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ABSTRACT

Current research in simulation of multibody systems (MB@)ainics is focused
on two main objectives: the increase of the computatiorfadiefncy of the software
that carries out the simulations, and the diversificatiothefproblems this software
is able to tackle, sometimes through the inclusion in theutations of non purely
mechanical phenomena. This work deals with these two abgsctstudying the ef-
fect of source code implementation in software performaasavell as the different
communication methods with external software that canrdmrne the interaction of
the MBS code with elements of a non mechanical nature.

The first Chapter of this thesis contains a brief introductmthe present state of
the art of MBS simulation software. It introduces the reskdines this thesis forms
part of and outlines its main objectives.

The second Chapter describes the software architectutdB& simulation that
has been developed for this research. The C++ language kasulsed for its im-
plementation, according to the object—oriented programgmiaradigm. This Chapter
also enumerates the programming tools employed in the gsomed draws general
conclusions about the development of MBS programs.

The third and fourth Chapters introduce efficient impleragah techniques in the
field of linear algebra operations, and in the parallel@anf the code, respectively.
The obtained improvements in performance have been queahtdind the range of
application of each technique has been delimited.

The fifth and sixth Chapters deal with the communication efdikveloped soft-
ware with external simulation software packages. A contperatudy between the
different ways in which the coupling can be performed hasegried out and, be-
sides, the impact on the efficiency and accuracy of the useutifrate co—simulation
techniques has been assessed. A generic interface foratmilitntegration has been
designed to link the MBS software with MATLAB/Simulink, a mh@matical and
block diagram package very popular in the multibody comryuni

Finally, the seventh Chapter summarizes the conclusiotizegiresent work, and
proposes future research lines that can be derived from it.






RESUMEN

La investigaddbn actual en simulach diramica de sistemas multicuerpo (MBS)
gira en torno a dos objetivos principales: el incrementadsitiencia computacional
del software que lleva a cabo las simulaciones y la divessifio de las tareas que
este es capaz de realizar, a veces mediante la ibolasi los élculos de febmenos
no puramente memicos. Este trabajo aborda ambos objetivos, estudianeizetio
de la implementa6in del édigo fuente en el rendimiento del softwarei, @smo las
diferentes estrategias de comuniéaccon programas externos que puedan aportar a
la simulacén multicuerpo la interacén con elementos de naturaleza no areca.

El primer cafitulo de esta tesis consiste en una breve introducal estado actual
del software para simulam de sistemas multicuerpo. Ehse muestran tamim las
lineas de investigaln en las que se enmarca el proyecto y s&lsam sus objetivos
principales.

El segundo cdpulo describe la arquitectura del software para la simatade
sistemas multicuerpo que se ha creado en esta invesiigdtara su implementdci
se ha utilizado el lenguaje C++, dentro del paradigma derprogcon orientada a
objetos. En este céplo se enumeran tarém las herramientas de prograntacuti-
lizadas en el proceso y se obtienen conclusiones de valatex g para la generdci
de programas multicuerpo.

Los captulos tercero y cuarto presentéthicas de implementdni eficiente de
las operaciones degebra lineal y en la paralelizéei del é@digo, respectivamente. Se
han cuantificado las mejoras en el tiempo de ejéruobtenidas y se han delimitado
los campos de aplicami de cada estrategia.

En los caftulos quinto y sexto se aborda la comuniéeacdel software desarro-
llado con otros programas de simulatiexternos. Se ha realizado un estudio compa-
rativo de los diversos modos posibles en que se puede readizaundn y, adens,
se ha evaluado el impacto del empleo &enicas de cosimulam multirate sobre la
eficiencia y la precigin de los élculos. Se ha dig&do para ello una interfaz genica
entre el software MBS y MATLAB/Simulink, una aplicaéci matenatica y de diagra-
mas de bloques de gran acepbacentre la comunidad de investigacien sistemas
multicuerpo.

Pordltimo, en el caftulo $£ptimo se resumen las conclusiones del presente trabajo
y se proponeniheas de investigaln futuras que pueden derivarseéale
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Chapter 1

Introduction

The simulation of multibody systems (MBS) is a very activédfief Mechanics, in-
tensely evolved since the late 1960s thanks to the improwtsmie computing hard-
ware and software. The simulation of multibody systems lesabe prediction of the
kinematic and dynamic behaviour of a mechanical system ftephysical definition,
avoiding the need for building a real prototype of the medranthus shortening the
development process of the product and reducing costs.dthe considerable com-
putational effort required to formulate and solve the eigmatthat rule the motion of
mechanical systems when large rotations are presenttheagion of even relatively
small problems was considered impractical until the appea of digital comput-
ing. Since then, the advances in architecture of computetssaftware engineering
have converted the task of simulating multibody systemw~émyelay work for many
research groups, and MBS simulation is now common in prodeetlopment in in-
dustry. On the other hand, this work has become heavily diperon the quality and
features of the available software.

The complexity of the models the researchers in multibodesys have to deal
with is continuously growing, as the degree of detail in dations required by in-
dustrial applications increases. Nowadays, mechanigahears need more and more
realistic simulations, which leads to highly demandinguieements for the multibody
simulation software. In the last fifteen years, the rangeeséarch topics has notably
widened, and new phenomena are now considered and includédulation models,
such as flexibility, contact, impacts and interaction witimamechanical components
(Schiehlen, 2007). These features add a higher degree lafet@ the simulation,
but they usually represent also an extra computationaldsutdat the software has
to tackle. Presently, the lines of research in the field oftiimodly systems can be
grouped into two main categories: the development of metho@dd new function-
ality to conventional MBS software in a reliable and precisgy; and the design of
new formalisms to improve the efficiency of the simulaticsmnetimes aiming at the
exacting goal of performing the simulation in real time.

As it can be deduced from the previous paragraphs, softvifceency is a crucial
component in multibody research. A poor implementation samously hinder the
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performance of a carefully designed formalism, spoilisgpibtential advantages and
preventing it from being used in non-trivial applicatio@anversely, a rational use of
programming techniques reduces the computational effguired to solve a partic-
ular problem, smoothing the path for the addition of newudezg or the fulfilment of
tougher requisites in the simulation.

1.1 Motivation

The spectacular progress experienced by MBS researchgdthvenlast years has
given rise to a considerable number of software packageatéosimulation of multi-
body systems (McPhee, 2008). Several commercial, offstief-packages are avail-
able, such as Simpack (SIMPACK AG, 2009), MSC.Adams (MS@w&we Corpora-
tion, 2009), SAMCEF mecano (SAMTECH, 2009) or RecurDyn (@ion Bay, Inc.,
2009). These programs are efficient and versatile, and thdgrgo periodical en-
hancement. Additionally, some software tools, originaltt designed as multibody
programs, are incorporating this functionality throughafic complements and mod-
ules. Examples of the stated are the SimMechanics librarl®I'LAB’s block dia-
gram tool Simulink (The Mathworks, Inc., 2009) and the agatiions for the analysis
of mechanisms that are nowadays common in many CAD/CAE paskamong oth-
ers.

While these programs are specially useful for simulatindipaar problems, of
great complexity sometimes, they are not suitable as aophatfor testing new for-
malisms or developing extra functionalities. Moreovee kick of a neutral data for-
mat for the exchange of files between packages from differventlors frequently
makes it impossible to use data from a package in anotherTdnss. it is that many
academic research teams have written, and keep on writieg, adwn codes in or-
der to assess the validity and efficiency of their dynamimidations and integrators.
Many researchers have also developed code to deal with théumetionalities re-
quired by multibody simulations on the basis of their in-é®godes. Some of them
have reached a high degree of maturity and are being useal#ife, industrial appli-
cations (Anderson et al., 2007; Dipartamento di Ingegn&eigspaziale, Politecnico
di Milano, 2009). However, although research in the mulijpeommunity has been
traditionally focused in the definition of new efficient foatisms, very few studies
about the impact of implementation details on performareestbeen carried out.
Currently, there is a lack of available information abous tsubject in literature, so
multibody research groups are compelled to draw their omglosions based on sub-
jective experience. This leads to a multiplication of effaand increases the risk of
using inadequate solutions in practice.

As a consequence of the stated, it is necessary to correetiyste the impact of
code implementations on the reliability and efficiency & tleveloped MBS simula-
tion software, as well as the possibilities the state of ttigoevides with regard to
the enhancement of the features this software can offes.thbsis continues the work
the Laboratory of Mechanical Engineering of the UniversifyLa Coruia has been
carrying out on this field during the last years. This task imétgated with the work
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of Gonzlez (2005), who proposed some steps towards the efficiertafenent of
MBS software:

e The use of a neutral and extendable data format for the modelf multibody
systems, which can be used for the exchange of models betgees of dif-
ferent simulation programs, both academic and commer@eahfalez et al.,
2007).

e The building of a benchmark to evaluate the efficiency of tifferént existing
simulation methods, made up of a collection of mechanisnulsition prob-
lems and a routine to obtain comparable parameters of effigian different
simulation environments (Goalez et al., 2006, 2010).

e The elaboration of a software architecture prototype fer development of
optimized MBS simulation codes.

The third item in the list has been addressed during the edéiba of the present
thesis, as the development of a software architecture ggevan adequate environ-
ment for testing different implementations and for the iiferation of the problems
that commonly arise during the writing of MBS simulation esdThe software itself,
however, is not the main objective of this work, but an intedmate tool to study the
effect of different implementations and find out generaldglines for the optimiza-
tion of MBS software. The different ways of performing limedgebra routines, the
possibilities the parallelization of code offers and thenocounication with external
software constitute the main focuses of attention of theithe

1.2 Obijectives
The objectives of this thesis can be summarized in the fatigwnes:

e To assess the effect of code implementation on the ovendiinpeance of multi-
body software and to identify commonly used patterns of dadeIBS pro-
grams that can be systematically enhanced using simplegtetthniques. The
obtained improvements must be measured and used to find imieliges that
can help the researchers of the multibody community to efiity implement
MBS simulation codes, in particular when the improvemenmt loa performed
without affecting substantially to the structure of thetaaire.

e To evaluate the ways in which MBS software developers canextté func-
tionality to their codes via communication with externatkages and libraries.
This objective includes the review of the currently avdigadpupling techniques
between software tools and their comparison, and also tea@ment of syn-
chronization strategies between different codes, whedatweA special atten-
tion must be paid to block diagram simulators, because af tieesatility and
wide acceptance in the research community.
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e To start the development of a software architecture for timelation of multi-
body systems, in which the previous objectives can be dludias architecture
must be open and modular, in order to allow the extensiors ééatures through
the addition of new modules or the streamlining of the emgtines. The soft-
ware must also serve to test and develop new MBS formulaindsntegrators.

The results obtained during the realization of this workiatended to yield use-
ful information for the multibody community on the subjedtafficient and versatile
software implementations.

1.3 Structure

This thesis is structured into the following Chapters:

e Chapter 1: Introduction.

Chapter 2: Design of a Software Architecture for MBS Simiolat

Chapter 3: Linear Algebra Implementation.

Chapter 4: Parallelization.

Chapter 5: Integration with MATLAB/Simulink.

Chapter 6: Multirate Co—simulation Methods.

Chapter 7: Conclusions.

Chapter 1 briefly describes the currently active lines oéaesh in the field of
MBS dynamics and highlights the importance of the softwamnultibody research.
The motivation and the objectives of this work are pointet] and the layout of the
thesis is presented.

Chapter 2 deals with the simulation software that has beeelaed for the
achievement of the goals of this work. In the light of the w@aifte requirements, a
programming language, work methodology and software stracave been chosen.
The resulting layout and the features of the code are therrides and general con-
clusions about the development of multibody software aposgd.

Chapter 3 discusses the impact of the use of different linkgabra implementa-
tions on the overall efficiency of MBS simulation codes. A tlemark problem is set
up, and different configurations of the software, relativeratrix storage and basic
algebraic routines, are tested and compared. Guidelimghdcselection of the most
convenient configuration, as a function of the problem rafaumber of variables
and number of non—zeros in matrices), are established anthef this Chapter.

Chapter 4 assesses the suitability of improving the perdoca of the simula-
tion through the use afion—intrusiveparallelization techniques. Multi—threaded lin-
ear solvers and OpenMP directives have been applied to ftvease, and conclusions
about their performance have been drawn.
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Chapters 5 and 6 deal with the addition of functionality tdtibody codes through
communication with external software. Several ways of exgfing data during run-
time between the MBS software and a general purpose mativafadckage (MAT-
LAB/Simulink) are described and compared. In Chapter 6 néeriace for multirate
co-simulation is described and tested.

And, finally, Chapter 7 summarizes the conclusions and tesilthis work and
points out presently open lines of future research.






Chapter 2

Design of a Software
Architecture for MBS
Simulation

In order to achieve the goals identified in the Introductmthis thesis, a new software
for the simulation of multibody systems has had to be deeloplthough many MBS
simulation software packages exist, some of them openesptire design of a new
one from scratch seemed convenient for several reasorss, &kisting MBS codes
have gone through long development and optimization pease®f years of duration
in many cases. During these processes, decisions have dleamabout the storage
format to be used, the way in which interfaces are defined aaaynother imple-
mentation details. The knowledge background on which thiesésions were taken
is frequently not accessible to users, even in the case theisavailable for down-
loading. Second, existing software is hardly ever preptoethe easy replacement of
components at a low programming level in the code, such asttinage format or the
way in which basic algebraic operations are performed. ifakes difficult the test
of alternative code implementations. Consequently, a rdtware for the simulation
of MBS dynamics has been designed and used in this research.

2.1 Analysis of software requirements

The developed MBS software must comply with the followinguieements:

e |t must bemodular, in order to simplify the substitution or modification of any
of its components without carrying out significant modificat in its main
structure. As the MBS software is designed to test diffeedternative imple-
mentations of the same components, its structure must biéléesnough to
permit the replacement of the formulation, the integratathe numeric meth-
ods for the solution of systems of equations without sultistiyaffecting the

7
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rest of the elements of the program, preferably in an eassveert way.

e |t must beopen to allow the addition of new functionality through the ude o
sub—programs or modules written in any common programnaingdage (For-
tran, C or C++), as well as the communication with other satiah and calcu-
lus tools, such as CAD programs or block diagram software.

e It must becollaborative so many researchers can develop the software simul-
taneously and coordinately, even when they belong to gebgrally scattered
research teams.

e Finally, it is desirable that the software jatform—independenso it can be
compiled and used under different operating systems angutenarchitec-
tures.

The first two features are necessary for assessing the efféifferent code imple-
mentations and testing techniques of communication witbraal software packages.
They will also allow the future development of the proje@chause they make possible
to add new modules and interfaces to external programs.grbowsth will be consid-
erably facilitated by the fact that the software is built inadlaborative way, since the
sharing of information and code among groups will not be &ied by constraints
on the dissemination of knowledge. The fourth condition atekes easier the use of
the software, as it is not conditioned by the availabilityaodletermined compiler or
operating system; moreover, it will allow the generaliaatof the obtained results, as
their validity will not be confined to a particular configuimat of the computer system
in which they were obtained.

2.1.1 Programming language

The modularity the software requires can be obtained bygdesj the architecture
of the code according to thebject—oriented paradignObject—oriented languages
provide the following features, all of which positively pahe software modularity:

e Inheritance The hierarchical structure of the software can be contcduon
the basis of deriving new classedefived class@sfrom existing oneshfase
classes Itis possible to create abstract classes that define gie staucture of
the main components of the software, and to instantiatécp&at implementa-
tions of these components later, by adding specific funatitynto the original
base class. For example, a base clategrator can be created, defining the ba-
sic functionality of the integrators and the methods thegtaeclare, and then
several instances of integrators derived from it, impletingnthe actual inte-
gration routinesMultiple inheritancecan also be used to combine the features
of two existing base classes.

e EncapsulationThe use of correctly designed base classes leads to théidafin
of interfaces, which control the interaction of the compuseof the software.
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The use of interfaces makes the communication between auenp®indepen-
dent of the particular inner operations of each of them, dimiva their non—
intrusive substitution. It also facilitates the modificatiof the code inside of
a particular component (e.g. the way in which an integratofggms the itera-
tions to achieve convergence) without affecting the stngcof the rest of the
program.

e PolymorphismPolymorphism allows the same function to be executed on dif
ferent object types. For example, a function for adding io@¢rcan receive two
arguments representing dense matrices, but the samedietn be defined to
operate on sparse matrices. This simplifies the encapsulaitthe code through
the definition of standard interfaces.

e Reusability The three enunciated characteristics of object-orielatieguages
result on an increment of the reusability of the code: classel functions can
be used in different applications without substantial rficdiions.

The object—oriented paradigm has been successfully appli®IBS dynamics in
several works. Kecskeethy and Hiller (1995) used the approach to simulate vehi-
cle dynamics in a modular way; Han and Seo (2004) employettité generation
of the equations of motion; and recent applications of théhotein biomechanics
have been developed byfdl et al. (2009). The features of object-oriented langsag
have led many researchers to use them to implement their MBSae. This is the
case of POEMS (Anderson et al., 2007), a modular multibodiyveoe that aims to
work as a repository of efficient implementations of MBS aitjons, today a part of
the LAMMPS molecular dynamics simulator (Sandia Nationabaratories, 2009).
MBDyn (Dipartamento di Ingegneria Aerospaziale, Politeordi Milano, 2009) is
another case of modular and open MBS software, with additisapport for aeroe-
lastic, hydraulic, electric and control problems. As a stmple, SimTK (Simbios
project, 2009) core module relies on the same principlesstiraction and modularity
to build a highly—efficient multibody software, aimed at gimulation of biomechan-
ical systems.

All the applications mentioned in the previous paragrapretmeen coded in C++;
in the present work, C++ has been selected as programmiggdae too. Its object—
oriented features are missing in Fortran and C languagesnomly used in the multi-
body community, but more focused on procedural programr{@ayy et al., 1997).
Moreover, regarding efficiency, a software package writte@++ can make use of
libraries coded in these more efficient languages in a velstistraightforward way.
Thus, the slight penalty in performance due to data abstragt C++ codes (under
5%, with respect to plain C) can be overcome via the use ofmatdighly efficient
routines, written in C or Fortran, when necessary. Adddltyn C++ includes other
helpful characteristics such as the possibility of ugemplatesand the standardized
management of exceptions.

An additional reason for selecting C++ as programming laggus the consider-
able amount of available documentation and developing twiajood quality, many of
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them freely available in the Net. The design of the softwarermake use of standard-
ized solutions and design patterns, such as those desdnjbbtbyers (1999, 2000)

and Alexandrescu (2001). The C++ Standard Library (STLYioles a set of common

classes and interfaces that greatly extend the core C+tdaeg(Josuttis, 1999), and
other popular libraries have been recently proposed fodstalization (Dawes et al.,
2009). By reusing these elements, the software developeaazelerate the writing of

the code with robust, already tested solutions.

The fact that the software is intended to be platform—inddpat must be borne in
mind during the design process of the code, avoiding impieati®ns of C++ specific
of a certain compiler or operating system, at least in the edsthe main compo-
nents defined in the core module, to keep the code portabilithe present work, the
software has been designed and tested to run under both Wéradal Linux systems.

2.1.2 Methodology and development tools

The final requirements of the software in a research projectraquently difficult to
foresee when the programming of the code begins; in manygctimsy are discovered
as the work progresses. This fact could be seen as an indenegenin this work,
however, it has been useful in order to evaluate the actugredeof modularity of
the software and the ability of the chosen programming Ewoiatto be adapted to
new necessities. For this reason, many characteristitedfiBS software have been
added as new requirements were raised, instead of planwnérg detail completely
from the start of the project. This flexible methodology hexgealed itself to be very
effective, even when new features of considerable entitg baen incorporated to the
code, as it was the case of the addition of support for sptossge to the original code
for dense matrices, or the introduction of a new module ferghtomatic generation
of equations.

Regarding the development and auxiliary tools that have lised in the present
project, the following ones are worthy to mention becaustheir critical impact on
code performance and maintenance:

e Compilers responsible for building libraries and executables friwe $ource
code.

e Build—process managerg/hich control the creation of the projects that rule the
compilation of the code.

e \ersion control systeméor keeping track of the changes in the code, especially
when several developers work on the same project.

e Documentation systemwhich automate the generation of the reference docu-
ments.

The tools required by a truly open and collaborative sofenatst be easy to obtain,
so the lack of a license or a highly expensive retail pricanaten obstacle for building

the program. For this reason, open source tools, accedisiblegh the Net, have been
preferred for this study.
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Compilers

As the tool that converts the C++ source code into libramesexecutables, the com-
piler is a key component in the building of an MBS simulatiaftsare. Most com-
pilers can carry out their own particular optimizations le tcode, so they are also
a factor to consider when measuring the performance of agmgVioreover, some
specific techniques, such as the parallelization via OpedkHeribed in Chapter 4,
are only supported by certain compilers. The selection afragler is also a func-
tion of the operating system and the computer architecTire.use of Windows— and
UNIX-based compilers helps checking the portability of toele: in this research,
this has been done with Microsoft Visual Studio (Micros@®09) and GCC (Free
Software Foundation, 2009).

Profiling tools are a complement to the compiler, partidulaseful to detect bot-
tlenecks that slow down the execution of the code, and atss®tparts of the software
most adequate for optimization. Their characteristicy waeatly, and not many of
them, with an suitable quality, are open source or freelyridisted. Valgrind (Val-
grind developers, 2009) is an exception and has been ushkis iresearch.

# Additional include directories
include_directories ( ${MBSLAB_HOME} )

# Files that form the executable
set ( Double_Pendulum_FILES
./Double_Pendulum.cpp
./Double_Pendulum. hpp
./DP_driver.cpp )

# Create executable from files
add_executable ( Double_Pendulum
S {Double_Pendulum_FILES} )

# Link executable to core library
target_link_libraries
( Double_Pendulum mbscore )

Figure 2.1:Example of CMake directives for the generation of an exddeta

Build—process managers

The diversity of compilers that can be used for building th&veare has given rise
to an additional problem, unexpected when this work wasestaEvery compiler re-
quires a project file or a seriesmiakefilego regulate its work, deciding which files are
to be compiled, and which options must be used during thegggod’he maintenance
of these project files can become a cumbersome, annoyingvtaesk the number of
supported compilers in the software project grows. Buifdepss manager systems
solve this problem, automatically building the projectdiler makefiledrom scripts
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that are independent from the operating system and the tempMake (Martin and
Hoffman, 2007) has been selected for this work; an examyits dfrectives for ruling
the compilation of the code is displayed in Figure 2.1. Asftgare shows, CMake
directives must be coded in its own language, but the smiitehe programmer
must make to learn it is clearly compensated by the advasitaiggaving just one set
of script files, valid for guiding the compilation of the coifea considerable number
of common operating systems and compilers.

Version control systems

The use of version control systems is recommended whenajsxgl software in a
collaborative way, to synchronize the additions and madaliims in the code. Even
when the development is not collaborative, these systemstihbe used to keep
track of the changes in the code, test modifications and tréfvem when needed.
Subversion (SVN) (Tigris.org, 2009) has been used as it dyalsced the traditional
Concurrent Versions System (CVS) as version control stahdss this work was
being developed, new control systems have arisen, whichl aequiring a central
repository of source code through the use of distributeHigecture. This means that
each developer has a local copy of the entire history of tlfisvace. Examples of
distributed systems of control version are Mercurial (8el€Consulting, 2010) and
Bazaar (Canonical Ltd., 2010); currently they can be fouma inature state and used
for the development of complex code projects.

Documentation systems

Finally, the use of a semi—automatic documentation systepli§ies the task of writ-
ing reference files for each C++ element created in the prdjesugh a minimum
amount of work in this field must always be done by developEns. software in this
thesis is documented with Doxygen (van Heesch, 2009). dbigpirses special com-
ment lines placed in the C++ source files of the software andxnfiles, describing
the way in which classes, functions and other componentk.\Was configurable and
its portability allows documenting the code with the sameg®ntaries, indepen-
dently of the platform where the software is developed. Tdrarments inserted in the
code are used by Doxygen to generate documents in HTML or TEXdt that can
be later improved by the programmers with their explanatantgs.

2.2 Description and general structure

The basic core of the developed multibody software is a génmirpose program
aimed at the simulation of generic multibody mechanismsghrough large rota-
tions and highly non—linear equations. For a multibody exystdefined by a set of
generalized coordinateg the nonlinear equations of motion can be written as a sys-
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tem of Differential Algebraic Equations (DAE) as follows:

Mg + @51 = Q
®=0

2.1)

whereM is the mass matrix of the systeid,is the vector of second derivatives of
the generalized coordinates (acceleratiofbsjs the vector of constraint equations of
the system@®y, is the Jacobian matrix of the constraint equations witheeso the
generalized coordinatek,is the vector of Lagrange multipliers, afis the vector of
generalized forces that applies to the generalized coateln Equations (2.1) cannot
be directly managed by most integrators, so they must beectat/ into Ordinary
Differential Equations (ODE) through the use of a convenimamic formulation,
as it will be explained in Section 2.3.

The simulation software is designed to be able to managerdift types of coor-
dinates. In this work, however, natural coordinates, dlainal dependent (G de
Jabn and Bayo, 1994), are used for modelling the systems. Blatoordinates de-
scribe the position of the elements of the system by meanssit Ipoints and unit
vectors associated with the bodies of the system. For thisore there is no need for
the use of rotation parameters, such as Euler angles, toiloeshe rotation of the
bodies.

Figure 2.2:Generic rigid body, parameterized with natural coordirmte

A description in natural coordinates of a generic rigid bady be seen in Fig-
ure 2.2; the use of natural coordinates for flexible bodiedeiscribed in detail by
Cuadrado et al. (1996). The global position of an arbitraastiple of the rigid body
P can be expressed by its position veatolf the unit vectors/y, v, andvs, which do
not need to be co-lineal with the local axes of the batyj{ andz), form a base of
the local frame of reference, the position of the partilean be expressed as a linear
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combination of these vectors, in the following way:
r=ro+f=ro+avi+ BV + yvs (2.2)

wherer is the position vector of the origin of the local frame of refiece of the body,
r is the position vector of particl® in the local frame of reference, and  andy
are constant coefficients of linear combination. Using aerselection of the basic
points and unit vectors of the body, the mass maitixemains constant during large
rotations. This unique feature of the natural coordinatemplifies the equations of
motion since inertial forces that depend quadratically elogities do not appear in
them.

Finally, constraint equations representing kinematictpbetween bodies must be
added in order to complete the modelling of the system. Tkhgsations are defined
in the constraints vecto®.

e Algebra libraries

/ Core module Linear solvers
) Ax=b
Core routines
(mbsCore)

Operations
Main program AX, ax+y,...
(.exe) -

Additional modules

4 1\
MATLAB interface
(mbsMatlab)

Graphics
(mbsGraphics)

Other

LU ) )

Figure 2.3:General layout of MBS simulation software

The main structure of the MBS simulation software is depidéteFigure 2.3. The
software is designed as a modular series of libraries, eflaghioh is responsible for a
particular task in the simulation. The main library is desd as theore moduleand
it is described in detail in Section 2.3; it contains the ntimategration routines, the
multibody dynamic formulations for converting the DAE'sguation 2.1 into a set
of ODE’s, and the basic components for building the modete®multibody systems
to be simulated. The core module, in turn, invokes basichafge functionality, such
as routines for the solution of linear systems and matrigtereoperations, from a set
of algebra libraries These libraries are third—party software, and their sele@nd
tuning are described in Chapters 3 and 4.

In addition to the fundamental multibody facilities com&dl in the core module,
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the functionality of the software can be further expandeduph the definition and
implementation oadditional modulesThus, libraries can be defined that add commu-
nication with external software (as it is the case of the MABLinterface described
in Chapter 5), manage the graphic representation of thdtsesuperform pre— or
post—processing of the obtained data. These additionall@sdn turn, can use the
functions implemented in the core module, in case they reem t

Finally, adriver or mainprogram that defines the problem to be solved, manages
the execution of the simulation and controls the calls tortaétibody library functions
must be defined. Several examples have been built, testeddaledl to the software
asdemosA brief review of them is included in Section 2.5.

2.3 Core module

The core module of the MBS software has been designed faitpitie same princi-
ples that inspire the structure of the whole architecturés & modular component,
allowing the easy replacement of its parts, even with egflethird—party programs
and libraries. A scheme of the structure of the core modulebesseen in Figure 2.4.

Basic MBS functionality Additional functionality
4 1\
Model Generation of
M,Q,®,... \equations of motionj
) ‘E | e N
\J___Interface __|! /O routines
A4 N\ J
Dynamic formulation 4__= ( h
Mgq+ d):x =Q Flexibility
A " J
(- Interface |
\
4 1\
Numerical integrator
4,1 :f(qn’qrﬁ-l’t) L )

Figure 2.4:Structure of the core module of the MBS software

The basic MBS functionality of the module is provided by thoore elements: a
model of the multibody system to be simulated, a dynamic tdation for converting
the equations of motion of the system (the DAE’s in Equatidl) tito ODE's, and
a numerical integrator that obtains the value of the geize@lcoordinates in the
next time—step from already known values of accelerativelcities and positions.
As a wide variety of numerical integrators and multibodynfiotations exists, not to
mention the practically infinite collection of multibodygirlems that can be defined,
template patterns for the definition of these elements haea loreated. In this way,
C++ abstract base classes for the definition of models, flations and integrators
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have been written; the particular instances of each of thave been derived from
these base classes through public inheritance, implengetite methods defined in
their prototypes and thus satisfying their pre—definediate.

The storage containers for matrices and vectors in this teddve been obtained
from the uBLAS library (Walter. et al., 2009), a C++ templalass library, part of the
Boost libraries, instead of using plain C++ vectors or asray

2.3.1 Implementation of models

Themodelcomponent in the structure of the MBS software is the patteftbde that
is responsible for the evaluation of the dynamic terms optioblem, such as the mass
matrix M, the constraints vecteb or the generalized forces vect@Qr Obviously, the
expression of these terms is closely related to the streictithe physical model to be
simulated so, in practice, the expression of dynamic termstime particularized for
each problem. For this reason, only the prototype that eaditplar implementation
of the model must comply with is defined in the core module.rf&iural coordinates,
this is done in the abstract base cl@dsbalModel Every global model instance must
be derived from this class and implement every virtual mettieclared in its proto-
type. The model instance will also be in charge of storingvtilaes of the generalized
coordinates of the systeqand their derivativesj andg.

The methods defined in the prototype of base claksalMode] besides the
constructorand destructoralways required by C++, can be classified in three main
groups:

e Methods that evaluate and return the dynamic terms of theembtbst global
dynamic formulations require the same terms to be providédegm: mass ma-
trix M; generalized forces vect@); constraints vecto® with its derivatives
with respect to time, in case they exidt; and ®,: the Jacobian matrix of the
constraints vector with respect to the generalized coatds®, and its time
derivative <i>q; and, finally, stiffness and damping matridésand C, in case
they are needed.

e Methods that provide access to the vectors that contain eéherglized coor-
dinates of the system and their time derivatives, privastdyed by theGlob-
alModelclass.

e Methods that return information about the nature of the rhddesize, the num-
ber of constraint equations it has and other features, ssigthather the mass
matrix and the vector of forces are constant or whether iffaets and damp-
ing matrices are required. This information is very impottep accelerate the
execution of the code, avoiding unnecessary evaluatiotiseoflynamic terms
and the allocation of excessive memory for the storageiestit

Once the base clagslobalModelhas been defined, models of mechanical sys-
tems can be manually implemented by simply deriving a neweholdss by public
inheritance and writing the code for each method definedérptiototype. Although
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this can be sometimes convenient for efficiency reasongdbimes a cumbersome
and prone to errors task for medium—size and large systeisistwhy an additional
inner module has been created to automatically generatdyih@mic terms of the
system from the inertial properties of the bodies it is mag®ij the forces that act
on the bodies and the physical constraints that link thers Mfiodule is described in
Section 2.3.4.

2.3.2 Implementation of dynamic formulations

Contrary to what happened with model instances, dynamiuadtations can be reused
without modifications in different simulations, so a libyaf formulations can be con-
structed inside the core module. This library can be latlargad as new formalisms
are coded.

The dynamic formulatiorcomponent of the core module includes the matrix and
vector containers for the storage of the dynamic terms oéystem. These matrices
and vectors are passed by reference to the model, whicha¢galand then returns
them, using the standardized methods defined in the praatfpbstract clas&lob-
alModel The use of this interface makes models and dynamic forioaksteasily
replaceable.

The formulation is also in charge of enabling the numeriegmtion of the equa-
tions of motion given by Equation 2.1. The equations of motce DAES, which must
be converted into ODEs for their numerical integration. Bhetract base classes for
dynamic formulations can be categorized into two groups)eig first or second or-
der, depending on the order in which the formulation retuinesODES representing
the equations of motion. The expression of the equationsatfom as second order
ODEs leads to a system of the form

Lo28 = Ro» (2.3)
whereas the first order ODESs take the following form
Lo1Y = Ros (2.9

wherey stands for a vector containing the velocities and acceterabf the system,

y = {d.§}", andL andR are the leading matrix and right—hand—side vector of each
system, respectively. As some integrators are only ableawoage first order ODEs,
an additional intermediate cla€xle2ToOde1hat manages second order ODEs as if
they were first order ones has to be defined.

A second division can be made depending on the way in whichintiegrator
receives the equations the formulation generates. If tiggjiator requires the formu-
lation to yield the time derivatives of the variables of tlystem, this is{j or y, then
the formulation will be denoted axplicit Theevalmethod of these classes, declared
in the prototype of the abstract ODE classes, must returaloge—mentioned vec-
tors of time derivatives. However, some integrators rexaly arguments the leading
matrix L and the residual vectd® of the system instead; in this case, two methods
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are required to communicate with the integrator, one farrréhg the leading matrix

of the system gvalTangentMatrix and another one for the right-hand-side vector
(evalResidugl and the formulation will be labelled &mplicit. It should be noted that
the difference betweeimplicit andexplicit formulations has nothing to do with their
inner algorithms, but it is related to the way in which thepmsiit their results to the
integrator.

2.3.3 Implementation of integrators

The upper level in the numeric core module corresponds timtegrator. The integra-
tor receives the terms calculated by the dynamic formuiadiod evaluates from them
the value of the generalized coordinates of the systgand their first time derivatives
g in the next time—step. These values are then transferrédu tdynamic formulation
and the model, and the process can be restarted at the fofjantiegration step, or
at the next iteration if convergence has not been attainedryéhe case of implicit
integrators.

From the point of view of the definition of the base classesrehs no differ-
ence between explicit and implicit integrators. All of theeceive the output of their
correspondent formulation and update the values of thdiposind velocity vectors
after the integration step has been taken. Every numeritagiator implemented in
the library derives from an abstract base cl@3ymSolver The prototype of the class
describes the functions for controlling the execution &f ititegration, triggering the
start of the calculations and setting the initial and finalgiof the motion. The ad-
vance of a time—step in the integration is done through atedhe stepmethod. All
these methods must be invoked by the driver program, so tbgrator constitutes the
truly external interface of the core module.

In some cases, the degree of interaction between the dyrfiamialation and the
integrator is so high that the equations of motion cannotpaated from the integra-
tor. This is the case, for example, of the index—3 augmengagdngian formulation
with projection of velocities and accelerations, desatibg Cuadrado et al. (2001)
and used in Sections 3.2.2 and 4.2.1. In such cases, the @etafultiple inheri-
tance enables the creation of classes that behave, at tleetisaen as integrators and
dynamic formulations. Thdynamic formulatiorandintegrator components can be
therefore merged into a single block, with no side effectshenstandard interfaces
nor on the behaviour of the core module.

2.3.4 Additional functionality

The described basic functionality of the core module isridezl to be expanded
through the addition ofnner modulesldeally, these modules must be added with-
out modifying the main structure of the basic part of the cooslule. The purpose of
the inner modules is to improve the performance of the basie, ©r to add new func-
tionality to it, so their removal would not prevent the scdie from running elemental
simulations. The features comprised in them range fromIsiinput—output routines,
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which allow the pouring of simulation data into storage files: standard format, to
the addition of flexibility to the models, or the automatimgeation of the equations
of motion of the system. Some of the modules that have beeleimgmted are briefly
described in the following paragraphs.

1/0 routines

The definition of routines for allowing reading from and wrg to files enables the
use of the simulation software in combination with pre— aastpprocessing external
tools. To this end, matrices and vectors must be converted tine storage format data
the software uses (in this case, uBLAS matrix and vectoraioats) to some standard
storage format. Read and write routines for conventionaCAStorage and Matrix
Market (NIST, 2007) formats have been written. This wayjlisscan be shared with
other simulation codes and applications, and simulaticulte can be stored after
execution.

Interface to external linear solvers

The routines for the solution of linear equation system&ienformA - x = b play a
key role in the efficiency of the code. The nature of this watduires to evaluate the
performance of several linear solvers, so modularity iseeeary again here for the
easy replacement of the components. The uBLAS library pmates its own linear
solvers, compatible with uBLAS storage formats, but théfickency has been found
to be low. An interface for the use of efficient, third—partfteare linear solvers has
been written, so that external solvers, coded in Fortran/@+€, can be used. The
particular implementation details of the different extdrsolver libraries imply that a
new interface must be implemented for each of them.

Automatic generation of the equations of motion

The manual coding of the methods that build the dynamic terfntise model can be-
come an awkward task when the number of variables and cartstiguations of the
system increases. Non-trivial simulation models can yasdch hundreds of vari-
ables, with a similar number of constraints. Even when wagkiith relatively small
systems, the automatic generation of the equations of moto save time and pre-
vent mistakes from arising. At the same time, in some casesiskr may want to
manually write or edit the expression of the dynamic terrmashath ways of creat-
ing them must be available in the software. Moreover, diffiéistrategies to assemble
the equations of motion can be compared, in order to seleantist effective and to
estimate the overhead this task adds to the execution obtie ¢

In order to allow the automatic generation of the equatictesses for the defi-
nition of the variables, bodies, constraints and forcesdhapart of the system have
been defined. These classes are responsible for the assamdldyaluation of the dy-
namic terms of the system. A new cla€gnstraintsModelhas been defined, which
inherits from the abstract cla&obalMode] implements the code for the methods the
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latter declares and contains storage elements for the aweng® of the mechanism.
Instead of writing the code for the evaluation of the masiaad vectors of the dy-
namic terms, the user can now define the list of componentseofiodel, the joints
that link them, and the forces that affect the motion.

The final level of this module is the automatic generatiorhefiariables, bodies,
constraints and forces from the data defined in a text filerid#sg the geometry and
properties of the simulated mechanism. The module is ciyrering developed in
order to reach this goal.

2.4 Additional modules

The additional modules in Figure 2.3 have the purpose ofragektra non—multibody
functionality to the core module of the software. The uséneke modules is optional,
so the user can decide not to build them if they are not negessa particular case.
Furthermore, users can write and add their own additionalules if they need them.
In order to maintain compatibility, the additional modulesist use the multibody
routines defined in the header file of the core modmbéscore.hand the storage
formats used in the main core; alternatively, they can uséexeht format using the
proper translation routines, although this strategy weddalize the performance of
the code.

ThembsMatlahibrary for communication with MATLAB/Simulink, descrilokin
Chapters 5 and 6 of this thesis, is an example of additionalubeo More modules
for the communication with similar packages could be wniitea similar way. Other
extra additional modules can be written for providing a tiegl representation of the
simulation, acting as an intermediary between the core ieaahd a graphics library
such as OpenSceneGraph (OSG Community, 2009), or for egeatiGraphic User
Interface (GUI) through the use of QT (Nokia, 2009) or wxWétkgy(The wxWidgets
team, 2009) libraries.

2.5 Examples of multibody problems

The validation of the MBS simulation software is carried thubugh the solution of
simple benchmark examples, such as those described byatearet al. (2006). In
particular, theL—loop four—bar linkage mechanism has been intensively irstds
work, as it can be seen in Sections 3.2.1, 4.2.1 and 5.4. Gitmgie mechanical sys-
tems, such as slider—cranks and pendulums, have been mrogchand solved, too.
In order to simulate the motion of these mechanical systamsduced set of well—
known formulations and integrators has been coded and &dded core module of
the software. This set can be easily enlarged with new coemtsnas long as their im-
plementations fit the prototypes described by the absteset blasses for formulations
and integrators.
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2.5.1 Examples of dynamic formulations

Among the many multibody formalisms available today, ttgkdal dynamic formu-
lations have been initially selected for solving the abarentioned test problems. All
of them are simple to implement and can be easily comparesinmstof efficiency.

The first formalism is a penalty formulation, proposed by @ayal. (1988), which
modifies the generic equations of motion of the system, gbeEquation 2.1, by
substituting the unknown value of Lagrange multipliec$ {ith a value proportional
to the violation of the constraints vectob:

A=« (613 1 2%0d + a)2<I>> (2.5)

where¢ andw are Baumgarte’s stabilization parameters arnd the penalty factor, a
scalar whose value is usually takenl&$ times the largest term of the mass matrix.
Replacing this expression in Equation 2.1, together withdtequate forms of the
derivatives of the constraints vector, yields

(M +a®]®)d = Q— a®] (<i>qq +2%6wd + 0P + <i>,) (2.6)

and the value of the accelerations of the systgjrcén be obtained from this expres-
sion, provided the dynamic terms of the system are known.

The second implemented formulation is an augmented Lagmange, in the form
described by Gafa de Jabn and Bayo (1994):

(M +a®]®) G = Q— ] [xi ta (<i>qq +2twd + w?® + <i>,)] 2.7)

that evaluates the Lagrange multipliers of the system \@addhowing iterative pro-
cess:

Mg = A; +a(<'1'> +2twd +a)2<I>) (2.8)

wherei represents the iteration number. The value of the Lagrandeaters is sub-
stituted in Equation 2.7 after each iteration, obtainingw malue of the accelerations
and leading thus to an improved value of the multipliers. facfice, no more than
three iterations are enough to achieve a good convergence.

Finally, preliminary tests showed the augmented Lagrarigianulation of index—
3 with projections to be the most efficient one, and therefolhas been used in the
subsequent work of this thesis. This formalism incorp@ataumerical integrator, the
well-known trapezoidal rule, in the implementation of itsroalgorithm; moreover,
the different stages it is made up of are closely relatedeonthy in which the opti-
mization techniques introduced in Chapters 3 and 4 are ighéed. For this reason,
its structure will be described in more detail in these Cheptunder Sections 3.2.2
and 4.2.1.
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2.5.2 Examples of integrators

Two integrators, one explicit and another one implicit, dvdeen used in the initial
tests of the MBS software. The first one is the explicit Rutgeta formula of second

order. In the present work, this integrator has been imptgateto manage first order
ODEs, according to the expression:

At . .
Ynt1 =Y+ — (Y1 +Y2) (2.9)
where
Vi =f (Y.t
Y1 =f(Yn, 1) 2.10)

y2 = f(yn +y1A[, t+ A[)

with f (y, ¢) representing the evaluation of the time derivatives of tstpns and ve-
locities of the system for a certain value of these variabiebthe time. The integration
time—step from instant ton + 1 is noted as\¢. This integrator is not unconditionally
stable, so its use must be constrained to systems withohtdtifjness. A detailed
description of the algorithm can be found in books of nunarmalysis (Shampine,
1994).
The other method of numerical integration is the well-knaMewmark family

of formulae (Newmark, 1959), an easy to implement, impl&ithgle—step integrator
with good stability properties. Its second order form isfibiowing one:

. A . .
On+1 =0n + Atqn + T [(1 - 213) an + 2,3qn+l]

Qnt+1 = On + AL[(1 = y) Gn + yGn+1]

(2.11)

wheref andy are scalar parameters. The trapezoidal rule is a particake of this
method in whichf = 1/4 andy = 1/2; this is equivalent to assuming that the
value of the accelerations is constant during the time vatdr,, 7,+1] and equal to
(@n + Gn+1) /2. This implicit algorithm can be used in a predictor—coroedashion,
with fixed point iteration, although it is commonly introdect in the equations of
motion of the system, as it is the case in the above—mentiangohented Lagrangian
formulation of index—3, and solved through the Newton—Rsaphiteration.

2.6 Conclusions

The design of a software architecture for the simulation aftitmody systems is a
complex task, where many alternatives, sometimes muteatiiusive, must be con-
sidered and compared before making a choice. The diffictittyegjob increases when
it has to be carried out from scratch, due to the practicabssbility of predicting

every requirement of the software during its useful lifedsehand. From this point
of view, flexibility and modularity arise as evident desigoets; however, these tar-
gets must be achieved, as far as possible, without hindéragfficient execution of
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the multibody algorithms, which would render the whole w@fte useless for many
practical applications.

The software architecture developed during the carryirigobthis thesis has been
designed to simultaneously meet these two apparently aiotory aims. Efficient
computational routines for MBS simulation have been imm@atad in a core mod-
ule, enabling the fast replacement of components withdetgfg the main structure
of the code. Several examples of models, dynamic formuilatand integrators have
been implemented and tested to verify the modularity andieffcy of the architec-
ture. The layout of the whole software has been built on thsésha this core module,
with additional modules linked to the main one through stadized interfaces. Thus,
a virtually infinite number of additional features can beeditb the basic multibody
functionality, enabling the software to meet new additlamnditions.

Several conclusions about the design and building of a MBS8vace have been
extracted and constitute valuable guidelines for the ek of multibody codes:

e The object—oriented approach is the most adequate for tiggamming of soft-
ware for the simulation of multibody systems. Among the médifferent lan-
guages under this paradigm, C++ shows the best trade—oafébatthe flexibil-
ity provided by its object—oriented features, such as iitdnece and templates,
and efficiency.

e The most computationally expensive parts of the code, ssidy@amic solvers
and matrix calculations, can be implemented in efficientpdural languages
and then linked to the C++ main architecture with little eff@ptimized ver-
sions of matrix routines and linear solvers exist and arelyravailable in In-
ternet, and can be used to deal with these segments of codeeiifeative and
convenient way.

e There is a wide variety of freely available tools for the depenent of C++
source code. The use of these auxiliary tools is highly renended, specially
of build—process managers and version control systemsentbels greatly con-
tribute to the flexibility of the software and reduce the rieggiworkload to syn-
chronize the development of the code among several progeasahhey also
allow the same source code to be built in different computeirenments.

These guidelines have been applied during the elaboratitme d1BS software in
this work, the one which has been used as a basis to carry®ueskarch described
in the following Chapters.






Chapter 3

Linear Algebra Implementation

This Chapter compares the efficiency of multibody system §yIBynamic simula-
tion codes that rely on different implementations of lineégebra operations. The
dynamics of anL.—loop four—bar mechanism has been solved with an index—3 aug
mented Lagrangian formulation combined with the trapealaidle as numerical in-
tegrator. Different implementations for this method, bdémse and sparse, have been
developed, using a number of linear algebra software ligggmcluding sparse linear
equation solvers) and optimized sparse matrix computati@tegies. Numerical ex-
periments have been performed in order to measure thewmeaihce, as a function
of problem size and matrix filling. Results show that optiingblementations can in-
crease the simulation efficiency in a factor of 2—3, compavi#l the starting classical
implementations, and in some topics they disagree with sgicead beliefs in MBS
dynamics. Finally, advices are provided to select the impgletation which delivers
the best performance for a certain MBS dynamic simulation.

3.1 Introduction

Dynamic simulation of multibody systems (MBS) is of gredeimst for the dynam-
ics of machinery, road and rail vehicle design, robotics biothechanics. Computer
simulations performed by MBS simulation tools lead to mai@ble, optimized de-
signs and significant reductions in cost and time of the prbdevelopment cycle.
The computational efficiency of these tools is a key issuévorreasons. First, there
are some applications, like hardware—in—-the—loop settimghuman—in—the—loop de-
vices, which cannot be developed unless MBS simulation ifopaed in real time.
And second, when MBS simulation is used in virtual prototgpifaster simulations
allow the design engineer to perform what—if analyses artanigations in shorter
times, increasing productivity and interaction with thedab Therefore, computa-
tional efficiency is an active area of research in MBS, anald$ a relevant position
in MBS—related scientific conferences and journals.

A great variety of methods to improve simulation speed haenlproposed during
the last years, e.g. Cuadrado et al. (1997), Bae et al. (20@DAnderson and Critch-
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ley (2003), among others. Most of these methods base tliieety improvements
on the development of new dynamic formulations. Howevénpaigh implementation
aspects can also play a key factor in the performance of ricahasimulations, their
effect on multibody system dynamics has not been studiedtaldSome recent con-
tributions have investigated the possibilities of pataheplementations (Anderson
et al., 2007), but comprehensive comparisons about semj@eimentations in MBS
dynamics have not been published yet.

Multibody dynamics codes make an intensive use of lineagkaty operations.
This is especially true i® (n*) formulations, where is the number of bodies in the
multibody system, as it is the case of many global formufetjevhich use a relatively
large number of coordinates and constraint equations toeldfie problem, leading
to the need of solving a large system of linear equationssé iermulations spend
around 80% of the CPU—-time in matrix computations. Othemfdisms have been
developed that lead t@ (n) algorithms, reducing the size of the system of equations
to be solved, but at the cost of considerably increasing timeber of required matrix
computations. Moreover, if flexible bodies are considetleed,percentage of simula-
tion time inverted in matrix operations can become evendrigh

As a result, the implementation of linear algebra operatigreritical to the effi-
ciency of MBS dynamic simulations. These operations canrbeggd into two cate-
gories: (a) operations between scalars, vectors and mstand (b) solution of linear
systems of equations; two additional orthogonal categaré be established based
on the data storage format: dense storage or sparse stitagg efficient implemen-
tations for these routines have been made freely availalteilast decade. Their per-
formance has been compared in previous works, both in amcagiph—independent
context such as Gupta (2002), Gould et al. (2007) and Whalaly €001) and under
the perspective of a particular application like Finiter&ént Analysis (Turek et al.,
2001) or Computational Chemistry (Yu and Yu, 2002). But, tasiil be explained
in this Chapter, these studies do not fit the particular festof MBS dynamics, and
therefore their conclusions cannot be extrapolated tditlih

The goal of this Chapter is to compare the efficiency of déffgimplementations
of linear algebra operations, and study their effect in thtext of MBS dynamic
simulation. Results will provide guidelines about whichmarical libraries and im-
plementation techniques are more convenient in each caseiriformation will be
very helpful to researchers developing high—performameceal—time multibody sim-
ulation codes.

The remainder of the Chapter is organized as follows: Se&ip describes the test
problem and the dynamic formulation used in the numericpegrents to compare
the efficiency of different implementations; Sections 318 &.4 present efficient im-
plementations for dense and sparse linear algebra, réggdgcSection 3.5 compares
the results obtained in Sections 3.3 and 3.4 and extrapgatlagen to other dynamic
formulations; finally, Section 3.6 provides conclusiondyiaees for efficient imple-
mentations and areas of future work.
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3.2 Benchmark setup

In order to study the effect of linear algebra implementaion MBS dynamic sim-
ulations, a test problem has been solved with a particulaaahc formulation using
different software implementations. A starting implenagitn will also be described,
since its efficiency will serve as a reference to measurepaegnce improvements.

3.2.1 Test problem

The selected test problem is a 2D, one degree—of—freedamabsof four—bar link-
ages withZ loops, composed by thin rods of 1 m length with a uniformlytrétisited
mass of 1 kg, moving under gravity effects. Initially, thes@m is in the position
shown in Figure 3.1, and the velocity of thecoordinate of point Bis +1 m/s. The
simulation time is 20 s. This mechanism has been previoustyl s a benchmark
problem for multibody system dynamics (Anderson and Cléigh2003; Gonalez
et al., 2006).

Ya l ¢ =9.81 N/kg
l
By B, ( C BLi B,
) )
Loop 1 Loop L
Ay A, A A

———

Figure 3.1:L—loop four-bar linkage

3.2.2 Dynamic formulation

The L-loop four—bar mechanism has been modelled using planaratgbordinates,
global and dependent (Gaacde Jabn and Bayo, 1994), leading fd_ + 2 variables
(thex andy coordinates of the B points), alld. + 1 constraints, associated with the
constant length condition of the rods. The equations of onatf the whole multibody
system are given by the well-known index—3 augmented Laigarformulation in
the form:

MG + @qa® + ®51* = Q

* * . (3.1)
i1 =A +a®ip; i=0,1,2,...

whereM is the mass matrix (constant for the proposed test probl@gewe the accel-
erations,® the Jacobian matrix of the constraint equatianshe penalty factor®
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the constraints vectok,* the Lagrange multipliers vector af@githe vector of applied
and velocity dependent inertia forces. The Lagrange nlidtigpfor each time—step are
obtained from an iterative process, where the valukjois equal to the.* obtained
in the previous time—step.

As integration scheme, the implicit single—step trapealidle has been adopted.
The corresponding difference equations in velocities amélarations are:

. 2 A 2 2 .
Qn+1 = EQn—H +d,; 4, =— (EQn + qn)
3.2)
.. _i +‘A‘-'A‘—_i_’_i‘+"
Un+1 = AZZQn+1 Qp: Uy = Atan AZQn Un

Dynamic equilibrium can be established at time—step 1 by introducing the
difference equations (3.2) into the equations of motiod)(3deading to a nonlinear
algebraic system of equations with the dependent positisnsknowns:

f(@=0=
At? At? N2 (33)

®g . (@®ppy + Apyr) — — Qi+ —— ——Mg,

=Mans1 + —— 1

Such system, whose size is the number of variables in thelmsdelved through
the Newton—Raphson iteration

[9f (@) ]

! AQi+1 = —[f(@)]; (3.4)

using the approximate tangent matrix (symmetric and pasdefinite)

[9f (a) |

Ar?
59 | = =M + —c + — (<I>Ta<1>q +K) (3.5)

whereC andK represent the contribution of the damping and elastic foafethe
system (which are zero for the test problem). Once convemenattained into the
time—step, the obtained positiogg; satisfy the equations of motion (3.1) and the
constraint condition® = 0, but the corresponding sets of velocitigs and accel-
erations* may not satisfyd = 0 and® = 0. To achieve this, cleaned velocities

g and acceleration§ are obtained by means of mass—damping—stiffness orthbgona
projections, reusing the factorization of the tangent matr

f Ar? Ar?
[aa—;@}q |:M + —C+ —tK}q - —Z<I>Toz<I>,

of () At At2 A2 Lo
This method, described in detail by Cuadrado et al. (20083, froved to be a

robust and efficient global formulation (Cuadrado et alQ2®004a). All the sub-
sequent numerical experiments have been performed usitijmasstep a value of

(3.6)
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At = 1.25-1073 s and a penalty facter = 103,

3.2.3 Starting implementation

In the starting implementation, the simulation algorithmsiWmplemented using For-
tran 90 and the Compagq Visual Fortran compiler. Two verswaie developed:

e A dense matrix storage version, using Fortran 90 matrix maation capabil-
ities and the linear equation solver released with this ¢em@MSL Fortran
Library, from Visual Numerics).

e A sparse matrix storage version, using the MA27 sparserliegaation solver
from the Harwell Subroutine Library.

These two implementations, typical in the multibody comityirhave been tuned
and improved by our group during the last years, and they paweed to be faster
than commercial codes (Cuadrado et al., 2001, 2004a). €ffmiency has served as
a reference to measure the performance improvements adhigth the new imple-

mentations proposed in this work.

Table 3.1:Percentage of the total CPU—time required by each algorighrase in the
starting implementation for typical problem sizes: densesion in small problems
(10 loops, 22 variables) and sparse version in medium-giaelgms (40 loops, 82
variables)

Stage Dense Sparse
Evaluation of residual and tangent matrix, Egs. (3.1), )(3.548% 15%
Evaluation of right—-hand—side in projections, Eq. (3.6) 4% 13%
Factorizations and back-substitutions, Egs. (3.4), (3.6) 44% 51%
Other 4% 21%

Table 3.1 shows the results of a CPU usage profiling in outistgimplementa-
tion, for both dense and sparse versions, applied to repese: problem sizes. As
stated in the introduction to this Chapter, matrix compatet consume most of the
CPU-time.

In order to test alternative implementations, the MBS satiah software de-
scribed in Chapter 2 has been used. Numerical experimewngsheen performed on
an AMD Athlon64 CPU. After testing different operating ssts and compilers, re-
sults show that their effect on the performance is an orderagnitude lower than the
effect of linear algebra implementations. Final CPU—tithage been measured using
the GNU gcc compiler and the Linux O.S., without loss of galig:

3.3 Efficient dense matrix implementations

Global formulations applied to reduced rigid models (emiralustrial robot), or re-
cursive and semi-recursive formulations applied to medgire rigid models (e.g. a
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complete road vehicle), lead to algorithms that operatb sritall-size matrices of di-
mensions smaller thadd x 50. In these cases, dense linear algebra is frequently used
in MBS dynamics, since it isupposedo provide equal or higher performance than
sparse implementations. Achieving real time in the sinotedf these small problems
can be a challenge in hardware—in—the—loop settings (@vanaed Electronic Stabil-
ity Control systems for automobiles), due to the low commyipower of embedded
microprocessors, the small time—steps required for hanelesgnchronization and the
added control logic.

A straightforward way to increase the performance of densgixicomputations
is using an efficient implementation of BLAS (Basic LineaigAbra Subprograms).
BLAS (NIST, 2009) is a standardized interface that definegimes to perform low
level operations between scalars, dense vectors and dextdeas. A Fortran 77 ref-
erence implementation is available, and more efficientémgntations have been de-
veloped by hardware vendors and researchers.

These optimized BLAS versions exploit hardware featuremoflern computer
architectures to get the best computational efficiencydttiteon to the reference For-
tran 77 implementation, three optimized BLAS implemetati have been tested:

e ATLAS (Automatically Tuned Linear Algebra Software), whiemploys em-
pirical technigues to generate an optimal implementatisrahy hardware ar-
chitecture (Whaley et al., 2001);

e GOtoBLAS, based on optimized assembler kernels, handewrior the most
popular hardware architectures (Goto, 2009); and

e ACML, developed by the microprocessor manufacturer AMD iftsrCPU’s
(AMD, 2009). Other hardware vendors also provide their omplementations
(such as MKL from Intel and SCSL from SGI).

Dynamic simulations can also make a profit of these optimiedlS implementa-
tions in the solution of dense linear equation systems,igeaMthe LAPACK library is
used (NETLIB, 2009), since its linear equation solvers aseb on low—level BLAS
operations. In addition to the reference LAPACK implemé&ota written in Fortran
77, some optimized BLAS implementations like ATLAS and ACIEllpply their own
optimized versions of the LAPACK linear solvers.

The proposed test problem, with a number of lodpsanging from 1 to 20 (i.e.
number of variablesV ranging from 4 to 42), was solved using different BLAS
and LAPACK implementations to perform all matrix computas. Since the tan-
gent matrix in the proposed dynamic formulation is symnaedind positive definite
(SPD), only the lower triangular part of the matrix is congmjtthe LAPACK routines
DPOTRF and DPOTRS have been used as linear equation sadviarrRance results
are shown in Figure 3.2, where the legend text is encodeckifotim “BLAS imple-
mentation + LAPACK implementation” (except for the stagtimplementation), and
the combinations are ordered by increasing efficiency.

Results in Figure 3.2 clearly show the advantage of using 8lafd LAPACK,
which speed up the simulation in a factor between 2 and 5,rdipg on the problem
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Figure 3.2:Performance of different dense BLAS and LAPACK implenientat

size, compared with our previous starting implementatidre low performance of
the ATLAS implementation, compared to the BLAS referencelamentation, can
be explained by its high sensitiveness to the developmemtoement (e.g. compiler
version) and its current unstable state (it is under strangldpment). The vendor
implementation (ACML) and GotoBLAS deliver the best res@kcept for very small
problems (up to 10 variables). The implementation named.*Ref.” delivers the
best performance for very small problems, and 70-80% ofénipmance of the best
implementations for medium—size problems (3 times moreiefft than our starting
implementation); in addition, it has a very good portapilit is written in plain For-
tran 77) and usability: the installation process is strid@ward, which is not always
true for other implementations.

Since some MBS dynamic formulations lead to a non—symmggtrigent matrix
(Dopico et al., 2006), the same numerical experiment has &eecuted using general
algorithms (not SPD-specific) to compute all matrix operatji CPU—times are about
15% higher, but the efficiency ranking of Figure 3.2 is mdired.

3.4 Efficient sparse matrix implementations

In MBS dynamics, sparse matrix techniques are used in gfolraulations applied to
medium- or big—size rigid models; as an example, a modeltiralecoordinates of an
automobile leads to matrices of dimension akitift x 200 (Cuadrado et al., 2004a).

If flexible bodies are considered, the matrix size increaseking sparse techniques
profitable even if recursive or semi-recursive formulagi@ne used: a model in rel-
ative coordinates of the same automobile, with some of iidsocharacterized as
flexible elements (described by component mode synthdsé)s to matrices of di-
mension about00 x 100. In any case, MBS models hardly ever lead to matrix sizes
bigger thanl000 x 1000, significantly smaller than the typical sizes in other aqgoli
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tions, like Finite Element Analysis (FEA) or Computatiofdliid Dynamics (CFD).

Regarding the sparsity, the proposed test problem and MBSmdic formulation
lead to a tangent matrix of si2d. + 2 and12 L + 4 structural non—zeros. For matrices
of size50 x 50, 100 x 100 and500 x 500, the corresponding number of non-zeros is
12%, 6% and 1%. These are representative values for MBS i, and they are
considerably higher than typical values in other applarsithat require sparse matrix
technology (FEA, CFD).

Hence, MBS dynamics has two characteristics which mak@éssg matrix com-
putations different from other applications:

e Matrix computations are very repetitive, and the sparseepat usually remain
constant during the simulation. Therefore, symbolicalprecessing can be
applied to almost all matrix expressions at the beginninthefsimulation, in
order to accelerate the numerical evaluations during thelsition.

e The involved sparse matrices are relatively small and dexwgapared with the
typical values in sparse matrix technology.

3.4.1 Optimized sparse matrix computations

Several numerical libraries are available nowadays to@ugparse matrix computa-
tions: MTL, MV++, Blitz++, SparseKIT, etc. For our new imptentations, we have
chosen uBLAS, a C++ template class library that provides BlfAnctionality for
sparse matrices (Walter. et al., 2009). Its design and imghtation unify mathemat-
ical notation via operator overloading and efficient codeegation via expression
templates. Even though, the performance of some matrixatipas can be further
improved if some special algorithms are used. Results of G§dde profiling (similar
to Table 3.1) have led to the optimization of the followingeth operations.

The first optimized operation is the rank—k update of symimetatrix, <I>g ady,
computed in Equation (3.5). Since the sparse structureeo§dicobian matrix® is
constant, a symbolic analysis is performed in order to akeutate the sparse pattern
of the resultant matrix and to create a data structure thdstibe operations needed
to evaluate it during the simulation. In our starting spamsplementation, a simi-
lar approach was taken, but the Jacobian matrix was storddres, to simplify the
operations at the cost of a higher memory usage.

The second optimized operation is the matrix addition caegbin Equation (3.5).
Our starting sparse implementation used the Harwell MA2ifine as linear equation
solver, which requires the sparse matrix to be stored indinate format (Figure 3.3),
and allows duplicated entries in the matrix structure. €fae, the matrix addition
is not actually computed, since the different terms are agppe as duplicated entries
in the tangent matrix. Our new implementation uses the cesgad column storage
format (Figure 3.3), since it is required by the sparse limepation solvers tested in
the following Section. This format, also known as the Hatabeing sparse matrix
format, is quite common in direct sparse linear equationess| Every value stored in
the value data arrayal of the matrix is placed in its proper location in the patteithw



3.4 Efficient sparse matrix implementations 33
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Figure 3.3:Storage formats used in sparse implementations

the use of anndx array, which assigns to each value the index of the row to kwhic
it belongs, and @ntr array, which stores the indices of the elements invidlearray
where a new column starts. With this storage, matrix aduti@quire complex data
traversing that slows down the performance.

The following approach was taken in order to optimize theratien:

B =1tA1 +6LA, (37)

In the pre—processing stage, the sparse patteBrisofalculated as the union af; and
A, sparse patterns, and the resulting pattern is addéd tandA,. In this way,A,
A, andB share the same sparse pattern (sardeandpntr arrays in the compressed
column storage format shown in Figure 3.3), and therefbeentatrix addition can be
computed as a vector addition of thal arrays:

valg = fyvala, + frvala, (3.8)

This technique increases the number of non—zd\d&Zj of the addend matrices.
In the proposed MBS dynamic formulation, th&lZ of the mass matri¥ is increased
in a 10% approximately, which slows down the matrix—vectaoitiplications needed
in the right terms of Equations (3.4) and (3.6). However dineulation timings show
that this slowdown is negligible compared with the gainswel from the fast matrix
addition.

Finally, the third optimized operation concerns sparserimatccess. The write
operationA (i, j) = a;j, straightforward in dense storage, needs additional iposit
lookup when the compressed column storage is used. In thpoged formulation,
the update of the Jacobian matdy, in each iteration takes 10-15% of the CPU—
time. The involved operations are rather simple, and moghisftime is spent in
matrix access. In order to optimize this procedure, a paegssing stage evaluates
the Jacobian matrix and registers the order in which entbigg, j) are written in
theval array of the compressed column format, creating a vectohibids indices to
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these positions, in the same order of evaluation. Latehdrsimulation stage, access
to the Jacobian matrix is performed using this index veetithout the need to map
(i, j) indices to memory addresses for each writing operation.

Table 3.2:Efficiency of the optimized sparse matrix operations

CPU-time (ms)

Sparse operation Not Optimized Optimized Ratio
1) Rank—k update of symmetric matrix 2525.2 9.4 269
2) Matrix addition 140.9 1.9 74

3) Jacobian matrix evaluation 11.6 3.8 3

Table 3.2 summarizes the performance gains delivered bgrtiposed optimiza-
tions, compared with the performance delivered by the uBld&gult algorithms
(which are similar to other generic sparse matrix librgriése numerical experiment
used the matrix terms derived from dn-loop four—bar mechanism with = 40
loops, which leads to a tangent matrix of sk2ex 82. Results show the importance of
optimizing rank—k updates and matrix additions, since taggomance delivered by
off-the—shelf sparse matrix libraries is not satisfacfonthese repetitive operations.

3.4.2 Evaluation of sparse linear equation solvers

Data in Table 3.1 shows that, in our starting sparse implé¢atien, about 50% of
the total CPU-time is spent in tangent matrix factorizagiamd back—substitutions
(Equations (3.4) and (3.6)). Thus, the main performancedvgments in MBS dy-
namic simulation can be achieved by using a more efficienssdaear solver. Dur-
ing the last decade, sparse solvers have significantly wegrthe state of the art of
the solution of general sparse linear equation systemaynane than 30 sparse solver
libraries are freely available in the World Wide Web (Dongaf009).

The efficiency of sparse solvers varies greatly dependingasameters like the
matrix size, structure and number of non—zeros. In addisolving a sparse linear
equation system usually involves three stages: pre—psap®rdering, symbolic fac-
torization), numerical factorization and back substiinfisome solvers are very fast
in the first stage, while others perform better in the secartticd stage. The perfor-
mance of sparse solvers has been compared in previous wogk§upta (2002) and
Scott and Hu (2007), but the conditions of these studiesdjitiqular, matrix sizes and
percentage of non—zeros) do not fit the above—mentionetpartfeatures of MBS
dynamics, and therefore their conclusions cannot be ettt to this field. As a
result, it is almost impossible to determine, without nuicedrexperiments, which
sparse solver will deliver the best performance in an MBSadyic simulation.

Given the large number of existing sparse solvers, a seteptiocess is required
in order to narrow the scope. Solvers for shared memory drilalised memory par-
allel machines have been discarded, since the small mates .1 MBS real-time
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dynamics (almost fit in the CPU cache memory) makes them (itgiste. The same
argument applies to iterative solvers and out—of—coreess/vdesigned for very big
linear equation systems. From the remaining solvers, tthadgerformed best in pre-
vious comparative studies have been selected:

e CHOLMOD, a symmetric positive definite solver (Chen et a002);

e KLU, a solver specifically designed for circuit simulatioratrices (Davis and
Natarajan, 2010);

SuperLU (serial version), an unsymmetric general purpatees (Demmel
etal., 1999a);

Umfpack, an unsymmetric multifrontal solver (Davis, 200)d

WSMP, a symmetric indefinite solver (Gupta et al., 1998).

Despite the coefficient matrix is symmetric positive deéiriit the proposed dy-
namic formulation, we have included in the numerical experits some general,
non—-symmetric solvers (KLU, SuperLU, Umfpack), since othgamic formulations
lead to a non—symmetric coefficient matrix (Dopico et alQ&0 In these cases, the
whole coefficient matrix (upper and lower parts) is computedile with symmetric
solvers only half matrix is used in the formulation equasioBach solver supports its
own set of reordering strategies; all of them have beendédetselect the best one in
each simulation. In addition, all the optimizations ddsed in the previous Section
were applied to our new sparse implementation.

12
1 —«&— UMFPACK
- - #@- - SuperLU
|0 N B iy i
WSMP
o4+ L

- - m- - Starting implementation

8+ w cmoLmMmoD 00 | o

CPU time (s)

Number of variables N

Figure 3.4:Performance of different sparse linear equation solveradgnction of
the problem size
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The proposed test problem, with a number of lodpsanging from 10 to 500 (i.e.
number of variablesV ranging from 22 to 1002), was solved using different sparse
solvers. Performance results are shown in Figure 3.4 fomabeu of variables up to
160, since the trends are preserved for higher number cdblas. The legend text
shows the name of the sparse solvers, ordered by incredigrey.

Surprisingly, KLU is the fastest solver, despite being aggahsolver that does not
exploit the symmetric positive definite condition of the fiméent matrix; in addition,
it has been designed for circuit simulation problems, wiéetd to very sparse matri-
ces, the opposite case of MBS dynamics. However, thesetsdmue been obtained
by using the KLUrefactorroutine for numerical factorizations, which reuses the piv
oting strategy generated in the pre—processing stage. ltibody problems where
the elements of the tangent matrix of Equation (3.5) mayiagmtly change their
relative values during the simulation (e.g. due to violempacts), the initial pivoting
strategy may become invalid and ttefactorroutine would probably accumulate high
numerical errors. To avoid this, the KLU solver can recaltaithe pivoting strategy in
each numerical factorization, but this method increase<CfAU—times in a 50%. On
the other hand, CHOLMOD, a symmetric positive definite sglgerforms at 85% of
KLU, despite recalculating the pivoting strategy in eacmeucal factorization. Our
best new sparse implementations (using KLU or CHOLMOD)@enffaster than our
starting implementation, in a factor from 2 (small problénus3 (large problems of
1000 variables).

3.4.3 Effect of dense BLAS implementation

Some sparse solvers rely on the dense BLAS routines, deddritsection 3.3, to im-
prove the computation of some basic linear algebra opemtitey internally treat as
dense, increasing thus their performance. In additionessparse matrix operations
(e.g. the optimized matrix addition described in Sectigh$3.are actually computed
as dense vector operations using BLAS routines. Resultsrsi Figure 3.4 have
been generated using the reference BLAS implementatioa.s@ime numerical ex-
periment has been executed using the faster, optimizedBE#i6 and ACML imple-
mentations, and CPU—-times have decreased only in a 2% — 38teHthe reference
BLAS implementation is recommended for MBS dynamics in spamplementa-
tions, since it provides the best compromise between paebce and usability.

3.5 Sparse vs. dense implementations

As previously stated, dense linear algebra is frequentidus MBS dynamics for

small problems (dimension of the coefficient matrix loweartlb0), since it is sup-
posed to provide higher performance than sparse impleti@mgaOur starting sparse
implementation, which already employs some of the optitiona described in Sec-
tion 3.4, disagrees with this assumption, and this factiifeeced with the perfor-

mance of the new optimized implementations: sparse vesgerform always faster
than dense versions even for small problems, in a factoriwiaicges from 1.5 (prob-
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Figure 3.5:Performance of different sparse linear equation solveradgnction of
tangent matrix filling, for a problem size of 100 variables

lems of 10 variables) to 5 (problems of 50 variables).

However, this conclusion has been obtained for the proptestgroblem and dy-
namic formulation, and it could be argued that it cannot breegalized to other situa-
tions that lead to a coefficient matrix with a higher percgataf non—zeros, as in the
case of highly constrained mechanisms or recursive fortionls. The objection could
be made to the efficiency ranking shown in Figure 3.4. In otdeaget insight about
this subject, the numerical experiments used to genergted-8.4 were repeated, but
in this case artificial non—-zeros were introduced in the nmaasix M, in order to
generate a tangent matrix with a variable percentage ofzevos. Figure 3.5 shows
the CPU—-times for a mechanism of 48 loops (100 variables, faaction of matrix
filling. Results show that two sparse implementations, ttasethe CHOLMOD and
WSMP sparse solvers, are always faster than the best denlesrimation, even with
100% of non—zeros in the tangent matrix. This surprisingltesan be explained by
the fact that the percentage of non—zeros is always undés ithe Jacobian matrix,
hence optimized sparse implementations achieve signifitaa savings in Jacobian
operations, in comparison with dense implementations.

Results for other problem sizes are synthesized in Figéret® different regions
represent the points (problem size, matrix filling) whereheianplementation delivers
the best performance. For most MBS problems and dynamicuiations, a sparse
implementation based on the KLU solver will be the front rentHowever, recursive
formulations (which result in a higher matrix filling) withsgmmetric tangent matrix
will benefit from a sparse implementation based on the WSMsol

Figure 3.6 has been obtained by using the Kietactorroutine for numerical fac-
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Figure 3.6 Best implementation, as a function of problem size and p¢age of non—
zeros in the tangent matrix

torizations. As explained in Section 3.4.2, this may causelie in problems where
the entries of the tangent matrix change their relativeegkignificantly during the
simulation. If therefactor routine is not used, Figure 3.7 is obtained. In this case
KLU is replaced by CHOLMOD, WSMP increases its influence ased the dense
implementation based on LAPACK emerges for very small motd (less than 10
variables), but with a very small advantage. Converselg, éxceptions can be men-
tioned:

e For dynamic formulations with symmetric indefinite tangerdtrices, WSMP
would be the front runner for almost all the situations, si@HOLMOD does
not support them.

e For dynamic formulations with unsymmetric tangent masjdeLU would be
again the front runner for almost all the situations (evethdfrefactor routine
is avoided), since WSMP does not support them.

3.6 Conclusions

Regarding the implementation aspects of MBS dynamic sitious, the following
conclusions can be established:

o Efficient linear algebra implementations can speed up thaegfcy in a factor
of 2-3, compared with traditional implementations.

e The proposed optimizations based on symbolic pre—praugsdi the sparse
matrix computations can deliver huge speedups, sincehafishelf sparse ma-
trix libraries do not take advantage of the constant spaattenm of operations
during the dynamic simulation.
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Figure 3.7Best implementation, as a function of problem size and p¢aige of non—
zeros in the tangent matrixefactorroutine of KLU is not used)

e Optimized sparse implementations are recommended sieggtrform better

than optimized dense implementations, even for small4siablems or rela-
tively dense matrices. This disagrees with the widespredigftin MBS dy-
namics.

Concerning sparse linear equation solvers, it has beemfinat KLU, an unfa-
miliar solver designed for circuit simulation, performgyevell with many of

the linear equation systems resulting from MBS dynamicsddition, it was
found that the reference BLAS implementation provides thst sompromise
between performance and usability for sparse implememisti

Table 3.3Decision rules for selecting the best sparse solver for Magrhics, based
on matrix type, size and number of non-zeros

N x (% of non—zeros-10)
>900 <900
KLU (smooth problems)

Type of tangent matrix

Symmetric positive definite CHOLMOD (rough problems) WSMP
Symmetric KLU WSMP
Unsymmetric KLU KLU

The results from numerical experiments are summarizedliteTa 3, which pro-
vides a simple decision rule to select the best linear eguablver for MBS dynam-
ics, based on matrix type, size and percentage of non—#gffasent implementations
of global MBS dynamic formulations can be easily achievedyjled the above rec-
ommendations are followed. All the recommended softwdmalies are freely avail-
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able, and the proposed optimization techniques are notcdbtuany programming
language.

As a consequence of the above—mentioned conclusionsnihiédr problem size
where global formulations perform better than recursiveamni—recursive formula-
tions, established in the order of 50 absolute variablead@ado et al., 2004b, 2008),
should be revised. This limit might get higher if the propbsgtimized sparse imple-
mentations are used, since their effects on the efficierehigher in global formula-
tions than in recursive or semi-recursive formulationsaddition, further work must
be carried out in order to determine if the proposed reconalaitéons are still valid for
other formulations, since all the numerical experimenighzeen performed using a
particular global formulation.



Chapter 4

Parallelization

This Chapter evaluates two non—intrusive parallelizatiechniques for multibody

system dynamics: parallel sparse linear equation solvaedsGpenMP. Both tech-

niques can be applied to existing simulation software withimal changes in the

code structure; this is a major advantage over MPI (Messagsify Interface), the
standard parallelization method in multibody dynamicsthBechniques have been
applied to parallelize a starting sequential implemeatatf a global index—3 aug-
mented Lagrangian formulation combined with the trapeaaigle as numerical inte-

grator, in order to solve the forward dynamics of a varialdlep four—bar mechanism.
Numerical experiments have been performed to measure fibeefy as a function

of problem size and matrix filling. Results show that the Ipestllel solver (Pardiso)

performs better than the best sequential solver (CHOLM@Dfultibody problems

of large and medium sizes leading to matrix fillings above a@~+zeros per variable.
OpenMP also proved to be advantageous even for problemsalif saes. Both tech-

nigues delivered speedups above 70% of the maximum thealrgtlues for a wide

range of multibody problems.

4.1 Introduction

Computational efficiency of numerical simulations is a k&suie in multibody system
(MBS) dynamics. When MBS dynamics is used in Computer Aidedigeand En-
gineering, faster simulations allow the design enginegreidorm what—if analyses
and optimizations in shorter times, increasing produtstiaind interaction with the
model. Moreover, some applications like hardware—in-thaps-settings or human—
in—the—loop devices cannot be developed unless MBS forapndmic simulations
are performed in real-time. Hence, computational effigiga@ very active area of
research in multibody systems dynamics.

Parallel computing is one of the approaches to increasedhmpuatational effi-
ciency of MBS dynamic simulations. The first parallel MBSa&ithm was proposed
by Kasahara et al. in 1987; since then, a variety of formaoifetiand simulation al-
gorithms have been developed to exploit parallel computirdhitectures in MBS

41
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dynamics (Anderson et al. (2007), Anderson and OghbaeBR@itchley and An-
derson (2003), Critchley and Anderson (2004), Cuadradd. €2@00), Eichberger
et al. (1994), Fisette anceRerkenne (1998), among others). Some of these algorithms
apply parallelization directly at the level of equationsnobtion, which are formu-
lated in a form that facilitates the concurrent evaluatiétheir different terms, see
e.g. Bae et al. (1988) and Avello et al. (1993); most of thdgerghms are based
on recursive or semi—recursive formulations. Other ators apply substructuring
techniques to partition the multibody system in disjoiri@domains, which are solved
concurrently taking into account the interconnection t@mss, see e.g. Mukherjee
et al. (2005) and Quaranta et al. (2002). With regard to th@a@mentation, the Mes-
sage Passing Interface (MPI) (Argonne National Laboratd®)9) has become the
de facto standard for the parallelization of multibody dyi@simulation codes, e.g.
Anderson et al. (2007), Anderson and Duan (1999) and Quasrdl. (2002). MPI
is a message—passing application programmer interfaterbndes functionality to
enable communication and synchronization between a seboépses which run con-
currently. Due to its language independence, high perfoomascalability and good
portability through completely different parallel aragtures (from shared—memory
processors to computer clusters), it has been broadly teztapthe field of parallel
MBS dynamics.

The aforementioned parallel methods for MBS dynamics cbeldlescribed as
intrusive parallelization, since they introduce major modificatidomth in formula-
tions and implementations. Formulations are specificalgighed to obtain highly
parallelizable numerical computations, and most impalgaparallel MPl-based im-
plementations enforce a particular MPI-oriented codegiieshe programmer must
explicitly divide tasks in processes and insert messageshpg operations for data
transfer and synchronization. As a result, the structuand¥Pl-based parallel code
is usually quite different from its sequential counterpatiese parallelization meth-
ods have been proved to attain very good results in termdiofegicy and scalability
in the context of MBS dynamics, as demonstrated e.g. by Asuteet al. (2007) and
Quaranta et al. (2002). However, their intrusive charati@kes them quite difficult to
apply to existing sequential MBS dynamic simulation codiégny of these sequential
packages, developed by academia, still have a great valies@arch tools and they
are successfully used in ongoing industrial applicatibng to their internal complex-
ity and design dependencies with third—party softwarealpsization of these MBS
packages by intrusive methods like MPI would be very tim&scmning and error—
prone. For that reason, most of them remain as sequentiasaaich cannot take ad-
vantage of today’s almost ubiquitous availability of psglatomputing architectures,
present even in low—cost laptop computers. This limitatidhbe accentuated in the
future, since trends indicate that performance of singtegssors is close to reach-
ing its limit and that multi—-core processors are the prefétechnology to increase
computing power in the next decade (Gorder, 2007).

The goal of this Chapter is to investigate alternatiem—intrusiveparallelization
methods for MBS dynamics, which do not require major modiifices in existing
formulations and implementations. Although their scdigbimay be inferior when
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compared to intrusive methods, such non-intrusive metbodkl be easily applied
to parallelize the above—mentioned legacy sequential MB®Iation packages, and
they may also reduce the effort required to develop someslahdew parallel formu-
lations and implementations. This Chapter deals with two-nttrusive paralleliza-
tion methods for MBS dynamics:

o the use of parallel sparse linear equation solvers; and
e the OpenMP parallel programming model.

Linear equation solvers represent an opportunity for nunasive parallelization
since the solution of linear equation systems is a key peocesiany MBS dynamic
simulation codes. This linear algebra operation is presemimost all simulation
methods except some types of fully recursive formulati@er@a de Jabn and Bayo,
1994), although its weight in the total computation timeha simulation depends on
the type of problem and formulation. Global formulationsiieh use a high number
of coordinates and constraint equations to define the pasitf the multibody sys-
tem, lead to comparatively big sparse linear equation Bysighose solution usually
consumes around 30—60% of the total CPU—-time in a dynamiglatian. Recursive
and semi—recursive formulations lead to smaller and monepeat linear equation
systems, and therefore their weight is reduced to less thé&n & the total CPU-
time; however, if flexible bodies are considered, matriesincrease and the solution
of linear equation systems also takes a significant pergerdathe CPU—time, even
for recursive formulations. As a result, the performancéheflinear equation solver
is critical to the efficiency of most MBS dynamic simulatiod$ie replacement of a
sequential solver by a parallel solver is considered a mirugive parallelization tech-
nique because it only requires minor changes in the codeidaw that both solvers
use similar sparse matrix storage formats. Many paratielli equation solvers have
been developed in the last years, but they are not consitiebedappropriate for MBS
dynamics due to the small matrix sizes involved in this fidldamputational mechan-
ics. Comparative studies about their performance haveaaished by Gupta (2002,
2007), Davis et al. (2003) and Tracy et al. (2007); howeVer tést problems used in
these studies do not fit the particular features of MBS dynajspecially in regard
to matrix sizes (in MBS dynamics, typical sizes are at least orders of magni-
tude smaller than in Finite Element Analysis or Computatidfiuid Dynamics), and
therefore their conclusions cannot be extrapolated siacallpl solvers will perform
very differently under these circumstances. The first doutiion of this Chapter is the
evaluation of the efficiency and suitability of parallel sgmlinear equation solvers in
the context of multibody system dynamics, a subject thatrfvdseen investigated
yet.

The second non-intrusive parallelization method explamneithis Chapter is the
OpenMP parallel programming model (OpenMP Architecturgi®e Board, 2008).
OpenMP is a standard application programming interfaceippart multi—-threaded
parallel programming. Itis scalable and portable like Mflk, it has two important dif-
ferences. First, OpenMP is only targeted at shared—memahypmocessor architec-
tures, while MPI supports both shared— and distributed—omgmrchitectures. How-
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ever, this OpenMP limitation is not a severe disadvantagledtiield of MBS forward
dynamics: due to the characteristics of the problem, corotitasks running a paral-
lelized simulation must exchange data several times pegiation step (usually in the
order of milliseconds), causing a high communication ogathcompared with other
applications. As a consequence, gains obtained from cmrtucomputation can be
easily outweighed by the high communication overhead itridiged—memory archi-
tectures like PC clusters (Quaranta et al., 2002). Conlyettbe low communication
overhead of shared—memory architectures, supported bpNfpemakes them more
appropriate to run parallel MBS simulations. Another adage of shared—memory
architectures is the availability of low—cost commaodityrdwaare with 2 or 4 CPU
cores, like Intel Core 2 Quad and AMD Phenom X4. The secone difference be-
tween OpenMP and MPI concerns with the programming modeén®P is based
on a multi—threaded model simpler to use than the MPI's mpitticess model. This
key difference delivers important advantages when Opergvipplied to parallelize
a sequential code (Chapman et al., 2007):

e the initial design can be maintained and only minor changethé code are
required;

e data transfer and task synchronization are handled tregrsihaby OpenMP;
and

o parallelization can be applied incrementally.

These three advantages make OpenMP a non—intrusive fiaegiten method when
compared to MPI. On the other hand, Krawezik and Cappell@gpdemonstrated
that OpenMP cannot achieve the same performance as MPIrfa gpes of numer-
ical problems and code designs, hence its pros and cons irtieutsxr domain shall
be evaluated before claiming it as a better technique thah Béxpite its potential
advantages, studies about the efficiency of OpenMP in theexbof MBS dynamics
have not been published yet, and this subject will be therskbcontribution of this
Chapter.

The rest of the Chapter is organized as follows: Section dszribes the numeri-
cal experiments used to evaluate the efficiency and apjilityadf the two proposed
non—intrusive parallelization methods: test problem,aigit formulation, and par-
allelization procedures applied to a starting sequentigdlémentation. Section 4.3
presents and analyzes the results of numerical experiméntly, Section 4.4 ex-
tracts conclusions and suggests future work.

4.2 Methods

In order to study the efficiency and applicability of the twmjposed non—intrusive
parallelization methods, a test problem has been solved avigiven dynamic for-
mulation. This formulation has been initially implementach sequential simulation
code, which has been parallelized by means of parallel finrgaation solvers and
OpenMP.
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This test setup represents a worst—case scenario for glenatilon in terms of
problem, dynamic formulation and implementation, as it bd explained in the fol-
lowing subsections. With this approach, the obtained perémce results will repre-
sent a lower limit when the non—intrusive parallelizatioathods investigated in this
Chapter are applied to legacy MBS simulation codes.

4.2.1 Test problem and dynamic formulation

The selected test problem in this Chapter is the same thathegen for the evaluation
of linear equation solvers and described in Chapter 3: thé-2Dop four—bar linkage.
This model is shown in Figure 4.1.

Ya l ¢ =9.81 N/kg
I
I
By B,  ( BLi B,
) )
Loop 1 Loop L
Ay A Ay AL

Figure 4.1:L—loop four-bar linkage

The dynamic simulation is performed by means of the indexa¢greented La-
grangian formulation,

M@+ @40® + ®41* = Q

(4.2)
A=A +a®; =012, ..
with the trapezoidal rule as integrator
Qnt1 = éqn+l +G, Q= (éqn + qn)
4.2)

N 4 2 2 4 4 N
Un+1 = mqn+1 +d,; 4,=-— (FQn + Eqn + Qn)

The dynamic formulation and the integrator were introduoe8ection 3.2. How-
ever, as the tested parallelization techniques are clasdyed to the identification
of the parallelizable computation steps, they are briefgcdbed here again. Intro-
ducing Equations (4.2) in Equations (4.1), yields the felly non-linear system of
equations

2

At 2
f(d) = Mdpn+1 + e [4’;,1“ (@®nt1 + Ant1) — Quir + qu] =0 (4.3
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which is solved through the Newton—Raphson iteration

.
S| sa =t (@4

using the approximate tangent matrix (symmetric and pesitiefinite)
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Finally, as the corresponding setsdpf and acceleration§* may not satisfyd = 0
and® = 0, they must be projected, reusing the factorization of thgeat matrix:

of@7. At A2 .. A2 o
G P RS PR
of ) At A2 .. A2 Lo
[%} g = |:M +5C+ TK:| 6"~ —-la (g0 + (I)t)
This global method has been designed for sequential comgutand it is not
as suitable for parallelization as recursive and semi+sidiformulations. For that
reason, it nearly represents a worst—case scenario folighiaegion with regard to
dynamic formulations. The numerical experiments have kEmformed using as a
time—stepAr = 1073 s and a penalty factar = 108; the simulation time for each of

them has been, again, 20 s.

The number of loops in the test mechanism can be adjustecherate problems
of different sizes. In MBS dynamics, global formulationsgeate several hundreds of
variables when applied to automotive or railway vehicleslenap of rigid bodies. Re-
cursive formulations lead to problems of smaller size, buémbody flexibility needs
to be considered, the number of variables increases evénthig kind of formula-
tions. If flexible bodies are described by component modéhegais, as explained by
Ambrosio and Gongalves (2001) and Ligyet al. (2007), multibody models of auto-
mobile or railway vehicles can exceed 1000 variables. IHlioear elastic or plastic
behaviour is considered, the number of variables in thelpnolis augmented by the
degrees of freedom of the finite element discretization efflixible bodies, see e.g.
Garda Orden and Goicolea (2000) and Sugiyama and Shabana (20@®r these
circumstances, multibody models in industrial applicagionay react 0* variables.
This number can be considered the upper—level limit in theé fitconventional multi-
body dynamics, at least during the next decade, with theptiareof some specific
applications such as the simulation of molecular dynamitiskherjee et al., 2008).
For that reason, the numerical experiments will be perforosng a number of vari-
ablesN that ranges from 100 to 8000 (generated by a number of léofspsm 49 to
3999).

(4.6)
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4.2.2 Initial sequential implementation

The initial implementation of the dynamic formulation ha=seb heavily optimized
for sequential execution by using efficient BLAS impleméiotas for dense linear al-
gebra, symbolic pre—processing of sparse matrix compuistifast access to sparse
storage formats and state—of-the—art sequential linegteop solvers, as described
in Chapter 3. These optimizations reduced CPU—times bytarfat3 compared with
more traditional implementations of the same dynamic fdatien. On the other side,
such a highly optimized sequential code makes it difficuam advantage from par-
allelization: since computations are performed at high€dFS (Floating Point Oper-
ations per Second) rates and in shorter times, the relatightvof the communication
overhead associated with parallelization becomes higmaddition, some optimiza-
tion techniques make fine—grain parallelization unableg@pplied to certain code
sections, as it will be explained later. Again, the desctilpdtial implementation rep-
resents a nearly worst—case scenario for parallelizatioieed, the parallelization of
this code by means of MPI would be very cumbersome.

Table 4.1:Performance analysis of the initial sequential implemé&atafor problems
of N variables

% of elapsed time

Task Description Eq. N =1000 N = 8000

1 Update of variables - 4.1 4.0
2 Evaluate dynamic terms (4.1 and 4.5) 9.3 9.8
3 Evaluate tangent matrix (4.5) 11.8 11.8
4 Evaluate residual vector (4.1) 7.6 7.6
5 Factorize tangent matrix (4.4) 36.8 36.7
6 Back-substitution (4.4) 5.9 5.8
7 Project velocities (4.6) 9.4 9.3
8 Project accelerations (4.6) 12.3 12.2
9 Other - 2.8 2.8
Total elapsed time (s) 10.0 102.4

Table 4.1 summarizes the results of a performance analfie mitial sequential
formulation for tests problems of 1000 and 8000 variableghBases show very sim-
ilar profiling results, since the use of symbolic pre—preags of sparse computations
through all the code leads to neaddy(n) tasks in spite of using a dynamic formula-
tion usually classified a® (n*). This performance analysis will be used to guide the
parallelization described in the next subsections.

4.2.3 Parallelization with multi-threaded linear equatian solvers

Table 4.1 shows that around 54% of the CPU—-time is consumethdoysolution
of linear equation systems: matrix factorization (task bse to 37%) and back-
substitutions (task 6 and part of tasks 7 and 8). This highritirtion is caused by
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the simplicity of the dynamic terms in the proposed test fmol(task 2); in problems
with time—consuming force, constraint and Jacobian etialog, task 2 can achieve
higher percentages of runtime and reduce the contribufiinear equation systems.
Nevertheless, this operation is a significant bottleneckast MBS dynamic simula-
tions and represents an important opportunity for nonugie parallelization.

In the previous Chapter, the efficiency of different densesparse sequential lin-
ear equation solvers in the simulation of MBS dynamics waasue=d; the number
of variablesN in that study ranged from 10 to 1000. Results demonstraistdctir-
rent state—of—the—art sparse implementations outperdemse implementations even
for very small problems (e.g., 20 variables), contradg@irnwidespread conviction in
MBS dynamics. Three sequential solvers were found to be tet efficient ones, as a
function of the type of multibody problem and dynamic forieion, and trends in that
previous Chapter indicate that they are also the most effisiglvers forN > 1000:

¢ CHOLMOD, a symmetric positive definite solver;
e KLU, an unsymmetric solver specially designed for circintglation; and
o WSMP (sequential version), a symmetric indefinite or unsyinimeolver.

In this Chapter, these three top—performing sequentiaéssivill be compared against
parallel solvers. Given the large number of existing patalparse solvers, a selection
process has been applied to narrow the scope: iterativersdhave been discarded,
since they have a high communication overhead during eaditiin, so they work
efficiently only for very large problems out of the scope of BlBynamics (Saad,
2000); the same argument applies to out—of—core solvasm Hre remaining parallel
linear equation solvers, three of them which have demawmstigood performance for
matrix sizes close to those found in MBS dynamics (Gupta22@007) have been
selected to evaluate their performance in this field:

e SuperLU (multi-threaded version), a non—-symmetric so{Z@mmel et al.,
1999b);

e Pardiso, an either symmetric or unsymmetric, positive defiar indefinite
solver (Schenk et al., 2001); and

e WSMP (multi-threaded version).

The efficiency of a linear equation solver depends on threfs: matrix size, spar-
sity pattern and matrix filling. In this study, the effect ohtrix size has been analyzed
by solving the test problem with a number of variabganging from 100 to 8000.
The effect of the sparsity pattern has been greatly dim@adly reordering the tangent
matrix: each of the six benchmarked solvers supports éiffiereordering strategies,
usually computed by third—party numerical libraries likEMS (Karypis and Kumatr,
1998) and AMD and its variants (Amestoy et al., 1996), amdahgs; all of them have
been tested in the symbolic pre—processing stage of thdationy to select the best
one for each simulation case. For that reason, the resufighel for the proposed test
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Table 4.2:Typical matrix filling ratios in multibody dynamicsV( = number of vari-
ables, NNZ = number of non—zeros)

Type of problem and dynamic formulation NNZ/N

Rigid bodies — Global formulations <10

Rigid bodies — Recursive formulations

Flexible bodies — Component mode synthesis 0-30

Flexible bodies — Finite element mesh 30-100

problem will be still valid for other multibody problems léiag to different sparsity
patterns.

With regard to matrix filling, the described formulation dipgd to the test prob-
lem of L loops leads to a tangent matrix in Equation (4.5) of gize= 2L + 2 with
12L + 4 structural non—zeros. A meaningful matrix filling indicatan be computed
as the ratio between the number of non—-zelktid4) andN . In this caseNNZ/N ~ 6
is a typical value for global formulations applied to prabkinvolving rigid bodies.
Nevertheless, other dynamic formulations and multiboajofams may lead to higher
filling ratios, as depicted in Table 4.2. Problems involviigid bodies lead to higher
fillings if recursive or semi—recursive formulations ared¢Cuadrado et al., 2004a);
the same filling range applies if the problem involves flexibbdies and they are
described by component mode synthesis (Aisliy and Goncalves, 2001; Cuadrado
et al., 2001). Finally, if flexibility is described by intrading the degrees of free-
dom of the finite element discretization in the multibodygeon (Gar¢a Orden and
Goicolea, 2000; Sugiyama and Shabana, 2004), the fillingefihite element mass
and stiffness matrix dominates the tangent matrix; in tleses, matrix filling ranges
from 30 to 100, depending on the type of finite element (beduel],srick).

It is expected that the performance gains from parallelegshincrease as the
NNZ/N ratio increases, due to the higher workload of the numefécabrization. The
proposed test problem and dynamic formulation represerdratwcase scenario for
parallel solvers because they lead to a very sMBIZ/N ratio; in these circumstances,
parallel solvers could perform worse than sequential sslv@onversely, more com-
plex and realistic problems lead to highéNZ/N ratios, as described in the previous
paragraph. In order to study the effect of parallel solvesich cases, a variable num-
ber of artificial non—zeros will be added in the sparsity gratiof the original tangent
matrix to increase it8INZ/N ratio.

Only minor changes were required in the initial sequentigllementation to in-
corporate the three proposed parallel solvers, becaugeasiedehe same storage format
of the three above—mentioned sequential solvers alregajyosted by the simulation
code (Compressed Column Storage format or CCS). For solgsd in symmetric
mode (CHOLMOD, WSMP, Pardiso), only the upper or lower trialag part of the
tangent matrix is computed in Equation (4.5), dependingherréquirements of each
solver; for non—symmetric solvers (KLU, SuperLU), the wdohatrix is evaluated
and factorized.
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Some benchmarks for linear equation solvers (Gupta, 20027)2only measure
factorization and solve (forward triangularization andkaubstitution) times. In this
work, the total elapsed time for a multibody dynamic simiolatvas measured, since
this procedure takes into account other important atiblike precision (more pre-
cise solvers will need less iterations in Equation (4.4)) memory footprint (its effect
on the behaviour of CPU-cache can affect the overall pedaooa of the simulation).

4.2.4 Parallelization with OpenMP

OpenMP (OpenMP Architecture Review Board, 2008) is a stahdpplication pro-
gramming interface (API) to support multi—-threaded patadtogramming in shared—
memory architectures. It provides a setakctivesthat can be added to a sequential
program in Fortran, C, or C++ to describe, with minimal madifions in the code,
how the work is to be distributed among multiple threads thatin parallel. A good
description of OpenMP is provided by Chapman et al. (2007).

// Calls 2 functions in parallel
void examplel ()

{

#pragma omp parallel sections

#pragma omp section
functionl () ;
#pragma omp section
function2 () ;

}

// '1l'-norm of a vector in parallel
double example2 (double v[], int n)
{

double sum = 0;

#pragma omp for reduction (+:sum)

for (int i=0; i<n; 1i++) {

sum = sum + v[i];
}

return sum;

Figure 4.2:.Example of OpenMP directives for parallelization

Figure 4.2 shows a couple of examples of parallelizatiom WipenMP: the first
one calls two code sections in parallel, while the secondspties afor loop into
several non—overlapping fragments to traverse them inllphemd accumulate the
results. These directives are understood by OpenMP corapildich deal with the
burden of working out the communication and synchronizatietails of the parallel
program. The directives look like comments to regular, nge@P—aware compil-
ers, which will generate sequential code. In this way, tineessource code can be used
in both sequential and parallel versions; this feature gapl#y the maintenance of



4.2 Methods 51

MBS simulation codes that are used to run simulations in degktop PCs (suitable
for parallel execution) and embedded microprocessorscfwinly support sequential
execution) like automotive Electronic Control Units (EGY’

(a)

112 3 |4 5 6| 7 | 8 |9

[0 Tasks that can be executed simultaneously

(b)

4 7

1| 2 3 5 6 8 |9

B Overhead due to thread management

Figure 4.3 Distribution of computational load i(a) the initial sequential version and
(b) the proposed parallel version

Coarse—grain parallelization, in which large programaagiare executed concur-
rently, can be easily achieved with OpenMP. An analysis efgtofiling results in
Table 4.1 and the sequence of calculations in Equation$ {@.(4.6) evidences that
two pairs of tasks (3—4 and 7-8) can be executed concurrastghown in Figure 4.3.
On the other hand, tasks 1 and 2 cannot be scheduled in pdradieuse the sec-
ond one requires the values previously computed by thelfirsiddition, some of the
optimizations implemented in the initial sequential vensmake not possible to ap-
ply fine—grain parallelization. For example, the Jacobiaiuation, which represents
around 80% of task 2, has been optimized for fast writing afi@ns to matrix data
stored in CCS format. This optimization reduced the evadanaime by a factor of 3
but it requires a sequential traversing of the involfedloop, which cannot be split
like in Figure 4.2.

Figure 4.3 and the details given in the previous paragrapifirco that the pro-
posed test problem and dynamic formulation represent atwease scenario for the
parallelization with OpenMP, since most of the tasks mustderuted sequentially.
In contrast, other simulation setups (e.g. recursive) eanded to generate algorithms
where most of the time—consuming tasks can be paralleleédthugh this also de-
pends on the structure of the multibody system.

4.2.5 Test environment and implementation details

Simulations have been run in a desktop PC with a dual-coet Gdre Duo E6300
CPU (1.86 GHz clock speed in each core, 64 Kb L1 cache, 2 Mb tBejaand 1 Gb
of RAM, running Linux OS kernel 2.6.24 in 64 bit mode. Two cdfaptoolchains
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have been used: the GNU Compiler Collection (gcc versiopnahd the Intel C/C++
Compiler (icc version 10.1); both of them support OpenMP.

A parallel computer with only two CPUs has been used becawsé¢ested dy-
namic formulation, heavily oriented to sequential exemutiwill deliver poor scal-
ability since the fraction of parallelizable code is relaty small. The goal of this
Chapter is to test whether the proposed non-intrusive Ipizaktion methods can in-
crease the efficiency of MBS dynamic simulations; if they,dhe scalability of the
speedups will greatly depend on the multibody problem andhahic formulation.

4.3 Results and discussion

The following subsections present numerical results fer ttho above—mentioned
non—intrusive parallelization methods.

4.3.1 Multi-threaded linear equation solvers

Figure 4.4 shows the elapsed times for dynamic simulatiotisasnumber of variables
N ranging from 100 to 4000 and three representative valudseafiatrix filling ratio
according to Table 4. 2NNZ/N = 6, 20, 50). Sequential single-threaded (st) solvers
are represented in dashed lines, while parallel multiattied (mt) solvers are repre-
sented in solid lines. Elapsed times férin the range 4000—-8000 follow the trends in-
dicated on the right side of the figures, so they have not benesented. Figure 4.4a
evidences that parallel solvers are not competitive foblaras with low filling ra-
tios: in these circumstances, KLU (unsymmetric solver) @MDLMOD (symmetric
positive definite solver) perform better than any other. &fiieiency of KLU is out-
standing in this case, taking into account that, due to ibyommetric nature, the whole
tangent matrix is evaluated and factorized during the satiri. The explanation for
this excellent behaviour is that KLU is a sparse LU factdiamaalgorithm specially
designed for its use in circuit simulation problems, whielrdna typical filling ratio of
7-8; however, this feature is also an important penalty fiimdiratios above 10. For
medium (Figure 4.4b) and high (Figure 4.4c) filling ratioard#so emerges as the best
solver for problems of large size. For medium size probleéd$OLMOD continues
to be the most efficient solver under these circumstances.

In order to gain insight into the most favourable conditiarseach solver, numer-
ical experiments similar to those represented in Figurédw been run with a matrix
filling ratio within a range from 6 to 100. Results are synthed in Figure 4.5, which
represents the regions where each solver delivers the édstmance, as a function
of the number of variabled and the filling ratioNNZ/N. The solid line draws up the
boundary between the parallel and the sequential solvedstree dashed lines draw
up the boundary between different sequential or parallgkss. This figure serves as
a decision tool to identify which solver is best suited foraatjgular multibody simu-
lation. Figure 4.5 shows that, contrary to general beligdsallel solvers can increase
simulation efficiency for a wide range of problems in MBS dyries. Pardiso domi-
nates the region of parallel solvers, since the multi—itheelaversion of WSMP is only
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Figure 4.5:Best solver, as a function of problem size and matrix filling

better in a small, non—-representative region. On the othad hCHOLMOD dom-
inates the region of sequential solvers, while KLU and snthreaded WSMP are
only competitive for small problems under 200 variablessthlast results fully agree
with the recommendations given in Chapter 3 for problem=ud€00 variables.

Since Pardiso has been demonstrated to perform betterdlaestial solvers for
many multibody problems, it is important to quantify the sgeps that it can deliver.
Figure 4.6 represents the speedups achieved by Pardisduast@n of the filling
ratio NNZ/N and the number of variable¥; the speedugd is relative to the best
sequential solver in each point of the figure:

. elapsed timﬁzquential
elapsed timg,, 417¢1

4.7)

Table 4.3 shows the maximum speedup that can be achievedargléepsolver in
the tested implementation, for three typical values of thiediratio; the values have
been obtained from profiling results and Amdahl’s law: foragram with a parallel
fraction f running onP processors, the maximum speedup is:

1

S (P)max = TIPri= ] (4.8)
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Table 4.3:Maximum speedup for 2 processors due to parallelizatiorheflinear
equation solver in the tested implementation, as a funafdahe matrix filling ratio

NNZz/N

NNZ/N CPU-time in factorizations and back—substitutions MaresjupS

6 52% 1.35
20 69% 1.53
50 68% 1.52

The information given in Figure 4.6 and Table 4.3 is impotrtianorder to correctly
interpret the results in Figure 4.5. While Pardiso performds for N < 1000 in a
significant region of Figure 4.5, the delivered speedupyarng small compared with
the best sequential solver (CHOLMOD), specially fiZ/N > 50. Pardiso only de-
livers significant speedups fa¥ > 1000, and it achieves the maximum performance
for NNZ/N in the range from 10 to 30. In some cases, the speedups ex0éedf/
the maximum values predicted by Amdahl’s law in Table 4.3.

—&— 100 variables —&— 200 variables
—aA— 500 variables —X%— 1000 variables
—&— 2000 variables —+— 4000 variables

1,5

Speedup

0 20 40 60 80 100
NNZIN

Figure 4.6:Speedup of Pardiso with respect to the best sequentialrsolve

With regard to the effect of the compiler toolchain on thedation efficiency,
it has been observed that the two tested toolchains (GNU raet) tan increase or
decrease the elapsed times for the tested solvers by a tgrtor34%, depending on
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matrix size and filling ratio. However, in the conditions wleach solver performs
better (according to Figure 4.5) the effect of the comp#ediminished, as shown in
Table 4.4. In general, icc gives slightly better resultithac, specially for Pardiso.

Table 4.4:Effect of compiler toolchain on the efficiency of linear etipra solvers in
the region where each solver performs best

Linear equation solver Best compiler Min. gain Max. gain

Pardiso icc 7% 18 %
CHOLMOD icc 1% 8 %
WSMP (st) icc/gec -2% 2%
KLU icc -1% 7%

4.3.2 OpenMP

Figure 4.7 shows the elapsed times for dynamic simulatiatistive OpenMP parallel
version of the code, for a number of variables ranging froix th08000 and a filling
ratio NNZ/N =~ 6 (no artificial non—zeros were added to the tangent matrike T
simulations have been run using CHOLMOD as linear equatibres Since most of
the burden of OpenMP parallelization is carried out by thegiter, results for both
compiler toolchains (GNU and Intel) have been represenitaking into account the
profiling data in Table 4.1, the task schedule shown in Figuse can deliver a max-
imum speedup of 1.20. Results indicate that the compilerahsignificant effect on
the performance of the OpenMP parallel version. Intel OpBriplementation, with
a lower communication overhead, delivers speedups gréatarone even for small
problems of 100 variables, and it achieves the optimum d¢mmdi for around 500
variables. The GNU implementation needs more than 200hlagdo become advan-
tageous, and delivers the maximum values for 2000 varightagever, the speedups
of GNU are higher, reaching the 95% of the maximum theorktiglae (1.20).

Figure 4.7 also shows that OpenMP speedups start to faN foer 2000. This fact
does not agree with the normal behaviour of parallel programth the communi-
cation overhead due to parallelization and the maximumdigeeo not depend on
N and should be constant (the overhead of thread creation estdudtion depends
only on the number of threads, and Table 4.1 demonstratéshthaelative elapsed
times of the parallelized tasks do not depend\on Therefore, the maximum speedup
Smax = 1.20 should be a horizontal asymptote for the cuS4gV), as it happens in
MPI parallel codes (Anderson and Duan, 1999). This weircabitur may be pro-
duced by adverse effects in the cache memory, because tdsdcuted in parallel in
Figure 4.3b share part of the data: both tasks 3 and 4 opertitéhg mass matrix,
Jacobian matrix and constraint vector, and both tasks 7 apegéate with the tangent
matrix factorization and other common terms. Since each G&&Jits own private
cache, common data terms must be transferred twice from myeimecache, and for
large problem sizes the memory bandwidth becomes a batitefbis phenomenon is
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Figure 4.7:Speedup of the OpenMP parallel implementation

not frequent in MPI parallel implementations, since MPlqgasses operate in private,
unshared data. Adverse effects of cache can be diminishidawgroper allocation
and distribution of data, as explained in Chapman et al. {pG8owever, these tech-
niques can enforce major changes in existing sequential BiB8lation codes, and
their effect highly depends on the computer architectucetha compiler toolchain;
therefore, they cannot be considered as non-intrusivesyrteamplement.

Nevertheless, results demonstrate that OpenMP is adwntageven for small
problems and that it can deliver speedups above 80% of thénmax theoretical
value for a wide range of problem sizes (from 500 to 3500 \éew), provided the
appropriate compiler toolchain is selected. Given the Baip of its application to
sequential codes, it is a valuable tool for non—intrusivalbaization of existing MBS
simulation packages.

The attainable absolute speedups depend on the problerhasihtulation char-
acteristics. As described in Section 4.2.4, the test seseg in this work represents
a worst—case scenario for OpenMP parallelization, anctber the absolute perfor-
mance gains are small (around 15%). However, the resultsthis study suggest that
OpenMP can deliver higher absolute speedups under moistiealultibody system
simulations. For example, Luigret al. (2007) describe two formulations for flexible
multibody dynamics that spend up to 82% of the elapsed tim@mmputing matrix
terms associated with flexible bodies; since these matnmda@re evaluated body by
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body, when several flexible bodies are present the paradtedin of these tasks with
OpenMP would be straightforward, and absolute speedupgeabaould be easily
achieved on a quad—core processor. Problems with very tiomsaming force evalu-
ations can also achieve high improvements due to OpenMHMHgieation. For exam-
ple, multibody simulations involving collisions betweendies must perform collision
detection at every time—step in order to evaluate contacef Body geometries are
usually described by complex and dense polygonal mesha@sadlision detection al-
gorithms must evaluate distances between a large numbefygfgns; in many cases,
this task can be divided into several subtasks which can biéyqaarallelized with
OpenMP.

4.4 Conclusions

In the present Chapter, two non—intrusive parallelizatechniques, parallel linear
equation solvers and OpenMP, have been used to paralletizetang sequential im-
plementation of an MBS dynamic simulation software, in ortteinvestigate their
efficiency and suitability in the field of multibody dynamidoth techniques are usu-
ally considered not appropriate for MBS dynamics due to thallssizes of matrix
computations involved in this field.

Regarding the efficiency and suitability of parallel spdiisear equation solvers,
the following conclusions can be established:

e Parallel solvers are advantageous for two types of multilppdblems: (a) prob-
lems with more than 2000 variables leading to matrix filliajgsNNZ/N from
10 to 30 (the case for rigid multibody problems with recuediermulations or
flexible multibody body problems modelled by component megeathesis),
and (b) problems with more than 2000 variables leading tairfilting ratios
NNZ/N above 30 (the case for flexible multibody body problems sblwgin-
troducing the finite element discretization in the formigia}. Out of these two
regions, sequential solvers (specially CHOLMOD) are mdfieient.

e Pardiso is the most efficient parallel solver in the abovextiored conditions
among the three tested parallel linear equation solverggi®W, Pardiso and
WSMP).

e The speedups delivered by Pardiso in the above—mentionwditioms exceed
70% of the maximum theoretical value predicted by Amdataiis for matrix
filling ratios in the range from 10 to 30. Beyond that pointesgups fall grad-
ually. In addition, the speedups become higher as the prsbiacrease their
size.

Regarding the efficiency and suitability of the non—intvesDpenMP parallel pro-
gramming model, the following conclusions can be estabtish

e The parallelization of several tasks of an existing seqakaynamic simulation
software was very easy to implement with OpenMP.
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e The OpenMP parallel version proved to be advantageous eveanfall prob-
lems of 100 variables, and the speedups exceeded 80% of ttismum theo-
retical value predicted by Amdahl’s law for problem sizethia range from 500
to 3500 variables.

e Beyond a certain problem size (2000 variables), the speethlbgradually.
This abnormal behaviour could be caused by adverse effetlie ICPU'’s cache
memories.

e The compiler toolchain has a significant effect on the efficjeof OpenMP:
Intel icc performs better for problems of less than 1000al@ds, while GNU
gcc performs better for larger problems.

Despite the fact that both parallelization techniques oadeliver high absolute
speedups due to their non—intrusive character, their @i is straightforward and
therefore they are very appropriate to achieve partialllgdizamtion of existing se-
guential multibody simulation codes with minimal effonh &ddition, the good per-
formance and ease of use of OpenMP suggest that it could besétate of MPI in
the development and implementation of new formulationsisfig targeted to parallel
execution; this topic represents an open line for futurekwor






Chapter 5

Integration with
MATLAB/Simulink

Simulation of complex mechatronic systems like an autotepimivolving mechan-

ical components as well as actuators and active electramtra devices, can be
accomplished by combining tools that deal with the simalanf the different sub-

systems. In this sense, it is often desirable to couple ailmodly simulation software
(for the mechanical simulation) with external numericaigaiting environments and
block diagram simulators (for the modelling and simulatddmon—mechanical com-
ponents).

In this Chapter, the in—house developed C++ MBS simulatoftwsre described
in Chapter 2 has been coupled with the commercial tools MABLakd Simulink,
and different coupling techniques have been identified|émpnted and tested in or-
der to assess their computational performance. Two ca&afr coupling techniques
have been investigated: those in which only one tool perfaime integrationf(inc-
tion evaluation and those in which each tool uses its own integrator§imulatioi.
Furthermore, the efficiency of the described coupling m#ghtas been compared to
that of equivalent monolithic models, and indications ajaed to implement them
in other simulation environments.

Results show that the use of state—of-the—art couplingnigabs can reduce sim-
ulation times in one or two orders of magnitude with respectandard techniques.
Finally, advices are provided to select the coupling methest suited to a particular
application, as a function of its efficiency and implementaeffort.

5.1 Introduction

Machines, in general, consist of several different sulesgstsuch as mechanical com-
ponents and actuators as well as control systems. Thesgssenns represent engi-
neering disciplines that are coupled together and the bysregormance of the ma-
chine is defined by the operation of each individual subsyste well as by the inter-

61
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actions of subsystems. For this reason, the tradition&jd@socedure where mechan-
ical components, actuators and control methods are caesideparately is not able to
produce optimum solutions. The multibody system (MBS) d$ation approach meets
the challenge and can be used in the design process of a matlainconsists of
different subsystems. It is noteworthy, however, that dempon—mechanical com-
ponents such as control loops and actuators often fall ikt scope of traditional
multibody codes.

As the industry requirements increase, the demanded defjrealism in the sim-
ulation of multidisciplinary systems is continuously giiog, so the engineer needs
to bear in mind different phenomena simultaneously whenikiting a system. When
evaluating the behaviour of an automobile, for examplepnbt an accurate represen-
tation of its mechanical elements is needed, but also ofl#wrenic control systems
(like ABS or traction control), the hydraulic componentgtoe thermodynamics of its
engine. The realistic simulation of such multidisciplynaystem, as required, for in-
stance, by Human/Hardware—in—-the—Loop (HiL) devices,tmaadle each different
subsystem in an efficient way.

Several ways of dealing with multidisciplinary systems tarfound in the liter-
ature, as mentioned by \&ek (2008). Two main approaches can be distinguished:
communication between different simulation tools, andarm modelling. Uniform
or monolithic modelling is based on representing all thesgatems of a multi-domain
problem in the same language (Samin et al., 2007). Spesibbnftware and lan-
guages exist for this purpose, such as ACSL (The AEgis Tdogies Group, Inc.,
2009), VHDL-AMS (IEEE P1076.1 Working Group, 2009), and Mbda (Modelica
Association, 2009), that manage simultaneously the egumibf the entire system.
Another way of performing uniform modelling is based on tise of general mathe-
matical software for defining and solving the equations efgiistem. Recently, this
task has been simplified by the development of specific—domaidules in block di-
agram software, such as SimMechanics and SimHydraulicMALAB/Simulink
(The Mathworks, Inc., 2009). Coupling of tools, on the othand, is based on the
combination of specialized tools for modelling each subdiomThese tools are inter-
faced during execution time in order to emulate the realamt#on between physical
subsystems. As stated byilKler and Schiehlen (2000), this is the optimal approach
for the simulation of multidisciplinary systems. It allowse selection of optimized
settings for the simulation of each subsystem, such as tegration time-step, the
numerical solver and other particular details. Furtheemor many cases, these spe-
cialized tools have been developed during years by resear,deading to robust and
efficient software and wide collections of tested exampiestaolboxes.

Coupling strategies can be further categorized into tworapproaches, depend-
ing on how the integration is performed. The naooesimulations usually reserved
for those cases in which each simulation tool incorporateswn integrator. In this
work, when the integration is performed only in one tool tleafuests values from the
others, the namfunction evaluatiorwill be used.

Commercial multibody packages have been incorporatindipmykics capabili-
ties during the last years and many of them, for example SIGRRASIMPACK AG,
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2009), offer a wide range of coupling possibilities to extdisoftware tools, as well as
add-on modules with non—multibody functionality. When thdtihody software has
been developed by a non—commercial research group, as éaseef academia, and
coupling capabilities need to be added to it, the programmest often choose be-
tween several available implementation techniques. @Gtlyat is nontrivial to make
this decision, as the research about the suitability of ifierdnt coupling techniques
for particular applications has been overlooked. In paldi; there is a lack of in-
formation about the amount of effort the implementation cbapling strategy takes
and, more importantly, the efficiency of a specific technigiren compared to other
strategies applicable to the same problem. A study of theainpn performance of
different co—simulation time—steps and processor cordtipms, in a simulation in-
volving SIMPACK and MATLAB has been carried out by Vaoulet al. (2004) for
a truck model. However, the evaluation of the computati@ifitiency of different
coupling techniques, and a comparison with the performahegquivalent monolithic
models, when possible, has not been performed yet. To thistest models must be
selected and built up, and simulations performed in orderg¢asure the overhead the
coupling techniques give rise to.

A closely related open field of research in the simulation aoftidisciplinary sys-
tems is the use of multirate integration schemes, which éavgs the numerical effi-
ciency during the simulation of interacting subsystem$wiéry different time scales.
Multirate algorithms have been developed (Oberschelp abckivig, 2004; Shome
et al., 2004), while, however, the implementation of theshhiques in the communi-
cation between software packages, specially when blogkala software is involved,
is still in progress. It is noteworthy that the numericalfpemance of multirate algo-
rithms depends greatly on the co—simulation strategy saldor solving the problem.
The understanding of the limitations imposed by block diagisoftware packages,
and the definition of a convenient interface between thenotimet simulation tools is
the first step in the implementation of the general schemmfdtirate co—simulation
that is shown in Chapter 6

In this Chapter, coupling techniques with external sinatatools have been used
for widening the capabilities of the existing MBS softwatt@ough the addition of
functionality with numerical computation environmentsigs as MATLAB, Scilab
(INRIA, 2009b), Mathematica (Wolfram Research, 2009) orNRAXx (National In-
struments, 2009)) and block diagram simulators (Simul®éicos (INRIA, 2009a)
or SystemBuild (National Instruments, 2009)). To this eraypling possibilities be-
tween the MBS software developed in this thesis and MATLAB8ink are exam-
ined in detail. MATLAB has been selected for this work beeaoifsts wide acceptance
in the research community, derived from its versatility @adiness of programming.
A practical way of performing the coupling in real cases hasrbimplemented for
each technique. It is important to note that the couplingnees introduced in this
study are not limited to a specific mathematical packagethayt can also be applied
to other similar tools, as similar communication capaietitare available in them. Fi-
nally, a generic co—simulation interface, which managesctimmunication between
MBS software and the block diagram package Simulink, has loeeated and im-
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plemented. This interface is intended to allow multirategimulation, with different
synchronization methods, between simulation tools.

This Chapter is organized as follows: Section 5.2 gives a&ggmeview of the
existing techniques for communicating a multibody packagk external simulation
tools. In Sections 5.3 and 5.4, these techniques are impleaén the MBS soft-
ware and a general software tool for numeric computatiorisoduced computational
strategies are utilized in two example problems. Finallg, ¢onclusions of the work
are summarized.

5.2 Coupling techniques
The expansion of the multibody software via communicatiath vexternal simula-

tion tools can be performed in several ways, which can begoateed as data files
exchange, function evaluation and co—simulation appreschihe most straightfor-
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B simulation tool

Pre-processed

Pre-process input data file
_read
Multibod -
whbody 1/0 module . Simulation
software write
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Output data file
for post-process

Post-process

/

Figure 5.1:Data file input—output configuration

ward and easy to implement way of sharing data between twerelift simulation

environments is the use of importing and exporting of da¢és fiRs the computational
cost of read/write operations is high, this technique sthowok be applied during run-
time. For this reason, files exchange approach should bevesstor pre— and post—
processing operations, where computational efficiencgtiakey factor. A scheme of
this method is described in Figure 5.1. In the MBS simulafield, a large variety of

tasks can be managed with files exchange approach adding toutltibody software

the functionality of an external processing tool. The offelrealistic graphic repre-
sentation of results and the pre—processing of complexrdigsd terms when these
are remaining constant during simulation are examplesiggfpproach. The software
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requirements for the use of this strategy are the existehaecommon data format,
understandable by the involved packages, and the avéyatfiinput—output routines
for handling the data files in each program.

An alternative to data files exchange, more adequate fommenarefunction eval-
uationsfrom one simulation tool to another. In this work, the namection evalua-
tion is reserved for those communications in which only ofi¢he software tools
is actually performing a humerical integration, while tither one returns values on
request, from the output values passed by the integratbrbe configuration can
be achieved through code exporting (via joint compilingietiher with the integrator
tool, or pre—compiled as a library) or by direct communigzatbetween processes. Ap-
plication fields of the function evaluation strategy woukddomplex force evaluations
during runtime, table look—up and other processes in whigherical integration is
not present.

j Master simulation tool
. A . A
Function Function
evaluation evaluation

i Function evaluation '
' interface |

Answer Answer

Auxiliary simulation tool

i i+l Time

B

Figure 5.2:Generic function evaluation configuration

The implementation of this technique requires the devekagnof an interface
between the software tools to allow the main process to uséutictionality of the
auxiliary software and receive the return data convenjebthta formats in different
tools are often incompatible, so translation routines maydcessary for the correct
transmission of information. A simplified depiction of thischnique can be seen in
Figure 5.2. The block representing the auxiliary softwar# &t the bottom of the fig-
ure can be a standalone process, if direct communicatioveleetprocesses is used, a
library or even exported source code, that has been prdyicosipiled together with
the source code of the driver program. The availability estihmethods is determined
by the nature of the external tool, as it may allow or not comization with external
processes (for example, via TCP/IP) or the access to inmetiins in case of it is
compiled as a library.

Finally, aco—-simulationapproach in the strict sense can be developed, in which
two simulation tools, each of them with its own states andgrdtor, share data at
defined synchronization points (Arnold, 2008). Again, cealport or direct commu-
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nication between processes can be used to implement thiige@tion. In the case
of a multibody simulation tool, state—space equations earepresented by

{ Xim (£) = T K (£) , Uy (1)) (5.1)

Ym (1) = G (Xm (1))
wherex,, are the states of the multibody systemy, the inputs to the system and

Ym the system outputs. An analogue expression can be usedefeqtiations of the
external simulation tool

{nm=nu&mwa» 5.2)
Ye (1) = Qe (Xe (1))
being the inputs of a system the outputs of the other
Ue (1) = Y (1) 5.3)
Um (1) = Ye (1)

Nowadays, state—of-the—art commercial software perf@ersimulation at con-
stant time—steps, with the same integration stepsizeséaryeubsystem, although
research is being carried out to introduce multirate methindco—simulation envi-
ronments (Busch et al., 2007). Even with constant and ideihtime—steps in each
subsystem, the evaluation of the inputs for each subsysgfi®en by Equation (5.3),
at synchronization point can be performed in several ways. A frequent strategy is
assuming that the inputs of each subsystem can be considensthnt during each
time—step{;, #;+1], which leads to

{uan=wa»=ma» (5.4)
Um ([) = Upm (ti) =Ye ([i)

This approach, known as constant extrapolation, has bdewéal in this Chapter,
as the detailed testing of different interpolation degmreas multirate techniques falls
beyond its scope, and it will be tackled in Chapter 6. Direetsimulation, in which
co—simulated variables are exchanged once in each int@ystep, and then each sub-
system proceeds its own integration independently, has bsed. As it was the case
in the function evaluation strategy, co—simulation canrplémented on the basis
of intercommunication between processes, or through cxplere Again, translation
routines between data storage formats will likely be neargs3he synchronization
of integrators and the exchange of data can be managed bysemdation interface,
which can be implemented in one of the communicating so#vaols. A scheme of
this composition is shown in Figure 5.3.

In order to test the described coupling techniques, the MB®&vare developed in
this thesis has been linked to MATLAB/Simulink. MATLAB is araimerical com-
puting environment that provides state—of-the—art allgors for a wide range of ap-
plications (optimization, control, data acquisition anthlysis). MATLAB’s add—in
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Figure 5.3:Generic co—simulation configuration

Simulink can be considered as the de facto standard for mbdséd design of control
systems. This software package includes a library with &watiety of components
and it allows the user to create new elements in a straigtdfick manner. It is impor-
tant to note that MATLAB/Simulink code has to be interpretiening runtime, which
leads to a considerable increase in simulation time andidiegit execution. This
fact rules out the software for demanding applicationsef@mple real-time simula-
tion. Communication between the MBS software and MATLAB48Ilink programs,
representing control loops, actuators and other exteraponents, can provide an
additional functionality that is missing in the original tibody software.

The techniques described in the following can be appliedherosoftware tools
different from MATLAB/Simulink, for example MATRIXx/SygmBuild or the free
software Scilab/Scicos. In general, communication betwg®cesses can often be
achieved if the software supports the use of inter—proceissmunication (IPC), like
sockets. The use of external code can be performed throlighadynamically linked
libraries, with their corresponding import libraries areblder files, if necessary.

5.3 Function evaluation

A runtime call to MATLAB functions from the multibody softwa would be desirable
in order to evaluate complex force functions or to access-+op tables. Additionally,
MATLAB can also be used as a test environment for the defimitionew implemen-
tations for formulations or models. These could be writteMATLAB'’s easy—to—use
M language, and called from the multibody software as Iypfanctions in order to
test their correctness before performing their final immatation in an efficient lan-
guage such as C or Fortran. This would make possible the ti@firind testing of
new models even for users without advanced programmints skil

In this research, three alternative implementation apgresfor the function eval-
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uation method have been tested: MATLAB Engine, MATLAB Cotapand a MEX
API of functions. A dynamic simulation of a double—penduliias been selected
as test example for the above—mentioned implementatioroappes: the multibody
software carries out the numerical integration and MATLABuUBed to evaluate the
equations of motion at each time—step. This simple exangdéobken chosen, as there
is no practical increase of complexity derived from appdythe function evaluation
technigue to more involved problems.

Figure 5.4:Double pendulum

The double pendulum is shown in Figure 5.4. The integratfdhemotion is per-
formed by the MBS software, making use of the augmented lragga formulation
of index—3, already described in Sections 3.2.2 and 4.8.thi$ study, the mass«)
and radius ) parameters have been setto 1 kg and 1 m. The code for thengpdét
the dynamic terms of the system, including the mass mMrixhe constraints vector
®, the Jacobian matrix of the constraints vecgy and the generalized forces vec-
tor Q, is written in.mfiles and accessed from the MBS simulation software through
function evaluation methods. This is equivalent to repkheeC++modelcomponent
in the core module, described in Section 2.3, with an M lagguaounterpart; in this
way, the integrators and formulations of the MBS softwarelmaapplied to easy—to—
code MATLAB models. A similar approach could be taken in orgetest dynamic
formulations or numerical integrators written in MATLABgplacing the correspond-
ing component of the core modulus while avoiding the needrfmrslating them to
C++. Other application of function evaluation is the invib@a of specific MATLAB
functionality, such as involved matrix operations.

The methods for implementing the function evaluation dbscr in this Section
can be applied to similar numerical software, differentfrMATLAB, making use
of alternative communication facilities. For example,|&giprovides thénterscipro-
gram, which allows calling C and Fortran routines from Sziknd the calling routines
defined inCallScilab.h which make Scilab work as a calculus engine.
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5.3.1 MATLAB Engine

The MATLAB Engine library is a set of routines that allows load MATLAB func-
tionality directly from external C/C++ and Fortran progmnThe Engine is a way
of intercommunicating running processes such that a MATLgdBhmand window
must be open, waiting for receiving the commands sent by:tterreal program and
executing them. As the Engine uses its own data structuxérray to exchange in-
formation with the caller program, several translationctions have to be defined in
order to manage the data type and make it compatible withatetgipes used in the
multibody program. Once this problem has been solved, MABLfAnctions can be
called from the C++ code of the multibody tool. It should bdetbthat the Engine
receives its commands as a string of characters which mysinsed, resulting in the
deceleration of the code execution.

C++ files
- Formulation

- Integrator

\C++ compiler
A 4

Application

MATLAB M files
(.exe) J’

Dyn Engine Dyn | _Model

terms terms

Interface

Figure 5.5:Function evaluation configuration with MATLAB Engine

The function evaluation configuration through the Engineejgresented in Fig-
ure 5.5. The MBS software acts as a master tool, integratmgasitions of the double
pendulum, while the evaluation of dynamic terms is perfatjrterough the Engine,
via calls to themfiles that code the model.

5.3.2 MATLAB Compiler

Function evaluation has also been achieved through codetexpth the use of MAT-
LAB Compiler, transformingm code files into dynamically linked librariegd(l, .s9.
The libraries are then loaded by the multibody softwarerdurintime, thus allowing
the invocation of functions. As the Engine does, the Compikes its own storage
data typemwArray, and translation routines between the MBS code and the d¢edpi
MATLAB code must be written. The C/C++ library generated hg Compiler only
contains wrappers for the MATLAB routines, and hence it dépends on MATLAB
libraries to carry out the computations on runtime.

The use of the Compiler on thmfiles removes the need for the use of the Engine,
as shown in Figure 5.6, replacing the process communicatitinthe export of the
pre—compiled code. The evaluation of dynamic terms is trealled from the main
application while the library that wraps the routines codtedm files still needs to
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Figure 5.6:Function evaluation configuration with MATLAB Compiler

invoke additional MATLAB functions.

5.3.3 MEX functions

A third way of communicating both tools is the definition of @pplication program-
ming interface (API), which allows calling from MATLAB theaufctions that are de-
fined and implemented in the multibody package. This way, MAB acts as driver

tool, starting the integration performed by the MBS sofvarhe API consists of a
series of MEX functions that manage the data types defined AyLMB and make

the convenient translation to those types the C++ progras asd vice versa.

C++ files C++ files

- Interface - Formulation

- Integrator

1
C++ MEX | o
I C++ compiler
compiler | !
v v
Start | Start
MEX .
MATLAB library L(‘Zr;;y
Dyn (.mexw32) Dyn ’
terms terms I

Figure 5.7:Function evaluation configuration with a MEX API of function

Figure 5.7 shows the layout of the function evaluation tigtothe use of a MEX
function. Under this configuration, the interface routiaes separated from the MBS
software and compiled into a library that manages the conration between MAT-
LAB and the MBS software, compiled as a dynamic library. ThBS/code calls the
model.mfiles for the evaluation of the dynamic terms of the modeldigiothis MEX
function and this one, in time, through MATLAB.
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5.3.4 Results

Two simulations of 10 seconds have been performed usingadtgdactor ofe = 108
and constant integration time—steps16f-3 s and10~2 s, respectively. The MBS
software is configured to use dense LAPACK routig&$ andgtrs as linear solver,
which have been proved to be efficient for small-size problamd allow an easy
conversion of the storage format from MATLAB.

The elapsed times in calculations, on an AMD Athlon 64 300&t+]1.81 GHz
with 1.00 GB of RAM, are summarized in Table 5.1. As the initanditions of the
motion, the expression of the dynamic terms and the formalised to integrate the
motion are the same in every implementation, output regpdisitions, velocities and
accelerations during the motion) are identical for eacletigtep, independently of the
method used for providing the dynamic terms. The ratios ddfin the table refer to
the elapsed time of the correspondent function evaluatigglementation when com-
pared to standalone C++ MBS code (without the use of MATLAB)e number of
iterations is the number of times the iterative solutionhaf $ystem in Equation (3.4)
has been performed. The evaluation of dynamic terms takes plithin the Newton—
Raphson iteration loop. This, together with the fact thatuke of function evaluation
methods slows down the execution of the code, makes nelglitfie amount of com-
putational time elapsed out of the iterative loop. In thexdtdone C++ implementa-
tion, however, the code out of the loop takes around 20% diitte, and this explains
the variations that appear in the ratios when using diffetiere—steps.

Table 5.1:Elapsed times in a 10 s dynamic simulation of the double—ydend

. . At =10"3s At =10"2s

Function evaluation
Elapsed time (s) Ratio Elapsedtime (s) Ratio

Standalone MBS code 5.02-1072 1 8.40-1073 1
MATLAB Engine 18.12 361.0 3.32 395.2
MATLAB Compiler 5.56 110.8 1.07 127.4
MEX API of functions 0.64 12.7 0.12 14.3
Number of solver iterations 10,000 1,840

As it was expected, the use of function evaluations in exiesimulation tools
slows down the execution of the program. The MATLAB Engin@raach is very
easy to implement, but it also delivers very poor efficienthias been estimated that
the parsing of a single empty function evaluation takes raldi25 ms. Therefore,
the use of MATLAB Engine should be discouraged when funcéealuations in the
auxiliary tool are repetitive (for example, several timegach integration step).

MATLAB Compiler is usually claimed to be the fastest coupliechnique, since it
removes the need of parsing string instructions as funcidlia are performed directly
on routines stored in dynamically linked libraries. Even th@ generated C code is
still two orders of magnitude slower than standalone C++ MB@&e. The overhead of
the MATLAB Compiler approach comes from the need of conugrdata structures
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between the MBS software and MATLAB routines. This approhak an additional
drawback: if the MATLAB code is modified, it must be compileddalinked again,
and this process slows down the code development.

The implementation of the function evaluations as MEX APfwfctions, shown
in Figure 5.7, has yielded the best performance. This agprogvertheless, requires a
high development effort due to the need for building a MATL&d@npliant C interface
for each function in the multibody package. It is surprisingt the implementation of
the MBS code as a MEX API leads to an almost 8 times faster ¢oactime when
compared to MATLAB Compiler. This may be related to the wawinich MATLAB
functionality is invoked from the compiled library in thettier case. Another advan-
tage of the MEX API of functions is that the MATLAB code stays.im files, and
therefore it allows fast development iterations becausaritbe modified and tested
again without going through a compilation and linking pregéas in the case of the
previous approach based on MATLAB Compiler).

5.4 Co-simulation

Under the co—simulation approach, the MBS simulation t@d heen connected to
MATLAB’s add—on Simulink, a block diagram simulation tod\ith this configura-
tion, two integrators are coupled in the simulation procéss MBS integrator con-
tained in the multibody software and the general purpossgmtor in Simulink. In

Ta lg=9.81N/kg
l
B, B, ¢ (Bui By
) )
Loop 1 Loop L
AO Al AL—I AL

Figure 5.8:L—loop four—bar linkage

order to test the co—simulation, a multiphysics model casegoof an engine and
a mechanical system is simulated. Each subsystem is mddwmilé integrated in a
different environment. The engine model has been obtaired Simulink library

of example models and is based on results published by @goasd Cook (1991).

It describes the thermodynamic simulation of a four—cydingpark ignition internal
combustion engine. The multibody system moved by the erigiaglanar assembly
of four-bar linkages withL loops, composed by thin rods of 1 m length with a uni-
formly distributed mass of 1 kg, moving under gravity effednitially, the system is
in the position shown in Figure 5.8 and the velocity of thecoordinate of point B
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is +30 m/s. This mechanism has been previously used as arharciproblem for

multibody system dynamics (Anderson and Critchley, 200@&lez et al., 2006). It
has been selected for this work because it allows testingftaet of variations in the
problem size without modifying the structure of the modestjby adding more loops
to the mechanism.

- Torque
> Engine - gearbox (T
Throttle subsystem > Ié'
(Angle-law) > (Simulink)
Memory
Rotational blocks
speed (N)

Co-simulated
<< subsystem ! j Clock
(S-function) l——| G

Figure 5.9:Simplified Simulink model for co—simulation, implementéith \&n S—
function

The engine provides a motor torqiligo the linkage through a gearbox, which is
also modelled in Simulink. A constant rotational dampingassidered to act on the
mechanism, of value 3.18 Ns/rad. Both damping and motoutoege assumed to be
applied on the first bar of the mechanismy(ABy). The angular speed of this bax)
is returned to the engine model as input value, togethertvélx and y positions of
the first point of the linkagex(, y;), for graphical output. The throttle angle of the
engine is guided through a pre—defined angle—law. The negiBimulink model can
be seen in Figure 5.9. The usernémoryblocks is motivated by the need of avoiding
algebraic loops; a concise explanation on this particslarovided in Section 6.3.1.

In this research, three implementation approaches fordhsimulation have been
tested: network connection, Simulink as master, and MB&vsoé as master.

5.4.1 Network connection

Data exchange between two processes running simultarye@usbe carried out using
a TCP/IP network connection through standard sockets.i3ettd, the MBS software
is modified in order to make it work as a server socket. Acewlgi a user—defined
block (S—functiof is added to the Simulink model to act as a client socket. heiot
similar block simulation packages, the role of ®efunctiorblock can be performed
by an equivalent component, such as theerCodeblock in SystemBuild (National
Instruments, 2009) and th@ or Fortran block in Scicos (INRIA, 2009a). Thus, the
interface is split into two parts, one in the block diagramiemment and one in the
MBS software. Both parts of the interface are responsibidte translation of the
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storage formats and for the adequate exchange of informatieach time—step, so
they must be correctly coordinated. Moreover, the comnaiitin sequence between
both subsystems has to be separately coded in each envingnadgling an extra
burden to the task of keeping the synchronization of thegnaters.

5.4.2 Simulink as master

An alternative to network communication is the code exppgraach, in which the
MBS code can be compiled as a dynamically linked libradyl or .so and directly
called from arS—functiorblock inside Simulink. In this case, tf&-functiorincludes
all the code of the interface between the MBS code and the IBiknmodel, and
must manage the required exchange of data and format camversetween both
environments. In this configuration, Simulink becomes theed software, starting
and ending the simulation and calling the MBS software tgtothe interface block
each time a return value is needed by the Simulink integrator

5.4.3 MBS software as master

Another possibility, following the opposite approach tatthsed in the previous Sub-
section, is using the MATLAB product Real-Time Workshop YRT(The Math-
works, Inc., 2009) to translate the Simulink model into ftsindalone C code, which
can be called from the MBS code. In this case, the Simulinkehizdconverted into
a dynamically linked library.@ll) through the use of RTW functionality; this can be
done with little modifications to the Simulink model used e tprevious Subsection.
With this configuration, the MBS code starts and managesdhsimulation process,
invoking the functions compiled in thelll in each integration time—step in order to
obtain the value of the torque the engine supplies to thatipk

This approach has a drawback when compared with the pretéohsiques: if
the Simulink model is modified, it must be translated into @eand compiled again;
this is a complex and delicate procedure, which slows dowenitdrations in code
development. The process is detailed in the Appendix ofwtiik.

In both cases (Simulink as master and MBS software as masterintegrators
are acting simultaneously and, for this reason, a carefuldination between them is
required. Simulink behaviour is, in many aspects, beyoerdctintrol of the user, so
the co—simulation interface has to be specifically defindi gimulink.

5.4.4 Results

The simulation time in the previously described test exanigpB0 s. A penalty factor
of « = 10'° and a constant integration time—stepl6f s have been used. Direct
co—simulation with the same integration time—step sizeoith Isubsystems has been
used. The values of the exchanged variables have been takeonstant from one
time—step to the next one (constant interpolation). The MBfware is configured
to use KLU (Davis and Natarajan, 2010) routines for solving linear systems the
simulation requires. The co—simulation coupling has begiémented with the three



5.4 Co-simulation 75

25

a)

[}
S
T
1

—_
n
T
1

Throttle angle (°)

_
v o
H
|

|
0 5 10 15 20 25 30
Time (s)

w2
(=

Rotational speed (rad/s)
N
S

20

1 1 1
100 5 10 15 20 25 30

Time (s)

Figure 5.10:Throttle angle (a) and rotational speed of the mechanisnfdba 30 s
simulation of a 1-loop linkage

different approaches described above. Results of the ationlcan be seen in Fig-
ure 5.10, for a 1-loop linkage. The angle-law of the engimettle is pictured at the
top of the figure. The rotational speed of the mechanism ctieghibelow, shows that
the linkage follows the input given by the pedal angle, whth limitations imposed by
its rotational inertia and damping. Results do not showiggmt variations between
the three tested coupling techniques. The performanceafghcribed techniques has
been tested against a model of the whole system (engine anéfar linkage) entirely
built in Simulink. The four—bar linkage has been modellethviihe SimMechanics li-
brary (The Mathworks, Inc., 2009), a Simulink add—on for mldidg and simulation
of rigid multibody systems. In a second stage, the computatiefficiency of this
model has been further improved via the RTW package, tranglthe whole model
into a standalone C executable. Simulode lintegrator has been used in these simu-
lations, since it is the fastest available integrator amqtavides enough precision for
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Figure 5.11Elapsed times for a 30 s simulation of theloop linkage powered by the
engine, with different simulation techniques

the test problem. A comparison of the elapsed times for a 3@@ation can be seen
in Figure 5.11. The monolithic approaches are represenitbddashed lines, as they
are not properly co—simulation, and labelledSisiMechanic$or the pure Simulink
model, andSimMechanics + RTVibr the model translated into C code via RTW. The
co-simulation methods are designedSasiulink as masterfor the implementation
where Simulink calls MBS code compiled as a libraxgtwork connectignwhen the
communication is performed via sockets between simultagigaunning processes
andMBS as mastemwhen the MBS code calls Simulink routines from t# library
compiled with RTW.

Table 5.2:Elapsed times in a 30 s dynamic simulation offladoop four—bar linkage
powered by the engin&/ stands for the number of variables of the mechanical system

Co-simulation method L=5(N=13 L=10(NV =23
Elapsedtime (s) Ratio Elapsedtime (s) Ratio
MBS software as master 0.58 1 0.90 1
Simulink as master 2.37 41 2.62 2.9
Network connection 5.15 8.9 5.67 6.3
SimMechanics + RTW 11.17 19.3 24.97 27.7

SimMechanics 17.11 29.5 38.88 43.2
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Results are summarized in Table 5.2, where the ratios osethfime with re-
spect to the fastest method are also included. They shovihth@apsed time for the
Simulink model, as expected, grows fast when the numberradhias of the problem
increases. This is valid even in the case of using a very siinpégrator asdel The
use of RTW mitigates this problem and reduces the calculdiine between a 30%
and a 50%. However, the use of co—simulation techniques teeglven lower compu-
tation times, as they permit taking advantage of the higiptynaized routines of the
MBS code, reducing thus the time needed for calculating thehanic subsystem of
the problem. It can be seen that tBenulink as masteimplementation is somewhat
faster than thé&letwork connectiomethod, as the overhead derived from socket com-
munications is not present. TMBS as masteyields the best results, as expected,
because the intercommunication takes place, in this cateebn an executable and
a library both of them coded in an efficient language (C/C++).

It should be noted, however, that tMBS as masteimplementation is signifi-
cantly more complex than thidetwork connectiolor Simulink as masteéimplemen-
tations, and it forces to follow a complex translation psxevery time the Simulink
model is modified, as explained in Section 5.4.3. For theagores, théetwork con-
nectionor Simulink as mastero—simulation approaches are better suited for develop-
ing and fine—tuning Simulink models, while tMBS as mastetechnique is appropri-
ate for production code and real-time applications.

Trends indicate that co—simulation will achieve greatdiedinces with respect
to models fully implemented in Simulink as the number of &bkes of the prob-
lem increases. In fact, real-time simulation (less than 80c®mputations) has been
achieved with the described co—simulation techniques fdtibody models up to 300
variables. This upper limit would allow the efficient reafré¢ simulation of many in-
dustrial, non—academic multidisciplinary systems.

5.5 Conclusions

In this Chapter, several implementation methods for cogphBS simulation soft-
ware with block diagram simulators and numerical computimgronments have been
tested. The methods have been tested in a software envinbrwamere the C/C++
MBS code developed in this thesis is coupled with MATLAB/8Iimk, a quite com-
mon setup in the modelling and simulation of complex medmadr systems. The
investigated coupling techniques have been divided intodstegoriesfunction eval-
uationandco-simulation

Regarding the implementation methods for function evadnanh MATLAB, the
following conclusions can be established:

e The MATLAB Engine approach is the easiest to implement t&a #he slowest
one. The use of MATLAB Compiler reduces the simulation tinlesa 30%
of the time consumed by MATLAB Engine, but at the cost of slogvdown
the code development iterations. Both approaches are tayor magnitude
slower than standalone MBS code.
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e The MEX API of functions is the fastest approach, being omlg order of mag-
nitude slower than standalone MBS code. The implementatifomt is higher
that in other methods, but not overwhelming, and therefaseécommended as
the best approach for function evaluation when simulatfoiency is needed.

Regarding to the implementation methods for co—simulatiith Simulink, the
following conclusions can be established:

e Co-simulation methods are approximately one order of ntadaifaster than
simulations based on monolithic models developed in Smkukeven if tools
like Real-Time Workshop are used.

e The method labelle@imulink as masteprovides the best trade—off between
simulation efficiency and ease of implementation and codeldpment, and
therefore it is recommended for developing and fine—tuniruglets for co—
simulation setups.

e The method labelledIBS software as mastés the fastest approach (several
times faster thaisimulink as mastedepending on the relative complexity be-
tween the block diagram and multibody models), but its im@atation is more
complex and requires the translation of Simulink modelg @tode, a step that
slows down the development iterations. Therefore, thisoekis recommended
for production code and real-time applications.

The described coupling techniques can also be implementedwinor changes
in other numerical computing environments and block diagsimulators different
from MATLAB/Simulink, for example SystemBuild or ScilakZiBos. However, the
efficiency of the different tested methods highly dependtherinternal data structures
and algorithms of software, and therefore their relatifieiehcy could be different.



Chapter 6

Multirate Co—simulation
Methods

As it was shown in the previous Chapter, dynamic simulatifccomplex mechatronic
systems can be carried out in an efficient and modular way ngakse of weakly
coupled co—simulation setups. When using this approachiratelmethods are often
needed to improve the efficiency, since the physical comptsrad the system usually
have different frequencies and time scales. However, madtirate methods have
been designed for strongly coupled setups, and their ajaicin weakly coupled
co—simulation is not straightforward due to the limitas@nforced by the commercial
simulation tools used in mechatronics design.

This Chapter describes a weakly coupled multirate methed ded to be a generic
multirate interface between block diagram software andibudy dynamics simula-
tors, arranged in a co—simulation setup. The use of thefadeiis first demonstrated
on a simple, purely mechanical system with known analytscddition and variable
frequency ratio ER) of the coupled subsystems. Several synchronization sehiem
(fastest—firsandslowest—firgtand interpolation/extrapolation methods (polynomials
of different orders and smoothing) have been implementeldtested. Next, the ef-
fect of the interface on the accuracy and the efficiency ottieulations is assessed
making use of a co—simulation setting that links an MBS madal kart to a thermal
engine modelled in Simulink.

The use of the multirate interface simplifies the tuning pesmof the co—simulation
parameters, necessary to find values for them which are atledo the particu-
lar properties of the simulated problem. Results show thestldy coupled multirate
methods can achieve considerable reductions in the epediries of the simulations
without degrading the numerical solution of the problem.
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6.1 Introduction

Modern complex mechatronic systems are made up of multiaffocomponents of
different nature. An automobile is a very representativagle of these kinds of sys-
tems, involving mechanical components (chassis, suspesssteering mechanism,
powertrain), active control devices (Anti—lock Brakings#sm, Electronic Stability
Control, traction control), hydraulic devices (brake agitr and power sources (inter-
nal combustion engine or electric motors). Due to the irgirpdemand of quality
and performance, the traditional design approach basedseqguential design of the
components can no longer be applied to such systems: engineed to model and
simulate the dynamic response of the whole system, takiiogaiccount the simulta-
neous interaction phenomena between components.

The modelling of complex mechatronic systems can be acdshgal via two dif-
ferent strategies: strongly coupled and weakly coupled.o®& hand, the strongly
coupled strategy assembles the dynamic equations of ebslystam into a mono-
lithic set of equations, which can be numerically integdatea single environment.
On the other hand, the weakly coupled strategy does not aéséine equations: their
numerical integration is performed in parallel by sevemgticonnected environments
that exchange information during the integration processking in a co—simulation
configuration. Reviews about both strategies are provige8amin et al. (2007) and
Arnold (2008).

The weakly coupled strategy has important advantages beestrongly cou-
pled one: specialized modelling and simulation tools, feaanto experts in the cor-
responding field, can be applied to each component. In additiomponent models
can be modified with minor impact on other components, whéegults in a better
modularity of the whole model. For example, control and laydic devices are usu-
ally modelled and simulated in general—purpose block diagsimulators like Mat-
lab/Simulink (The Mathworks, Inc., 2009), MATRIXx/Syst@&uild (National Instru-
ments, 2009) or the free open source tool Scilab/ScicosI@NEI09a,b). Conversely,
the behaviour of complex mechanical components is bettefeftenl and simulated
in specialized tools for multibody system dynamics like M&@ams (MSC.Software
Corporation, 2009), Simpack (SIMPACK AG, 2009) or Recur¢fyanction Bay, Inc.,
2009); these tools also provide interfaces to the aforeiowed block diagram simu-
lators, which simplify the setting of weakly coupled sintidas. Representative ex-
amples of these kinds of co—simulation setups are given ag hnd Du (2001) and
Vaculin et al. (2004), where the authors combine a multibody sysienulation pack-
age (ADAMS and Simpack, respectively) with a block diagramusator (Simulink)
to model a full vehicle equipped with electronic control bes. Similar setups for the
co—simulation of mechatronic systems are described by 8&k2001) and Teppo
et al. (2001).

One important feature of complex mechatronic systemsyei@from their multi—
domain nature, is the presence of different time scales;iwigisults in notably differ-
ent dynamic response characteristics in terms of freqesn€ior example, mechan-
ical components have slow frequency responses comparegttelectronic compo-
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nents. The computational efficiency of dynamic simulatiohsomplex mechatronic
systems is quite important, because these models are afeehini optimization pro-
cesses (where each function evaluation involves a comgigtamic simulation) or
hardware—in—-the—loop settings (where the dynamic sinamahust be run in real—
time). In order to make the numerical integration of the dgitaequations of the
whole system as efficient as possible, each component sheuidtegrated with a
stepsize adapted to its time scale. This procedure is knevamugtirate integration.

Research on multirate integration methods for ordinareréhtial equations has
been carried out since the late 1970s (Gear and Wells, 1984)basic idea is to em-
ploy two, or more, time—grids: a coarse one for the slow camepts, and a refined one
for the fast components; the coupled terms in the slow artcetpsation sets are esti-
mated by means of extrapolation or interpolation methodmtontributions to this
subject have been proposed, including advanced technitdggedynamic partition-
ing of equations with automatic identification of fast analxscomponents during the
integration (Engstler and Lubich, 1997), self-adjustingtirate time stepping strate-
gies (Savcenco et al., 2007) and stability analysis of tbpgsed methods (Verhoeven
et al., 2007).

The application of existing multirate integration methadsnechatronic models
obtained by the strongly coupled strategy is straightfodyvaince they are precisely
designed to work on a monolithic set of equations with fulhttol on the integration
process. However, if the mechatronic system is modelledrdowy to the weakly
coupled strategy, these multirate integration methodsatsve applied directly due to
their particular features:

e They introduce modifications in the integration schemes)ething that is not
possible in commercial off-the—shelf modelling and sirtiatatools used for
weakly coupled co—simulation. For example, the aforeroeetil block diagram
simulators and multibody system simulation packages dffeir own set of
integration schemes that cannot be modified.

e They assume that the coarse and refined time—grids are stguidand synchro-
nized, which means that the large stepdizés a multiple of the small stepsize
h. This condition cannot be guaranteed in weakly coupledionHations if one
or more subsystems are integrated with a variable time+stegrator, since the
stepsize control algorithms of the different commercialidation environments
cannot be synchronized.

e They mitigate the unstable behaviour caused by the ex@ititapolation of
some equation terms by introducing implicit schemes, whieblve some kind
of iterative process. Again, off-the—shelf simulationl$olike block diagram
simulators do not allow this kind of iteration with other sitation tools.

Due to these impediments, commercial state—of-the—attlation environments
used in mechatronics industry do not provide yet tools tdknaultirate integration
when they are used in weakly coupled co—simulation setups. &xamples of this
situation are provided: the first one is veDYNA (Tesis DYNA®22009), a real-time
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vehicle dynamics simulation environment very popular ia #utomotive industry,
which is based on Matlab/Simulink. veDYNA works as an exa¢iimulation tool
embedded in Simulink, and provides a library of mechaniéahents to model any
kind of automobile. Non—mechanical elements, like eledtrand control devices, are
modelled in Simulink as usual, exchanging input and outpite @vith the mechanical
model. veDYNA uses an internal semi—implicit fixed—stepeEuhtegration scheme to
solve the equations of motion of the vehicle, and requirasttie Simulink integration
be performed with thedelintegrator (explicit fixed—step Euler's method) in order to
properly synchronize both integrations. This requirenigat strong drawback, since
Simulink’s odelintegration scheme is not suited at all in many situationsotAer
example of the limitations of currently available simutetienvironments is SIMAT
(SIMPACK AG, 2009), the interface provided by the multiboslynulation software
Simpack to perform co—simulation with Simulink. SIMAT warls a Simulink block
that exchanges data between the Simpack model and the Sknmadidel during the
integration. However, its current implementation onlypai fixed stepsize integrators
with the same time—step in both simulation environments. §dme constraint applies
to other packages for multibody system simulation, like ABD®, which provide in-
terfaces for performing co—simulation with block diagrammators: none of them
supports multirate integration.

Research is being carried out to introduce multirate methindveakly coupled
co—simulation environments, principally in those whichmtiine a general-purpose
block diagram simulator with external specialized simolatools, a common setup
in the industry. Busch et al. (2007) have tested severaloggpes to improve the
aforementioned Simpack’s SIMAT interface, making it aldestipport variable step-
sizes in both sides of the co—simulation environment; innailar way, Oberschelp
and Vocking (2004) have investigated the behaviour of some natétitechniques in
weakly coupled co-simulations. However, these works appljtirate methods to
solve a particular mechatronic model, and therefore th@iclusions cannot be gen-
eralized nor extrapolated to other cases.

The main goal of this Chapter is to gain insight into the béthavand performance
of multirate methods in weakly coupled co—simulation eominents. To achieve this,
an interface including an algorithm to implement a genenaltinate method (i.e. not
constrained to synchronized time—grids or to a particutgagration scheme), able to
couple block diagram simulators with external simulatioal$, like multibody sim-
ulation packages, has been developed. The proposed hfgaran be configured to
work in different modes and to use different interpolatiol &xtrapolation methods.
Its use is demonstrated in a very simple example, which lgletiows the need for
adjusting the interpolation method and the co—simulattoategy as a function of the
nature of the mechanical system. The interface is lateiegpd a more complex ex-
ample to evaluate the effect of multirate techniques on fii@ency and accuracy of
industrial-like multi-domain simulations.

The remainder of this Chapter is organized as follows: $adi2 describes the
multirate co—simulation interface created in this reseamd outlines the coupling
strategy it uses. The test of this interface through the fiaesonple, purely mechani-
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cal example with known analytical solution is detailed it 6.3. In these two Sec-
tions, several techniques for increasing the accuracyeotiimulation are described
and the convenience of their use is discussed in the lightebbtained results. In
Section 6.4 the interface is used again, this time in theina#ation of a non—trivial
application, in which the multibody model of a kart is coupke a Simulink block
diagram representing a thermal engine. This example has e to measure the
impact of multirate techniques on the time required to camphe simulation and
the precision of the results. Finally, in Section 6.5, theatosions of this Chapter are
summarized and some lines for future research are discussed

6.2 Multirate co—simulation interface

In order to attain the goals of this Chapter, a new multiraterface has been de-
signed and implemented, which allows using a weakly couptegimulation scheme
that combines a general-purpose block diagram packageawitlltibody simula-
tion software. This configuration is very common in the desagd development of
mechatronic systems. Simulink has been selected as blagkagn simulator, since it
is a well-known tool in this field. However, the building bkscand modelling pro-
cedures employed in Simulink are also available in othecloltiagram simulators
like SystemBuild and Scicos, and therefore the co—sinardgchniques presented in
this section are not particular to Simulink and can be imgeted in other tools in a
straightforward way.

Block diagram
simulator

Subsystem 1
(block diagram)

tl’Xl’Xl

Co-simulation
u, interface 1.y,

(S-function)

_______________________________________

Subsystem 2
(multibody software)

1,,X,,X,

Figure 6.1:Use of the multirate co—simulation interface
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The generic use of the interface is shown in the block diagraodel depicted in
Figure 6.1. The dynamics of the subsystem integrated byltiek ldiagram package
is modelled in the upper part of the figure. The states andutputs of this subsystem
are represented by andy,, respectively, while, stands for the time inside the block
diagram software. The multibody software, in the lower péthe figure, tackles the
numerical integration of the second subsystem, which lsasaih states, outputs and
time X, Yy, andz,. The time—steps of the subsystems are denoteflbgnd/,; as
the mechanical components in mechatronic devices arelysi@her than the rest of
the system (electronic devices and control elements, famgie) it will be assumed
in the following that the block diagram software managedaiséest subsystem in the
model, while the external multibody software integrates fowest one. This condi-
tion is equivalent to state thay < /,. The co—simulation interface is responsible for
obtaining the inputs to each subsystam &ndu,) from the outputs supplied by both
programs (which can include, but not necessarily, the staftthe subsystem and their
derivatives) and synchronizing the different time scheofdhe subsystems. This in-
terface is embedded in the block diagram simulator, in akbtiidype S—functionin
Simulink, UserCodein SystemBuild orC/Fortran block in Scicos, according to the
Simulink as mastestrategy described in Section 5.4.2. The design and balragfo
this block will be described in the following paragraphs.

6.2.1 Coupling strategy for multirate integration

As explained in the Introduction to this Chapter, the sirtiataenvironments used in
weakly coupled co—simulations implement their own set tégnation schemes that
cannot be modified. Therefore, the co—simulation interfaast implement a coupling
scheme that enables a multirate integration of differebtgstems independently of
the integration schemes and time—steps that apply to eattteof. In the proposed
coupling scheme, the block diagram simulator (Simulinkthils case) plays the role
of masterintegrator, since it is responsible for starting and stogpghe numerical
simulation. On the other hand, the external simulator ax$éaaveintegrator, working
on request.

Without loss of generality, it will be assumed that the blatiigram simulator
uses the well-known fourth—order Runge—Kutta formula,clhi$ known ade4in
Simulink:

f (i1, X)) 6.1)
Ko =f(t] +hi/2, X + 71K /2)
Ks =f(
Kg =f(
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In order to advance a time—step frofno t{“ , the block diagram simulator needs
to evaluate all blocks in the model four times, one for eacimte ;. The first evalua-
tion is performed att{, x’i), using the statex( in this case) computed in the previous
time—step. In block diagram terminology, this evaluat®known asnajor time—step
while the next evaluations (correspondingKg, K; andK4) are known asninor
time—steps

Block diagram

simulation i hl i+1
| l |J l L
- -
evaluate y]|[
eval_slave (tl’yl)
. . Y
Time-history of
Y
eval _master (t27y2)
T evaluate yz|t2 tz
- = -
e 'I "
2 R 2
External h
simulation 2

Figure 6.2:Working diagram for theo—simulation interfacblock

Theco—simulation interfacelock in Figure 6.1 manages the evaluation of the dy-
namic response of the second subsystem at the times redpyirth@ block diagram
simulator. It contains a set of functions and data strusttesponsible for synchroniz-
ing the numerical integrations in the block diagram sofenand the external simula-
tor. The structure and behaviour of this block are represkimt Figure 6.2. When the
co—simulation interfacélock is evaluated at a given time, it calls égal slavefunc-
tion in order to get the inputs it needs. The algorithm of fhigction is represented in
pseudo—code in Table 6.1 and will be described in the nexigpaphs.

e In step 1, if the evaluation is performed imaajor time—stefblock diagram
simulators provide routines to determine this conditiahg, input timet; and
outputsy; in the block diagram are appended to a dataset that holdke t
history of these values. As it has been mentioned abovee thetputs may
include or not the states of the block diagram and their dévies. Data at

minor time—stegevaluations are not stored because they do not correspond to

integration points in the timeline.

e Step 2 determines whether the external simulator shouldenadnead in the
numerical integration of its subsystem. Two criteria arailable to take this
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Table 6.1: evaklavefunction algorithm, in pseudo—code

1) if ! is amajor time—step
storer;, y;
n=20
2a): if (slowest—firgtthen
while (1" < 11)
advance integration step in external simulator
store results(tf”,yf”); n=n+1
end
2h): if (fastest—firgtthen
while (12”” +hy < z{)
advance integration step in external simulator
store results(tZH”,yf”); n=n+1
end
3) Interpolate or extrapolate, atz]

decision (steps 2a and 2b), depending on the selected syrizétion scheme:
slowest—firseindfastest—firs{Gear and Wells, 1984). In tredowest—firstrep-
resented in step 2a, the numerical integration of the slosudssystem is always
ahead of the fastest one. Therefore, whencdesimulation interfacélock is
evaluated at; > 1,, it calls the external simulator to move ahead in its numeri-
cal integration a certain number of time—steps (represdngecounter variable
n) until t; < t,. After each time—step of the external simulator, the timg e
outputs of the slow subsystem,andy,, are appended to a dataset that holds
the time-history of these values. In this process, the iatem scheme of the
external simulator will need the values of its inputs at particular instants;
these values are interpolated or extrapolated from the-tiiséory of outputs of
the fast subsystelyy at major time—stepgstored in step 1) by thevalmaster
function. Thefastest—firsscheme represented in step 2b is very similar, but the
numerical integration of the slowest subsystem is alwaystone—step behind
the fastest subsystem.

e Finally, in step 3, the values of the inputs to the fast sulesysi;, at timer;,
requested by the block diagram simulator are interpolatexkwapolated from
the time—history of the outputs of the slow subsystenstored in step 2.

The interpolation or extrapolation of states in twal slaveandeval masterfunc-
tions is performed using ordét polynomials. The user can select the valudfom
0 to 4. The polynomials are built witR + 1 time—steps?, ...,z°, selected as follows:
t? is the time—step closest to the evaluation timbat satisfies? > ¢ (if there is
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any time—step ahead of, and:*~!, ..., ¢ are the previous time—steps stored in the
time—history.

The functions and data structures of ttte-simulation interfac@ave been imple-
mented as a C/C++ library, independent of the external sitaubnd the number of
exchanged variables. The external simulator only needsaeige two functions: a
function to move ahead a time—step in the numerical integratnd to return the re-
sulting time and outputs, and a user routine to connecatthémasterfunction. Most
dynamic simulation tools can satisfy these requirements.

6.2.2 Smoothing techniques

For models with very different time scales in their subsystginterpolation and ex-
trapolation techniques may fail to give correct results gaw coupled multirate co—
simulation. Oberschelp andd¢king (2004) described a smoothing technique to over-
come this problem; a similar strategy has been tested inthik. Smoothing is ex-
pected to improve the global precision of the simulatiomidivng the need of rais-
ing the number of integration time—steps per cycle, or ukigfer order integrators,
which would noticeably increase the elapsed time in comnijmuris.

When using smoothing in this work, the interpolation or gxtlation strategies
described above are replaced by an averaging (arithmetio)aé the values of the
fast subsystem during the last time—step of the slow ones d¥eraging is performed
on the basis of &astest—firsmethod, with the integration of the fast subsystem being
performed in advance with respect to the slow one. When thve slilosystem needs
to evaluate its states at timg, it requests the necessary inputsthrough a call to
the evalmasterfunction. The value of these inputs is determined by avemgie
buffered values of the outputs of the fast subsysyerm the time—history from time
15’_1 tor}. The averaged value is returned by #val masterfunction, and considered
constant during the integration of the whole time—step efdlow subsystem.

It should be noted that the use of extrapolation technigsiesili required dur-
ing the calls to theevalslavefunction, for the computation of the inputs of the fast
subsystem at the times required by the block diagram simlat

6.3 Test problem

A test problem involving two subsystems with fast and slowaiyic responses will be
solved by coupling a block diagram model in Simulink (to grigte the fast subsystem,
1) with an external multibody model (to integrate the slowststem, 2) through the
multirate interface already introduced. The parametertheftest problem will be
adjusted to generate a range of co—simulation situatiohghawill be used to test
different coupling strategies in terms of precision.

The double—mass triple—spring system shown in Figure 6sJbkan selected as
test problem. It is made up of two subsystems representedasgenn; andm,,
which are coupled by the sprink,. This simple, two degree—of—freedom system
presents the advantage of having a known analytical solétidts dynamic response,
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i—»xl i—»
1 1
m, J\Mﬁ m,
kl kZ

Figure 6.3:Test problem

which can be used as a reference in order to measure the egofithe coupled mul-
tirate numerical integration carried out by any co—simatascheme. The dynamics
of the test problem is governed by Equation (6.2):

v ) e
0 myp X2 —kz k2+k3 X2 0

wherex; andx, measure the horizontal displacement of the masses frometei-
librium position. Equation (6.2) is a simple second orddfiedential equation whose
analytical solution is given by

x1 (t) = Cqq - cos(wit) + Cqz - Sin(wlt) + C13 - COS(wat) + Cig - Sin(a)zl)
X (1) = Cp1 - coS(wt) + Cay - Sin(wit) + Capz - COS(wat) + Cag - SIN(w5t) .

3)

wherew; andw, are the natural frequencies of the two vibration modes o$yis¢em,
and the termg’;; are constants that define the amplitude of the vibrationrdiemto
simplify the problem, sinus terms in Equation (6.3) are reeabby setting the initial
velocities to zero:

x1 (t) = Cqq - cos(wgt) + Cy3 - COS(wat)

(6.4)
X3 (1) = Cy1 - coS(wt) + Ca3 - COS(wat)

The dynamic response shown in Equation (6.4) is a functiosixofndependent
parametersd;, w;, C11, C13, C21, andCy3). For the purposes of this study, two of
them are set to the values in Equation (6.5),

w1 =1Hz

6.5
C11=1m ( )

and the rest are presented in a more suitable form makingfube catios defined in
Equation (6.6):

FR:a)l/a)g
ARz = Ci1/Ca3 6.6)
ARy = Cy1/C3 .

AR, = C33/Csy
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From here on, frequencies; andw, will be identified respectively with the pri-
mary frequencies of masses (fast subsystem) and, (slow subsystem), assuming
w1 > w3, |C13] > |C11| and|Cy3| > |Cy1]. The ratios defined in Equation (6.6) are
interpreted as follows:

e Thefrequency ratio FRmeasures how fast the fast subsystemis, compared
with the slow subsystem,.

e Theamplitude ratio AR, compares the primary amplitudes of both subsystems
(Cyy for my andCy3 for my).

e Theamplitude ratios ARandAR, measure how much the dynamic response of
each subsystem is affected by the other subsystem.

x, (m)
o

L
0 50 100
Time (s)

Figure 6.4:Dynamic response of;

Numerical experiments performed in Section 6.3.2 will uifieent sets of values
for the ratios defined in Equation (6.6), in order to repraddiverse co—simulation
situations. As example, Figure 6.4 shows the dynamic respofix; for FR = 30,
AR, = 0.1, AR, = 0.1 andAR, = —1000.

After solving the dynamics of the problem in analytical forthe final step is
finding the physical parameters that define the system 1., k1, k2, k3) and the
initial conditionsx; (t = 0) andx, (¢t = 0) as a function of the response parameters
defined in Equations (6.5) and (6.6). The resulting expoesswill allow adjusting
the physical parameters of the test problem in order to gé@any desired dynamic
response in its two subsystems. Note that the five aforeorediphysical parameters
can be scaled by the same factor without changing the dynasponse of the system,
and therefore one of them must be fixed in advance. The smbeofik, as fixed
parameter greatly simplifies the mathematical maniputatio

k» =1N/m (6.7)
and the remaining physical parameters can be obtained frerigenvalue equation:
(K—w2M>A=O (6.8)

whereA is the matrix of modal amplitudes of the systafhandM are the stiffness
and mass matrices shown in Equation (6.2) anstands for the natural frequencies
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of the system. The characteristic polynomial of the eigkm/a&quation leads to a
biquadratic equation iw:

w*mimy — w* (my (ky + ka) + my (ka + k3)) +

N (6.9)
+ (k1 + ka) (ka + k3) —k; =0
which can be analytically solved, giving two equations @& tbrm
w = f(mi,my ki ka, k3) (6.10)

Two more equations can be obtained by substituting theisalgiven in Equa-
tion (6.4) in the equations of motion given by Equation (fa®)each mode of vibration
must satisfy the equations of motion, they lead to:

Ci1 _ ko _ ko + ks —w12m2
Cot ki +ky —wPmy k
21 1 2 —wimq 2 . (6.11)
Cy3 _ ko _ k2+k3—a)2m2
Cs ki +ky— 0im k>

In this point, the intermediate parameterandb are defined to simplify the ex-
pression of the following equations:

a=Cy1/Cy

(6.12)
b= Ci3/Cas

so the solution of the set of four equations formed by Equat{6.10) and (6.11) can
be expressed in the following way:

a—>b
=k 6.13
mi ab (@ — ) 2 (6.13)

ab (b —a)
=~ "7 Kk 6.14
" b w0l (644

a(l—b)a)lz—i—b(l—a)a)z2
ko

ki =
1 ab (0} - w3)

(6.15)

_ ab ((b - l)a)12 —(1 —a)a)zz)
ks = s (a)12 - a)g) ks (6.16)

Finally, the initial positions of the masses can be easibpioled from the solution
of Equations (6.4) at time = 0, substituting in them the values of the parameters
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defined in Equations (6.5) and (6.6):

1+C1/Ci3  1+AR
Cii/Cis AR
1+ Cr3/Cyy _ 1+AR
(C11/C23) (C23/Ca1) ARz -ARy

x1(0)=Ci1+Ci3=Cq1-
(6.17)

x2(0)=Cy1 +Co3 =Cyy -

Equations (6.13) to (6.17) provide the values of the phygiaeameters and initial
conditions that generate the desired dynamic response @aésh problem, described
by the parameters in Equation (6.6). The range of validityhefse expressions is
limited by the fact that the physical parameters (m,, k1, k>, k3) must be positive.
This constraint restricts the values of the parameters etfim Equation (6.6) within
the following limits:

2
IAR | > FEZR—_A; (6.18)
5 AR
FR? — =l
|AR;5| < % AR (6.19)
AR, -AR, < 0
FR<1={ AR;;/AR; <0
AR -AR, > 0
(6.20)
AR, - AR, < 0
FR>1={ AR;;/AR >0
AR -AR, < 0

The computing model using for the co—simulation of this pgeblem is shown in
Figure 6.5. In this Simulink model, the acceleration of th&t Subsystem goes through
a double integration to obtain its position. This procespagformed by Simulink
integrator blocks. The dynamics of the slow subsystem)(is evaluated in the ex-
ternal multibody simulation package and the communicaamanaged by the co—
simulation interface as described in Section 6.2.1.

6.3.1 Algebraic loops

Block diagram simulators allow creating algebraic loopghiea model by connecting
the output of a block to its input via direct feedthrough li®@.e. no differentiation or
integration blocks). Algebraic loops are a convenient vaagnbdel certain problems,
but they require an iterative solution at each time—stefénrtumerical integration.
As a result, they drastically increase simulation timesichvlis usually unacceptable
for weakly coupled co—simulation of mechatronic systenese®al techniques can be
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X, =(kx, +k,(x, —x,))/ m,
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Figure 6.5:Simulink model of the test problem

used to avoid algebraic loopdelayand memoryblocks, which delay the value of a
variable one time—step, are examples. It is very convemieteist the proposed multi-
rate method with this modelling technique, since it is ofpeasent in block diagram
simulations.

In the model shown in Figure 6.5, spring forces actingignare evaluated inside
the external simulator. When these forces are transferréitetblock diagram simu-
lator, an algebraic loop appears, as shown in Figure 6.6nhe force F to theco—
simulation interfacédlock is connected to its output through the direct feedthrough
block Springs The algebraic loop is broken by placimgemoryblocks in the force
and time signals before entering tbe—simulation interfacélock. This model will
also be used to test the proposed multirate method.

6.3.2 Numerical experiments and error measurement

Preliminary investigations confirmed that the behaviouhefmultirate simulation of
the test problem is mostly affected by the frequency r&fiowhile the other ratios
defined in Equation (6.6) do not have a significant impactr@togee, the test problem
described in Section 6.3 has been adjusted Wity = 0.1, AR, = —1000 and
ARy, = 0.1; see Figure 6.4 for an example of the dynamic responsg .0A sweep
of frequency ratiofRis performed in order to evaluate how this parameter aftbets
co—simulation process.

In the block diagram simulator (Simulink), tleeledintegrator is used, while the
multibody simulator uses the trapezoidal rule. Stepsizeend/, have been adjusted
to perform 100 time—steps per cycle in each simulator. Thiese-steps are small
enough to keep integration errors very low in both subsystemd therefore the er-
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Figure 6.6:Simulink model with memory blocks to break algebraic loops

ror in the numerical solution will be mainly caused by the finate co—simulation
scheme. Each numerical experiment consists on a simulafid®0 cycles of the
fastest frequency,, which corresponds t®00/FR cycles of the slowest frequency
.

The dynamic response obtained from the weakly coupled wasation is com-
pared with the analytical solution of the motion given in Bton (6.4). The error in
the numerical simulation is measured in two ways: positionreand energy error.
Position error is given by Equation (6.21):

FR |1 n . yexacty 2
Ax=—" |- (&) (6.21)

N | n“ X Xrms
1=

wherey; is the value of the position at tinrg obtained in the numerical simulation,
x#*@clis the position at the same time obtained from the analysiohltion in Equa-
tion (6.4), andn is the number of points of time in the time—history of the siolu
(n = 10,000). To obtain a relative error, the absolute error in positi®mivided
by the quadratic mean in the simulation{s) instead ofx*®°'to avoid singularities
when the analytical solution takes values close to zato= 100 is the number of
simulated cycles of the fast subsystem, and the fdeR)tV is introduced to correct
the accumulation of errors when a high number of cycles ofstber subsystem is
present. In this way, errors obtained from Equation (6.2& camparable through nu-
merical experiments with differefR ratios. If the test problem is fully modelled and
solved in Simulink (without co—simulation) with trede4integrator and the smallest
stepsize, the position error given by Equation (6.21) ishim darder of10~#, which
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corresponds to an almost exact solution. Position errdossaE0% still correspond to
a good numerical solution, very similar to the analyticdliion at first glance.
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Figure 6.7:Time—history of the energy error in the numeric simulati&iR (= 30,
cubic interpolation)

However, Equation (6.21) gives high position errors whaenrtbmerical solution
presents a small delay compared to the analytical solutigan when the phase differ-
ence is very small and the numerical solution can be stilsiciered good. Therefore,
this position error can mislead about the precision in aegéuations. To overcome
this limitation, an additional measurement of the energgraran be used, as the sys-
tem is fully conservative. Thus, the energy error is defireed a

FR |1 [ E;— Eo\>
AE=-— |- ; (E—O) (6.22)
being E, the initial value of the energy of the system (that should drestant during
the simulation), andE; the energy at time; obtained in the numerical simulation.
The oscillations that have been observed in the energyrhistahe system (see Fig-
ure 6.7) justify the use of a norm-2 error instead of a simphagarison between the
initial and final energy levels of the system.

It has been observed that some numerical simulations Idad/tenergy errors de-
spite the position time—history is obviously incorrecte thumerical integration con-
serves the system energy but gives a wrong solution aftewayeles. Therefore,
both errors (position and energy) should be consideredtarmée the precision and
correctness of the obtained numerical solutions.

6.3.3 Results and discussion

Both fastest—firstand slowest—firsschemes have been tested. In the following, they
will be referred to a&F andSF, respectively. In addition, the interpolation orders used
in evalmasterandeval slavefunctions can be different and one of the following: zero
(constant value, designed @), linear O1), quadratic ©2), cubic ©3) and fourth
order (O4). The position error fox; and the energy error, defined in Equations (6.21)
and (6.22), have been measured for each interpolation mhétha span oFRranging
from 1.5 to 100. Results can be seen in Figure 6.8
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Figure 6.8:Position error inx; (left) and energy error (right) for different interpola-
tion polynomial orders as a function of FR, felowest—firs{a) andfastest—firs(b)
schemes

The first conclusion that can be drawn from the performed kitimns is that it is
not possible to find an optimal general purpose co—simulatiethod, even for such
a simple test problem as the one described in Section 6.3.

For FR =< 25, slowestfirst(SF) integration combined with cubic interpolation
(O3) shows the best performance, attaining good position aacyg error levels. The
use of higher order interpolation polynomials suffers frimstabilities, which results
in the losing of the reference solution, and therefore hashalped the reduction of
errors.Fastest—firs{FF) technigues, on the other hand, attain very low error lewvels
the integration of the position of,, as it was expected, because the integration of the
slow subsystem is performed on the basis of already evalwalees ofx; ; however,
this improvement is made at the cost of worsening the enesgld and the shape of
the time—history ofx;.

For25 < FR < 50, SFintegration without interpolationd0) seems to be the most
suitable strategy. The use BF strategies in this range of frequency ratios leads to a



96 Multirate Co—-simulation Methods

numerical instability that translates into the amplifioatdf the oscillations in:;, and
can be visualized in Figure 6.8 as a peak in the error grapin@adFR = 40.

For FR > 50, the position errors witlsF strategies are always over 10% and they
follow an upwards trend; among them, the use of no intermrla®0 gives the best
results in position and energy. On the other hdffeltechniques seem to stabilize the
position error in this region under 10% with reasonableluéenergy errors, at least
with O2 and higher interpolation orders. However, the analyste@position history
shows that this is a consequence of the attenuation of thegaslations of the first
subsystemyz,. In fact, whenFR grows to values of 80 and higher, the inverse effect
takes place and the oscillations are amplified, leading ¢éatgerrors in position and
energy. In both cases, amplification and attenuation, thaltsecannot be considered
valid, even when low error levels in both position and enengyattained.

Two consequences can be inferred from the exposed:

e The errors defined in Equations (6.21) and (6.22), and usedlasitors of the
correctness of the solution, are not enough for determittiegsuitability of a
co-simulation method for solving every particular problem

e The use ofF strategies can lead to the rising of numerical instabdjtresult-
ing in amplified oscillations in the solution of the problem on the contrary,
in the filtering of small oscillations, with the loss of thentdbution of the fast
frequencyw; to the solution.

For values ofFR > 90, evenSF with OO0 configuration is affected by a sudden
growth of the errors and every interpolation order fails ptately to follow the ana-
lytic reference solution.

The use of smoothing techniques can contribute to the rieatuof the error for
relatively high values oFR, increasing the ability of the simulation to track the refer
ence solution. In order to attain acceptable results, thenpmial fitting interpolation
methods for the evaluation of the states of the slow subsysta be substituted with
least squares approximations. This can helfilter the variations in velocities that
arise when the difference between the time—steps grows.

A comparison of the co—simulation results feR = 90 with and without smooth-
ing can be seen in Figure 6.9. The co—simulated output faaimarx, is compared to
the analytical solution of the motion (thin continuous )ink the upper image no in-
terpolation ©0) has been used; in the central grapki8,interpolation has been used
in evalmasterandevalslavefunctions, together witlirF strategy. The lower image
shows the better accuracy obtained using the smoothingitpedwithO3 interpola-
tion in eval slavefunction. However, it must be noted that smoothing is suthiethe
same filtering or amplifying problems th&tstest—firsimplementations suffer from.
As a consequence, smoothing has only shown an acceptalterpance for certain
combinations ofR and the interpolation (or approximation) order used forstosy
subsystem.

Regarding the equivalent model with an algebraic loop, atediin Figure 6.6,
the obtained results have been practically equivalentdsetof the original model
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Figure 6.9:Response to 20 simulation cycles of the fast subsystem fet BR (a)
slowest—firstwvith OO0, (b)fastest—firstvith O3, (c) smoothing witl®3

of Figure 6.5. The use ahemoryblocks has yielded a better performance than the
equivalent model witldelayblocks.

In most simulations, it has been observed that the accuetlt&ator grows as the
simulation time increases. This is not expected to happeoritplex multiphysics sys-
tems for two reasons. First, real systems use to have dissigdements like dampers
that soften the effect of small vibrations. In the secondglanost co—simulated sys-
tems include control elements, oriented to reference itngckvhich make the whole
system less sensitive to error accumulation.

6.4 Application to a multiphysics problem

The multirate interface and co—simulation methods desdrib the previous Sections
have been applied to the solution of the dynamics of a veliithhis case a kart. This
multiphysics model is divided into two subsystems: a moliipmodel of the mechan-
ical components of the vehicle, including the steering eoiutyres and suspensions,
and a thermodynamic model of a four—cylinder spark ignigagine.

The model of the mechanical components of the kart can beisdégure 6.10;
the figure represents only half of the model, the actual onkides the suspension
of the four wheels and the whole chassis. The number of Vesaif the multibody
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Figure 6.10Multibody model of the vehicle used in simulations
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Figure 6.11Joint model of the engine and the kart

system is 163, and the motion is integrated making use of #le-known index—
3 augmented Lagrangian formulation with projection of eéies and accelerations.
This formalism uses the trapezoidal rule as numerical nateg, it has been described
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by Cuadrado et al. (2000) and a brief overview of its equaticem be found in Sec-
tion 3.2.2. The multibody code is implemented in Fortran #sdconfiguration is
detailed by Naya et al. (2007).

The engine is modelled in Simulink, following the desciyptigiven by Crossley
and Cook (1991), using conventional diagram blocks andraddh automatic gear-
box to link it to the transmission. The block diagram modeittborresponds to this
system is shown in Figure 6.11. The upper part of the gragicsents the Simulink
model of the engine and the gearbox, which also includesdhsimulation interface
described in Section 6.Rlemoryblocks are used to avoid the closing of an algebraic
loop. The code for the simulation of the mechanical comptmehthe kart is com-
piled as a library and invoked from the co—simulation irded. The model undergoes
a maneuver in which the angle of the throttle varies follayiime law depicted in Fig-
ure 6.12. The pitch angle of the vehiclg)is taken as control variable, to check if the
setting behaves in an adequate way. This variable is closklied to the acceleration
of the vehicle.
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Figure 6.12Throttle angle during simulations

The Simulink part of the model is integrated witllde4 and the nature of the
system it models requires using a time—step,0&= 10~* s. The multibody subsystem
can be integrated with trapezoidal rule with time—stepsigadi, = 1072 s without
significant errors. A direct co—simulation scheme with thene time—step in both
subsystems would be forced to use the smallest one to keepriwanaccuracy in
the fast component, leading to a considerable increaseeitothl computation time.
In the performed simulations, the time—step in Simulink basn kept constant, and
the time—step of the multibody subsystem has been varied/ipo= 10~* s to/, =
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1072 s in order to measure the effect of using multirate integratin the accuracy and
efficiency of the simulation. The case in which both subsystare integrated with
the same time—stejy, = 4, = 10~* s and constant interpolatid®O is taken as the

reference solution; the pitch angle in this case is showrignreé 6.13. The shape of
the pitch angle curve in this graphic agrees with the anglefda the throttle depicted

in Figure 6.12. The sudden drops in the angle between sedoaidd 5 and at second
8 correspond to the moments when the gear of the vehicle igyeltkby the automatic
gearbox.

0,5

Pitch angle (°)

Time (s)
Figure 6.13Pitch angley in reference case

The total computing time of the 10 s simulation under therssfee conditions
hi1 = hy, = 107* s exceeds 150 s. The use of multirate co—simulation is eggdot
reduce the total computing time; however, it is also realen@ expect divergences
to occur in the results with respect to the reference salutio order to measure the
impact of multirate simulation in the elapsed time in congpiohs and the deviations
from the reference value, simulations at different valueBRhave been carried out.
It must be noted that the meaningFeR, for complex multiphysics problems like the
one here discussed, does not correspond to the ratio betheemtural frequencies
of the subsystems (which may not be easy to identify), butustbe substituted
by the relation between the time—steps used to integrata.tRer this first set of
simulations, constant interpolatio®@) and slowest—firststrategy have been used.
Besides the computation time, the maximum deviation inhpétiegle with respect to
the reference case during the motion has been measured.

The results summarized in Table 6.2 show a dramatic redutticomputing time
as the value oFR increases. Regarding to the differences in the pitch apigkhese
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Table 6.2:Elapsed time in simulations and maximum difference in pogle Av)
with respect to the reference case, for different valuesRyfwith SFand OO0 interpo-
lation in both subsystems

FR=1(ef) FR=5 FR=10 FR=50 FR=100
Elapsed time (s) 158.4 44.8 30.4 19.0 171
Ay (%) 0 0.0031 0.0055 0.0252 0.0398

are never higher than 0.94n absolute value, for a variable that oscillates between
-2.5° and 0.8. This means that direct co—simulation, with the us®0fpolynomials,

is able to simulate the system without significant deviatimrnthe results, with values
of FR up to 100. The plots of the pitch angle for the different valoéFR overlap
Figure 6.13, so they are indistinguishable in practice. apbical representation of
the deviation of the control variable with respect to thathef reference case has been
chosen instead, and it can be seen in Figure 6.1BRo& 100. The sudden variations
of the measured deviation make the results in this grapbiclike a solid region, but

a line is actually represented.
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Figure 6.14Difference in pitch angle£v) with respect to the reference case, with
FR = 100, SFand OO0 in both subsystems

Figure 6.14 shows another relevant feature of the behawbtire co—simulated
system: the divergences in pitch angle increase when sudditions of the variable
happen, but the error gets close to zero when the angle vsldedy. This stable
behaviour of the whole system agrees with the conclusi@tsdin Section 6.3.3.
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Table 6.3:Maximum difference in pitch anglé\{/) with respect to the reference case
for FR = 100. Only representative interpolation strategies are repraed

SF FF FF FF FF
Simulink interpolation OO0 00 00 00 00
MBS interpolation 00 00 o1 02 03
Ay (%) 0.0398 0.0385 0.0078 0.0086 0.0303

As it was shown in the previous Section, it is not possible étednine before-
hand whether the use of higher order interpolation polymatsrar other co—simulation
techniques will enhance the obtained results. More sinaiathave been performed
to gain insight into this subject; the most relevant onessaremarized in Table 6.3
for FR = 100. The elapsed time is not shown, as there are not significéatefices
between the methods. Other configurations have been tedtexhétive combinations
of orders in interpolation polynomials and smoothing téghas) but their use has not
improved the precision of the simulation. As it can be dravemt the table, there is
no gain in rising the order of the polynomials beyond onehaditear case yields the
best results.
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Figure 6.15Difference in pitch angleA) with respect to the reference case, with
FR = 100, FF, OO0 interpolation in Simulink an®1 interpolation in MBS

The time-history of the pitch angle in the case that perfdoest in Table 6.3 is
represented in Figure 6.15. The comparison of this graghibe one in Figure 6.14
highlights the benefits of using thastest—firsconfiguration and linear polynomials
for the interpolation of the data from the MBS software irstparticular case.
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6.5 Conclusions

In this Chapter, the effect of multirate techniques in thficieincy and accuracy of
weakly coupled co—simulation settings has been assessehisTend, a general mul-
tirate co—simulation interface for coupling block diagraimulators and external tools
has been built, and a synchronization algorithm has bedgrdas; in order to coordi-
nate the exchange of information between both softwaregggek The way in which
the interface operates is based on interpolation and etttpn of inputs and out-
puts between simulators using polynomial approximatiansl two synchronization
schemes are availablslowest—firsandfastest—firstThe interface avoids techniques
which are not available in block diagram simulators (iterabr modifications in the
integration schemes) and overcomes the limitations of thieent commercial cou-
pling solutions, since it can be used with non—-synchronizaedable—step multirate
integration time—grids. This interface allows the userdiest different co—simulation
settings, such as the order of the interpolation polynamiahd incorporates addi-
tional techniques to improve the behaviour of the simutatinder certain conditions.

The algorithm has been implemented in C/C++ and tested idkgimulation
of the dynamics of a simple, purely mechanical system by laogiphe well-known
simulation tool Simulink with the multibody dynamics simatdr developed in this
thesis. The accuracy of the method was tested against tipeeiney ratioFR, which
is equivalent to the ratio between the time—step sizes us#tkitwo coupled simu-
lators. The first test battery of the designed interface basaled that the adjustment
of the co—simulation settings is strongly dependent of thgsjzal characteristics of
the simulated subsystems. As a consequence, the co—sonytatrameters must be
adapted as a function of the particular features of the propand a general configu-
ration, valid for any situation, cannot be found. In someesathe use of smoothing is
required in order to find a stable solution to the problem.

Next, the interface has been applied to the co—simulatidgheomultibody model
of areal kart, simulated in a Fortran MBS code, powered bgmthal engine modelled
in Simulink. Results show that the use of multirate techagjoas been able to reduce
the computation time required by the simulation in one oafemagnitude, within
a reasonable margin of error. In this case, the use of firgrdrderpolation poly-
nomials O1) has contributed to alleviate the deviations of the motigith respect
to the reference solution. The example is very represeetati the co—simulation
of complex mechatronic systems, where the dynamic sinamatf the mechanical
components in a multibody software consumes around 60% —di@ke CPU—-time,
while the remaining time is consumed by the block diagrarmusator. In these cir-
cumstances, increasing the stepsize in the multibody digsasimulator by a factor
of 50 can reduce the time needed to complete the simulatioassctor ranging from
2.4 10 8.5. The described multirate interface represergmifisant improvement over
current off-the—shelf commercial coupling solutions, ethénforce equal time—steps
(FR = 1) in both sides of the co—simulation.

Currently, two lines of future research can be pointed oiust Fa general numeri-
cal indicator is desirable, in order to measure in a pralcticd easy way the deviation
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of a solution with respect to a reference. And second, a waletédrmining the op-
timal co—simulation strategy before running the simulatiould be very helpful, as
it would remove the need of performing several trials to adjhe interface to the
particular conditions of the simulated system.



Chapter 7

Conclusions

7.1 Conclusions

The main goal of the present thesis is the evaluation of miffetechniques for the
optimization of multibody simulation codes. This work intks to contribute to the
two main currently open lines of research of the multibodynomnity: the reduction
of the elapsed time in computations, and the addition obdxinctionality beyond the
purely mechanical simulation.

The development of a generic and modular software architedor MBS simu-
lation has been addressed in Chapter 2. While the designthgrgiementation of a
simulation package is a complex task, subject to a conditiehtggh number of design
variables, it has been possible to point out some recomntiendsof general valid-
ity, specially regarding the modularity of the project. Mieatity is a key feature of
this kind of software, and the object-oriented paradigninéshest suited to achieve
it. Following this approach, an operational platform foe simulation of mechanical
systems has been built in C++, in which the optimizationtsgigs proposed in this
work have been tested. Its modular nature makes the softapeble of incorporating
new functionality, so the writing of the code can never besidered finished. At the
moment, the module for the automatic generation of the @mugbf motion of the
system is under development.

Chapter 3 discusses the effect of the implementation ofiaégebra routines in
the performance of the software. It has been found that teeotigfficient libraries
of basic routines for matrix computations (BLAS for denseragie, and equivalent
routines for sparse matrices) and linear solvers (LAPACKQOCMOD, KLU) can
speed up the execution of the code in a factor of 2—3, withegative side effects on
the portability of the code. Decision rules for selecting thost adequate solver as a
function of the size and number of non—zeros of the leadingixnaf the system have
also been provided.

The use of non-intrusive parallelization methods is thenrsabject of Chapter 4.
Parallel linear equation solvers and OpenMP have beentedlét this work; their
use has been preferred to that of more efficient but intripatallelization protocols,
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such as MPI. These techniques have been successfully éppliexisting software
with minimal modifications in the code. Results have shovat garallel solvers and
OpenMP can be applied to a wide range of problems in multilalyeiyamics, obtaining
speedups over 70% of the theoretical maximum values acwptdiAmdahl’s law.

Finally, Chapters 5 and 6 deal with the coupling of the moltiy architecture to
external software packages, thus enlarging the capabhiliti the basic MBS program.
First, the different alternatives when communicating thB3Visimulation software
with MATLAB/Simulink have been considered; two main couglicategoriesfgnc-
tion evaluationand propeico—simulatioy have been identified, and a comparison of
the different strategies under each of them, in terms ofieffay, has been carried
out. In a second stage, a multirate co—simulation interfasteveen multibody soft-
ware and block diagram simulators has been built. Thisfiateris able to coordinate
the integrators in each software tool, even if they use diffetime—grids; it also fea-
tures different interpolation and synchronization sgjege to manage the execution
of the simulation. The communication techniques and therfiate have been used
to evaluate the possibilities of software coupling in dediag applications such as
real-time settings. The obtained results demonstratectiiegimulated models can
outperform their monolithic counterparts under certancuanstances and be used in
non-academic, real applications.

7.2 Future research

The research developed in this work falls within the actik@grts of the Laboratory
of Mechanical Engineering of the University of La Céray and it is the continuation
of the predating efforts of its researchers. The conclisainained in this thesis have
been added to the know—how of the group, and therefore tHegenised in the future
development of efficient code for multibody simulation. &lshe software architec-
ture described in this work will serve as a platform for th@iementation and testing
of new components.

The code optimizations presented in Chapters 3 and 4 cantfeglilced in im-
plementations of dynamic formulations different from thees tested in this work;
for example, they are good candidates for the enhancemaetofsive and semi—
recursive formulations. An assessment of the obtaineddwggnents in performance
could be obtained, leading to a comparison with respectaaekults found in this
thesis with global formulations.

Finally, the co—simulation strategies described in Chadeand 6 can be applied
in a direct way to the simulation of complex multiphysicsteyss, thanks to the mul-
tirate interface described in Section 6.2. Thus, the fadt effective simulation of
non—trivial problems with a non purely mechanical naturgreatly simplified. As it
was pointed out in these Chapters, a way to find out the opticzaimulation strategy
for each problem beforehand, based on the characteristioe mvolved subsystems,
constitutes a desirable research goal that would save ticheféorts in the adjustment
of the co—simulation setting. In this research, a genengiqme indicator of the quality
of the co—simulation technique would represent a valuatikrinediate objective.
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This Appendix details the procedure that has been followdHis work to compile a
Simulink model into a dynamically linked library (dll file, under Windows operating
system) through the use of MATLAB'’s Real-Time Workshop.

Real-Time Workshop (RTW) is a complementary module of MATL&Bnulink
that generates standalone C code from block diagram mo@eésresulting code
can be later compiled into an executable program with a cuiveal C/C++ com-
piler. The performance of this compiled code is much highantthat of the original
Simulink model, allowing thus its use in highly demandinglégations, such as real—
time settings. Sometimes, however, it would be desiraldettie C code was turned
into a dynamically linked library in order to allow callinbé routines it contains from
a different program. This can be the case, for example, oSthmilink models that
represent controllers or actuators for mechanical systkiissalso the same situation
described in Section 5.4.3 MBS as master

Currently, the creation of dynamically linked librariesifn the C code generated
by RTW is not straightforward, and a series of operationstrbascarried out in or-
der to achieve this goal. Some instructions can be found iTM¥B’s website (The
Mathworks, Inc., 2009) but, even so, the complete task igntattive and is prone
to errors. A short description of the steps that should bertak build the library is
provided below. The problem solved in Section 5.4 will seageexample.

Translation of the Simulink model to C via RTW

In the example solved in Section 5.4, a Simulink model of agirenis coupled to an
MBS model of anL—loop four—bar linkage. This simulation is performed unter
Windows operating system, using Microsoft Visual StudicCaS++ compiler; RTW
settings are function of the operating system and the cemmhd so are the final
output files of the process which is being described. Nomegkethe steps which must
be taken are very similar in every case. When the process ipletenthe coupling of
both subsystems is the one depicted in Figure A.1. The MBSvacé simulating the
motion of the linkage acts as the driver program, requestiges from the C library
generated via RTW, compiled as.dl file, which simulates the thermal engine. It
should be noted that the coupling scheme corresponds tesmualation one, as every
subsystem (namely, the executable and the library) inslitdewn integrator.

The Simulink model from which the C code is created must be-fimeed and
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MBS software RTW-generated C code
Rotational speed, N

L-loop four-bar
linkage
(.exe) Torque, T

Engine
(.dll)

Figure A.1:General layout ofMBS as mastecoupling scheme under Windows OS

tested before its compilation as a library. If the model ia il library has to be
changed after the compilation has taken place, the neegedtiag all the steps in the
process arises, in order to take the changes in the moded twtle of the library. For
this reason, it seems very convenient to test the modelqushi to its compilation,
with one of the two configurations described in Sectionsl5(Metwork connection
and 5.4.2 §imulink as mastgr These coupling techniques make possible to test the
Simulink model in real interaction with the external softeawhile modifying easily
its parameters and its configuration to attain the desirbdweur of the whole system.
When the functioning of the assembled system is correct, R&#hbe invoked
from Simulink in order to generate the C equivalent of the elo@wo files are neces-
sary in this step: aystem target filétlc) and atemplate makefilétmf). Both of them
depend on the compiler that is going to be used. In this cas®jsual Studiogrt.tlc
andgrt_msvc.tmfare used. The execution of RTW vyields a series of C files, which
encapsulate the functionality of the model, and one or mmakefileor project files,
to manage the compilation of the code.

Edition of generated files

The execution of thenakefilesor project files as they are created by RTW would
lead to the compilation of an executable application; theyetto be edited to yield a
library.

The first step in this stage is finding theinprocess in the C files. In the current
case, this is contained in fitgt_main.c This file must be modified, removing itsain
function and dividing its functionality among newly credtequivalent functions that
can be called by the MBS software. These are three C functimiseturn a pointer
to achartype, namely the following ones:

e char* initiate(). This function initializes the global memory and the Simli
model. It must be called once, at the beginning of the sirariat

e char* getOutput(int ninputs, double* inputs, int nOutputikouble* outputs)
This function is the main communication gateway betweeretezutable and
the library, and it must be called in every time-step. It hee® a number of
input argumentsiinputsand returns a number of outpui®utputs These ar-
guments are pointed to by the pointénputs and outputs The code of this
function must be edited in order to assign the outputs of fhaulhk model
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to the corresponding element of thatputsarray; the same operation must be
done for the inputs. If a co—simulation interface is used ithterface will be
responsible for synchronizing the calls to this functiod #me execution of the
MBS integration.

e char* performCleanup()It executes the termination routines and shuts down
the model. It must be called once, at the end of the simulation

The names of these three functions are not standard and teyary from one model
to another. A header file with their prototypeb)(and a module definition file def)
with their names have to be created to allow calling the fonstfrom outside of the
dynamically linked library.

The makefilesor the project files (in this case, the Visual Studio projeut)st
also undergo several changes, in order to fit the generatiadilorary, instead of an
executable. The type of the output file musttkkinstead ofexe the linking must be
made compatible with that of the MBS executable, and the teatkfinition file must
be included and used for creating an import libralp}, which will be necessary for
accessing the library from the MBS executable. These stepddvwe different with
other platforms and compilers. For example, dynamicatilgdd libraries are replaced
by shared libraries$0) under UNIX and there is no need for using module definition
files during their creation. The great number of possible lwoations of platforms
and compilers makes impossible the detailed enumeratiati diese particularities
in this Appendix.

Compilation and linking to the executable

Once the project is ready, the compilation of the C code gaadrby RTW can be
performed. The final output of the compilation process, i ¢hse of using Visual
Studio, is made up of three files:

o the dynamically linked library itself (alll file). This file includes the compiled
code that executes the functionality contained in the Sitkuhodel;

e animport library (alib file), to enable the linking of the library; and
¢ the header file.f) with the prototypes of the functions.

The MBS executable must be linked to tlil library, adding the import library to
the linker parameters and including the header file in itsecddter these changes
have been made, the MBS program can be compiled, yieldingtkeutable that
constitutes the final result of this process.
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