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Abstract. We present a new Compact Trip Representation (CTR) that
allows us to manage users’ trips (moving objects) over networks. These
could be public transportation networks (buses, subway, trains, and so
on) where nodes are stations or stops, or road networks where nodes are
intersections. CTR represents the sequences of nodes and time instants
in users’ trips. The spatial component is handled with a data structure
based on the well-known Compressed Suffix Array (CSA), which provides
both a compact representation and interesting indexing capabilities. We
also represent the temporal component of the trips, that is, the time
instants when users visit nodes in their trips. We create a sequence with
these time instants, which are then self-indexed with a balanced Wavelet
Matrix (WM). This gives us the ability to solve range-interval queries effi-
ciently. We show how CTR can solve relevant spatial and spatio-temporal
queries over large sets of trajectories. Finally, we also provide experimen-
tal results to show the space requirements and query efficiency of CTR.

1 Introduction

Current technology allows us to capture data about the usage of transporta-
tion networks whose analysis could have an important impact on improving the
quality of services. Data about the origin and destination of passengers of train
services can be directly captured when selling tickets. Using more sophisticated
technology, the movement of people or vehicles over networks of streets or roads
can be collected from the mobile phone signals. Even more, nowadays many
cities (from London to Santiago of Chile) provide smartcards to the users of
their public transportation network. These smartcards (that can be recharged
with money) allow users to pay the entrance to subways and buses. Even though
there typically exists only a card reader in the entrance to the network (i.e.,
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there is no control at exits or in middle stops), it is possible to know how people
actually use the public transportation by collecting the entrance and estimating
the destination (e.g., as the entry point for the return trip) and the traversed
stops (the shorter path among stops used as the entrance and exit) [11]. In
all scenarios, the massive data about trips makes the problem of storing and
efficiently accessing data about trips a challenging computational problem.

This paper presents a compact and self-indexed data structure to represent
trips over networks, which could be public transportation networks where nodes
are stations or stops, or road networks where nodes are intersection points.

Although there exist proposals of data structures for moving objects, they
have addressed typical spatio-temporal queries such as time slice or time interval
queries that retrieve trajectories or objects that were in a spatial region at a time
instant or during a time interval. They were not designed to answer queries that
are based on counting occurrences such as the number of trips starting or ending
at some time instant in specific stops (nodes) or the top-k most used stops of
a network during a given time interval, which are more meaningful queries for
public-transportation or traffic administrators. Our proposal (CTR) is oriented
to efficiently answering these types of queries, and it differs from previous ap-
proaches in the use of compact self-indexed data structures to represent the big
amount of trips in compact space. It is important to emphasize that our goal is
to provide an indexed representation for a static collection of trips in order to
allow an efficient batch processing of such data.

CTR combines two well-known data structures. The first one, initially de-
signed for the representation of strings, is Sadakane’s Compressed Suffix Array
(CSA) [18]. The second one is the Wavelet Matrix (WM) [1]. To make the use
of the CSA possible in this domain, we define a trip or trajectory of a moving
object over a network as the temporally-ordered sequence of the nodes the trip
traverses. An integer id is assigned to each node such that a trip is a string of
nodes’ ids. Then a CSA, over the concatenation of these strings (trips) is built
with some adaptations for this context. In addition, we discretize the time in
periods of fixed duration (i.e. timeline split into 5-minute instants) and each
time segment is identified by an integer id. In this way, it is possible to store the
times when trips reach each node by associating the corresponding time id with
each node in each trip. The sequence of times for all the nodes within a trip is
self-indexed with a WM to efficiently answer spatio-temporal queries.

We experimentally tested our proposal using two sets of synthetic data rep-
resenting trips over two different real public transportation systems. Our results
are promising because the representation uses only around 30% of its original
size and answers spatial and spatio-temporal queries in microseconds. No exper-
imental comparisons with classical spatial or spatio-temporal index structures
are possible, because none of them were designed to answer the types of queries
in this work. Our approach can be considered as a proof of concept that opens
new application domains for the use of CSA and WM, creating a new strategy
for exploiting trajectories represented in a self-indexed way.
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The organization of this paper is as follows. Section 2 reviews previous works
on trip representations. It also makes reference to the CSA and WM, upon which
we develop our proposal. Section 3.1 shows how CTR represents the spatial com-
ponent and Section 3.2 the temporal component of trips. Section 4 presents the
relevant queries that are solved by CTR and Section 5 gives our experimental
results. Finally, conclusions and future work are discussed in Section 6.

2 Previous Work

Trajectory indexing. Many data structures have been proposed to support
efficient query capabilities on collections of trajectories. We refer to [13, Chapter
4] for a comprehensive and up-to-date survey on data management techniques
for trajectories of moving objects. We can broadly classify these data structures
into two groups: those that index trajectories in free space and those that index
trajectories constrained to a network. The 3D R-tree (an extension of the classi-
cal R-tree spatial index [7]), the TB-tree [14], and MV3R-tree [19] are examples
of the former, whereas the FNR-tree [4], the MON-tree [2], and PARINET [15]
are examples of the latter. While the former type of structures could also apply
over networks, the second type exploits the constraints imposed by the topology
of the network to optimize the data structure. From them, PARINET is the
most efficient alternative [15]. It partitions trajectories into segments from an
underlaying road network, and then adds one temporal B+-tree to index the tra-
jectory segments from each road. Those indexes permit us to filter out candidate
trajectory segments matching time constraints at query time.

All previous data structures were designed to answer spatio-temporal queries,
where the space and time are the main filtering criteria. Examples of such queries
are: retrieve trajectories that crossed a region within a time interval, retrieve
trajectories that intersect, or retrieve the k-best connected trajectories (i.e., the
most similar trajectories in terms of a distance function). Yet, they could not
easily support queries such as number of trips starting in X and ending at Y.

The application of data compression techniques has been explored in the
context of massive data about trajectories. The work by Meratnia and de By [10]
adapts a classical simplification algorithm by Douglas and Peucker to reduce the
number of points in a curve and, in consequence, the space use to represent
trajectories. Ptomaias et al. [16] use concepts, such as speed and orientation, to
improve compression. Both techniques work for trajectories in free space.

In [17, 8, 5], they focus mainly on how to represent trajectories constrained to
networks, and in how to gather the location of one or more given moving objects
from those trajectories. Yet, these works are also out of our scope as they would
poorly support queries oriented to exploit the data about the network usage
such as those oriented to aggregate the number of trips with a specific spatio-
temporal pattern (e.g. Count the trips starting at stop X and ending at stop Y
in working days between 7:00 and 9:00).

In [9], authors use a representation of trajectories where for each edge in a
trajectory both the starting and ending times are kept, and present an index
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called NETTRA. They used a relational database where those data are stored
in a table and indexes are created in order to support a particular type of queries
called Strict Path Queries. Although our CTR could also deal with those types
of queries, this database-oriented representation is out of our scope as they do
not consider space constraints (they do not compress data nor do they consider
the size of the indexes used).

Underlying Compact Structures of CTR. Our proposal is based on two
well-known compact structures: a Compressed Suffix Array (CSA) [18] and a
Wavelet Matrix (WM) [1]. We used the variant of CSA from [3], where au-
thors adapted CSA to deal with large (integer-based) alphabets and created
the integer-based CSA (iCSA). They also showed that the best compression of Ψ
was obtained when combining differential encoding of runs with Huffman and
run-length encoding.

WM is a data structure originated from the Wavelet Tree [6], but requires
less space and permits to make an efficient occurrence count of a continuous
range of values [1] (see Section 3.2 for details). WM provides, as the Wavelet
Tree a self-indexed representation of symbols based on the rearrangement of
their bits in different bit maps at different levels. WM allows us to perform
efficient operations over the sequence, among other operations: access(i) returns
the symbol at the position i, rankα(i) counts the number of occurrences of a
symbol α up to position i; and selectα(j) gives the position of the j-th α. Those
operations are implemented using the classical bit operations rank and select
on the underlying bitmaps and they need O(log σ) time, being σ the number of
encoded symbols.

3 Compact Trip Representation (CTR)

Trips on networks are temporally-ordered sequences of nodes (referred to as
the spatial component) tagged with timestamps (referred to as the temporal
component). We show how the proposed Compact Trip Representation (CTR)
combines a Compact Suffix Array (CSA) to represent the spatial component and
a Wavelet Matrix (WM) to represent the temporal one.

3.1 Representing the spatial component of CTR with a CSA

In CTR, integer IDs identify stops of the network. The first step to build the CSA
is to sort the trips. They are sorted by the first stop, then by the last stop, then by
the start time of the trip, and finally by the second, third, and successive stops.
For example, we have a dataset T with the following set of trips: {〈2, 3, 10, 6〉,
〈2, 3, 10, 4, 7〉, 〈1, 2, 3〉 〈3, 10, 5〉, 〈1, 2, 3〉 〈9, 8, 7〉}. Let us assume that these trips
start at time instants 10, 2, 0, 9, 5, 12, respectively. Following lexicographic order,
the trip 〈2, 3, 10, 4, 7〉 should be before the trip 〈2, 3, 10, 6〉. However, because
after the first stop, we consider the last stop, the trip 〈2, 3, 10, 6〉 goes before the
trip 〈2, 3, 10, 4, 7〉. In addition, the two trips 〈1, 2, 3〉 are sorted by their starting
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time instants (0 and 5 respectively). This sorting of the trips will allow us to
answer a useful query very efficiently (i.e., trips starting at X and ending at Y ).

We concatenate the sorted trips and construct an array S where trips are sep-
arated with a symbol $. We also add an additional ending $. Figure 1 shows the
array S for the running example. Despite the standard suffix array construction
in the CSA that compares two suffixes by their lexicographical order until the
end of S, we introduced a modification so that two suffixes are now compared
considering their trips as a cycle.

Figure 1 depicts the structures Ψ and D used by the CTR over the trips in
the dataset T . There is also the vocabulary V containing all the stops in their
lexicographic order, as well as the $ symbol. We include the sequence S, the
suffix array A, and Ψ ’ only for clarity (they are not needed in the CTR). Ψ ′

contains the first entries of Ψ from a regular CSA, just to explain the difference
of how we build Ψ . For example, A[8] = 1 points to the first stop of the first
trip S[1]. Ψ [8] = 10 and A[10] = 2 points to the second stop. Ψ [10] = 14 and
A[14] = 3 points to the third stop. Ψ [14] = 2 and A[2] = 4 points to the ending
$ of the first trip. Therefore, in the standard CSA, Ψ ′[2] = 9 and A[9] = 5 points
to the first stop of the second trip. However, in CTR, Ψ [2] = 8 and A[8] = 1
points to the first stop of the first trip. Thus, subsequent applications of Ψ will
allow us to cyclically traverse the stops of the trip. Finally, note that aligned
with sequence S, we could keep the times associated with the stops in each trip
with the structures I and Icode, which are explained in the following subsection.

Fig. 1. Structures involved in the creation of a CTR.

The definition of a suffix proposed above explains why A[22] = 18 is placed
before A[23] = 26. Note that the suffix starting at S[18] is “7 · $ · 2 · 3 . . .” and
that suffix at S[26] is “7 · $ · 9 · . . .”. Therefore, it holds that A[22] ≺ A[23].
However, considering the traditional definition of a suffix, these suffixes would
be “7 · $ · 3 · · ·” and “7 · $ · $ · · ·” respectively, and A[22] ≺ A[23] would not hold.

Note also that, in the shaded range Ψ [1, 7], the first entry is related to ter-
minator $, whereas the next six entries correspond to the $ symbols that mark
the end of each trip in S (sorted by the starting stop, then by the ending stop,
then by their initial time, and finally by the second, third and following up
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stops). This property makes it very simple to find starting stops. For example,
the ending $ of the 4th trip is at the 5th position (because the first $ corre-
sponds to the final $ at S[28]). Therefore, its starting stop can be obtained by
Ψ [5] = 12 and rank1(D, 12) = 3; that is, the starting stop is the 3th entry in
the vocabulary. The next stop of that trip would be obtained by Ψ [12] = 16 and
rank1(D, 16) = 4, and so on.

We expect to obtain good compressibility in CTR due to the structure of the
network, and the fact that trips that start in a given stop or simply those going
through that stop will probably share the same sequence of “next” stops. This
will lead us to obtain many runs in Ψ [12], and consequently, good compression.

3.2 Representing the temporal component of CTR with a WM

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

1 8 9 13 12 17 25 10 11 14 15 16 18 2 3 26 27 28 22 6 4 5 7 23 24 19 20 21

Times 0 0 5 10 2 9 12 0 5 3 7 2 10 5 8 4 9 13 8 12 15 10 15 14 12 6 11 14

Bit 1 0 0 0 1 0 1 1 0 0 0 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 0 1 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Times 0 0 5 2 0 5 3 7 2 5 4 6 10 9 12 10 8 9 13 8 12 15 10 15 14 12 11 14

Bit 2 0 0 1 0 0 1 0 1 0 1 1 1 0 0 1 0 0 0 1 0 1 1 0 1 1 1 0 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Times 0 0 2 0 3 2 10 9 10 8 9 8 10 11 5 5 7 5 4 6 12 13 12 15 15 14 12 14

Bit 3 0 0 1 0 1 1 1 0 1 0 0 0 1 1 0 0 1 0 0 1 0 0 0 1 1 1 0 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Times 0 0 0 9 8 9 8 5 5 5 4 12 13 12 12 2 3 2 10 10 10 11 7 6 15 15 14 14

Bit 4 0 0 0 1 0 1 0 1 1 1 0 0 1 0 0 0 1 0 0 0 0 1 1 0 1 1 0 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Fig. 2. WM representation for the times associated with the trips in Figure 1.

To exploit usage patterns of a network, we need to represent and query the
time component of trips, which indicates when a moving object reaches each
node along its trip. To represent this time component, we discretize time and
assign an integer code to each resulting time interval. The size of the time interval
is a parameter that can be adjusted to fit the required precision in each domain.
For example, in a public transportation network, if we had data about five years
of trips, a possibility would be to divide that five-years period into 10-minutes
intervals, or in cyclical annual periods resulting in a vocabulary of roughly 365×
24×60/10 = 52, 560 different codes. However, in public transportation networks
queries such as “Number of trips using the stop X on May 10 between 9:15 and

10:00” may be not as useful as queries such as “Number of trips using stop X on

Sundays between 9:15 and 10:00”. For this reason, CTR can adapt how the time
component is encoded depending on the queries that the system must answer.

In Figure 1, sequence I contains the time associated with each stop in a trip,
and Icode a possible encoding of times. In CTR we use a similar encoding to
that in Icode, yet aligned to Ψ rather than to S.

Those entries in Icodes are given a fixed-length binary code and are repre-
sented with a balanced Wavelet Matrix (WM) [1]. That is, for any stop in a trip
at the position i in Ψ , its timestamp ti can be recovered by accessing the WM
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at position i. Recall [1] that a WM is a grid of n×m bits. In our case n is the
number of entries in the CSA and m = log σt are the bits needed to represent
the different σt codes for the time instants of interest.

Besides the typical access(i), rankα(i) and selectα(i), the WM provides a
count operation that CTR heavily relies on. count(x1, x2, y1, y2) returns the
number of occurrences of symbols between y1 and y2 in the range of positions
[x1, x2] from the encoded sequence in O(m) time. While its implementation de-
tails can be found in [1], we include an example of how to solve count(20, 28, 10, 15)
over the sequence shown in Figure 2. The algorithm starts from the upper level
(Bit1) of the WM and iterates downwards, refining the searching range. In Bit1
we are only interested in positions from [20, 28] that have a 1, because none of
the symbols between 10 and 15 starts with a 0. Also, since rank0(Bit1, 28) = 12,
in Bit2 we will have to search in the positions between 12+rank1(Bit1, 20) = 21
and 12+ rank1(Bit1, 28) = 28. Now, while the second bit for 10 and 11 is 0, it is
1 for the symbols between 12 and 15. Because of this, we need to perform both
rank0 and rank1 on the limits of [21, 28] in Bit23, and split the search in two
subranges for Bit3: [10, 11] using rank0 and [23, 28] using rank1. As the second
subrange may only contain symbols from 12 to 15 (11xx), further refinement
is not needed. In the case of the range [10, 11], it could contain symbols from
8 to 11, depending on their third bits, so we need to perform rank1 over its
limits in Bit3, which leads to [21, 22] in Bit4. The number of 10 and 11 symbols
is the size of this last range.

If we wanted to return the positions of the results in the original sequence,
we could do that with a simple algorithm, using select of bits over bitmaps, that
iterates upwards from the level where each result is found until the first level
where its position in the original sequence can be retrieved.

Summarizing, CTR takes the advantage of the WM to count and report the
occurrences of a continuous range of values. The starting positions in the CSA

belonging to the $ symbols have no time by themselves, but it is useful to answer
some queries to store the starting time instants of the corresponding trip in these
positions too.

The time intervals could be mapped to a variable-length code, instead of a
fixed length codes, where the most frequent intervals would be represented by
less bits and, therefore, requiring less levels in a Wavelet Tree. In the future we
will explore this possibility.

4 Query processing

We distinguish two types of queries to be answered by the CTR: spatial and
spatio-temporal queries. We briefly sketch the algorithms to process these queries.

Spatial queries. The following queries can be solved by only using the CSA

that represents the spatial component of trips.

3 rank1(Bit2, i) = i− rank0(Bit2, i), and vice versa



8 N. Brisaboa, A. Fariña, D. Galaktionov, and A. Rodŕıguez

– Number of trips starting at stop X. Because Ψ was cyclically built in such a
way that every $ symbol is followed by the first stop of its trip, this query is
solved by performing the binary search of the pattern $X over the section of
Ψ corresponding to $. The size of the resulting range gives the number of trips
starting at X .

– Number of trips ending at stop X. In a similar way to the previous query, this
one can be answered with a binary search for pattern X$ over the section of Ψ
corresponding to stop X .

– Number of trips starting at X and ending at Y . Combining both ideas from
above, this query is solved directly by searching for the Y $X pattern.

– Number of trips using stop X. Instead of performing a binary search over Ψ , we
operate on bitmap D. Assuming that X is at position p in the vocabulary V of
CTR, its total frequency is obtained by occsX ← select1(D, p+ 1)− select1(D, p).
If p is the last entry in V , we set occsX ← n+ 1− select1(D, p).

– Top-k most used stops. We provide two possible solutions for these queries: se-
quential and binary-partition approaches.

• To return the k most used stops using a sequential approach, we can apply
select1 operation sequentially for every stop from 1 to δ, returning the k
stops with highest frequency. We use a min-heap that is initialized with the
first k stops, and for every stop s from k + 1 to δ, we compare its frequency
with the frequency of the minimum stop in the heap. In case the new one
is higher, the root of the heap is replaced and moved down to comply with
the heap ordering. At the end of the process, the heap will contain the top-k
most used stops, which can be sorted with the heapsort algorithm if needed.
Note that this approach always performs δ select1 operations on D.

• A binary-partition approach to solve queries about the top-k most used
stops takes advantage of the skewed distribution of the stops that trips visit.
Working over D and V , D is recursively split into segments of D after each
iteration. Each partition must, if possible, leave the same number of different
stops in each side of the partition. The segments created after the partition-
ing step are pushed into a priority queue Q, storing the initial and the final
positions of the segment in D, and also the initial and final corresponding
entries in V . The priority of each segment in Q is directly its size. The prior-
ity queue Q is initialized with a segment covering the whole D (without its
initial range of δ $ symbols). When a segment extracted from the queue Q
represents the instance of only one stop, that stop is returned as a result of
the top-k algorithm. The algorithm stops when the first k stops are found.

For example, when searching for the top-1 most used stops in the running
example, Q is initialized with the segment [8, 28], corresponding to stops
from 1 to 10 (positions from 2 to 11 in V ). Note that the entries of D
from 1 to 7 and V [1] represent the $ symbol. These are not stops and must
be skipped. Then [8, 28] is split producing the segments [8, 20] for stops
1 to 5 and [21, 28] for stops 6 to 10. After three more iterations, we extract
the segment [14, 18] for the single stop 3, concluding that the top-1 most
used stop is 3 with a frequency equal to 5.
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Spatio-temporal queries. These queries combine both the CSA and WM. The
idea is to restrict spatial queries to a time interval [t1, t2]. An example of this
type of query is to return the number of trips starting at stop X between t1 and

t2, which we solve by relying on the count operation of the WM. The following
are the spatio-temporal queries solved by the CTR:

– Number of trips starting at stop X during the time interval [t1, t2]. Remember
that in the WM we also have timestamps associated with the area of $-symbols
in Ψ ; each $ has associated the time of the first stop of its trip and, therefore, we
can use the WM in that area of Ψ . Using the range in Ψ obtained by searching the
$X pattern, as done in a regular spatial query, a count operation is performed
over these positions in the WM searching for the limits of the interval. That is,
we count the number of entries in the obtained range that have a timestamp in
the WM inside [t1, t2].

– Number of trips ending at stop X during the time interval [t1, t2]. As before, we
use a count operation in the WM, restricted to the range in Ψ that corresponds
to the pattern X$ found in the spatial query.

– Number of trips using stop X during the time interval [t1, t2]. As in the spatial
query, the range in Ψ is obtained with two select1 on D. Then, a count operation
is done over the WM to find the occurrences inside the time interval [t1, t2].

– Number of trips starting at X and ending at Y occurring during time interval

[t1, t2]. We consider two different semantics. A query with strong semantics will
obtain trips that start and end inside [t1, t2]. Whereas, a query with weak se-

mantics will obtain trips whose time intervals overlap [t1, t2] and, therefore, they
could actually start before t1 or end after t2.
We can binary search Ψ for the pattern Y $X , hence obtaining the corresponding
continuous range of positions in the section of Ψ devoted to Y . We know that
the range for Y $X in Ψ has pointers to the section $ in Ψ . But, note that taking
into account the considerations in the sorting of trips when building the CSA,
this section $XY is a continuous range of the same size than the range Y $X ,
and it also preserves the same order of the trips.
Note that, the range Y $X of Ψ has associated the final time of each trip in the
WM, whereas the range $XY has associated the timestamps of the starting time
of each trip in increasing order (due to how we sorted the trips). Therefore, we
can use these ranges, respectively, to check time constraints related to the ending
stop (Y ) and to the starting stop ($X) of each trip.
• Strong semantics. Since time instants within the range $XY are in increas-
ing order, we can use the WM to obtain a continuous subrange (inside $XY )
of trips starting during the interval [t1, t2]. That subrange has a matching
subrange inside of the range Y $X corresponding to the final stop of those
trips (in the same order). We can again use the WM to count the number of
those trips with valid ending times. That is, we can perform a count oper-
ation in the WM over the subrange of Y $X corresponding to the subrange
of $XY with valid starting times.
• Weak semantics. In this case we need to consider all the trips in the range
$XY starting within [t1, t2], as well as the ones starting before t1 but ending
after t1.
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5 Experimental evaluation

In this section we provide experimental results to show how CTR handles a large
collection of trips. We discuss both the space requirements of our representation
and also show its performance at query time. Although due to legal issues we
could not provide experiments over real trips gathered from transport companies,
we managed to use real data of the Madrid’s public transportation network4 (in
the GTFS5 format) to generate two datasets of synthetic trips:

– Subway trips. This combines the subway network with the Spanish com-
muter rail system called “Cercańıas”. In total, there are 313 different stations
organized in 23 lines. They are open to the public from 6:00 AM to 2:00 AM,
thus trips were always generated within 20 hours a day.

– Bus trips. It uses 4648 bus stops, organized in 206 lines. Some of these lines
are from special night services, so we generated trips using 24 hours a day.

Trip generation process choses a starting stop and an ending stop, and uses
the network description to generate every stop that the trip must traverse. We
generated 50 million trips in both datasets, whose lengths vary from 2 to 31 stops
following a binomial distribution with a mean length of 11.81 stops. Based on the
GTFS data, we also generated realistic timestamps along each stop, and built
the WM-based time index in CTR discretizing these timestamps into 5-minute
intervals. We distinguished four kinds of days in a week: regular working days,
Fridays/holiday eves, Saturdays, and Sundays/holidays; and two kinds of weeks
for high and low season representations. In total, a time interval may belong to
eight types of day.

Below, we show the space/time tradeoff for both datasets obtained by three
settings of CTR. We tune its Ψ sample rate parameter to values 16, 64, and 256,
respectively. All tests were run on a machine with an Intel(R) Core(TM) i5-
4440@3.1GHz CPU, and 8GB DDR3 RAM. The operating system was Ubuntu
15.04 and the compiler gcc 4.9.2 (options -O3).

We compare the space usage of the stops representation in the CTR with
the space required by two baseline compressors: gzip and bzip2. To measure the
compression, we assume, as a reference, a plain representation that uses the
least amount of bits needed to represent every stop with a fixed width6. The
sizes of these plain representations are 687.28 MiB for the subway trips dataset,
and 992.59 MiB for the bus trips. Note that we ignore the space needed for the
representation of time intervals, as WM does not offer any compression by itself,
and needs 866.27 and 944.88 MiB for subway and bus trips, respectively.

Results regarding space usage are given in Table 1. Note that an iCSA built
on English text [3] typically reached the compression of gzip (around 35% in
compression ratio). As expected, the high compressibility of our sorted dataset

4 Data from the EMT corporation https://www.emtmadrid.es/movilidad20/googlet.html
5 GTFS is a well-known specification for representing an urban transportation net-
work. See https://developers.google.com/transit/gtfs/reference?hl=en

6 9 bits/stop for subway trips, 13 bits/stop for bus trips
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of trips permits CTR to improve those numbers with compression ratios under
30% in the most sparse setup, much better than gzip, and even than bzip2. Yet,
CTR offers also indexing features that allow us to perform efficient searches.

To provide a rough comparison with a database solution similar to NET-

TRA [9] we included in a table a row containing each trip ID (represented with
4 bytes), stop ID (represented with 2 bytes), and time interval (represented with
2 bytes instead of a full datetime). The size of the whole table was around
4505 MiB, without taking any indexes into account. Therefore, such represen-
tation would use at least more than twice the space of CTR while it could not
efficiently support the queries discussed in this paper.

Dataset Ψ16 Ψ64 Ψ256 gzip bzip2
Subway 467.07

(67.96%)
249.14

(36.25%)
193.10

(28.10%)
401.72

(58.45%)
238.43

(34.69%)
Bus 499.84

(50.36%)
283.12

(28.52%)
227.42

(22.91%)
957.03

(96.42%)
389.74

(39.26%)
Table 1. Comparison on space usage for stops. Space in MiB.

To see the query performance of CTR, we generated 10, 000 random queries
of each type, and measured the average time required to solve them.

Table 2 shows the results of spatial queries. Almost any query can be solved
in the order of ten µsecs and the heaviest Top-k within msecs per query in our
experiments. As expected, the query “ends at X” performs slightly faster than
“starts at X”, as the region in Ψ for any stop X is smaller than the region of $,
thus needing more time to search a pattern inside the later. It is also expected
that the spatial “uses X” performs much faster than any other query as it does
not operate over Ψ and its samples, using instead the select1 operator overD. For
the same reasons, both spatial Top-k algorithms are also independent from the Ψ
sample rate parameter. However, it is interesting to point out that even when the
binary partitioning algorithm is much faster for small values of k, its sequential
counterpart overcomes it for large values of k. This is a reasonable phenomena
considering that for large values of k, the number of select1 operations that the
binary partitioning algorithm needs to perform tends to be the same as in the
sequential algorithm, but with the additional cost of maintaining a larger and
more complex structure (a priority queue versus a binary heap).

CTR Starts at X Ends at X Starts at X
ends at Y

Uses X Sequential
Top 10

Binary
Top 10

Sequential
Top 1000

Binary
Top 1000

Subway Ψ16 6.03 4.53 11.24
0.3902 50.42 39.36 62.79 75.09Subway Ψ64 8.22 4.61 16.68

Subway Ψ256 18.78 5.69 38.82
Bus Ψ16 7.51 6.27 9.24

0.7944 761.14 588.01 1031.84 1514.07Bus Ψ64 9.58 6.52 15.72
Bus Ψ256 22.77 11.35 41.31

Table 2. Time performance for spatial queries (in µsecs/query).

Table 3 shows the results of spatio-temporal queries. Looking at the differ-
ences between spatial queries and their spatio-temporal counterparts, it can be
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seen that computing a count query over the WM takes roughly around 3 µsec,
so its time overhead is relatively small.

CTR Starts at X Ends at X Starts at X
ends at Y (strong)

Starts at X
ends at Y (weak)

Uses X

Subway Ψ16 8.34 7.44 22.42 18.95
2.08Subway Ψ64 11.21 7.83 28.07 24.32

Subway Ψ256 21.68 8.58 49.98 46.50
Bus Ψ16 10.41 9.50 12.25 12.12

4.90Bus Ψ64 12.95 10.19 18.84 18.75
Bus Ψ256 26.20 14.87 44.84 44.92

Table 3. Time performance for spatio-temporal queries (in µsecs/query).

6 Conclusions and future work

As better tracking mechanisms will be installed, the problem of storing and
querying trips to support network analysis will gain interest for network manage-
ment administrations and even end-user applications. For instance, with enough
data of vehicle trips from a significant amount of drivers over the network formed
by the streets of a city, it would be possible to infer traffic rules by examining
turns that nobody takes, their usual driving speed across the network, and other
useful information.

We showed that CTR is a powerful structure to represent user trips. Using
compact data structures to represent trips over a transportation network allows
us not only to keep a much larger amount of data in main memory (compression
ratio is around 30%), but also to efficiently perform spatial and spatio-temporal
queries oriented to understand the real usage of the network.

We have presented CTR as a proof of concept development. It is flexible
enough to allow new adaptations and functionality improvements we plan to
do as future work, such as the analysis of line changes in switching stops (that
would require storing the network topology) or providing compression for the
time index. Also, future work considers providing new experiments over real
data of trips.
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