are eqnivalent, written Pl = P2, iñ Pl C

PZ and P2 C Pl .
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Let S be a set of EDBs over a given datalog scheme Ll. P2 contains Pl
over S, written Pl C S P2, iíf Pi (d) C P2 (d) for all EDBs d E S. Pl and P2
are equivalent over S, written Pi =S P2, ifi Pl CS P2 and P2 C5 Pl.

2.4.6 Rule expansion

Let P be a lsirup. Let r and s be two rules of P, where at least r is recursive
and s may be r again. We can expand (compose or unfold) r with s, denoted
by r o s, if the head of s is defined over the same predicate name as the IDB

atom (qi) in the body of r and there is a substitution ^ from the variables
in the head of s to the terms in qi.

Let ^' be a new substitution constructed as follows: ^' contains all the
pairs of ^ and, for any non-distinguished variable V in s that also appears
in r, ^' contains the pair V/V', where V' is a variable that does not appear
in anywhere else.

Let bl, ..., b^, be the atoms in the body of s. Then, r o s is r, where qi
is substituted by ^' (bl ), . . . , ^' (b,^ ) .

E^ample ,2..^.11 Given the rules:
ro : p(X, Y) :-e(X, Y, Z)
rl : p(X, Y) :-e(X, X, Z) , p(Z, Y)

The IDB atom in the body of rl is p(Z, Y) and the head of the rule ro is
p(X, Y). Taking ^_ {X/Z} we have that p(Z, Y) _^(p(X, Y)). Then,
rl o r^ is: p(X, Y) :-e(X, X, Z), e(Z, Y, Z1).

Observe that Z is a non-distinguished variable in ro that also appears in
rl. Thus, ^' sends it to a new and distinct variable Z1. q

r^ denotes the composition (self-unfolding) of r with itself k times.

E^ample ,2..^.1 ^ Let P= {ro, ri }, where:

ro - p(X, Y) :- e(X, Y)
rl = p(X, Y) :- e(X, Z), e(X, Y), p(Z, Y)

The expansion of the rule rl with ro (denoted by rl

rl o ro =^(X, Y) :- e(X, Z), e(X, Y), e(Z, Y)

In the same way, we can build:

o ro ) is:



2.5. FUNCTIONAL DEPENDENCIES 21

rl o rl o rp = ri o ro = p(X, Y) :- e(X, Z), e(X, Y), e(Z, Z'), e(Z, Y), e(Z', Y)
ri o ro = p(X, Y) :- e(X, Z), e(X, Y), e(Z, Z' ), e(Z, Y), e(Z', Z"), e(Z', Y), e(Z", Y) q

2.4.7 Pro jection Operator

We use the symbol, ^r, like the projection operator of the relational algebra.

The output of ^ril,,.,,i,^ [p, P(d)] is the projection over the columns il, ..., ik

of the p-facts of P(d).

E^ample ^.l^.1^3 Using the database P(d) of Example 2.4.10, ^r1,2[p, P(d)] is:

p(1,1)
p(2, 2)
p(4, 4)
p(2, 4)

2.5 ^.inctional Dependencies

In this section we give a formal definition of fds and the notation we shall

use to represent them.

Let p be a predicate of arity t. Let n be the set {^1, ...,^^} and m be

the set { yl, ..., y^ }, where the ^i's and the yl's are integers in the range

from 1 to t. A f^cnctional dependency (fd) over p is a statement of the form

p:{n} ^{m}, read as "n functionally determines m over p."

Let f= p:{n} -^ {m}. Then, we say that p is the predicate of f, n is

the left-hand side of f, and that m is the right-hand side of f. A database

d satisfies the fd p:{n} -^ {m} if for every two facts µ and v about p in d

such that µ[n] = v[n], it is also true that µ[m] = v[m]. If d does not satisfy

p:{n} ^{m}, then we say that it violates that dependency.

We denote with a^ [L^] the set of variables of the atom ak that are placed

in the positions defined by the left-hand side of a fd f^. When by the context

it is clear which fd is used, we only denote ak [L] .

In the same way, we denote with a^[R^] the set of variables of the atom

a^ that are placed in the positions defined by the right-hand side of a fd f^ .

When by the context it is clear which fd is used, we only denote a^ [R] .

E^ample ,2.5.1
Let us suppose that the predicate manages(Manager, Employee) asserts

that a manager, denoted by Manager, manages the employee denoted by

Employee. The instance of the relation associated with manages shown
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in Table 2.1 satisfies the fd manages : {2} -^ {1}, but it does not satisfy
manages : {1} --^ {2}. p

MANAGES

MANAGER EMPLOYEE

ana raquel
ana pedro

ana gustavo

pedro jorge

pedro ramiro
gustavo juan

juan pablo
juan agustin

Table 2.1: The relation MANAGES

Let F be a set of fds. A database d satisfies F if d satisfies every fd in
F. Let Q be a set of predicates. F is defined over Q if all fds in F are over
some predicate in Q.

SAT(F) represents the set of all databases over a given datalog schema
Lf that satisfy F.

Let P be a program and let F and G be sets of fds over pred(P). Consider
a fd g defined over p, a predicate in pred(P). Then we say that g is implied by
F(in P) [AH88], denoted F ^P g, if P(d) satisfies g, for all d in SAT (F)
such that d is defined over EDB(P). We say that . F implies G(in P^,
denoted by F^P G, if F^P g for every fd g in G.

If we allow d to contain tuples about predicates in IDB(P), in addition to
contain tuples about predicates in EDB(P), then we say that g is uniformly
implied by F(in P) [AH88], and we denote it by F^P g, if for all d
in SAT ( F), P(d) satisfies g. We say that F ^cniformly implies G(in P),
denoted by F^P G, if F^P g for every fd g in G.

Let f=p :{n} -^ {m}. Then, f is left-hand (side) minimal with respect
to F if for all proper subsets h .of n, F^P p:{h} -^ {m}. f is minimal with
respect to F if the following conditions are all true: f is left-hand minimal
with respect to F; m is a singleton set; and F^P f.

P preserves F if F^P F. P nnifomly preserves F if F^ p F.
We shall consider the consequents of all fds as singleton sets. By

Armstrong's axioms [Arm74], such assumption does not restrict our results.
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2.6 Expansion Trees

An e^pansion tree is a description for the derivation of an intensional fact by
the application of some rules to extensional facts and the set of intensional

facts generated earlier. The leaves of a tree are EDB atoms. All non-leaf

atoms are IDB literals. Every non-leaf atom represents an application of a
rule, whose head is the non-leaf atom, and the children of such atom are the

atoms in the body of the rule.

For the sake of simplicity, from now on, we shall refer to expansion trees

simply as trees.
Let r be the rule q :- ql, q2i ..., q^. Then, a tree T can be built from r

as follows: the node at the root of T is q and q has k children, qi, 1< i< k.

We denote this tree as tree(r).

E^ample ,2. 6.1 Let P={ro, rl }, where:
ro = p(X, Y) :- e(X, Y)
rl = p(X, Y) :- a(X, Z), e(Z, Y), a(X, X), p(Z, Y)

P(X, Y)

a(Ji', Z) e(Z, Y) a(X, X) ^(Z, Y)

Figure 2.1: tree(rl)

Let S and T be two trees. Then, S and T are isomorphic, if there are

two substitutions 9 and a such that S= 8(T) and T= a(S).

The variables appearing in the root of a tree T are called the distinguished

variables of T. All other variables appearing in nodes of T that are different

from the distinguished variables of T are called the non-distinguished

variables of T.
The previous definition of a tree only considers expansion trees built

from a rule. However, an expansion tree may have different levels coming
from successive composition (or applications) of rules.

Let S and T be two trees. Assume that exactly one of the leaves of S
is an IDB atoma, denoted by ps. The e^pansion (composition) of S with T,

aThat is the case of the trees generated by 2- lsirúps, since in the recursive rule of

such programs, there is only one IDB predicate. ^
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denoted by S o T is defined if there is a substitution 8, from the variables in
the head of T(ht) to the terms in ps, such that 9(ht) = ps. Then, S o T is
obtained as follows: build a new tree, isomorphic to T, say T', such that T'
and T have the same distinguished variables, but all the non-distinguished

variables of T' are diñerent from all of those in S. Then, substitute the atom
ps in the last level of S by the tree B(T').

From now on, we use the expression tree(r^ o ri) to denote tree(rj) o
tree(ri).

A level of a tree is formed by all the atoms that have the same parent
atom.

Let T be a tree. The level of a node in T is defined as follows: the root
of T is at level0, the level of a node n of T is one plus the level of its parent
node. Level j of T is the set of atoms of T with level j.

2.6.1 TopMost and frontier of a tree

Two rules that can be extracted from a tree. Let T be a tree:

• the frontier of T (also known as resultant), denoted by f rontier(T), is
the rule h:- b, where h is the root of T and b is the set of the leaves
of T.

• the topMost of T, denoted bt topMost(T), returns the rule h:- b,
where h is the root of T and b is the set of the atoms that are the
children of the root.

E^ample ,2.6.,2 Using the tree T2 = tree(ri o ro) in Figure 2.2 we have:

f ror^tier(T2 ):^(X, Y) :- a(X, Z), e(Z, Y), a(X, X), a(Z, Z'), e(Z', Y), a(Z, Z), e(Z', Y)

topMost(T2) : p(X, Y) : -a(J^', Z), e(Z, Y), a(X, X), p(Z, Y)

2.6.2 The set trees(P)

From a 2-lsirup P an infinite number of trees To, Tl, T2, ... can be obtained.
Each Ti denotes tree(ri o ro). We call trees(P) the infinite ordered set of
trees generated by the procedure e^pandTree (see Figure 2.3):

E^ample ,2. 6. ^ Let P={ro, rl } be:

ro: P(X,Y,Z,A,B,C) :- e(X,Y,Z,A,B,C)
ri: P(X, Y, Z, A, B, C) :- e(Y, X, Y, C, A, D), ^(Z, X, Y, B, C, D)
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p(^
^^

a(X, Z) e(Z, Y) a(X, X) p(Z^Y)

^
a(Z, Z') e(Z', Y) a(Z, Z) p(Z', Y)

I
e(Z', Y)

Figure 2.2: T2

Proced^cre expandTree(P)

Inp^ct: A 2-lsirup P={Tp,rl}, where rl is the recursive rule.

O^ctput: An infinite ordered set of trees.
Ass^cmptions: rl o rl is defined.

Let L be the empty ordered set of trees;

append tree(ro) to L;

Let T = tree(rl);
while TRUE

append T o tree (ro ) to L;

Let T= T o tree(rl);

Figure 2.3: Generating an infinite ordered set of trees

T2 is obtained as follows: tree(rl) is composed with itself and then,

the resulting tree (tree(ri)) is composed with tree(ro) obtaining, finally,

tree(ri o ro).

T2 = tree(rl o ro) (built from P) is shown in Figure 2.4.

The following conventions are used when we refer to trees:

• When we use the expression a tree Tj is bigger or higher than a tree

T^, it means that j> k.

• When we use the expression a tree Tj is shorter or smaller than a tree

T^, it means that j< 1^.

• When we use the expression a tree Tj has more levels than a tree T^,
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e(Y,J^',Y,C,A,D)
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X,Y,Z,A,B,C)

p(Z,X,Y^B,C,D)

\

e(X,Z,.I',D,B,D1) p(y,Z,X,C,D,DI)

I
e(y,Z,X,C,D,DI)

Figure 2.4: T2

it means that j> k.

• When we use the expression a tree T^ has less or fewer levels than a
tree T^, it means that j< k.

• We say that two levels i and k (in Tj) are separated by w levels if
i=1^+work=i+w,andi< j andk< j.

Note that in all the trees in trees(P) where P is a 2 - lsirúp, any
level is isomorphic to any other level in the tree, except the last level and
level 0. This is true given that all the levels excepting the last one are
obtained applying the recursive rule. We can extend this affirmation as in
the following lemma.

Lemma ,2.6.1 Let P be a 2- lsirnp. Let Ti be a tree in trees(P) and let

Tsub be the tree formed by the last j levels of Ti (j < i) and rooted by the
IDB atom in level j- 1. Then, Tl and TS,i6 are isomorphic.

Proof It follows from the definition of trees and given that there is only one
recursive rule and only one non-recursive rule. p

E^ample ,2. 6..^ Let P= {ro, rl } be:

ro: p(X,Y,Z,A,B,C) :- e(X,Y,Z,A,B,C)
rl: p(X,Y,Z,A,B,C) :- e(Y,X,Y,C,A,D),p(Z,X,Y,B,C,D)

In Figure 2.5(a), we can see the tree Tl constructed with P. In Figure
2.5(b), we can see TSUb, the tree formed by the last two levels of T2 (in Figure
2.4) and rooted with the IDB atom in level 1 (of T2).

It is easy to see that these trees are isomorphic. Then, applying a
substitution to one of them, they became equal. For example, let us consider
the substitution:
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p(X, Y, Z A, B, C) p(Z, X, Y B, C, D)

e(Y,X,Y,C,A,D) p(Z,X, B,C,D) e(X,Z,X,D,B,D1) p(Y,Z,X,C,D,D1)

^ I 1e(Z,X,Y,B,C,D) e(Y,Z,X,C,D,D )

(a) (b)

Figure 2.5: Tl and Ts^b

9={Z/X, X/Y, Y/Z, B/A, C/B, D/C, D1/D}

8(Ts,^b) is equal to Ti. ^

2.6.3 Relative position and columns

An atom in a tree can be represented as ai,^ . In such case, ai,^ represents an ^

atom that is in level i and in the j- th relative position inside of level i. The

relative position of an atom q^ in level l of Tw is, intuitively, the position
of such atom in level l, counting atoms from left to right and beginning at
1, except in the case of levels 0 and w+ 1, as it can be seen in the formal

definition given below.

• If 0< l<_ z.u, the relative position of q^ in level l is the position of q^

in level l counting the atoms in level l from left to right and beginning

at 1.

• If l is 0 or w+ 1, that is, if q,^ is either the root or the atom in the

last level of Tw, the relative position of q^ in level l is the number of

atoms in the body of the recursive rule used to build the tree.

E^ample ,2. 6.5 In the tree of Figure 2.6, p(Y, Z, X, C, D, D1) is denoted by
a2,2, that is, p(Y, Z, X, C, D, Dl ) is in level 2 and in relative position 2. Note
that the atoms in the root of the tree and in the last level are in relative
position 2 given that there are two atoms in rl . Thus, p(X, Y, Z, A, B, C) is

denoted by ao,2 and e(Y, Z, X, C, D, D1) is denoted by a3,2.
0

Similarly, for a variable in an atom of a tree, we define its col^mn as its

position, counting variables of its level, from left to right and beginning at

l. Again, variables in level 0 and in the last level of the tree represent the

exceptions.
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Relative position 1 Relative position 2

p(X Y Z A B C), , , , ,
^ ^-- Level 0

e(Y,X,Y,C,A,D^ p(Z,X,Y,B,C,D) ^
-. Level 1

e(X,Z,X,D,B,D') p(Y,Z,X,C,D,D') f- Level 2
^

e(Y,Z,X,C,D,D') ^ Leve13

Figure 2.6: T2

More precisely, we define the column of a variable in a tree as follows.
Let X be a variable in th n-th position of ai,^, an atom a tree T. The colurrin
of X (in the n-th position of ai,^) is computed as follows: if the recursive

rule is rl = ao (Xo) :-al (Xl ), a2 (XZ), ... , an ( ^), then the column of X is
the arity of al, plus the arity of a2 ... plus the arity of a^_1, plus n.

E^ample ^. 6. 6 In the tree of Figure 2.7, a2,2 [2] = Y is in level 2 and in
column 4.

Observe that a3,4 (e(Z', Y)) is an atom in the last level. Therefore,

a3,4[1] (Z') is in the 7-th column, since the addition of the arities of the

EDB atoms of rl is six and Z' is in the first position of a3,4. In the same

way, a3,4[2] (Y) is in the 8-th column, obtained adding six to the second

position of Y in cz3,4.

^
a(Z, Z') e(Z', Y) a(Z, Z) p(Z^, y)

I

e(Z', Y)

Figure 2.7: T2

q
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2.6.4 Expansion Graph G of a 2- lsirup

In this section we introduce a graph that is used to capture how the variables

appear and disappear through the levels of a tree.

Let P be a 2- lsirup. Let ph and pb be the IDB atoms in the head

and in the body of rl, the recursive rule of P. The E^pansion Graph of a

program P is generated with this algorithm.

1. If the arity of the IDB predicate in P is 1^, add k nodes named l, ..., k.

2. Add one arc from the node n to the node m, if a variable X is placed

in the position n of ph, and X is placed in the position m of p6.

3. Add one arc from the node n without target node, if a variable X is

placed in the position n of ph, and it does not appear in pb.

4. Add one arc without source node and target node m, if a variable X

is placed in the position m of pb and it does not appear in ph.

E^ample ,2. 6. 7 Let P={ro, rl } where rl contains the following IDB atoms:

^(A,B,C,D,E,F,G,H,I,J,K,L,M) : -...P(B,A,E,C,D,F,W,G,G,^',J,L,L)

In Figure 2.8, we can see the expansion graph of. P. q

V
^ ^ ^

(^ .--► 13

^ l2

Figure 2.8: Expansion Graph of P

Claim ,2.6.1 Let P be a 2- lsirup. In the e^pansion graph G of P, a chunk

is a subgroup of G that is connected. That is, there is at least one node such

that all the other nodes in the chunk can be reached from it. 0

E^ample ^.6.8 The graph in Figure 2.8 has 6 chunks.

Defcnition 2.6.1 The length of a chunk is the ma^imum number of nodes (of

the ch^cnk) that cañ be visited using only once the ares that form the chunk.
Each node m^cst be counted once, even when the chunk is a cycle. q
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E^ample ,2.6.9 The lengths of the six chunks in the Figure 2.8 are
respectively: 2, 3, 1, 2, 2, 2. p

2.6.5 Variable types in trees

Let P be a 2- lsir^cp. In a tree T, where T is in trees(P), we define two
types of variables:

• Variables in the head of rl that correspond (in the expansion graph) to
nodes that belong to cyclic chunks are called cyclic variables (CV's).
Since these variables correspond to cyclic chunks, then cyclic variables
appear in all levels of any tree in trees(P).

• Variables that are not cyclic variables are called acyclic variables
(AC's). Acyclic variables correspond to acyclic chunks, and thus
acyclic variables do not appear in all levels bigger than a certain levelb
(that depends on the program used to built the tree).

E^ample 2. 6.10 Let P={ro, rl } be:

ro : p(A, B, C) :-e(X, Y, B, C, A)
rl : p(A, B, C) :-e(M, N, A, H, I), a(B, C, M, I), p(B, A, H)

In Figure 2.9, we show T3 = ri o ro with its levels and columns.

Columns 1 2 3 4 5 6 7 8 9 10 ll l2 13 14
Level 0 (A, B, C )
Levell M, N, A, H, 1) a(B, C, M, 1) (B, A, H)
Level 2 e(M , N, B, H, 1) a(A, H, M, I) (A, B, H)
L.evel 3 e(M , N, A, H, 1-) a(B, H, M, I) (B, A, H)
Level4 e(a, Y, A, H` B)

Figúre 2.9: T3

If we inspect the expansion graph of P in Figure 2.10, we can see that the
variables in positions 1 and 2 of the head of the tree (A and B) correspond
to positions 1 and 2 of the expansion graph. These positions conform a

bObviously if the tree has enough levels.
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cyclic chunk, thus A and B are cyclic variables. The other variable in the
head of the tree (C) corresponds to the position 3 in the expansion graph.
Such position is in an acyclic chunk, thus C is an acyclic variable. The rest
of variables are also acyclic variables.

Note that C does not appear in levels bigger than one, since it is an

acyclic variable. On the other hand, since A and B are cyclic variables,

they appear in all levels of the tree.

Figure 2.10: Expansion graph of P

q

2.6.6 The number N

N is a number defined from the expansion graph of a 2 - lsirup. Basically,

it establishes rules that variables (both cyclic and acyclic) in any tree built

from a 2 - lsirup, from where N was computed, must satisfy.

Definition ,2.6.,2 Let G be the e^pansion graph of a 2- lsirup P, then JV is

the least common multiple of the chunk lengths of the chunks in G.

E^ample ,2.6.11 The graph in Figure 2.8 has JV = 6 (6 =

least common multiplier of 2, 3, 1, 2, 2, 2).

In the next two subsections, we introduce some properties based on N.

Properties of N and cyclic variables

Let P be a 2 - lsirup, let Ti be a tree in trees(P). Levels of Ti separated

by N levels have the cyclic variables in the same columns (excepting in the
last level and level 0 of the tree) . That is, for any cyclic variable in a^,^ [n],
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where ak,^ is an atom in Ti, by construction of N, for all integer e such that

ak+clV,l is an atom in Ti, it is true that ak+^,^ [n] (if ak+^,^ [n] exists in Ti )
is the same variable as ak,l [n] .

Lemma ^.6.,2 Let P be a 2 - lsir^cp. Let Ti be a tree in trees(P). If there is
a cyclic variable V in ak,^[n], the variable in ak+^N,l[n] (if ak+^,^[n] e^ists
in Ti), where c is an integer, is V as well.

Proof If follows from the definition of CV's and the definition of N. q

E^ample 2. 6.1,2 Let P={rp, rl } , where:

ro = p(X, Y) :- e(X, Y)
rl = p(X, Y) :- e(Z, X), e(X, Y), p(Y, X)

Using P, T3 is:

e(Z, X ) e(X, Y p(Y, X )

e(Z1 ^ 1') e(Y^ X) ^(^^^ Y)

e(Z2, X) e(X, Y) p(Y X)

^
e (Y, X )

Figure 2.11: T3

In this example, N= 2.
In the tree of Figure 2.11, X and Y are the CV's. Thus, we can

see that if ai,l [2] = X, then a1+iN,1 [2] is X as well. In the same way,

a1,2[1, 2] = a1+iN,2[1, 2].

q

We can extend the properties of the number N to two trees such that

one has more levels than the other and the difference of levels between the

two trees is a multiple of N.
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Lemma ,2. 6. ^ Let P be a 2- lsirnp. Let Ti and Tj be two trees in trees (P)

sach that j= cN + i and c is a positive integer. For all cyclic variable V^ in

a^,l [n], where a^,^ is an atom in Ti, then in Tj, a^+^,^ [n] is V as well.

Proof a^,^ exists also in Tj given that j> i. Therefore, ak,^ is the same

atom in Ti and T^. Thus, by Lemma 2.6.2, in Tj, for all cyclic variable V

which is in the n- th position of ak,^ ( i.e., a^,^ [n] = V) then a^+^,^ [n] is V

as well. ^

E^ample ^. 6:1 ^ Let P={ro, rl } be:

ro: p(X,Y,Z,A,B,C) :- e(X,Y,Z,A,B,C)
rl: p(X,Y,Z,A,B,C) :- e(Y,X,Y,C,A,D),p(Z,X,Y,B,C,D)

p(X,Y,Z,A,B,C)

e(Y,X,Y,C,A,D) p(Z,X,Y,B,C,D)

e(X,Z,X,D,B,D') p(Y,Z,X,C,D,D')

e(Z,Y,Z,D',C,Dz) p(X,Y,Z,D,D',DZ)

e(Y,X,Y,D^,D,D3) P(Z,X,Y,%',DZ,D3)

e(Z,X,Y,D',D2,D3)

Figure 2.12: T4

In Figure 2.12 is shown T4, and in Figure 2.5(a) is shown Tl, both built

with P. N for P is 3, thus, in this case, 4 is 1+ 1N.
Let us check the atom al,l of Tl (e(Y, X, Y, C, A, D)). In T4, al,l is

exactly the same atom, thus any CV is in the same positions in both atoms.

Moreover, the atom a4,1 of T4 (e(Y, X, Y, D2, D, D3)) is JV levels

downwards from al,l, therefore all the CV's (X and Y) are in the same

positions in al,l = e(Y, X, Y, C, A, D) and a1+1N,1 = e(Y, X, Y, D2, D, D3).
0

Properties of N and acyclic variables

Until now, we have studied the relationship of N with cyclic variables,
however N is not only associated with cyclic variables. N has also properties



34 CHAPTER 2. BASIC DEFINITIONS

related with acyclic variables.

Lemma ,2.6./^ Let P be a 2- lsirnp, Ti be a tree in trees(P) and a^,,-,,,[n] be
an acyclic variable. Then, al,,,,,[n] cannot appear in levels smaller than l-N
and bigger than l-^ N.

Proof It follows from the definition of ,J^Í. q

In other words, two appearances of an acyclic variable in a tree cannot
be separated by more than N levels. Therefore, if a variable X is in two
atoms (say qi and q^) separated by more than N levels, then according to the
definition of N (and the definition of chunk length), X is a cyclic variable,
and then it must appear in the same columns each N levels.

E^ample ,2.6.1.^ The tree of Figure 2.12 was built with the program P:

ro: p(X, Y, Z, A, B, C) :- e(X, Y, Z, A, B, C)
rl: p(X,Y,Z,A,B,C) :- e(Y,X,Y,C,A,D),p(Z,X,Y,B,C,D)

N, for P, is 3. The CV's of the tree of the Figure 2.12 are X, Y and Z.
Let us inspect any other variable, for example D. D appears in level 1, 2
and 3. However, in level 4 D does not appear. If D would appear in a level
bigger than 3, it would be a cyclic variable. Thus it is clear that D is an
acyclic variable. q



Chapter 3

Chase of rules and trees

The term "chase" appears for the first time in the lossless-join test of Aho,

Beeri, and Ullman [ABU79, U1188]. Right after that, the chase began
to be used to solve problems dif%rent from its original motivation (i.e.

determining if a certain decomposition is a lossless-join decomposition) .
For example, Maier, Mendelzon and Sagiv [MMS79] use the chase in order
to discover (data) dependencies and Beeri and Vardi [BV84] extend the
algorithm of Maier, Mendelzon and Sagiv to generalized dependencies.

Reviewing the relational model, the chase is used for dif%rent purposes
(see [Mai83], [AHV95] ): to optimize tableau queries (that can be generalized
to conjunctive queries), to characterize equivalence of conjunctive queries
with respect to a set of dependencies and to determine logical implication

between sets of dependencies.

Moreover, its applications have even crossed the boundaries of the
relational model, and there are applications of the chase in almost any major

database model.

In datalog, the chase has been used in different areas: Lerat [Ler86]
applies the chase to resolve null values in databases with incomplete
information; Sagiv [Sag87] used the chase to test uniform containment of
datalog programs; Torlone and Atzeni [TA91] use a variation of the chase
with resolution to take into account fds that are defined on extensional
database predicates, for consistency checks and for resolving ambiguities;
Wang and Yuan use the chase to solve the uniform implication problem

[WY92] whereas Hernández et al. use the chase to solve the implication
problem [HPB97b, HP97, HPB97a]; Lakshmanan and Hernández [LH91]
use the chase as part of a procedure to "factor-out" goals from a class of
linear sirups under the presence of fds.

35
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The chase as a tool to optimize queries in the framework of datalog is also
used by several researchers [LH91, GT95, Tan97, BGTHP98a, BGTH^P98b,
PBPH00, BHPPOI].

Recent data models have also adopted the chase to optimize queries.

Papakonstantinou and Vassalos [PV99] use the chase as a rewriting
technique for optimizing semistructured queries. Popa et. al. [Pop00,
PDST00] use the chase to optimize queries in the framework of the
object/relational model.

All these works reveal the chase as a very powerful multipurpose tool, but

why is the chase useful for such a variety of probléms? The reason should be

found in the eífect of the chase over databases, programs or rules. Basically,

the chase may equate symbols or add tuples using the information provided

by constraints. Such equalizations and new tuples may be used to resolve
ambiguities, to remove null values, or in many cases to equate variables that
may lead to remove atoms or other purposes.

The outline for this chapter is as follows. In Section 3.1, we give the

definition of the chase of a rule and some related results. In Section 3.2,
we give the definition of the chase of a tree and some related notation and
results. In Section 3.3, we define a special type of chase of trees called partial
chase. Finally, in Section 3.4 we introduce the cyclic topMost.

3.1 The chase of a datalog rule

The chase [Mai83, AHV95] is a general technique that is defined as
a nondeterministic procedure based on the successive application of
dependencies (or generalized dependencies) to a set of tuples (that can be
generalized to atoms).

Although the chase has many applications, we apply the chase in order
to optimize datalog rules. Originally, the chase takes advantage of functional
dependencies and join dependencies, however, some authors have extended
the chase to other types of constraints [Sag87, Pop00, PDST00].

In our work, we use the chase using functional dependencies that are
semantic constraints representing equalities that must be held in databases
[U1188]. Basically, the idea behind the chase (as it is used in our work) is
that when a rule r is evaluated over a database d that satisfies a set of fds
F, the substitutions that map the variables in atoms of r to the constants in
the facts of d can map different variables to the same constant, since in the
database there is less variability (due to the fds) than in the rule. The chase,
in order to optimize the rule, pushes these equalities into the variables of
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the rule.
Even though the chase was first applied to optimize conjunctive queries

[AHV95], Gonzalez Tuchmann, to the best of our knowledge, coined the
term chase of a datalog rnle [GT95].

Though the chase of datalog rules it is not a new definition of our work,
we oñer in this section a deep analysis of such procedure, since it is not a

standard procedure and it is very important for this dissertation.

Consider the following:

• Let F be a set of fds defined over EDB(P), for some program P.

• Let r be a rule of P.

• Let f= p : {n} -^ {m} be a fd in F.

• Let ql and q2 be two atoms in the body of r such that the predicate

name of ql and q2 is p, ql [n] = Q2 [n] and ql [m] ^ Q2 [m] .

Note that ql [m] and Q2 [m] are variables since we are assuming that
programs do not contain constants. An applicatiorc of the fd i to r is the

uniform replacement in r of ql [m] by Q2 [m] or vice versa.

Definition ^.1.1 ^GT95^ Let r be a r^cle and let F be a set of fds over the

predicates in the body of r. The chase of r with respect to F, denoted by

ChaseF(r), is the rz^le obtained by applying every fd in F to the atoms in

the body of r nntil no more changes can be made.
0

E^ample ^.1.1 Let r be the rule p(X, Y) :- e(X, Z), e(X, Y), e(Z, Y). Let
FbethesetoffdsF={f =e:{1}->{2}}.

The ChaseF(r) is a new rule r' = p(X, Y) :- e(X, Y), e(Y, Y) obtained

after the equalization of Z with Y in the atoms of the original rule r. This
equalization is due to the existence of the atoms, e(X, Z) and e(X, Y), which
have the same variable in the position definéd by the left-hand side of the
fd e:{ 1}^{ 2}. Thus, variables in the position defined by the right-hand
side of the fd (Z and Y) are equated. Note that r and r' produce the same
output when they are evaluated over databases in SAT(F). O

F^om^ now on, we may use the terms chase of a datalog rule and chase
of a rule indistinctly.

Because the chase of rules does not introduce new variables, it turns out
that the chase procedure always terminates. Applying a fd to a rule r can
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be performed within time polynomial in the size of r[Mai83, AHV95], thus
the time of its computation is tractable.

Note that the chase of a rule equates some of its variables, thus the chase
defines a substitution where in each pair both members are variables in the
rule. That is, there is a substitution ^ such that ^(r) = ChaseF(r).

Let r be a rule and F be a set of fds. If we introduce an order in the
variables of r (let say X < Y< Z, ...) and when the chase equates (for
example) X and Z, then Z is replaced by X (the variable closer to the end
is replaced by the variable closer to the begin). Then the ChaseF(r) always
produce the same rule independently of the order of the fd applications, that
is, the chase of a rule is Church-Rosser [Mai83, AHV95].

The following lemma proves that r' -sAT(F) r, that is, r' is equivalent
to r when both are applied over databases satisfying the set of fds F.

Lemma ^.1.1 Let r be a datalog r^cle, F a set of fds over EDB(r) and r' the ,

ChaseF(r). Then, r' =SAT(F) r•

Proof Let d be a database in SAT(F). We have to prove that for any atom
q in r(d), q must be in r'(d) as well, and if q' E r'(d) then q' has to be in
r(d). First, we are going to prove that if q is in r(d), then q must be in r'(d).

In this proof, we are going to consider only one equalization of variables
due to a fd application during the chase. The extension to several fd
applications (and thus equalizations) is straightforward.

Let f= p:{n} ^{m} be a fd in F and let bl, ..., b^ be the atoms in
the body of r. Let bi and b^ be two atoms in the body of r such that the
predicate name of bi and b^ is p, bi [n] = b^ [n] and, bi [m] ^ b^ [m] .

If q is in r(d) then there is a substitution 9 such that 9(bl), ..., 9(bn)
are in d, and 9(h,.) = q, where hr is the head of r. Therefore, if B(bi) = gl
and 9(b^) = g2, then gi and g2 are in d. Note that 9(bi[n]) = 9(b^[n]), since
bi [n] = b^ [n], thus gl [n] = g2 [n] . Then, since d is in SAT (F), gl [m] = g2 [m]
(see Figure 3.1).

Let bi and b^ be bi and b^ after the chase of r(r'), that is, b2 and b'^ are in
the body of r'. In r', due to the chase, bi [m] is equated to b^ [m] or vice versa,
let say that bZ [m] is equated to b^ [m] . Therefore, if the substitution defined
by the chase is ^, that is, r' _^(r), then ^ contains the pair bi[m]/b^[m].

Let 8' be the substitution 9' _^(8). Note that for each pair in 6 that
includes bi (b2 [m] /g^ [m] ), in 9' there is a pair exactly the same but with b2
replaced by b^ ( b^ [m] /g^ [m] ). It is easy to see that 9' ( b2 ) = gl and 9' (b'^ )= g2,
since in B, bi [m] and b^ [m] are mapped to the same constant (gi [m] = g2 [m] )
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b; b^

p^T^, ... , T^, ... ,Tm, ... ,Tw) p(S>> ... , Tn, ... ,Sm, ... ,

1 e 1 e

... , án, ... ,á,r,, ... ,á,^,) p(bl^ ... , án, ... ,á^,,, ...

Figure 3.1: Regular evaluation

whereas in 8', there is only one variable (b^ [m]) that is mapped to the same

constant. Hence, it is easy to see that if 9(h,.) produces q, then 9'(h',.) (where

h;. is h,. after the chase) produces q and, 9(bi), ..., 8(bñ) (where bi, ..., bñ

are bl, ..., b^, after the chase) are in d(see Figure 3.2).

The other side, that is, if q' is in r'(d) then q' is in r(d), is trivial since

r' is r with some of its variables equated. ^

Notice that even if not all the possible equalizations that the chase of

a rule (r) may produce were applied to r, the resulting rule (say rt) is

equivalent to r when both are applied to databases satisfying the set of fds

used to perform the equalizations. That is, let rt be the rule r after t E N` fd

applications using a set of fds F. That is, rt may not include all the possible

fd applications that the chase may produce. rt is still equivalent to r when

both are applied over databases satisfying the set of fds F used to produce
the fd applications applied over rt.

3.1.1 Benefits of the chase of rules

Although, it is easy to see that the equalizations of variables lead to cheaper
evaluations, such benefits are discussed in this section.

Let us consider a datalog rule (without negation), an evaluation of such
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b; b;

P(T>> ... , T^, ... ,Tm, ... ,TW) P(S>> ... , Tn, ... ,Sm, ... ,S^,,)

P(T^, ... , Tn, ... ,T,,,, ... ,T^,,) P(S>> ... , T^, ... ,Tm, ... ,SW)

Figure 3.2: Evaluation through the chase

rule can be viewed as the evaluation of a relational algebra expressiona
[U1188, AHV95]. In order to do that, we introduce a method that builds,
from a given rule, a relational algebra expression that computes the same
output database as the application of the body of a rule to an input database.

Let r be a rule. We shall assume that the body of r consists of subgoals
bl, . . . , bn involving variables Xi, . . . , X,,,,. For each bi = pi(Xii, . . . , Xiki),
there is a relation R,^ already computed, where the X's are arguments.

For each b2, let Qi be the expression ^r^i (Qyyt (Ri)), where ^r and Q are the
projection and selection operators of relational algebra, respectively. Here,
U is the set of different variables that appear among the terms of bi. Wi is
a conjunction of expressions of the form ^l^ _$l. The expression $k =^l is
in Wi, if the positions k and l of bi both contain the same variable.

The final expression is obtained by applying the natural join of all the
Qis previously defined.

E^ample 3.1.,2 Let r be the rule:

gIf the rule is recursive, then the relational algebra expression may have to be evaluated
several times in order to obtain the same result as the original rule.
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r: c(X, Y) :-p(X, Z), p(Y, W), s(Z, W)

Suppose we have relations P and S computed for predicates p and s,

respectively. We may imagine there is one copy of P with attributes X and

Z and another with attributes Y and W. We suppose the attributes of S

are Z and W. Then, the relation that corresponds to the body of r is:

C(X, Z, Y, W)= P(X, Z) ^a P(Y, W) ^a S(Z, W)

Obviously, over C, a projection is needed in order to obtain the desired

final result. q

Example 3.1.2 is a very simple one. Now, let us consider in the next
example a rule where there are atoms with some variables equated.

E^ample ^.1.^ Let r be the rule:

r: c(X, Y) :-r(X, Z, X), c(Z, Y)

Suppose that we have already computed the relations R and C for

subgoals r and c, respectivelyb.

Observe that r(X, Z, X) has the same variable in its first and third

positions. Thus, this atom produces the following expression:

U(X, Ĝ ) = 7f1^21Q$1=$3(R))

Note that the presence of the same variable in diíferent positions

generates a selection operation over R.
Thus, the final expression for the body of r is:

E(X, Y, Z) = U(X, Z) ^a C(Z, Y)

Obviously, over E, a projection is needed in order to obtain the desired
final result. q

Therefore we can conclude that the equalization of variables during the
chase has three main effects:

• It may introduce selections.

bObviously, we consider the version of C resulting of previous non-recursive applications
of recursive or non-recursive rules.
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• It may introduce more arguments to perform the natural join. For
example, we may have, before the chase, a join e(X, Z) ^a ^(Y, Z)
and, after the chase, we may have to evaluate e(Y, Z) ^^a ^(Y, Z). In
the latter case, the join is performed using two arguments (Y and
Z) whereas, in the previous case, the join is performed through only
equalizations in the Z attribute.

• It may remove joins. For example, let us suppose that in the body
of a rule there are two atoms e(X, Y) and e(Y, X) and that the chase
of such a rule produces the equalization of the variables X and Y
(assume that Y is replaced by X). Then one of the atoms can be
removed (since both atoms became e(X, X)).

• It may transform a unbounded datalog program in a bounded dotalog
program.

Now, let us remind some basic concepts about the computational costs
of the relational algebra operators (see [AHV95]).

Selection can be realized in a straightforward manner by a scan of the
argument relation and thus can be achieved in linear time. Access structures
such as B-trees indexes or hash tables can be used to reduce the search time
needed to find the selected tuples. Moreover, in the case of selections with
single tuple output, this permits evaluation within essentially constant time
(e.g., two or three page fetches). For larger outputs, the selection may take

two or three page fetches per output tuple; this can be improved significantly
if the input relation is clustered (i.e., stored so that all tuples with a given
attribute value are on the same or contiguous disk pages).

However, the equi-join (or natural join ^a) is typically much more
expensive because two relations are involved. A naive implementation of
^a will take time on the order of the product nl x n2 of the sizes of the input
relations Il and I2. Obviously, several improvements have been developed.
For example, the use of the sort-merge reduces the running time to the order
of ma^(nl log nl + n2 log n2, size of output).

In addition to the discussion showed above, we have to keep in mind
that an evaluation of a recursive rule may lead to the evaluation of the
relational algebra expression several times in order to compute the whole
answer. Thus, even the evaluation includes a intelligent strategy such as the
incremental evaluation [U1188], the recursion leads to computations much
more costly than the case of the relational model.

Therefore, if the chase removes an atom in a rule, obviously it is a big
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J.=O;
foreach v in I2

foreach
If ^c and v are joinable then J:= J U{^c ^a v}

Figure 3.3: Naive Join

improvement, since such removal leads to the removal of, at least, a join ^.

Although the chase would not remove atoms, if it equates variables, it still
produces benefits in the running time because of the following two effects.

One of them is the equalization of variables in an atom. In this case,
the equalization introduces a selection over in input relation. This effect
reduces the number of tuples of one of the input relations of the join. This
is a clear advantage since the reduction of tuples in the input of the join (as
we have already seen, an operation much more expensive as the number of
input tuples grows) leads to a reduction in the running time. It is clear that
the benefits in the join pay the cost of the computation of the selection (an
operation much less expensive).

On the other hand, the inclusion of more variables common to several
atoms, may lead to the transformation of a cartesian product into a join, or
at least, introduce more equality conditions in the join. A join with more
arguments in common allows for an intelligent use of indexes that replaces,
in the algorithm of Figure 3.3, the inner loop by indexed retrievals of tuples
of T2 that match the tuple of Il under consideration. Observe that the
more attributes in common between the two relations, the more chances to
use indexed retrievals. Therefore, using this approach, and assuming that
a small number of tuples of I2 match a given tuple of Il, this approach
computes the join in time proportional to the size of Il, which is a great
improvement.

3.1.2 Equivalence of a program and the chase of its rules

The definition of the chase of rules can be extended to programs as follows.

Let P be a program. Then the chase of the r^cles of a^vrograrn P with

^In fact, it leads to the removal of a join operation for each application of the relational
algebra expression to the database.
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respect to F [GT95], denoted by ChaseRulesF(P), is given by

ChaseRulesF(P) _{r' ^ r' = ChaseF(r), r E P}

As the reader may expect, a program and the chase of its rules are
equivalent over SAT(F).

Corollary ,^.1.1 Let P be a prograrra and let F be a set of fds defined over

EDB(P). Then P -SAT^F) ChaseRulesF(P).

Proof It follows from Lemma 3.1.1. p

3.2 Chase of a tree

Let P be a 2 - l sirup, F a set of fds over EDB (P) and T a tree in trees (P) .
The chase of T with respect to F, denoted by ChaseF(T) [GT95], is obtained
by applying every fd in F to the atoms that are the leaves of T until no more
changes can be made.

E^arraple ,^.,2.1 Considering the tree T in Figure 3.4(a) and F
{e : {1} ^ {2}}. T and ChaseF(T) are:

p(X, Y, Z) p(X, X, X)

e(X, Y, Y) e(X, Z, Z) p(X, X, Z) e(X, X, X) e(X, X, X) p(X, X, X)

^ (
e(X, X, Z) e(X, X, X)

(a) (b)

Figure 3.4: T and ChaseF (T )

Note that in T, the atoms e(X, Y, Y), e(X, Z, Z) and e(X, X, Z) have
the same variable in the position defined by the left-hand side of the fd
e:{ 1}-^ { 2}. Thus, variables Y, Z and X, which are placed ( in those
atoms) in the position defined by the right-hand side (of the same fd), are
equated in ChaseF (T ) .

Obviously from those trees the topMost and frontier can be computed:

topMost(T) = p(X, Y, Z) :-e(X, Y, Y), e(X, Z, Z), p(X, X, Z)
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f rontier(T) = p(X, Y, Z) :-e(X, Y, Y), e(X, Z, Z), e(X, X, Z)

topMost(ChaseF(T)) = p(X, X, X) :-e(X, X, X), e(X, X, X), p(X, X, X)

f rontier(ChaseF(T)) = p(X, X, X):-e(X, X, X), e(X, X, X), e(X, X, X)
0

3.2.1 The chase is Church-Rosser

The Ch^crch-Rosser property of the chase [Mai83, AHV95] indicates that,

given a tree T and a set of fds F, the chase of T with respect to F' produces

a unique end result.
However, the chase of a tree, as it is defined until now, would produce

several isomorphic results. This occurs because the chase (until now) does
not indicates which variable replaces the others, mainly because it does not
matter at all.

E^ample ^.2.,2 Let F = {e : {1} -^ {2}, e : {1} ^ {3}}, and let T be:

p(X, Y, Z)

e(X, Y, W) e(X, Y, Z) e(X, X, W) p(X, X, Z)

^
f (X, X, G)

Two possible outputs of the ChaseF(T) can be seen in Figure 3.5.

p(Y, ?', W )

e(Y, Y, W (Y, Y, W) e(Y, Y, W) p(Y, Y, W) e(X, X, Z

I

(a)
Ĵ (Y, Y, G)

p(x^

X, X, z) e(X, ^', z) p(X, X, z)

I
f (X, X, G)

(b)

Figure 3.5: Two isomorphic chased trees

The trees in Figures 3.5(a) and 3.5(b) are isomorphic. Both trees are
completely equivalent, however from now on, in order to use the word
"equal" instead of "isomorphic", we are going to introduce a set of rules
for equating variables during the chase of a tree.

O
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Defining an order in the equalizations during the chase

We follow the two rules presented below in order to guarantee that the final

result of the chase is independent of the order of the application of the fds
and the order of the equalizations of variables.

When the chase of a tree equates two variables A and B, we use the
following rules:

• If B is an AV and A is a CV, then all the occurrences of B are replaced
by A.

• If both are either acyclic variables or cyclic variables:

- If the first appearance of A in a level of the tree is in a level
smaller than the level of the first appearance of B (i.e. A is in a
level closer to the root), then all the occurrences of B are replaced
by A.

- If the first appearance of both variables is in the same level, then
the variable in the biggest column in such a level is replaced by
the variable in the smallest column.

E^arraPle 3.,2.3 In Example 3.2.1, ChaseF(T) produces two fd applications
(that produce two equalizations):

• The equalization of Z and Y. Using the rules shown above, since Z is
a CV and Y is an AV, Y is replaced by Z.

• The equalization of Z and X. In this case, since both are cyclic
variables and their first appearance in T is in the same level (0), we
replace the variable in the biggest column of level 0(Z) by the variable
in the smallest column (X).

Therefore, the resulting tree is in Figure 3.4(b). Observe that regardless
of the fd application order, the tree in 3.4(b) is the final result.

0

The Church-Rosser property of the chase ^

We now show that the order of the fd applications during the chase does
not matter, that is, we guarantee that regardless of the fd application order
during the chase, the resulting tree will be not only isomorphic but identical.
That is, the chase is Church-Rosser [Mai83, AHV95].
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Lemma ^3.,2.1 ^Mai83, AHV95^ Let T be a tree in trees(P) where P is a

2- lsirnp, and let F be a set of fds over EDB(P). D^ring the ChaseF(T),
the order of application of the fds does not change the final resnlt.

Proof It is obvious that all the variables that would be equated by the chase,
finally are equated regardless of the fd application order. The application
of a fd over two or more atoms leads to the equalization of several variables

that before the fd application were distinct. Therefore, the application of a
fd over several atoms does not exclude that other fds would be applied over

other atoms.

In addition, the rules of renaming variables during the chase guarantees

that independently of the order of the fd applications, at the end, all the

variables that are equated among them are equated always to the same

variable.

Hence, we can conclude that for any tree Ti in trees(P) where P is a

2- l sir^cp and a set of fds F, there is only one ChaseF (Ti ). O

E^ample 3.,2./^ Using the tree of Example 3.2.1, it is clear that the chase

equates all the variables to X.

Let us consider diíferent orders in the equalizations produced by the

chase. One possibility is to equate first Y and Z.

Since Z is a CV and Y is an AV, then Y is replaced by Z. The next

fd application equates Z and X, then Z is replaced by X, given that in

both cyclic variables appears in level0, and in such level, the variable in the

smallest column is X.

Other possibility is to equate first X and Z, again Z would be replaced

by X, and then Y would be replaced by X since Y is an AV.

Therefore, regardless of the fd application order, all variables are equated

to X. ^

3.3 Partial Chase of a tree

The chase of datalog programs (our first algorithm to optimize datalog
programs) does not use the chase of trees, it uses a restricted version of
the chase that we call partial chase.

The partial chase of T with respect to F, denoted by ChasePF(T), is

obtained by applying every fd in F to the leaves of T, except the atom(s)
in the last level, until no more changes can be made.
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E^ample ^. ^.1 Using the tree T and the fds of the Example 3.2.1 we
construct ChasePF (T ) :

p(X, Z, Z)

e(X, Z, Z) e(X, Z, Z) p(X, X, Z)

I
e(X, X, Z)

Figure 3.6: ChasePF (T )

ChaseF(T) would produce alsó the equalization of X and Y, given that
e(X, X, Y) and e(X, Y, Y) have the same variable in the position defined by
the left-hand side of the fd e:{1} -^ {2}, and X and Y are in the position
defined by the right-hand side of such fd.

However, the partial chase does not consider the atom in the last level
and then, the chase terminates with the tree shown above. q

3.3.1 Properties of the partial chase of trees built from
2 - lsirups

In the partial chase, the atom in the last level is not involved in the fd
applications during the chase. This exclusion has important ef%cts in the
chase, mainly because when we chase two trees built from the same program,
the chase of the big one considers all the atoms considered in the chase of
the small one plus other atoms.

This situation is not produced during the chase of trees (that is,
considering the atom in the last level). In that case, the biggest tree does
not have the atom in the last level of the small one, thus the chase of the
big one may not contain all the equalization produced during the chase of
the small one.

Lemma 3.^.1 Let P be a 2- lsir^cp, let F be a set of fds over EDB(P).
Let T,,,, and T^, be two trees in trees(P) where m> n. Then, any level j of

ChasePF (T,,,,,), where j< n< m, has less or equal di, f^`erent variables than
level j o f ChasePF (Tn ).

Proof Note that Tm has all the atoms of T^ that would be involved in the
chase. The unique atom in T^ that T^,, does not have, is the atom in the
last level. However, the partial chase does not consider this atom.
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. Observe that level j of T^, and level j of T^,,, (before the chase) are
equal. Moreover, any equalization in ChasePF (Tn ) is also produced in

.:ChasePF(T„^), therefore ChasePF(T,,,,) may have more equalizations and

thus, level j of ChasePF(T,^,^) may have less different variables. 0

E^ample 3. ^.2 Let P= {ro, rl } be:

ro : p(X, Y, Z) :-e(X, Y, Z)
rl : p(X, Y, Z) :-e(X, Y, Y), e(X, Z, Z), p(X, X, Z)

Let F={e :{1} -^ {2}}. Next, we can see Tl and its partial chase.

p(X, Y, Z) p(X, Z; Z)

e(X, Y, Y) e(X, Z, Z) p(X, X, Z) e(X, Z, Z) e(X, Z, Z) p(X, X, Z)

^ (
e(X, X, Z) e(X, X, Z)

Figure 3.7: Tl and ChasePF (Tl )

We can observe that the only equalization in level 1 is the equalization

of Y and Z. Now, let us check T2 (in Figure 3.8) and its partial chase (in

^ Figure 3.9).

p(X, Y, Z)

e(X, Y, Y) e(X, Z, Z) p(X, X, Z)

e(X, X, X) e(X, Z, Z) p(X, X, Z)

I
e(X, X, Z)

Figure 3.8: T2

Level 1 of ChasePF (TZ ) includes the equalization of Y and Z as well.
However, in such level, there is a new equalization, Y is equated to X due
to the existence in level 2 of e(X, X, X). Such atom and e(X, Y, Y) (in level
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p(X, X, X )

e(x, x, x) e(x, x, x) p(x, x, x)

e(X, X, X) e(X, X, X) p(X, X, X)

^
e(X, X, X )

Figure 3.9: ChasePF (T2 )

1) have the same variable (X) in the position defined by the left-hand side
of e:{1} --^ {2}, therefore Y and X are equated.

Thus finally, Z, Y and X are equated. It is easy ^ to see that the
presence of a new level (level 2) generates a new equalization. However, the
equalizations produced in ChasePF(Tl) are also produced in ChasePF(T2),
since T2 contains the atoms e(X, Y, Y) and e(X, Z, Z)d.

q

The topMost of a tree is formed by levels 0 and l, thus the previous
lemma can be extended to the topMost.

Lemma ^3.^3.,2 Let P be a 2- lsir^cp, let F be a set of fds over
EDB(P). Let Tm, and T,^ be two trees in trees(P) where m> n.
Then, topMost(ChasePF(T„^)) has eq^cal or less di,fferent variables than
topMost (ChasePF (T^, ) ) .

Proof This lemma is a special particularization of Lemma 3.3.1. q

E^ample 3. ^. 3 Using the Example 3.3.2, if we check ChasePF (Tl ) and
ChasePF(T2) we observe that the topMost(ChasePF(T2)) includes all the
equalizations found in topMost(ChasePF(Tl)) (the equalization of Y and
Z) plus another equalization, the equalization of X and Z. 0

Given a 2 - lsir^cp P, the set of variables in the topMost of any tree in
trees(P) is finite, since the topMosts of all the trees Ti E trees(P), with
i> 0, are equal. Then, given a set of fds F over EDB(P), by the previous
lemma, it is obvious that there is a tree T^ such that all trees with more
levels than T^ have the same topMost after their partial chase.

dThese atoms are the atoms of Tl that generate the equalization of Y and Z.
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Lemma ^.^3.^ Let P be a 2- lsir^cp, let F be a set of fds over EDB(P).

There is a tree T^ svch that, for all i> k, topMost(ChasePF(Ti)) is eq^cal

to topMost(ChasePF (T^ ) ) .

Proof Note that all the trees in trees(P) with more than two levels have
the same topMost, in fact, such topMost is rl. Thus, the set of all variables

in the topMost of all the trees in trees(P) is finite. Therefore, there is a

limit in the equalizations that can be produced in the topMost.

By Lemma 3.3.2, for all i, j such that i> j > 0, any equalization

in topMost(ChasePF(Tj)) is also included in topMost(ChasePF(Ti)).

Therefore, if Tk is a tree such that ChasePF (T^ ) produces in the topMost all

the possible equalizations that may be produced in the topMost of the trees

in trees(P) with F (in the extreme case, all the variables of the topMost will
be equated), then any tree with more levels will produce the same topMost
after the chase. q

E^ample ^.^./^ Again, using the Example 3.3.2 it is easy to see that any

tree bigger than T2 will have the same topMost after its partial chase as T2.

Observe that topMost(ChasePF(T2) has only one variable, thus it is not

possible to introduce new equalizations. q

The reasoning made for the previous lemma can be extended to any level
of a tree.

Lemma ^.^3.1^ Let P be a 2-lsir^cp, let F be a set of fds over EDB(P). For
any j in i^1̀, there is a tree Tu, where u> j, s^cch that level j of ChasePF(T^)

is eq^cal to level j of ChasePF(TM), for all M> z^. That is, all the trees
with more than ^c levels have, after the partial chase, eq^cal level j.

Proof The number of variables in level j of all trees in trees(P) is finite
given that all levels j (if they exist) of any tree in trees(P) are equal (if we
except the case of Tj _ 1) . This fact plus Lemma 3.3.1 implies that there is
a tree T^ where all the possible equalizations among variables in level j are
produced (in the extreme case, all the variables are equated). Therefore, for
all trees TM with M> ^c, level j of those trees are equal after the partial
chase.

By the rules to rename variables during the chase introduced in Section
3.2.1, it is guaranteed that the equalizations in ChasePF(T^) and in
ChasePF(TM) produce the same level j. 0
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E^ample ^.3.5 Let us consider the program and fds of Example 3.3.2. For

level 1, it is obvious that T2 is the tree such that level 1 of the partial chase
of any tree bigger than T2 will be equal to level 1 of ChasePF(T2), because
all variables are equated.

q

3.3.2 Equivalence of the partial chase to the chase

In some special cases the partial chase of a tree may produce the same
equalizations as the regular chase.

Lemma ^.3.5 Let P be a 2- lsir^p and let Q be a program in class ,Ce such

that both programs have the same recursive rule. Let F and G be a two sets

of fds defined over EBD(P) and EDB(Q) respectively, such that F and G

have the same fds for all the fds defined over atoms that are in the recursive
rule. Let T^ be a tree in trees(P) and T^ be a tree in trees(Q) with j+ 1
levels, then the first j levels of ChasePF (T^ ) are equal to the first j levels of
ChaseG (T^ ) .

Proof Note the partial chase does no consider the atom in the last level, and
for the programs in class G the (unique) predicate name of the atom in the
non-recursive rule is not present in any atom of the recursive rule, therefore
the atom in the last level would not be involved in a fd application. Thus

in both cases, only the atoms in the leaves of all the levels except the last
one are considered.

Given that we have considered that the recursive rules in both cases are
the same rule, then clearly the first j levels of ChasePF (T^ ) are equal to the
first j levels of Chasec (T^ ). p

E^ample ^. ^3. 6 Let P={ro, rl }, where:

ro = p(X, Y) :- a(X, Y)
rl = p(X, Y) :- a(Z, Z), a(X, Y), p(Z, Y)

Let Q = {ro, ri }, where:

ro = p(X, Y) :- e(X, Y)
rl = p(X, Y) :- a(Z, Z), a(X, Y), p(Z, Y)

Figure 3.10 shows T2 and T2 obtained from P and Q respectively.

QIntroduced in section 2.4.3.
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^(^', Y) P(X ^ Y)

a(Z1 ^ Z1) a(Z^ Y) ^(Z1 ^ Y)

ía(Z , Y)

Figure 3.10: T2 and T2

Y)
^

a(Z' ^ Z1) a(Y^ Y) ^(Z1 ^ Y) a(Z1 ^ Z1) a(

ía(Z , Y)

Figure 3.11: ChasePF (T2 ) and ChaseG (T2 )

Let F and G be {a :{ 1}-^ { 2}}. Figure 3.11 shows ChasePF (TZ ) and

ChaseG (T2 ) .

The first 3 levels of ChasePF (TZ ) and Chasec (T2 ) are equal. However,
note that if we chase T2 w.r.t F, another equalization would be produced
due to the existence of a(Z1, Y) and a(Z1, Z1) that would equate Z1 to Y.

O

3.4 Cyclic topMost

The cyclic topMost is a special type of topMost extracted from a chased
tree.

Let P be a 2-lsirup and let F be a set of fds over EDB(P). Let Ti be a
tree in trees(P), the cyclic topMost of TZ with respect to F(CtopMostF(TZ))
is computed as follows:

• Let 82 be the substitution defined by the ChaseF (Ti ).

53

e(Z', Y)

)

)

• Let 9i be 9i where all the pairs X/Y are removed if X or Y (or both)
are AV's .
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• Then CtopMostF (Ti ) = topMost (6i (Ti ) ) .

That is, the cyclic topMost of a tree is the topMost of the chase of such
a tree where the equalizations among CV's are maintained and the rest
of the equalizations are removedf . Obviously, in this case, the CtopMost
introduces in the topMost less equalizations than the topMost(ChaseF(Ti)).
However, the equalizations among CV's have special properties that will be
helpful, as we will see in later chapters.

E^ample ^.l^.1 Let P= {ro, rl} be:

ro: p(X, Y, Z, A, B, C) :- e(X, Y, Z, A, B, C)
rl: p(X,Y,Z,A,B,C) :- e(Y,X,Y,C,A,D),p(Z,X,Y,B,C,D)

Let F be { e:{6} ^{1}, e: {6} -^ {4}}. In Figure 3.12 is shown T2.

p(X, Y, Z A, B, C)

e(Y,Ji',Y,C,A,D)
^

p(Z, X, Y1 B, C, D)

e(X,Z,^',D,B,D1) p(y^Z,,1,C,D,D1)

I
e(Y, Z, X, C, D, D1)

Figure 3.12: T2

In Figure 3.13, ChaseF (T2 ) is shown.

p(X, X, Z, A, B, C)

e(X, X, X, C, A, C)
\

p(Z, X, X, B, C, C)

e(^',z,^',C,B,D1) p(X,z,^ ►',C,C,D1)

^
e( X, Z, J^', C, C, D i)

Figure 3.13: ChaseF (T2 )

The substitution defined by ChaseF(T2) ( in Figure 3.13) is 92 =
{Y/X, D/C}. In order to compute the CtopMostF(TZ), we only consider

f The equalizations produced uses the rules showed in Section 3.2.1
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the pairs of 82 where both variables are CV's, that is, 82 ={Y/X }. Hence,

CtopMostF (T2 ) = topMost (92 (T2 ) ) is : ^

p(X, X, Z, A, B, C) :-e(X, X, X, C, A, D), p(Z, X, X, B, C, D)

0
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Chapter 4

Equalization chains

Let us consider a fd application in a specific step of the chase of a tree,

obviously such fd application equates two or more variables. These variables,
which are placed in two or more atoms in the positions defined by the right-

hand side of a fd, may be also placed in the L-th position (the position
defined by the left-hand side of a fd) in two (or more) atoms with the same

predicate name (say e). Then, assuming that there is a fd e: {L} -^ {R},

then the chase in another step equates the variables in the R-th position of
those atoms. This process can be repeated again and again producing an

eq^alization chain.

The skeleton of these equalization chains is composed by atoms forming

a structure that we call atom chains.

Although, equalization chains and atom chains are not final results, we
think that they are valuable tools to study lsirups. Particularly, we use these
structures in order to study the behavior of the chase when it is applied to

expansion trees.

Therefore, due to the crucial importance in our results and the utility
that they can have to solve different problems, we think that equalization

chains and atom chains .deserve a chapter to introduce them.

The outline of this chapter is as follows. In Section 4.1, we define what
is a left-hand common set of atoms. In Section 4.2, we define the concept of
atom chains. Finally, in Section 4.3, we give the definition of equalization

chain.

57
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4.1 Left-hand common set of atoms

The very first equalizations of the chase process are due to the presence of

groups of atoms in the original tree (i.e., before the chase process begins)

with the same predicate name and such that they have, in the positions

defined by the left-hand side of a fd, the same variables (obviously, in the
same order). We denote such group of atoms as left hand common set of
atoms.

Definition 1^.1.1 Let T be a tree in trees(P) where P is a 2 - lsir^cp, and let
F be a set of fds over EBD(P). A left-hand common set of atoms (LHCSA
for short) is a set of, at least, two atoms of T, {al, a2, ... , a,^}, snch that
they have the same predicate name e, there is a fd in F e:{L} ^{R} and
al[L] = a2[L] _ ... = an[L].

q

E^ample .^.1.1 Let P={ro, rl }, where:

ro = p(X, Y) :- e(X, Y)
rl = P(X, Y) :- e(Z, X), e(X, Z),P(Z, Y)

Let F be {e :{ 1}--^ {2 }}. Using P, T2 = tree (rl o ro ) is shown in Figure
4.1.

^(X,Y
-^

e(Z, Y) e(Y, Z) p(Z, Y)

e(Z', Z) e(Z, Z') p(Z', Y)

^
e(Z', Y)

Figure 4.1: T2

We can see in T2 two LHCSA. One is formed by e(Z, Y) and e(Z, Z')
and the other is formed by e(Z', Z) and e(Z', Y). q
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4.2 Atom chains

Due to the substitution applied when the IDB atom in the body of the

recursive rule is expanded (unfolded), diíferent levels of a tree may have

variables in common. Thus, in a tree T, a variable X may be in several

atoms in the position defined by the right-hand side a fd, while X may be in
another atoms in the positions defined by the left-hand side of another (or

the same) fd. Such atoms form a structure that we call atom chains. Atom

chains are a crucial concept to understand equalization chains.

Definition l^.,2.1 Let P be a 2- lsirup, let F be a set of fds over EDB(P).

Let T^ a tree in trees(P). An atorrt chain is an ordered set of atoms:

Ch = {< ai, a2, a3, •••, al >}

where for all 1< i< l, a2 [R^] = ai+i [Lt] . That is, the variable in ai
in the position defined by the right-hand side of fk is equal to the variable

in ai+i in the position defined by the left-hand side of ft (that may be f^

againĴ . ^

Observe that it is not necessary that the fd used to define the right-hand

side of ai ( f^) should be equal to the fd used to define the left-hand side

of ai+i ( f t). Moreover, the predicate name of ai may not be equal to the
predicate name of ai+i . It is possible to think in more complicated atom
chains, for example, when the left-hand side of some fd has two variables,
but all those complicated cases can be reduced to this simple atoms chains

straightforward.

E^ample 4.,2.1 Let F be e:{1} ^{5} a:{1} ^{2}. Let P={ro, ri} be :

ro : p(X, Y, Z, W, Q) :-e(X, Y, Z, W, Q)
rl :^(X, Y, Z, W, Q) :-a(V, Y), a(Z, W), e(Y, V, W, A', V), P(Y, V, W, Q, Z)

If we inspect the tree in Figure 4.2, we can see the following five atom

chains (notice that there are other atom chains):

• Chi = {a5,3^ a5,i ^ a4,i ^ . . . , ai^i}

• Ĉi h2 ={a6,4 ^ a5,2 ^ a3,2, ai,2 }

• Chg = {a4,2, a2,2}

Each atom chain is illustrated in the Figure 4.2 with edges.
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PCX,Y,z^w^,Q)

^ a ,W) eCY,^,w^X^^ PCY>^,w,Q,Z)

aCv'^^ aC Q) e(V^V'^Q,Y,v') PCv,v'^Q,Z,W)

aív'"^ ') aiQ^ ) eCu'^v'^Z^v,V') PCv'^V'^Z^w^Q)

a^v3^v-) a^Z^w) e^v^^u3^W^v`^u3) PCv'^v3^_W^Q^Z)

aC^,^v3) aCW^2) e(V3,^^Q^v;.^) p(v3^^,Q^Z,W)
^

e^3^^^Q^Z^)

Figure 4.2: Atom chains

q

Let us suppose that an atom ai belonging to an atom chain Ch has a
cyclic variable in the position defined by the left-hand side of a fd that links
it with the previous atom of the atom chain. Then, there may be another

atom chains since, as we have already seen, C V's are in levels separated
by N levels in the same columns. Let us illustrate that with the following
example.

E^am^le .^.,2.,2 Let P={Tp, rl} be:

To: ^(X,Y,Z,A,B,C) :- e(^1',Y,Z,A,B,C)
rl: ^(X,Y,Z,A,B,C) :- e(B,C,E,Y,X,Z),e(Y,X,Y,C,A,D),^(Z,X,Y,B,C,D)

Let F be {e :{1} -^ {3}}. Then, in T7 (in Figure 4.3), we can find
(among others) the atom chain Ch = {a8,3, a7,2, ...}, that is:

Ch ={e(Z, X, Y, D4, D5, D6), e(Y, X, Y, D5, D3, D6), ...}

Notice that e(Z, X, Y, D4, D5, D6) has in its third position Y, that is,
Y is in the position defined by the right-hand side of e:{1} -^ {3}, and
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p(X,Y,Z,A,B,C)

e(B,C,E,Y,X,Z) e(Y,X,Y,C,A,D)^ p(Z,X,Y,B,C,D)

e(C,D,E',X,Z,Y) e(X,Z,X,D,B,D') p(Y,Z,X,C,D,D')

e(D,D',EZ,Z,Y,X) e(Z,Y,Z,D',C,DZ) p(X,Y,Z,D,D',Dz)

e(D',DZ,E3,Y,X,Z)^ e(Y,X,Y,Dz,D,D3) P(Z,X,Y_D',DZ,D3)

e(^,^,E°,^Z,Y) e(^Z,X,^,D^,D°) P^,Z,X,^,D3,D°)
^ ^

e(D3,D°,ES,Z,Y,7t) e(Z,Y,Z,D`',DZ,DS) P(X,Y,Z,D3,D4,D5)

e(D°,DS,E6,Y,X,Z e(Y,X,Y,DS,D3,D^) P(Z,X,Y,D^,DS,D6)

e(Z,X,Y,D4,DS,D^)

Figure 4.3: T7
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e(Y, X, Y, D5, D3, D6) has in its first position Y again. Since Y is a cyclic

variable then in T7, we can find (among others) the following atom chains:

Chl = {as,s, aa,a, . . .}
Ch2 = {aa,s^ ai,2, . . .}

Chl ={e(Z, A', Y, D4, D5, D6), e(Y, X, Y, D2, D, D3), ...}
Ch2 ={e(Z, X, Y, D4, D5, D6), e(Y, X, ^; C, A, D), ...}

The first atom a8,3 (e(Z, X, Y, D4, D5, D6)) remains the same in the three

atom chains. However in Chl and Ch2, even the other two atoms ( a4,2 and

a1,2) are the same relative position ( 2) as a7,2 is in Ch, a4,2 and a1,2 are

separated three ( in the case of a4,2) and six (in the case of a1,2) levels with

respect to the atom a7,2 in Ch, given that N for P is 3.
q

All these situations and other circumstances are captured by equalization

chains.

4.3 Equalization chains

The programs that we tackle have only one linerar recursive rule. Therefore,

if we inspect a tree TZ built from a 2-lsirup (or lsiTUP), all levels bigger than

level 0 and smaller than level i+ 1 are isomorphic given that there is only

one recursive rule. This a very important fact that reader has to keep in
mind since we will exploit it intensively in this section.
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Let us consider a fd application in a specific step of the chase of a tree,
obviously such fd application equates two or more variables. These variables,
which are placed in two or more atoms in the positions defined by the right-
hand side of a fd, may be also placed in the L-th position (the position
defined by the left-hand side of a fd) in two (or more) atoms with the same
predicate name (say e). Then, assuming that there is a fd e: {L} ^{R},

then the chase, in another step, equates the variables in the R-th position
of those atoms. This process can be repeated again and again producing an
equalization chaina.

We are going to characterize these equalization chains in order to show a
very important property of the partial chase of trees built from a 2 - lsirup.

Equalization chains are extremely unpredictable since they depend on
the 2- lsirup used to build the tree, the number of levels of the tree and
finally, the fds used to chase the tree. Any of these three factors is very
important, but let us point out that the height of the chased tree is a new
factor that has not been considered in other problems solved by the chase.
The height of a tree is a consequence of the recursion.

Hence, the chase, a tool that until now was shown as a very useful
procedure to solve different problems, turns a very intricate process to
analyze, and^ the most important, it is very difficult to predict its behavior.

With the discussion showed above we try to show the difficulty of the
problem, and the necessity of tools to analyze what happens during the
chase of the trees.

Definition /^.3.1 Let P be a 2-lsirup and let F be a set of fds over EDB(P).

An equalization chain in the process of chasing a tree (that may be a partial

chase as well) is an ordered set of groups of atoms (links) ll, l2, ...,1^,, where:

• ll is formed by a left-hand common set of atoms.

• The variable in the position defined by the left-hand side of a fd fk of
any atom in a group li (i > 1) is equal to the variable in the position
defined by the right-hand side of a fd f^ (that may be f^ again) of some
atom of the group li_1.

• After the equalizations produced by the chase using the atoms in the
group li_l, for any atom a^ in li defined over the predicate name e,
there is in l2i at least, another e-atom a^ that has the same variable
as a^ in the position defined by the left-hand side of a fd.

: aObserve that an equalization chain always starts due to a LHCSA.
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p(^Y,z^W^Q)

a(V,^ a(Z,W) e(Y,V,W,X,V) p(Y,V,W,Q,Z)

. a^l ^^ a(W ^Q) e^^V' ^Q^Y,V` ) pCV>V` ^Q^Z^W )
^

eCV>V^^Q^Z^W)

Figure 4.4: T2

E^ar►zple !^. ^3.1 Let E be the equalization chain:

{a(A', Y), a(^', Z)}, {b(Y, V), b(Z, W), b(Y, M), c(Z, U), c(Y, L)}, {a(V, H), a(W, F)}

Let us suppose that the set of fds used is {a :{1} ^{2}, b :{1} --^ {2},

c : {1} ^ {2}}.

The chase equates, in ll, Y to Z. In the next step of the chase, that is

l2, equates two sets of variables; one equates V, W and M, the other equates

U and L. Therefore, the variables in the position defined by the left-hand

side of a:{1} -^ {2} in the atoms of the set l3 are equated. Then finally,

H is equated to F. ^

Note that in each group of an equalization chain, each atom is a member

of an atom chain. That is, the skeleton of the equalization chains are atom

chains.

E^arraple l^.^.2 In Figure 4.4 we show the tree T2 built from the program
of Example 4.2.1, using the set of fds F={a :{1} ^{2}, e:{1} -^ {5}}

there is one equalization chain:

{e(V,V1,Q, Z,W),e(V,V1,Q,Y,V1)}, {a(W,Q),a(V1,V)}

The first group is a LHCSA that equates W and V 1. These variables
are also in the position defined by the left-hand side of a:{ 1}-^ {2} in the
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atoms of the second group. Thus continuing with the chase, V and Q are
equated as well.

In the equalization chain, there are two atom chains involved:

{e(V, V 1 , Q, Z, W), a(W, Q)}
{e (V, V 1, Q, Y, V 1), a(V 1, V)}

Note that each group of the equalization chain takes one atom from each
atom chain.

0

4.3.1 Partial chase and equalization chains

Let us suppose that the chase of a tree T produces the equalization of two
variables placed in ai,l [n] and a^,^ [n] . Then, if we suppose that T is a tree big
enough, then the chase of T also equates the variables placed in ai_1,^ [n] and
a^_ 1,^ [n], and in ai+l,^ [n] and a^+l,c [n] . That is a very important property
that will be very useful in the following chapter. Next, we formalize this
affirmation and we prove it.

Lemma /^.3.1 Let P be a 2- lsir^cp, let F be a set of fds over EDB(P). Let
TM be a tree in trees (P) . If ChasePF (TM ) equates the variables in ai,^ [R]
and a„Z,n[R] (i < m), then ChasePF(TM) eq^cates also the variables in the
R - th position of.•

• at_^,^ and a,,,,_x,n, for all x, 0< x< u, and

• a;+y,^ and a,,,,+y,n, for all y, 0< y< b.

Where b(b < M- m) and ^c (u < i) are two nnmbers that depend on
the equalization chain and the tree height.

Proof Let q:{L} -^ {R} be the fd applied over ai,^ and am,n. Let us
suppose that the equalization of ai,^ [R] and a„^,n [R] is due to an equalization
chain E_ {ll, l2, ..., ly}. Let us precise some of the groupsb that form E:

ll l^ ^k ly

E _ {{au,v, af,9}, . . . , {ah,w, ao,k}, . . . , {az,x, a,.,s}, . . . , {a2,^, ar,,,,n}}

Let us suppose that ah,^, is the atom in E that is in the smallest level.
Then, h is the shortest level where it is possible to find an atom in E.

bWe assume that two atoms form each group. However, our results can be generalized
to groups with a larger number of atoms
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P is a 2- lsirup, hence there is only one recursive rule in P. Therefore,

for any Ti E trees(P) all levels bigger than level0 and smaller than level i+l
are isomorphic. Thus there are h-1 equalization chains that are "parallel"
to E but in levels upwards with respect to those where can be found atoms

of E:

{fLu-(h-1),v^ af -(h-1),9}^ . . . , {ah-(h-1),w ^ ac-^h-1),k}, . . . , {di-(h-1),7 ^ am-(h-1),n}

{au-(h-2),v ^ d f -(h-2),9 }e . . . e {ah-(h-2),w ^ a^-^h-2),k }, . . . , {O,i-(h-2),^' am-(h-2),n }

{(Lu-l,veaf-l,g},..., {Clz-l,x^ar-l,s}^ ..., {ah-1,w^ac-l,k},... , {[Li-l,j ^am-l,n}

Thus in this case, u is h - 1. Note that ah_(h_1),w (al,w) is an atom in

the first level. An equalization chain started by a^_h,v and af_h ,9 would be

interrupted in the link corresponding to ah_h,w since such atom does not

exist.
The same reasoning can be done thinking in the atom of E that is in the

biggest level. ^
Let us suppose that the atom in E which is in the biggest level is a,.,s, then

we can see in Figure 4.5 that b, in this case, is M- r since aT+(M_r),S is an

atom in the the level before the last one, that is, the last level that contains
atoms that can be involved in the partial chase. Thus, an equalization chain

started by au+(M_r)+l,v and af+(M_r)+1,9 would be interrupted in the link

corresponding to a,.+(M_r)+l,s (aM+l,s) since such atom does not exist.

E^ample .^.^.^ Let P={rp, rl} be:

ro: p(X,Y,Z,A,B,C) :- e(A',Y,Z,A,B,C)
rl: p(X,Y,Z,A,B,C) :- e(B,C,E,Y,X,Z),e(Y,X,Y,C,A,D),p(Z,A',Y,B,C,D)

Let F be {e :{1} ^{6}}. Then, in T7 (in Figure 4.6) can be found

(among others) the equalization chain Ei = {{a1,2, a4,2}, {a3,1, a6,1}}:

El ={e(Y, X, Y, C, A, D), e(Y, X, Y, D2, D, D3)}, {e(D, D1, E2, Z, Y, X), e(D3, D9, E5, Z, }', X)}

Note that there can not be a parallel equalization chain using atoms

in the same relative positions as the atoms in El but in smaller levels,

since in this case, the atom in El that is in the smallest level is in

level 1 (e(Y, X, Y, C, A, D)). However, the atom in El that is in the

biggest level is in level 6, thus there is a parallel equalization chain E2 =

{{a2,2, a5,2}, {a4,1, a7,1}}:
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Parallel
equalization
chain to E

^ac{h-^),I^

E

• ao-(h- ^ ),^

^
af{h-^ ).8

• au,^

.
afs

.•^►1

• a^*(M-r).^

•af+tM-r).s

Level I

t

^`• ....... "^I

•
az{h-1),r

•ar{h-I ).s

.ar.s

•
az*{M-r).^

aM.s

Parallel
equalization
chain to E

Level M

•
ah w.

^ ac,k

•
an+(M-r>.w

^M-r),k

Root of the tree

•
a^{h-^),i

am{h-^ ).n

^

am,n

.

•
a^*(M-r)d

am+(M-r),n

•

Level Mt1

Figure 4.5: Parallel equalization chains in TM
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P(X,Y,Z,A,B,C)

e(B,C,E,Y,X,Z) e(Y,X,Y,C,A,D) p(Z,X,Y,B,C,D)

e(C,D,E',X,Z,Y) e(X,Z,X,D,B,D') p(Y,Z,X,C,D,D')
^ ^

e(D,D',EZ,Z,Y,X) e(Z,Y,Z,D',C,Dz) p(X,Y,Z,D,D',DZ)

^^ ^
e(D',DZ,E3,Y,X,Z) e(Y,X,Y,D^,D,D3) P(Z,X,Y,D',DZ,D3)

^ /
e(D^,D3,E°,X,Z,Y) e(X,Z,X,D3,D',D°) P(Y,Z,X,D^,D3,D°)

^ ^
e(D3,D°,ES,Z,Y,X) e(Z,Y,Z,D°,DZ,DS) P(X,Y,Z,D3,D4,D5)

e(D4,DS,E6,Y,X,Z) e(Y,7^,Y,DS,D3,D6) P(Z,X,Y,^,DS,D6)

e(Z,X,Y,D°,DS,D6)

Figure 4.6: T7
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E2 ={e(X, Z, X, D, B, D1), e(X, Z, X, D3, D1, D4)}, {e(D1, D2, E3,Y, A', Z), e(D4, D5, E6, Y, X, Z)}

Note that for each atom a^,r,,, in li of El, we can find the atom a^+l,,,z in

liofE2.
Observe that there is not any other equalization chain parallel to

El and E2 since E2 has an atom in the level before the last one

(e(D4, D5, E6, Y, X, Z))•
Therefore, the left hand common set of atoms formed by

e(Z, Y, Z, D1, C, D2) and e(Z, Y, Z, D4, D2, D5), which equates DZ and D5,

does not equate variables placed in the left-hand side of the fd e:{1} ^{6},
given that D5 does not appear in the first position of any atom. O

As a consequence of the previous lemma it is easy to see that if during the

ChasePF (T^ ), ai,^ [n] is equated to a^,,,l[n], then in ChasePF (T^+1), ai,^ [n]

is equated to ak,m[n], and ai+l,^[n] is equated to a^+l,,,,,[n]. This property

can be proven by the same reasons as the previous lemma has been proved

correct.
We present it to the reader to provide to the reader some background

knowledge useful in the next chapter.
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Chapter 5

Optimization using partial
chase of trees

We have so far seen that the chase is used with several purposes. Among
them, we can find the optimization of tableau queries [AHV95], optimization

of queries in the framework of the object-relational model [PDST00] or even
the optimization of structural queries [PV99]. All these dif%rent applications
of the chase in dif%rent data models demonstrates that the chase is a very

useful tool to optimize queries.

However, it is not easy to find literature about the use of the chase in
order to optimize recursive queries (deductive model). The closest work
may be the one from Sagiv [Sag87] that uses the chase to test uniform

containment of datalog programs.

However, whereas Sagiv used tuple-generating dependencies, we use

functional dependencies. The only works we know that deal with

the optimization of recursive datalog programs using fds are those
from Lakshmanan and Hernández [LH91], Gonzalez-Tuchmann [GT95],

Tang [Tan97] and Brisaboa et al. [BGTHP98a, BGTHP98b, PBPH00,

BHPPOI^]. This deficit of works should not be taken as an indication that
the problem is not interesting. On the contrary, the ubiquitousness of fds
in real databases makes this approach very attractive [AHV95]. The reason
for the scarcity of results may lie in the fact that, from a research point of
view, this problem is extremely intricate.

In this chapter, we introduce our first algorithm that builds a program
P' equivalent to a given 2- lsir^cp P, when both are applied over databases
satisfying a set of functional dependencies. Although, for simplicity, we

present our results for 2- lsir^cps, it is easy to see that these results can be
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extended to l sir^cps, as we will illustrate later.

This algorithm is based in the application of the partial chase using a set
of fds F over a sequence of trees in trees (P) until it is obtained a tree T^ such
that all trees bigger than it have the same topMost (after their partial chase).

That is, the topMost of any tree bigger than Tk (after its partial chase) is
equal to topMost(ChaseF(Tk)). Once we get such topMost, we provide it to
the algorithm of optimization that we call chase of datalog prograrras (shown
in Figure 5.7) that obtains the program P' which is equivalent to P when
both are applied to databases in SAT (F) .

In Chapter 3, we showed the chase of a rule. Such definition was extended
to the chase of the rules of a program. Now, in this chapter we define our first
algorithm that optimizes a datalog program, the chase of datalog programs.

The difference between the chase of the rules of a program and the
chase of a datalog program is in the number of equalizations. A rule has
a small amount of atoms in comparison with the atoms that can be found

in all the trees that can be built from the program that contains such rule.
Therefore, the chase of such rule has few chances to introduce equalizations
in comparison with the chances of the chase of all the trees that can be built
from the program. Note that in all those trees, there are much more atoms,
in fact, there are infinite atoms (because trees(P) has infinite trees).

We provide a method that translates the equalizations found in those
trees to the program itself. This is a big advantage with respect to the chase
of a rule since the chase of datalog programs pushes more equalizations.
Therefore, the new program will be cheaper to evaluate.

Our procedure is very similar to the one introduced by Lakshmanan and
Hernández [LH91]. Both of them transform a lsirup into some non-recursive

rules plus a recursive rule where some variables are equated. The difference
between our technique and Lakshmanan and Hernández's approach is that
ours pushes more equalizations among variables than Lakshmanan and
Hernández's does.

The outline of this chapter is as follows. First, in Section 5.1, we
introduce a new notation for variables in trees. In Section 5.2, we define
what is a stabilized tree. Next, in Section 5.3, we show how to find a tree T^
such that the topMost of the partial chase of any bigger tree will be equal to
the topMost of the partial chase of Tk. Finally, in Section 5.4 we introduce
the algorithm of the chase of datalog prograrras.
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5.1 Renaming of variables

In this chapter, when we use trees, we will rename the acyclic variables with

special names that will be helpful to reveal some properties of the trees that
will be needed later. Any acyclic variable in a tree is renamed with the label

V^^, where l is the first level where the variable appears in the tree, and c
is the column of such appearance, always inspecting the tree from top to

bottom and from left to right.

Example 5.1.1 Let P={ro, rl } be:

ro : p(A, B, C) :-e(X, Y, B, C, A)
rl : p(A, B, C) :-e(M, N, A, H, I), a(B, C, M, I), p(B, A, H)

Using P, T3 (in the normal notation) is shown in Figure 5.1.

Columns 1 2 3 4 S 6 1 8 9 10 11 12 13 14
I.evel 0 p(A, B, C)
Levell
Level 2
Level3

e(M,
e(M',
e(MZ,

N,
N',
NZ,

A,
B,
A,

H,
H',
H2,

I)
I')
IZ)

a(B,
a(A,
a(B,

C,
H,
H^,

M,
M',
M2,

I)
I' )
IZ)

p(B,
p(A,
p(B,

A,
B,
A,

H)
H^ )
HZ)

I.eve14 e(X, Y, A, HZ B)

Figure 5.1: T3 without renamed variables

From now on, we shall use the notation of the tree shown in Figure 5.2.
In this example, there are two CV's, A and B. These variables maintain

the name that they have in the program. The rest are AV's, thus they are

renamed.

Column 1 2 3 4 S 6 7 8 9 10 11 12 13 14
I.evel 0 p(A, B, Vo,iZ )
Levell
Level2
Level 3

e(Via^
e(Vz;^,
e(V3,1,

Vi,^,
VZ,^,
V3,^,

A^
B,
A^

Vi:a^
Vza,
V3;a^

Vis) a^^
VZ,s) a(A,
V3,S) a(B^

Vo,i^^ Vi,>>
Vi,a, VZ,i,
V2,a, V3,1,

Vi,s)
VZ,s)
V3,í )

p(B^
p(A,
p(B,

A^
B,
A,

Vi,a)
V^,a)
V3,a )

Level4 e(Va,^o Va,ii A V3,a B)

Figure 5.2: A tree with renamed variables
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Let us focus, for example, in the variable H2 (in the tree of. of Figure
5.1). Inspecting T3 from top to bottom, and form left to right, H2 appears
for first time in level 3 and column 4, thus, this variable is dénoted by V3,4.

0

Observe that this notation does not introduce any change in the tree,
trees in Figures 5.1 and 5.2 are completely equivalent.

5.2 Stabilized tree

Given a 2 - lsirup and a set of fds F, in order to compute the chase of P
with respect to F(ChaseF(P)), we first need to find a tree Tk such that the
topMost(ChasePF (Tl )), for all l> k, is equal to topMost (ChasePF (Tk )).
In this chapter, we will use T^ to denote such tree.

In Lemma 3.3.3, the existence of Tk was shown. However, it is not easy to
find T^, it is a very complex process based mainly in the concept of stabilized
tree introduced in this section.

Notice that as we have seen in Lemma 4.3.1, if we do not consider the
atom in the last level during the chase of a tree, that is, when we use
the partial chase, equalization chains may be broken in the first level, or
in the level before the last level of the tree. Thus, in intermediate levels,
there are more equalizations among their variables than in the first and last
levels. That is, as it was proven in Lemma 4.3.1, for any equalization during
the partial chase of a tree that equates ai,^ [R] .and a,,,,,^, [R], there are two
numbers b and ^c such that the partial chase of such tree also equates:

• a;,_x,^[R] and a,,,,_x,n[R], for all x, 0< x< u, and

• at+^,^ [R] and a,,,,+y,n [R], for all y, 0< y< b.

Therefore, depending on the equalization chain that produces the
equalization of ai,^ [R] and a„^,^ [R], more precisely, on the atoms of such
an equalization chain that are in the biggest and lowest level, variables in
the first or last levels may be equated or not.

By Lemma 3.3.4, we know that there is a tree in trees(P) containing
levels enough to produce all the possible equalizations among the variables of
an intermediate level, and trees with more levels than such tree, by Lemma
4.3.1, after the partial chase, have more intermediate levels with all the
possible equalizations among their variables. However, first and last levels
may have less equalizations among their variables, due to the interruption
of equalization chains.
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We call those trees big enough to present all the possible equalizations

(after the partial chase) in their intermediate levels, stabilized trees. When

a tree is stabilized, all trees bigger than such tree are also stabilized.

Given a 2- lsirup P and a set of fds F over EDB(P), it is clear that

there is a tree Tn such that, Tn is stabilized. It follows immediately from

Lemmas 4.3.1 and 3.3.4.

Intuitively, a tree Ti is stabilized when it has enough levels to produce
all the possible equalization chains, and then, bigger trees will have parallel

equalization chains to those in Ti, as we saw in Lemma 4.3.1.
F^om the discussion shown above, we can easily see that all stabilized

trees, after their partial chase, can be divided in three zones:

1. The upper zone which is formed by the first U levels of all stabilized

trees, where U depends on P and F. The upper zones are identical in

all stabilized trees (for a given P and F) and therefore, all stabilized

trees have the same topMost (after the partial chase).

2. The bottom zone which is formed by the last B levels of all stabilized

trees, where B depends on P and F. The bottom zones of all stabilized

trees are isomorphic.

3. The intermediate zone of a tree is formed by the intermediate levels

that do not belong to the upper zone and bottom zone. All levels
in intermediate zones are isomorphic among them, given that all the
possible equalizations among their variables have been performed by

the partial chasea.

Let us recall that our main target is the computation of the chase of a

datalog program with respect to a set of fds. In order to achieve such goal,

we need to find Tkb for a given 2- lsirup P and a set of fds F.

Thus, we have to provide a method to find T^. We use the concept of
stabilized tree, since all stabilized trees have the same topMost after their

partial chase. Hence, we conclude that Tk is the smallest tree in trees(P)
which has the same topMost (after its partial chase) as the topMost (also

after the partial chase) of any stabilized tree.

gObserve that before the partial chase, all levels except level 0 and the last level are
isomorphic.

bA tree such that the tópMost(ChasePF(T^)), for all l> k, is equal to
tópMost(ChasePF (Ti^ ) ).
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Summarizing, we have reduced the problem of finding T^ to the search
of a stabilized tree.

Therefore, we need to find a condition that allows us to check if a tree
(in trees(P)) is stabilized. That is, we need to find a tree with enough levels

to allow the chase to perform all the patterns of equalizations that any tree
in trees (P) (using a set of fds F) may present. In order to do that, we use
the concept of formatior^ r^cle that is introduced in the next subsection.

E^ample 5.,2.1 Let P= {rl, ro} be the program:

ro : p(A,B,C,D,E,F,G,H,I) : -a(A,B,C,D,E,F,G,H,I)
rl : p(A,B,C,D,E,F,G,H,I) : -

e(A, W), e(F, V), e(D, I), e(I, U), e(V, F), p(C, B, A, N, D, E, M, G, H)

N for P is 3. Using P, we show in Table 5.1 Tlo. The first column shows
the level of the tree. The following five columns represent the variables of

the five e-atoms in each level (with the AV's already renamed). The last
column represents the variables of the p-atom in each level.

L ^ e atoms ^ p atom

A V1,2

C V2,2

B V3,2

A V4,2

C V5,2

B Vs,2
A V7,2

C Vs,2
B v9,2

A Vio,2

Vo,ls Vi,4

V0,15 V2,4

V0,14 v3,9

V1,14 V4,4

v2,19 V5,4

v3,14 V6,4

V4,14 V7,4

V5,14 V8,4

Vs,14 Vs,4

V7,14 Vio,a

Vo,14 Vo,ls

V1,14 Vo,18

V2,14 V0,17

v3,14 V1,17

V4,14 V2,17

v5,14 V3,17

Vs,14 V4,17

V7,14 V5,17

Vs,14 Vs,17

V9,14 V7,17

Vo,ls Vi,s

Vo,18

V0,17

v1,17

V2,17

v3,17

V4,17

V5 ,17

Vs,17

V7,17

v2,8
Vs,s

Vq,g

VS,g

Vs,B
V7,g

V8,8

u9,8
Vlo,s

V1,4 V0,16

V2,4 uo,15

V3,4 V0,14

V4,4 v1,14

V5,4 V2,14

V6,4 V3,14

V7,4 V4,14

V8,4 V5,14

V9,4 V6,14

V10,4 V7,14

Table 5.1: Tio

A B C Vo,14 Vo,15 Vo,ls Vo,17 Vo,ls Vo,ls

C A B Vi,14 Vo,14 Vo,ls Vi,17 Vo,17 Vo,ls

B C A V2,14 Vi,14 Vo,14 v2,17 Vi,17 Vo,17

A B C V3,14 v2,14 V1,14 v3,17 V2,17 v1,17

C A B V4,14 V3,14 V2,14 V9,17 V3,17 V2,17

B C A V5,14 V4,14 V3,14 V5,17 V4,17 V3,17

%^ B C V6,14 V5,14 V4,14 V6,17 V5,17 V4,17

C A B V7,la Vs,14 V5,14 v7,17 Vs,17 Vs,17

B C A Vs,14 V7,14 V6,14 Vs,17 V7,17 V6,17

A B C Vs,14 Vs,14 V7,14 vs,17 Vs,17 v7,17

C A B V10,14 V9,14 V8,14 U10,17 Vs,i7 V8,17

C A B Vio,14 Vs,14 Vs,14 Vio,17 Vs,17 Va,17

Let F={e : {1} -^ {2}}. Then, ChasePF(Tlo) is shown in Table 5.2.

It is easy to see that in Tlo there are enough levels to produce parallel
equalization chains. For example, if we check the equalization chain E,
shown below (and marked in Table 5.1), we notice that there are parallel
equalization chains (E1, E2, ... ) in successive levels.
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Level ^ e atoms ^

A V1,2

C V2, 2
B V3,2

A V1,2

C V2,2

B V3,z

A V1,2

C V2,2

B V3,2

A V1,2

Vo,16 V1,4

Vo,15 V2,4

Vo,14 V0,19

V1,14 V0,18

V2,14 Vo,17

V3,14 V1,17

V4,14 V2,17

V5,14 V3,17

Vs,14 V4,17

V7,14 V5,17

Vo,14 Vo,19

V1,14 Vo,18

V2,14 Vo,17

V3,14 V1,17

V4,14 V2,17

v5,14 V3,17

Vs,14 V4,17

V7,14 V5,17

V8,14 Vs,17

Vs,14 V7,17

Vo,19 Vo,14

Vo,18 V1,14

Vo,17 V2,14

Vi,17 V3,14

V2,17 V4,14

V3,17 V5,14

V4,17 Vs,14

V5,17 V7,14

Vs,17 Vs,s

V7,17 V10,8

V1,4 Vo,16

V2,4 Vo,15

Vo,19 Vo,14

Vo,18 V1,14

Vo,17 V2,14

V1,17 V3,14

V2,17 V4,14

V3,17 V5,14

V4,17 Vs,14

V5,17 V7,14

p atom
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A B C Vo,14 Vo,15 Vo,ls Vo,17 Vo,lB Vo,ls

C A B Vi,14 Vo,14 Vo,15 Vi,17 Vo,17 Vo,la

B C A V2,14 V1,14 Vo,14 V2,17 V1,17 V0,17

A B C V3,14 V2,14 V1,14 V3,17 V2,17 V1,17

C A B V4,14 V3,14 V2,14 V4,17 V3,17 V2,17

B C A V5,14 V4,14 V3,14 V5,17 V4,17 V3,17

A B C Vs,14 V5,14 V4,14 Vs,17 V5,17 V4,17

Ci A B V7,14 Vs,14 V5,14 V7,17 V6,17 V5,17

B C A Vs,14 V7,14 Vs,14 Va,17 V7,17 Vs,17

A B C Vs,14 V8,14 V7,14 Vs,17 V8,17 V7,17

C A B V10,14 Vs,14 V8,14 V10,17 Vs,17 V8,17

C A B Vio,14 Vs,14 Vs,14 Vio,17 Vs,17 V8,17

Table 5.2: ChasePF(Tio)

E _ {a1^3, a3^2}, {a1^4, a3^5}

E1 ={ a2,3 ^ a4,2 }^ l a2,4 ^ a4,5 }

E2 = {a3,3, a5,2}, {a3,4, a5,5}

Therefore, in this example it is easy to see that the tree in Table 5.2 is

stabilized. However, we need a procedure to be able to find which is the

first (smallest) stabilized tree (after the partial chase) for any 2- lsir^cp P

and any set of fds over ED B( P) . 0

5.2.1 Formation rules

Formation rules (frs) are a special type of rules that represent levels of

trees. They are not normal datalog rules, they are rules similar to the levels
of a chased tree where some variables have been renamed in order to show
the equalizations that the chase produces. Each level of a stabilized tree
corresponds (is adjusted) to a specific. formation rule. In formation rules,
variables from a level of a tree are represented in an unambiguous way, and
they show where a variable in a specific position of the tree is coming from.

The aim of the definition of formation rules is the search of a finite set
of formation rules that describes precisely any stabilized tree for a given

2- lsir^p and a set of fds. In other words, let P be a 2 - lsir^cp and let F

be a set of fds over EDB(P). There is a finite set of formation rules FRF(P)

that can be used to build any stabilized tree (after its partial chase) since
each level of any stabilized tree (for P and F) is "adjusted" to a specific
formation rule in FRF(P). Such finite set of rules depends on P and F.
Next, let us show what we mean when we say that a level of a partially
chased tree is adjusted to a formation rule.
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Definition 5.^.1 Let P be a 2-lsirup and let F be a set of fds over EDB(P).
Let TZ be a tree in trees(P). Level j> 0 of Ti is adjusted to the formation
rule f r if and only if.•

1. The body of f r corresponds to level j of ChasePF(Ti).

,2. The head of f r corresponds the IDB atom at level j-1 of ChasePF(Ti).

^. Any CV has the same name and positions in level j(and the IDB
atom in level j- 1) of ChasePF(Ti) and in f r.

.^. For any acyclic variable Vn,r,,, in level j or in the IDB atom of level
j-1

(a) If the variable Vn,^,, appears in the same column in other levels
before or after level j(or level j- 1 if it is the case) of
ChasePF (Ti ), then Vn,^,, remains unchanged in the formation
rule.

(b) In other case, the variable Vn,r,,, is represented in f r by the relative
variable R^_n,,,,, or Rj_1_n,^,,,, if Vn,m is the IDB atom at level
j-1.

0
j- n shows the diíference in levels between the first level n where Vn,,^,L

appears and the level j corresponding to the formation rule.
Therefore, variables in a formation rule give us precisely the position of

the first appearance in the tree (from top to bottom and from left to right)
of each variable in the level to which the formation rule is adjusted.

E^ample 5.,2.,2 Level 3 of the tree Tlo in Example 5.2.1 is adjusted to the
formation rule:

fr : p(B,^%,A,R0,14^R1,14^R2,14^Ro,17,R1,17^R2,17):-

e^B^ v3,2), e(R3,14, R3,19)^ e^R1,14,R3,17), e^R3,17, R1,14), e( R3,19^ R3,14),
^1A, B, C , Ro,14 ^ R1,14 ^ R2,14 ^ Ro,17 ^ R1,17 ^ R2,17 )

Let us check for example the left-most atom in the body of f r. It is equal
to the correspondent atom in level 3 of ChasePF(Tlo). Note that its first
variable (B) is a CV and then, such variable remains unchanged in f r. The
second one, ( V3,2 ), appears in other levels of ChasePF (Tlo ) in the second
column as well, thus this variable remains unchanged.

Now, let us check the atom in the second relative position of level
3 of ChasePF(Tio), e(Vo,14, Vo,ls)• The correspondent atom in f r is
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e(R3,14, R3,ls). In this case, original variables Vo,14 and Vo,is are renamed
since they are AV's, and they do not appear in their respective columns

in levels bigger or smaller than level 3. Therefore, Vo,14 is renamed by the

relative variable R3_o,14 and Vo,ls is renamed by R3_o,is.
Let us reason about the meaning of the variables in a formation rule.

Let us go back again to e(B, V3,2), and focus in V3,2. With the information

provided by the sub-indexes we know that V3,2 appears for first time (in

ChasePF (Tlo )) in level 3, and column 2.

Now, we turn our attention to a relative variable, for example, R1,14 (in

atom e(R1,14, R3,17)). Since level 3 is adjusted to f r, R1,14 represents the

variable V2,14 (R3-2,i4)• That is, the first appearance (in ChasePF(Tlo)) of

the variable in level 3 that corresponds to. R1,14 was in level 2, and column

14.

5.2.2 The finite set of formation rules FRF(P)

Given a 2 - lsirup P and a set of fds F, in order to find a stabilized tree

(for P and F), we need to find the finite set of formation rules FRF (P)

that describes any stabilized tree (for P and F). In this section we analyze

FRF(P). This set of formation rules for any 2- lsir^cp P and a set of fds

F over EDB(P) is formed by 3 different ordered subsets where the last one

has N ordered subsets :

FRF(P) _ {{< frU1,...,frUU >}, {< frll,..., frl^v >},
{{< frBl,l,..., frB1,B^>},...,{{< frBN,l,..., frBN,B >}}

Next, we describe the composition of these 3 subsets of formation rules

for a stabilized tree TM (see Figure 5.3):

1. A set of U formation rules, one for each level in the first U levels of

any stabilized tree. U is fixed for a program P and a set of fds F.

< f rUl, f rU2, ..., f rUU >

It is possible that 2 or more formation rules in this set would be equal.
Let l be a level of a stabilized tree such that l< U, then l is adjusted
to the formation rule f rUl.

2. An ordered set of JV formation rules for the intermediate levels:
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Level 1

Level 1

Level U

Level M B+1

Level M B+1

Level M

Level M+1 ^

^^I

Corresponds to thé
formation rulefrU^

Corresponds to the
formation rule frU1

• U formation rules
• These rules are the

same for the first
U levels of
stabilized tree T^,
E trees(P)

Corresponds to the
formation rulefrU,

All levels between U+l and
M B correspond to one of the
^ formation rules for the
intermediate levels. They are
repeated cyclically.

Correponds to the
formation rule frBx,,
of a set x

Correponds to the
formation rule frBx,1
of the same set x

Correponds to the
formation rule frB^B
of the same set x

^ ^x ^TL
There are ^(sets of
formation rules for the
last B levels of trees in
lrees(P)

Figure 5.3: Structure of a stabilized tree TM
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< f rll, f rll, ..., f rIN >

Levels in the intermediate zone are cyclically adjusted to these

formation rules. That is, let level l be a level in the intermediate
zone (U < l< M- B), then if l adjusts to f rlj, then level l-}- 1

adjusts either to f rlj+l or, if f rlj+l does not exist, to f rll.

3. For the last B levels of stabilized trees, there are N ordered sets of

formation rules.

{Bl = {< f rBl,l, f rB1,2, . . . , f rB1,B} >
B2 ={< f rB2,1, f rB2,2, ..., f rB2,g >}

BN ={< f rBN,I, f rB^/,2, ..., f rB^/,B} >}

Each set has B formation rules, where B depends on P and F.

Consecutive levels in this last zone of the tree adjust to consecutive
formation rules and consecutive trees adjust cyclically to consecutive
sets of formation rules. That is, if the last B levels of a stabilized tree

Ti adjust to the set Bj, then the last B levels of Ti+l adjust either to

Bj+l or, if Bj+l does not exist, to Bl.

Each set is completely isomorphic to the others, that is, for all

1_< ^< B, f rBl,x, f rB2,^, ..., f rBN,^ are isomorphic. The difference
among the sets is in the CV's, each set corresponds to one combination

of CV's in the positions where CV's are in the formation rules.

Next, we formalize the previous discussion, defining when a tree after its

partial chase is adjusted to a set of formation rules.

Definition 5.,2.2 Let TM be a tree b^cilt from a 2- lsirz^p P, and let F be a

set of fds over EDB(P). We say that TM is adjnsted to a set of frs FRF(P),

if.

• Any level l, l< U, is adjnsted to f rUl.

• For any intermediate level l, U< l< M- B, if l adj^csts to f rlj, then
level l-}-1 adjusts either to f rlj+l or, if f rlj+l does not e^ist, to f rll.
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• For any level l, sz^ch that l> M- B, that is, it belongs to the bottom

zone, if l adjnsts to the formation r^cle f rBj,^, then l+ 1 adjasts either

to f rBj,^+i, or if f rBj,k+i does not e2ist, to f rBj,i.

• If the last B levels of TM adj^csts to the set Bj, then the last B levels
of TM+1 adj^csts either to Bj+i or, if Bj+i does not e^ist, to Bi .

E^am^le 5.,2. ^ The tree Tio of Example 5.2.1 is adjusted to the set of
formation rules:

frUl : p(A,B, C, Ro,14, Ro,ls, Ro,ls, Ro,17, Ro,18, Ro,ls) :-
e(A, Vi,2), e( Rl,ls, Ro,4), e1R1,14,Rl,ls), elRl,ls, R1,14), e(Ro,4, Rl,ls),

^(C, A, B, Ro,14, Rl,la, R1,15, Ro,17, R1,17, R1,18)

f7'U2 :^7(C, A, B, Ro,14, R1,14, R1,15, Ro,17, R1,17, Rl,ls):-

e(C, V2,2), e(R2,15, Ro,4), e\R1,14, R2,ls), e(R2,18, R1,14), e1Ro,a^ R2,15),
^(B, C, fi, Ro,14, R1,14, R2,14, Ro,17, R1,17, R2,17)

,f rU3 : xl(B, C, A, Ro,14, R1,14, R2,14, Ro,17, R1,17, R2,17):-

e(B, V3,2), e(R3,14, R3,19), e(R1,14, R3,17), e1R3,17, R1,14), e(R3,19, R3,19),
^J(A, B, C, Ro,14, R1,14, R2,14, Ro,17, R1,17, R2,17)

f rU4 : p(A, B, C, Ro,14, R1,14, R2,14, Ro,17, R1,17, R2,17):-

e(A, V1,2), e(R3,14, R4,18), e(R1,14, R3,17), e(R3,17, R1,14), e(R4,18, R3,14),
p(C, A, B, Ro,14, R1,14, R2,14, Ro,17, R1,17, R2,17)

,f7'll : x1(C, A, B, Ro,14, R1,14, R2,14, Ro,17, R1,17, R2,17):-

e(C, V2,2), e(R3,14, R5,17), e(R1,14, R3,17), e(R3,17, R1,14), e(R5,17, R3,14),
p(B, C, f^, Ro,14, R1,14, R2,14, Ro,17, R1,17, R2,17)

,f rl2 :^I(B, C, A, Ro,14, R1,14, R2,14, Ro,17, R1,17, R2,17):-

e(B, V3,2), e(R3,14, R5,17), e(R1,14, R3,17), e(R3,17, R1,14), e(R5,17, R3,14),
jl(A, B, C, Ro,14, R1,14, R2,14, Ro,17, R1,17, R2,17)

.fTI3 ^ P(A, B, C, Ro,14, R1,14, R2,14, Ro,17, R1,17, R2,17):-

e(A, Vi,2), e(R3,14, Rs,17), e(R1,14, R3,17), e(R3,17, R1,14), e(Rs,17, R3,14),
^1(C, A, B, Ro,14, R1,14, R2,14, Ro,17, R1,17, R2,17)

Ĵ7'B1,1 : x1(B, C, A, Ro,14, R1,14, R2,14, Ro,17, R1,17, R2,17):-

e(B, v3,2), e(R3,14, R5,17), e(R1,14, R3,17), e(R3,17, Ro,8), e(R5,17, R3,19),
x1(A, B, C, Ro,14, Rl,la, R2,14, Ro,17, R1,17, R2,17)

Ĵ7'B1,2 :^1(A, B, C, Ro,14, R1,14, R2,14, Ro,17, R1,17, R2,17):-

elA, Vi,2), e1R3,14, R5,17), e(R1,14, R3,17), e1R3,17, Ro,B), e1R5,17, R3,14),

^ ])(C, A, B, Ro,14, R1,14, R2,14, Ro,17, R1,17, R2,17)

f rB1,3 ^ ^(C, A, B, Ro,14, R1,14, R2,14, Ro,17, R1,17, R2,17):-

a(C, A, B, R1,14, R2,14, R3,14, R1,17, R2,17, R3,17)

Observe that the first four levels of the tree ChasePF(Tio) follow the
formation rules f rUl, f rU2i f rU3, f rU4, respectively. Such formation rules
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are the same for the four first levels of any stabilized tree in trees(P), where
P and the fds used to chase the trees are those of Example 5.2.1.

Notice that intermediate levels start in level five. The formation rules

for the intermediate levels are three (since N is 3) and we call them

f rll, f rI2, f rI3. Note that levels 5 and 8 adjust to the formation rule

f rll. In trees bigger than Tlo, intermediate formation rules will correspond

cyclically to the intermediate levels (that is, for example, f rIi will describe

levels 5, 8, 11, 14, etc., f rI3 will describe levels 7, 10, 13, 16, etc.).

In any stabilized tree in trees(P) (being P and F of Example 5.2.1), the

bottom zone will have three levels.
The last 3 levels of Tlo adjusts to formation rules f rBl,l, f rB1,2 and

f rB1,3. Thus, Tll adjusts to f rB2,1, f rB2,2 and f rB2,3.
Formation rules f rB2,1, f rB2,2 and f rB2,3 are:

f rB2,1 :^1(A,B, C, Ro,14, R1,14, R2,la, Ro,17, R1,17, Rz,17)^-

e(A, V3,2), e(R3,14, R5,17), e(R1,14,R3,17), e(R3,17, Ro,B), e(R5,17, R3,14),

p(C, A, B, Ro,14, R1,14, Rz,14, R0,17, R1,17^ R2,17)

,f rB2,2 ^ 1^(^!, A, B, Ro,14, R1,14, R2,14, R0,17, R1,17, R2,17):-

e(^!, V1,2), e( R3,14, R5,17), e( R1,14, R3,17), e(R3,17, Ro,B), e (R5,17, R3,14),

p(B, C, A, Ro,14, R1,14, R2,14, Ro,17, R1,17, R2,17)

f rBz,3 ^ 1^(B, C, A, Ro,14, R1,14, R2,14, Ro,17, R1,17, R2,17):-

a(B, C, A, R1,14, R2,14, R3,la, R1,17, R2,17^ R3,17)

Finally, the last B levels of T12 are adjusted to the remaining set of B

formation rules, f rB3,1, f rB3,2 and f rB3,3•

f rB3,1 ^ p(^!^A, B, Ro,14, R1,14, R2,14, Ro,17, R1,17, Rz,17)^-

e(A, v3,2), e(R3,14, R5,17), e(R1,14,R3,17), e(R3,17, Ro,s), e(R5,17, R3,14),
^1(B, C, A, Ro,14, R1,14, Rz,14, Ro,17, R1,17, Rz,17)

,f7'B3,2 : Z1(B, C, A, Ro,14, R1,14, Rz,14, Ro,17, R1,17, Rz,17):-

e(B, V1,2), e(R3,14, R5,17), e(R1,14, R3,17), e(R3,17, Ro,B), e(R5,17, R3,14),
Zl(A, B, ^!, Ro,14, R1,14, R2,14, Ro,17, R1,17, R2,17)

frB3,3 :^1(A, B, Ĉ!, Ro,14, R1,14, R2,14, Ro,17, R1,17, R2,17):-

a(A, B, ^%, R1,14, R2,14, R3,14, R1,17, R2,17, R3,17)

Notice that the only dif%rence, for example, among f rBl,l, f rB2,1 and

f rB3,1 is in the CV's. Since N is 3, there are three formation rules to
describe the first level of the bottom zone of any tree. In each set, CV's
are placed in different positions. With f rBl,l, f rB2,1 and f rB3,1, it is
covered all the possibilities of combinations of CV's in the formation rule
correspondent to the first level of the bottom zone.

0
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5.3 A procedure to find T^

Let us recall that we are searching for T^, given a 2 - lsirup P and a set of
fds F.

We know, by definition of stabilized trees, that if Tn is a stabilized tree,
then topMost(ChasePF(T^)), l> n, is equal to topMost(ChasePF(Tn)).
Notice that Tk does not necessarily have to be a stabilized tree. If there is a
tree Th such that it is not stabilized but its topMost (after its partial chase)
is equal to the topMost of the stabilized trees (after their partial chase), then
it is sure, by Lemma 3.3.2, that there is not any tree bigger than Th with
a diíferent topMost (after its partial chase). Hence, T^ is the smallest tree
such that the topMost of its partial chase is equal to topMost(ChasePF (Tn ))
(where Tn is a stabilized tree).

The procedure to find T^ consists in computing the trees To, Tl, T2, ...
and chasing them using F, until we find 2N trees from Tn to T^,, N=
n+2N, and n> 2N, such that all the trees Tn, ..., TN adjust to the same set
of formation rules. Then, we can be sure that all those trees are stabilized,
and therefore all of them have the same topMost after their partial chase.
Therefore, T^ is the smallest tree with such topMost after its partial chase.

Next, we are going to prove that after 2N consecutive trees adjusted
to the same set of FR, any bigger tree will be adjusted to the same set of
formation rules.

Theorem 5.^3.1 Let P be a 2- lsirup, let F be a set of fds over EDB(P).

If Tn, ..., Tn+2N (n > 2N) are adjusted to the same set of formation r^cles
FR. Then, any tree bigger than Tn+2N is also adjusted to the same set FR
(and therefore we can say that s^cch set is FRF(P)).

Proof Let us suppose that there is a tree TM bigger than T,^+2N such that
after its partial chase (with respect to F), TM does not adjust to FR. Also,
let us suppose that TM is the smallest tree after Tn+2N which is not adjusted
to FR.

By Lemma 3.3.1, any equalization produced during the partial chase of
any tree smaller than TM is also produced in the ChasePF(TM). Then,
since ChasePF(TM) is not adjusted to FR, ChasePF(TM) should include,
at least, one equalization among variables of TM that produces, at least, a
level that is not adjusted to the frs in FR. That is, the reason because TM
does not adjust to FR cannot be the lack of an equalization that is produced
in smaller trees.

Let us suppose that such equalization is produced by an equalization
chain E:
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1,' of E'

h-I.d

aM.k

Root

I

Figure 5.4: Representation of two parallel equalization chains in a tree

E = li^l2^...,lq

Note that in E, there should be at least one atom in level M, otherwise
such equalization would be done during ChasePF (TM_ 1) (which has all its

levels adjusted to FR).

We have two cases, when E does not include any atom in the first level,
and when it does:

Case 1 If there is one or more atoms of E in level M, and the rest of atoms
are not in the level one.

Let E' be the equalization chain constructed as follows. For any atom
a^,y in li (of E), then l' (of E') contains the atom ax_l,y (we know
that it exists by Lemma 4.3.1). That is, there is an equalization chain
E' that is parallel to E and where for any atom in E, E' has an atóm
in the same relative position as E but in the previous level.

E' _ {ll, l2, . . . , lq}

E' exists, since E does not include any atom in the first level, but
in fact, there are as many parallel equalization chains, as levels of
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dif%rence are between the atom of E that is in the smallest level and
the first level.

E' equates variables that are in the same columns as the variables
equated by E but in the previous level.

E' is produced also in ChasePF(TM_1), and all levels of TM_1 adjusts
to the formation rules in FR. Thus, it is easy to see that if the
equalizations of E' allow TM_1 to be adjusted to the formation rules in
FR, then the equalizations of E allow TM to be adjusted to formation
rules in FR.

Case 2 If in E there are atoms in level M and in level one.

Let ap and a^ be the first two atoms of E that are in levels 1 and M,
respectively. Let a f^^ and ah^2 be the atoms (in E) such that a f,^[R] is
equal to au [L] and ah,i [R] is equal to a^ [L] . That is, the variables in
the right-hand side (defined by a fd in F) of a f,^ and ah,i are the same
as the variables in the left-hand side (defined by a fd in F) of ap and
a^, respectively^.

We are going to consider two cases, when there are CV's in E, and
when there are no CV's in E.

• If there are not CV's in E.

Again, we have two cases, when ap and au are in the same group
of E, and when they are in dif%rent groups (as showed in Figure
5.5 cases (a) and (b), respectively):

- If ap and a,^ are in the sarrae grouP l^ of E(Figure 5.5(a))
Note that if E is an equalization chain that produces
an equalization of variables that generates levels that are
not adjusted to FR, then it is not possible that in
ChasePF(TM_1), a^_1[R] (where au_1 is an atom in the same
relative position as a,^, but in the previous level) were equated
to ap[R]. Otherwise, the equalization of ap[R] to au[R], or
any other equalization in E, would generate levels adjusted
to FR. This is true, since all levels of TM_1 are adjusted to
FR and by Lemma 2.6.1.

°For the shake of simplicity we do not consider the case that au, ap or both are in li .
Such cases can be inferred from the cases showed in this proof straightforward.
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(a) au and a^ in the same group (b) a^ in a previous group to a^.

Figure 5.5:

Let us suppose that a^ and au are in the group l^ of

the equalization chain E, as we can see in Figure 5.5 (a) .

Therefore, ah,i and a f,^ are in l^ _ 1.

Since there are not CV's in E, by Lemma 2.6.4, all the
variables in E cannot appear in levels separated by more

than N levels. Therefore, ah,i should be in a level smaller

or equal to N, and a f,^ should be in a level bigger or equal
to M- N, given that a f,^ [R] is equal to au [L] and ah,i [R] is
equal to ap [L] .

Thus, in ChasePF(TM_^N+1)), the equalization of af,^[R]

and ah,2(R] is not produced, given that a f,^[R] (in TM_^N+1))
does not exist.
However, in ChasePF(TM_1), the equalization of ah,i[R] and
af,^[R] is produced given that in TM_1, ah,i and af,^ exist
(note that we have assumed that a^ is the first atom of E in
level M). Therefore, TM_1 and TM_(N+i) do not adjust to
the same set of formation rules.
Then, we reached a contradiction since we have supposed
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that TM is the first tree after Tn+2N that is not adjusted to
FR. Hence, it is not possible that TM would not adjust to
FR. ^

If ap and a^ are in di,f,^erent gronps of E(Figure 5.5(b))
Without lost of generality let us assume that ap is in a group
previous to the group where au is placed. That is, ap E li
and au E l^ where i< j.
Let E^ be the equalization chain ll, ..., l^_1. In TM_1i E^
exists since we have supposed that l^ is the first group of E
that includes an atom in level M. By hypothesis, E^ does
not produce equalizations that generate levels which are not
adjusted to FR.

Let us suppose that the variables that are equated in l^ _ 1 are
the variables in the position defined by the right-hand side
(of a certain fd) of a f,^ and as,t d. Let us suppose that (in
TM ) a f,^ [R] is equal to au [L] and as,t [R] is equal to aw,y [L] .
That is, au and aw,y are atoms in l^ .
The equalization produced by a f,^ and as,t is produced
in ChasePF (TM_ 1), and such equalization is included by
hypotheses in the formation rules in FR.
Then, in ChaseF(TM_1), af_1,^[R] is equated to as_l,t[R]
given that in ChasePF(TM_2), (that is adjusted to FR)
a f_1,^[R] is equated to as_l,t[R], otherwise, the formation
rules of level f of TM_1 and level f- 1 of TM_2 would be
different, and then levels of TM_1 would not adjust to FR.
If the equalization of a f,^ [R] and as,t [R] equates (in
ChasePF (TM )) a,^ [L] and aw,y [L], then the equalization
of a f_ 1,^ [R] and as_ l ,t [R] (in ChasePF (TM_ 1) ) equates
a^_1[L]e and aw_l,y[L] (notice that aw_l,y exists in TM and
in TM_1), otherwise we are again in the already proven case
of being a^ and ar ( aw,y ) in the same group) .
Thus, the equalization of au [R] and aw,y [R] generates levels
adjusted to FR sice the equalization of au_1 [R] and a^„_l,y[R]
in ChasePF (TM_ 1) generates levels adjusted to FR. Then
any other equalization in the groups of E after l^, by Lemma
2.6.1, also adjusts to FR.

d We assume that are two atoms in l^ _ 1, but there can be others
QAn atom in the same relative position as au but in the previous level, i.e. in level

M-1.
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• The eq^calization chains have CV's

Previous cases were based in the fact that two atoms that contain

an acyclic variable cannot be separated by more than J^Í levels.

If there are CV's in E but the variables in a f,^ [R] and ah,i [R]

are not cyclic variables, the proofs of the previous cases are still
valid.

We are going to focus our attention in af,^, the atom in l1_1 that

has a variable in common with a,^. However, the case of ah,i can

be proven in the same way.

Let us suppose that the group ^l^ is the group in E that includes

au and let us suppose that aw,y is an atom in l^ (aw,y can be

ap). Let us suppose that a f,^ and as,t (aS,t can be ah,i) are atoms

in l^ _ 1 such that a f,^ [R] is equal to au [L] and as,t [R] is equal to

aw,y [L] •
Since a f,^[R] is a cyclic variable, then as,t[R], in ChasePF(TM),

by Lemma 2.6.2, is equated to the variables in the R- th position

of several atoms. Atoms that are in the same relative position as

a f,^ but separated from a f,^ a number of levels that is multiple

of N. Therefore such equalizations (in TM) will produce the

equalization of the variables in the R-th position (defined by the

corresponding fd) of aw,y, a,^ and all the atoms that are in the

same relative position as a^ but separated from au a number of

levels that is multiple of N.

ChasePF (TM_ 1) equates a f,^ [R] and as,t [R], given that we

supposéd that a^ is the first atom in E that is in level M. Then,

the chase of TM_1 generates the equalization of the right-hand

sides of aw,y and all the atoms that are in the same relative
position as a^ but separated from au a number of levels multiple

of N (but not a^, since it does not exist in TM_1). Therefore the

equalization of au [R] and aw,y [R] in TM does not generates levels

which are not adjusted to FR.

Note that we have seen that the individual equalization chains do not

break the formation rules FR, then it is easy to see that the mix of the
equalization chains does not break the formation rules FR either. 0

Now, we are ready to provide a procedure in order to find T^ (see Figure

5.6).
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Procedure Find Tk (P, F)
Input: A 2- lsirúp P and a set of fds over EDB(P)
Output: T^ and tópMost(ChasePF(Tk))

Let i = 2N

Let continue=true

While continue .

Let continue=false
Let j=i

While j < i + JV

Extract the formation rules of T^ and T^+^v
If the formation rules of the first U levels of T^

are equal to the formation rule of the first U levels of T^+N and
the formation rules of the last B levels of T^
are equal to the formation rules of the last B levels of T^+^r and
the formation rules of the remaining intermediate levels of T^
are equal to the formation rules of the remaining intermediate
levels of T^+N

then

Let j=j+1

else

Let continue=true

Let i=i+1
exit While

endif

endwhile
endWhile

Output the smallest tree T^ such that tópMost(ChasePF(Tk)) is equal
to tópMost(ChasePF(Ti)) and tópMost(ChasePF(Tk))

Figure 5.6: A procedure to find T^

5.4 The algorithm to compute P'

In order to compute the chase of a datalog program, first we have to find T^
using the procedure shown in Figure 5.6.

Once we found T^ we are ready to obtain the chase of a 2 - lsiTUp P
with respect to a set of fds F using the algorithm shown in Figure 5.7. This
algorithm is very similar to the algorithm introduced by Lakshmanan and
Hernández [LH91 ] .

However, we will see later that our procedure pushes more equalizations
than their algorithm since we use a more powerful procedure to perform the
chase.

Basically, the algorithm outputs the frontier of the (partially) chased
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trees smaller than Tk and the tópMost(ChasePF (T^ )).

Chase of a datalog program
InputA 2- lsirnp P, a set of fds F over EDB(P), T^ (for P and F) and

topMost(ChasePF (T^ ) )
Ouput A set of rules that conforms a datalog program P', which is ChaseF(P)

For any tree Ti with i< k

Output the rule fror^tier(ChasePF(Ti))

EndFor
Output the rule topMost(ChasePF(Tk))

Figure 5.7: Algorithm of the chase of a datalog program

The improvement with respect to Lakshmanan and Hernández's
algorithm comes from the terminating condition. e Their algorithm
terminates when it finds two consecutive trees (one tree with one level more
than the other) with the same topMost after the partial chase. However, it is
clear that after two consecutive trees with the same topMost after the partial
chase, there would be bigger trees that may introduce more equalizations in
the topMost after the partial chase of those trees. Our algorithm terminates
in a tree T^ such that it is sure that there is not any tree bigger than
T^ introducing more equalizations in the topMost after its partial chase.
Hence, our algorithm introduces more equalities in the recursive rule of the
new program, and therefore it will be cheaper to evaluate than the one

in [LH91].
Note that in our algorithm, it is used the partial chase of trees, that is, in

the fd applications it is not considered the atom in the last level. If we would
include this atom in the computation of the chase of the tree, we could not
find Tk, that is, the Lemma 3.3.1 would not be true. However there is a tree

(say T,.) in trees(P) such that all the trees bigger than Tr have a topMost

after the chase of the treef in a finite set of possible topMosts.

Gonzalez-Tuchmann [GT95] tackled that problem. He defined a"chase"
of a datalog program considering the atom in the last level, unfortunately
he did not provide an algorithm to compute such optimized version of a

datalog program.
Our procedure may obtain more equalizations that Lakshmanan and

Hernández's algorithm, but may be less than Gonzalez-Tuchmann. However,
we provide a method to compute our optimized program (Gonzalez-

f That is, considering the atom in the last level.
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Tuchmann did not provide a method to compute his chase), and we prove
that the program P' in the output of our algorithm is equivalent to the
original one P when both are applied over databases satisfying a set of fds.

E^arriple 5./^.1 Let P={ro, rl} be:
rl : p(X, Y, Z, W):- a(Y, Z), b(X, W), p(X, X, Y, Z)
ro : p(X,Y,Z,W) : - e(X,Y,Z,W)

and let F be a:{1} ^{2}.

^(V0,1^ V0,2^ V0,3^ V0,4)

a(V0^2^Vo^3) b(Vo^l^ Vo^4) P(Vo,l, Vo,l^ Vo,2^ Vo,3)

I
e(Vo,l, Vo,l, Vo,2, Vo,3)

^ Figure 5.8: Tl

The partial chase with respect to F of Tl ( in Figure 5.8) does not make
any equalization, thus ChasePF (Tl ) is equal to Tl . Now, let us check T2 :

^(V0,1^ V0,2^ V0,3^ V0,4)

a(Vo,2, Vo,3) b(Vo,l, Vo,4) ^(V0,1^ V0,1^ V0,2^ V0,3)

a(Vo,1^ Vo,2) b(Vo,1^ Vo,3) P(Vo,1, Vo,^^ Vo,l, Vo,z)

I

e(Vo,l, Vo,l, Vo,l, Vo,2)

Figure 5.9: T2

ChasePF (T2 ) does not make any equalization among the variables
in T2 either, since the atoms defined over a have diíferent variables in
the left-hand side of a : { 1 } ^ { 2 } . Therefore, topMost (ChasePF (T2 ) )
ánd topMost(ChasePF (Tl )) are equal. In this point Lakshmanan and
Hernández's algorithm terminates, given that two consecutive trees have
the same topMost after their partial chase. Thus, their algorithm, in this
case, outputs the input program without any equalization, and thus it does
not optimize the input program.
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P( V0,1, V0,2, V0,3, V0,4)
\\

a(Vo,2, Vo,3) b(Vo,l, Vo,4) p(Vo,i, Vo,i, Vo,2, Vo,3)

a(Vo,1,Vo,2) b(Vo,i, Vo,s)

^^

P(Vo,i, Vo,i, V0,1, V0,2)

a(Vo,i, Vo,l) b(Vo,l, Vo,i) ^([^o,i, Vo,1, Vo,l, Vo,1)

I
e(Vo,l, Vo,i, Vo,i, Vo,i)

Figure 5.10: T3

However, let us take a look to T3 (in Figure 5.10). We find

two atoms a(Vo^l, Vo,2) and a(Vo,l, Vo,l) with the same variable in

the left-hand side of a:{1} -^ {2}, and thus, Vp,2 is equated to

Vo^l. Then, the topMost(ChasePF(T3)) changes with respect to the

topMost(ChasePF(T2)), decreasing the number of dif%rent variables.

In fact, it can be checked that T3 is the first stabilized tree, thus any

bigger tree would have the same topMost after the partial chase.

^(V0,1, V0,1, V0,3, V0,4)

\

a(VO,1, V0,3) b(VO,i, V0,4) P( Vo,i, Vo,i, Vo,l, Vo,3)

a(Vo,i, Vo,i) b(Vo,l,Vo,3)
^

p(Vo,l, Vo,i, Vo,i, Vo,l)

a(Vo,i, vo,i) b(Vo,i, Vo,i) p(i^o,l, Vo,i, vo,i, vo,i)

I
e( Vo,l, Vo,i, Vo,i, Vo,l)

Figure 5.11: ChasePF(T3)

Then, our algorithm produces a program formed by the frontier of

ChasePF(To), ChasePF(Tl), ChasePF(TZ), and topMost(ChasePF(T3):

so : p(X, Y, Z, W):- e(X, Y, Z, W)
sl : p(X, Y, Z, W):- a(Y, Z), b(X, W), e(X, X, Y, Z)
s2 : p(X, Y, Z, W):- a(Y, Z), b(X, W), a(X, Y), b(X, Z), e(X, X, X, Y)
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s3 : p(X, X, Z, W):- a(X, Z), b(X, W), p(X, X, X, Z)

Notice that the recursive rule has less different variables than the original

one. However, Lakshmanan and Hernández's algorithm would not introduce
any change in the original program.

5.4.1 A note on complexity

Although we are not specially concerned about the complexity of our

algorithms since the computation of the chase can be done in compile time

without taking into account the databases to which the new program will

be applied, we are going to illustrate that this algorithm has a very low
computational pay load.

In order to compute the chase of a datalog program P with respect to
a set of fds F, first we have to compute N. A naive implementation of an
algorithm that computes the length of the chunks can take exponential time
in the arity of the IDB atom. Although better algorithms can be developed
to compute such lengths, it is not very important, since the arity of the IDB
atom would be typically very small in comparison with the extent of the
relations to which the program will be applied.

Once we have compute the chunks length, the computation of N takes
linear time, using the Euclidean algorithm (there are also improvements of
the Euclidean algorithm) .

Next we have to find T^, due to the nature of linear sirups that only have
one recursive rule, it is easy to see that the maximum diíference in number
of levels between two atoms in a atom chain is N x a, where a is the number
of EDB atoms in the recursive rule of the program.

Therefore, once the procedure to find a stabilized tree reaches a tree

with N x a levels, after 2N more trees, it is easy to see that the procedure
terminates.

Thus, the number of cycles performed by the procedure that finds a
stabilized tree grows in polynomial time on the size of rl. Notice that N
also depends on the size of rl (in fact, N is the least common multiplier of
the chunk lengths of the expansion graph) .

Thus, since the chase of a trée (using only fds) can be computed in
polynomial time on the size of the tree [AHV95], and the biggest tree that
can be computed is T2N+Nxa, then the chase of a datalof program can be
computed in a tractable time.
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5.4.2 Equivalence of P' and P

Next, we show that the output of the Chase of datalog programs is equivalent

to the original program when both are applied to databases satisfying the

set of fds used to obtain the chase.

Theorem 5..^.1 Let P be a 2-lsirup and let F be a set of fds over EDB(P).

^ The ChaseF ( P) (P') is eq^civalent to P when both are evaluated over

databases in SAT (F) .

Proof It follows from Lemmas 5.4.1 and 5.4.2 given below. q

Lemma 5..^.1 Let P be a 2- lsir^cp and let F be a set of fds over EDB(P).

Then P' CSAT(F) P•

Proof
Let NR be the set of non-recursive rules in P', those coming from the

f rontier(ChasePF(TZ)) and i< k.

Let s be a rule in NR, by definition, s = f rontier(ChasePF(Ti)) for

some tree Ti in trees(P). Then, by Lemma 3.1.1 {s} ĈSAT(F) P•
Let t be recursive rule in P', the one which

is the topMost(ChasePF(T^)). Therefore, t=^(topMost(Tk)), where ^

is the substitution defined by ChasePF(T^). Given that topMost(T^) = rl,

then t=^(rl), therefore by Lemma 3.1.1 {t} ĈSAT(F) {rl}.
Hence, we have shown that for all the rules r in P', {r} CSAT(F) P• q

Lemma 5.l^.,2 Let P be a 2 - lsirz^p and let F be a set of fds over EDB(P).

Then P ĈSAT(F) P^•

Proof
We are going to prove that any fact produced by a tree T in trees (P)

when T is applied to a database d in SAT (F) is also produced by P', when

P' is applied to d.

Let d be a databáse in SAT (F), and assume that q is in T(d), we are

going to prove that q is in P' (d) . We prove by induction on the index

(number of levels) of the tree T in trees (P) that if q is in T(d) then q in

P'(d).

Basis i=0, q is in To(d) (To = tree(ro)). Then q is in P'(d), since, ro is also

in P'g.

gNote that tópMost(ChasePF(To)) cannot be isomorphic to any other topMost of a

tree in trees(P), then, it produces a non recursive rule in P' that is equal to the rule ro

of P.
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Ind^cction hypothesis (IH): Let q E Ti (d), 1<_ i< j and q E P' (d) .
Indaction step: i=j.

q is in T^(d). Assume q is not in any Tr,,,(d), 0<_ m< j, otherwise the
proof follows by the IH. Thus, there is a substitution 8 such that q is 9(pj),
where p^ is the root of T^ and where 8(t^) E d for all the leaves tl of Tj.
Therefore, q is also in { f rontier (T^ )}(d) .

We have two cases:
Case 1: f rontier(ChasePF (Tj )) is one of the non-recursive rules of P'.
Then by Lemma 3.1.1 q is in P' (d) .
Case 2: f rontier(ChasePF(Tj)) is not one of the non-recursive rules of P'.

q E Tj (d) thus, by Lemma 3.1.1 q E{ChasePF (Tj )}(d) (assuming that
d E SAT (F) ). Lét ry be the substitution defined by the ChasePF (Tj ).

Let TS^6 be the subtree of Tj that is rooted in the node at the first level
of Tj that is the recursive atom at that level. Tsub has one level less than
Tj , therefore Ts.^b is isomorphic to Tj _ 1.

Let qsub be an atom in Ts^b(d), since Tsub is isomorphic to Tj_1, then

qsub is in Tj_1(d). Hence, by IH qsub E P'(d).
It is easy to see that q E{topMost(ChasePF (Tj ))}(d U qsuó), that is,

q E {^y(rl ) } (d U 9s^6) •
By construction of P', in P' there is a rule st = ry(rl )_

topMost(ChasePF (Tj )). We have already shown that qs^b is a fact in P' (d) .
Therefore, since st(d U qs,^6) obtains q thus we have proven that if q is in
Tj(d) then q is also in P'(d). D

5.4.3 Generalization to lsirups

Since the partial chase only takes into account the EDB atoms in levels
before the last one, that is, it only considers the atoms produced by the

expansions produced with the recursive rule, then all the results referred to
the partial chase of 2 - lsir^cps are applicable also to lsir^cps.

We have to be more careful in the computation of the alternative program
ChaseF (P) (for a given l sirup P and a set of fds F over EDB (P) ). If we
consider l sir^cps there can be several non-recursive rules. Thus, in that case,
for each non-recursive rule in P we would have to apply the algorithm in
Figure 5.7 having as input the recursive rule and such non-recursive rule.
The set of rules obtained after the application of the algorithm to all the
non-recursive rules is the optimized program.

Therefore, it is easy to see that with just taking into account the non-
recursive rules, the chase of datalog programs can be easily extended.



Chapter 6

Optimization using cyclic
topMost

In the previous chapter we showed an algorithm to optimize a 2 - lsiT^^

based on the use of the partial chase of trees. This type of chase of trees
does not consider the atom in the last level of the tree (the level resulting

after the application of the non-recursive rule). However, there are programs
that produce trees where the partial chase does not make any equalization
whereas the chase of trees does. Such situation is due to the presence of the
same variable (or variables) in the position(s) defined by the left-hand side
of a fd in the atom in the last level and in other atom. That is, the atom in
the last level is in a LHCSA. Then, such LHCSA produces an equalization
o^^.variables, and then, such equalization may start equalization chains that

produce equalizations through all the tree.

We have pointed out the worst case, that is, the partial chase of trees

does not introduce equalizations whereas the chase of trees does. In any

case, it is clear that the chaŝe of trees may introduce more equalizations
than the partial chase of trees, even if the partial chase of trees introduces
some equalizations. This claim is true since, as we saw, the atom in the last
level may produce equalizations in conjunction with other atoms of the tree.

Therefore, it seems that with the partial chase of trees we are loosing
equalizations that can be obtained. However, we have pointed out that using
the chase of trees, if we compute the chase of trees of To, Tl, T2, ..., there

is not a^tree such that all trees bigger than it have the same topMost after
their chase. Thus the algorithm showed in the previous chapter is not valid

using the chase of trees.

Gonzalez-Tuchmman [GT95] tackled that problem. He defined a"chase"

95
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of a datalog program using the chase of trees, but unfortunately he did
not provide an algorithm to compute such optimized version of a datalog
program. Thus, our challenge was the definition of a metliod to "chase"
programs using the chase of trees.

In this chapter, we present our second algorithm to optimize linear sirups
the cyclic chase of datalog programs. It does not use the partial chase (like
the algorithm showed in the previous chapter), it uses the chase of trees (a
"complete" chase of trees) and the cyclic topMost. Although, the chase of
datalog programs (showed in previous chapter) and the cyclic chase have the
same background, there are big differences. For example, in the cyclic chase,
equalizations in recursive rules are limited to CV's. However, we will see
later that the cyclic chase has other advantages with respect to the chase of
datalog programs.

Although we present the results of this chapter for 2- l sirups, our results
can be extended to lsir^cps.

On the other hand, the output of the chase of datalog programs can
be provided as input of this algorithm. Thus, the^ two algorithms (the
chase of datalog programs and the cyclic chase of datalog programs) can
be combined.

The outline of this chapter is as follows. In Section 6.1 we introduce
the algorithm of the cyclic chase, we proof its correctness and we discuss its
complexity.

6.1 An algorithm to optimize a 2- lsirup

In Figure 6.1, the algorithm to compute the cyclic chase of a datalog program
P it is shown. Given a 2- lsirup P and a set F of fds over EDB(P), the
CChaseF(P) obtains a program P' equivalent to P when both are applied
to databases in SAT(F). P' is cheaper to evaluate than the original one
due to the equalizations of variables (as it was show in Section 3.1.1).

The algorithm of the cyclic chase begins computing To, Tl, T2, ... until
it finds N consecutive trees T^,, ..., Tn+N such that for any tree Ti, where
n< i< n+ N, CtopMostF (Ti ) is equal to CtopMostF (Ti_N) .

Then, the algorithm outputs the dif%rent rules found in:

CtopMostF(T^,), . . . , CtopMostF(Tn+N)

and the frontier of the chase of the trees in To, ..., Tn-N-1 •
Notice that in this case the output may have more than one recursive

rule, since, as we have pointed out, with the chase of trees, there is not a
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tree such that all trees bigger than it have the same topMost after the chase.
Also, notice that the recursive rules only have equalizations among CV's.

CChase
Input: P: a 2- lsirup and F a set of functional dependencies over EDB(P)
Output: CChaseF (P) that is the optimized program P'

Let n= N for P

Let i = 2n
Let continue=true
While continue

Let continue=false

For j=i-ntoi

If CtopMostF (T^ ) is not equal to CtopMostF (T^ _ n)

Let continue=true
breakFor

endif

endFor
If continue ^

Output frontier(ChaseF(Ti_2n))

Let i=i+1
endif

endWhile
For j=i-ntoi

If CtopMostF (T^ ) is not isomorphic to any previously output rule
Output CtopMostF(T^)

endif ^
endFor

Figure 6.1: Cyclic Chase

E^ample 6.1.1 Let P={ro, rl } be:

ro: p(X,Y,Z,A,B,C) :- e(J^',Y,Z,A,B,C)
rl: p(X,Y,Z,A,B,C) :- e(Y,X,Y,C,A,D),p(Z,X,Y,B,C,D)

Let F be { e:{6} ^{1}, e:{6} ^{4}}. N for P is 3.
Using P, To is shown in Figure 6.2. The ChaseF (To ) does not introduce

any equalization.
Tl is shown in Figure 6.3. The partial chase of Tl with respect to

F does not produce any equalization. However, the ChaseF (Tl ) equates

two set of variables. Using the fd e:{6} -^ { 1}, we can observe that

e(Y, X, Y, C, A, D) and e(Z, X, Y, B, C, D) have the same variable in the

position defined by the left-hand side of the fd. Thus, the chase equates

Y and Z.
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p(X, Y, Z, A, B, C)

I
e(X,Y,Z,A,B,C)

Figure 6.2: To

p(X,Y,Z,A,B,C)

e(Y, X, Y, C, A, D) p(Z, X, Y B, C, D)

l
e(Z, X, Y, B, C, D)

Figure 6.3: Tl

Using the fd e:{6} -^ {4}, again, we can observe that e(Y, X, Y, C, A, D)
and e(Z, X, Y, B, C, D) have the same variable in the position defined by the
left-hand side of such fd. Thus, ChaseF (Ti ) equates C and B, resulting the
tree in Figure 6.4.

p(X, Y, Y^ A, B, B)

e(Y, X, Y, B, A, D) p(Y, X, }' B, B, D)

I
e(1',A',Y,B,B,D)

Figure 6.4: ChaseF (Tl )

Now, let us check T2 (in Figure 6.5). The partial chase would not
iritroduce equalizations in this case either. In fact, the partial chase, with
the program and fds of this example, does not introduce equalizations in
any tree of trees(P). Nevertheless, ChaseF(T2) introduces equalizations, as
shown in Figure 6.6. Therefore, in this example the cyclic chase is the best
choice to optimize the program.

In this example, any tree bigger than T3 has the same cyclic topMost
(with respect to F) as T3. Then, the algorithm terminates in T8, when
it founds N trees (T6, T7 and Tg ) with the same cyclic topMost as
it correspondent tree with N less levels (T3, T4 and T5, respectively).
Therefore, the output program is formed by the frontier of the chase of trees
s^naller than T3, (that is, f rontier (ChaseF (To )), f rontier (ChaseF (Tl )),
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e(Y,X,Y,C,A,D)

p(X, Y, Z A, B, C)

^
p(Z,X,Y^B,C,D)

e(X,Z,X,D,B,D1) p(Y,Z,X,C,D,D1)

I
e(Y,Z,X,C,D,D1)

e(X, X, X, C, A, C)

Figure 6.5: TZ

P(X, ^', Z, A, B, C)

p(Z, X, X, B, C, C)

e(X, Z, X, C, B, D1) p(X, Z, X, C, C, D1)

I
e(J^',Z,X,C,C,D1)

Figure 6.6: ChaseF(T2)
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and f rontier(ChaseF(T2))) and CtopMostF(T3), the only recursive rule

(since in CtopMostF(T3), ..., CtopMostF(T8), this is the only different

rule) .

CChaseF(P):
so: p(X,Y,Z,A,B,C) :- e(X,Y,Z,A,B,C)
sl: p(X,Y,Y,A,B,B) :- e(Y,X,Y,B,A,D),e(Y,X,Y,B,B,D)
s2: p(X',X,Z,A,B,C) :- e(X,X,X,C,A,C),e(X,Z,X,C,B,D1),e(X,Z,X,C,C,D1)
ss: p(X, X, X, A, B, C) :- e(Ji', X, X, C, A, D), p(X, X, Jt', B, C, D)

The correspondence is the obvious, so is f rontier(ChaseF(To)), sl

is f rontier(ChaseF(Tl)), s2 is f rontier(ChaseF(T2)) and finally, s3 is

CtopMostF (T3 ) .
Although, in this case only one recursive rule is output by the cyclic

chase, it is not always the case. Sometimes, several recursive rules can be
obtained due to the presence of different cyclic topMosts in the last N chased
trees when the algorithm terminates.

Let us consider another example using the same program P but with a
new set of functional dependencies Q={ e:{ 6}-^ { 1}}.
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p(X, X, X, A, B, C)

e(x,x,x,c,A,c) p(X,X,x,B,c,c)

e(x,X,x,c,B,c) p(x,x,X,c,c,c)

e(X, J^', X, C, C, D2 ) p(X, ,l', J^' C, C, D2 )

^
e(X, X, A', C, C, D2)

Figure 6. 7: ChaseF (T3 )

To and ChaseQ(To) are the same as the tree in Figure 6.2. However, the
chase of Tl (in Figure 6.3) with respect to F is dif%rent from ChaseQ (Tl ),
as can be seen in Figure 6.8.

p(X, Y, Y^ A, B, C)

e(Y,^',Y,C,A,D) p(Y,^',Y,B,C,D)

I
e(Y, X, Y, B, C, D)

Figure 6.8: ChaseQ (Tl )

As it can be observed, the equalization of C and B produced in the
ChaseF (Tl ) is not produced in ChaseQ (Tl ).

ChaseQ (T2 ) is showed in Figure 6.9. In this case, the equalization of D
and C(produced in ChaseF (T2 )) is not produced.

Now, let us check ChaseQ (T3 ) (in Figure 6.10) . In comparison with
ChaseF (T3 ) only one of the equalizations found in such a tree is present in
ChaseQ (T3 ), the equalization of X and Z.

ChaseQ (T4 ) only equates Z and Y, the same equalization as in the case
of ChaseQ (Tl ). Since Z and Y are CV's, then the CtopMostQ (Tl ) is equal
to the CtopMostQ (T4 ) .

If we continue chasing trees, we find that CtopMostQ (T2 ) is equal to the
CtopMostQ (T5 ) and that CtopMostQ (T3 ) is equal to the CtopMostQ (T6 ).
In this point the algorithm finds that the last N trees (T4, T5 and
T6) have the same cyclic topMost as Tl, T2 and T3, respectively.
Then, the algorithm terminates outputting the f rontier(ChaseQ(To)),
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p(X, X, Z, A, B, C)

e(X, X, X, C, A, D)

\

p(Z, X, X, B, C, D)

e(X, Z, X, D, B, D1) p(^', Z, X, C, D, D1)

(
e(X, Z, X, C, D, D1)

Figure 6.9: ChaseQ(T2)

p(X, Y, X, A, B, C)

e(Y,X,Y,C,A,D)

e(X, X, X, D, B, D1)

^
p(X, X, Y, B, C, D)

\
p(Y, X, X, C, D, D1)

e(X,Y,X,D1,C,D2) p(X,Y,X,D,D1,D2)

I
e(X, Y, X, D, D1, D2)

Figure 6.10: ChaseQ (T3 )

CtopMostQ (Tl ), CtopMostQ (TZ ) and CtopMoŝ tQ ( T3 ) (since these three

rules are diíferent).

Therefore, the CChaseQ (P) is:

so:

sl:

s2:

S3:

p(X,Y,Z,A,B,C) :- e(X,Y,Z,A,B,C)
p(X,Y,Y,A,B,C) :- e(Y,X,Y,C,A,D),p(Y,X,Y,B,C,D)
p(X,X,Z,A,B,C) :- e(X,X,X,C,A,D),p(Z,X,X,B,C,D)
p(X, Y, X, A, B, C) :- e(Y, X, Y, C, A, D), p(X, X, Y, B, C, D)

6.1.1 Termination of the cyclic chase

In order to prove that the algorithm in Figure 6.1 terminates, we have to
prove that if 9i is the substitution defined by CtopMostF (Ti ) and 9w is the
substitution defined by CtopMostF(Tw), where w= i+ IN and I is an

integer such that I> 0, then Bz C 9w.
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Once we have proven that 82 C_ ew, it is easy to see that the algorithm
terminates. Observe that the topMost of any tree in trees(P), except To,
is rl, thus since 9i C 9w and the set of variables in ri is finite, then the
algorithm terminates, in the extreme case, when all the variables in the
topMost are equated.

In fact, if there are n diíferent variables in rl, observe that in the worst

case, the maximum number of chased trees inspected by the algorithm will

be the initial2N trees, plus N x n. Such case considers that each execution
of the first for loop sets the variable continue to TRUE due to only a new

equalization. Since, in order to terminate, the algorithm has to find that
the last N chased trees have an equal cyclic topMost to its correspondent
chased tree with N less levels, then by Lemma 6.1.1 (proven below), the
maximum number of iterations of the while loop is N x n.

Lemma 6.1.1 Let P be a 2- lsir^cp and F a set of fds over EDB(P). Let
Ti and Tw be a pair of trees in trees(P) where Tw has IN more levels than
Ti (I is an integer bigger than 0) and where 6i and 9w are the snbstit^ctions
defined by CtopMostF(TZ) and CtopMostF(Tw), respectively. Then, it is
tr^ce that 9? C 9w.

Proof
The lemma implies that for any tree Ti in trees(P) the equalizations

produced by its cyclic topMost will be also produced by the chase of any
tree Tw, for all w such that w= i+ IN (for any integer I bigger than 0).

Let TSU6 be the subtree of Tw formed by the last i levels and rooted by
the IDB atom of level i- 1.

Since w= i+ IN and by Lemma 2.6.1 we can state that Ti is isomorphic
to Tsub. In addition, by Lemma 2.6.3, any cyclic variable in a^^^[y] in Ti is
also placed in a^,^ [y] in Tsub. Thus, since they are isomorphic and they have
the CV's in the same positions, the equalizations among CV's in ChaseF(TZ)
and ChaseF(TS^6) are the same.

Let us call ^ the substitution defined by the equalizations in ChaseF(TZ)
(and ChaseF(TSU6)) where only CV's are involved. Hence, since TS.^6 is
a subtree of T^,, we have proven that any equalization among CV's in
topMost(ChaseF(Ti)) is also produced in topMost(ChaseF(Tw)).

E^ample 6.1.,2 Let P= {ro, rl } be:

ro: p(X,Y,Z,A,B,C) :- e(X,Y,Z,A,B,C)
rl: p(X,Y,Z,A,B,C) :- e(Y,X,Y,C,A,D),p(Z,X,Y,B,C,D)
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N for this program is 3. Let Tsuó be (shown in Figure 6.12(b)) the

subtree of T4 (shown in Figure 6.11) formed by the last two levels of T4 and

rooted by the IDB atom in level 3. That is, Tsub is isomorphic to Tl (shown

in Figure 6.12(a)).

p(X,Y,Z,A,B,C)

e(Y,X,Y,C,A,D) p(Z,X,Y,B,C,D)

e(X,Z,X,D,B,D') p(Y,Z,X,C,D,D')

e(Z,Y,Z,D',C,D2) p(X,Y,Z,D,D',DZ)

e(Y,X,Y,DZ,D,^) p(Z^X^Y^%^^D2^D3)

e(Z,X,Y,D',Dz,D3)

Figure 6.11: T4

^(X, Y, Z, A, B, C) ^(X, Y, Z, D, D1, D2 )

e(Y,X,Y^C,A,D) ^(Z,X,Y,B,C,D) e(Y,X,Y,D2,D,D3) ^(Z,X,Y,D1,D2,D3)

I I
e(Z,X,Y,B,C,D)

(a) Ti

Figure 6.12:

e(Z, X, Y, D1, D2, D3)

(b) Tsvó

Observe that Tl and Tsub are isomorphic. Moreover, they have the CV's

placed in the same positions since T4 has N levels more than Tl.

Thus, it is easy to see that any equalization (due to the chase) among
variables in Tl has its equivalent equalization in the chase of Tsub. In

addition, if this equalization is among CV's, then such equalization is also
produced (with the same variables) by the chase of Tsub.

For example, let F = {e : {3} ^ {4} e : {4} --^ {1}}. The ChaseF(Tl)

equates, first, C and B, since e(Y, X, Y, C, A, D) and e(Z, X, Y, B, C, D)

have the same variable (Y) in the left-hand side of e:{3} -^ {4}. Then,
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variables in the fourth position of such atoms became equal, and hence, the

fd e:{4} ^{ 1} is applied. Finally, after this fd application, Y and Z are
equated.

ChaseF(Tsub) equates, first, D2 and D1, and then Y and Z are equated.
Since TS.^b is a subtree of T4, these equalizations are produced (among others)
in ChaseF(T4), as well.

Therefore, it is easy to see that the equalization of Y and Z
in the topMost(ChaseF(Tl)) is also produced (among others) in the
topMost (ChaseF (T4 ) ) .

0

A note on complexity

Although we are not specially concerned about the complexity of our
algorithms since the computation of the chase can be done in compile time
without taking into account the databases to which the new program will
be applied, we are going to illustrate that this algorithm has a very low
computational pay load.

In order to compute the cyclic chase of a 2 - lsirz^p P with respect to
a set of fds F, first we have to compute N. A naive implementation of an
algorithm that computes the length of the chunks can take exponential time
in the arity of the IDB atom. Although better algorithms can be developed
to compute such lengths, it is not very important, since the arity of the IDB
atom would be typically very small in comparison with the extent of the
relations to which the program will be applied.

Once we have computed the chunks length, the computation of N takes
linear time, using the Euclidean algorithm (there are also improvements of
the Euclidean algorithm) .

Now, let us focus in the algorithm of Figure 6.1. We have already shown
that our algorithm terminates after, at most, 2N+N x n cycles (being n the
number of different variables in rl ). Thus, the number of cycles performed
by the algorithm grows in polynomial time on the size of rl. Notice that N
also depends on the size of ri (in fact, N is the least common multiplier of
the chunk lengths of the expansion graph) .

Thus, since the chase of a tree (using only fds) can be computed in
polynomial time on the size of the tree [AHV95], and the biggest tree that
can be computed is T2N+Nx^,, then the cyclic chase can be computed in a
tractable time.
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6.1.2 Equivalence of the cyclic chase

Now, we are ready to prove that the output of our algorithm P' is equivalent
to the original program P when both are applied over databases satisfying
a set of fds F.

Theorem 6.1.1 Let P be a 2-lsirup and let F be a set of fds over EDB(P).

Then, P =sAT(F) P' .

Proof It follows from Lemma 6.1.2 and Lemma 6.1.3 given below. 0

Lemma 6.1.2 Let P be a 2 - lsirup and let F be a set of fds over EDB(P).

Then, P' CSAT(F) P•

Proof Let NR be the set of non-recursive rules in P', and let R be the set

of recursive rules in P'.

Let s be a rule in NR, by the algorithm in Figure 6.1, s=

f rontier(ChaseF(Ti)) for some tree Ti in trees(P). Then, by Lemma 3.1.1

{S} ĈSAT(F) ri ° rp, then {S} ĈSAT(F) P• ^
Let r be a rule in R. Therefore, r= 9^(topMost(Tj)), where 9^ is the

substitution defined by CtopMostF(Tj) and T^ is a tree in trees(P). Given

that topMost(T^) = rl, then r= 8^(rl), therefore r C rl.

Hence, we have shown that for any rule r2 in P', {ri} CSAT(F) P•

Lemma 6.1.^ Let P be a 2- lsirup and let F be a set of fds over EDB(P).

Then P CsAT(F) P'.

Proof We are going to prove that any fact q produced by P when P is

applied to a database d in SAT(F) is also produced by P', when P' is

applied to d.
Let d be a database in SAT (F), and assume that q is in T(d), we are

going to prove that q is in P' (d) .
We prove by induction on the index (the number of levels) of the tree T

in trees(P) that if q is in T(d) then q is in P'(d).

Basis i= 0, q is in To (d) . Then q is in P' (d), since, ro is also in P' given that

topMost(ChaseF(To)) is ro.

Induction hypothesis (IH): Let q E Ti(d), 1< i < l^ and q E P'(d).

Induction step: i=j.
q is in Tj (d). Assume q is not in any T„z(d), 0<_ m< j, otherwise the

proof follows by the IH. Thus, there is a substitution 9 such that q is B(pj),

where pj is the root of T^ and where B(t^) E d for all the leaves t^ of Tj.

Therefore, q is also in { f rontier (T^ )}(d) .
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We have two cases:
Case 1: f rontier(ChaseF(T^)) is one of the non-recursive rules of P'. Then
by Lemma 3.1.1 q is in P'.(d).
Case 2: f rontier(ChaseF(T^)) is not one of the non-recursive rules of P'.

q E T^ (d) thus, by Lemma 3. l.l q E{ChaseF (T^ )}(d) (assuming that
d E SAT (F) ). Let -y be the substitution defined by the ChaseF (T^ ).

Let TS^6 be the subtree of T^ that is rooted in the node at the first level
of T^ that is, the recursive atom at that level. TSU6 has one level less than
T^, therefore Tsub is isomorphic to T^_1.

Let qs^ó be an atom in Tsub(d), since TSU6 is isomorphic to T^_1, then

9s^b is in T^_1(d). Hence, by IH qs,^6 E P'(d).
It is easy to see that q E{topMost(ChaseF (T^ ))}(d ^J qsuó), that is,

q E {-y(rl)}(dUqs^b).
By construction of P', in P' there is a rule st = et (rl ), where 9t is the

substitution defined by the cyclic topMost of some tree.

By lemma 6.1.1 and the definition of the cyclic topMost Bt C ry, therefore
if q E{-y(rl)}(d U qs^ó) then q E{9t (rl)}(d U qsub).

We have already shown that qsub is a fact in P'(d). Therefore, since
st (d U qsuó) obtains q thus we have proven that if q is in T^ (d) then q is also
in P'(d). O

6.1.3 Generalization to lsirups

In the case of the cyclic chase, it is used the chase of trees, that takes into
account the atom(s) in the last level (the one resulting after the application
of a non-recursive rule).

Thus, if the input program P is a l sirúp, for each non-recursive rule
in P, the algorithm in Figure 6.1 should be applied having as input the
recursive rule in P and one of the non-recursive rules. At the end (when all
non-recursive rules were considered) the whole set of obtained rules is the
CChaseF(P).

Therefore, for each non-recursive rule, several non-recursive rules plus
several recursive rules may be obtained.



Chapter 7

The FD-FD implication
problem

In the framework of the relational model, the chase was used to know when

a set of functional (or generalized) dependencies D implies another set of
functional (or generalized) dependencies d[MMS79, BV84].

In datalog, the implication problem has also been treated by several

researchers [AH88, WY92, GT95, HPB97b, HP97, HPB97a].

Formally, the FD-FD implication problem in datalog is the following.

Given a datalog program P, a set of functional dependencies F on the
extensional predicates of P, and a set of functional dependencies G on
both the extensional and intensional predicates of P, is it true that for

all databases d defined on the EDB predicates of P, d satisfies F implies

that the output produced by P with d as its input satisfies G? It has been

proven by Abiteboul and Hull [AH88] that this problem is , undecidable for

general datalog programs.

Since then, several researchers started to delimit set of datalog programs

where this problem can be decidable.

Gonzalez-Tuchmann [GT95] uses the chase to provide a syntactic
condition to solve the implication problem for a class of datalog programs.

Wang and Yuan [WY92] use the chase as a basic component of an
algorithm for testing if a set of integrity constraints (including functional

dependencies) ICl uniformly implies a set of integrity constraints IC2 in a

datalog program, provided that ICl is preserved by the program.

The problem tackled by Wang and Yuan is slightly dif%rent from the
problem treated in this chapter. They test ^cniform implication, whereas
we deal with implication (without uniformity).

107



108 CHAPTER 7. THE FD-FD IMPLICATION PROBLEM

In this chapter, we intróduce a syntactic condition that allows us to
decide if a program implies a functional dependency when we use programs

in a subclass of linear datalog programs. Besides, provided that the scheme

of the database is in Boyce Codd Normal Form (BCNF) with respect to

the functional dependencies, we of%r a syntactic condition that allows us to
identify programs that do not imply a fd.

The outline of this chapter is as follows. In Section 7.1 a subclass of

linear datalog programs to which our results apply is defined. In Section 7.3

a test to identify programs that imply a fd is introduced. Finally, in Section

7.4 a test to identify programs that do not imply a fd is presented.

7.1 The class ^ of linear datalog programs

The results of this chapter apply to the class ^ of linear programs of the
following form. .

The class is composed of linear datalog programs P definig only one IDB
predicate. Furthermore, exactly one of the rules is non-recursive (say ro),
such rule is required to have exactly one atom in its body. Eventually, rp
must have the following form: p(X ) :-e(X), where X is a list of distinct
variables.

The programs considered by Gonzalez-Tuchmann [GT95] are more
restricted than programs in class ^. Therefore, his results cannot be applied
in our case. ^

In the programs tackled by Gonzalez-Tuchmann, the predicate name of
the atom in the body of the non-recursive rule cannot appear in the recursive
rules.

For simplicity, we assume that the terms in the predicates are variables.

This assumption do not restrict our results.

7.2 Pivoting

In this section we present a new concept which is very important in this
chapter.

Let r be a rule of a program P in class P. We say that a set of argument
positions is pivoting in r if the positions defined by those argument positions
have the same variables and in the same order in the head of such a rule
and in either an EDB atom in the body of the rule with the same predicate
name as the atom in the body of the non-recursive rule of P or in the IDB
atom in the body of r.
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Basically, the idea is that if a set of argument positions are pivoting in

a rule r, then when r is applied to a database the constants in the positions

of the atoms obtained by r will be in the same order (and positions) as they

were in ground atoms or previously derived IDB atoms.
That is, the underlying idea is that if the ground atoms satisfy a fd, and

the applied rules are pivoting in the positions defined by such a fd, then the

derived atoms will satisfy such a fd as well.

Definition 7.2.1 Let r be a rule of a program P in class P or its chase. Let

us denote the atom in the head of r is ph, and let the predicate name of

ph be p. If the rule is recursive; let pb be the atom in the body of r whose

predicate name is p. Let e^ be an atom in the body of r whose predicate name
is e(the EDB predicate name of the atom in the body of the non-recursive

rule of P). Then, the argument position i is pivoting in r if ph[i] = e^[i], or

ph[i] = pb[i]. A set N of argument positions is pivoting in r if ph[N] = e^[N],

or ph [N] = pb [N] •
^ O

Note that pivoting is a simply syntactic condition that can be tested

straightforward. This concept is the key of our tests of implication.

E^ample 7.,2.1 Let P={ro, rl, r2} where:

ro : p(X, Y, W, Z) :-e(X, Y, W, Z)
rl : p(X, Y, W, W):-a(V, W), e(Y, W, W, V), e(V, Y, W, X), p(X, Y, V, W)
r2 : p(X,Y, W, Q) :-e(X, W, Q, X), p(Y, X, V, V)

We can see that the positions N={ 1, 4} are pivoting in rl since:

ph[1^ 4] = pb[1^ 4]

However, in r2 this set of positions N are not pivoting given that

ph[1, 4] ^ e[l, 4] and ph[1, 4] ^ pb[1, 4]. In r2i we can only find pivoting

position 1 since ph[1] = e[1]. q

7.3 A test to identify programs that imply a fd

In this section we present a test to identify programs that imply a fd f.
The test is based in two conditions (that depends on a fd) such that if

they are satisfied by a program in class ^, we can assure that this program
implies such fd.
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Lemma 7.3.1 Let P be a program in class P. Let F be a set of fds defined
over EDB(P) and let f= p: {il, ..., i^} ^{i^+i }, where p is the IDB
predicate defined by P. Let e the EDB predicate in the non-recursive rule of
P. If the two conditions showed below are true then F^P f.

• Condition 1 The fd e: {il, ..., i^} ^{i^+l} is in F+,

• Condition ,2 The set of argument positions {il, ..., i^, i^+l} are
pivoting in ChaseF(ri) for all recursive rule ri in P.

Proof Let P' _{ro, ChaseF (r2) }, for all recursive rule r2 in P. Let d
a EDB defined over EDB(P). Let us suppose that d satisfies F. Assume
that the Conditions 1 and 2 are satisfied. By Condition 1, P' (d) satisfies
e . {il, . . . , i^} -^ {i^+l}. By Condition 2, ^ri,,.,,,ik,ik+l [p, P'(d)] _
7fi1i..•^Zk^Zk^-1 ^e, P'(d)]a. Then, P'(d) satisfies p . {il, . . . , i^} -> {ik+l}.
Finally, P(d) satisfies p:{il, ..., i^} -^ {i^+l} since by Corollary 3.1.1

P(d) =SAT(F) P^ (d) • q

E2ample 7. ^.1 Let P={ro, rl }, where

ro : p(X, Y, W, Z) :-e(X, Y, W, Z).
ri : p(X, Y, W, Z) :- a(V, W), a(V, Z), e(Y, W, Z, V), e(V, Y, LV, X), p(Ji', Y, V, W).

Let F = {e : {1} -^ {2}, e : {1} -^ {3}, e : {2, 3} -^ {4}, e : {2, 3} ^
{ 1}, a:{ 1}-^ {2} } and let us consider only databases that satisfy F.

Let f= p: { 1}-^ {4} . Note that P is in P.

We can see that the positions 1 and 4 are not pivoting in rl. However,
if we chase rl we obtain the rule:

ChaseF (rl )= p(X, Y, W, W):-a(V, W), e(Y, W, W, V), e(V, Y, W, X), p(X, Y, V, W)

Then in ChaseF (rl ) positions 1 and 4 are pivoting and then, the
conditions of Lemma 7.3.1 are maintained and therefore F^P f. O

7.4 A test to identify programs that do not imply
a fd

In this section we present a test that allow us to identify programs that do
nót imply a fd.

: aNotation introduced in section 2.4.7.
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If a program P (in class ^) implies a fd i then we show two conditions

that must be held, otherwise the program P does not imply the fd f.

Lemma 7..^.1 Let P be a program in class ^. Let F be a set of fds over

EDB(P) in BCNF. Let f= p: {il, ..., i^} -^ {ik+l}, where p is the IDB

predicate defined by P. Let e be the EDB predicate narrae in the non-rec^crsive

rule of P. Assume e:{il, ..., ik} ^{i^+l} is left-hand minimal with respect

to F. If F^p f then we have that the following two conditions must be

held:

• Condition 1 The minimal fd e: {il, ..., i^} -^ {i^+l} is in F+,

• Condition ,2 The set of arg^cment positions {il, ..., ik, i^+l } are

pivoting in ChaseF(rZ) for any composition of r^cles of P, ri =

rl o r2 0.., o rn o r0, where rl, r2 ... rn (where there can be repeated

r^cles) are rec^crsive r^cles and ro is the non-rec^crsive one.

O

Proof Note that Condition 1 is trivially necessary. Thus, in what follows

we assume that is true.

Then, assuming that Condition 1 is true and Condition 2 is false, we give

a procedure for constructing, for all programs P in P and for all F defined

on predicates in EDB(P), a counterexample database, denoted by d^ount.

doo^nt satisfies the following two conditions:

1. d^ount is in SAT(F).

2. P(d^ount ) is not in SAT ({ f}).

Let P be a program in class P and let F be a set of fds over EDB(P)

in Boyce Codd Normal Form.
Let r^ount be the rule that does not satisfy Condition 2. We build r^ount

as follows: rcount = ChaseF(ri), where rZ = rl o r2 0.., o rn o ro, and

rl, r2 ... rn are recursive rules in P (where some of them may be repeated)
and ro is the non-recursive one. Let r^o^nt be of the form:

rcount ^ p(Xl, . . . , Xn) : -L, E

where L denotes the conjunction of EDB atoms in the body of r^o^nt that

are not defined over the predicate name e(the predicate name of the atom
in the body of the non-recursive rule) . E represents the set of atoms in the
body of r^ount defined over the predicate name e.
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From now on, in order to build the counterexample database d^o^nt, we
consider all the variables in r^ount (and therefore in L and E) as constants.
Let d be the database formed by L U E U eh. Note that L and E are set of
ground facts because we are considering their variables as constants and eh
is an atom constructed as follows: eh = e(A1, ..., An), where:

• forall j,l<j<n,ifjE{il,...,i^},thenA^=X^;

• else A^ is a new, distinct constant

Notice that eh has the same constants as the head of r^ount on the
argument positions in the antecedent of f, and distinct constants anywhere
else.

Let d^ount = ChaseF (d) . We claim that d^ount is a counter example
of F^P f. In order to prove that, first we have to . prove that the

chase of d can be done without produce any change in L and E and,
eh[{il, ... , i^}] = eĥ [{il, ..., i^}], where eĥ is eh after the chase.

The set E U L satisfies F because they come from the body of r^o^nt that
is the chase of rti. Then, since all the EDB atoms (in d) dif%rent from eh
(defined over the predicate name e) are in SAT (F), the first application of
a fd over d during the chase must be a fd e : X-^ {a} denoted, for example,
by g. Moreover, g must equate variables in the atoms ei E E and eh. We
have to prove that X={il, ..., i^}.

Suppose that X C{il, ..., i^}. Since the scheme of the database is

in BCNF, X is a key. If we compute (X )F = 1,^, then we have that
e:{il, ..., i^} -^ {i^+l} is not minimal, contradiction since we supposed

X C {il, • • , ik}• .

Now assume {il, ..., i^} C X, in this case, we cannot apply g since eh
in the positions dif%rent from {il, ..., i^} has new variables.

If we apply g over eh, since {il, ..., i^} is a key, the variable equalizations
can be performed such that after the application of a set of fds, e2 = eh,
given that all the terms in eh that are not in {il, ..., ik} are new constants
that are not in any other part of d.

Then we can remove one of the facts and therefore, there is no possibility
of apply any other fd. Hence, the chase ends.

Now we are ready to define the facts that violate f.
pl is the head of r^ount and p2 is constructed as follows. Let p2 be

the p-fact that we can prove by applying ro to {eĥ}. This implies that
p2 = p(Ai, . . . , A;^)b.

bWhere Ai, ..., Añ are the variables in eĥ .
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Note that

• d^ount is in SAT (F) and d^ount contains facts about predicates in

EDB(P) only.

• p2 is in P(d^ou,^t) (by the definition of p2).

• pl is in P(d^ount). This is true since, as we have already seen

doo^nt = E U L U {eĥ }. Thus, pl can be obtained by applying r^ou^,t to

{E, L}^.

• pl and p2 violate f. This fact is proven below.

In order to do this, we prove that pl [{il, ..., i^}] is the same as

p2[{il, ..., i^}] and then that pl[i^+l] is different from p2[i^+l].
By construction, p2[{il, ..., ik}] = éh[{il, ..., i^}]. We saw

that eh[{il, . . . , i^}] = eĥ [{il, . . . , i^}]. Therefore, p2[{il, . . . , i^}] _

eh[{il, ..., ik}]. However, by construction of eh and pl, pl [{il, ..., i^}] _

eh[{il, . . . , i^}]. Therefore, pl[{il, . . . , i^}] = p2[{il, . . . , i^}].

By construction, e'h[2^+1] is the same as p2[i^+l], then since, by

construction, pl[a^+l] ^ eh[i^+l], if eh[zk+l] does not change during the

ChaseF(d) the proof ends, else the proof continues.

If eh [i^+l] changes during chase, then e ĥ = ei, where ei E E. Thus, we

have by construction:

ei[{il, . . . , i^}] = eĥ [{il, . . . , i^}] = pl[{il, . . . , i^}]

However, since in rcount the argument positions {il, ..., i^, i^+l } are not

pivoting, we have that ei[i^+l] ^ pl[ik+l], hence, eĥ [z^+l] ^ pi[i^+l]• ^

E^ample 7.l^.1 Let P= {ro, rl, r2} where:

ro : p(X, Y, W, Z) :-e(X, Y, W, Z)
rl : p(X,Y,W,W) : -a(V,W),e(Y,W,W,V),e(V,Y,W,X),p(X,Y,V,W)
r2 : p(X, Y, W, Q) :-e(X, W, Q, X), p(Y, X, V, V)

Let F be {e :{1} ^{4}}. Let f be p: {1} ^{4}. We want to know if

F^Pf•
Let us check, for example, rl o r2 o ro:

^(X,Y,W,W) : -a(V,W),e(Y,W,W,V),e(V,Y,W,X),e(X,V,W,X),e(Y,X,V',V')

^Remember that E and L do not change during the chase.
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ChaseF(rl o r2 o r0) is:

^(X,Y,W,W) : -a(V,W),e(Y,W,W,V),e(V,Y,W,X),e(h',V,W,^I'),e(^;X,V,V)

Since positions 1 and 4 are not pivoting in ChaseF(ri o r2 o ro), hence
we are sure that F^P f is not satisfied by P. 0



Chapter 8

Conclusions

In the last years, research efforts in databases have put more strength in

new data models like object oriented databases, semi-structured databases, ^

and others. In certain circles, researchers think that the deductive model is

out of date.

Leaving apart the discussion of deductive databases being a current issue
or not, it is clear that many of the problems that arise in the deductive model
are still useful to solve problems in other areas like logic programming or

data warehousing.
However, the main reason to refute the argument of those researchers

that think that the deductive model is out of date is the recent appearance of

the new SQL standard, SQL99 [MS02, UW97]. SQL99 includes queries with
linear recursion, thus it is mandatory to develop optimization techniques to
be included in the DBMS in order to obtain better results in the running

time of recursive queries.
In this dissertation, we have presented results in such area. More

precisely, our work fits in the the field of semantic query optimization.

Two diíferent algorithms to optimize recursive datalog programs were

presented. Both algorithms seek the same target, that is, from a linear
datalog program and a set of fds, our algorithms obtain an equivalent

program when both are applied to databases satisfying the input set of

fds.
The reader may worider why do we provide two algorithms with the same

target. ^The reason is that depending on the input program and the input
set of fds, one of the algorithms could produce better results than the other.
However, the output of the chase of datalog programs can be introduced as
input of the cyclic chase of datalog programs. Therefore, given linear sirup,
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.
both algorithms can be combined in order to obtain the bénefits from both
algorithms.

The dif%rences between the two algorithms is that the chase of datalog
prograr►zs uses the partial chase of tress that does not consider the atoms
resulting from the application of the non-recursive rule of the input program.
However, the cyclic chase of datalog prograrras uses the chase of trees that
considers the atoms in the last level of the tree. Nevertheless, the chase of
datalog programs considers all the variables whereas the cyclic chase is more
limited in such aspect.

As a future work, we will try to develop an algorithm that would take

into account all the variables and the atoms resulting from the application

of the non-recursive rule(s) of the input program. It is easy to see that

such algorithm would obtain better results, however our believe is that such

algorithm would be very expensive in computation if we compare it with our

algorithms, thus the two algorithms presented in this work would be, even
we found such algorithm, valuable. In addition, it would be also interesting

the extension of the chase of datalog programs and the cyclic chase to larger
classes of datalog programs.

Also, as a future work, it would very desirable the construction of a
prototype of query optimizer in order to acquire experimental results of the
benefits obtained using our algorithms.

Apart from our most palpable results, that is, two algorithms to optimize
linear recursive datalog programs, we believe that we have made advances
in a very interesting area where not many works can be found.

The scarcity of research in the area of semantic query optimization of

recursive datalog programs that are evaluated over databases satisfying a
set of fds should not be seen like an indicative of the lack of interest of this
area. The mainly used tool (the chase) has demonstrated that is valuable
in many different data models, so why not in the deductive model?

We believe that the reason should be found in the fact that from a
research point of view, the use of the chase in recursive queries is very
intricate.

In that way, we believe that some tools developed in this thesis may be
useful to the study of recursive datalog programs. Atom chains, equalization
chains and formation rules, can hopefully be used to go further in the
research in this area.

We also provide results in another area, the implication of functional
dependencies. This problem is completely solved in the relational model.
Moreover, in any computer school it is taught most of the theory about this
issue in the relational model.
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However, as many other problems that are easy to tackle in the relational

model, they become very difficult in the deductive model. In fact, Abiteboul

and Hull [AH88] showed that the implication problem for datalog programs

in general is undecidable. Therefore, the research efforts are now focused
on the definition of classes of datalog programs where the problem can be
studied and solved.

In this field, we provide a syntactic condition that, given a program
belonging to a special class of linear datalog programs and a set of fds,
determines if such program implies a fd. We also provide a syntactic
condition that given a program in such a special class of linear datalog
programs and a set of fds, determines if such program does not imply a fd.
In both cases we can determine if the program implies or not a fd without
computing the output database, with just checking a very simple syntactic
condition. Thus, both methods are very valuable.

As a future work, we would try to find an necessary and sufficient
condition to determine whether a l siTUP applied to databases satisfying a
set of fds implies or not a fd.
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Symbol Index
^z^,...,2n I^^ P(d)]
2 - l sirup

^ az,^
az,^ [n]
a^ [R^ ] ^ a^ [R] ^ az,^ [R]
a^ [L^], a^ [L], a2,^ [L]
AV's, AV
CChaseF(P)

ChaseF(r)

ChaseF(T) ^
ChaseF(P)
ChaseRulesF(P)
ChasePF (T )

CtopMostF (Ti )
CV's, CV
EDB(P)
fd,p:{n}-^{m}
fds
frs, fr
f rontier
FRF(P)
F^Pg

F^pg

G
l^
LHCSA
lsirup
N
P

P(d)

P1 C P2

Pi = P2
P1 C S P2

P1 - S P2

4' [n]

ri o r^
r^

Rn,m

r(d) 19
SAT(F) 22

sirup 13
Ti . 24

topMost 24
tree(r) 23
trees(P) 24
v,^ 71
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