
ESCUELA POLIT ÉCNICA SUPERIOR

UNIVERSITY OF LA CORUÑA

EFFICIENT IMPLEMENTATIONS AND
CO–SIMULATION TECHNIQUES IN
MULTIBODY SYSTEM DYNAMICS

A thesis submitted for the degree of
Doctor Ingeniero Industrial

FRANCISCOJAVIER GONZÁLEZ VARELA

Ferrol, March 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio da Universidade da Coruña

https://core.ac.uk/display/80522543?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ESCUELA POLIT ÉCNICA SUPERIOR

UNIVERSITY OF LA CORUÑA

EFFICIENT IMPLEMENTATIONS AND
CO–SIMULATION TECHNIQUES IN
MULTIBODY SYSTEM DYNAMICS

A thesis submitted for the degree of
Doctor Ingeniero Industrial

Francisco Javier González Varela

Advisor: Javier Cuadrado Aranda
Co–Advisor: Manuel Jeśus Gonźalez Castro

Ferrol, March 2010

A mi familia

ACKNOWLEDGEMENTS

After four years and a half of work, one gets the impression that, to be fair, the

list of names in this acknowledgements section should take up more space than the

rest of the chapters. I must mention here the FPU grant from the Spanish Ministry of

Education, which has allowed me to carry out the research of this thesis, but of course

there is much more to acknowledge.

First, I wish to thank my advisors, Javier and Lolo, for the attention, the confidence

and the appreciation for well finished work they have transmitted to me. Together with

them, I also want to thank my colleagues at the Laboratory of Mechanical Engineering

of the University of La Corũna: Alberto, Amelia, Dani, José Antonio, Miguel, Roland

and Urbano. I owe them a lot, both in the professional and the personal scope, and

they deserve all my gratitude. Thank you all!

I am very grateful to Professors Aki Mikkola and Kurt Anderson, as well as to the

people in their work teams, for the fruitful and gratifying research stays I have done

in Lappeenranta and Troy.

I cannot forget all the people that, one way or another, have supported me all this

time, even when I have not been fully aware of it. And last, I would like to thank God

and my family, specially my parents Antonio and Marı́a Jeśus and my sister Ińes, for

their tireless patience, and because they have always been by my side when I have

needed them.

AGRADECIMIENTOS

Al volver la vista atŕas despúes de cuatro ãnos y medio de trabajo, uno tiene la

impresíon de que, para ser justos, la lista de agradecimientos de esta tesis deberı́a

ocupar ḿas espacio que los demás caṕıtulos juntos. Es obligado hacer referencia

aqúı a la beca FPU del Ministerio de Educación, que me ha permitido llevar a cabo

la investigacíon de esta tesis. Pero, claro, hay mucho más que ãnadir.

En primer lugar, quiero agradecer a mis directores de tesis,Javier y Lolo, la

atencíon que me han dedicado y la confianza y el aprecio por el trabajobien hecho

que me han transmitido. Este agradecimiento se extiende también a mis compãneros

del Laboratorio de Ingenierı́a Mećanica de la Universidad de La Coruña –Alberto,

Amelia, Dani, Jośe Antonio, Miguel, Roland y Urbano– que se han ganado a pulso un

reconocimiento muy especial por mi parte; he recibido muchode vosotros en el plano

profesional y en el personal. ¡Gracias a todos!

A los profesores Aki Mikkola y Kurt Anderson, ası́ como a las personas de sus

equipos de trabajo, les debo que mis estancias de investigación en Lappeenranta y

Troy hayan sido tan fructı́feras y gratificantes.

Adeḿas, no puedo olvidarme de todos los que, de un modo u otro, me han apoyado

durante todo este tiempo, incluso cuando yo mismo no haya sido muy consciente de

ello. Y para concluir, quiero dar las gracias a Dios y a mi familia, sobre todo a mis

padres Antonio y Marı́a Jeśus y a mi hermana Ińes, por su paciencia inagotable y

porque siempre han estado ahı́ cuando los he necesitado.

A todos, una y mil veces más, ¡gracias!

ABSTRACT

Current research in simulation of multibody systems (MBS) dynamics is focused
on two main objectives: the increase of the computational efficiency of the software
that carries out the simulations, and the diversification ofthe problems this software
is able to tackle, sometimes through the inclusion in the calculations of non purely
mechanical phenomena. This work deals with these two objectives, studying the ef-
fect of source code implementation in software performance, as well as the different
communication methods with external software that can contribute the interaction of
the MBS code with elements of a non mechanical nature.

The first Chapter of this thesis contains a brief introduction to the present state of
the art of MBS simulation software. It introduces the research lines this thesis forms
part of and outlines its main objectives.

The second Chapter describes the software architecture forMBS simulation that
has been developed for this research. The C++ language has been used for its im-
plementation, according to the object–oriented programming paradigm. This Chapter
also enumerates the programming tools employed in the process and draws general
conclusions about the development of MBS programs.

The third and fourth Chapters introduce efficient implementation techniques in the
field of linear algebra operations, and in the parallelization of the code, respectively.
The obtained improvements in performance have been quantified, and the range of
application of each technique has been delimited.

The fifth and sixth Chapters deal with the communication of the developed soft-
ware with external simulation software packages. A comparative study between the
different ways in which the coupling can be performed has been carried out and, be-
sides, the impact on the efficiency and accuracy of the use of multirate co–simulation
techniques has been assessed. A generic interface for multirate integration has been
designed to link the MBS software with MATLAB/Simulink, a mathematical and
block diagram package very popular in the multibody community.

Finally, the seventh Chapter summarizes the conclusions ofthe present work, and
proposes future research lines that can be derived from it.

RESUMEN

La investigacíon actual en simulación dińamica de sistemas multicuerpo (MBS)
gira en torno a dos objetivos principales: el incremento de la eficiencia computacional
del software que lleva a cabo las simulaciones y la diversificación de las tareas que
este es capaz de realizar, a veces mediante la inclusión en los ćalculos de feńomenos
no puramente mecánicos. Este trabajo aborda ambos objetivos, estudiando elefecto
de la implementación del ćodigo fuente en el rendimiento del software, ası́ como las
diferentes estrategias de comunicación con programas externos que puedan aportar a
la simulacíon multicuerpo la interacción con elementos de naturaleza no mecánica.

El primer caṕıtulo de esta tesis consiste en una breve introducción al estado actual
del software para simulación de sistemas multicuerpo. Enél se muestran también las
lı́neas de investigación en las que se enmarca el proyecto y se señalan sus objetivos
principales.

El segundo caṕıtulo describe la arquitectura del software para la simulación de
sistemas multicuerpo que se ha creado en esta investigación. Para su implementación
se ha utilizado el lenguaje C++, dentro del paradigma de programacíon orientada a
objetos. En este capı́tulo se enumeran también las herramientas de programación uti-
lizadas en el proceso y se obtienen conclusiones de validez general para la generación
de programas multicuerpo.

Los caṕıtulos tercero y cuarto presentan técnicas de implementación eficiente de
las operaciones déalgebra lineal y en la paralelización del ćodigo, respectivamente. Se
han cuantificado las mejoras en el tiempo de ejecución obtenidas y se han delimitado
los campos de aplicación de cada estrategia.

En los caṕıtulos quinto y sexto se aborda la comunicación del software desarro-
llado con otros programas de simulación externos. Se ha realizado un estudio compa-
rativo de los diversos modos posibles en que se puede realizar esta uníon y, adeḿas,
se ha evaluado el impacto del empleo de técnicas de cosimulación multiratesobre la
eficiencia y la precisión de los ćalculos. Se ha diseñado para ello una interfaz genérica
entre el software MBS y MATLAB/Simulink, una aplicación mateḿatica y de diagra-
mas de bloques de gran aceptación entre la comunidad de investigación en sistemas
multicuerpo.

Porúltimo, en el caṕıtulo śeptimo se resumen las conclusiones del presente trabajo
y se proponen lı́neas de investigación futuras que pueden derivarse deél.

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Objectives . 3
1.3 Structure . 4

2 Design of a Software Architecture for MBS Simulation 7
2.1 Analysis of software requirements 7

2.1.1 Programming language . 8
2.1.2 Methodology and development tools 10

2.2 Description and general structure 12
2.3 Core module . 15

2.3.1 Implementation of models 16
2.3.2 Implementation of dynamic formulations17
2.3.3 Implementation of integrators 18
2.3.4 Additional functionality . 18

2.4 Additional modules . 20
2.5 Examples of multibody problems . 20

2.5.1 Examples of dynamic formulations 21
2.5.2 Examples of integrators . 22

2.6 Conclusions . 22

3 Linear Algebra Implementation 25
3.1 Introduction . 25
3.2 Benchmark setup . 27

3.2.1 Test problem . 27
3.2.2 Dynamic formulation . 27
3.2.3 Starting implementation . 29

3.3 Efficient dense matrix implementations 29
3.4 Efficient sparse matrix implementations 31

3.4.1 Optimized sparse matrix computations32
3.4.2 Evaluation of sparse linear equation solvers 34
3.4.3 Effect of dense BLAS implementation 36

3.5 Sparse vs. dense implementations36
3.6 Conclusions . 38

xiii

xiv CONTENTS

4 Parallelization 41
4.1 Introduction . 41
4.2 Methods . 44

4.2.1 Test problem and dynamic formulation 45
4.2.2 Initial sequential implementation 47
4.2.3 Parallelization with multi–threaded linear equation solvers . . 47
4.2.4 Parallelization with OpenMP 50
4.2.5 Test environment and implementation details 51

4.3 Results and discussion . 52
4.3.1 Multi–threaded linear equation solvers 52
4.3.2 OpenMP . 56

4.4 Conclusions . 58

5 Integration with MATLAB/Simulink 61
5.1 Introduction . 61
5.2 Coupling techniques . 64
5.3 Function evaluation . 67

5.3.1 MATLAB Engine . 69
5.3.2 MATLAB Compiler . 69
5.3.3 MEX functions . 70
5.3.4 Results . 71

5.4 Co–simulation . 72
5.4.1 Network connection . 73
5.4.2 Simulink as master . 74
5.4.3 MBS software as master . 74
5.4.4 Results . 74

5.5 Conclusions . 77

6 Multirate Co–simulation Methods 79
6.1 Introduction . 80
6.2 Multirate co–simulation interface 83

6.2.1 Coupling strategy for multirate integration 84
6.2.2 Smoothing techniques . 87

6.3 Test problem . 87
6.3.1 Algebraic loops . 91
6.3.2 Numerical experiments and error measurement 92
6.3.3 Results and discussion . 94

6.4 Application to a multiphysics problem 97
6.5 Conclusions . 103

7 Conclusions 105
7.1 Conclusions . 105
7.2 Future research . 106

Appendix 107

CONTENTS xv

Bibliography 111

Publications 121

Chapter 1

Introduction

The simulation of multibody systems (MBS) is a very active field of Mechanics, in-
tensely evolved since the late 1960s thanks to the improvements in computing hard-
ware and software. The simulation of multibody systems enables the prediction of the
kinematic and dynamic behaviour of a mechanical system fromits physical definition,
avoiding the need for building a real prototype of the mechanism, thus shortening the
development process of the product and reducing costs. Due to the considerable com-
putational effort required to formulate and solve the equations that rule the motion of
mechanical systems when large rotations are present, the simulation of even relatively
small problems was considered impractical until the appearance of digital comput-
ing. Since then, the advances in architecture of computers and software engineering
have converted the task of simulating multibody systems in everyday work for many
research groups, and MBS simulation is now common in productdevelopment in in-
dustry. On the other hand, this work has become heavily dependent on the quality and
features of the available software.

The complexity of the models the researchers in multibody systems have to deal
with is continuously growing, as the degree of detail in simulations required by in-
dustrial applications increases. Nowadays, mechanical engineers need more and more
realistic simulations, which leads to highly demanding requirements for the multibody
simulation software. In the last fifteen years, the range of research topics has notably
widened, and new phenomena are now considered and included in simulation models,
such as flexibility, contact, impacts and interaction with non–mechanical components
(Schiehlen, 2007). These features add a higher degree of realism to the simulation,
but they usually represent also an extra computational burden that the software has
to tackle. Presently, the lines of research in the field of multibody systems can be
grouped into two main categories: the development of methods to add new function-
ality to conventional MBS software in a reliable and preciseway; and the design of
new formalisms to improve the efficiency of the simulations,sometimes aiming at the
exacting goal of performing the simulation in real time.

As it can be deduced from the previous paragraphs, software efficiency is a crucial
component in multibody research. A poor implementation canseriously hinder the

1

2 Introduction

performance of a carefully designed formalism, spoiling its potential advantages and
preventing it from being used in non–trivial applications.Conversely, a rational use of
programming techniques reduces the computational effort required to solve a partic-
ular problem, smoothing the path for the addition of new features or the fulfilment of
tougher requisites in the simulation.

1.1 Motivation

The spectacular progress experienced by MBS research during the last years has
given rise to a considerable number of software packages forthe simulation of multi-
body systems (McPhee, 2008). Several commercial, off–the–shelf packages are avail-
able, such as Simpack (SIMPACK AG, 2009), MSC.Adams (MSC.Software Corpora-
tion, 2009), SAMCEF mecano (SAMTECH, 2009) or RecurDyn (Function Bay, Inc.,
2009). These programs are efficient and versatile, and they undergo periodical en-
hancement. Additionally, some software tools, originallynot designed as multibody
programs, are incorporating this functionality through specific complements and mod-
ules. Examples of the stated are the SimMechanics library for MATLAB’s block dia-
gram tool Simulink (The Mathworks, Inc., 2009) and the applications for the analysis
of mechanisms that are nowadays common in many CAD/CAE packages, among oth-
ers.

While these programs are specially useful for simulating particular problems, of
great complexity sometimes, they are not suitable as a platform for testing new for-
malisms or developing extra functionalities. Moreover, the lack of a neutral data for-
mat for the exchange of files between packages from differentvendors frequently
makes it impossible to use data from a package in another one.Thus it is that many
academic research teams have written, and keep on writing, their own codes in or-
der to assess the validity and efficiency of their dynamic formulations and integrators.
Many researchers have also developed code to deal with the new functionalities re-
quired by multibody simulations on the basis of their in–house codes. Some of them
have reached a high degree of maturity and are being used in real–life, industrial appli-
cations (Anderson et al., 2007; Dipartamento di IngegneriaAerospaziale, Politecnico
di Milano, 2009). However, although research in the multibody community has been
traditionally focused in the definition of new efficient formalisms, very few studies
about the impact of implementation details on performance have been carried out.
Currently, there is a lack of available information about this subject in literature, so
multibody research groups are compelled to draw their own conclusions based on sub-
jective experience. This leads to a multiplication of efforts and increases the risk of
using inadequate solutions in practice.

As a consequence of the stated, it is necessary to correctly evaluate the impact of
code implementations on the reliability and efficiency of the developed MBS simula-
tion software, as well as the possibilities the state of the art provides with regard to
the enhancement of the features this software can offer. This thesis continues the work
the Laboratory of Mechanical Engineering of the Universityof La Corũna has been
carrying out on this field during the last years. This task wasinitiated with the work

1.2Objectives 3

of Gonźalez (2005), who proposed some steps towards the efficient development of
MBS software:

� The use of a neutral and extendable data format for the modelling of multibody
systems, which can be used for the exchange of models betweenusers of dif-
ferent simulation programs, both academic and commercial (Gonźalez et al.,
2007).

� The building of a benchmark to evaluate the efficiency of the different existing
simulation methods, made up of a collection of mechanism simulation prob-
lems and a routine to obtain comparable parameters of efficiency in different
simulation environments (González et al., 2006, 2010).

� The elaboration of a software architecture prototype for the development of
optimized MBS simulation codes.

The third item in the list has been addressed during the elaboration of the present
thesis, as the development of a software architecture provides an adequate environ-
ment for testing different implementations and for the identification of the problems
that commonly arise during the writing of MBS simulation codes. The software itself,
however, is not the main objective of this work, but an intermediate tool to study the
effect of different implementations and find out general guidelines for the optimiza-
tion of MBS software. The different ways of performing linear algebra routines, the
possibilities the parallelization of code offers and the communication with external
software constitute the main focuses of attention of the thesis.

1.2 Objectives

The objectives of this thesis can be summarized in the following ones:

� To assess the effect of code implementation on the overall performance of multi-
body software and to identify commonly used patterns of codein MBS pro-
grams that can be systematically enhanced using simple coding techniques. The
obtained improvements must be measured and used to find out guidelines that
can help the researchers of the multibody community to efficiently implement
MBS simulation codes, in particular when the improvement can be performed
without affecting substantially to the structure of the software.

� To evaluate the ways in which MBS software developers can addextra func-
tionality to their codes via communication with external packages and libraries.
This objective includes the review of the currently available coupling techniques
between software tools and their comparison, and also the development of syn-
chronization strategies between different codes, when needed. A special atten-
tion must be paid to block diagram simulators, because of their versatility and
wide acceptance in the research community.

4 Introduction

� To start the development of a software architecture for the simulation of multi-
body systems, in which the previous objectives can be studied. This architecture
must be open and modular, in order to allow the extension of its features through
the addition of new modules or the streamlining of the existing ones. The soft-
ware must also serve to test and develop new MBS formulationsand integrators.

The results obtained during the realization of this work areintended to yield use-
ful information for the multibody community on the subject of efficient and versatile
software implementations.

1.3 Structure

This thesis is structured into the following Chapters:

� Chapter 1: Introduction.

� Chapter 2: Design of a Software Architecture for MBS Simulation.

� Chapter 3: Linear Algebra Implementation.

� Chapter 4: Parallelization.

� Chapter 5: Integration with MATLAB/Simulink.

� Chapter 6: Multirate Co–simulation Methods.

� Chapter 7: Conclusions.

Chapter 1 briefly describes the currently active lines of research in the field of
MBS dynamics and highlights the importance of the software in multibody research.
The motivation and the objectives of this work are pointed out, and the layout of the
thesis is presented.

Chapter 2 deals with the simulation software that has been developed for the
achievement of the goals of this work. In the light of the software requirements, a
programming language, work methodology and software structure have been chosen.
The resulting layout and the features of the code are then described and general con-
clusions about the development of multibody software are exposed.

Chapter 3 discusses the impact of the use of different linearalgebra implementa-
tions on the overall efficiency of MBS simulation codes. A benchmark problem is set
up, and different configurations of the software, relative to matrix storage and basic
algebraic routines, are tested and compared. Guidelines for the selection of the most
convenient configuration, as a function of the problem nature (number of variables
and number of non–zeros in matrices), are established at theend of this Chapter.

Chapter 4 assesses the suitability of improving the performance of the simula-
tion through the use ofnon–intrusiveparallelization techniques. Multi–threaded lin-
ear solvers and OpenMP directives have been applied to the software, and conclusions
about their performance have been drawn.

1.3Structure 5

Chapters 5 and 6 deal with the addition of functionality to multibody codes through
communication with external software. Several ways of exchanging data during run-
time between the MBS software and a general purpose mathematical package (MAT-
LAB/Simulink) are described and compared. In Chapter 6, an interface for multirate
co–simulation is described and tested.

And, finally, Chapter 7 summarizes the conclusions and results of this work and
points out presently open lines of future research.

Chapter 2

Design of a Software
Architecture for MBS
Simulation

In order to achieve the goals identified in the Introduction to this thesis, a new software
for the simulation of multibody systems has had to be developed. Although many MBS
simulation software packages exist, some of them open–source, the design of a new
one from scratch seemed convenient for several reasons. First, existing MBS codes
have gone through long development and optimization processes, of years of duration
in many cases. During these processes, decisions have been taken about the storage
format to be used, the way in which interfaces are defined and many other imple-
mentation details. The knowledge background on which thesedecisions were taken
is frequently not accessible to users, even in the case the code is available for down-
loading. Second, existing software is hardly ever preparedfor the easy replacement of
components at a low programming level in the code, such as thestorage format or the
way in which basic algebraic operations are performed. Thismakes difficult the test
of alternative code implementations. Consequently, a new software for the simulation
of MBS dynamics has been designed and used in this research.

2.1 Analysis of software requirements

The developed MBS software must comply with the following requirements:

� It must bemodular, in order to simplify the substitution or modification of any
of its components without carrying out significant modifications in its main
structure. As the MBS software is designed to test differentalternative imple-
mentations of the same components, its structure must be flexible enough to
permit the replacement of the formulation, the integrator or the numeric meth-
ods for the solution of systems of equations without substantially affecting the

7

8 Design of a Software Architecture for MBS Simulation

rest of the elements of the program, preferably in an easy to revert way.

� It must beopen, to allow the addition of new functionality through the use of
sub–programs or modules written in any common programming language (For-
tran, C or C++), as well as the communication with other simulation and calcu-
lus tools, such as CAD programs or block diagram software.

� It must becollaborative, so many researchers can develop the software simul-
taneously and coordinately, even when they belong to geographically scattered
research teams.

� Finally, it is desirable that the software isplatform–independent, so it can be
compiled and used under different operating systems and computer architec-
tures.

The first two features are necessary for assessing the effectof different code imple-
mentations and testing techniques of communication with external software packages.
They will also allow the future development of the project, because they make possible
to add new modules and interfaces to external programs. Thisgrowth will be consid-
erably facilitated by the fact that the software is built in acollaborative way, since the
sharing of information and code among groups will not be hindered by constraints
on the dissemination of knowledge. The fourth condition also makes easier the use of
the software, as it is not conditioned by the availability ofa determined compiler or
operating system; moreover, it will allow the generalization of the obtained results, as
their validity will not be confined to a particular configuration of the computer system
in which they were obtained.

2.1.1 Programming language

The modularity the software requires can be obtained by designing the architecture
of the code according to theobject–oriented paradigm. Object–oriented languages
provide the following features, all of which positively help the software modularity:

� Inheritance. The hierarchical structure of the software can be constructed on
the basis of deriving new classes (derived classes) from existing ones (base
classes). It is possible to create abstract classes that define the basic structure of
the main components of the software, and to instantiate particular implementa-
tions of these components later, by adding specific functionality to the original
base class. For example, a base classIntegratorcan be created, defining the ba-
sic functionality of the integrators and the methods they must declare, and then
several instances of integrators derived from it, implementing the actual inte-
gration routines.Multiple inheritancecan also be used to combine the features
of two existing base classes.

� Encapsulation. The use of correctly designed base classes leads to the definition
of interfaces, which control the interaction of the components of the software.

2.1Analysis of software requirements 9

The use of interfaces makes the communication between components indepen-
dent of the particular inner operations of each of them, and allows their non–
intrusive substitution. It also facilitates the modification of the code inside of
a particular component (e.g. the way in which an integrator performs the itera-
tions to achieve convergence) without affecting the structure of the rest of the
program.

� Polymorphism. Polymorphism allows the same function to be executed on dif-
ferent object types. For example, a function for adding matrices can receive two
arguments representing dense matrices, but the same function can be defined to
operate on sparse matrices. This simplifies the encapsulation of the code through
the definition of standard interfaces.

� Reusability. The three enunciated characteristics of object–orientedlanguages
result on an increment of the reusability of the code: classes and functions can
be used in different applications without substantial modifications.

The object–oriented paradigm has been successfully applied to MBS dynamics in
several works. Kecskeḿethy and Hiller (1995) used the approach to simulate vehi-
cle dynamics in a modular way; Han and Seo (2004) employed it in the generation
of the equations of motion; and recent applications of the method in biomechanics
have been developed by Tändl et al. (2009). The features of object–oriented languages
have led many researchers to use them to implement their MBS software. This is the
case of POEMS (Anderson et al., 2007), a modular multibody software that aims to
work as a repository of efficient implementations of MBS algorithms, today a part of
the LAMMPS molecular dynamics simulator (Sandia National Laboratories, 2009).
MBDyn (Dipartamento di Ingegneria Aerospaziale, Politecnico di Milano, 2009) is
another case of modular and open MBS software, with additional support for aeroe-
lastic, hydraulic, electric and control problems. As a lastexample, SimTK (Simbios
project, 2009) core module relies on the same principles of abstraction and modularity
to build a highly–efficient multibody software, aimed at thesimulation of biomechan-
ical systems.

All the applications mentioned in the previous paragraph have been coded in C++;
in the present work, C++ has been selected as programming language too. Its object–
oriented features are missing in Fortran and C languages, commonly used in the multi-
body community, but more focused on procedural programming(Cary et al., 1997).
Moreover, regarding efficiency, a software package writtenin C++ can make use of
libraries coded in these more efficient languages in a relatively straightforward way.
Thus, the slight penalty in performance due to data abstraction in C++ codes (under
5%, with respect to plain C) can be overcome via the use of external highly efficient
routines, written in C or Fortran, when necessary. Additionally, C++ includes other
helpful characteristics such as the possibility of usingtemplatesand the standardized
management of exceptions.

An additional reason for selecting C++ as programming language is the consider-
able amount of available documentation and developing tools of good quality, many of

10 Design of a Software Architecture for MBS Simulation

them freely available in the Net. The design of the software can make use of standard-
ized solutions and design patterns, such as those describedby Meyers (1999, 2000)
and Alexandrescu (2001). The C++ Standard Library (STL) provides a set of common
classes and interfaces that greatly extend the core C++ language (Josuttis, 1999), and
other popular libraries have been recently proposed for standardization (Dawes et al.,
2009). By reusing these elements, the software developer can accelerate the writing of
the code with robust, already tested solutions.

The fact that the software is intended to be platform–independent must be borne in
mind during the design process of the code, avoiding implementations of C++ specific
of a certain compiler or operating system, at least in the case of the main compo-
nents defined in the core module, to keep the code portability. In the present work, the
software has been designed and tested to run under both Windows and Linux systems.

2.1.2 Methodology and development tools

The final requirements of the software in a research project are frequently difficult to
foresee when the programming of the code begins; in many cases, they are discovered
as the work progresses. This fact could be seen as an inconvenience; in this work,
however, it has been useful in order to evaluate the actual degree of modularity of
the software and the ability of the chosen programming solutions to be adapted to
new necessities. For this reason, many characteristics of the MBS software have been
added as new requirements were raised, instead of planning every detail completely
from the start of the project. This flexible methodology has revealed itself to be very
effective, even when new features of considerable entity have been incorporated to the
code, as it was the case of the addition of support for sparse storage to the original code
for dense matrices, or the introduction of a new module for the automatic generation
of equations.

Regarding the development and auxiliary tools that have been used in the present
project, the following ones are worthy to mention because oftheir critical impact on
code performance and maintenance:

� Compilers, responsible for building libraries and executables from the source
code.

� Build–process managers, which control the creation of the projects that rule the
compilation of the code.

� Version control systems, for keeping track of the changes in the code, especially
when several developers work on the same project.

� Documentation systems, which automate the generation of the reference docu-
ments.

The tools required by a truly open and collaborative software must be easy to obtain,
so the lack of a license or a highly expensive retail price arenot an obstacle for building
the program. For this reason, open source tools, accessiblethrough the Net, have been
preferred for this study.

2.1Analysis of software requirements 11

Compilers

As the tool that converts the C++ source code into libraries and executables, the com-
piler is a key component in the building of an MBS simulation software. Most com-
pilers can carry out their own particular optimizations in the code, so they are also
a factor to consider when measuring the performance of a program. Moreover, some
specific techniques, such as the parallelization via OpenMPdescribed in Chapter 4,
are only supported by certain compilers. The selection of a compiler is also a func-
tion of the operating system and the computer architecture.The use of Windows– and
UNIX–based compilers helps checking the portability of thecode: in this research,
this has been done with Microsoft Visual Studio (Microsoft,2009) and GCC (Free
Software Foundation, 2009).

Profiling tools are a complement to the compiler, particularly useful to detect bot-
tlenecks that slow down the execution of the code, and also those parts of the software
most adequate for optimization. Their characteristics vary greatly, and not many of
them, with an suitable quality, are open source or freely distributed. Valgrind (Val-
grind developers, 2009) is an exception and has been used in this research.

Additional include directories

include_directories (${MBSLAB_HOME})

Files that form the executable

set (Double_Pendulum_FILES

./Double_Pendulum.cpp

./Double_Pendulum.hpp

./DP_driver.cpp)

Create executable from files

add_executable (Double_Pendulum

${Double_Pendulum_FILES})

Link executable to core library

target_link_libraries

(Double_Pendulum mbscore)

Figure 2.1:Example of CMake directives for the generation of an executable

Build–process managers

The diversity of compilers that can be used for building the software has given rise
to an additional problem, unexpected when this work was started. Every compiler re-
quires a project file or a series ofmakefilesto regulate its work, deciding which files are
to be compiled, and which options must be used during the process. The maintenance
of these project files can become a cumbersome, annoying taskwhen the number of
supported compilers in the software project grows. Build–process manager systems
solve this problem, automatically building the project files or makefilesfrom scripts

12 Design of a Software Architecture for MBS Simulation

that are independent from the operating system and the compiler. CMake (Martin and
Hoffman, 2007) has been selected for this work; an example ofits directives for ruling
the compilation of the code is displayed in Figure 2.1. As thefigure shows, CMake
directives must be coded in its own language, but the small effort the programmer
must make to learn it is clearly compensated by the advantages of having just one set
of script files, valid for guiding the compilation of the codein a considerable number
of common operating systems and compilers.

Version control systems

The use of version control systems is recommended when developing software in a
collaborative way, to synchronize the additions and modifications in the code. Even
when the development is not collaborative, these systems can still be used to keep
track of the changes in the code, test modifications and revert them when needed.
Subversion (SVN) (Tigris.org, 2009) has been used as it has replaced the traditional
Concurrent Versions System (CVS) as version control standard. As this work was
being developed, new control systems have arisen, which avoid requiring a central
repository of source code through the use of distributed architecture. This means that
each developer has a local copy of the entire history of the software. Examples of
distributed systems of control version are Mercurial (Selenic Consulting, 2010) and
Bazaar (Canonical Ltd., 2010); currently they can be found in a mature state and used
for the development of complex code projects.

Documentation systems

Finally, the use of a semi–automatic documentation system simplifies the task of writ-
ing reference files for each C++ element created in the project, though a minimum
amount of work in this field must always be done by developers.The software in this
thesis is documented with Doxygen (van Heesch, 2009). This tool parses special com-
ment lines placed in the C++ source files of the software and intext files, describing
the way in which classes, functions and other components work. It is configurable and
its portability allows documenting the code with the same commentaries, indepen-
dently of the platform where the software is developed. The comments inserted in the
code are used by Doxygen to generate documents in HTML or TEX format that can
be later improved by the programmers with their explanatorynotes.

2.2 Description and general structure

The basic core of the developed multibody software is a general purpose program
aimed at the simulation of generic multibody mechanisms going through large rota-
tions and highly non–linear equations. For a multibody system, defined by a set of
generalized coordinatesq, the nonlinear equations of motion can be written as a sys-

2.2Description and general structure 13

tem of Differential Algebraic Equations (DAE) as follows:

M Rq C ˆ
T
q � D Q

ˆ D 0
(2.1)

whereM is the mass matrix of the system,Rq is the vector of second derivatives of
the generalized coordinates (accelerations),ˆ is the vector of constraint equations of
the system,̂ q is the Jacobian matrix of the constraint equations with respect to the
generalized coordinates,� is the vector of Lagrange multipliers, andQ is the vector of
generalized forces that applies to the generalized coordinates. Equations (2.1) cannot
be directly managed by most integrators, so they must be converted into Ordinary
Differential Equations (ODE) through the use of a convenient dynamic formulation,
as it will be explained in Section 2.3.

The simulation software is designed to be able to manage different types of coor-
dinates. In this work, however, natural coordinates, global and dependent (Garcı́a de
Jaĺon and Bayo, 1994), are used for modelling the systems. Natural coordinates de-
scribe the position of the elements of the system by means of basic points and unit
vectors associated with the bodies of the system. For this reason, there is no need for
the use of rotation parameters, such as Euler angles, to describe the rotation of the
bodies.

x y

z
r

0r

O

z

x

y

P

1v

2v

3v r

Figure 2.2:Generic rigid body, parameterized with natural coordinates

A description in natural coordinates of a generic rigid bodycan be seen in Fig-
ure 2.2; the use of natural coordinates for flexible bodies isdescribed in detail by
Cuadrado et al. (1996). The global position of an arbitrary particle of the rigid body
P can be expressed by its position vectorr . If the unit vectorsv1, v2 andv3, which do
not need to be co–lineal with the local axes of the body (Nx, Ny and Nz), form a base of
the local frame of reference, the position of the particleP can be expressed as a linear

14 Design of a Software Architecture for MBS Simulation

combination of these vectors, in the following way:

r D r0 C Nr D r0 C ˛v1 C ˇv2 C v3 (2.2)

wherer0 is the position vector of the origin of the local frame of reference of the body,
Nr is the position vector of particleP in the local frame of reference, and̨, ˇ and
are constant coefficients of linear combination. Using a proper selection of the basic
points and unit vectors of the body, the mass matrixM remains constant during large
rotations. This unique feature of the natural coordinates simplifies the equations of
motion since inertial forces that depend quadratically on velocities do not appear in
them.

Finally, constraint equations representing kinematic joints between bodies must be
added in order to complete the modelling of the system. Theseequations are defined
in the constraints vector,̂ .

Algebra libraries

Core module

Main program

(.exe)

Core routines

(mbsCore)

MATLAB interface

(mbsMatlab)

Additional modules

Graphics

(mbsGraphics)

Other

(…)

Linear solvers

Ax b

Operations

, ...aAx x y,

Figure 2.3:General layout of MBS simulation software

The main structure of the MBS simulation software is depicted in Figure 2.3. The
software is designed as a modular series of libraries, each of which is responsible for a
particular task in the simulation. The main library is designed as thecore moduleand
it is described in detail in Section 2.3; it contains the numeric integration routines, the
multibody dynamic formulations for converting the DAE’s inEquation 2.1 into a set
of ODE’s, and the basic components for building the models ofthe multibody systems
to be simulated. The core module, in turn, invokes basic algebraic functionality, such
as routines for the solution of linear systems and matrix–vector operations, from a set
of algebra libraries. These libraries are third–party software, and their selection and
tuning are described in Chapters 3 and 4.

In addition to the fundamental multibody facilities contained in the core module,

2.3Core module 15

the functionality of the software can be further expanded through the definition and
implementation ofadditional modules. Thus, libraries can be defined that add commu-
nication with external software (as it is the case of the MATLAB interface described
in Chapter 5), manage the graphic representation of the results or perform pre– or
post–processing of the obtained data. These additional modules, in turn, can use the
functions implemented in the core module, in case they need them.

Finally, adriver or mainprogram that defines the problem to be solved, manages
the execution of the simulation and controls the calls to themultibody library functions
must be defined. Several examples have been built, tested andadded to the software
asdemos. A brief review of them is included in Section 2.5.

2.3 Core module

The core module of the MBS software has been designed following the same princi-
ples that inspire the structure of the whole architecture. It is a modular component,
allowing the easy replacement of its parts, even with external, third–party programs
and libraries. A scheme of the structure of the core module can be seen in Figure 2.4.

Basic MBS functionality Additional functionality

Interface

Interface

Generation of

equations of motion

I/O routines

Flexibility

…
Numerical integrator

1 1, ,
n n n

tq f q q

Dynamic formulation
T

q
Mq Q+ =

Model

, ,...M Q,

Figure 2.4:Structure of the core module of the MBS software

The basic MBS functionality of the module is provided by three core elements: a
model of the multibody system to be simulated, a dynamic formulation for converting
the equations of motion of the system (the DAE’s in Equation 2.1) into ODE’s, and
a numerical integrator that obtains the value of the generalized coordinates in the
next time–step from already known values of accelerations,velocities and positions.
As a wide variety of numerical integrators and multibody formulations exists, not to
mention the practically infinite collection of multibody problems that can be defined,
template patterns for the definition of these elements have been created. In this way,
C++ abstract base classes for the definition of models, formulations and integrators

16 Design of a Software Architecture for MBS Simulation

have been written; the particular instances of each of them have been derived from
these base classes through public inheritance, implementing the methods defined in
their prototypes and thus satisfying their pre–defined interface.

The storage containers for matrices and vectors in this module have been obtained
from the uBLAS library (Walter. et al., 2009), a C++ templateclass library, part of the
Boost libraries, instead of using plain C++ vectors or arrays.

2.3.1 Implementation of models

Themodelcomponent in the structure of the MBS software is the part of the code that
is responsible for the evaluation of the dynamic terms of theproblem, such as the mass
matrix M , the constraints vector̂ or the generalized forces vectorQ. Obviously, the
expression of these terms is closely related to the structure of the physical model to be
simulated so, in practice, the expression of dynamic terms must be particularized for
each problem. For this reason, only the prototype that each particular implementation
of the model must comply with is defined in the core module. Fornatural coordinates,
this is done in the abstract base classGlobalModel. Every global model instance must
be derived from this class and implement every virtual method declared in its proto-
type. The model instance will also be in charge of storing thevalues of the generalized
coordinates of the systemq and their derivatives,Pq and Rq.

The methods defined in the prototype of base classGlobalModel, besides the
constructoranddestructoralways required by C++, can be classified in three main
groups:

� Methods that evaluate and return the dynamic terms of the model. Most global
dynamic formulations require the same terms to be provided to them: mass ma-
trix M ; generalized forces vectorQ; constraints vector̂ with its derivatives
with respect to time, in case they exist,ˆ t and P̂

t ; the Jacobian matrix of the
constraints vector with respect to the generalized coordinatesˆq and its time
derivative P̂ q; and, finally, stiffness and damping matricesK and C, in case
they are needed.

� Methods that provide access to the vectors that contain the generalized coor-
dinates of the system and their time derivatives, privatelystored by theGlob-
alModelclass.

� Methods that return information about the nature of the model: its size, the num-
ber of constraint equations it has and other features, such as whether the mass
matrix and the vector of forces are constant or whether the stiffness and damp-
ing matrices are required. This information is very important to accelerate the
execution of the code, avoiding unnecessary evaluations ofthe dynamic terms
and the allocation of excessive memory for the storage entities.

Once the base classGlobalModelhas been defined, models of mechanical sys-
tems can be manually implemented by simply deriving a new model class by public
inheritance and writing the code for each method defined in the prototype. Although

2.3Core module 17

this can be sometimes convenient for efficiency reasons, it becomes a cumbersome
and prone to errors task for medium–size and large systems. This is why an additional
inner module has been created to automatically generate thedynamic terms of the
system from the inertial properties of the bodies it is made up of, the forces that act
on the bodies and the physical constraints that link them. This module is described in
Section 2.3.4.

2.3.2 Implementation of dynamic formulations

Contrary to what happened with model instances, dynamic formulations can be reused
without modifications in different simulations, so a library of formulations can be con-
structed inside the core module. This library can be later enlarged as new formalisms
are coded.

Thedynamic formulationcomponent of the core module includes the matrix and
vector containers for the storage of the dynamic terms of thesystem. These matrices
and vectors are passed by reference to the model, which evaluates and then returns
them, using the standardized methods defined in the prototype of abstract classGlob-
alModel. The use of this interface makes models and dynamic formulations easily
replaceable.

The formulation is also in charge of enabling the numeric integration of the equa-
tions of motion given by Equation 2.1. The equations of motion are DAEs, which must
be converted into ODEs for their numerical integration. Theabstract base classes for
dynamic formulations can be categorized into two groups, namely first or second or-
der, depending on the order in which the formulation returnsthe ODEs representing
the equations of motion. The expression of the equations of motion as second order
ODEs leads to a system of the form

LO2 Rq D RO2 (2.3)

whereas the first order ODEs take the following form

LO1 Py D RO1 (2.4)

wherePy stands for a vector containing the velocities and accelerations of the system,
Py D fPq; RqgT, andL andR are the leading matrix and right–hand–side vector of each
system, respectively. As some integrators are only able to manage first order ODEs,
an additional intermediate classOde2ToOde1that manages second order ODEs as if
they were first order ones has to be defined.

A second division can be made depending on the way in which theintegrator
receives the equations the formulation generates. If the integrator requires the formu-
lation to yield the time derivatives of the variables of the system, this is,Rq or Py, then
the formulation will be denoted asexplicit. Theevalmethod of these classes, declared
in the prototype of the abstract ODE classes, must return theabove–mentioned vec-
tors of time derivatives. However, some integrators receive as arguments the leading
matrix L and the residual vectorR of the system instead; in this case, two methods

18 Design of a Software Architecture for MBS Simulation

are required to communicate with the integrator, one for returning the leading matrix
of the system (evalTangentMatrix), and another one for the right–hand–side vector
(evalResidual), and the formulation will be labelled asimplicit. It should be noted that
the difference betweenimplicit andexplicit formulations has nothing to do with their
inner algorithms, but it is related to the way in which they submit their results to the
integrator.

2.3.3 Implementation of integrators

The upper level in the numeric core module corresponds to theintegrator. The integra-
tor receives the terms calculated by the dynamic formulation and evaluates from them
the value of the generalized coordinates of the system,q and their first time derivatives
Pq in the next time–step. These values are then transferred to the dynamic formulation
and the model, and the process can be restarted at the following integration step, or
at the next iteration if convergence has not been attained yet, in the case of implicit
integrators.

From the point of view of the definition of the base classes, there is no differ-
ence between explicit and implicit integrators. All of themreceive the output of their
correspondent formulation and update the values of the position and velocity vectors
after the integration step has been taken. Every numerical integrator implemented in
the library derives from an abstract base class,DynSolver. The prototype of the class
describes the functions for controlling the execution of the integration, triggering the
start of the calculations and setting the initial and final time of the motion. The ad-
vance of a time–step in the integration is done through a callto thestepmethod. All
these methods must be invoked by the driver program, so the integrator constitutes the
truly external interface of the core module.

In some cases, the degree of interaction between the dynamicformulation and the
integrator is so high that the equations of motion cannot be separated from the integra-
tor. This is the case, for example, of the index–3 augmented Lagrangian formulation
with projection of velocities and accelerations, described by Cuadrado et al. (2001)
and used in Sections 3.2.2 and 4.2.1. In such cases, the use ofC++ multiple inheri-
tance enables the creation of classes that behave, at the same time, as integrators and
dynamic formulations. Thedynamic formulationand integrator components can be
therefore merged into a single block, with no side effects onthe standard interfaces
nor on the behaviour of the core module.

2.3.4 Additional functionality

The described basic functionality of the core module is intended to be expanded
through the addition ofinner modules. Ideally, these modules must be added with-
out modifying the main structure of the basic part of the coremodule. The purpose of
the inner modules is to improve the performance of the basic core, or to add new func-
tionality to it, so their removal would not prevent the software from running elemental
simulations. The features comprised in them range from simple input–output routines,

2.3Core module 19

which allow the pouring of simulation data into storage filesin a standard format, to
the addition of flexibility to the models, or the automatic generation of the equations
of motion of the system. Some of the modules that have been implemented are briefly
described in the following paragraphs.

I/O routines

The definition of routines for allowing reading from and writing to files enables the
use of the simulation software in combination with pre– and post–processing external
tools. To this end, matrices and vectors must be converted from the storage format data
the software uses (in this case, uBLAS matrix and vector containers) to some standard
storage format. Read and write routines for conventional ASCII storage and Matrix
Market (NIST, 2007) formats have been written. This way, results can be shared with
other simulation codes and applications, and simulation results can be stored after
execution.

Interface to external linear solvers

The routines for the solution of linear equation systems in the formA � x D b play a
key role in the efficiency of the code. The nature of this work requires to evaluate the
performance of several linear solvers, so modularity is necessary again here for the
easy replacement of the components. The uBLAS library incorporates its own linear
solvers, compatible with uBLAS storage formats, but their efficiency has been found
to be low. An interface for the use of efficient, third–party software linear solvers has
been written, so that external solvers, coded in Fortran or C/C++, can be used. The
particular implementation details of the different external solver libraries imply that a
new interface must be implemented for each of them.

Automatic generation of the equations of motion

The manual coding of the methods that build the dynamic termsof the model can be-
come an awkward task when the number of variables and constraint equations of the
system increases. Non–trivial simulation models can easily reach hundreds of vari-
ables, with a similar number of constraints. Even when working with relatively small
systems, the automatic generation of the equations of motion can save time and pre-
vent mistakes from arising. At the same time, in some cases the user may want to
manually write or edit the expression of the dynamic terms, so both ways of creat-
ing them must be available in the software. Moreover, different strategies to assemble
the equations of motion can be compared, in order to select the most effective and to
estimate the overhead this task adds to the execution of the code.

In order to allow the automatic generation of the equations,classes for the defi-
nition of the variables, bodies, constraints and forces that are part of the system have
been defined. These classes are responsible for the assemblyand evaluation of the dy-
namic terms of the system. A new class,ConstraintsModel, has been defined, which
inherits from the abstract classGlobalModel, implements the code for the methods the

20 Design of a Software Architecture for MBS Simulation

latter declares and contains storage elements for the components of the mechanism.
Instead of writing the code for the evaluation of the matrices and vectors of the dy-
namic terms, the user can now define the list of components of the model, the joints
that link them, and the forces that affect the motion.

The final level of this module is the automatic generation of the variables, bodies,
constraints and forces from the data defined in a text file describing the geometry and
properties of the simulated mechanism. The module is currently being developed in
order to reach this goal.

2.4 Additional modules

The additional modules in Figure 2.3 have the purpose of adding extra non–multibody
functionality to the core module of the software. The use of these modules is optional,
so the user can decide not to build them if they are not necessary in a particular case.
Furthermore, users can write and add their own additional modules if they need them.
In order to maintain compatibility, the additional modulesmust use the multibody
routines defined in the header file of the core module,mbscore.h, and the storage
formats used in the main core; alternatively, they can use a different format using the
proper translation routines, although this strategy wouldpenalize the performance of
the code.

ThembsMatlablibrary for communication with MATLAB/Simulink, described in
Chapters 5 and 6 of this thesis, is an example of additional module. More modules
for the communication with similar packages could be written in a similar way. Other
extra additional modules can be written for providing a graphical representation of the
simulation, acting as an intermediary between the core module and a graphics library
such as OpenSceneGraph (OSG Community, 2009), or for creating a Graphic User
Interface (GUI) through the use of QT (Nokia, 2009) or wxWidgets (The wxWidgets
team, 2009) libraries.

2.5 Examples of multibody problems

The validation of the MBS simulation software is carried outthrough the solution of
simple benchmark examples, such as those described by González et al. (2006). In
particular, theL–loop four–bar linkage mechanism has been intensively usedin this
work, as it can be seen in Sections 3.2.1, 4.2.1 and 5.4. Othersimple mechanical sys-
tems, such as slider–cranks and pendulums, have been programmed and solved, too.
In order to simulate the motion of these mechanical systems,a reduced set of well–
known formulations and integrators has been coded and addedto the core module of
the software. This set can be easily enlarged with new components, as long as their im-
plementations fit the prototypes described by the abstract base classes for formulations
and integrators.

2.5Examples of multibody problems 21

2.5.1 Examples of dynamic formulations

Among the many multibody formalisms available today, threeglobal dynamic formu-
lations have been initially selected for solving the above–mentioned test problems. All
of them are simple to implement and can be easily compared in terms of efficiency.

The first formalism is a penalty formulation, proposed by Bayo et al. (1988), which
modifies the generic equations of motion of the system, givenby Equation 2.1, by
substituting the unknown value of Lagrange multipliers (�) with a value proportional
to the violation of the constraints vector (ˆ):

� D ˛
�

R̂ C 2�! P̂ C !2
ˆ

�

(2.5)

where� and! are Baumgarte’s stabilization parameters and˛ is the penalty factor, a
scalar whose value is usually taken as107 times the largest term of the mass matrix.
Replacing this expression in Equation 2.1, together with the adequate forms of the
derivatives of the constraints vector, yields

�

M C ˛ˆ
T
q ˆq

�

Rq D Q � ˛ˆ
T
q

�

P̂ q Pq C 2�! P̂ C !2
ˆ C P̂

t

�

(2.6)

and the value of the accelerations of the system (Rq) can be obtained from this expres-
sion, provided the dynamic terms of the system are known.

The second implemented formulation is an augmented Lagrangian one, in the form
described by Garcı́a de Jaĺon and Bayo (1994):

�

M C ˛ˆ
T
q ˆq

�

Rq D Q � ˆ
T
q

h

�i C ˛
�

P̂ q Pq C 2�! P̂ C !2
ˆ C P̂

t

�i

(2.7)

that evaluates the Lagrange multipliers of the system via the following iterative pro-
cess:

�iC1 D �i C ˛
�

R̂ C 2�! P̂ C !2
ˆ

�

(2.8)

wherei represents the iteration number. The value of the Lagrange multipliers is sub-
stituted in Equation 2.7 after each iteration, obtaining a new value of the accelerations
and leading thus to an improved value of the multipliers. In practice, no more than
three iterations are enough to achieve a good convergence.

Finally, preliminary tests showed the augmented Lagrangian formulation of index–
3 with projections to be the most efficient one, and thereforeit has been used in the
subsequent work of this thesis. This formalism incorporates a numerical integrator, the
well–known trapezoidal rule, in the implementation of its own algorithm; moreover,
the different stages it is made up of are closely related to the way in which the opti-
mization techniques introduced in Chapters 3 and 4 are implemented. For this reason,
its structure will be described in more detail in these Chapters, under Sections 3.2.2
and 4.2.1.

22 Design of a Software Architecture for MBS Simulation

2.5.2 Examples of integrators

Two integrators, one explicit and another one implicit, have been used in the initial
tests of the MBS software. The first one is the explicit Runge–Kutta formula of second
order. In the present work, this integrator has been implemented to manage first order
ODEs, according to the expression:

ynC1 D yn C
�t

2
.Py1 C Py2/ (2.9)

where

Py1 D f .yn; t/

Py2 D f .yn C Py1�t; t C�t/
(2.10)

with f .y; t/ representing the evaluation of the time derivatives of the positions and ve-
locities of the system for a certain value of these variablesand the time. The integration
time–step from instantn to nC1 is noted as�t . This integrator is not unconditionally
stable, so its use must be constrained to systems without high stiffness. A detailed
description of the algorithm can be found in books of numerical analysis (Shampine,
1994).

The other method of numerical integration is the well–knownNewmark family
of formulae (Newmark, 1959), an easy to implement, implicit, single–step integrator
with good stability properties. Its second order form is thefollowing one:

qnC1 D qn C�t Pqn C
�t2

2
Œ.1 � 2ˇ/ Rqn C 2ˇ RqnC1�

PqnC1 D Pqn C�t Œ.1 � / Rqn C RqnC1�

(2.11)

whereˇ and are scalar parameters. The trapezoidal rule is a particularcase of this
method in whichˇ D 1=4 and D 1=2; this is equivalent to assuming that the
value of the accelerations is constant during the time interval Œtn; tnC1� and equal to
. Rqn C RqnC1/ =2. This implicit algorithm can be used in a predictor–corrector fashion,
with fixed point iteration, although it is commonly introduced in the equations of
motion of the system, as it is the case in the above–mentionedaugmented Lagrangian
formulation of index–3, and solved through the Newton–Raphson iteration.

2.6 Conclusions

The design of a software architecture for the simulation of multibody systems is a
complex task, where many alternatives, sometimes mutuallyexclusive, must be con-
sidered and compared before making a choice. The difficulty of the job increases when
it has to be carried out from scratch, due to the practical impossibility of predicting
every requirement of the software during its useful life beforehand. From this point
of view, flexibility and modularity arise as evident design goals; however, these tar-
gets must be achieved, as far as possible, without hinderingthe efficient execution of

2.6Conclusions 23

the multibody algorithms, which would render the whole software useless for many
practical applications.

The software architecture developed during the carrying out of this thesis has been
designed to simultaneously meet these two apparently contradictory aims. Efficient
computational routines for MBS simulation have been implemented in a core mod-
ule, enabling the fast replacement of components without affecting the main structure
of the code. Several examples of models, dynamic formulations and integrators have
been implemented and tested to verify the modularity and efficiency of the architec-
ture. The layout of the whole software has been built on the basis of this core module,
with additional modules linked to the main one through standardized interfaces. Thus,
a virtually infinite number of additional features can be added to the basic multibody
functionality, enabling the software to meet new additional conditions.

Several conclusions about the design and building of a MBS software have been
extracted and constitute valuable guidelines for the developers of multibody codes:

� The object–oriented approach is the most adequate for the programming of soft-
ware for the simulation of multibody systems. Among the manydifferent lan-
guages under this paradigm, C++ shows the best trade–off between the flexibil-
ity provided by its object–oriented features, such as inheritance and templates,
and efficiency.

� The most computationally expensive parts of the code, such as dynamic solvers
and matrix calculations, can be implemented in efficient procedural languages
and then linked to the C++ main architecture with little effort. Optimized ver-
sions of matrix routines and linear solvers exist and are freely available in In-
ternet, and can be used to deal with these segments of code in an effective and
convenient way.

� There is a wide variety of freely available tools for the development of C++
source code. The use of these auxiliary tools is highly recommended, specially
of build–process managers and version control systems. These tools greatly con-
tribute to the flexibility of the software and reduce the required workload to syn-
chronize the development of the code among several programmers. They also
allow the same source code to be built in different computer environments.

These guidelines have been applied during the elaboration of the MBS software in
this work, the one which has been used as a basis to carry out the research described
in the following Chapters.

Chapter 3

Linear Algebra Implementation

This Chapter compares the efficiency of multibody system (MBS) dynamic simula-
tion codes that rely on different implementations of linearalgebra operations. The
dynamics of anL–loop four–bar mechanism has been solved with an index–3 aug-
mented Lagrangian formulation combined with the trapezoidal rule as numerical in-
tegrator. Different implementations for this method, bothdense and sparse, have been
developed, using a number of linear algebra software libraries (including sparse linear
equation solvers) and optimized sparse matrix computationstrategies. Numerical ex-
periments have been performed in order to measure their performance, as a function
of problem size and matrix filling. Results show that optimalimplementations can in-
crease the simulation efficiency in a factor of 2–3, comparedwith the starting classical
implementations, and in some topics they disagree with widespread beliefs in MBS
dynamics. Finally, advices are provided to select the implementation which delivers
the best performance for a certain MBS dynamic simulation.

3.1 Introduction

Dynamic simulation of multibody systems (MBS) is of great interest for the dynam-
ics of machinery, road and rail vehicle design, robotics andbiomechanics. Computer
simulations performed by MBS simulation tools lead to more reliable, optimized de-
signs and significant reductions in cost and time of the product development cycle.
The computational efficiency of these tools is a key issue fortwo reasons. First, there
are some applications, like hardware–in–the–loop settings or human–in–the–loop de-
vices, which cannot be developed unless MBS simulation is performed in real time.
And second, when MBS simulation is used in virtual prototyping, faster simulations
allow the design engineer to perform what–if analyses and optimizations in shorter
times, increasing productivity and interaction with the model. Therefore, computa-
tional efficiency is an active area of research in MBS, and it holds a relevant position
in MBS–related scientific conferences and journals.

A great variety of methods to improve simulation speed have been proposed during
the last years, e.g. Cuadrado et al. (1997), Bae et al. (2000)and Anderson and Critch-

25

26 Linear Algebra Implementation

ley (2003), among others. Most of these methods base their efficiency improvements
on the development of new dynamic formulations. However, although implementation
aspects can also play a key factor in the performance of numerical simulations, their
effect on multibody system dynamics has not been studied in detail. Some recent con-
tributions have investigated the possibilities of parallel implementations (Anderson
et al., 2007), but comprehensive comparisons about serial implementations in MBS
dynamics have not been published yet.

Multibody dynamics codes make an intensive use of linear algebra operations.
This is especially true inO

�

n3
�

formulations, wheren is the number of bodies in the
multibody system, as it is the case of many global formulations, which use a relatively
large number of coordinates and constraint equations to define the problem, leading
to the need of solving a large system of linear equations. These formulations spend
around 80% of the CPU–time in matrix computations. Other formalisms have been
developed that lead toO .n/ algorithms, reducing the size of the system of equations
to be solved, but at the cost of considerably increasing the number of required matrix
computations. Moreover, if flexible bodies are considered,the percentage of simula-
tion time inverted in matrix operations can become even higher.

As a result, the implementation of linear algebra operations is critical to the effi-
ciency of MBS dynamic simulations. These operations can be grouped into two cate-
gories: (a) operations between scalars, vectors and matrices, and (b) solution of linear
systems of equations; two additional orthogonal categories can be established based
on the data storage format: dense storage or sparse storage.Many efficient implemen-
tations for these routines have been made freely available in the last decade. Their per-
formance has been compared in previous works, both in an application–independent
context such as Gupta (2002), Gould et al. (2007) and Whaley etal. (2001) and under
the perspective of a particular application like Finite Element Analysis (Turek et al.,
2001) or Computational Chemistry (Yu and Yu, 2002). But, as it will be explained
in this Chapter, these studies do not fit the particular features of MBS dynamics, and
therefore their conclusions cannot be extrapolated to thisfield.

The goal of this Chapter is to compare the efficiency of different implementations
of linear algebra operations, and study their effect in the context of MBS dynamic
simulation. Results will provide guidelines about which numerical libraries and im-
plementation techniques are more convenient in each case. This information will be
very helpful to researchers developing high–performance or real–time multibody sim-
ulation codes.

The remainder of the Chapter is organized as follows: Section 3.2 describes the test
problem and the dynamic formulation used in the numerical experiments to compare
the efficiency of different implementations; Sections 3.3 and 3.4 present efficient im-
plementations for dense and sparse linear algebra, respectively; Section 3.5 compares
the results obtained in Sections 3.3 and 3.4 and extrapolates them to other dynamic
formulations; finally, Section 3.6 provides conclusions, advices for efficient imple-
mentations and areas of future work.

3.2Benchmark setup 27

3.2 Benchmark setup

In order to study the effect of linear algebra implementations in MBS dynamic sim-
ulations, a test problem has been solved with a particular dynamic formulation using
different software implementations. A starting implementation will also be described,
since its efficiency will serve as a reference to measure performance improvements.

3.2.1 Test problem

The selected test problem is a 2D, one degree–of–freedom assembly of four–bar link-
ages withL loops, composed by thin rods of 1 m length with a uniformly distributed
mass of 1 kg, moving under gravity effects. Initially, the system is in the position
shown in Figure 3.1, and the velocity of thex–coordinate of point B0 is +1 m/s. The
simulation time is 20 s. This mechanism has been previously used as a benchmark
problem for multibody system dynamics (Anderson and Critchley, 2003; Gonźalez
et al., 2006).

g = 9.81 N/kg

x

y

Loop 1 Loop L

A0 A1

B0 B1

AL-1 AL

BL-1 BL

Figure 3.1:L–loop four–bar linkage

3.2.2 Dynamic formulation

TheL–loop four–bar mechanism has been modelled using planar natural coordinates,
global and dependent (Garcı́a de Jaĺon and Bayo, 1994), leading to2L C 2 variables
(thex andy coordinates of the B points), and2L C 1 constraints, associated with the
constant length condition of the rods. The equations of motion of the whole multibody
system are given by the well–known index–3 augmented Lagrangian formulation in
the form:

M Rq C ˆ
T
q˛ˆ C ˆ

T
q �

� D Q

�
�

iC1 D �
�

i C ˛ˆiC1I i D 0; 1; 2; :::
(3.1)

whereM is the mass matrix (constant for the proposed test problem),Rq are the accel-
erations,̂ q the Jacobian matrix of the constraint equations,˛ the penalty factor,̂

28 Linear Algebra Implementation

the constraints vector,�� the Lagrange multipliers vector andQ the vector of applied
and velocity dependent inertia forces. The Lagrange multipliers for each time–step are
obtained from an iterative process, where the value of�

�

0
is equal to the�� obtained

in the previous time–step.
As integration scheme, the implicit single–step trapezoidal rule has been adopted.

The corresponding difference equations in velocities and accelerations are:

PqnC1 D
2

�t
qnC1 C OPqnI OPqn D �

�

2

�t
qn C Pqn

�

RqnC1 D
4

�t2
qnC1 C ORqnI ORqn D �

�

4

�t2
qn C

4

�t
Pqn C Rqn

� (3.2)

Dynamic equilibrium can be established at time–stepn C 1 by introducing the
difference equations (3.2) into the equations of motion (3.1), leading to a nonlinear
algebraic system of equations with the dependent positionsas unknowns:

f .q/ D 0 D

D MqnC1 C
�t2

4
ˆ

T
qnC1

.˛ˆnC1 C �nC1/ �
�t2

4
QnC1 C

�t2

4
M ORqn

(3.3)

Such system, whose size is the number of variables in the model, is solved through
the Newton–Raphson iteration

�

@f .q/
@q

�

i

�qiC1 D � Œf .q/�i (3.4)

using the approximate tangent matrix (symmetric and positive definite)

�

@f .q/
@q

�

Š M C
�t

2
C C

�t2

4

�

ˆ
T
q˛ˆq C K

�

(3.5)

whereC andK represent the contribution of the damping and elastic forces of the
system (which are zero for the test problem). Once convergence is attained into the
time–step, the obtained positionsqnC1 satisfy the equations of motion (3.1) and the
constraint conditionŝ D 0, but the corresponding sets of velocitiesPq� and accel-
erationsRq� may not satisfy P̂ D 0 and R̂ D 0. To achieve this, cleaned velocities
Pq and accelerationsRq are obtained by means of mass–damping–stiffness orthogonal
projections, reusing the factorization of the tangent matrix:

�

@f .q/
@q

�

Pq D

�

M C
�t

2
C C

�t2

4
K

�

Pq� �
�t2

4
ˆ

T
q˛ˆ t

�

@f .q/
@q

�

Rq D

�

M C
�t

2
C C

�t2

4
K

�

Rq� �
�t2

4
ˆ

T
q˛

�

P̂ q Pq C P̂
t

�

(3.6)

This method, described in detail by Cuadrado et al. (2000), has proved to be a
robust and efficient global formulation (Cuadrado et al., 2001, 2004a). All the sub-
sequent numerical experiments have been performed using astime–step a value of

3.3Efficient dense matrix implementations 29

�t D 1:25 � 10�3 s and a penalty factor̨ D 108.

3.2.3 Starting implementation

In the starting implementation, the simulation algorithm was implemented using For-
tran 90 and the Compaq Visual Fortran compiler. Two versionswere developed:

� A dense matrix storage version, using Fortran 90 matrix manipulation capabil-
ities and the linear equation solver released with this compiler (IMSL Fortran
Library, from Visual Numerics).

� A sparse matrix storage version, using the MA27 sparse linear equation solver
from the Harwell Subroutine Library.

These two implementations, typical in the multibody community, have been tuned
and improved by our group during the last years, and they haveproved to be faster
than commercial codes (Cuadrado et al., 2001, 2004a). Theirefficiency has served as
a reference to measure the performance improvements achieved with the new imple-
mentations proposed in this work.

Table 3.1:Percentage of the total CPU–time required by each algorithmphase in the
starting implementation for typical problem sizes: dense version in small problems
(10 loops, 22 variables) and sparse version in medium–size problems (40 loops, 82
variables)

Stage Dense Sparse

Evaluation of residual and tangent matrix, Eqs. (3.1), (3.5) 48% 15%
Evaluation of right–hand–side in projections, Eq. (3.6) 4% 13%
Factorizations and back–substitutions, Eqs. (3.4), (3.6) 44% 51%
Other 4% 21%

Table 3.1 shows the results of a CPU usage profiling in our starting implementa-
tion, for both dense and sparse versions, applied to representative problem sizes. As
stated in the introduction to this Chapter, matrix computations consume most of the
CPU–time.

In order to test alternative implementations, the MBS simulation software de-
scribed in Chapter 2 has been used. Numerical experiments have been performed on
an AMD Athlon64 CPU. After testing different operating systems and compilers, re-
sults show that their effect on the performance is an order ofmagnitude lower than the
effect of linear algebra implementations. Final CPU–timeshave been measured using
the GNU gcc compiler and the Linux O.S., without loss of generality.

3.3 Efficient dense matrix implementations

Global formulations applied to reduced rigid models (e.g. an industrial robot), or re-
cursive and semi–recursive formulations applied to medium–size rigid models (e.g. a

30 Linear Algebra Implementation

complete road vehicle), lead to algorithms that operate with small–size matrices of di-
mensions smaller than50 � 50. In these cases, dense linear algebra is frequently used
in MBS dynamics, since it issupposedto provide equal or higher performance than
sparse implementations. Achieving real time in the simulation of these small problems
can be a challenge in hardware–in–the–loop settings (e.g. advanced Electronic Stabil-
ity Control systems for automobiles), due to the low computing power of embedded
microprocessors, the small time–steps required for hardware synchronization and the
added control logic.

A straightforward way to increase the performance of dense matrix computations
is using an efficient implementation of BLAS (Basic Linear Algebra Subprograms).
BLAS (NIST, 2009) is a standardized interface that defines routines to perform low
level operations between scalars, dense vectors and dense matrices. A Fortran 77 ref-
erence implementation is available, and more efficient implementations have been de-
veloped by hardware vendors and researchers.

These optimized BLAS versions exploit hardware features ofmodern computer
architectures to get the best computational efficiency. In addition to the reference For-
tran 77 implementation, three optimized BLAS implementations have been tested:

� ATLAS (Automatically Tuned Linear Algebra Software), which employs em-
pirical techniques to generate an optimal implementation for any hardware ar-
chitecture (Whaley et al., 2001);

� GotoBLAS, based on optimized assembler kernels, hand–written for the most
popular hardware architectures (Goto, 2009); and

� ACML, developed by the microprocessor manufacturer AMD forits CPU’s
(AMD, 2009). Other hardware vendors also provide their own implementations
(such as MKL from Intel and SCSL from SGI).

Dynamic simulations can also make a profit of these optimizedBLAS implementa-
tions in the solution of dense linear equation systems, provided the LAPACK library is
used (NETLIB, 2009), since its linear equation solvers are based on low–level BLAS
operations. In addition to the reference LAPACK implementation, written in Fortran
77, some optimized BLAS implementations like ATLAS and ACMLsupply their own
optimized versions of the LAPACK linear solvers.

The proposed test problem, with a number of loopsL ranging from 1 to 20 (i.e.
number of variablesN ranging from 4 to 42), was solved using different BLAS
and LAPACK implementations to perform all matrix computations. Since the tan-
gent matrix in the proposed dynamic formulation is symmetric and positive definite
(SPD), only the lower triangular part of the matrix is computed; the LAPACK routines
DPOTRF and DPOTRS have been used as linear equation solver. Performance results
are shown in Figure 3.2, where the legend text is encoded in the form “BLAS imple-
mentation + LAPACK implementation” (except for the starting implementation), and
the combinations are ordered by increasing efficiency.

Results in Figure 3.2 clearly show the advantage of using BLAS and LAPACK,
which speed up the simulation in a factor between 2 and 5, depending on the problem

3.4Efficient sparse matrix implementations 31

0

1

2

3

4

5

0 10 20 30 40

Number of variables N

C
P

U
 t

im
e

(s
)

Starting implementation

ATLAS+Ref.

ATLAS+ATLAS

ACML+Ref.

Ref.+Ref.

GotoBLAS+Ref.

ACML+ACML

Figure 3.2:Performance of different dense BLAS and LAPACK implementations

size, compared with our previous starting implementation.The low performance of
the ATLAS implementation, compared to the BLAS reference implementation, can
be explained by its high sensitiveness to the development environment (e.g. compiler
version) and its current unstable state (it is under strong development). The vendor
implementation (ACML) and GotoBLAS deliver the best results except for very small
problems (up to 10 variables). The implementation named “Ref.+Ref.” delivers the
best performance for very small problems, and 70–80% of the performance of the best
implementations for medium–size problems (3 times more efficient than our starting
implementation); in addition, it has a very good portability (it is written in plain For-
tran 77) and usability: the installation process is straightforward, which is not always
true for other implementations.

Since some MBS dynamic formulations lead to a non–symmetrictangent matrix
(Dopico et al., 2006), the same numerical experiment has been executed using general
algorithms (not SPD–specific) to compute all matrix operations; CPU–times are about
15% higher, but the efficiency ranking of Figure 3.2 is maintained.

3.4 Efficient sparse matrix implementations

In MBS dynamics, sparse matrix techniques are used in globalformulations applied to
medium– or big–size rigid models; as an example, a model in natural coordinates of an
automobile leads to matrices of dimension about200 � 200 (Cuadrado et al., 2004a).
If flexible bodies are considered, the matrix size increases, making sparse techniques
profitable even if recursive or semi–recursive formulations are used: a model in rel-
ative coordinates of the same automobile, with some of its bodies characterized as
flexible elements (described by component mode synthesis),leads to matrices of di-
mension about100 � 100. In any case, MBS models hardly ever lead to matrix sizes
bigger than1000 � 1000, significantly smaller than the typical sizes in other applica-

32 Linear Algebra Implementation

tions, like Finite Element Analysis (FEA) or ComputationalFluid Dynamics (CFD).
Regarding the sparsity, the proposed test problem and MBS dynamic formulation

lead to a tangent matrix of size2LC2 and12LC4 structural non–zeros. For matrices
of size50 � 50, 100 � 100 and500 � 500, the corresponding number of non–zeros is
12%, 6% and 1%. These are representative values for MBS simulations, and they are
considerably higher than typical values in other applications that require sparse matrix
technology (FEA, CFD).

Hence, MBS dynamics has two characteristics which make its sparse matrix com-
putations different from other applications:

� Matrix computations are very repetitive, and the sparse patterns usually remain
constant during the simulation. Therefore, symbolical pre–processing can be
applied to almost all matrix expressions at the beginning ofthe simulation, in
order to accelerate the numerical evaluations during the simulation.

� The involved sparse matrices are relatively small and dense, compared with the
typical values in sparse matrix technology.

3.4.1 Optimized sparse matrix computations

Several numerical libraries are available nowadays to support sparse matrix computa-
tions: MTL, MV++, Blitz++, SparseKIT, etc. For our new implementations, we have
chosen uBLAS, a C++ template class library that provides BLAS functionality for
sparse matrices (Walter. et al., 2009). Its design and implementation unify mathemat-
ical notation via operator overloading and efficient code generation via expression
templates. Even though, the performance of some matrix operations can be further
improved if some special algorithms are used. Results of CPUusage profiling (similar
to Table 3.1) have led to the optimization of the following three operations.

The first optimized operation is the rank–k update of symmetric matrix, ˆ
T
q˛ˆq,

computed in Equation (3.5). Since the sparse structure of the Jacobian matrix̂ q is
constant, a symbolic analysis is performed in order to pre–calculate the sparse pattern
of the resultant matrix and to create a data structure that holds the operations needed
to evaluate it during the simulation. In our starting sparseimplementation, a simi-
lar approach was taken, but the Jacobian matrix was stored asdense, to simplify the
operations at the cost of a higher memory usage.

The second optimized operation is the matrix addition computed in Equation (3.5).
Our starting sparse implementation used the Harwell MA27 routine as linear equation
solver, which requires the sparse matrix to be stored in coordinate format (Figure 3.3),
and allows duplicated entries in the matrix structure. Therefore, the matrix addition
is not actually computed, since the different terms are appended as duplicated entries
in the tangent matrix. Our new implementation uses the compressed column storage
format (Figure 3.3), since it is required by the sparse linear equation solvers tested in
the following Section. This format, also known as the Harwell–Boeing sparse matrix
format, is quite common in direct sparse linear equation solvers. Every value stored in
the value data arrayval of the matrix is placed in its proper location in the pattern with

3.4Efficient sparse matrix implementations 33

1 0 0

2 3 4

0 5 6

A

1,2,3,4,5,6

1,2,2,2,3,3

1,1,2,3,2,3

val

indx

jndx

1, 2,3,5, 4,6

1,2, 2,3, 2,3

1,3,5,7

val

indx

pntr

Compressed column formatCoordinate format

Figure 3.3:Storage formats used in sparse implementations

the use of anindx array, which assigns to each value the index of the row to which
it belongs, and apntr array, which stores the indices of the elements in theval array
where a new column starts. With this storage, matrix additions require complex data
traversing that slows down the performance.

The following approach was taken in order to optimize the operation:

B D t1A1 C t2A2 (3.7)

In the pre–processing stage, the sparse pattern ofB is calculated as the union ofA1 and
A2 sparse patterns, and the resulting pattern is added toA1 andA2. In this way,A1,
A2 andB share the same sparse pattern (sameindx andpntr arrays in the compressed
column storage format shown in Figure 3.3), and therefore, the matrix addition can be
computed as a vector addition of theval arrays:

valB D t1valA1
C t2valA2

(3.8)

This technique increases the number of non–zeros (NNZ) of the addend matrices.
In the proposed MBS dynamic formulation, theNNZof the mass matrixM is increased
in a 10% approximately, which slows down the matrix–vector multiplications needed
in the right terms of Equations (3.4) and (3.6). However, thesimulation timings show
that this slowdown is negligible compared with the gains derived from the fast matrix
addition.

Finally, the third optimized operation concerns sparse matrix access. The write
operationA .i; j / D aij , straightforward in dense storage, needs additional position
lookup when the compressed column storage is used. In the proposed formulation,
the update of the Jacobian matrix̂q in each iteration takes 10–15% of the CPU–
time. The involved operations are rather simple, and most ofthis time is spent in
matrix access. In order to optimize this procedure, a pre–processing stage evaluates
the Jacobian matrix and registers the order in which entriesˆq .i; j / are written in
theval array of the compressed column format, creating a vector that holds indices to

34 Linear Algebra Implementation

these positions, in the same order of evaluation. Later, in the simulation stage, access
to the Jacobian matrix is performed using this index vector,without the need to map
.i; j / indices to memory addresses for each writing operation.

Table 3.2:Efficiency of the optimized sparse matrix operations

CPU–time (ms)

Sparse operation Not Optimized Optimized Ratio

1) Rank–k update of symmetric matrix 2525.2 9.4 269
2) Matrix addition 140.9 1.9 74
3) Jacobian matrix evaluation 11.6 3.8 3

Table 3.2 summarizes the performance gains delivered by theproposed optimiza-
tions, compared with the performance delivered by the uBLASdefault algorithms
(which are similar to other generic sparse matrix libraries). The numerical experiment
used the matrix terms derived from anL–loop four–bar mechanism withL D 40

loops, which leads to a tangent matrix of size82 � 82. Results show the importance of
optimizing rank–k updates and matrix additions, since the performance delivered by
off–the–shelf sparse matrix libraries is not satisfactoryfor these repetitive operations.

3.4.2 Evaluation of sparse linear equation solvers

Data in Table 3.1 shows that, in our starting sparse implementation, about 50% of
the total CPU–time is spent in tangent matrix factorizations and back–substitutions
(Equations (3.4) and (3.6)). Thus, the main performance improvements in MBS dy-
namic simulation can be achieved by using a more efficient sparse linear solver. Dur-
ing the last decade, sparse solvers have significantly improved the state of the art of
the solution of general sparse linear equation systems, andmore than 30 sparse solver
libraries are freely available in the World Wide Web (Dongarra, 2009).

The efficiency of sparse solvers varies greatly depending onparameters like the
matrix size, structure and number of non–zeros. In addition, solving a sparse linear
equation system usually involves three stages: pre–processing (ordering, symbolic fac-
torization), numerical factorization and back substitution; some solvers are very fast
in the first stage, while others perform better in the second or third stage. The perfor-
mance of sparse solvers has been compared in previous works,e.g. Gupta (2002) and
Scott and Hu (2007), but the conditions of these studies (in particular, matrix sizes and
percentage of non–zeros) do not fit the above–mentioned particular features of MBS
dynamics, and therefore their conclusions cannot be extrapolated to this field. As a
result, it is almost impossible to determine, without numerical experiments, which
sparse solver will deliver the best performance in an MBS dynamic simulation.

Given the large number of existing sparse solvers, a selection process is required
in order to narrow the scope. Solvers for shared memory or distributed memory par-
allel machines have been discarded, since the small matrix sizes in MBS real–time

3.4Efficient sparse matrix implementations 35

dynamics (almost fit in the CPU cache memory) makes them unprofitable. The same
argument applies to iterative solvers and out–of–core solvers, designed for very big
linear equation systems. From the remaining solvers, thosethat performed best in pre-
vious comparative studies have been selected:

� CHOLMOD, a symmetric positive definite solver (Chen et al., 2008);

� KLU, a solver specifically designed for circuit simulation matrices (Davis and
Natarajan, 2010);

� SuperLU (serial version), an unsymmetric general purpose solver (Demmel
et al., 1999a);

� Umfpack, an unsymmetric multifrontal solver (Davis, 2004); and

� WSMP, a symmetric indefinite solver (Gupta et al., 1998).

Despite the coefficient matrix is symmetric positive definite in the proposed dy-
namic formulation, we have included in the numerical experiments some general,
non–symmetric solvers (KLU, SuperLU, Umfpack), since other dynamic formulations
lead to a non–symmetric coefficient matrix (Dopico et al., 2006). In these cases, the
whole coefficient matrix (upper and lower parts) is computed, while with symmetric
solvers only half matrix is used in the formulation equations. Each solver supports its
own set of reordering strategies; all of them have been tested to select the best one in
each simulation. In addition, all the optimizations described in the previous Section
were applied to our new sparse implementation.

0

1

2

3

4

5

6

7

8

9

10

11

12

0 20 40 60 80 100 120 140 160

Number of variables N

C
P

U
 t

im
e

(s
)

UMFPACK

SuperLU

WSMP

Starting implementation

CHOLMOD

KLU

Figure 3.4:Performance of different sparse linear equation solvers asa function of
the problem size

36 Linear Algebra Implementation

The proposed test problem, with a number of loopsL ranging from 10 to 500 (i.e.
number of variablesN ranging from 22 to 1002), was solved using different sparse
solvers. Performance results are shown in Figure 3.4 for a number of variables up to
160, since the trends are preserved for higher number of variables. The legend text
shows the name of the sparse solvers, ordered by increasing efficiency.

Surprisingly, KLU is the fastest solver, despite being a general solver that does not
exploit the symmetric positive definite condition of the coefficient matrix; in addition,
it has been designed for circuit simulation problems, whichlead to very sparse matri-
ces, the opposite case of MBS dynamics. However, these results have been obtained
by using the KLUrefactor routine for numerical factorizations, which reuses the piv-
oting strategy generated in the pre–processing stage. In multibody problems where
the elements of the tangent matrix of Equation (3.5) may significantly change their
relative values during the simulation (e.g. due to violent impacts), the initial pivoting
strategy may become invalid and therefactorroutine would probably accumulate high
numerical errors. To avoid this, the KLU solver can recalculate the pivoting strategy in
each numerical factorization, but this method increases the CPU–times in a 50%. On
the other hand, CHOLMOD, a symmetric positive definite solver, performs at 85% of
KLU, despite recalculating the pivoting strategy in each numerical factorization. Our
best new sparse implementations (using KLU or CHOLMOD) perform faster than our
starting implementation, in a factor from 2 (small problems) to 3 (large problems of
1000 variables).

3.4.3 Effect of dense BLAS implementation

Some sparse solvers rely on the dense BLAS routines, described in Section 3.3, to im-
prove the computation of some basic linear algebra operations they internally treat as
dense, increasing thus their performance. In addition, some sparse matrix operations
(e.g. the optimized matrix addition described in Section 3.4.1) are actually computed
as dense vector operations using BLAS routines. Results shown in Figure 3.4 have
been generated using the reference BLAS implementation. The same numerical ex-
periment has been executed using the faster, optimized GotoBLAS and ACML imple-
mentations, and CPU–times have decreased only in a 2% – 3%. Hence, the reference
BLAS implementation is recommended for MBS dynamics in sparse implementa-
tions, since it provides the best compromise between performance and usability.

3.5 Sparse vs. dense implementations

As previously stated, dense linear algebra is frequently used in MBS dynamics for
small problems (dimension of the coefficient matrix lower than 50), since it is sup-
posed to provide higher performance than sparse implementations. Our starting sparse
implementation, which already employs some of the optimizations described in Sec-
tion 3.4, disagrees with this assumption, and this fact is reinforced with the perfor-
mance of the new optimized implementations: sparse versions perform always faster
than dense versions even for small problems, in a factor which ranges from 1.5 (prob-

3.5Sparse vs. dense implementations 37

KLU

CHOLMOD

WSMP

SuperLUFastest dense

implementation

0

5

10

15

20

25

30

0 20 40 60 80 100

% of non-zeros in the tangent matrix

C
P

U
 t

im
e

(s
)

Figure 3.5:Performance of different sparse linear equation solvers asa function of
tangent matrix filling, for a problem size of 100 variables

lems of 10 variables) to 5 (problems of 50 variables).
However, this conclusion has been obtained for the proposedtest problem and dy-

namic formulation, and it could be argued that it cannot be generalized to other situa-
tions that lead to a coefficient matrix with a higher percentage of non–zeros, as in the
case of highly constrained mechanisms or recursive formulations. The objection could
be made to the efficiency ranking shown in Figure 3.4. In orderto get insight about
this subject, the numerical experiments used to generate Figure 3.4 were repeated, but
in this case artificial non–zeros were introduced in the massmatrix M , in order to
generate a tangent matrix with a variable percentage of non–zeros. Figure 3.5 shows
the CPU–times for a mechanism of 48 loops (100 variables), asa function of matrix
filling. Results show that two sparse implementations, based on the CHOLMOD and
WSMP sparse solvers, are always faster than the best dense implementation, even with
100% of non–zeros in the tangent matrix. This surprising result can be explained by
the fact that the percentage of non–zeros is always under 100% in the Jacobian matrix,
hence optimized sparse implementations achieve significant time savings in Jacobian
operations, in comparison with dense implementations.

Results for other problem sizes are synthesized in Figure 3.6: the different regions
represent the points (problem size, matrix filling) where each implementation delivers
the best performance. For most MBS problems and dynamic formulations, a sparse
implementation based on the KLU solver will be the front runner. However, recursive
formulations (which result in a higher matrix filling) with asymmetric tangent matrix
will benefit from a sparse implementation based on the WSMP solver.

Figure 3.6 has been obtained by using the KLUrefactorroutine for numerical fac-

38 Linear Algebra Implementation

Figure 3.6:Best implementation, as a function of problem size and percentage of non–
zeros in the tangent matrix

torizations. As explained in Section 3.4.2, this may cause trouble in problems where
the entries of the tangent matrix change their relative values significantly during the
simulation. If therefactor routine is not used, Figure 3.7 is obtained. In this case
KLU is replaced by CHOLMOD, WSMP increases its influence area,and the dense
implementation based on LAPACK emerges for very small problems (less than 10
variables), but with a very small advantage. Conversely, two exceptions can be men-
tioned:

� For dynamic formulations with symmetric indefinite tangentmatrices, WSMP
would be the front runner for almost all the situations, since CHOLMOD does
not support them.

� For dynamic formulations with unsymmetric tangent matrices, KLU would be
again the front runner for almost all the situations (even ifthe refactor routine
is avoided), since WSMP does not support them.

3.6 Conclusions

Regarding the implementation aspects of MBS dynamic simulations, the following
conclusions can be established:

� Efficient linear algebra implementations can speed up the efficiency in a factor
of 2–3, compared with traditional implementations.

� The proposed optimizations based on symbolic pre–processing of the sparse
matrix computations can deliver huge speedups, since off–the–shelf sparse ma-
trix libraries do not take advantage of the constant sparse pattern of operations
during the dynamic simulation.

3.6Conclusions 39

Figure 3.7:Best implementation, as a function of problem size and percentage of non–
zeros in the tangent matrix (refactorroutine of KLU is not used)

� Optimized sparse implementations are recommended since they perform better
than optimized dense implementations, even for small–sizeproblems or rela-
tively dense matrices. This disagrees with the widespread belief in MBS dy-
namics.

� Concerning sparse linear equation solvers, it has been found that KLU, an unfa-
miliar solver designed for circuit simulation, performs very well with many of
the linear equation systems resulting from MBS dynamics. Inaddition, it was
found that the reference BLAS implementation provides the best compromise
between performance and usability for sparse implementations.

Table 3.3:Decision rules for selecting the best sparse solver for MBS dynamics, based
on matrix type, size and number of non–zeros

Type of tangent matrix
N � (% of non–zeros�10)

>900 <900

Symmetric positive definite
KLU (smooth problems)

WSMP
CHOLMOD (rough problems)

Symmetric KLU WSMP

Unsymmetric KLU KLU

The results from numerical experiments are summarized in Table 3.3, which pro-
vides a simple decision rule to select the best linear equation solver for MBS dynam-
ics, based on matrix type, size and percentage of non–zeros.Efficient implementations
of global MBS dynamic formulations can be easily achieved, provided the above rec-
ommendations are followed. All the recommended software libraries are freely avail-

40 Linear Algebra Implementation

able, and the proposed optimization techniques are not bound to any programming
language.

As a consequence of the above–mentioned conclusions, the limit for problem size
where global formulations perform better than recursive orsemi–recursive formula-
tions, established in the order of 50 absolute variables (Cuadrado et al., 2004b, 2008),
should be revised. This limit might get higher if the proposed optimized sparse imple-
mentations are used, since their effects on the efficiency are higher in global formula-
tions than in recursive or semi–recursive formulations. Inaddition, further work must
be carried out in order to determine if the proposed recommendations are still valid for
other formulations, since all the numerical experiments have been performed using a
particular global formulation.

Chapter 4

Parallelization

This Chapter evaluates two non–intrusive parallelizationtechniques for multibody
system dynamics: parallel sparse linear equation solvers and OpenMP. Both tech-
niques can be applied to existing simulation software with minimal changes in the
code structure; this is a major advantage over MPI (Message Passing Interface), the
standard parallelization method in multibody dynamics. Both techniques have been
applied to parallelize a starting sequential implementation of a global index–3 aug-
mented Lagrangian formulation combined with the trapezoidal rule as numerical inte-
grator, in order to solve the forward dynamics of a variable–loop four–bar mechanism.
Numerical experiments have been performed to measure the efficiency as a function
of problem size and matrix filling. Results show that the bestparallel solver (Pardiso)
performs better than the best sequential solver (CHOLMOD) for multibody problems
of large and medium sizes leading to matrix fillings above 10 non–zeros per variable.
OpenMP also proved to be advantageous even for problems of small sizes. Both tech-
niques delivered speedups above 70% of the maximum theoretical values for a wide
range of multibody problems.

4.1 Introduction

Computational efficiency of numerical simulations is a key issue in multibody system
(MBS) dynamics. When MBS dynamics is used in Computer Aided Design and En-
gineering, faster simulations allow the design engineer toperform what–if analyses
and optimizations in shorter times, increasing productivity and interaction with the
model. Moreover, some applications like hardware–in–the–loop settings or human–
in–the–loop devices cannot be developed unless MBS forwarddynamic simulations
are performed in real–time. Hence, computational efficiency is a very active area of
research in multibody systems dynamics.

Parallel computing is one of the approaches to increase the computational effi-
ciency of MBS dynamic simulations. The first parallel MBS algorithm was proposed
by Kasahara et al. in 1987; since then, a variety of formulations and simulation al-
gorithms have been developed to exploit parallel computingarchitectures in MBS

41

42 Parallelization

dynamics (Anderson et al. (2007), Anderson and Oghbaei (2005), Critchley and An-
derson (2003), Critchley and Anderson (2004), Cuadrado et al. (2000), Eichberger
et al. (1994), Fisette and Péterkenne (1998), among others). Some of these algorithms
apply parallelization directly at the level of equations ofmotion, which are formu-
lated in a form that facilitates the concurrent evaluation of their different terms, see
e.g. Bae et al. (1988) and Avello et al. (1993); most of these algorithms are based
on recursive or semi–recursive formulations. Other algorithms apply substructuring
techniques to partition the multibody system in disjoint subdomains, which are solved
concurrently taking into account the interconnection constrains, see e.g. Mukherjee
et al. (2005) and Quaranta et al. (2002). With regard to the implementation, the Mes-
sage Passing Interface (MPI) (Argonne National Laboratory, 2009) has become the
de facto standard for the parallelization of multibody dynamic simulation codes, e.g.
Anderson et al. (2007), Anderson and Duan (1999) and Quaranta et al. (2002). MPI
is a message–passing application programmer interface that provides functionality to
enable communication and synchronization between a set of processes which run con-
currently. Due to its language independence, high performance, scalability and good
portability through completely different parallel architectures (from shared–memory
processors to computer clusters), it has been broadly accepted in the field of parallel
MBS dynamics.

The aforementioned parallel methods for MBS dynamics couldbe described as
intrusive parallelization, since they introduce major modificationsboth in formula-
tions and implementations. Formulations are specifically designed to obtain highly
parallelizable numerical computations, and most importantly, parallel MPI–based im-
plementations enforce a particular MPI–oriented code design: the programmer must
explicitly divide tasks in processes and insert message–passing operations for data
transfer and synchronization. As a result, the structure ofan MPI–based parallel code
is usually quite different from its sequential counterpart. These parallelization meth-
ods have been proved to attain very good results in terms of efficiency and scalability
in the context of MBS dynamics, as demonstrated e.g. by Anderson et al. (2007) and
Quaranta et al. (2002). However, their intrusive charactermakes them quite difficult to
apply to existing sequential MBS dynamic simulation codes.Many of these sequential
packages, developed by academia, still have a great value asresearch tools and they
are successfully used in ongoing industrial applications.Due to their internal complex-
ity and design dependencies with third–party software, parallelization of these MBS
packages by intrusive methods like MPI would be very time–consuming and error–
prone. For that reason, most of them remain as sequential codes which cannot take ad-
vantage of today’s almost ubiquitous availability of parallel computing architectures,
present even in low–cost laptop computers. This limitationwill be accentuated in the
future, since trends indicate that performance of single processors is close to reach-
ing its limit and that multi–core processors are the preferred technology to increase
computing power in the next decade (Gorder, 2007).

The goal of this Chapter is to investigate alternativenon–intrusiveparallelization
methods for MBS dynamics, which do not require major modifications in existing
formulations and implementations. Although their scalability may be inferior when

4.1 Introduction 43

compared to intrusive methods, such non–intrusive methodscould be easily applied
to parallelize the above–mentioned legacy sequential MBS simulation packages, and
they may also reduce the effort required to develop some kinds of new parallel formu-
lations and implementations. This Chapter deals with two non–intrusive paralleliza-
tion methods for MBS dynamics:

� the use of parallel sparse linear equation solvers; and

� the OpenMP parallel programming model.

Linear equation solvers represent an opportunity for non–intrusive parallelization
since the solution of linear equation systems is a key process in many MBS dynamic
simulation codes. This linear algebra operation is presentin almost all simulation
methods except some types of fully recursive formulations (Garćıa de Jaĺon and Bayo,
1994), although its weight in the total computation time of the simulation depends on
the type of problem and formulation. Global formulations, which use a high number
of coordinates and constraint equations to define the position of the multibody sys-
tem, lead to comparatively big sparse linear equation systems whose solution usually
consumes around 30–60% of the total CPU–time in a dynamic simulation. Recursive
and semi–recursive formulations lead to smaller and more compact linear equation
systems, and therefore their weight is reduced to less than 30% of the total CPU–
time; however, if flexible bodies are considered, matrix sizes increase and the solution
of linear equation systems also takes a significant percentage of the CPU–time, even
for recursive formulations. As a result, the performance ofthe linear equation solver
is critical to the efficiency of most MBS dynamic simulations. The replacement of a
sequential solver by a parallel solver is considered a non–intrusive parallelization tech-
nique because it only requires minor changes in the code, provided that both solvers
use similar sparse matrix storage formats. Many parallel linear equation solvers have
been developed in the last years, but they are not consideredto be appropriate for MBS
dynamics due to the small matrix sizes involved in this field of computational mechan-
ics. Comparative studies about their performance have beenpublished by Gupta (2002,
2007), Davis et al. (2003) and Tracy et al. (2007); however, the test problems used in
these studies do not fit the particular features of MBS dynamics, specially in regard
to matrix sizes (in MBS dynamics, typical sizes are at least two orders of magni-
tude smaller than in Finite Element Analysis or Computational Fluid Dynamics), and
therefore their conclusions cannot be extrapolated since parallel solvers will perform
very differently under these circumstances. The first contribution of this Chapter is the
evaluation of the efficiency and suitability of parallel sparse linear equation solvers in
the context of multibody system dynamics, a subject that hasnot been investigated
yet.

The second non–intrusive parallelization method exploredin this Chapter is the
OpenMP parallel programming model (OpenMP Architecture Review Board, 2008).
OpenMP is a standard application programming interface to support multi–threaded
parallel programming. It is scalable and portable like MPI,but it has two important dif-
ferences. First, OpenMP is only targeted at shared–memory multiprocessor architec-
tures, while MPI supports both shared– and distributed–memory architectures. How-

44 Parallelization

ever, this OpenMP limitation is not a severe disadvantage inthe field of MBS forward
dynamics: due to the characteristics of the problem, concurrent tasks running a paral-
lelized simulation must exchange data several times per integration step (usually in the
order of milliseconds), causing a high communication overhead compared with other
applications. As a consequence, gains obtained from concurrent computation can be
easily outweighed by the high communication overhead in distributed–memory archi-
tectures like PC clusters (Quaranta et al., 2002). Conversely, the low communication
overhead of shared–memory architectures, supported by OpenMP, makes them more
appropriate to run parallel MBS simulations. Another advantage of shared–memory
architectures is the availability of low–cost commodity hardware with 2 or 4 CPU
cores, like Intel Core 2 Quad and AMD Phenom X4. The second core difference be-
tween OpenMP and MPI concerns with the programming model: OpenMP is based
on a multi–threaded model simpler to use than the MPI’s multi–process model. This
key difference delivers important advantages when OpenMP is applied to parallelize
a sequential code (Chapman et al., 2007):

� the initial design can be maintained and only minor changes in the code are
required;

� data transfer and task synchronization are handled transparently by OpenMP;
and

� parallelization can be applied incrementally.

These three advantages make OpenMP a non–intrusive parallelization method when
compared to MPI. On the other hand, Krawezik and Cappello (2006) demonstrated
that OpenMP cannot achieve the same performance as MPI for some types of numer-
ical problems and code designs, hence its pros and cons in a particular domain shall
be evaluated before claiming it as a better technique than MPI. Despite its potential
advantages, studies about the efficiency of OpenMP in the context of MBS dynamics
have not been published yet, and this subject will be the second contribution of this
Chapter.

The rest of the Chapter is organized as follows: Section 4.2 describes the numeri-
cal experiments used to evaluate the efficiency and applicability of the two proposed
non–intrusive parallelization methods: test problem, dynamic formulation, and par-
allelization procedures applied to a starting sequential implementation. Section 4.3
presents and analyzes the results of numerical experiments. Finally, Section 4.4 ex-
tracts conclusions and suggests future work.

4.2 Methods

In order to study the efficiency and applicability of the two proposed non–intrusive
parallelization methods, a test problem has been solved with a given dynamic for-
mulation. This formulation has been initially implementedin a sequential simulation
code, which has been parallelized by means of parallel linear equation solvers and
OpenMP.

4.2Methods 45

This test setup represents a worst–case scenario for parallelization in terms of
problem, dynamic formulation and implementation, as it will be explained in the fol-
lowing subsections. With this approach, the obtained performance results will repre-
sent a lower limit when the non–intrusive parallelization methods investigated in this
Chapter are applied to legacy MBS simulation codes.

4.2.1 Test problem and dynamic formulation

The selected test problem in this Chapter is the same that waschosen for the evaluation
of linear equation solvers and described in Chapter 3: the 2DL–loop four–bar linkage.
This model is shown in Figure 4.1.

g = 9.81 N/kg

x

y

Loop 1 Loop L

A0 A1

B0 B1

AL-1 AL

BL-1 BL

Figure 4.1:L–loop four–bar linkage

The dynamic simulation is performed by means of the index–3 augmented La-
grangian formulation,

M Rq C ˆ
T
q˛ˆ C ˆ

T
q �

� D Q

�
�

iC1 D �
�

i C ˛ˆiC1I i D 0; 1; 2; :::
(4.1)

with the trapezoidal rule as integrator

PqnC1 D
2

�t
qnC1 C OPqnI OPqn D �

�

2

�t
qn C Pqn

�

RqnC1 D
4

�t2
qnC1 C ORqnI ORqn D �

�

4

�t2
qn C

4

�t
Pqn C Rqn

� (4.2)

The dynamic formulation and the integrator were introducedin Section 3.2. How-
ever, as the tested parallelization techniques are closelyrelated to the identification
of the parallelizable computation steps, they are briefly described here again. Intro-
ducing Equations (4.2) in Equations (4.1), yields the following non–linear system of
equations

f .q/ D MqnC1 C
�t2

4

h

ˆ
T
qnC1

.˛ˆnC1 C �nC1/ � QnC1 C M ORqn

i

D 0 (4.3)

46 Parallelization

which is solved through the Newton–Raphson iteration

�

@f .q/
@q

�

i

�qiC1 D � Œf .q/�i (4.4)

using the approximate tangent matrix (symmetric and positive–definite)

�

@f .q/
@q

�

Š M C
�t

2
C C

�t2

4

�

ˆ
T
q˛ˆq C K

�

(4.5)

Finally, as the corresponding sets ofPq� and accelerationsRq� may not satisfyP̂ D 0
and R̂ D 0, they must be projected, reusing the factorization of the tangent matrix:

�

@f .q/
@q

�

Pq D

�

M C
�t

2
C C

�t2

4
K

�

Pq� �
�t2

4
ˆ

T
q˛ˆ t

�

@f .q/
@q

�

Rq D

�

M C
�t

2
C C

�t2

4
K

�

Rq� �
�t2

4
ˆ

T
q˛

�

P̂ q Pq C P̂
t

�

(4.6)

This global method has been designed for sequential computation and it is not
as suitable for parallelization as recursive and semi–recursive formulations. For that
reason, it nearly represents a worst–case scenario for parallelization with regard to
dynamic formulations. The numerical experiments have beenperformed using as a
time–step�t D 10�3 s and a penalty factor̨ D 108; the simulation time for each of
them has been, again, 20 s.

The number of loops in the test mechanism can be adjusted to generate problems
of different sizes. In MBS dynamics, global formulations generate several hundreds of
variables when applied to automotive or railway vehicles made up of rigid bodies. Re-
cursive formulations lead to problems of smaller size, but when body flexibility needs
to be considered, the number of variables increases even with this kind of formula-
tions. If flexible bodies are described by component mode synthesis, as explained by
Ambrósio and Gonçalves (2001) and Lugrı́s et al. (2007), multibody models of auto-
mobile or railway vehicles can exceed 1000 variables. If non–linear elastic or plastic
behaviour is considered, the number of variables in the problem is augmented by the
degrees of freedom of the finite element discretization of the flexible bodies, see e.g.
Garćıa Orden and Goicolea (2000) and Sugiyama and Shabana (2004); under these
circumstances, multibody models in industrial applications may reach104 variables.
This number can be considered the upper–level limit in the field of conventional multi-
body dynamics, at least during the next decade, with the exception of some specific
applications such as the simulation of molecular dynamics (Mukherjee et al., 2008).
For that reason, the numerical experiments will be performed using a number of vari-
ablesN that ranges from 100 to 8000 (generated by a number of loopsL from 49 to
3999).

4.2Methods 47

4.2.2 Initial sequential implementation

The initial implementation of the dynamic formulation has been heavily optimized
for sequential execution by using efficient BLAS implementations for dense linear al-
gebra, symbolic pre–processing of sparse matrix computations, fast access to sparse
storage formats and state–of–the–art sequential lineal equation solvers, as described
in Chapter 3. These optimizations reduced CPU–times by a factor of 3 compared with
more traditional implementations of the same dynamic formulation. On the other side,
such a highly optimized sequential code makes it difficult togain advantage from par-
allelization: since computations are performed at higher FLOPS (Floating Point Oper-
ations per Second) rates and in shorter times, the relative weight of the communication
overhead associated with parallelization becomes higher;in addition, some optimiza-
tion techniques make fine–grain parallelization unable to be applied to certain code
sections, as it will be explained later. Again, the described initial implementation rep-
resents a nearly worst–case scenario for parallelization.Indeed, the parallelization of
this code by means of MPI would be very cumbersome.

Table 4.1:Performance analysis of the initial sequential implementation for problems
of N variables

% of elapsed time

Task Description Eq. N D 1000 N D 8000

1 Update of variables – 4.1 4.0
2 Evaluate dynamic terms (4.1 and 4.5) 9.3 9.8
3 Evaluate tangent matrix (4.5) 11.8 11.8
4 Evaluate residual vector (4.1) 7.6 7.6
5 Factorize tangent matrix (4.4) 36.8 36.7
6 Back–substitution (4.4) 5.9 5.8
7 Project velocities (4.6) 9.4 9.3
8 Project accelerations (4.6) 12.3 12.2
9 Other – 2.8 2.8

Total elapsed time (s) 10.0 102.4

Table 4.1 summarizes the results of a performance analysis of the initial sequential
formulation for tests problems of 1000 and 8000 variables. Both cases show very sim-
ilar profiling results, since the use of symbolic pre–processing of sparse computations
through all the code leads to nearlyO .n/ tasks in spite of using a dynamic formula-
tion usually classified asO

�

n3
�

. This performance analysis will be used to guide the
parallelization described in the next subsections.

4.2.3 Parallelization with multi–threaded linear equation solvers

Table 4.1 shows that around 54% of the CPU–time is consumed bythe solution
of linear equation systems: matrix factorization (task 5, close to 37%) and back–
substitutions (task 6 and part of tasks 7 and 8). This high contribution is caused by

48 Parallelization

the simplicity of the dynamic terms in the proposed test problem (task 2); in problems
with time–consuming force, constraint and Jacobian evaluations, task 2 can achieve
higher percentages of runtime and reduce the contribution of linear equation systems.
Nevertheless, this operation is a significant bottleneck inmost MBS dynamic simula-
tions and represents an important opportunity for non–intrusive parallelization.

In the previous Chapter, the efficiency of different dense and sparse sequential lin-
ear equation solvers in the simulation of MBS dynamics was measured; the number
of variablesN in that study ranged from 10 to 1000. Results demonstrated that cur-
rent state–of–the–art sparse implementations outperformdense implementations even
for very small problems (e.g., 20 variables), contradicting a widespread conviction in
MBS dynamics. Three sequential solvers were found to be the most efficient ones, as a
function of the type of multibody problem and dynamic formulation, and trends in that
previous Chapter indicate that they are also the most efficient solvers forN > 1000:

� CHOLMOD, a symmetric positive definite solver;

� KLU, an unsymmetric solver specially designed for circuit simulation; and

� WSMP (sequential version), a symmetric indefinite or unsymmetric solver.

In this Chapter, these three top–performing sequential solvers will be compared against
parallel solvers. Given the large number of existing parallel sparse solvers, a selection
process has been applied to narrow the scope: iterative solvers have been discarded,
since they have a high communication overhead during each iteration, so they work
efficiently only for very large problems out of the scope of MBS dynamics (Saad,
2000); the same argument applies to out–of–core solvers. From the remaining parallel
linear equation solvers, three of them which have demonstrated good performance for
matrix sizes close to those found in MBS dynamics (Gupta, 2002, 2007) have been
selected to evaluate their performance in this field:

� SuperLU (multi–threaded version), a non–symmetric solver(Demmel et al.,
1999b);

� Pardiso, an either symmetric or unsymmetric, positive definite or indefinite
solver (Schenk et al., 2001); and

� WSMP (multi–threaded version).

The efficiency of a linear equation solver depends on three factors: matrix size, spar-
sity pattern and matrix filling. In this study, the effect of matrix size has been analyzed
by solving the test problem with a number of variablesN ranging from 100 to 8000.
The effect of the sparsity pattern has been greatly diminished by reordering the tangent
matrix: each of the six benchmarked solvers supports different reordering strategies,
usually computed by third–party numerical libraries like METIS (Karypis and Kumar,
1998) and AMD and its variants (Amestoy et al., 1996), among others; all of them have
been tested in the symbolic pre–processing stage of the simulation, to select the best
one for each simulation case. For that reason, the results obtained for the proposed test

4.2Methods 49

Table 4.2:Typical matrix filling ratios in multibody dynamics (N = number of vari-
ables, NNZ = number of non–zeros)

Type of problem and dynamic formulation NNZ=N

Rigid bodies – Global formulations <10

Rigid bodies – Recursive formulations
10 – 30

Flexible bodies – Component mode synthesis

Flexible bodies – Finite element mesh 30 – 100

problem will be still valid for other multibody problems leading to different sparsity
patterns.

With regard to matrix filling, the described formulation applied to the test prob-
lem of L loops leads to a tangent matrix in Equation (4.5) of sizeN D 2L C 2 with
12L C 4 structural non–zeros. A meaningful matrix filling indicator can be computed
as the ratio between the number of non–zeros (NNZ) andN . In this case,NNZ=N � 6

is a typical value for global formulations applied to problems involving rigid bodies.
Nevertheless, other dynamic formulations and multibody problems may lead to higher
filling ratios, as depicted in Table 4.2. Problems involvingrigid bodies lead to higher
fillings if recursive or semi–recursive formulations are used (Cuadrado et al., 2004a);
the same filling range applies if the problem involves flexible bodies and they are
described by component mode synthesis (Ambrósio and Gonçalves, 2001; Cuadrado
et al., 2001). Finally, if flexibility is described by introducing the degrees of free-
dom of the finite element discretization in the multibody problem (Garćıa Orden and
Goicolea, 2000; Sugiyama and Shabana, 2004), the filling of the finite element mass
and stiffness matrix dominates the tangent matrix; in thesecases, matrix filling ranges
from 30 to 100, depending on the type of finite element (beam, shell, brick).

It is expected that the performance gains from parallel solvers increase as the
NNZ=N ratio increases, due to the higher workload of the numericalfactorization. The
proposed test problem and dynamic formulation represent a worst–case scenario for
parallel solvers because they lead to a very smallNNZ=N ratio; in these circumstances,
parallel solvers could perform worse than sequential solvers. Conversely, more com-
plex and realistic problems lead to higherNNZ=N ratios, as described in the previous
paragraph. In order to study the effect of parallel solvers in such cases, a variable num-
ber of artificial non–zeros will be added in the sparsity pattern of the original tangent
matrix to increase itsNNZ=N ratio.

Only minor changes were required in the initial sequential implementation to in-
corporate the three proposed parallel solvers, because they use the same storage format
of the three above–mentioned sequential solvers already supported by the simulation
code (Compressed Column Storage format or CCS). For solversused in symmetric
mode (CHOLMOD, WSMP, Pardiso), only the upper or lower triangular part of the
tangent matrix is computed in Equation (4.5), depending on the requirements of each
solver; for non–symmetric solvers (KLU, SuperLU), the whole matrix is evaluated
and factorized.

50 Parallelization

Some benchmarks for linear equation solvers (Gupta, 2002, 2007) only measure
factorization and solve (forward triangularization and back substitution) times. In this
work, the total elapsed time for a multibody dynamic simulation was measured, since
this procedure takes into account other important attributes like precision (more pre-
cise solvers will need less iterations in Equation (4.4)) and memory footprint (its effect
on the behaviour of CPU–cache can affect the overall performance of the simulation).

4.2.4 Parallelization with OpenMP

OpenMP (OpenMP Architecture Review Board, 2008) is a standard application pro-
gramming interface (API) to support multi–threaded parallel programming in shared–
memory architectures. It provides a set ofdirectivesthat can be added to a sequential
program in Fortran, C, or C++ to describe, with minimal modifications in the code,
how the work is to be distributed among multiple threads thatrun in parallel. A good
description of OpenMP is provided by Chapman et al. (2007).

// Calls 2 functions in parallel

void example1()

{

#pragma omp parallel sections

#pragma omp section

function1();

#pragma omp section

function2();

}

// '1'-norm of a vector in parallel

double example2(double v[], int n)

{

double sum = 0;

#pragma omp for reduction(+:sum)

for (int i=0; i<n; i++) {

sum = sum + v[i];

}

return sum;

}

Figure 4.2:Example of OpenMP directives for parallelization

Figure 4.2 shows a couple of examples of parallelization with OpenMP: the first
one calls two code sections in parallel, while the second onesplits a for loop into
several non–overlapping fragments to traverse them in parallel and accumulate the
results. These directives are understood by OpenMP compilers, which deal with the
burden of working out the communication and synchronization details of the parallel
program. The directives look like comments to regular, non OpenMP–aware compil-
ers, which will generate sequential code. In this way, the same source code can be used
in both sequential and parallel versions; this feature can simplify the maintenance of

4.2Methods 51

MBS simulation codes that are used to run simulations in bothdesktop PCs (suitable
for parallel execution) and embedded microprocessors (which only support sequential
execution) like automotive Electronic Control Units (ECU’s).

(a)

21 3 4 5 6 7 8 9

Tasks that can be executed simultaneously

(b)

2 3

4

5 6 8

7

1 9

Overhead due to thread management

Figure 4.3:Distribution of computational load in(a) the initial sequential version and
(b) the proposed parallel version

Coarse–grain parallelization, in which large program regions are executed concur-
rently, can be easily achieved with OpenMP. An analysis of the profiling results in
Table 4.1 and the sequence of calculations in Equations (4.1) to (4.6) evidences that
two pairs of tasks (3–4 and 7–8) can be executed concurrently, as shown in Figure 4.3.
On the other hand, tasks 1 and 2 cannot be scheduled in parallel because the sec-
ond one requires the values previously computed by the first.In addition, some of the
optimizations implemented in the initial sequential version make not possible to ap-
ply fine–grain parallelization. For example, the Jacobian evaluation, which represents
around 80% of task 2, has been optimized for fast writing operations to matrix data
stored in CCS format. This optimization reduced the evaluation time by a factor of 3
but it requires a sequential traversing of the involvedfor loop, which cannot be split
like in Figure 4.2.

Figure 4.3 and the details given in the previous paragraph confirm that the pro-
posed test problem and dynamic formulation represent a worst–case scenario for the
parallelization with OpenMP, since most of the tasks must beexecuted sequentially.
In contrast, other simulation setups (e.g. recursive) can be used to generate algorithms
where most of the time–consuming tasks can be parallelized,although this also de-
pends on the structure of the multibody system.

4.2.5 Test environment and implementation details

Simulations have been run in a desktop PC with a dual–core Intel Core Duo E6300
CPU (1.86 GHz clock speed in each core, 64 Kb L1 cache, 2 Mb L2 cache) and 1 Gb
of RAM, running Linux OS kernel 2.6.24 in 64 bit mode. Two compiler toolchains

52 Parallelization

have been used: the GNU Compiler Collection (gcc version 4.3) and the Intel C/C++
Compiler (icc version 10.1); both of them support OpenMP.

A parallel computer with only two CPUs has been used because the tested dy-
namic formulation, heavily oriented to sequential execution, will deliver poor scal-
ability since the fraction of parallelizable code is relatively small. The goal of this
Chapter is to test whether the proposed non–intrusive parallelization methods can in-
crease the efficiency of MBS dynamic simulations; if they can, the scalability of the
speedups will greatly depend on the multibody problem and dynamic formulation.

4.3 Results and discussion

The following subsections present numerical results for the two above–mentioned
non–intrusive parallelization methods.

4.3.1 Multi–threaded linear equation solvers

Figure 4.4 shows the elapsed times for dynamic simulations with a number of variables
N ranging from 100 to 4000 and three representative values of the matrix filling ratio
according to Table 4.2 (NNZ=N = 6, 20, 50). Sequential single–threaded (st) solvers
are represented in dashed lines, while parallel multi–threaded (mt) solvers are repre-
sented in solid lines. Elapsed times forN in the range 4000–8000 follow the trends in-
dicated on the right side of the figures, so they have not been represented. Figure 4.4a
evidences that parallel solvers are not competitive for problems with low filling ra-
tios: in these circumstances, KLU (unsymmetric solver) andCHOLMOD (symmetric
positive definite solver) perform better than any other. Theefficiency of KLU is out-
standing in this case, taking into account that, due to its unsymmetric nature, the whole
tangent matrix is evaluated and factorized during the simulation. The explanation for
this excellent behaviour is that KLU is a sparse LU factorization algorithm specially
designed for its use in circuit simulation problems, which have a typical filling ratio of
7–8; however, this feature is also an important penalty for filling ratios above 10. For
medium (Figure 4.4b) and high (Figure 4.4c) filling ratios, Pardiso emerges as the best
solver for problems of large size. For medium size problems,CHOLMOD continues
to be the most efficient solver under these circumstances.

In order to gain insight into the most favourable conditionsfor each solver, numer-
ical experiments similar to those represented in Figure 4.4have been run with a matrix
filling ratio within a range from 6 to 100. Results are synthesized in Figure 4.5, which
represents the regions where each solver delivers the best performance, as a function
of the number of variablesN and the filling ratioNNZ=N. The solid line draws up the
boundary between the parallel and the sequential solvers, and the dashed lines draw
up the boundary between different sequential or parallel solvers. This figure serves as
a decision tool to identify which solver is best suited for a particular multibody simu-
lation. Figure 4.5 shows that, contrary to general beliefs,parallel solvers can increase
simulation efficiency for a wide range of problems in MBS dynamics. Pardiso domi-
nates the region of parallel solvers, since the multi–threaded version of WSMP is only

4.3Results and discussion 53

a)

b)

c)

NNZ /N = 6

1

10

100

0 1000 2000 3000 4000

Number of variables N

E
la

p
se

d
 t

im
e

(s
)

SuperLU mt WSMP mt

Pardiso mt WSMP st

KLU st CHOLMOD st

NNZ /N = 20

1

10

100

1000

0 1000 2000 3000 4000

Number of variables N

E
la

p
se

d
 t

im
e

(s
)

NNZ /N = 50

1

10

100

1000

0 1000 2000 3000 4000

Number of variables N

E
la

p
se

d
 t

im
e

(s
)

Figure 4.4:Performance of linear equation solvers as a function of problem size and
matrix filling

54 Parallelization

100

1000

10000

0 20 40 60 80 100

NNZ /N

N
u

m
b

er
 o

f
v

ar
ia

b
le

s
N

Pardiso

CHOLMOD

WSMP (st)KLU

WSMP (mt)

Figure 4.5:Best solver, as a function of problem size and matrix filling

better in a small, non–representative region. On the other hand, CHOLMOD dom-
inates the region of sequential solvers, while KLU and single–threaded WSMP are
only competitive for small problems under 200 variables; these last results fully agree
with the recommendations given in Chapter 3 for problems under 1000 variables.

Since Pardiso has been demonstrated to perform better than sequential solvers for
many multibody problems, it is important to quantify the speedups that it can deliver.
Figure 4.6 represents the speedups achieved by Pardiso, as afunction of the filling
ratio NNZ=N and the number of variablesN ; the speedupS is relative to the best
sequential solver in each point of the figure:

S D
elapsed timesequential

elapsed timeparal lel

(4.7)

Table 4.3 shows the maximum speedup that can be achieved by a parallel solver in
the tested implementation, for three typical values of the filling ratio; the values have
been obtained from profiling results and Amdahl’s law: for a program with a parallel
fractionf running onP processors, the maximum speedup is:

S .P /max D
1

f=P C 1 � f
(4.8)

4.3Results and discussion 55

Table 4.3:Maximum speedup for 2 processors due to parallelization of the linear
equation solver in the tested implementation, as a functionof the matrix filling ratio
NNZ=N

NNZ=N CPU–time in factorizations and back–substitutions Max. speedupS

6 52% 1.35
20 69% 1.53
50 68% 1.52

The information given in Figure 4.6 and Table 4.3 is important in order to correctly
interpret the results in Figure 4.5. While Pardiso performs better forN < 1000 in a
significant region of Figure 4.5, the delivered speedups arevery small compared with
the best sequential solver (CHOLMOD), specially forNNZ=N > 50. Pardiso only de-
livers significant speedups forN > 1000, and it achieves the maximum performance
for NNZ=N in the range from 10 to 30. In some cases, the speedups exceed 70% of
the maximum values predicted by Amdahl’s law in Table 4.3.

0

0,5

1

1,5

0 20 40 60 80 100

NNZ /N

S
p

ee
d

u
p

100 variables 200 variables

500 variables 1000 variables

2000 variables 4000 variables

Figure 4.6:Speedup of Pardiso with respect to the best sequential solver

With regard to the effect of the compiler toolchain on the simulation efficiency,
it has been observed that the two tested toolchains (GNU and Intel) can increase or
decrease the elapsed times for the tested solvers by a factorup to 34%, depending on

56 Parallelization

matrix size and filling ratio. However, in the conditions where each solver performs
better (according to Figure 4.5) the effect of the compiler is diminished, as shown in
Table 4.4. In general, icc gives slightly better results than gcc, specially for Pardiso.

Table 4.4:Effect of compiler toolchain on the efficiency of linear equation solvers in
the region where each solver performs best

Linear equation solver Best compiler Min. gain Max. gain

Pardiso icc 7% 18 %
CHOLMOD icc 1% 8 %
WSMP (st) icc/gcc -2% 2 %
KLU icc -1% 7 %

4.3.2 OpenMP

Figure 4.7 shows the elapsed times for dynamic simulations with the OpenMP parallel
version of the code, for a number of variables ranging from 100 to 8000 and a filling
ratio NNZ=N � 6 (no artificial non–zeros were added to the tangent matrix). The
simulations have been run using CHOLMOD as linear equation solver. Since most of
the burden of OpenMP parallelization is carried out by the compiler, results for both
compiler toolchains (GNU and Intel) have been represented.Taking into account the
profiling data in Table 4.1, the task schedule shown in Figure4.3b can deliver a max-
imum speedup of 1.20. Results indicate that the compiler hasa significant effect on
the performance of the OpenMP parallel version. Intel OpenMP implementation, with
a lower communication overhead, delivers speedups greaterthan one even for small
problems of 100 variables, and it achieves the optimum conditions for around 500
variables. The GNU implementation needs more than 200 variables to become advan-
tageous, and delivers the maximum values for 2000 variables; however, the speedups
of GNU are higher, reaching the 95% of the maximum theoretical value (1.20).

Figure 4.7 also shows that OpenMP speedups start to fall forN > 2000. This fact
does not agree with the normal behaviour of parallel programs: both the communi-
cation overhead due to parallelization and the maximum speedup do not depend on
N and should be constant (the overhead of thread creation and destruction depends
only on the number of threads, and Table 4.1 demonstrates that the relative elapsed
times of the parallelized tasks do not depend onN). Therefore, the maximum speedup
Smax D 1:20 should be a horizontal asymptote for the curveS.N /, as it happens in
MPI parallel codes (Anderson and Duan, 1999). This weird behaviour may be pro-
duced by adverse effects in the cache memory, because tasks scheduled in parallel in
Figure 4.3b share part of the data: both tasks 3 and 4 operate with the mass matrix,
Jacobian matrix and constraint vector, and both tasks 7 and 8operate with the tangent
matrix factorization and other common terms. Since each CPUhas its own private
cache, common data terms must be transferred twice from memory to cache, and for
large problem sizes the memory bandwidth becomes a bottleneck. This phenomenon is

4.3Results and discussion 57

0,8

0,9

1,0

1,1

1,2

0 2000 4000 6000 8000

Number of variables N

S
p

ee
d

u
p

GNU gcc

Intel icc

Figure 4.7:Speedup of the OpenMP parallel implementation

not frequent in MPI parallel implementations, since MPI processes operate in private,
unshared data. Adverse effects of cache can be diminished with a proper allocation
and distribution of data, as explained in Chapman et al. (2007). However, these tech-
niques can enforce major changes in existing sequential MBSsimulation codes, and
their effect highly depends on the computer architecture and the compiler toolchain;
therefore, they cannot be considered as non–intrusive or easy to implement.

Nevertheless, results demonstrate that OpenMP is advantageous even for small
problems and that it can deliver speedups above 80% of the maximum theoretical
value for a wide range of problem sizes (from 500 to 3500 variables), provided the
appropriate compiler toolchain is selected. Given the simplicity of its application to
sequential codes, it is a valuable tool for non–intrusive parallelization of existing MBS
simulation packages.

The attainable absolute speedups depend on the problem and the simulation char-
acteristics. As described in Section 4.2.4, the test setup used in this work represents
a worst–case scenario for OpenMP parallelization, and therefore the absolute perfor-
mance gains are small (around 15%). However, the results from this study suggest that
OpenMP can deliver higher absolute speedups under more realistic multibody system
simulations. For example, Lugrı́s et al. (2007) describe two formulations for flexible
multibody dynamics that spend up to 82% of the elapsed time incomputing matrix
terms associated with flexible bodies; since these matrix terms are evaluated body by

58 Parallelization

body, when several flexible bodies are present the parallelization of these tasks with
OpenMP would be straightforward, and absolute speedups above 2 could be easily
achieved on a quad–core processor. Problems with very time–consuming force evalu-
ations can also achieve high improvements due to OpenMP parallelization. For exam-
ple, multibody simulations involving collisions between bodies must perform collision
detection at every time–step in order to evaluate contact forces. Body geometries are
usually described by complex and dense polygonal meshes, and collision detection al-
gorithms must evaluate distances between a large number of polygons; in many cases,
this task can be divided into several subtasks which can be easily parallelized with
OpenMP.

4.4 Conclusions

In the present Chapter, two non–intrusive parallelizationtechniques, parallel linear
equation solvers and OpenMP, have been used to parallelize astarting sequential im-
plementation of an MBS dynamic simulation software, in order to investigate their
efficiency and suitability in the field of multibody dynamics. Both techniques are usu-
ally considered not appropriate for MBS dynamics due to the small sizes of matrix
computations involved in this field.

Regarding the efficiency and suitability of parallel sparselinear equation solvers,
the following conclusions can be established:

� Parallel solvers are advantageous for two types of multibody problems: (a) prob-
lems with more than 2000 variables leading to matrix filling ratiosNNZ=N from
10 to 30 (the case for rigid multibody problems with recursive formulations or
flexible multibody body problems modelled by component modesynthesis),
and (b) problems with more than 2000 variables leading to matrix filling ratios
NNZ=N above 30 (the case for flexible multibody body problems solved by in-
troducing the finite element discretization in the formulation). Out of these two
regions, sequential solvers (specially CHOLMOD) are more efficient.

� Pardiso is the most efficient parallel solver in the above–mentioned conditions
among the three tested parallel linear equation solvers (SuperLU, Pardiso and
WSMP).

� The speedups delivered by Pardiso in the above–mentioned conditions exceed
70% of the maximum theoretical value predicted by Amdahl’s law for matrix
filling ratios in the range from 10 to 30. Beyond that point, speedups fall grad-
ually. In addition, the speedups become higher as the problems increase their
size.

Regarding the efficiency and suitability of the non–intrusive OpenMP parallel pro-
gramming model, the following conclusions can be established:

� The parallelization of several tasks of an existing sequential dynamic simulation
software was very easy to implement with OpenMP.

4.4Conclusions 59

� The OpenMP parallel version proved to be advantageous even for small prob-
lems of 100 variables, and the speedups exceeded 80% of the maximum theo-
retical value predicted by Amdahl’s law for problem sizes inthe range from 500
to 3500 variables.

� Beyond a certain problem size (2000 variables), the speedups fall gradually.
This abnormal behaviour could be caused by adverse effects in the CPU’s cache
memories.

� The compiler toolchain has a significant effect on the efficiency of OpenMP:
Intel icc performs better for problems of less than 1000 variables, while GNU
gcc performs better for larger problems.

Despite the fact that both parallelization techniques cannot deliver high absolute
speedups due to their non–intrusive character, their application is straightforward and
therefore they are very appropriate to achieve partial parallelization of existing se-
quential multibody simulation codes with minimal effort. In addition, the good per-
formance and ease of use of OpenMP suggest that it could be a substitute of MPI in
the development and implementation of new formulations specially targeted to parallel
execution; this topic represents an open line for future work.

Chapter 5

Integration with
MATLAB/Simulink

Simulation of complex mechatronic systems like an automobile, involving mechan-
ical components as well as actuators and active electronic control devices, can be
accomplished by combining tools that deal with the simulation of the different sub-
systems. In this sense, it is often desirable to couple a multibody simulation software
(for the mechanical simulation) with external numerical computing environments and
block diagram simulators (for the modelling and simulationof non–mechanical com-
ponents).

In this Chapter, the in–house developed C++ MBS simulation software described
in Chapter 2 has been coupled with the commercial tools MATLAB and Simulink,
and different coupling techniques have been identified, implemented and tested in or-
der to assess their computational performance. Two categories of coupling techniques
have been investigated: those in which only one tool performs the integration (func-
tion evaluation) and those in which each tool uses its own integrator (co–simulation).
Furthermore, the efficiency of the described coupling methods has been compared to
that of equivalent monolithic models, and indications are provided to implement them
in other simulation environments.

Results show that the use of state–of–the–art coupling techniques can reduce sim-
ulation times in one or two orders of magnitude with respect to standard techniques.
Finally, advices are provided to select the coupling methodbest suited to a particular
application, as a function of its efficiency and implementation effort.

5.1 Introduction

Machines, in general, consist of several different subsystems such as mechanical com-
ponents and actuators as well as control systems. These subsystems represent engi-
neering disciplines that are coupled together and the overall performance of the ma-
chine is defined by the operation of each individual subsystem as well as by the inter-

61

62 Integration with MATLAB/Simulink

actions of subsystems. For this reason, the traditional design procedure where mechan-
ical components, actuators and control methods are considered separately is not able to
produce optimum solutions. The multibody system (MBS) simulation approach meets
the challenge and can be used in the design process of a machine that consists of
different subsystems. It is noteworthy, however, that complex non–mechanical com-
ponents such as control loops and actuators often fall beyond the scope of traditional
multibody codes.

As the industry requirements increase, the demanded degreeof realism in the sim-
ulation of multidisciplinary systems is continuously growing, so the engineer needs
to bear in mind different phenomena simultaneously when simulating a system. When
evaluating the behaviour of an automobile, for example, notonly an accurate represen-
tation of its mechanical elements is needed, but also of the electronic control systems
(like ABS or traction control), the hydraulic components orthe thermodynamics of its
engine. The realistic simulation of such multidisciplinary system, as required, for in-
stance, by Human/Hardware–in–the–Loop (HiL) devices, must handle each different
subsystem in an efficient way.

Several ways of dealing with multidisciplinary systems canbe found in the liter-
ature, as mentioned by Valá̌sek (2008). Two main approaches can be distinguished:
communication between different simulation tools, and uniform modelling. Uniform
or monolithic modelling is based on representing all the subsystems of a multi–domain
problem in the same language (Samin et al., 2007). Specialized software and lan-
guages exist for this purpose, such as ACSL (The AEgis Technologies Group, Inc.,
2009), VHDL–AMS (IEEE P1076.1 Working Group, 2009), and Modelica (Modelica
Association, 2009), that manage simultaneously the equations of the entire system.
Another way of performing uniform modelling is based on the use of general mathe-
matical software for defining and solving the equations of the system. Recently, this
task has been simplified by the development of specific–domain modules in block di-
agram software, such as SimMechanics and SimHydraulics forMATLAB/Simulink
(The Mathworks, Inc., 2009). Coupling of tools, on the otherhand, is based on the
combination of specialized tools for modelling each subdomain. These tools are inter-
faced during execution time in order to emulate the real interaction between physical
subsystems. As stated by Kübler and Schiehlen (2000), this is the optimal approach
for the simulation of multidisciplinary systems. It allowsthe selection of optimized
settings for the simulation of each subsystem, such as the integration time–step, the
numerical solver and other particular details. Furthermore, in many cases, these spe-
cialized tools have been developed during years by researchers, leading to robust and
efficient software and wide collections of tested examples and toolboxes.

Coupling strategies can be further categorized into two main approaches, depend-
ing on how the integration is performed. The nameco–simulationis usually reserved
for those cases in which each simulation tool incorporates its own integrator. In this
work, when the integration is performed only in one tool thatrequests values from the
others, the namefunction evaluationwill be used.

Commercial multibody packages have been incorporating multiphysics capabili-
ties during the last years and many of them, for example SIMPACK (SIMPACK AG,

5.1 Introduction 63

2009), offer a wide range of coupling possibilities to external software tools, as well as
add–on modules with non–multibody functionality. When the multibody software has
been developed by a non–commercial research group, as in thecase of academia, and
coupling capabilities need to be added to it, the programmermust often choose be-
tween several available implementation techniques. Currently, it is nontrivial to make
this decision, as the research about the suitability of the different coupling techniques
for particular applications has been overlooked. In particular, there is a lack of in-
formation about the amount of effort the implementation of acoupling strategy takes
and, more importantly, the efficiency of a specific techniquewhen compared to other
strategies applicable to the same problem. A study of the impact on performance of
different co–simulation time–steps and processor configurations, in a simulation in-
volving SIMPACK and MATLAB has been carried out by Vaculı́n et al. (2004) for
a truck model. However, the evaluation of the computationalefficiency of different
coupling techniques, and a comparison with the performanceof equivalent monolithic
models, when possible, has not been performed yet. To this end, test models must be
selected and built up, and simulations performed in order tomeasure the overhead the
coupling techniques give rise to.

A closely related open field of research in the simulation of multidisciplinary sys-
tems is the use of multirate integration schemes, which improves the numerical effi-
ciency during the simulation of interacting subsystems with very different time scales.
Multirate algorithms have been developed (Oberschelp and Vöcking, 2004; Shome
et al., 2004), while, however, the implementation of these techniques in the communi-
cation between software packages, specially when block diagram software is involved,
is still in progress. It is noteworthy that the numerical performance of multirate algo-
rithms depends greatly on the co–simulation strategy selected for solving the problem.
The understanding of the limitations imposed by block diagram software packages,
and the definition of a convenient interface between them andother simulation tools is
the first step in the implementation of the general scheme formultirate co–simulation
that is shown in Chapter 6

In this Chapter, coupling techniques with external simulation tools have been used
for widening the capabilities of the existing MBS software,through the addition of
functionality with numerical computation environments (such as MATLAB, Scilab
(INRIA, 2009b), Mathematica (Wolfram Research, 2009) or MATRIXx (National In-
struments, 2009)) and block diagram simulators (Simulink,Scicos (INRIA, 2009a)
or SystemBuild (National Instruments, 2009)). To this end,coupling possibilities be-
tween the MBS software developed in this thesis and MATLAB/Simulink are exam-
ined in detail. MATLAB has been selected for this work because of its wide acceptance
in the research community, derived from its versatility andeasiness of programming.
A practical way of performing the coupling in real cases has been implemented for
each technique. It is important to note that the coupling techniques introduced in this
study are not limited to a specific mathematical package, butthey can also be applied
to other similar tools, as similar communication capabilities are available in them. Fi-
nally, a generic co–simulation interface, which manages the communication between
MBS software and the block diagram package Simulink, has been created and im-

64 Integration with MATLAB/Simulink

plemented. This interface is intended to allow multirate co–simulation, with different
synchronization methods, between simulation tools.

This Chapter is organized as follows: Section 5.2 gives a general review of the
existing techniques for communicating a multibody packagewith external simulation
tools. In Sections 5.3 and 5.4, these techniques are implemented in the MBS soft-
ware and a general software tool for numeric computations. Introduced computational
strategies are utilized in two example problems. Finally, the conclusions of the work
are summarized.

5.2 Coupling techniques

The expansion of the multibody software via communication with external simula-
tion tools can be performed in several ways, which can be categorized as data files
exchange, function evaluation and co–simulation approaches. The most straightfor-

Pre-process

Simulation

Post-process

Pre-processed

input data file

Output data file

for post-process

External

simulation tool

Multibody

software
I/O module

write

write

read

read

External

simulation tool

Figure 5.1:Data file input–output configuration

ward and easy to implement way of sharing data between two different simulation
environments is the use of importing and exporting of data files. As the computational
cost of read/write operations is high, this technique should not be applied during run-
time. For this reason, files exchange approach should be reserved for pre– and post–
processing operations, where computational efficiency is not a key factor. A scheme of
this method is described in Figure 5.1. In the MBS simulationfield, a large variety of
tasks can be managed with files exchange approach adding to the multibody software
the functionality of an external processing tool. The off–line realistic graphic repre-
sentation of results and the pre–processing of complex dynamical terms when these
are remaining constant during simulation are examples of this approach. The software

5.2Coupling techniques 65

requirements for the use of this strategy are the existence of a common data format,
understandable by the involved packages, and the availability of input–output routines
for handling the data files in each program.

An alternative to data files exchange, more adequate for runtime, arefunction eval-
uationsfrom one simulation tool to another. In this work, the name function evalua-
tion is reserved for those communications in which only one of the software tools
is actually performing a numerical integration, while the other one returns values on
request, from the output values passed by the integrator tool. This configuration can
be achieved through code exporting (via joint compiling, together with the integrator
tool, or pre–compiled as a library) or by direct communication between processes. Ap-
plication fields of the function evaluation strategy would be complex force evaluations
during runtime, table look–up and other processes in which numerical integration is
not present.

Time

Master simulation tool

Auxiliary simulation tool

it 1it

Function

evaluation

Function

evaluation

Function evaluation

interface

Answer Answer

Figure 5.2:Generic function evaluation configuration

The implementation of this technique requires the development of an interface
between the software tools to allow the main process to use the functionality of the
auxiliary software and receive the return data conveniently. Data formats in different
tools are often incompatible, so translation routines may be necessary for the correct
transmission of information. A simplified depiction of thistechnique can be seen in
Figure 5.2. The block representing the auxiliary software tool at the bottom of the fig-
ure can be a standalone process, if direct communication between processes is used, a
library or even exported source code, that has been previously compiled together with
the source code of the driver program. The availability of these methods is determined
by the nature of the external tool, as it may allow or not communication with external
processes (for example, via TCP/IP) or the access to inner functions in case of it is
compiled as a library.

Finally, aco–simulationapproach in the strict sense can be developed, in which
two simulation tools, each of them with its own states and integrator, share data at
defined synchronization points (Arnold, 2008). Again, codeexport or direct commu-

66 Integration with MATLAB/Simulink

nication between processes can be used to implement this configuration. In the case
of a multibody simulation tool, state–space equations can be represented by

(

Pxm .t/ D fm .xm .t/ ;um .t//

ym .t/ D gm .xm .t//
(5.1)

wherexm are the states of the multibody system,um the inputs to the system and
ym the system outputs. An analogue expression can be used for the equations of the
external simulation tool

(

Pxe .t/ D fe .xe .t/ ;ue .t//

ye .t/ D ge .xe .t//
(5.2)

being the inputs of a system the outputs of the other

(

ue .t/ D ym .t/

um .t/ D ye .t/
(5.3)

Nowadays, state–of–the–art commercial software performsco–simulation at con-
stant time–steps, with the same integration stepsizes in every subsystem, although
research is being carried out to introduce multirate methods in co–simulation envi-
ronments (Busch et al., 2007). Even with constant and identical time–steps in each
subsystem, the evaluation of the inputs for each subsystem,given by Equation (5.3),
at synchronization pointti can be performed in several ways. A frequent strategy is
assuming that the inputs of each subsystem can be consideredconstant during each
time–step [ti ; tiC1], which leads to

(

ue .t/ D ue .ti/ D ym .ti/

um .t/ D um .ti/ D ye .ti/
(5.4)

This approach, known as constant extrapolation, has been followed in this Chapter,
as the detailed testing of different interpolation degreesand multirate techniques falls
beyond its scope, and it will be tackled in Chapter 6. Direct co–simulation, in which
co–simulated variables are exchanged once in each integration step, and then each sub-
system proceeds its own integration independently, has been used. As it was the case
in the function evaluation strategy, co–simulation can be implemented on the basis
of intercommunication between processes, or through code export. Again, translation
routines between data storage formats will likely be necessary. The synchronization
of integrators and the exchange of data can be managed by a co–simulation interface,
which can be implemented in one of the communicating software tools. A scheme of
this composition is shown in Figure 5.3.

In order to test the described coupling techniques, the MBS software developed in
this thesis has been linked to MATLAB/Simulink. MATLAB is a anumerical com-
puting environment that provides state–of–the–art algorithms for a wide range of ap-
plications (optimization, control, data acquisition and analysis). MATLAB’s add–in

5.3Function evaluation 67

Time

Multibody simulation tool

External simulation tool

m
x

e
x

it 1it

e i
ty

m i
tu

m i
ty

e i
tu 1e i

ty

1m i
tu 1m i

ty

1e i
tu

Co-simulation interface

Figure 5.3:Generic co–simulation configuration

Simulink can be considered as the de facto standard for model–based design of control
systems. This software package includes a library with a wide variety of components
and it allows the user to create new elements in a straightforward manner. It is impor-
tant to note that MATLAB/Simulink code has to be interpretedduring runtime, which
leads to a considerable increase in simulation time and inefficient execution. This
fact rules out the software for demanding applications, forexample real–time simula-
tion. Communication between the MBS software and MATLAB/Simulink programs,
representing control loops, actuators and other external components, can provide an
additional functionality that is missing in the original multibody software.

The techniques described in the following can be applied to other software tools
different from MATLAB/Simulink, for example MATRIXx/SystemBuild or the free
software Scilab/Scicos. In general, communication between processes can often be
achieved if the software supports the use of inter–process communication (IPC), like
sockets. The use of external code can be performed through calls to dynamically linked
libraries, with their corresponding import libraries and header files, if necessary.

5.3 Function evaluation

A runtime call to MATLAB functions from the multibody software would be desirable
in order to evaluate complex force functions or to access look–up tables. Additionally,
MATLAB can also be used as a test environment for the definition of new implemen-
tations for formulations or models. These could be written in MATLAB’s easy–to–use
M language, and called from the multibody software as library functions in order to
test their correctness before performing their final implementation in an efficient lan-
guage such as C or Fortran. This would make possible the definition and testing of
new models even for users without advanced programming skills.

In this research, three alternative implementation approaches for the function eval-

68 Integration with MATLAB/Simulink

uation method have been tested: MATLAB Engine, MATLAB Compiler and a MEX
API of functions. A dynamic simulation of a double–pendulumhas been selected
as test example for the above–mentioned implementation approaches: the multibody
software carries out the numerical integration and MATLAB is used to evaluate the
equations of motion at each time–step. This simple example has been chosen, as there
is no practical increase of complexity derived from applying the function evaluation
technique to more involved problems.

m

m

r

2r

Figure 5.4:Double pendulum

The double pendulum is shown in Figure 5.4. The integration of the motion is per-
formed by the MBS software, making use of the augmented Lagrangian formulation
of index–3, already described in Sections 3.2.2 and 4.2.1. In this study, the mass (m)
and radius (r) parameters have been set to 1 kg and 1 m. The code for the updating of
the dynamic terms of the system, including the mass matrixM , the constraints vector
ˆ, the Jacobian matrix of the constraints vectorˆq and the generalized forces vec-
tor Q, is written in .m files and accessed from the MBS simulation software through
function evaluation methods. This is equivalent to replacethe C++modelcomponent
in the core module, described in Section 2.3, with an M language counterpart; in this
way, the integrators and formulations of the MBS software can be applied to easy–to–
code MATLAB models. A similar approach could be taken in order to test dynamic
formulations or numerical integrators written in MATLAB, replacing the correspond-
ing component of the core modulus while avoiding the need fortranslating them to
C++. Other application of function evaluation is the invocation of specific MATLAB
functionality, such as involved matrix operations.

The methods for implementing the function evaluation described in this Section
can be applied to similar numerical software, different from MATLAB, making use
of alternative communication facilities. For example, Scilab provides theinterscipro-
gram, which allows calling C and Fortran routines from Scilab, and the calling routines
defined inCallScilab.h, which make Scilab work as a calculus engine.

5.3Function evaluation 69

5.3.1 MATLAB Engine

The MATLAB Engine library is a set of routines that allows calling MATLAB func-
tionality directly from external C/C++ and Fortran programs. The Engine is a way
of intercommunicating running processes such that a MATLABcommand window
must be open, waiting for receiving the commands sent by the external program and
executing them. As the Engine uses its own data structure,mxArray, to exchange in-
formation with the caller program, several translation functions have to be defined in
order to manage the data type and make it compatible with the data types used in the
multibody program. Once this problem has been solved, MATLAB functions can be
called from the C++ code of the multibody tool. It should be noted that the Engine
receives its commands as a string of characters which must beparsed, resulting in the
deceleration of the code execution.

Application

(.exe)

C++ files

Dyn

terms

MATLAB

Engine

- Formulation

- Integrator

C++ compiler

M files

- ModelIn
te

rf
ac

e

Dyn

terms

Figure 5.5:Function evaluation configuration with MATLAB Engine

The function evaluation configuration through the Engine isrepresented in Fig-
ure 5.5. The MBS software acts as a master tool, integrating the positions of the double
pendulum, while the evaluation of dynamic terms is performed, through the Engine,
via calls to the.mfiles that code the model.

5.3.2 MATLAB Compiler

Function evaluation has also been achieved through code export, with the use of MAT-
LAB Compiler, transforming.mcode files into dynamically linked libraries (.dll, .so).
The libraries are then loaded by the multibody software during runtime, thus allowing
the invocation of functions. As the Engine does, the Compiler uses its own storage
data type,mwArray, and translation routines between the MBS code and the compiled
MATLAB code must be written. The C/C++ library generated by the Compiler only
contains wrappers for the MATLAB routines, and hence it still depends on MATLAB
libraries to carry out the computations on runtime.

The use of the Compiler on the.mfiles removes the need for the use of the Engine,
as shown in Figure 5.6, replacing the process communicationwith the export of the
pre–compiled code. The evaluation of dynamic terms is directly called from the main
application while the library that wraps the routines codedin .m files still needs to

70 Integration with MATLAB/Simulink

Application

(.exe)

Dyn

terms

M files

- Model

In
te

rf
ac

e

MATLAB

Compiler

Library

(.dll)

MATLAB

libraries

(.dll)

C++ files

- Formulation

- Integrator

C++ compiler

Figure 5.6:Function evaluation configuration with MATLAB Compiler

invoke additional MATLAB functions.

5.3.3 MEX functions

A third way of communicating both tools is the definition of anapplication program-
ming interface (API), which allows calling from MATLAB the functions that are de-
fined and implemented in the multibody package. This way, MATLAB acts as driver
tool, starting the integration performed by the MBS software. The API consists of a
series of MEX functions that manage the data types defined by MATLAB and make
the convenient translation to those types the C++ program uses and vice versa.

Library

(.dll)

MEX

library

(.mexw32)

MATLAB

StartStart

C++ files

- Formulation

- Integrator

C++ compiler

C++ files

- Interface

C++ MEX

compiler

M files

- Model
Dyn

terms

Dyn

terms

Figure 5.7:Function evaluation configuration with a MEX API of functions

Figure 5.7 shows the layout of the function evaluation through the use of a MEX
function. Under this configuration, the interface routinesare separated from the MBS
software and compiled into a library that manages the communication between MAT-
LAB and the MBS software, compiled as a dynamic library. The MBS code calls the
model.mfiles for the evaluation of the dynamic terms of the model through this MEX
function and this one, in time, through MATLAB.

5.3Function evaluation 71

5.3.4 Results

Two simulations of 10 seconds have been performed using a penalty factor of˛ D 108

and constant integration time–steps of10�3 s and10�2 s, respectively. The MBS
software is configured to use dense LAPACK routinesgtrf andgtrs as linear solver,
which have been proved to be efficient for small–size problems and allow an easy
conversion of the storage format from MATLAB.

The elapsed times in calculations, on an AMD Athlon 64 3000+,at 1.81 GHz
with 1.00 GB of RAM, are summarized in Table 5.1. As the initial conditions of the
motion, the expression of the dynamic terms and the formalism used to integrate the
motion are the same in every implementation, output results(positions, velocities and
accelerations during the motion) are identical for each time–step, independently of the
method used for providing the dynamic terms. The ratios defined in the table refer to
the elapsed time of the correspondent function evaluation implementation when com-
pared to standalone C++ MBS code (without the use of MATLAB).The number of
iterations is the number of times the iterative solution of the system in Equation (3.4)
has been performed. The evaluation of dynamic terms takes place within the Newton–
Raphson iteration loop. This, together with the fact that the use of function evaluation
methods slows down the execution of the code, makes negligible the amount of com-
putational time elapsed out of the iterative loop. In the standalone C++ implementa-
tion, however, the code out of the loop takes around 20% of thetime, and this explains
the variations that appear in the ratios when using different time–steps.

Table 5.1:Elapsed times in a 10 s dynamic simulation of the double–pendulum

Function evaluation
�t D 10�3 s �t D 10�2 s

Elapsed time (s) Ratio Elapsed time (s) Ratio

Standalone MBS code 5:02 � 10�2 1 8:40 � 10�3 1
MATLAB Engine 18.12 361.0 3.32 395.2
MATLAB Compiler 5.56 110.8 1.07 127.4
MEX API of functions 0.64 12.7 0.12 14.3

Number of solver iterations 10,000 1,840

As it was expected, the use of function evaluations in external simulation tools
slows down the execution of the program. The MATLAB Engine approach is very
easy to implement, but it also delivers very poor efficiency:it has been estimated that
the parsing of a single empty function evaluation takes around 0.25 ms. Therefore,
the use of MATLAB Engine should be discouraged when functionevaluations in the
auxiliary tool are repetitive (for example, several times in each integration step).

MATLAB Compiler is usually claimed to be the fastest coupling technique, since it
removes the need of parsing string instructions as functioncalls are performed directly
on routines stored in dynamically linked libraries. Even so, the generated C code is
still two orders of magnitude slower than standalone C++ MBScode. The overhead of
the MATLAB Compiler approach comes from the need of converting data structures

72 Integration with MATLAB/Simulink

between the MBS software and MATLAB routines. This approachhas an additional
drawback: if the MATLAB code is modified, it must be compiled and linked again,
and this process slows down the code development.

The implementation of the function evaluations as MEX API offunctions, shown
in Figure 5.7, has yielded the best performance. This approach, nevertheless, requires a
high development effort due to the need for building a MATLABcompliant C interface
for each function in the multibody package. It is surprisingthat the implementation of
the MBS code as a MEX API leads to an almost 8 times faster execution time when
compared to MATLAB Compiler. This may be related to the way inwhich MATLAB
functionality is invoked from the compiled library in the latter case. Another advan-
tage of the MEX API of functions is that the MATLAB code stays in .m files, and
therefore it allows fast development iterations because itcan be modified and tested
again without going through a compilation and linking process (as in the case of the
previous approach based on MATLAB Compiler).

5.4 Co–simulation

Under the co–simulation approach, the MBS simulation tool has been connected to
MATLAB’s add–on Simulink, a block diagram simulation tool.With this configura-
tion, two integrators are coupled in the simulation process: the MBS integrator con-
tained in the multibody software and the general purpose integrator in Simulink. In

g = 9.81 N/kg

x

y

Loop 1 Loop L

A0 A1

B0 B1

AL-1 AL

BL-1 BL

Figure 5.8:L–loop four–bar linkage

order to test the co–simulation, a multiphysics model composed of an engine and
a mechanical system is simulated. Each subsystem is modelled and integrated in a
different environment. The engine model has been obtained from Simulink library
of example models and is based on results published by Crossley and Cook (1991).
It describes the thermodynamic simulation of a four–cylinder spark ignition internal
combustion engine. The multibody system moved by the engineis a planar assembly
of four-bar linkages withL loops, composed by thin rods of 1 m length with a uni-
formly distributed mass of 1 kg, moving under gravity effects. Initially, the system is
in the position shown in Figure 5.8 and the velocity of thex–coordinate of point B0

5.4Co–simulation 73

is +30 m/s. This mechanism has been previously used as a benchmark problem for
multibody system dynamics (Anderson and Critchley, 2003; Gonźalez et al., 2006). It
has been selected for this work because it allows testing theeffect of variations in the
problem size without modifying the structure of the model, just by adding more loops
to the mechanism.

Co-simulated

subsystem

(S-function)

Engine - gearbox

subsystem

(Simulink)

Torque

(T)

Clock

1x

1y

Rotational

speed (N)

Throttle

(Angle-law)

Memory

blocks

Figure 5.9:Simplified Simulink model for co–simulation, implemented with an S–
function

The engine provides a motor torqueT to the linkage through a gearbox, which is
also modelled in Simulink. A constant rotational damping isconsidered to act on the
mechanism, of value 3.18 Ns/rad. Both damping and motor torque are assumed to be
applied on the first bar of the mechanism (A0 � B0). The angular speed of this bar (N)
is returned to the engine model as input value, together withthex andy positions of
the first point of the linkage (x1, y1), for graphical output. The throttle angle of the
engine is guided through a pre–defined angle–law. The resulting Simulink model can
be seen in Figure 5.9. The use ofmemoryblocks is motivated by the need of avoiding
algebraic loops; a concise explanation on this particular is provided in Section 6.3.1.

In this research, three implementation approaches for the co–simulation have been
tested: network connection, Simulink as master, and MBS software as master.

5.4.1 Network connection

Data exchange between two processes running simultaneously can be carried out using
a TCP/IP network connection through standard sockets. To this end, the MBS software
is modified in order to make it work as a server socket. Accordingly, a user–defined
block (S–function) is added to the Simulink model to act as a client socket. In other
similar block simulation packages, the role of theS–functionblock can be performed
by an equivalent component, such as theUserCodeblock in SystemBuild (National
Instruments, 2009) and theC or Fortran block in Scicos (INRIA, 2009a). Thus, the
interface is split into two parts, one in the block diagram environment and one in the
MBS software. Both parts of the interface are responsible for the translation of the

74 Integration with MATLAB/Simulink

storage formats and for the adequate exchange of information at each time–step, so
they must be correctly coordinated. Moreover, the communication sequence between
both subsystems has to be separately coded in each environment, adding an extra
burden to the task of keeping the synchronization of the integrators.

5.4.2 Simulink as master

An alternative to network communication is the code export approach, in which the
MBS code can be compiled as a dynamically linked library (.dll or .so) and directly
called from anS–functionblock inside Simulink. In this case, theS–functionincludes
all the code of the interface between the MBS code and the Simulink model, and
must manage the required exchange of data and format conversions between both
environments. In this configuration, Simulink becomes the driver software, starting
and ending the simulation and calling the MBS software through the interface block
each time a return value is needed by the Simulink integrator.

5.4.3 MBS software as master

Another possibility, following the opposite approach to that used in the previous Sub-
section, is using the MATLAB product Real–Time Workshop (RTW) (The Math-
works, Inc., 2009) to translate the Simulink model into faststandalone C code, which
can be called from the MBS code. In this case, the Simulink model is converted into
a dynamically linked library (.dll) through the use of RTW functionality; this can be
done with little modifications to the Simulink model used in the previous Subsection.
With this configuration, the MBS code starts and manages the co–simulation process,
invoking the functions compiled in the.dll in each integration time–step in order to
obtain the value of the torque the engine supplies to the linkage.

This approach has a drawback when compared with the previoustechniques: if
the Simulink model is modified, it must be translated into C code and compiled again;
this is a complex and delicate procedure, which slows down the iterations in code
development. The process is detailed in the Appendix of thiswork.

In both cases (Simulink as master and MBS software as master)two integrators
are acting simultaneously and, for this reason, a careful coordination between them is
required. Simulink behaviour is, in many aspects, beyond the control of the user, so
the co–simulation interface has to be specifically defined tofit Simulink.

5.4.4 Results

The simulation time in the previously described test example is 30 s. A penalty factor
of ˛ D 1010 and a constant integration time–step of10�3 s have been used. Direct
co–simulation with the same integration time–step size in both subsystems has been
used. The values of the exchanged variables have been taken as constant from one
time–step to the next one (constant interpolation). The MBSsoftware is configured
to use KLU (Davis and Natarajan, 2010) routines for solving the linear systems the
simulation requires. The co–simulation coupling has been implemented with the three

5.4Co–simulation 75

0 5 10 15 20 25 30
0

5

10

15

20

25

Time (s)

T
h
ro

tt
le

 a
n
g
le

 (
º)

a)

0 5 10 15 20 25 30
10

20

30

40

50

60

70

Time (s)

R
o

ta
ti

o
n

a
l

sp
e
e
d

 (
ra

d
/s

)

b)

Figure 5.10:Throttle angle (a) and rotational speed of the mechanism (b)for a 30 s
simulation of a 1–loop linkage

different approaches described above. Results of the simulation can be seen in Fig-
ure 5.10, for a 1–loop linkage. The angle-law of the engine throttle is pictured at the
top of the figure. The rotational speed of the mechanism, depicted below, shows that
the linkage follows the input given by the pedal angle, with the limitations imposed by
its rotational inertia and damping. Results do not show significant variations between
the three tested coupling techniques. The performance of the described techniques has
been tested against a model of the whole system (engine and four–bar linkage) entirely
built in Simulink. The four–bar linkage has been modelled with the SimMechanics li-
brary (The Mathworks, Inc., 2009), a Simulink add–on for modelling and simulation
of rigid multibody systems. In a second stage, the computational efficiency of this
model has been further improved via the RTW package, translating the whole model
into a standalone C executable. Simulinkode1integrator has been used in these simu-
lations, since it is the fastest available integrator and itprovides enough precision for

76 Integration with MATLAB/Simulink

0

10

20

30

1 2 3 4 5 6 7 8 9 10

Number of loops L

E
la

p
se

d
 t

im
e

(s
)

SimMechanics SimMechanics + RTW
Network connection Simulink as master
MBS as master

Figure 5.11:Elapsed times for a 30 s simulation of theL–loop linkage powered by the
engine, with different simulation techniques

the test problem. A comparison of the elapsed times for a 30 s simulation can be seen
in Figure 5.11. The monolithic approaches are represented with dashed lines, as they
are not properly co–simulation, and labelled asSimMechanicsfor the pure Simulink
model, andSimMechanics + RTWfor the model translated into C code via RTW. The
co–simulation methods are designed asSimulink as master, for the implementation
where Simulink calls MBS code compiled as a library;Network connection, when the
communication is performed via sockets between simultaneously running processes
andMBS as master, when the MBS code calls Simulink routines from the.dll library
compiled with RTW.

Table 5.2:Elapsed times in a 30 s dynamic simulation of anL–loop four–bar linkage
powered by the engine.N stands for the number of variables of the mechanical system

Co–simulation method
L D 5 .N D 13/ L D 10 .N D 23/

Elapsed time (s) Ratio Elapsed time (s) Ratio

MBS software as master 0.58 1 0.90 1
Simulink as master 2.37 4.1 2.62 2.9
Network connection 5.15 8.9 5.67 6.3

SimMechanics + RTW 11.17 19.3 24.97 27.7
SimMechanics 17.11 29.5 38.88 43.2

5.5Conclusions 77

Results are summarized in Table 5.2, where the ratios of elapsed time with re-
spect to the fastest method are also included. They show thatthe elapsed time for the
Simulink model, as expected, grows fast when the number of variables of the problem
increases. This is valid even in the case of using a very simple integrator asode1. The
use of RTW mitigates this problem and reduces the calculation time between a 30%
and a 50%. However, the use of co–simulation techniques leads to even lower compu-
tation times, as they permit taking advantage of the highly optimized routines of the
MBS code, reducing thus the time needed for calculating the mechanic subsystem of
the problem. It can be seen that theSimulink as masterimplementation is somewhat
faster than theNetwork connectionmethod, as the overhead derived from socket com-
munications is not present. TheMBS as masteryields the best results, as expected,
because the intercommunication takes place, in this case, between an executable and
a library both of them coded in an efficient language (C/C++).

It should be noted, however, that theMBS as masterimplementation is signifi-
cantly more complex than theNetwork connectionor Simulink as masterimplemen-
tations, and it forces to follow a complex translation process every time the Simulink
model is modified, as explained in Section 5.4.3. For these reasons, theNetwork con-
nectionor Simulink as masterco–simulation approaches are better suited for develop-
ing and fine–tuning Simulink models, while theMBS as mastertechnique is appropri-
ate for production code and real–time applications.

Trends indicate that co–simulation will achieve greater differences with respect
to models fully implemented in Simulink as the number of variables of the prob-
lem increases. In fact, real–time simulation (less than 30 sof computations) has been
achieved with the described co–simulation techniques for multibody models up to 300
variables. This upper limit would allow the efficient real–time simulation of many in-
dustrial, non–academic multidisciplinary systems.

5.5 Conclusions

In this Chapter, several implementation methods for coupling MBS simulation soft-
ware with block diagram simulators and numerical computingenvironments have been
tested. The methods have been tested in a software environment where the C/C++
MBS code developed in this thesis is coupled with MATLAB/Simulink, a quite com-
mon setup in the modelling and simulation of complex mechatronic systems. The
investigated coupling techniques have been divided into two categories:function eval-
uationandco–simulation.

Regarding the implementation methods for function evaluation in MATLAB, the
following conclusions can be established:

� The MATLAB Engine approach is the easiest to implement but also the slowest
one. The use of MATLAB Compiler reduces the simulation timesto a 30%
of the time consumed by MATLAB Engine, but at the cost of slowing down
the code development iterations. Both approaches are two orders or magnitude
slower than standalone MBS code.

78 Integration with MATLAB/Simulink

� The MEX API of functions is the fastest approach, being only one order of mag-
nitude slower than standalone MBS code. The implementationeffort is higher
that in other methods, but not overwhelming, and therefore it is recommended as
the best approach for function evaluation when simulation efficiency is needed.

Regarding to the implementation methods for co–simulationwith Simulink, the
following conclusions can be established:

� Co–simulation methods are approximately one order of magnitude faster than
simulations based on monolithic models developed in Simulink, even if tools
like Real–Time Workshop are used.

� The method labelledSimulink as masterprovides the best trade–off between
simulation efficiency and ease of implementation and code development, and
therefore it is recommended for developing and fine–tuning models for co–
simulation setups.

� The method labelledMBS software as masteris the fastest approach (several
times faster thanSimulink as master, depending on the relative complexity be-
tween the block diagram and multibody models), but its implementation is more
complex and requires the translation of Simulink models into C code, a step that
slows down the development iterations. Therefore, this method is recommended
for production code and real–time applications.

The described coupling techniques can also be implemented with minor changes
in other numerical computing environments and block diagram simulators different
from MATLAB/Simulink, for example SystemBuild or Scilab/Scicos. However, the
efficiency of the different tested methods highly depends onthe internal data structures
and algorithms of software, and therefore their relative efficiency could be different.

Chapter 6

Multirate Co–simulation
Methods

As it was shown in the previous Chapter, dynamic simulation of complex mechatronic
systems can be carried out in an efficient and modular way making use of weakly
coupled co–simulation setups. When using this approach, multirate methods are often
needed to improve the efficiency, since the physical components of the system usually
have different frequencies and time scales. However, most multirate methods have
been designed for strongly coupled setups, and their application in weakly coupled
co–simulation is not straightforward due to the limitations enforced by the commercial
simulation tools used in mechatronics design.

This Chapter describes a weakly coupled multirate method intended to be a generic
multirate interface between block diagram software and multibody dynamics simula-
tors, arranged in a co–simulation setup. The use of the interface is first demonstrated
on a simple, purely mechanical system with known analyticalsolution and variable
frequency ratio (FR) of the coupled subsystems. Several synchronization schemes
(fastest–firstandslowest–first) and interpolation/extrapolation methods (polynomials
of different orders and smoothing) have been implemented and tested. Next, the ef-
fect of the interface on the accuracy and the efficiency of thecalculations is assessed
making use of a co–simulation setting that links an MBS modelof a kart to a thermal
engine modelled in Simulink.

The use of the multirate interface simplifies the tuning process of the co–simulation
parameters, necessary to find values for them which are adequate to the particu-
lar properties of the simulated problem. Results show that weakly coupled multirate
methods can achieve considerable reductions in the execution times of the simulations
without degrading the numerical solution of the problem.

79

80 Multirate Co–simulation Methods

6.1 Introduction

Modern complex mechatronic systems are made up of multi–domain components of
different nature. An automobile is a very representative example of these kinds of sys-
tems, involving mechanical components (chassis, suspensions, steering mechanism,
powertrain), active control devices (Anti–lock Braking System, Electronic Stability
Control, traction control), hydraulic devices (brake circuit) and power sources (inter-
nal combustion engine or electric motors). Due to the increasing demand of quality
and performance, the traditional design approach based on asequential design of the
components can no longer be applied to such systems: engineers need to model and
simulate the dynamic response of the whole system, taking into account the simulta-
neous interaction phenomena between components.

The modelling of complex mechatronic systems can be accomplished via two dif-
ferent strategies: strongly coupled and weakly coupled. Onone hand, the strongly
coupled strategy assembles the dynamic equations of each subsystem into a mono-
lithic set of equations, which can be numerically integrated in a single environment.
On the other hand, the weakly coupled strategy does not assemble the equations: their
numerical integration is performed in parallel by several interconnected environments
that exchange information during the integration process,working in a co–simulation
configuration. Reviews about both strategies are provided by Samin et al. (2007) and
Arnold (2008).

The weakly coupled strategy has important advantages over the strongly cou-
pled one: specialized modelling and simulation tools, familiar to experts in the cor-
responding field, can be applied to each component. In addition, component models
can be modified with minor impact on other components, which results in a better
modularity of the whole model. For example, control and hydraulic devices are usu-
ally modelled and simulated in general–purpose block diagram simulators like Mat-
lab/Simulink (The Mathworks, Inc., 2009), MATRIXx/SystemBuild (National Instru-
ments, 2009) or the free open source tool Scilab/Scicos (INRIA, 2009a,b). Conversely,
the behaviour of complex mechanical components is better modelled and simulated
in specialized tools for multibody system dynamics like MSC.Adams (MSC.Software
Corporation, 2009), Simpack (SIMPACK AG, 2009) or Recurdyn(Function Bay, Inc.,
2009); these tools also provide interfaces to the aforementioned block diagram simu-
lators, which simplify the setting of weakly coupled simulations. Representative ex-
amples of these kinds of co–simulation setups are given by Liao and Du (2001) and
Vacuĺın et al. (2004), where the authors combine a multibody system simulation pack-
age (ADAMS and Simpack, respectively) with a block diagram simulator (Simulink)
to model a full vehicle equipped with electronic control devices. Similar setups for the
co–simulation of mechatronic systems are described by Mikkola (2001) and Teppo
et al. (2001).

One important feature of complex mechatronic systems, derived from their multi–
domain nature, is the presence of different time scales, which results in notably differ-
ent dynamic response characteristics in terms of frequencies. For example, mechan-
ical components have slow frequency responses compared to fast electronic compo-

6.1 Introduction 81

nents. The computational efficiency of dynamic simulationsof complex mechatronic
systems is quite important, because these models are often used in optimization pro-
cesses (where each function evaluation involves a completedynamic simulation) or
hardware–in–the–loop settings (where the dynamic simulation must be run in real–
time). In order to make the numerical integration of the dynamic equations of the
whole system as efficient as possible, each component shouldbe integrated with a
stepsize adapted to its time scale. This procedure is known as multirate integration.

Research on multirate integration methods for ordinary differential equations has
been carried out since the late 1970s (Gear and Wells, 1984).The basic idea is to em-
ploy two, or more, time–grids: a coarse one for the slow components, and a refined one
for the fast components; the coupled terms in the slow and fast equation sets are esti-
mated by means of extrapolation or interpolation methods. Many contributions to this
subject have been proposed, including advanced techniqueslike dynamic partition-
ing of equations with automatic identification of fast and slow components during the
integration (Engstler and Lubich, 1997), self–adjusting multirate time stepping strate-
gies (Savcenco et al., 2007) and stability analysis of the proposed methods (Verhoeven
et al., 2007).

The application of existing multirate integration methodsto mechatronic models
obtained by the strongly coupled strategy is straightforward, since they are precisely
designed to work on a monolithic set of equations with full control on the integration
process. However, if the mechatronic system is modelled according to the weakly
coupled strategy, these multirate integration methods cannot be applied directly due to
their particular features:

� They introduce modifications in the integration schemes, something that is not
possible in commercial off–the–shelf modelling and simulation tools used for
weakly coupled co–simulation. For example, the aforementioned block diagram
simulators and multibody system simulation packages offertheir own set of
integration schemes that cannot be modified.

� They assume that the coarse and refined time–grids are equidistant and synchro-
nized, which means that the large stepsizeH is a multiple of the small stepsize
h. This condition cannot be guaranteed in weakly coupled co–simulations if one
or more subsystems are integrated with a variable time–stepintegrator, since the
stepsize control algorithms of the different commercial simulation environments
cannot be synchronized.

� They mitigate the unstable behaviour caused by the explicitextrapolation of
some equation terms by introducing implicit schemes, whichinvolve some kind
of iterative process. Again, off–the–shelf simulation tools like block diagram
simulators do not allow this kind of iteration with other simulation tools.

Due to these impediments, commercial state–of–the–art simulation environments
used in mechatronics industry do not provide yet tools to enable multirate integration
when they are used in weakly coupled co–simulation setups. Two examples of this
situation are provided: the first one is veDYNA (Tesis DYNAware, 2009), a real–time

82 Multirate Co–simulation Methods

vehicle dynamics simulation environment very popular in the automotive industry,
which is based on Matlab/Simulink. veDYNA works as an external simulation tool
embedded in Simulink, and provides a library of mechanical elements to model any
kind of automobile. Non–mechanical elements, like electronic and control devices, are
modelled in Simulink as usual, exchanging input and output data with the mechanical
model. veDYNA uses an internal semi–implicit fixed–step Euler integration scheme to
solve the equations of motion of the vehicle, and requires that the Simulink integration
be performed with theode1integrator (explicit fixed–step Euler’s method) in order to
properly synchronize both integrations. This requirementis a strong drawback, since
Simulink’s ode1integration scheme is not suited at all in many situations. Another
example of the limitations of currently available simulation environments is SIMAT
(SIMPACK AG, 2009), the interface provided by the multibodysimulation software
Simpack to perform co–simulation with Simulink. SIMAT works as a Simulink block
that exchanges data between the Simpack model and the Simulink model during the
integration. However, its current implementation only allows fixed stepsize integrators
with the same time–step in both simulation environments. The same constraint applies
to other packages for multibody system simulation, like ADAMS, which provide in-
terfaces for performing co–simulation with block diagram simulators: none of them
supports multirate integration.

Research is being carried out to introduce multirate methods in weakly coupled
co–simulation environments, principally in those which combine a general–purpose
block diagram simulator with external specialized simulation tools, a common setup
in the industry. Busch et al. (2007) have tested several approaches to improve the
aforementioned Simpack’s SIMAT interface, making it able to support variable step-
sizes in both sides of the co–simulation environment; in a similar way, Oberschelp
and Vöcking (2004) have investigated the behaviour of some multirate techniques in
weakly coupled co–simulations. However, these works applymultirate methods to
solve a particular mechatronic model, and therefore their conclusions cannot be gen-
eralized nor extrapolated to other cases.

The main goal of this Chapter is to gain insight into the behaviour and performance
of multirate methods in weakly coupled co–simulation environments. To achieve this,
an interface including an algorithm to implement a general multirate method (i.e. not
constrained to synchronized time–grids or to a particular integration scheme), able to
couple block diagram simulators with external simulation tools, like multibody sim-
ulation packages, has been developed. The proposed algorithm can be configured to
work in different modes and to use different interpolation and extrapolation methods.
Its use is demonstrated in a very simple example, which clearly shows the need for
adjusting the interpolation method and the co–simulation strategy as a function of the
nature of the mechanical system. The interface is later applied to a more complex ex-
ample to evaluate the effect of multirate techniques on the efficiency and accuracy of
industrial–like multi–domain simulations.

The remainder of this Chapter is organized as follows: Section 6.2 describes the
multirate co–simulation interface created in this research and outlines the coupling
strategy it uses. The test of this interface through the use of a simple, purely mechani-

6.2Multirate co–simulation interface 83

cal example with known analytical solution is detailed in Section 6.3. In these two Sec-
tions, several techniques for increasing the accuracy of the simulation are described
and the convenience of their use is discussed in the light of the obtained results. In
Section 6.4 the interface is used again, this time in the co–simulation of a non–trivial
application, in which the multibody model of a kart is coupled to a Simulink block
diagram representing a thermal engine. This example has been used to measure the
impact of multirate techniques on the time required to compute the simulation and
the precision of the results. Finally, in Section 6.5, the conclusions of this Chapter are
summarized and some lines for future research are discussed.

6.2 Multirate co–simulation interface

In order to attain the goals of this Chapter, a new multirate interface has been de-
signed and implemented, which allows using a weakly coupledco–simulation scheme
that combines a general–purpose block diagram package witha multibody simula-
tion software. This configuration is very common in the design and development of
mechatronic systems. Simulink has been selected as block diagram simulator, since it
is a well–known tool in this field. However, the building blocks and modelling pro-
cedures employed in Simulink are also available in other block diagram simulators
like SystemBuild and Scicos, and therefore the co–simulation techniques presented in
this section are not particular to Simulink and can be implemented in other tools in a
straightforward way.

Co-simulation

interface

(S-function)

1 1,t y

Block diagram

simulator

Subsystem 1

(block diagram)

Subsystem 2

(multibody software)

1 1 1, ,t x x

2 2 2, ,t x x

2 2,t y 2u

1u

Figure 6.1:Use of the multirate co–simulation interface

84 Multirate Co–simulation Methods

The generic use of the interface is shown in the block diagrammodel depicted in
Figure 6.1. The dynamics of the subsystem integrated by the block diagram package
is modelled in the upper part of the figure. The states and the outputs of this subsystem
are represented byx1 andy1, respectively, whilet1 stands for the time inside the block
diagram software. The multibody software, in the lower partof the figure, tackles the
numerical integration of the second subsystem, which has its own states, outputs and
time x2, y2 and t2. The time–steps of the subsystems are denoted byh1 andh2; as
the mechanical components in mechatronic devices are usually slower than the rest of
the system (electronic devices and control elements, for example) it will be assumed
in the following that the block diagram software manages thefastest subsystem in the
model, while the external multibody software integrates the slowest one. This condi-
tion is equivalent to state thath1 < h2. The co–simulation interface is responsible for
obtaining the inputs to each subsystem (u1 andu2) from the outputs supplied by both
programs (which can include, but not necessarily, the states of the subsystem and their
derivatives) and synchronizing the different time schemesof the subsystems. This in-
terface is embedded in the block diagram simulator, in a block of typeS–functionin
Simulink, UserCodein SystemBuild orC/Fortran block in Scicos, according to the
Simulink as masterstrategy described in Section 5.4.2. The design and behaviour of
this block will be described in the following paragraphs.

6.2.1 Coupling strategy for multirate integration

As explained in the Introduction to this Chapter, the simulation environments used in
weakly coupled co–simulations implement their own set of integration schemes that
cannot be modified. Therefore, the co–simulation interfacemust implement a coupling
scheme that enables a multirate integration of different subsystems independently of
the integration schemes and time–steps that apply to each ofthem. In the proposed
coupling scheme, the block diagram simulator (Simulink, inthis case) plays the role
of masterintegrator, since it is responsible for starting and stopping the numerical
simulation. On the other hand, the external simulator acts asslaveintegrator, working
on request.

Without loss of generality, it will be assumed that the blockdiagram simulator
uses the well–known fourth–order Runge–Kutta formula, which is known asode4in
Simulink:

xiC1
1

D xi
1 C h1

4
X

jD1

bj Kj

K1 D f
�

t i
1; xi

1

�

K2 D f
�

t i
1 C h1=2; xi

1 C h1K1=2
�

K3 D f
�

t i
1 C h1=2; xi

1 C h1K2=2
�

K4 D f
�

t i
1 C h1; xi

1 C h1K3

�

(6.1)

6.2Multirate co–simulation interface 85

In order to advance a time–step fromt i
1

to t iC1
1

, the block diagram simulator needs
to evaluate all blocks in the model four times, one for each term Kj . The first evalua-
tion is performed at (t i

1
, xi

1
), using the states (x1 in this case) computed in the previous

time–step. In block diagram terminology, this evaluation is known asmajor time–step,
while the next evaluations (corresponding toK2, K3 and K4) are known asminor
time–steps.

Block diagram

simulation

External

simulation

Time-history of

evaluate

evaluate

eval_slave

eval_master

1t

2t

1
h

2
h

1

i
t

1

1

i
t

1

2

j
t

2

j
t

1 1
,t y

2 2
,t y

1

2

y

y

1
1 t

y

2
2 t

y

Figure 6.2:Working diagram for theco–simulation interfaceblock

Theco–simulation interfaceblock in Figure 6.1 manages the evaluation of the dy-
namic response of the second subsystem at the times requiredby the block diagram
simulator. It contains a set of functions and data structures responsible for synchroniz-
ing the numerical integrations in the block diagram software and the external simula-
tor. The structure and behaviour of this block are represented in Figure 6.2. When the
co–simulation interfaceblock is evaluated at a given time, it calls itseval slavefunc-
tion in order to get the inputs it needs. The algorithm of thisfunction is represented in
pseudo–code in Table 6.1 and will be described in the next paragraphs.

� In step 1, if the evaluation is performed in amajor time–step(block diagram
simulators provide routines to determine this condition),the input timet1 and
outputsy1 in the block diagram are appended to a dataset that holds the time–
history of these values. As it has been mentioned above, these outputs may
include or not the states of the block diagram and their derivatives. Data at
minor time–stepevaluations are not stored because they do not correspond to
integration points in the timeline.

� Step 2 determines whether the external simulator should move ahead in the
numerical integration of its subsystem. Two criteria are available to take this

86 Multirate Co–simulation Methods

Table 6.1: evalslavefunction algorithm, in pseudo–code

1) if t i
1

is amajor time–step
storet i

1
; yi

1

n D 0

2a): if (slowest–first) then

while
�

t
jCn
2

< t i
1

�

advance integration step in external simulator

store results
�

t
jCn
2

; yjCn
2

�

; n D n C 1

end
2b): if (fastest–first) then

while
�

t
jCn
2

C h2 < t i
1

�

advance integration step in external simulator

store results
�

t
jCn
2

; yjCn
2

�

; n D n C 1

end
3) Interpolate or extrapolateu1 at t i

1

decision (steps 2a and 2b), depending on the selected synchronization scheme:
slowest–firstandfastest–first(Gear and Wells, 1984). In theslowest–first, rep-
resented in step 2a, the numerical integration of the slowest subsystem is always
ahead of the fastest one. Therefore, when theco–simulation interfaceblock is
evaluated att1 > t2, it calls the external simulator to move ahead in its numeri-
cal integration a certain number of time–steps (represented by counter variable
n) until t1 < t2. After each time–step of the external simulator, the time and the
outputs of the slow subsystem,t2 andy2, are appended to a dataset that holds
the time–history of these values. In this process, the integration scheme of the
external simulator will need the values of its inputsu2 at particular instants;
these values are interpolated or extrapolated from the time–history of outputs of
the fast subsystemy1 at major time–steps(stored in step 1) by theeval master
function. Thefastest–firstscheme represented in step 2b is very similar, but the
numerical integration of the slowest subsystem is always one time–step behind
the fastest subsystem.

� Finally, in step 3, the values of the inputs to the fast subsystemu1, at timet1,
requested by the block diagram simulator are interpolated or extrapolated from
the time–history of the outputs of the slow subsystemy2, stored in step 2.

The interpolation or extrapolation of states in theeval slaveandeval masterfunc-
tions is performed using orderP polynomials. The user can select the value ofP from
0 to 4. The polynomials are built withP C1 time–stepstP , ..., t0, selected as follows:
tP is the time–step closest to the evaluation timet that satisfiestP > t (if there is

6.3Test problem 87

any time–step ahead oft), andtP�1, ..., t0 are the previous time–steps stored in the
time–history.

The functions and data structures of theco–simulation interfacehave been imple-
mented as a C/C++ library, independent of the external simulator and the number of
exchanged variables. The external simulator only needs to provide two functions: a
function to move ahead a time–step in the numerical integration and to return the re-
sulting time and outputs, and a user routine to connect theeval masterfunction. Most
dynamic simulation tools can satisfy these requirements.

6.2.2 Smoothing techniques

For models with very different time scales in their subsystems, interpolation and ex-
trapolation techniques may fail to give correct results in weak coupled multirate co–
simulation. Oberschelp and Vöcking (2004) described a smoothing technique to over-
come this problem; a similar strategy has been tested in thiswork. Smoothing is ex-
pected to improve the global precision of the simulation, avoiding the need of rais-
ing the number of integration time–steps per cycle, or usinghigher order integrators,
which would noticeably increase the elapsed time in computations.

When using smoothing in this work, the interpolation or extrapolation strategies
described above are replaced by an averaging (arithmetic mean) of the values of the
fast subsystem during the last time–step of the slow one. This averaging is performed
on the basis of afastest–firstmethod, with the integration of the fast subsystem being
performed in advance with respect to the slow one. When the slow subsystem needs
to evaluate its states at timetn

2 , it requests the necessary inputsun
2 through a call to

the eval masterfunction. The value of these inputs is determined by averaging the
buffered values of the outputs of the fast subsystemy1 in the time–history from time
tn�1
2

to tn
2

. The averaged value is returned by theeval masterfunction, and considered
constant during the integration of the whole time–step of the slow subsystem.

It should be noted that the use of extrapolation techniques is still required dur-
ing the calls to theeval slavefunction, for the computation of the inputs of the fast
subsystem at the times required by the block diagram simulator.

6.3 Test problem

A test problem involving two subsystems with fast and slow dynamic responses will be
solved by coupling a block diagram model in Simulink (to integrate the fast subsystem,
1) with an external multibody model (to integrate the slow subsystem, 2) through the
multirate interface already introduced. The parameters ofthe test problem will be
adjusted to generate a range of co–simulation situations, which will be used to test
different coupling strategies in terms of precision.

The double–mass triple–spring system shown in Figure 6.3 has been selected as
test problem. It is made up of two subsystems represented by massesm1 and m2,
which are coupled by the springk2. This simple, two degree–of–freedom system
presents the advantage of having a known analytical solution for its dynamic response,

88 Multirate Co–simulation Methods

1k 2k 3k
1m 2m

1x 2x

Figure 6.3:Test problem

which can be used as a reference in order to measure the accuracy of the coupled mul-
tirate numerical integration carried out by any co–simulation scheme. The dynamics
of the test problem is governed by Equation (6.2):

"

m1 0

0 m2

(

Rx1

Rx2

)

C

"

k1 C k2 �k2

�k2 k2 C k3

(

x1

x2

)

D

(

0

0

)

(6.2)

wherex1 andx2 measure the horizontal displacement of the masses from their equi-
librium position. Equation (6.2) is a simple second order differential equation whose
analytical solution is given by

x1 .t/ D C11 � cos.!1t/C C12 � sin.!1t/C C13 � cos.!2t/C C14 � sin.!2t/

x2 .t/ D C21 � cos.!1t/C C22 � sin.!1t/C C23 � cos.!2t/C C24 � sin.!2t/
(6.3)

where!1 and!2 are the natural frequencies of the two vibration modes of thesystem,
and the termsCij are constants that define the amplitude of the vibration. In order to
simplify the problem, sinus terms in Equation (6.3) are removed by setting the initial
velocities to zero:

x1 .t/ D C11 � cos.!1t/C C13 � cos.!2t/

x2 .t/ D C21 � cos.!1t/C C23 � cos.!2t/
(6.4)

The dynamic response shown in Equation (6.4) is a function ofsix independent
parameters (!1, !2, C11, C13, C21, andC23). For the purposes of this study, two of
them are set to the values in Equation (6.5),

!1 D 1 Hz

C11 D 1 m
(6.5)

and the rest are presented in a more suitable form making use of the ratios defined in
Equation (6.6):

FR D !1=!2

AR12 D C11=C23

AR1 D C11=C13

AR2 D C23=C21

(6.6)

6.3Test problem 89

From here on, frequencies!1 and!2 will be identified respectively with the pri-
mary frequencies of massesm1 (fast subsystem) andm2 (slow subsystem), assuming
!1 > !2, jC13j > jC11j andjC23j > jC21j. The ratios defined in Equation (6.6) are
interpreted as follows:

� The frequency ratio FRmeasures how fast the fast subsystemm1 is, compared
with the slow subsystemm2.

� Theamplitude ratio AR12 compares the primary amplitudes of both subsystems
(C11 for m1 andC23 for m2).

� Theamplitude ratios AR1 andAR2 measure how much the dynamic response of
each subsystem is affected by the other subsystem.

0 50 100

-10

0

10

Time (s)

C
o

o
rd

in
at

e
x 1

(m
)

Figure 6.4:Dynamic response ofx1

Numerical experiments performed in Section 6.3.2 will use different sets of values
for the ratios defined in Equation (6.6), in order to reproduce diverse co–simulation
situations. As example, Figure 6.4 shows the dynamic response ofx1 for FR D 30,
AR12 D 0:1, AR1 D 0:1 andAR2 D �1000.

After solving the dynamics of the problem in analytical form, the final step is
finding the physical parameters that define the system (m1, m2, k1, k2, k3) and the
initial conditionsx1 .t D 0/ andx2 .t D 0/ as a function of the response parameters
defined in Equations (6.5) and (6.6). The resulting expressions will allow adjusting
the physical parameters of the test problem in order to generate any desired dynamic
response in its two subsystems. Note that the five aforementioned physical parameters
can be scaled by the same factor without changing the dynamicresponse of the system,
and therefore one of them must be fixed in advance. The selection of k2 as fixed
parameter greatly simplifies the mathematical manipulations:

k2 D 1 N=m (6.7)

and the remaining physical parameters can be obtained from the eigenvalue equation:

�

K � !2M
�

A D 0 (6.8)

whereA is the matrix of modal amplitudes of the system,K andM are the stiffness
and mass matrices shown in Equation (6.2) and! stands for the natural frequencies

90 Multirate Co–simulation Methods

of the system. The characteristic polynomial of the eigenvalue equation leads to a
biquadratic equation in!:

!4m1m2 � !2 .m2 .k1 C k2/C m1 .k2 C k3//C

C .k1 C k2/ .k2 C k3/ � k2
2 D 0

(6.9)

which can be analytically solved, giving two equations of the form

! D f .m1;m2; k1; k2; k3/ (6.10)

Two more equations can be obtained by substituting the solution given in Equa-
tion (6.4) in the equations of motion given by Equation (6.2); as each mode of vibration
must satisfy the equations of motion, they lead to:

C11

C21

D
k2

k1 C k2 � !2
1m1

D
k2 C k3 � !2

1m2

k2

C13

C23

D
k2

k1 C k2 � !2
2
m1

D
k2 C k3 � !2

2
m2

k2

(6.11)

In this point, the intermediate parametersa andb are defined to simplify the ex-
pression of the following equations:

a D C11=C21

b D C13=C23

(6.12)

so the solution of the set of four equations formed by Equations (6.10) and (6.11) can
be expressed in the following way:

m1 D
a � b

ab
�

!2
1

� !2
2

�k2 (6.13)

m2 D
ab .b � a/

ab
�

!2
1

� !2
2

�k2 (6.14)

k1 D
a .1 � b/ !2

1
C b .1 � a/ !2

2

ab
�

!2
1

� !2
2

� k2 (6.15)

k3 D
ab

�

.b � 1/ !2
1

� .1 � a/ !2
2

�

ab
�

!2
1

� !2
2

� k2 (6.16)

Finally, the initial positions of the masses can be easily obtained from the solution
of Equations (6.4) at timet D 0, substituting in them the values of the parameters

6.3Test problem 91

defined in Equations (6.5) and (6.6):

x1 .0/ D C11 C C13 D C11 �
1 C C11=C13

C11=C13

D
1 C AR1

AR1

x2 .0/ D C21 C C23 D C11 �
1 C C23=C21

.C11=C23/ .C23=C21/
D

1 C AR2

AR12 � AR2

(6.17)

Equations (6.13) to (6.17) provide the values of the physical parameters and initial
conditions that generate the desired dynamic response of the test problem, described
by the parameters in Equation (6.6). The range of validity ofthese expressions is
limited by the fact that the physical parameters (m1, m2, k1, k2, k3) must be positive.
This constraint restricts the values of the parameters defined in Equation (6.6) within
the following limits:

jAR12j >
FR2 � 1

ˇ

ˇ

ˇ

FR2

AR1
� AR2

ˇ

ˇ

ˇ

(6.18)

jAR12j <

ˇ

ˇ

ˇ

ˇ

ˇ

FR2 � 1
AR1�AR2

FR2 � 1
� AR1

ˇ

ˇ

ˇ

ˇ

ˇ

(6.19)

FR< 1)

8

ˆ

<

ˆ

:

AR1 � AR2 < 0

AR12=AR1 < 0

AR12 � AR2 > 0

FR> 1)

8

ˆ

<

ˆ

:

AR1 � AR2 < 0

AR12=AR1 > 0

AR12 � AR2 < 0

(6.20)

The computing model using for the co–simulation of this testproblem is shown in
Figure 6.5. In this Simulink model, the acceleration of the fast subsystem goes through
a double integration to obtain its position. This process isperformed by Simulink
integrator blocks. The dynamics of the slow subsystem (m2) is evaluated in the ex-
ternal multibody simulation package and the communicationis managed by the co–
simulation interface as described in Section 6.2.1.

6.3.1 Algebraic loops

Block diagram simulators allow creating algebraic loops inthe model by connecting
the output of a block to its input via direct feedthrough blocks (i.e. no differentiation or
integration blocks). Algebraic loops are a convenient way to model certain problems,
but they require an iterative solution at each time–step in the numerical integration.
As a result, they drastically increase simulation times, which is usually unacceptable
for weakly coupled co–simulation of mechatronic systems. Several techniques can be

92 Multirate Co–simulation Methods

S-function

-C-

-C-

x2

x1

x1_dd

1

s

xo

1

s

xo

1

s 1

s

Co-simulation

interface
Clock

1x

1x

1x

t

1x

2x

1x

1x

2x

2x

1(0)x

1(0)x

1 1 1 2 1 2 1(()) /x k x k x x m

Figure 6.5:Simulink model of the test problem

used to avoid algebraic loops:delayandmemoryblocks, which delay the value of a
variable one time–step, are examples. It is very convenientto test the proposed multi-
rate method with this modelling technique, since it is oftenpresent in block diagram
simulations.

In the model shown in Figure 6.5, spring forces acting onm2 are evaluated inside
the external simulator. When these forces are transferred tothe block diagram simu-
lator, an algebraic loop appears, as shown in Figure 6.6: theinput forceF to theco–
simulation interfaceblock is connected to its outputx2 through the direct feedthrough
block Springs. The algebraic loop is broken by placingmemoryblocks in the force
and time signals before entering theco–simulation interfaceblock. This model will
also be used to test the proposed multirate method.

6.3.2 Numerical experiments and error measurement

Preliminary investigations confirmed that the behaviour ofthe multirate simulation of
the test problem is mostly affected by the frequency ratioFR while the other ratios
defined in Equation (6.6) do not have a significant impact. Therefore, the test problem
described in Section 6.3 has been adjusted withAR1 D 0:1, AR2 D �1000 and
AR12 D 0:1; see Figure 6.4 for an example of the dynamic response ofx1. A sweep
of frequency ratiosFR is performed in order to evaluate how this parameter affectsthe
co–simulation process.

In the block diagram simulator (Simulink), theode4integrator is used, while the
multibody simulator uses the trapezoidal rule. Stepsizesh1 andh2 have been adjusted
to perform 100 time–steps per cycle in each simulator. Thesetime–steps are small
enough to keep integration errors very low in both subsystems, and therefore the er-

6.3Test problem 93

S-function

MATLAB

Function

1

s

xo
1

s

xo-C-

-C-

x2

x1

x1_dd

Co-simulation

interface

Clock

Springs

1

s

1

s
1x

1(0)x

2 1 2 3 2()F k x x k x

1x

1i
F

i
t

1i
t

2x

2x

1(0)x

1x

2x

1x

1 1 1 2 1 2 1(()) /x k x k x x m

Figure 6.6:Simulink model with memory blocks to break algebraic loops

ror in the numerical solution will be mainly caused by the multirate co–simulation
scheme. Each numerical experiment consists on a simulationof 100 cycles of the
fastest frequency!1, which corresponds to100=FR cycles of the slowest frequency
!2.

The dynamic response obtained from the weakly coupled co–simulation is com-
pared with the analytical solution of the motion given in Equation (6.4). The error in
the numerical simulation is measured in two ways: position error and energy error.
Position error is given by Equation (6.21):

�x D
FR

N

v

u

u

t

1

n

n
X

iD1

�

xi � xexact
i

xrms

�2

(6.21)

wherexi is the value of the position at timeti obtained in the numerical simulation,
xexact

i is the position at the same time obtained from the analyticalsolution in Equa-
tion (6.4), andn is the number of points of time in the time–history of the solution
(n D 10; 000). To obtain a relative error, the absolute error in positionis divided
by the quadratic mean in the simulation (xrms) instead ofxexact

i to avoid singularities
when the analytical solution takes values close to zero.N D 100 is the number of
simulated cycles of the fast subsystem, and the factorFR=N is introduced to correct
the accumulation of errors when a high number of cycles of theslow subsystem is
present. In this way, errors obtained from Equation (6.21) are comparable through nu-
merical experiments with differentFR ratios. If the test problem is fully modelled and
solved in Simulink (without co–simulation) with theode4integrator and the smallest
stepsize, the position error given by Equation (6.21) is in the order of10�8, which

94 Multirate Co–simulation Methods

corresponds to an almost exact solution. Position errors below 10% still correspond to
a good numerical solution, very similar to the analytical solution at first glance.

0 10 20 30 40 50 60 70 80 90 100

-0.4

-0.2

0

0.2

Time (s)

E
n

e
rg

y
 e

rr
o

r
(J

)

Figure 6.7:Time–history of the energy error in the numeric simulation (FR D 30,
cubic interpolation)

However, Equation (6.21) gives high position errors when the numerical solution
presents a small delay compared to the analytical solution,even when the phase differ-
ence is very small and the numerical solution can be still considered good. Therefore,
this position error can mislead about the precision in certain situations. To overcome
this limitation, an additional measurement of the energy error can be used, as the sys-
tem is fully conservative. Thus, the energy error is defined as

�E D
FR

N

v

u

u

t

1

n

n
X

iD1

�

Ei � E0

E0

�2

(6.22)

beingE0 the initial value of the energy of the system (that should be constant during
the simulation), andEi the energy at timeti obtained in the numerical simulation.
The oscillations that have been observed in the energy history of the system (see Fig-
ure 6.7) justify the use of a norm–2 error instead of a simple comparison between the
initial and final energy levels of the system.

It has been observed that some numerical simulations lead tolow energy errors de-
spite the position time–history is obviously incorrect: the numerical integration con-
serves the system energy but gives a wrong solution after a few cycles. Therefore,
both errors (position and energy) should be considered to determine the precision and
correctness of the obtained numerical solutions.

6.3.3 Results and discussion

Both fastest–firstandslowest–firstschemes have been tested. In the following, they
will be referred to asFF andSF, respectively. In addition, the interpolation orders used
in eval masterandeval slavefunctions can be different and one of the following: zero
(constant value, designed asO0), linear (O1), quadratic (O2), cubic (O3) and fourth
order (O4). The position error forx1 and the energy error, defined in Equations (6.21)
and (6.22), have been measured for each interpolation method for a span ofFRranging
from 1.5 to 100. Results can be seen in Figure 6.8

6.3Test problem 95

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

0 25 50 75

FR

E
n

er
g

y
 e

rr
o

r

O0

O1

O2

O3

O4
0%

1%

10%

100%

0 25 50 75

FR

P
o

si
ti

o
n

 e
rr

o
r

O0

O1

O2

O3

O4

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

0 25 50 75

FR

E
n

er
g

y
 e

rr
o

r

O0

O1

O2

O3

O4
0%

1%

10%

100%

0 25 50 75

FR

P
o

si
ti

o
n

 e
rr

o
r

O0

O1

O2

O3

O4

a)

b)

Slowest-first (SF)Slowest-first (SF)

Fastest-first (FF) Fastest-first (FF)

Figure 6.8:Position error inx1 (left) and energy error (right) for different interpola-
tion polynomial orders as a function of FR, forslowest–first(a) and fastest–first(b)
schemes

The first conclusion that can be drawn from the performed simulations is that it is
not possible to find an optimal general purpose co–simulation method, even for such
a simple test problem as the one described in Section 6.3.

For FR � 25, slowest–first(SF) integration combined with cubic interpolation
(O3) shows the best performance, attaining good position and energy error levels. The
use of higher order interpolation polynomials suffers frominstabilities, which results
in the losing of the reference solution, and therefore has not helped the reduction of
errors.Fastest–first(FF) techniques, on the other hand, attain very low error levelsin
the integration of the position ofx2, as it was expected, because the integration of the
slow subsystem is performed on the basis of already evaluated values ofx1; however,
this improvement is made at the cost of worsening the energy levels and the shape of
the time–history ofx1.

For25 � FR � 50, SF integration without interpolation (O0) seems to be the most
suitable strategy. The use ofFF strategies in this range of frequency ratios leads to a

96 Multirate Co–simulation Methods

numerical instability that translates into the amplification of the oscillations inx1, and
can be visualized in Figure 6.8 as a peak in the error graphicsaroundFR D 40.

For FR> 50, the position errors withSFstrategies are always over 10% and they
follow an upwards trend; among them, the use of no interpolation O0 gives the best
results in position and energy. On the other hand,FF techniques seem to stabilize the
position error in this region under 10% with reasonable levels of energy errors, at least
with O2 and higher interpolation orders. However, the analysis ofthe position history
shows that this is a consequence of the attenuation of the fast oscillations of the first
subsystem,m1. In fact, whenFR grows to values of 80 and higher, the inverse effect
takes place and the oscillations are amplified, leading to great errors in position and
energy. In both cases, amplification and attenuation, the results cannot be considered
valid, even when low error levels in both position and energyare attained.

Two consequences can be inferred from the exposed:

� The errors defined in Equations (6.21) and (6.22), and used asindicators of the
correctness of the solution, are not enough for determiningthe suitability of a
co–simulation method for solving every particular problem.

� The use ofFF strategies can lead to the rising of numerical instabilities, result-
ing in amplified oscillations in the solution of the problem or, on the contrary,
in the filtering of small oscillations, with the loss of the contribution of the fast
frequency!1 to the solution.

For values ofFR � 90, evenSF with O0 configuration is affected by a sudden
growth of the errors and every interpolation order fails completely to follow the ana-
lytic reference solution.

The use of smoothing techniques can contribute to the reduction of the error for
relatively high values ofFR, increasing the ability of the simulation to track the refer-
ence solution. In order to attain acceptable results, the polynomial fitting interpolation
methods for the evaluation of the states of the slow subsystem can be substituted with
least squares approximations. This can help tofilter the variations in velocities that
arise when the difference between the time–steps grows.

A comparison of the co–simulation results forFR D 90 with and without smooth-
ing can be seen in Figure 6.9. The co–simulated output for variablex1 is compared to
the analytical solution of the motion (thin continuous line). In the upper image no in-
terpolation (O0) has been used; in the central graphic,O3 interpolation has been used
in eval masterandeval slavefunctions, together withFF strategy. The lower image
shows the better accuracy obtained using the smoothing technique withO3 interpola-
tion in eval slavefunction. However, it must be noted that smoothing is subject to the
same filtering or amplifying problems thatfastest–firstimplementations suffer from.
As a consequence, smoothing has only shown an acceptable performance for certain
combinations ofFR and the interpolation (or approximation) order used for theslow
subsystem.

Regarding the equivalent model with an algebraic loop, depicted in Figure 6.6,
the obtained results have been practically equivalent to those of the original model

6.4Application to a multiphysics problem 97

0 2 4 6 8 10 12 14 16 18 20
0

5

10

Time (s)

C
o

o
rd

in
a
te

 x
1

Analytical

Numerical

0 2 4 6 8 10 12 14 16 18 20
0

5

10

Time (s)

C
o

o
rd

in
a
te

 x
1

Analytical

Numerical

0 2 4 6 8 10 12 14 16 18 20
0

5

10

Time (s)

C
o

o
rd

in
a
te

 x
1

Analytical

Numerical

a)

b)

c)

Figure 6.9:Response to 20 simulation cycles of the fast subsystem for FRD 90: (a)
slowest–firstwith O0, (b) fastest–firstwith O3, (c) smoothing withO3

of Figure 6.5. The use ofmemoryblocks has yielded a better performance than the
equivalent model withdelayblocks.

In most simulations, it has been observed that the accumulated error grows as the
simulation time increases. This is not expected to happen incomplex multiphysics sys-
tems for two reasons. First, real systems use to have dissipative elements like dampers
that soften the effect of small vibrations. In the second place, most co–simulated sys-
tems include control elements, oriented to reference tracking, which make the whole
system less sensitive to error accumulation.

6.4 Application to a multiphysics problem

The multirate interface and co–simulation methods described in the previous Sections
have been applied to the solution of the dynamics of a vehicle, in this case a kart. This
multiphysics model is divided into two subsystems: a multibody model of the mechan-
ical components of the vehicle, including the steering column, tyres and suspensions,
and a thermodynamic model of a four–cylinder spark ignitionengine.

The model of the mechanical components of the kart can be seenin Figure 6.10;
the figure represents only half of the model, the actual one includes the suspension
of the four wheels and the whole chassis. The number of variables of the multibody

98 Multirate Co–simulation Methods

Figure 6.10:Multibody model of the vehicle used in simulations

Co-simulation

interface

(S-function)

Engine - gearbox

subsystem

(Simulink)

Torque

(T)

Clock

Rotational

speed (N)

Throttle

(Angle-law)

Kart

subsystem

(MBS software)

Torque

(T)

Rotational

speed (N)

Block diagram simulator

Figure 6.11:Joint model of the engine and the kart

system is 163, and the motion is integrated making use of the well–known index–
3 augmented Lagrangian formulation with projection of velocities and accelerations.
This formalism uses the trapezoidal rule as numerical integrator, it has been described

6.4Application to a multiphysics problem 99

by Cuadrado et al. (2000) and a brief overview of its equations can be found in Sec-
tion 3.2.2. The multibody code is implemented in Fortran andits configuration is
detailed by Naya et al. (2007).

The engine is modelled in Simulink, following the description given by Crossley
and Cook (1991), using conventional diagram blocks and adding an automatic gear-
box to link it to the transmission. The block diagram model that corresponds to this
system is shown in Figure 6.11. The upper part of the graphic represents the Simulink
model of the engine and the gearbox, which also includes theco–simulation interface,
described in Section 6.2.Memoryblocks are used to avoid the closing of an algebraic
loop. The code for the simulation of the mechanical components of the kart is com-
piled as a library and invoked from the co–simulation interface. The model undergoes
a maneuver in which the angle of the throttle varies following the law depicted in Fig-
ure 6.12. The pitch angle of the vehicle () is taken as control variable, to check if the
setting behaves in an adequate way. This variable is closelyrelated to the acceleration
of the vehicle.

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9 10

Time (s)

T
h

ro
tt

le
 a

n
g

le
 (

º)

Figure 6.12:Throttle angle during simulations

The Simulink part of the model is integrated withode4, and the nature of the
system it models requires using a time–step ofh1 D 10�4 s. The multibody subsystem
can be integrated with trapezoidal rule with time–steps as big ash2 D 10�2 s without
significant errors. A direct co–simulation scheme with the same time–step in both
subsystems would be forced to use the smallest one to keep numerical accuracy in
the fast component, leading to a considerable increase in the total computation time.
In the performed simulations, the time–step in Simulink hasbeen kept constant, and
the time–step of the multibody subsystem has been varied from h2 D 10�4 s toh2 D

100 Multirate Co–simulation Methods

10�2 s in order to measure the effect of using multirate integration on the accuracy and
efficiency of the simulation. The case in which both subsystems are integrated with
the same time–steph1 D h2 D 10�4 s and constant interpolationO0 is taken as the
reference solution; the pitch angle in this case is shown in Figure 6.13. The shape of
the pitch angle curve in this graphic agrees with the angle law for the throttle depicted
in Figure 6.12. The sudden drops in the angle between seconds4 and 5 and at second
8 correspond to the moments when the gear of the vehicle is changed by the automatic
gearbox.

-2,5

-2

-1,5

-1

-0,5

0

0,5

0 1 2 3 4 5 6 7 8 9 10

Time (s)

P
it

ch
 a

n
g

le
 (

º)

Figure 6.13:Pitch angle in reference case

The total computing time of the 10 s simulation under the reference conditions
h1 D h2 D 10�4 s exceeds 150 s. The use of multirate co–simulation is expected to
reduce the total computing time; however, it is also reasonable to expect divergences
to occur in the results with respect to the reference solution. In order to measure the
impact of multirate simulation in the elapsed time in computations and the deviations
from the reference value, simulations at different values of FR have been carried out.
It must be noted that the meaning ofFR, for complex multiphysics problems like the
one here discussed, does not correspond to the ratio betweenthe natural frequencies
of the subsystems (which may not be easy to identify), but it must be substituted
by the relation between the time–steps used to integrate them. For this first set of
simulations, constant interpolation (O0) andslowest–firststrategy have been used.
Besides the computation time, the maximum deviation in pitch angle with respect to
the reference case during the motion has been measured.

The results summarized in Table 6.2 show a dramatic reduction in computing time
as the value ofFR increases. Regarding to the differences in the pitch angle , these

6.4Application to a multiphysics problem 101

Table 6.2:Elapsed time in simulations and maximum difference in pitchangle (�)
with respect to the reference case, for different values of FR, withSFandO0 interpo-
lation in both subsystems

FR D 1 (ref.) FR D 5 FR D 10 FR D 50 FR D 100

Elapsed time (s) 158.4 44.8 30.4 19.0 17.1

� (ı) 0 0.0031 0.0055 0.0252 0.0398

are never higher than 0.04ı in absolute value, for a variable that oscillates between
-2.5ı and 0.5ı. This means that direct co–simulation, with the use ofO0 polynomials,
is able to simulate the system without significant deviations in the results, with values
of FR up to 100. The plots of the pitch angle for the different values of FR overlap
Figure 6.13, so they are indistinguishable in practice. A graphical representation of
the deviation of the control variable with respect to that ofthe reference case has been
chosen instead, and it can be seen in Figure 6.14 forFR D 100. The sudden variations
of the measured deviation make the results in this graphic look like a solid region, but
a line is actually represented.

-0,04

-0,02

0

0,02

0,04

0 1 2 3 4 5 6 7 8 9 10

Time (s)

D
if

fe
re

n
ce

 i
n

 p
it

ch
 a

n
g

le
 (

º)

Figure 6.14:Difference in pitch angle (�) with respect to the reference case, with
FR D 100, SFandO0 in both subsystems

Figure 6.14 shows another relevant feature of the behaviourof the co–simulated
system: the divergences in pitch angle increase when suddenvariations of the variable
happen, but the error gets close to zero when the angle variesslowly. This stable
behaviour of the whole system agrees with the conclusions stated in Section 6.3.3.

102 Multirate Co–simulation Methods

Table 6.3:Maximum difference in pitch angle (�) with respect to the reference case
for FR D 100. Only representative interpolation strategies are represented

SF FF FF FF FF
Simulink interpolation O0 O0 O0 O0 O0
MBS interpolation O0 O0 O1 O2 O3

� (ı) 0.0398 0.0385 0.0078 0.0086 0.0303

As it was shown in the previous Section, it is not possible to determine before-
hand whether the use of higher order interpolation polynomials or other co–simulation
techniques will enhance the obtained results. More simulations have been performed
to gain insight into this subject; the most relevant ones aresummarized in Table 6.3
for FR D 100. The elapsed time is not shown, as there are not significant differences
between the methods. Other configurations have been tested (alternative combinations
of orders in interpolation polynomials and smoothing techniques) but their use has not
improved the precision of the simulation. As it can be drawn from the table, there is
no gain in rising the order of the polynomials beyond one, as the linear case yields the
best results.

-0,04

-0,02

0

0,02

0,04

0 1 2 3 4 5 6 7 8 9 10

Time (s)

D
if

fe
re

n
ce

 i
n

 p
it

ch
 a

n
g

le
 (

º)

Figure 6.15:Difference in pitch angle (�) with respect to the reference case, with
FR D 100, FF, O0 interpolation in Simulink andO1 interpolation in MBS

The time–history of the pitch angle in the case that performsbest in Table 6.3 is
represented in Figure 6.15. The comparison of this graphic to the one in Figure 6.14
highlights the benefits of using thefastest–firstconfiguration and linear polynomials
for the interpolation of the data from the MBS software in this particular case.

6.5Conclusions 103

6.5 Conclusions

In this Chapter, the effect of multirate techniques in the efficiency and accuracy of
weakly coupled co–simulation settings has been assessed. To this end, a general mul-
tirate co–simulation interface for coupling block diagramsimulators and external tools
has been built, and a synchronization algorithm has been designed, in order to coordi-
nate the exchange of information between both software packages. The way in which
the interface operates is based on interpolation and extrapolation of inputs and out-
puts between simulators using polynomial approximations,and two synchronization
schemes are available:slowest–firstandfastest–first. The interface avoids techniques
which are not available in block diagram simulators (iteration or modifications in the
integration schemes) and overcomes the limitations of the current commercial cou-
pling solutions, since it can be used with non–synchronized, variable–step multirate
integration time–grids. This interface allows the user to select different co–simulation
settings, such as the order of the interpolation polynomials, and incorporates addi-
tional techniques to improve the behaviour of the simulation under certain conditions.

The algorithm has been implemented in C/C++ and tested in theco–simulation
of the dynamics of a simple, purely mechanical system by coupling the well–known
simulation tool Simulink with the multibody dynamics simulator developed in this
thesis. The accuracy of the method was tested against the frequency ratioFR, which
is equivalent to the ratio between the time–step sizes used in the two coupled simu-
lators. The first test battery of the designed interface has revealed that the adjustment
of the co–simulation settings is strongly dependent of the physical characteristics of
the simulated subsystems. As a consequence, the co–simulation parameters must be
adapted as a function of the particular features of the problem, and a general configu-
ration, valid for any situation, cannot be found. In some cases, the use of smoothing is
required in order to find a stable solution to the problem.

Next, the interface has been applied to the co–simulation ofthe multibody model
of a real kart, simulated in a Fortran MBS code, powered by a thermal engine modelled
in Simulink. Results show that the use of multirate techniques has been able to reduce
the computation time required by the simulation in one orderof magnitude, within
a reasonable margin of error. In this case, the use of first order interpolation poly-
nomials (O1) has contributed to alleviate the deviations of the motionwith respect
to the reference solution. The example is very representative of the co–simulation
of complex mechatronic systems, where the dynamic simulation of the mechanical
components in a multibody software consumes around 60% – 90%of the CPU–time,
while the remaining time is consumed by the block diagram simulator. In these cir-
cumstances, increasing the stepsize in the multibody dynamics simulator by a factor
of 50 can reduce the time needed to complete the simulations in a factor ranging from
2.4 to 8.5. The described multirate interface represents a significant improvement over
current off–the–shelf commercial coupling solutions, which enforce equal time–steps
(FR D 1) in both sides of the co–simulation.

Currently, two lines of future research can be pointed out. First, a general numeri-
cal indicator is desirable, in order to measure in a practical and easy way the deviation

104 Multirate Co–simulation Methods

of a solution with respect to a reference. And second, a way ofdetermining the op-
timal co–simulation strategy before running the simulation would be very helpful, as
it would remove the need of performing several trials to adjust the interface to the
particular conditions of the simulated system.

Chapter 7

Conclusions

7.1 Conclusions

The main goal of the present thesis is the evaluation of different techniques for the
optimization of multibody simulation codes. This work intends to contribute to the
two main currently open lines of research of the multibody community: the reduction
of the elapsed time in computations, and the addition of extra functionality beyond the
purely mechanical simulation.

The development of a generic and modular software architecture for MBS simu-
lation has been addressed in Chapter 2. While the designing and implementation of a
simulation package is a complex task, subject to a considerably high number of design
variables, it has been possible to point out some recommendations of general valid-
ity, specially regarding the modularity of the project. Modularity is a key feature of
this kind of software, and the object–oriented paradigm is the best suited to achieve
it. Following this approach, an operational platform for the simulation of mechanical
systems has been built in C++, in which the optimization strategies proposed in this
work have been tested. Its modular nature makes the softwarecapable of incorporating
new functionality, so the writing of the code can never be considered finished. At the
moment, the module for the automatic generation of the equations of motion of the
system is under development.

Chapter 3 discusses the effect of the implementation of linear algebra routines in
the performance of the software. It has been found that the use of efficient libraries
of basic routines for matrix computations (BLAS for dense storage, and equivalent
routines for sparse matrices) and linear solvers (LAPACK, CHOLMOD, KLU) can
speed up the execution of the code in a factor of 2–3, without negative side effects on
the portability of the code. Decision rules for selecting the most adequate solver as a
function of the size and number of non–zeros of the leading matrix of the system have
also been provided.

The use of non–intrusive parallelization methods is the main subject of Chapter 4.
Parallel linear equation solvers and OpenMP have been selected in this work; their
use has been preferred to that of more efficient but intricateparallelization protocols,

105

106 Conclusions

such as MPI. These techniques have been successfully applied to existing software
with minimal modifications in the code. Results have shown that parallel solvers and
OpenMP can be applied to a wide range of problems in multibodydynamics, obtaining
speedups over 70% of the theoretical maximum values according to Amdahl’s law.

Finally, Chapters 5 and 6 deal with the coupling of the multibody architecture to
external software packages, thus enlarging the capabilities of the basic MBS program.
First, the different alternatives when communicating the MBS simulation software
with MATLAB/Simulink have been considered; two main coupling categories (func-
tion evaluationand properco–simulation) have been identified, and a comparison of
the different strategies under each of them, in terms of efficiency, has been carried
out. In a second stage, a multirate co–simulation interfacebetween multibody soft-
ware and block diagram simulators has been built. This interface is able to coordinate
the integrators in each software tool, even if they use different time–grids; it also fea-
tures different interpolation and synchronization strategies to manage the execution
of the simulation. The communication techniques and the interface have been used
to evaluate the possibilities of software coupling in demanding applications such as
real–time settings. The obtained results demonstrate thatco–simulated models can
outperform their monolithic counterparts under certain circumstances and be used in
non–academic, real applications.

7.2 Future research

The research developed in this work falls within the active projects of the Laboratory
of Mechanical Engineering of the University of La Coruña, and it is the continuation
of the predating efforts of its researchers. The conclusions obtained in this thesis have
been added to the know–how of the group, and therefore they will be used in the future
development of efficient code for multibody simulation. Also, the software architec-
ture described in this work will serve as a platform for the implementation and testing
of new components.

The code optimizations presented in Chapters 3 and 4 can be introduced in im-
plementations of dynamic formulations different from the ones tested in this work;
for example, they are good candidates for the enhancement ofrecursive and semi–
recursive formulations. An assessment of the obtained improvements in performance
could be obtained, leading to a comparison with respect to the results found in this
thesis with global formulations.

Finally, the co–simulation strategies described in Chapters 5 and 6 can be applied
in a direct way to the simulation of complex multiphysics systems, thanks to the mul-
tirate interface described in Section 6.2. Thus, the fast and effective simulation of
non–trivial problems with a non purely mechanical nature isgreatly simplified. As it
was pointed out in these Chapters, a way to find out the optimalco–simulation strategy
for each problem beforehand, based on the characteristics of the involved subsystems,
constitutes a desirable research goal that would save time and efforts in the adjustment
of the co–simulation setting. In this research, a general purpose indicator of the quality
of the co–simulation technique would represent a valuable intermediate objective.

Appendix

This Appendix details the procedure that has been followed in this work to compile a
Simulink model into a dynamically linked library (a.dll file, under Windows operating
system) through the use of MATLAB’s Real–Time Workshop.

Real–Time Workshop (RTW) is a complementary module of MATLAB/Simulink
that generates standalone C code from block diagram models.The resulting code
can be later compiled into an executable program with a conventional C/C++ com-
piler. The performance of this compiled code is much higher than that of the original
Simulink model, allowing thus its use in highly demanding applications, such as real–
time settings. Sometimes, however, it would be desirable that the C code was turned
into a dynamically linked library in order to allow calling the routines it contains from
a different program. This can be the case, for example, of theSimulink models that
represent controllers or actuators for mechanical systems. It is also the same situation
described in Section 5.4.3 asMBS as master.

Currently, the creation of dynamically linked libraries from the C code generated
by RTW is not straightforward, and a series of operations must be carried out in or-
der to achieve this goal. Some instructions can be found in MATLAB’s website (The
Mathworks, Inc., 2009) but, even so, the complete task is notintuitive and is prone
to errors. A short description of the steps that should be taken to build the library is
provided below. The problem solved in Section 5.4 will serveas example.

Translation of the Simulink model to C via RTW

In the example solved in Section 5.4, a Simulink model of an engine is coupled to an
MBS model of anL–loop four–bar linkage. This simulation is performed underthe
Windows operating system, using Microsoft Visual Studio asC/C++ compiler; RTW
settings are function of the operating system and the compiler, and so are the final
output files of the process which is being described. Nonetheless, the steps which must
be taken are very similar in every case. When the process is complete, the coupling of
both subsystems is the one depicted in Figure A.1. The MBS software simulating the
motion of the linkage acts as the driver program, requestingvalues from the C library
generated via RTW, compiled as a.dll file, which simulates the thermal engine. It
should be noted that the coupling scheme corresponds to a co–simulation one, as every
subsystem (namely, the executable and the library) includes its own integrator.

The Simulink model from which the C code is created must be fine–tuned and

107

108 Appendix

L-loop four-bar

linkage

(.exe)

MBS software

Rotational speed, N

RTW-generated C code

Engine

(.dll)Torque, T

Figure A.1:General layout ofMBS as mastercoupling scheme under Windows OS

tested before its compilation as a library. If the model in the .dll library has to be
changed after the compilation has taken place, the need of repeating all the steps in the
process arises, in order to take the changes in the model to the code of the library. For
this reason, it seems very convenient to test the model previously to its compilation,
with one of the two configurations described in Sections 5.4.1 (Network connection)
and 5.4.2 (Simulink as master). These coupling techniques make possible to test the
Simulink model in real interaction with the external software, while modifying easily
its parameters and its configuration to attain the desired behaviour of the whole system.

When the functioning of the assembled system is correct, RTW can be invoked
from Simulink in order to generate the C equivalent of the model. Two files are neces-
sary in this step: asystem target file(.tlc) and atemplate makefile(.tmf). Both of them
depend on the compiler that is going to be used. In this case, for Visual Studio,grt.tlc
andgrt msvc.tmfare used. The execution of RTW yields a series of C files, which
encapsulate the functionality of the model, and one or moremakefilesor project files,
to manage the compilation of the code.

Edition of generated files

The execution of themakefilesor project files as they are created by RTW would
lead to the compilation of an executable application; they have to be edited to yield a
library.

The first step in this stage is finding themainprocess in the C files. In the current
case, this is contained in filegrt main.c. This file must be modified, removing itsmain
function and dividing its functionality among newly created equivalent functions that
can be called by the MBS software. These are three C functionsthat return a pointer
to achar type, namely the following ones:

� char* initiate(). This function initializes the global memory and the Simulink
model. It must be called once, at the beginning of the simulation.

� char* getOutput(int nInputs, double* inputs, int nOutputs, double* outputs).
This function is the main communication gateway between theexecutable and
the library, and it must be called in every time–step. It receives a number of
input argumentsnInputsand returns a number of outputsnOutputs. These ar-
guments are pointed to by the pointersinputs and outputs. The code of this
function must be edited in order to assign the outputs of the Simulink model

109

to the corresponding element of theoutputsarray; the same operation must be
done for the inputs. If a co–simulation interface is used, this interface will be
responsible for synchronizing the calls to this function and the execution of the
MBS integration.

� char* performCleanup(). It executes the termination routines and shuts down
the model. It must be called once, at the end of the simulation.

The names of these three functions are not standard and they may vary from one model
to another. A header file with their prototypes (.h) and a module definition file (.def)
with their names have to be created to allow calling the functions from outside of the
dynamically linked library.

The makefilesor the project files (in this case, the Visual Studio project)must
also undergo several changes, in order to fit the generation of a library, instead of an
executable. The type of the output file must be.dll instead of.exe, the linking must be
made compatible with that of the MBS executable, and the module definition file must
be included and used for creating an import library (.lib), which will be necessary for
accessing the library from the MBS executable. These steps would be different with
other platforms and compilers. For example, dynamically linked libraries are replaced
by shared libraries (.so) under UNIX and there is no need for using module definition
files during their creation. The great number of possible combinations of platforms
and compilers makes impossible the detailed enumeration ofall these particularities
in this Appendix.

Compilation and linking to the executable

Once the project is ready, the compilation of the C code generated by RTW can be
performed. The final output of the compilation process, in the case of using Visual
Studio, is made up of three files:

� the dynamically linked library itself (a.dll file). This file includes the compiled
code that executes the functionality contained in the Simulink model;

� an import library (a.lib file), to enable the linking of the library; and

� the header file (.h) with the prototypes of the functions.

The MBS executable must be linked to the.dll library, adding the import library to
the linker parameters and including the header file in its code. After these changes
have been made, the MBS program can be compiled, yielding theexecutable that
constitutes the final result of this process.

Bibliography

A. Alexandrescu.Modern C++ Design: Generic Programming and Design Patterns
Applied. Addison–Wesley, 2001.

J. A. C. Ambŕosio and J. P. C. Gonçalves. Complex flexible multibody systems with
application to vehicle dynamics.Multibody System Dynamics, 6(2):163–182, 2001.

AMD. AMD Core Math Library (ACML), 2009.
http://developer.amd.com/cpu/libraries/acml/Pages/d efault.aspx .

P. R. Amestoy, T. A. Davis, and I. S. Duff. An approximate minimum degree ordering
algorithm. SIAM Journal on Matrix Analysis and Applications, 17(4):886–905,
1996.

K. S. Anderson and J. H. Critchley. Improved ‘order–n’ performance algorithm for the
simulation of constrained multi–rigid–body dynamic systems. Multibody System
Dynamics, 9(2):185–212, 2003.

K. S. Anderson and S. Duan. A hybrid parallelizable low–order algorithm for dynam-
ics of multi–rigid–body systems: Part I, chain systems.Mathematical and Com-
puter Modelling, 30(9-10):193–215, 1999.

K. S. Anderson and M. Oghbaei. A state–time formulation for dynamic systems sim-
ulation using massively parallel computing resources.Nonlinear Dynamics, 39(3):
305–318, 2005.

K. S. Anderson, R. Mukherjee, J. Critchley, J. Ziegler, and S. Lipton. POEMS: Paral-
lelizable open–source efficient multibody software.Engineering with Computers,
23(1):11–23, 2007.

Argonne National Laboratory. The Message Passing Interface (MPI) standard, 2009.
http://www-unix.mcs.anl.gov/mpi/ .

M. Arnold. Numerical Methods for Simulation in Applied Dynamics. Simulation
Techniques for Applied Dynamics, M. Arnold and W. Schiehlen, (eds.), pp. 191–
246. Springer, 2008.

111

http://developer.amd.com/cpu/libraries/acml/Pages/default.aspx
http://www-unix.mcs.anl.gov/mpi/

112 BIBLIOGRAPHY

A. Avello, J. M. Jiḿenez, E. Bayo, and J. Garcı́a de Jaĺon. A simple and highly par-
allelizable method for real–time dynamic simulation basedon velocity transforma-
tions.Computer Methods in Applied Mechanics and Engineering, 107(3):313–339,
1993.

D. S. Bae, J. G. Kuhl, and E. J. Haug. A recursive formulation for constrained mechan-
ical system dynamics. 3. Parallel processor implementation. Mechanics of Struc-
tures and Machines, 16(2):249–269, 1988.

D. S. Bae, J. K. Lee, H. J. Cho, and H. Yae. An explicit integration method for realtime
simulation of multibody vehicle models.Computer Methods in Applied Mechanics
and Engineering, 187(1-2):337–350, 2000.

E. Bayo, J. Garćıa de Jaĺon, and M. A. Serna. A modified Lagrangian formulation
for the dynamic analysis of constrained mechanical systems. Computer Methods in
Applied Mechanics and Engineering, 71(2):183–195, 1988.

M. Busch, M. Arnold, A. Heckmann, and S. Dronka. InterfacingSIMPACK to Mod-
elica/Dymola for multi–domain vehicle system simulations. SIMPACK News, 11
(2):1–3, 2007.

Canonical Ltd. Bazaar, 2010.
http://bazaar.canonical.com/en/ .

J. R. Cary, S. G. Shasharina, J. C. Cummings, J. V. W. Reynders, and P. J. Hinker.
Comparison of C++ and Fortran 90 for object–oriented scientific programming.
Computer Physics Communications, 105(1):20–36, 1997.

B. Chapman, G. Jost, and R. van der Pas.Using OpenMP: Portable Shared Memory
Parallel Programming. The MIT Press, 2007.

Y. Chen, T. A. Davis, W. W. Hager, and S. Rajamanickam. Algorithm 887:
CHOLMOD, supernodal sparse cholesky factorization and update/downdate.ACM
Transactions on Mathematical Software, 35(3):art. 22, 2008.

J. H. Critchley and K. S. Anderson. On parallel methods of multibody dynamics. In
Proceedings of the ASME Design Engineering Technical Conference, pp. 133–142,
Chicago, IL, 2003.

J. H. Critchley and K. S. Anderson. A parallel logarithmic order algorithm for general
multibody system dynamics.Multibody System Dynamics, 12(1):75–93, 2004.

P. R. Crossley and J. A. Cook. A nonlinear engine model for drivetrain system de-
velopment. InInternational Conference on Control (Control 91), pp. 921–925,
Edinburgh, 1991.

J. Cuadrado, J. Cardenal, and J. Garcı́a de Jaĺon. Flexible mechanisms through natural
coordinates and component synthesis: An approach fully compatible with the rigid
case.International Journal for Numerical Methods in Engineering, 39(20):3535–
3551, 1996.

http://bazaar.canonical.com/en/

BIBLIOGRAPHY 113

J. Cuadrado, J. Cardenal, and E. Bayo. Modeling and solutionmethods for efficient
real–time simulation of multibody dynamics.Multibody System Dynamics, 1(3):
259–280, 1997.

J. Cuadrado, J. Cardenal, P. Morer, and E. Bayo. Intelligentsimulation of multibody
dynamics: Space–state and descriptor methods in sequential and parallel computing
environments.Multibody System Dynamics, 4(1):55–73, 2000.

J. Cuadrado, R. Gutiérrez, M. Naya, and P. Morer. A comparison in terms of accuracy
and efficiency between a MBS dynamic formulation with stressanalysis and a non–
linear FEA code.International Journal for Numerical Methods in Engineering, 51
(9):1033–1052, 2001.

J. Cuadrado, D. Dopico, M. González, and M. A. Naya. A combined penalty and
recursive real–time formulation for multibody dynamics.Journal of Mechanical
Design, 126(4):602–608, 2004a.

J. Cuadrado, D. Dopico, M. A. Naya, and M. González. Penalty, semi–recursive and
hybrid methods for MBS real–time dynamics in the context of structural integrators.
Multibody System Dynamics, 12(2):95–185, 2004b.

J. Cuadrado, D. Dopico, M. A. Naya, and M. González. Real–Time Multibody Dy-
namics and Applications.Simulation Techniques for Applied Dynamics, M. Arnold
and W. Schiehlen, (eds.), pp. 247–311. Springer, 2008.

R. Davis, B. Henz, and D. Shires. Performance evaluation of parallel sparse linear
equation solvers for positive definite systems. InProceedings of the International
Conference on Parallel and Distributed Processing Techniques and Applications,
pp. 1172–1178, Las Vegas, NV, 2003.

T. A. Davis. Algorithm 832: UMFPACK V4.3 – An unsymmetric–pattern multifrontal
method.ACM Transactions on Mathematical Software, 30(2):196–199, 2004.

T. A. Davis and E. P. Natarajan. Algorithm 8xx: KLU, a direct sparse solver for circuit
simulation problems, 2010.
http://www.cise.ufl.edu/ ˜ davis/techreports/KLU/KLU.pdf .

B. Dawes, D. Abrahams, and R. Rivera. Boost C++ libraries, 2009.
http://www.boost.org/ .

J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W.H. Liu. A supern-
odal approach to sparse partial pivoting.SIAM Journal on Matrix Analysis and
Applications, 20(3):720–755, 1999a.

J. W. Demmel, J. R. Gilbert, and X. S. Li. An asynchronous parallel supernodal
algorithm for sparse gaussian elimination.SIAM Journal on Matrix Analysis and
Applications, 20(4):915–952, 1999b.

http://www.cise.ufl.edu/~davis/techreports/KLU/KLU.pdf
http://www.boost.org/

114 BIBLIOGRAPHY

Dipartamento di Ingegneria Aerospaziale, Politecnico di Milano. MBDyn –
MultiBody Dynamics Software, 2009.
http://www.aero.polimi.it/mbdyn/ .

J. Dongarra. Freely available software for linear algebra on the web, 2009.
http://www.netlib.org/utk/people/JackDongarra/la-sw .html .

D. Dopico, U. Lugŕıs, M. Gonźalez, and J. Cuadrado. Two implementations of IRK
integrators for real–time multibody dynamics.International Journal for Numerical
Methods in Engineering, 65(12):2091–2111, 2006.

A. Eichberger, C. F̈uhrer, and R. Schwertassek. The benefits of parallel multibody
simulation. International Journal for Numerical Methods in Engineering, 37(9):
1557–1572, 1994.

C. Engstler and C. Lubich. Multirate extrapolation methodsfor differential equations
with different time scales.Computing, 58(2):173–185, 1997.

P. Fisette and J. M. Ṕeterkenne. Contribution to parallel and vector computation in
multibody dynamics.Parallel Computing, 24(5-6):717–728, 1998.

Free Software Foundation. GCC, the GNU Compiler Collection, 2009.
http://gcc.gnu.org/ .

Function Bay, Inc. RecurDyn, 2009.
http://www.functionbay.co.kr/ .

J. Garćıa de Jaĺon and E. Bayo.Kinematic and Dynamic Simulation of Multibody
Systems – The Real–Time Challenge. Springer–Verlag, 1994.

J. C. Garćıa Orden and J. M. Goicolea. Conserving properties in constrained dynamics
of flexible multibody systems.Multibody System Dynamics, 4(2-3):225–244, 2000.

C. W. Gear and D. R. Wells. Multirate linear multistep methods. BIT Numerical
Mathematics, 24(4):484–502, 1984.

M. Gonźalez. A Collaborative Environment for Flexible Development of MBS Soft-
ware. PhD thesis, University of La Coruña, 2005.

M. Gonźalez, D. Dopico, U. Lugŕıs, and J. Cuadrado. A benchmarking system for
MBS simulation software: Problem standardization and performance measurement.
Multibody System Dynamics, 16(2):179–190, 2006.

M. Gonźalez, F. Gonźalez, A. Luaces, and J. Cuadrado. Interoperability and neutral
data formats in multibody system simulation.Multibody System Dynamics, 18(1):
59–72, 2007.

M. Gonźalez, F. Gonźalez, A. Luaces, and J. Cuadrado. A collaborative benchmarking
framework for multibody system dynamics.Engineering with Computers, 26:1–9,
2010.

http://www.aero.polimi.it/mbdyn/
http://www.netlib.org/utk/people/JackDongarra/la-sw.html
http://gcc.gnu.org/
http://www.functionbay.co.kr/

BIBLIOGRAPHY 115

P. F. Gorder. Multicore processors for science and engineering. Computing in Science
& Engineering, 9(2):3–7, 2007.

K. Goto. GotoBLAS, 2009.
http://www.tacc.utexas.edu/resources/software/ .

N. I. M. Gould, J. A. Scott, and Y. Hu. A numerical evaluation of sparse direct solvers
for the solution of large sparse symmetric linear systems ofequations.ACM Trans-
actions on Mathematical Software, 33(2):art. 10, 2007.

A. Gupta. Recent advances in direct methods for solving unsymmetric sparse systems
of linear equations.ACM Transactions on Mathematical Software, 28(3):301–324,
2002.

A. Gupta. A shared– and distributed–memory parallel general sparse direct solver.
Applicable Algebra in Engineering, Communications and Computing, 18(3):263–
277, 2007.

A. Gupta, M. Joshi, and V. Kumar. WSSMP: A High–Performance Serial and Paral-
lel Symmetric Sparse Linear Solver.Applied Parallel Computing – Large Scale
Scientific and Industrial Problems, B. Kågstr̈om, J. Dongarra, E. Elmroth, and
J. Wásniewski, (eds.), pp. 182–194. Springer, 1998.

H. S. Han and J. H. Seo. Design of a multi–body dynamics analysis program using the
object–oriented concept.Advances in Engineering Software, 35(2):95–103, 2004.

IEEE P1076.1 Working Group. VHDL–AMS, 2009.
http://www.eda.org/vhdl-ams/ .

INRIA. Scicos: Block diagram modeler/simulator, 2009a.
http://www.scicos.org/ .

INRIA. Scilab: The open source platform for numerical computation, 2009b.
http://www.scilab.org/ .

N. M. Josuttis. The C++ Standard Library – A Tutorial and Reference. Addison–
Wesley, 1999.

G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning
irregular graphs.SIAM Journal of Scientific Computing, 20(1):359–392, 1998.

H. Kasahara, H. Fujii, and M. Iwata. Parallel processing of robot motion simulation.
In Proceedings IFAC 10th World Conference, pp. 329–336, Munich, 1987.

A. Kecskeḿethy and M. Hiller. Object–oriented programming techniques in vehicle
dynamics simulation.Mathematics and Computers in Simulation, 39(5–6):549–
558, 1995.

G. Krawezik and F. Cappello. Performance comparison of MPI and OpenMP on
shared memory multiprocessors.Concurrency and Computation: Practice and Ex-
perience, 18(1):29–61, 2006.

http://www.tacc.utexas.edu/resources/software/
http://www.eda.org/vhdl-ams/
http://www.scicos.org/
http://www.scilab.org/

116 BIBLIOGRAPHY

R. Kübler and W. Schiehlen. Modular simulation in multibody system dynamics.
Multibody System Dynamics, 4(2-3):107–127, 2000.

Y. G. Liao and H. I. Du. Cosimulation of multi–body–based vehicle dynamics and an
electric power steering control system.Proceedings of the Institution of Mechanical
Engineers, Part K: Journal of Multi–body Dynamics, 215(3):141–151, 2001.

U. Lugŕıs, M. A. Naya, F. Gonźalez, and J. Cuadrado. Performance and application
criteria of two fast formulations for flexible multibody dynamics.Mechanics Based
Design of Structures and Machines, 35(4):381–404, 2007.

K. Martin and B. Hoffman.Mastering CMake. Kitware, Inc., 4th edition, 2007.

J. McPhee. Multibody system dynamics: Research activities, 2008.
http://real.uwaterloo.ca/ ˜ mbody/ .

S. Meyers.More effective C++. Addison–Wesley, 1999.

S. Meyers.Effective C++. Addison–Wesley, 2nd edition, 2000.

Microsoft. Visual Studio 2008 – Express Edition, 2009.
http://www.microsoft.com/express/vc/ .

A. Mikkola. Utilization of coupled simulation in the fatigue loads prediction of a hy-
draulically driven log crane. InProceedings of the ASME 2001 Design Engineering
Technical Conferences and Computers and Information in Engineering Conference,
paper VIB-21360, Pittsburgh, PA, 2001.

Modelica Association. Modelica, Modeling of Complex Physical Systems, 2009.
http://www.modelica.org/ .

MSC.Software Corporation. ADAMS, 2009.
http://www.mscsoftware.com/ .

R. M. Mukherjee, K. S. Anderson, and J. Ziegler. Multigranular molecular dynamics
simulations of polymer melts using multibody algorithms. In Proceedings of the
ASME 2005 Design Engineering Technical Conferences and Computers and Infor-
mation in Engineering Conference, pp. 2111–2120, Long Beach, CA, 2005.

R. M. Mukherjee, P. S. Crozier, S. J. Plimpton, and K. S. Anderson. Substructured
molecular dynamics using multibody dynamics algorithms.International Journal
of Non-linear Mechanics, 43(10):1040–1055, 2008.

National Instruments. MATRIXx Software Suite, 2009.
http://www.ni.com/matrixx/what_is_matrixx.htm .

M. A. Naya, D. Dopico, J. A. Ṕerez, and J. Cuadrado. Real–time multi–body for-
mulation for virtual–reality–based design and evaluationof automobile controllers.
Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi–
body Dynamics, 221(2):261–276, 2007.

http://real.uwaterloo.ca/~mbody/
http://www.microsoft.com/express/vc/
http://www.modelica.org/
http://www.mscsoftware.com/
http://www.ni.com/matrixx/what_is_matrixx.htm

BIBLIOGRAPHY 117

NETLIB. LAPACK, Linear Algebra PACKage, 2009.
http://www.netlib.org/lapack/ .

N. M. Newmark. A method of computation for structural dynamics. Journal of the
Engineering Mechanics Division, ASCE, 85(EM3):67–94, 1959.

NIST. BLAS, Basic Linear Algebra Subprograms, 2009.
http://www.netlib.org/blas/ .

NIST. Matrix Market, 2007.
http://math.nist.gov/MatrixMarket/ .

Nokia. Qt – A cross–platform application and UI framework, 2009.
http://qt.nokia.com/ .

O. Oberschelp and H. V̈ocking. Multirate simulation of mechatronic systems. In
Proceedings of the IEEE International Conference on Mechatronics 2004, pp. 404–
409, Istanbul, 2004.

OpenMP Architecture Review Board. OpenMP, 2008.
http://openmp.org .

OSG Community. Open Scene Graph, 2009.
http://www.openscenegraph.org/projects/osg .

G. Quaranta, P. Masarati, and P. Mantegazza. Multibody analysis of controlled aeroe-
lastic systems on parallel computers.Multibody System Dynamics, 8(1):71–102,
2002.

Y. Saad. Iterative methods for sparse linear systems. SIAM, Philadelphia, PA, 2nd
edition, 2000.

J. C. Samin, O. Br̈uls, J. F. Collard, L. Sass, and P. Fisette. Multiphysics modeling
and optimization of mechatronic multibody systems.Multibody System Dynamics,
18(3):345–373, 2007.

SAMTECH. SAMCEF Mecano, 2009.
http://www.samcef.com/products/product.asp?idP=92&p rod=11 .

Sandia National Laboratories. LAMMPS Molecular Dynamics Simulator, 2009.
http://lammps.sandia.gov/ .

V. Savcenco, W. Hundsdorfer, and J. G. Verwer. A multirate time stepping strategy for
stiff ordinary differential equations.BIT Numerical Mathematics, 47(1):137–155,
2007.

O. Schenk, K. G̈artner, W. Fichtner, and A. Stricker. PARDISO: A high–performance
serial and parallel sparse linear solver in semiconductor device simulation.Future
Generation Computer Systems, 18(1):69–78, 2001.

http://www.netlib.org/lapack/
http://www.netlib.org/blas/
http://math.nist.gov/MatrixMarket/
http://qt.nokia.com/
http://openmp.org
http://www.openscenegraph.org/projects/osg
http://www.samcef.com/products/product.asp?idP=92&prod=11
http://lammps.sandia.gov/

118 BIBLIOGRAPHY

W. Schiehlen. Research trends in multibody system dynamics. Multibody System
Dynamics, 18(1):3–13, 2007.

J. A. Scott and Y. Hu. Experiences of sparse direct symmetricsolvers.ACM Transac-
tions on Mathematical Software, 33(3):art. 18, 2007.

Selenic Consulting. Mercurial, 2010.
http://mercurial.selenic.com/ .

L. F. Shampine.Numerical Solution of Ordinary Differential Equations. Chapman &
Hall, 1994.

S. S. Shome, E. J. Haug, and L. O. Jay. Dual–rate integration using partitioned Runge–
Kutta methods for mechanical systems with interacting subsystems. Mechanics
Based Design of Structures and Machines, 32:3(3):253–282, 2004.

Simbios project. SimTK, 2009.
https://simtk.org/xml/index.xml .

SIMPACK AG. SIMPACK, 2009.
http://www.simpack.de/ .

H. Sugiyama and A. A. Shabana. Application of plasticity theory and absolute nodal
coordinate formulation to flexible multibody system dynamics.Journal of Mechan-
ical Design, 126(3):478–487, 2004.

M. Tändl, T. Stark, N. E. Erol, F. L̈oer, and A. Kecskeḿethy. An object–oriented
approach to simulating human gait motion based on motion tracking. International
Journal of Applied Mathematics and Computer Science, 19(3):469–483, 2009.

J. Teppo, A. Rouvinen, A. Mikkola, P. Kurronen, P. Salminen,and O. Pyrḧonen. Cou-
pled Simulation of Electrically Driven Machine System.Bath Workshop on Power
Transmission and Motion Control (PTMC 2001), C. R. Burrows and K. A. Edge,
(eds.), pp. 103–116. Professional Engineering Publishing, 2001.

Tesis DYNAware. veDYNA, 2009.
http://www.tesis.de/en/index.php?page=544 .

The AEgis Technologies Group, Inc. ACSLX, 2009.
http://www.acslsim.com/ .

The Mathworks, Inc. MATLAB, 2009.
http://www.mathworks.com/ .

The wxWidgets team. wxWidgets – Cross–platform GUI library, 2009.
http://www.wxwidgets.org/ .

Tigris.org. Subversion, 2009.
http://subversion.tigris.org/ .

http://mercurial.selenic.com/
https://simtk.org/xml/index.xml
http://www.simpack.de/
http://www.tesis.de/en/index.php?page=544
http://www.acslsim.com/
http://www.mathworks.com/
http://www.wxwidgets.org/
http://subversion.tigris.org/

BIBLIOGRAPHY 119

F. T. Tracy, T. C. Oppe, and S. Gavali. Testing parallel linear iterative solvers for finite
element groundwater flow problems. InDepartment of Defense - Proceedings of
the Users Group Conference 2007; High Performance Computing Modernization
Program: A Bridge to Future Defense, pp. 474–481, Pittsburgh, PA, 2007.

S. Turek, C. Becker, and A. Runge. The FEAST indices – Realistic evaluation of mod-
ern software components and processor technologies.Computers and Mathematics
with Applications, 41(10-11):1431–1464, 2001.

O. Vacuĺın, W. R. Kr̈uger, and M. Vaĺǎsek. Overview of coupling of multibody and
control engineering tools.Vehicle System Dynamics, 41(5):415–429, 2004.

M. Valá̌sek. Modeling, Simulation and Control of Mechatronical Systems.Simulation
Techniques for Applied Dynamics, M. Arnold and W. Schiehlen, (eds.), pp. 75–140.
Springer, 2008.

Valgrind developers. Valgrind, 2009.
http://valgrind.org/ .

D. van Heesch. Doxygen, 2009.
http://www.stack.nl/ ˜ dimitri/doxygen/ .

A. Verhoeven, E. J. W. Ter Maten, R. M. M. Mattheij, and B. Tasić. Stability analysis
of the BDF slowest–first multirate methods.International Journal of Computer
Mathematics, 84(6):895–923, 2007.

J. Walter., M. Koch, and G. Winkler. UBLAS, 2009.
http://www.boost.org/libs/numeric/ .

R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated empirical optimizations of
software and the ATLAS project.Parallel Computing, 27(1-2):3–35, 2001.

Wolfram Research. Mathematica, 2009.
http://www.wolfram.com/ .

J. S. K. Yu and C. H. Yu. Recent advances in PC–Linux systems for electronic
structure computations by optimized compilers and numerical libraries. Journal
of Chemical Information and Computer Sciences, 42(3):673–681, 2002.

http://valgrind.org/
http://www.stack.nl/~dimitri/doxygen/
http://www.boost.org/libs/numeric/
http://www.wolfram.com/

Publications

The research carried out in this thesis has yielded the following publications:

� M. Gonźalez, F. Gonźalez, D. Dopico and A. Luaces. On the effect of linear
algebra implementations in real–time multibody system dynamics.Computa-
tional Mechanics, 41(4):607–615. 2008.

� F. Gonźalez, A. Luaces, U. Lugrı́s and M. Gonźalez. Non–intrusive paralleliza-
tion of multibody system dynamic simulations.Computational Mechanics, 44
(4):493–504. 2009.

� F. Gonźalez, M. Gonźalez and A. Mikkola. Efficient coupling of multibody soft-
ware with numerical computing environments and block diagram simulators.
Submitted toMultibody System Dynamicsin December, 2009.

� F. Gonźalez, M. A. Naya, A. Luaces and M. González. On the effect of multirate
co–simulation techniques in the efficiency and accuracy of multibody system
dynamics. Submitted toMultibody System Dynamicsin March, 2010.

121

	Introduction
	Motivation
	Objectives
	Structure

	Design of a Software Architecture for MBS Simulation
	Analysis of software requirements
	Programming language
	Methodology and development tools

	Description and general structure
	Core module
	Implementation of models
	Implementation of dynamic formulations
	Implementation of integrators
	Additional functionality

	Additional modules
	Examples of multibody problems
	Examples of dynamic formulations
	Examples of integrators

	Conclusions

	Linear Algebra Implementation
	Introduction
	Benchmark setup
	Test problem
	Dynamic formulation
	Starting implementation

	Efficient dense matrix implementations
	Efficient sparse matrix implementations
	Optimized sparse matrix computations
	 Evaluation of sparse linear equation solvers
	 Effect of dense BLAS implementation

	Sparse vs. dense implementations
	Conclusions

	Parallelization
	Introduction
	Methods
	Test problem and dynamic formulation
	Initial sequential implementation
	Parallelization with multi--threaded linear equation solvers
	Parallelization with OpenMP
	Test environment and implementation details

	Results and discussion
	Multi--threaded linear equation solvers
	OpenMP

	Conclusions

	Integration with MATLAB/Simulink
	Introduction
	Coupling techniques
	Function evaluation
	MATLAB Engine
	MATLAB Compiler
	MEX functions
	Results

	Co--simulation
	Network connection
	Simulink as master
	MBS software as master
	Results

	Conclusions

	Multirate Co--simulation Methods
	Introduction
	Multirate co--simulation interface
	Coupling strategy for multirate integration
	Smoothing techniques

	Test problem
	Algebraic loops
	Numerical experiments and error measurement
	Results and discussion

	Application to a multiphysics problem
	Conclusions

	Conclusions
	Conclusions
	Future research

	Appendix
	Bibliography
	Publications

