
Knowledge and Information Systems manuscript No.
(will be inserted by the editor)

Parallel Construction of Wavelet Trees on Multicore

Architectures

José Fuentes-Sepúlveda · Erick Elejalde ·

Leo Ferres · Diego Seco

Abstract The wavelet tree has become a very useful data structure to efficiently
represent and query large volumes of data in many different domains, from bioin-
formatics to geographic information systems. One problem with wavelet trees is
their construction time. In this paper, we introduce two algorithms that reduce the
time complexity of a wavelet tree’s construction by taking advantage of nowadays
ubiquitous multicore machines.

Our first algorithm constructs all the levels of the wavelet in parallel in O(n)
time and O(n lgσ + σ lgn) bits of working space, where n is the size of the input
sequence and σ is the size of the alphabet. Our second algorithm constructs the
wavelet tree in a domain-decomposition fashion, using our first algorithm in each
segment, reaching O(lgn) time and O(n lg σ + pσ lgn/ lgσ) bits of extra space,
where p is the number of available cores. Both algorithms are practical and report
good speedup for large real datasets.

Keywords Succinct Data Structure · Wavelet Tree Construction · Multicore ·
Parallel Algorithm

A previous version of this paper appeared in the 13th International Symposium on Experi-
mental Algorithms (SEA 2014)[15].

This work was supported in part by the European Union’s Horizon 2020 research and inno-
vation programme under the Marie Sk lodowska-Curie grant agreement No 690941 and the
doctoral scholarships of CONICYT No 21120974 and 63130228 (first and second authors, re-
spectively). We also would like to thank Roberto Aśın for making his multicore computers,
Mastropiero and Günther Frager, available to us.

This is an Author’s Original Manuscript of an article whose final and definitive form, the Ver-
sion of Record, has been published in Knowledge and Information Systems [copyright Springer],
available online at: http://dx.doi.org/10.1007/s10115-016-1000-6.

José Fuentes-Sepúlveda · Erick Elejalde · Diego Seco
Department of Computer Science, Universidad de Concepción, Chile.
E-mail: {jfuentess,eelejalde,dseco}@udec.cl

Leo Ferres
Faculty of Engineering, Universidad del Desarrollo, Chile
E-mail: lferres@udd.cl

Corresponding authors: José Fuentes-Sepúlveda · Leo Ferres

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio da Universidade da Coruña

https://core.ac.uk/display/80522487?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1610.05994v1
http://dx.doi.org/10.1007/s10115-016-1000-6

2 J. Fuentes-Sepúlveda, E. Elejalde, L. Ferres, D. Seco

1 Introduction and motivation

After their introduction in the mid-2000s, multicore computers –computers with
more than one processing unit (called cores) and shared memory– have become
pervasive. In fact, nowadays it is difficult to find a single-processor desktop, let
alone a high-end server. The argument in favor of multicore systems is simple:
thermodynamic and material considerations prevent chip manufacturers from ever
increasing clock rates. Since 2005, clock frequencies have stagnated at around
3.75GHz for commodity computers, and even in 2015, 4GHz computers are still
high-end (the Intel Core i7-4790K is a prime example). Thus, the next step in
performance is to take advantage of the processing power of multicore computers.
In order to do this, algorithms and data structures will have to be modified to
make them behave well in these parallel architectures.

At the same time, the amount of data to be processed has become large enough
that the ability to maintain it close to the processor is vital. This, in turn, has
generated a keen interest in succinct data structures, which besides reducing stor-
age requirements, may also reduce the number of memory transfers, the energy
consumption, and can be used in low-capacity devices such as smartphones. One
such structure that has benefited from thorough research is the wavelet tree [18],
henceforth wtree. Although the wtree was originally devised as a data structure
for encoding a reordering of the elements of a sequence [18,14], it has now been
successfully used in many critical applications such as indexing documents [33],
in processing grids [25] and sets of rectangles [4], to name but a few. Two excel-
lent surveys have been written about this data structure [24,22], and we refer the
readers to them for more application examples and details.

These succinct data structures, however, are generally quite expensive (in time)
to build, particularly as the size of the alphabet and the size of the input increase,
as is the case nowadays with the so-called “big data” revolution. We believe par-
allel computing is a good tool for speeding up the processing of succinct data
structures. Unfortunately, (practical) parallel computing suffers from several draw-
backs that make these high-performant algorithms difficult to come by: maintaing
thread independence while communicating results, keeping clear of “thrashing”
the memory hierarchy are two such problems. Thus, a sizeable contribution to the
state-of-the-art would involve designing algorithms with good theoretical running
times that are also practical in modern commodity architectures with more than
one core, which would also help speed up processing of the target data structures
in distributed systems: if one node is faster, the whole cluster would be faster as
well.

Motivating example. Perhaps one of the prominent areas of research in the last
few years has been the analysis of genomic data [28,30,26]. In combination with
the Burrows-Wheeler transform [5], the wtree has been used to construct com-
pressed full-text indexes (the FM-index [12,13]) over DNA sequences. The struc-
ture supports efficient algorithms for important problems in bioinformatics such
as the identification of patterns (like the mutations that are known to cause some
diseases) or the alignment of short DNA sequences, known as reads (which is a
fundamental step to reconstruct a genome), all this without decompressing the

data. The cost of DNA sequencing has plummeted in the last few years thanks to
next-generation sequencing technologies [34]. In addition, these technologies are

Parallel Construction of Wavelet Trees on Multicore Architectures 3

also much faster. For example, in 2005, a single sequencing run could generate
at most one gigabase of data. Meanwhile, in 2014, a single sequencing run could
generate up to 1.8 terabases of data [20]. These two factors have drastically in-
creased the amount of genomic data to be processed. Therefore, full-text indexes
based on wtrees need to be updated periodically. These updates do not modify the
already indexed data but add new sequences. This process is not trivial because
the Burrows-Wheeler transform is a reorganization of the whole sequence in order
to make it more compressible. In order to support these updates there are two
options: the use of fully dynamic wtrees or the periodic reconstruction of the wtree
(a solution used in other domains such as Web search engines). Dynamic versions
of wtrees are quite slow in both update and rank/select operations (see Section 3.2
of [22]). The other option is the usage of a static wtree and a buffer (which stores
the updates since the last reconstruction of the static index). To support queries,
both the static wtree and the buffer are used. When the buffer is full, the static
wtree is reconstructed considering the symbols on the buffer, which is emptied af-
ter that. Thus, improving the construction time of static wtrees becomes critical,
for example, to provide solutions in this kind of dynamic domain in which queries
are much more frequent than updates.

In this paper, we propose two parallel algorithms for the most expensive opera-
tion on wtrees: its construction. The first algorithm, pwt, has O(n) time complexity
and uses O(n lgσ+σ lgn) bits of space1, including the space of the final wtree and
excluding the input, where σ is the size of the alphabet. The second algorithm,
dd, is an improved version of the dd algorithm presented on [15]. This new version
has O(lgn) time complexity and uses O(n lg σ+pσ lgn/ lg σ) bits of space, using p
threads (see Sect. 3). The pwt algorithm improves the O(n) memory consumption
in [29]. Meanwhile, the new dd algorithm improves the O(n) time complexity of
our previous work [15] and the time complexity of [29] by a factor of O(lgσ). We
report experiments that demonstrate the algorithms to be not only theoretically
good, but also practical for large datasets on commodity architectures, achieving
good speedup (Sect. 4). As far as we can tell, we use the largest datasets to-date
and our algorithms are faster for most use cases than the state-of-the-art [29].

2 Background and related work

2.1 Dynamic multithreading model

Dynamic multithreading (DYM) [10, Chapter 27] is a model of parallel compu-
tation which is faithful to several industry standards such as Intel’s CilkPlus
(cilkplus.org), OpenMP Tasks (openmp.org/wp), and Threading Building Blocks
(threadingbuildingblocks.org). Besides its mathematical rigour, it is precisely
this adoption by many high-end compiler vendors that make the model so appeal-
ing for practical parallel algorithms.

In the Dynamic multithreading model, a multithreaded computation is defined
as a directed acyclic graph (DAG) G = (V,E), where the set of vertices V are
instructions and (u, v) ∈ E are dependencies between the instructions; whereby

1 We use lg x = log2 x.

cilkplus.org
openmp.org/wp
threadingbuildingblocks.org

4 J. Fuentes-Sepúlveda, E. Elejalde, L. Ferres, D. Seco

in this case, u must be executed before v.2 In order to signal parallel execution,
we augment sequential pseudocode with three keywords, spawn, sync and par-

for. The spawn keyword signals that the procedure call that it precedes may be

executed in parallel with the next instruction in the instance that executes the
spawn. In turn, the sync keyword signals that all spawned procedures must fin-
ish before proceeding with the next instruction in the stream. Finally, parfor is
simply “syntactic sugar” for spawn’ing and sync’ing ranges of a loop iteration. If
a stream of instructions does not contain one of the above keywords, or a return

(which implicitly sync’s) from a procedure, we group these instruction into a sin-
gle strand. The parfor keyword, which we use repeatedly here, is implemented by
halving the range of loop iterations, spawn’ing one half and using the current pro-
cedure to process the other half recursively until reaching one iteration per range.
After that, the iterations are executed in parallel. This implementation adds an
overhead to the parallel algorithm bounded above by the logarithm of the number
of loop iterations. For example, Algorithm 1 represents a parallel algorithm using
parfor and Figure 1 shows its multithreaded computation. In the figure, each
circle represents one strand and each rounded rectangle represents strands that
belong to the same procedure call. The algorithm starts on the initial procedure
call with the entire range [0, 7]. The first half of the range is spawned (black
circle in the initial call) and the second half is processed by the same procedure
(gray circle of the initial call). This divide-and-conquer strategy is repeated until
reaching strands with one iteration of the loop (black circles on the bottom of the
figure). Once an iteration is finished, the corresponding strand syncs to its calling
procedure (white circles), until reaching the final strand (white circle of the initial
call). For more examples of the usage of the DYM model, see [10, Chapter 27].
Strands are scheduled onto cores using a work-stealing scheduler, which does the
load-balancing of the computations. Work-stealing schedulers have been proved to
be a factor of 2 away from optimal performance [3].

A : array of 8 numbers
parfor i = 0 to 7 do

A[i] = 0
return

Algorithm 1: Example of a
parallel algorithm using the
parfor keyword. In parallel,
the algorithm initializes all
the elements of the array A
with 0.

Fig. 1: Example of a multithreaded computation
on the Dynamic Multithreading Model. It cor-
responds to the Directed Acyclic Graph repre-
sentation of the Algorithm 1. Vertices represent
strands and edges represent dependences.

To measure the efficiency of our parallel wavelet tree algorithms, we use three
metrics: the work, the span and speedup. In accordance to the parallel literature,
we will subscript running times by p, so Tp is the running time of an algorithm on
p cores. The work is the total running time taken by all strands when executing

2 Notice that the RAM model is a subset of the DYM model where the outdegree of every
vertex v ∈ V is ≤ 1.

Parallel Construction of Wavelet Trees on Multicore Architectures 5

on a single core (i.e., T1), while the span, denoted as T∞, is the critical path (the
longest path) of G. In Figure 1, assuming that each strand takes unit time, the
work is 29 time units and the span is 8 time units (this is represented in the figure
with thicker edges). In this paper, we are interested in speeding up wavelet tree
manipulation and improving the lower bounds of this speedup. To measure this,
we will define speedup as T1/TP = O(p), where linear speedup T1/Tp = Θ(p),
is the goal and the theoretical upper bound. We also define parallelism as the
ratio T1/T∞, the theoretical maximum number of cores for which it is possible to
achieve linear speedup.

2.2 Wavelet trees

A wavelet tree (wtree) is a data structure that maintains a sequence of n symbols
S = s1, s2, . . . , sn over an alphabet Σ = [1..σ] under the following operations:
access(S, i), which returns the symbol at position i in S; rankc(S, i), which counts
the times symbol c appears up to position i in S; and selectc(S, j), which returns
the position in S of the j-th appearance of symbol c. Storage space of wtrees can be
bounded by different measures of the entropy of the underlying data, thus enabling
compression. In addition, they can be implemented efficiently [7] and perform well
in practice.

The wtree is a balanced binary tree. We identify the two children of a node
as left and right. Each node represents a range R ⊆ [1, σ] of the alphabet Σ, its
left child represents a subset Rl, which corresponds with the first half of R, and
its right child a subset Rr, which corresponds with the second half. Every node
virtually represents a subsequence S′ of S composed of symbols whose value lies
in R. This subsequence is stored as a bitmap in which a 0 bit means that position
i belongs to Rl and a 1 bit means that it belongs to Rr.

At its simplest, a wtree requires n⌈lgσ⌉ + o(n lg σ) bits for the data, plus
O(σ lgn) bits to store the topology of the tree (considering one pointer per node),
and supports aforementioned queries in O(lgσ) time by traversing the tree using
O(1)-time rank/select operations on bitmaps [27]. A simple recursive construc-
tion algorithm takes O(n lg σ) time. As mentioned before, the space required by
the structure can be reduced: the data can be compressed and stored in space
bounded by its entropy (via compressed encodings of bitmaps and modifications
on the shape of the tree), and the O(σ lgn) bits of the topology can be removed,
effectively using one pointer per level of the tree [7], which is important for large
alphabets. We focus on construction using a pointer per level because, even though
it adds some running time costs, it is more suitable for big data. This notwithstand-
ing, it is trivial to apply the technique to the one-pointer-per-node construction
case, and our results can be readily extended to other encodings and tree shapes.

Figure 2 shows an example of two wtree representations for the sequence
S = “once upon a time a PhD student”. Figure 2a shows the one-pointer-per-
node representation, while Figure 2b shows the one-pointer-per-level representa-
tion. In our algorithms, we implemented the one-pointer-per-level representation;
however, for clarity, we use the one-pointer-per-node representation to exemplify.
In both representations we highlighted the traversal performed by the operation
access(S, 24). To answer it, a top-down traversal of the wtree is performed: if a
bit 0 is found, we visit the left branch; if a 1, the right branch is chosen. In

6 J. Fuentes-Sepúlveda, E. Elejalde, L. Ferres, D. Seco

(a) Representation of a wtree using one pointer per node and its associated bitmap. The
subsequences of S in the nodes (gray font) and the subsets of Σ in the edges are drawn for
illustration purposes.

(b) Representation of a wtree using one pointer per level and its associtaed n-bit bitmap. It
can simulate the nagivation on the tree by using the rank operation over the bitmaps.

Fig. 2: A wtree for the sequence S =“once upon a time a PhD student” and
the contiguous alphabet Σ = {o,n,c,e,‘ ’,u,p,a,t,i,m,P,h,D,s,d}. We draw
spaces using stars.

the first representation, the query works as follows: Let curr be the root, Bcurr

be the bitmap of the current node, i = 24 be the index of interest, R be the
range [0, σ − 1] = [0, 15] and rankc(Bcurr , i) be the number of c-bits up to po-
sition i in Bcurr . At the beginning, we inspect the bit Bcurr [i]. Since the bit is
1, we recompute i = rank1(Bcurr , i) − 1 = 7, change curr to be the right child
of curr and halve R = [8, 15]. Then, we repeat the process. Since Bcurr [i] = 0,
i = rank0(Bcurr , i) − 1 = 4, curr is updated to be the left child of curr and
R = [8, 11]. Now, Bcurr [i] = 0, i = rank0(Bcurr , i)− 1 = 2, curr is changed to be
the left child of curr and R = [8, 9]. Finally, in the last level, Bcurr [i] = 0, so the
range R = [8, 8] and the answer for access(S, 24) is Σ[8] =‘ t ’. rankc(S, i) and
selectc(S, i) perform similar traversals to access(S, i). For a more detailed expla-
nation of wtree operations, see [24]. For the one-pointer-per-level representation,
the procedure is similar, with the exception that the traversal of the tree must be
simulated with rank operations over the bitmaps [7].

Practical implementations of wtrees can be found in Libcds [6] and Sdsl [16].
Libcds implements a recursive construction algorithm that works by halving Σ
into binary sub-trees whose left children are all 0s and right children are all 1s, until

Parallel Construction of Wavelet Trees on Multicore Architectures 7

1s and 0s mean only one symbol in Σ. Sdsl implements an algorithm based in the
idea of counting sort that is more efficient in memory. The algorithm counts the
number of bits that will be placed in each node of the wtree, computing the position
of each symbol in each level of the wtree, which avoids maintaining a permutation of
the input. Both libraries are the best current sequential implementations available,
without considering space efficient construction algorithms [9,31].

As of late, some work has been done in parallel processing of wtrees. In [1],
the authors explore the use of wavelet trees in web search engines. They assume a
distributed memory model and propose partition techniques to balance the work-
load of processing wtrees. Note that our work is complementary to theirs, as each
node in their distributed system can be assumed to be a multicore computer that
can benefit from our algorithms. In [21], the authors explore the use of SIMD in-
structions to improve the performance of wtrees and other string algorithms [11].
This set of instructions can be considered as low-level parallelism, since they use
instructions in modern processors that work by joining registers for some integer
computation, dealing with 128-bit integers at a time. We can also benefit from their
work as it may improve the performance of the sequential parts of our algorithms.
However, we leave this optimization for future work.

In [15], we introduced the first two parallel algorithms for wtree construction:
pwt and dd, both with O(n) time complexity. The details of pwt and an improve-
ment of dd are given on Sections 3.1 and 3.2, respectively. Based on [15], Shun
[29] introduces two new parallel algorithms. The first algorithm, called levelWT,
constructs the wtree level-by-level. In each of the ⌈lg σ⌉ levels, the algorithm uses a
parallel prefix sum algorithm to compute the position of the bits, constructing the
nodes and their bitmaps in parallel with O(n) work and O(lgn) span, which results
in O(n lgσ) work and O(lgn lg σ) span. The second algorithm, called sortWT, con-
structs all levels in parallel, similar to our original pwt, instead of one-by-one. For
a level l, the sortWT algorithm applies a parallel stable integer sorting using the l
most significant bits of each symbol as the key. With the sorted input sequence,
the algorithm fills the corresponding bitarrays in parallel, using parallel prefix sum
and filter algorithms to compute the position of the bits. The total work of the
sortWT algorithm is O(Wsort lg σ), where Wsort is the work incurred by sorting,
and O(Ssort + lgn) is the span, and where, in turn, Ssort corresponds to the span
of the sorting algorithm and the lgn component is the span of the prefix sum and
filter algorithms. The author also discusses a variation of the sortWT algorithm,
reaching O(n lgσ) work and O(lgn lg σ) span. In practice, the levelWT algorithm
shows better performance. Compared to our previous algorithms, the levelWT and
sortWT algorithms can scale beyond O(lgσ) cores. However, both also need to du-
plicate and modify the input sequence, resulting in an increase in memory usage,
requiring O(n lgn) bits of extra space.

2.3 Problem statement

The wtree is a versatile data structure that uses n lg σ+ o(n lg σ) bits of space and
supports several queries (such as access, rank and select) in O(lgσ) time, for a
sequence of n symbols over an alphabet Σ of size σ. The wtree can be constructed
in O(n lgσ) time, which may be prohibitive for large sequences. Therefore, in this
work, we reduce the time complexity of the most time-consuming operation of

8 J. Fuentes-Sepúlveda, E. Elejalde, L. Ferres, D. Seco

wtree, its construction, on multicore architectures. Given a multicore machine with
p available cores, we propose the design and implementation of parallel algorithms
to the construction of wtree. The proposed algorithms scale with p, achieving good
practical speedups and extra-memory usage.

3 Multicore wavelet tree

We focus on binary wavelet trees where the symbols in Σ are contiguous in [1, σ].
If they are not contiguous, a bitmap is used to remap the sequence to a contiguous
alphabet [7]. Under these restrictions, the wtree is a balanced binary tree with
⌈lg σ⌉ levels. In this section we build the representation of wtrees that removes the
O(σ lgn) bits of the topology. Hence, when we refer to a node, this is a conceptual
node that does not exist in the actual implementation of the data structure.

In what follows, two iterative construction algorithms are introduced that cap-
italize on the idea that any level of the wtree can be built independently from
the others. Unlike in classical wtree construction, when building a level we cannot
assume that any previous step is providing us with the correct permutation of the
elements of S. Instead, we compute the node at level i for each symbol of the
original sequence. More formally,

Proposition 1 Given a symbol s ∈ S and a level i, 0 ≤ i < l = ⌈lg σ⌉, of a wtree,

the node at which s is represented at level i can be computed as s ≫ l − i.

In other words, if the symbols of Σ are contiguous, then the i most significant
bits of the symbol s give us its corresponding node at level i. In the word-RAM
model with word size Ω(lgn), this computation takes O(1) time. Since the word-
RAM model is a subset of the DYM model2, the following corollary holds:

Corollary 1 The node at which a symbol s is represented at level i can be com-

puted in O(1) time.

3.1 Per-level parallel algorithm

Our first algorithm, called pwt, is shown in Algorithm 2 (the sequential version
can be obtained by replacing parfor instructions with sequential for instructions).
The algorithm takes as input a sequence of symbols S, the length n of S, and the
length of the alphabet, σ (see Sect. 2.2). The output is a wtree WT that represents
S. We denote the ith level of WT as WT [i], ∀i, 0 ≤ i < ⌈lg σ⌉.

The outer loop (line 2) iterates in parallel over ⌈lgσ⌉ levels. Lines 3 to 14 scan
each level performing the following tasks: the first step (lines 3 and 4) initializes the
bitmap B of the ith level and initializes an array of integers C. The array C will be
used to count the number of bits in each node of the wtree at level i, using counting

sort. The second step (lines 5 and 6) computes the size of each node in the ith
level performing a linear-time sweep over S. For each symbol in S, the algorithm
computes the corresponding node for alphabet range at the current level. The
expression S[j]/2⌈lgσ⌉−i in line 6 shows an equivalent representation of the idea in
Proposition 1. The third step performs a parallel prefix sum algorithm [19] over the
array C, obtaining the offset of each node. Once the offset of the nodes is known,

Parallel Construction of Wavelet Trees on Multicore Architectures 9

Input : S, n, σ
Output: A wavelet tree representation WT of S

1 WT is a new wavelet tree with ⌈lg σ⌉ levels
2 parfor i = 0 to ⌈lg σ⌉ − 1 do

3 B is a bitarray of size n

4 C is an integer array of size 2i

5 for j = 0 to n− 1 do

6 increment(C[S[j]/2⌈lg σ⌉−i])
7 parPrefixSum(C)

8 for j = 0 to n− 1 do

9 if (S[j] & 2⌈lgσ⌉−i−1) == 1 then

10 bitmapSetBit(B, C[S[j]/2⌈lgσ⌉−i], 1)
11 else

12 bitmapSetBit(B, C[S[j]/2⌈lgσ⌉−i], 0)

13 increment(C[S[j]/2⌈lg σ⌉−i])

14 WT [i] = createRankSelect(B)

15 return WT

Algorithm 2: Per-level parallel algorithm (pwt)

the algorithm constructs the corresponding bitarray B, sequentially scanning S
(lines 8 to 13). For each symbol in S, the algorithm computes the corresponding
node and whether the symbol belongs to either the first or second half of Σ for that
node. The corresponding bit is set using bitmapSetBit at positionC[S[j]/2⌈lgσ⌉−i].
Line 14 creates the rank/select structures of the bitmap B of the ith level.

Fig. 3: Snapshot of an execution of the algorithm pwt for the sequence introduced in
Figure 2. In the snapshot, thread t1 is writing the first bit of the symbol S[10] =‘ a ’
at level 0, thread t2 is writing the second bit of S[15] =‘ e ’ at level 1, thread t3 is
writing the third bit of S[19] =‘ P ’ at level 2 and thread t4 is writing the fourth
bit of S[26] =‘ d ’ at level 3. Black areas represent bits associated to unprocessed
symbols.

10 J. Fuentes-Sepúlveda, E. Elejalde, L. Ferres, D. Seco

Input : S, n, σ, k
Output: A wavelet tree representation WT of S

1 WT is a new tree with ⌈lg σ⌉ levels
2 B is an array of ⌈lg σ⌉ bitarrays of size n
3 pB is a bidimensional array of bitarrays of dimensions k × ⌈lg σ⌉

4 G,L are tridimensional arrays of integers of dimensions k × ⌈lg σ⌉ × 2level

5 parfor i = 0 to k − 1 do

6 pB[i] = createPartialBA(S,σ,i,n/k)
7 parfor i = 0 to ⌈lg σ⌉ − 1 do

8 parPrefixSum(i,k)
9 B = mergeBA(n,σ,k,pB)

10 parfor i = 0 to ⌈lg σ⌉ − 1 do

11 WT [i] = createRankSelect(B[i])
12 return WT

Algorithm 3: Domain decomposition parallel algorithm (dd)

Figure 3 shows an snapshot of the execution of the pwt for the input sequence
of Figure 2: the levels of the wtree can be constructed in different threads asyn-
chronously.

The work T1 of this algorithm takes O(n lg σ) time. This matches the time
for construction found in the literature. Each of the lgσ tasks that create the
pwt algorithm has a complexity of O(n + σ/p + lg p), due to the scans over the
input sequence and the parallel prefix sum over the array C. The work of pwt is
still T1 = O(n lg σ). Since all tasks have the same complexity, assuming constant
access to any position in memory, the critical path is given by the construction
of one level of the wtree. That is, for p = ∞, T∞ = O(n + lgσ) = O(n). In the
same vein, parallelism will be T1/T∞ = O(lgσ). It follows that having p ≤ lg σ
the algorithm will obtain optimal speedup. The overhead added for the parfor,
O(lg lg σ) is negligible. With respect to the working space, the algorithm pwt needs
the space of the wtree and the extra space for the array C, that is, a working space
of O(n lg σ + σ lgn) bits.

The main drawback of the pwt algorithm is that it only scales linearly until
the number of cores equals the number of levels in the wavelet tree. So, even if we
have more cores available, the algorithm will only use efficiently up to lgσ cores.
Nevertheless, this algorithm is simple to implement, and suitable in domains where
there is not possible to use all available resources to the construction of wtrees.

3.2 Domain decomposition parallel algorithm

The second algorithm that we propose makes efficient use of all available cores.
The main idea of the algorithm is to divide the input sequence S in k = O(p/ lg(σ))
segments of size O(n/k) and then apply the pwt algorithm on each segment, gen-
erating O(lgσ) tasks per segment and creating k partial wtrees. After that, the
algorithm merges all the partial wtrees into a single one that represents the en-
tire input text. We call this algorithm dd because of its domain decomposition
nature. This algorithm improves the O(n) time complexity of the one introduced
previously in [15].

Parallel Construction of Wavelet Trees on Multicore Architectures 11

Input : S, σ, k′, n
Output: A bitarray representation B of the k′th segment of S

1 B is an array of ⌈lg σ⌉ bitarrays of size n
2 parfor i = 0 to ⌈lg σ⌉ − 1 do

3 for j = n× k′ to n× (k′ + 1) − 1 do

4 increment(G[k′][i][S[j]/2⌈lgσ⌉−i])
5 prefixSum(G,L)
6 for j = n× k′ to n× (k′ + 1) − 1 do

7 if (S[j] & 2⌈lgσ⌉−i−1) == 1 then

8 bitmapSetBit(B, G[k′][i][S[j]/2⌈lgσ⌉−i], 1)
9 else

10 bitmapSetBit(B, G[k′][i][S[j]/2⌈lgσ⌉−i], 0)

11 increment(G[k′][i][S[j]/2⌈lgσ⌉−i])

12 return B

Function createPartialBA

Input : n, σ, k, pB
Output: A bitarray representation B of the input sequence S

1 B is an array of ⌈lg σ⌉ bitarrays of size n
2 parfor i = 0 to ⌈lg σ⌉ − 1 do

3 parfor j = 0 to k − 1 do

4 parfor m = j × 2i to (j + 1) × 2i do

5 dst = B[i] // Destination of the bits to be copied

6 src = pB[m mod k][i] // Source of the bits to be copied
7 go = G[m mod k][i][m/k] // Offset in dst
8 lo = L[m mod k][i][m/k] // Offset in src
9 nb = L[m mod k][i][m/k + 1] − L[m mod k][i][m/k] // Number of bits

10 parallelBitarrayConcat(dest,src,go,lo,nb)

11 return B

Function mergeBA

The dd algorithm is shown in Algorithm 3. It takes the same input as pwt

with the addition of the number of segments, k. The output is a wtree WT , which
represents the input data S.

The first step of dd (lines 1 to 4) allocates memory for the output wtree, its
bitarrays, B, the bitarrays of the partial wtrees, pB, and two 3-dimensional arrays
of numbers, L and G, where the third dimension changes according to the number
of nodes in each level. Arrays L and G store local and global offsets, respectively.
The local offsets store the offsets of all the nodes of the partial wtrees with respect
to the partial wtree containing them. Similarly, G stores the offsets of all the
nodes of the partial wtrees with respect to the final wtree. In other words, each
entry L[a][b][c] stores the position of node c at level b whose parent is partial wtree
a. Each entry G[a][b][c] stores the position of node c at level b in the partial wtree
a inside the final wtree. We will treat the arrays L and G as global variables to
simplify the pseudocode.

The second step (lines 5 and 6) computes the partial wtrees of the k segments
in parallel. For each segment, createPartialBA is called to create the partial wtree.
This function is similar to the one in the pwt algorithm, performing a prefix sum
(line 5 in Function createPartialBA) to compute the local offsets and store them
both in G and L. We reuse the array G to save memory in the next step. Notice

12 J. Fuentes-Sepúlveda, E. Elejalde, L. Ferres, D. Seco

that the output of the function is a partial wtree composed of ⌈lg σ⌉ bitarrays,
without rank/select structures over such bitarrays.

The third step of the dd algorithm uses the local offsets stored in L to compute
the global ones (lines 7 and 8). To do that, at each level i, the algorithm applies a
parallel prefix sum algorithm using the k local offsets of that level. The prefix sum
algorithm uses the implicit total order within the local offsets. Since each level in
the offsets is independent of the others, we can apply the ⌈lg σ⌉ calls of the parallel
prefix sum algorithm in parallel.

Once we have the global offsets computed, the fourth step merges all partial
wtrees, in parallel. Function mergeBA creates one parallel task for each node in
the partial wtrees. In each parallel task (lines 5 to 10) the function concatenates
the bitarray of the node m/k of the ith level of the m mod k partial wtree into
the corresponding bitarray, B[i], of the final wtree. Using the local and the global
offsets, the function parallelBitarrayConcat copies the nb of pB[i], starting at
position L[m mod k][i][m/k] into the bitarrayB[i] at position G[m mod k][i][m/k].
The function parallelBitarrayConcat is thread-safe: the first and last machine
words that compose each bitarray are copied using atomic operations. Thus, the
concatenated bitarrays are correct regardless of multiple concurrent concatena-
tions. The last step, lines 10-11, creates the rank/select structures for each level
of the final wtree.

For an example of the algorithm, see Figure 4. Figure 4a shows a snapshot of
the function createPartialBA and Figure 4b shows a snapshot of mergeBA

The dd algorithm has the same asymptotic complexity as pwt, with work T1 =
O(n lg σ). When running on p cores and dividing S in k = O(p/ lg σ) segments,
the construction of the partial wtrees takes O(n lg σ/p) time. The prefix sum takes
O(σ/ lgσ + lg p) time [19]. Merge takes O(n lg σ/pw), where w is the word size of
that architecture. The overhead of the parfors is O(lg p+ lgσ lg lgσ). For p = ∞,
the span of the construction of the partial wtrees is O(1), O(lg(kσ)) for the prefix
sum section and O(1) for the merge function. In the case of the merge function,
the offsets of the bitarrays have been previously computed and each bit can be
copied in parallel. Thus, considering w as a constant and k = O(p/ lg σ), the span
is T∞ = O(lgn) in all cases.

The working space needed by dd is limited by the space needed for the wtree,
the partial wtrees, and local and global offsets, totalling O(n lg σ + kσ lgn) bits.
By manipulating the value of k, however, we can reduce the needed space or
improve the performance of dd algorithm. If k = 1, then space is reduced to
O(n lg σ + σ lgn) bits, but this limits scalability to p < lg σ. If k = p, we improve
the time complexity, at the cost of O(n lg σ + pσ lgn) bits.

4 Experimental evaluation

We tested the implementation of our parallel wavelet tree construction algorithms
considering one pointer per level and without considering the construction time
of rank/select structures. We compared our algorithms against Libcds

3, Sdsl

and the fastest algorithm in [29]. Both libraries were compiled with their default

3 We also tested a new version of Libcds called Libcds2, however the former had better
running times for the construction of wtrees.

Parallel Construction of Wavelet Trees on Multicore Architectures 13

(a) Snapshot of Function createPartialBA. The figure shows the construction of the partial
wtrees after the split of the input sequence introduced in Figure 2 into three subsequences. To
create each partial wtree, the algorithm uses the pwt algorithm. These partial wtrees are the
input of Function mergeBA.

(b) Snapshot of the Function mergeBA. White, light gray and dark gray bitarrays represent
the bitarrays of first, second and third partial wtrees, respectively. The positions of the partial
wtrees bitarrays are computed in advance, therefore such bitarrays can be copied to the final
wtree in parallel. Black areas represent uncopied bits.

Fig. 4: Snapshot of an execution of the algorithm dd. Figures 4a and 4b represent
snapshots of Functions createPartialBA and mergeBA, respectively. The result of
this example is the wtree of Figure 2a.

options and the -O2 optimization flag. With regards to the bitarray implementa-
tion, we use the 5%-extra space structure presented in [17] (as Libcds does). For
Sdsl we use the bit vector implementation with settings rank support scan<1>,
select support scan<1> and
select support scan<0> to skip construction time of rank/select structures. In
our experiments, shun is the fastest of the three algorithms introduced in [29],
compiled also with the -O2 optimization flag. Our dd algorithm was tested with
k = p privileging time performance over memory.

4.1 Experimental setup

All algorithms were implemented in the C programming language and compiled
with GCC 4.9 (Cilk branch) using the -O2 optimization flag. The experiments
were carried out on a 4-chip (8 NUMA nodes) AMD OpteronTM 6278 machine

14 J. Fuentes-Sepúlveda, E. Elejalde, L. Ferres, D. Seco

Dataset n σ
1 rna.512MB 536,870,912 4
2 rna.1GB 1,073,741,824 4
3 rna.2GB 2,147,483,648 4
4 rna.3GB 3,221,225,472 4
5 rna.4GB 4,294,967,296 4
6 rna.5GB 5,368,709,120 4
7 rna.6GB 6,442,450,944 4
8 rna.13GB 14,570,010,837 4
9 prot 1,184,051,855 27

10 src.200MB 210,866,607 230
11 src.98MB 25,910,717 2,446,383
12 src.512MB 134,217,728 2,446,383
13 src.1GB 268,435,455 2,446,383
14 src.2GB 536,870,911 2,446,383
15 en.x.27 134,217,728 2x

16 en.x.28 268,435,456 2x

17 en.x.29 536,870,912 2x

18 en.x.30 1,073,741,824 2x

Table 1: Datasets used in the experiments. In the datasets 15-18, x can take values
in {4, 6, 8, 10, 12, 14}.

with 8 physical cores per NUMA node, clocking at 2.4GHz each, with one 64KB
L1 instruction cache shared by two cores, one 16KB L1 data cache per core, a 2MB
L2 cache shared between two cores, and a 6MB of L3 shared between 8 cores per
NUMA node. The machine had 192GB of DDR3 RAM, clocking at 1333MHz, with
24GB per NUMA node. Algorithms were compared in terms of running times using
the usual high-resolution (nanosecond) C functions in <time.h>. Memory usage
was measured using the tools provided by malloc count [2].

The experimental trials consisted in running the algorithms on datasets of dif-
ferent alphabet sizes, input sizes n and number of cores. The datasets are shown
in Table 1. We distinguish between two types of datasets: those in which sym-
bols are encoded using 1 byte, and those in which symbols are encoded using 4
bytes. Datasets 1-10 in Table 1 with σ ≤ 256 were encoded using 1 byte. Datasets
11-14 were encoded using 4 bytes. Datasets 15-18, that have σ = 2x, were en-
coded as follows: for x = {4, 6, 8}, symbols were encoded with a single byte. For
x = {10, 12, 14}, symbols were encoded in four bytes. The dataset rna.13GB is
the GenBank mRNAs of the University of California, Santa Cruz4. The rest of
the rna datasets were generated by splitting the previous one. We also tested
datasets of protein sequences, prot5 and source code, src.200MB6 . We also built
a version of the source code dataset using words as symbols, src.98MB. The rest
of the src datasets were generated by concatenating the previous one up to a
maximum of 2GB. To measure the impact of varying the alphabet size, we took
the English corpus of the Pizza & Chili website7 as a sequence of words and fil-
tered the number of different symbols in the dataset. The dataset had an initial

4 http://hgdownload.cse.ucsc.edu/goldenPath/hg38/bigZips/xenoMrna.fa.gz (April,
2015)

5 http://pizzachili.dcc.uchile.cl/texts/protein/proteins.gz (April, 2015)
6 http://pizzachili.dcc.uchile.cl/texts/code/sources.gz (April, 2015)
7 http://pizzachili.dcc.uchile.cl/texts/nlang/english.1024MB.gz (March, 2013)

http://hgdownload.cse.ucsc.edu/goldenPath/hg38/bigZips/xenoMrna.fa.gz
http://pizzachili.dcc.uchile.cl/texts/protein/proteins.gz
http://pizzachili.dcc.uchile.cl/texts/code/sources.gz
http://pizzachili.dcc.uchile.cl/texts/nlang/english.1024MB.gz

Parallel Construction of Wavelet Trees on Multicore Architectures 15

Datasets libcds sdsl
pwt dd shun

1 64 1 64 1 64
rna.512MB 23.42 32.41 11.83 7.00 12.65 0.40 12.63 0.67
rna.1GB 47.38 65.30 23.89 16.19 25.30 0.62 25.36 1.32
rna.2GB 100.13 131.86 46.98 27.62 50.80 1.20 50.89 2.64
rna.3GB 142.90 220.11 71.09 41.00 75.37 2.17 66.35 3.79
rna.4GB - 198.10 94.39 55.04 101.44 2.84 - -
rna.5GB - 329.27 117.13 68.24 126.66 3.57 - -
rna.6GB - 389.25 141.59 81.80 152.57 4.35 - -
rna.13GB - 881.41 314.86 330.44 333.14 10.75 - -
prot 104.40 142.67 58.54 21.81 68.19 2.17 64.06 3.54
src.200MB 24.81 31.41 14.68 2.67 17.70 0.52 16.73 1.06
src.98MB 7.92 9.52 5.28 0.77 5.73 3.94 5.07 0.75

src.512MB 37.77 49.21 28.94 5.07 28.98 5.36 25.52 3.07

src.1GB 75.48 99.95 57.99 8.87 55.36 9.60 49.52 6.17

src.2GB 150.67 205.41 112.78 25.30 110.83 15.11 98.11 11.77

en.4.27 8.78 14.24 5.75 1.82 6.50 0.28 6.98 0.38
en.4.28 15.82 28.53 11.44 3.67 12.88 0.40 12.34 0.77
en.4.29 35.43 57.11 23.01 7.22 25.51 0.84 24.68 1.57
en.4.30 70.00 113.88 46.10 14.40 51.06 1.63 55.56 3.06
en.6.27 12.44 19.10 7.98 1.78 9.58 0.36 10.46 0.61
en.6.28 22.65 38.37 15.92 3.33 19.35 0.52 18.38 1.17
en.6.29 50.28 76.91 31.78 7.08 37.90 1.18 41.86 2.36
en.6.30 99.66 153.72 63.62 15.90 76.59 2.20 83.29 4.68
en.8.27 15.87 26.00 11.48 1.87 13.15 0.46 14.10 0.88
en.8.28 29.06 52.15 22.86 3.71 26.52 0.78 28.28 1.58
en.8.29 64.84 105.01 45.79 7.57 52.53 1.56 56.68 3.14
en.8.30 128.65 209.54 91.83 14.65 105.00 3.13 113.13 6.26
en.10.27 21.32 33.25 14.61 2.26 13.94 1.66 17.26 1.39

en.10.28 43.55 68.00 30.32 6.43 29.05 2.18 33.15 2.78
en.10.29 89.96 136.67 60.69 9.25 58.55 4.59 67.16 5.67
en.10.30 183.57 281.53 123.88 17.70 119.14 8.93 214.2 10.77
en.12.27 24.38 39.09 17.97 2.52 17.33 2.61 20.33 1.64

en.12.28 50.17 80.22 37.66 7.62 36.36 2.66 38.97 3.25
en.12.29 103.39 161.96 75.09 10.41 72.46 5.73 128.35 6.71
en.12.30 211.66 333.32 150.02 20.33 145.04 9.66 259.21 12.99
en.14.27 27.44 43.61 21.92 3.10 21.39 2.43 22.51 1.84

en.14.28 56.44 90.05 45.85 6.11 44.70 2.94 44.53 3.67
en.14.29 116.15 182.46 90.41 12.50 88.37 6.97 91.53 7.79
en.14.30 238.36 377.77 184.83 22.31 178.58 10.50 302.14 15.98

Table 2: Running times, in seconds, of the sequential algorithms and parallel al-
gorithms with 1 and 64 threads. The best sequential times are underlined and the
best parallel times are shown using bold typeface. A “-” is shown for implemen-
tations that just work for n < 232.

alphabet Σ of σ=633,816 symbols. For experimentation, we generated an alphabet
Σ′ of size 2x, taking the top 2x most frequent words in the original Σ, and then
assigning a random index to each symbol using a Marsenne Twister [23], with
x ∈ {4, 6, 8, 10, 12, 14}. To create an input sequence S of n symbols for the English
dataset (en), we searched for each symbol in Σ′ in the original English text and,
when found, appended it to S until it reached the maximum possible size given σ′

(∼1.5GB, in the case of σ′ = 218), maintaining the order of the original English
text. We then either split S until we reached the target size n = 227 or concate-

16 J. Fuentes-Sepúlveda, E. Elejalde, L. Ferres, D. Seco

nated S with initial sub-sequences of itself to reach the larger sizes 228, 229 and
230. We repeated each trial five times and recorded the median time [32]8.

4.2 Running times and speedup

Table 2 shows the running times of all tested algorithms9. Libcds and shun work
just for n < 232, so we cannot report running times of these algorithms for the
datasets rna.4GB, rna.5GB, rna.6GB and rna.13GB.

For each dataset, we underline the best sequential running times. We use those
values to compute speedups. The best parallel times for p = 64 are identified using
a bold typeface. Although libcds and sdsl are the state-of-the-art in sequential
implementations of wtrees, the best sequential running times were obtained from
the parallel implementations running on one thread. The main reason for this is
that Sdsl implements a semi-external algorithm for wtree construction, involving
heavy disk access, while Libcds uses a recursive algorithm, with known memory
and executions costs.

Figure 5 shows speedups for rna.3GB, prot, src.200MB, en.4.30, src.2GB,
en.14.30 datasets, with the largest n. As expected, the pwt algorithm is competi-
tive until p < lg σ. Thus, for small σ the pwt algorithm is not the best alternative
as shown in Figures 5a, 5b and 5d. If the algorithm recruits more threads than
levels, the overhead of handling these threads increases, generating some “noise” in
the times obtained. The performance of pwt will be dominated also by the thread
that builds more levels. For instance, in Figure 5f we created a wtree with 14 lev-
els. In the case of one thread, that thread has to build the 14 levels. In the case
of 4 threads, each has to build three levels. For 8 and 12 threads, some threads
will build two levels, so those threads dominate the running time. Finally, for the
case of 16 threads, each thread has to build at most one level. This explains the
“staircase” effect seen for pwt in Figure 5f.

In all datasets shown in Figure 5, except for Figure 5e, the dd algorithm has
a better speedup than both pwt and shun, especially for datasets with small al-
phabets, such as rna, prot and en.4. In the case of Figure 5e, shun has a better
speedup, because our algorithms have worse data locality, we come back to the
impact of locality of reference. It is important to remember that although shun

has a better speedup, its memory consumption is larger than in our algorithms,
as can be seen in Section 4.3.

4.3 Memory consumption

Figure 6 shows the amount of memory allocated with malloc and released with
free. For all algorithms, we report the peak of memory allocation and only con-
sidered memory allocated during construction, not memory allocated to store the
input text. The datasets are ordered incrementally by n. In the case of the dd

8 In order to be less sensitive to outliers, we use the median time instead of other statistics.
In our experiments, the pwt algorithm showed a larger deviation with respect to the number
of threads than the other algorithms. However the differences were not statistically significant.

9 A complete report of running times and everything needed to replicate these results is
available at www.inf.udec.cl/~josefuentes/wavelettree

www.inf.udec.cl/~josefuentes/wavelettree

Parallel Construction of Wavelet Trees on Multicore Architectures 17

Number of threads

S
pe

ed
up

1 8 12 20 28 36 44 52 60

0
2

4
6

8
12

16
20

24
28

32

●

dd
pwt
shun

●

●

●

●

●

●
●

● ●
●

● ● ● ● ● ● ●

(a) rna.3GB, n ≈ 232, σ=4.

Number of threads
S

pe
ed

up

1 8 12 20 28 36 44 52 60

0
2

4
6

8
10

14
18

22
26

●

dd
pwt
shun

●

●

●

●

●

●

●

●
●

● ●
● ● ● ● ● ●

(b) prot, n ≈ 230, σ=27.

Number of threads

S
pe

ed
up

1 8 12 20 28 36 44 52 60

0
2

4
6

8
10

14
18

22
26

●

dd
pwt
shun

●

●

●

●

● ●
●

●

●
● ●

●
● ● ●

● ●

(c) src.200MB, n ≈ 228, σ=230.

Number of threads

S
pe

ed
up

1 8 12 20 28 36 44 52 60

0
2

4
6

8
10

14
18

22
26

30

●

dd
pwt
shun

●

●

●

●

●
●

●
●

●
● ●

●
●

● ● ● ●

(d) en.4.30, n = 230, σ=16.

Number of threads

S
pe

ed
up

1 8 12 20 28 36 44 52 60

2
4

6
8

●

dd
pwt
shun

●

●

●

●

●

●
●

●

●

●

●

●

● ● ● ● ●

(e) src.2GB, n ≈ 229, σ ≈ 221.

Number of threads

S
pe

ed
up

1 8 12 20 28 36 44 52 60

0
2

4
6

8
10

12
14

16
18

●

dd
pwt
shun

●

●

●

●

●

●

●
●

● ● ● ●
● ● ● ●

●

(f) en.14.30, n = 230, σ=214.

Fig. 5: Speedup with respect to the best sequential time. The caption of each figure
indicates the name of the dataset, the input size n and the alphabet size σ.

18 J. Fuentes-Sepúlveda, E. Elejalde, L. Ferres, D. Seco

algorithm, the figure shows memory consumption for k = 1. Libcds and shun use
more memory during construction time. In fact, pwt uses up to 33 and 25 times
less memory than Libcds and shun, respectively. Memory usage in libcds is dom-
inated by its recursive nature, while shun copies the input sequence S, of O(n lgn)
bits, to preserve it and to maintain permutations of it in each iteration. Addition-
ally, shun uses an array of size O(σ lgn) bits to maintain some values associated
to the nodes of the wtree, such as number of bits, the range of the alphabet, and
the offset. In our algorithms and in sdsl, memory consumption is dominated by
the arrays which store offset values, not by the input sequence.

The main drawback of dd with respect to our own pwt is its memory consump-
tion, since the latter increases with the alphabet size and the number of threads.
For small alphabets, the working space of dd is almost constant. For instance, mem-
ory consumption for rna.2GB is 1GB, plus a small overhead for each new thread.
For larger alphabets, such as src.2GB with σ ≈ 222, the working space increases
linearly with the number of threads, using 1.46GB with 1 thread and 2.5GB with
12 threads. Fortunately, most of the sequences used in real-world applications have
an alphabet size smaller than 217. Such is the case of DNA sequences, the human
genome, natural language alphabets (Unicode standard), etc.10.

4.4 Other experiments

In order to have a better understanding of our algorithms, we performed the
following experiments:

Limited resources. When memory is limited, algorithms such as Libcds and shun

suffer a decrement in their performance. This is evident in Figure 7, where we
tested the parallel algorithms with datasets prot and src.1GB11 on a 12-core
computer with 6GB of DDR3 RAM12. In this new set of experiments, the speedup
of our algorithms exceeded the speedup shown by shun, both for datasets where we
previously showed the better performance (see Figure 5b) and for datasets where
previously shun showed better performance (see Figure 5e and Table 2).

Encoding. We observed that the encoding of the symbols of the original sequence
has a great impact in the speedups of the construction algorithms. Figures 5a–5d
have speedups greater than 27x, while there is a noticeable performance degrada-
tion in Figure 5e and Figure 5f. This is due to an encoding subtlety: The datasets
used in the experiments resulting in Figures 5a–5d are encoded using one byte,
while the other used four bytes. To prove the impact of the encoding in the perfor-
mance of the construction algorithms, we repeated the experiments using a dataset
that used four bytes per symbol for σ ≤ 28. Figures 5d and 8 show the influence of

10 The Unicode Consortium: http://www.unicode.org/
11 The construction times of shun with the src.2GB dataset exceeds one hour. To make the

algorithms in the figures comparable, we report the running times for the dataset src.1GB.
12 The computer tested is a dual-processor Intel R© XeonR© CPU (E5645) with six cores per

processor, for a total of 12 physical cores running at 2.50GHz. Hyperthreading was disabled.
The computer runs Linux 3.5.0-17-generic, in 64-bit mode. This machine has per-core L1 and
L2 caches of sizes 32KB and 256KB respectively and 1 per-processor shared L3 cache of 12MB,
with a 5,958MB (∼6GB) DDR3 RAM.

 http://www.unicode.org/

Parallel Construction of Wavelet Trees on Multicore Architectures 19

src.200MB src.2GB en.4.30 en.14.30 prot rna.3GB

Datasets

P
ea

k(
G

B
)

libcds
sdsl
pwt
dd
shun

0
2

4
6

8
10

14
18

22

Fig. 6: Memory consumption sorted by n.

Number of threads

S
pe

ed
up

1 2 4 6 8 10 12

1
2

3
4

5
6

7
8

9
11

●

dd_prot
pwt_prot
shun_prot
dd_src.1GB
pwt_src.1GB
shun_src.1GB

●
●

● ● ●

●

●

Fig. 7: Running experiments in a ma-
chine with limited resources.

Number of threads

S
pe

ed
up

1 8 12 20 28 36 44 52 60

2
4

6
8

10
12

●

dd
pwt
shun

●

●

●

●

●

●

●

●
● ● ● ●

● ● ●
● ●

Fig. 8: Speedup of the dataset en.4.30

encoding each symbol with 4 bytes.

Size of sequence (n)

T
im

e(
se

cs
)

227 228 229 230

1
3

5
7

9
12

15
18

21

●

dd
pwt
shun

●

●

●

●

Fig. 9: Time over n with σ = 214, 64
threads and en.14 datasets.

Size of alphabet (σ)

T
im

e(
se

cs
)

24 26 28 210 212 214

0
10

20
30

40
50

60

●

dd_cont
dd_rand
pwt _cont
pwt_rand
shun_cont
shun_rand

●

●
●

● ●
●

Fig. 10: Time over σ for the best and
average cases with n = 230 and p = lg σ
threads.

20 J. Fuentes-Sepúlveda, E. Elejalde, L. Ferres, D. Seco

encoding. As expected, the greater the memory used for encoding, the worse the
perfomance. On multicore architectures, some levels of the memory hierarchy are
shared by different cores. This increases the rate of memory evictions. Hence, it
is crucial to reduce the number of memory transfers. Besides, in NUMA architec-
tures, where each NUMA node has a local RAM and the transfers between local
RAMs is expensive, the reduction of memory transfers is critical. In the case of
one byte per symbol, each memory transfer carries four times more symbols than
in the case of four bytes per symbol, effectively helping reduce memory transfers.

Influence of the size of sequence. Figure 9 shows that for the en.14 dataset, fixing
the number of threads to 64 and σ to 214, for larger n the domain decomposition
algorithm behaves better in running time than the pwt algorithm and Shun’s
algorithm. In other words, with more cores and enough work for each parallel
task, the dd algorithm should scale appropriately.

Influence of the locality of reference. Theoretically, fixing n and varying σ with
p = lg σ threads, the pwt algorithm should show a constant-time behavior, no
matter the value of σ. However, in practice, the running times of pwt increase
with the alphabet size. The reason for this difference in theoretical and practical
results is that levels closer to the leaves in the wtree exhibit a weaker locality of
reference. In other words, locality of reference of the pwt algorithm is inversely
proportional to σ. Additionally, the dynamic multithreading model assumes that
the cost of access to any position in the memory is constant, but that assumption
is not true in a NUMA architecture. In order to visualize the impact of the locality
of reference over running times, we generate two artificial datasets with n = 230,
Σ = {1 . . . 2y}, with y ∈ {4, 6, 8, 10, 12, 14} and encoding each symbol with four
bytes. The first dataset, cont, was created writing n/σ times each symbol of Σ and
then sorting the symbols according to their position in the alphabet. The second
dataset, rand, was created in a similar fashion, but writing symbols at random
positions. The objective of the cont dataset is to force the best case of the pwt

algorithm, where the locality of reference is higher. In contrast, the rand dataset
forces the average case, with a low locality of reference. In these experiments,
we used the optimal number of threads of pwt, that is, p = lg σ. Besides, we
allocated evenly the memory over the NUMA nodes to ensure constant access
cost to any position in the memory13. The results are shown in Figure 10. In its
average case, dashed lines, the performance of the pwt algorithm is degraded for
larger alphabets because locality of reference is low, increasing the amount of cache
misses, and thus degrading the overall performance. In the best case, solid lines,
the pwt shows a practical behavior similar to the theoretical one. Since the dd

algorithm implements the pwt algorithm to build each partial wtree, the locality
of reference impacts also on its performance. However, because the construction
of the partial wtrees involves sequences of size O(n/p), the impact is less than in
the pwt algorithm. Finally, Shun’s algorithm is insensitive to the distribution of
the symbols in the sequence.

The study of the impact of the architecture on the construction of wtrees and
other succinct data structures, and the improvement of the locality of reference of
our algorithms are interesting lines for future research.

13 To ensure the constant access cost, we use the numactl command with “interleave=all”
option. The command allocates the memory using round robin on the NUMA nodes.

Parallel Construction of Wavelet Trees on Multicore Architectures 21

4.5 Discussion.

In most cases, the domain decomposition algorithm, dd, showed the best speedup.
Additionally, dd can be adjusted either in favor of running time or memory con-
sumption. pwt showed good scalability, but up to p < lg σ. This limitation may be
overcome by using pwt as part of dd, dividing the input sequence in an adequate
number of subsequences.

With respect to working space, pwt was the algorithm with lowest memory
consumption. This is important because an algorithm with low memory consump-
tion can be executed in machines with limited resources, can reduce cache misses
due to invalidations (false sharing) and can therefore reduce energy consumption.
Even though memory consumption of the dd algorithm increases with the number
of subsequences, it can be controlled manipulating the number of segments. In the
case of shun, its memory consumption is too large to be competitive in machines
with limited memory.

The encoding and the distribution of the symbols of the input sequence impact
the performance of the algorithms. All the parallel algorithms introduced here show
a better speedup for encodings that use less bits because there are less memory
transfers. Our algorithms are also sensitive to the distribution of the symbols.
When the symbols are randomly distributed, the locality of reference is worse in
comparison with more uniform distributions. This gives us a hint to improve the
performance of our algorithms in the future.

To sum up, in general, the dd algorithm is the best alternative for the con-
struction of wtrees on multicore architectures, considering both running time and
memory consumption. For domains with limited resources, pwt, which is a building
block of dd, arises as a good alternative on its own.

5 Conclusions and future work

Despite the vast amount of research on wavelet trees, very little has been done
to optimize them for current ubiquitous multicore architectures. We have shown
that it is possible to have practical multicore implementations of wavelet tree
construction by exploiting information related to the levels of the wtree, achieving
O(lgn)-time construction and good use of memory resources.

In this paper we introduced two multicore algorithms for parallel construction
of wtrees. Our domain decomposition algorithm, dd, may be used in any domain,
but in those contexts where it is not possible to use all available resources, our per-
level algorithm, pwt, may be more suitable. We have focused on the most general
representation of a wtree, but some of our results may apply to other variants. For
example, it would be interesting to study how to extend our results to compressed
wavelet trees (e.g., Huffman shaped wtrees) and to generalized wavelet trees (i.e.,
multiary wavelet trees where the fan out of each node is increased from 2 to
O(polylog(n))). Also, it is interesting to explore the extension of our results to the
Wavelet Matrix [8] (a different level-wise approach to avoid the O(σ lgn) space
overhead for the structure of the tree, which turns out to be simpler and faster
than the wavelet tree without pointers). Future work also involves dynamization,
whereby the wtree is being modified concurrently by many processes as it is queried,
though dynamic succinct data structures, even sequential ones is still an open area

22 J. Fuentes-Sepúlveda, E. Elejalde, L. Ferres, D. Seco

of research. A further line of work involves the design of cache-aware algorithms
to construct wtrees, obtaining more efficient implementations, both in time and in
memory resources. In our previous work [15] we studied the parallelization of some
queries on wtrees. The parallelization of other queries is yet another interesting
future work.

For all our construction algorithms we assume that the input sequence S fits in
memory. However, we can extend our results to the construction of wtrees where
the input sequence S and the wtree do not fit. Following some implementation
ideas of Sdsl[16], we can read the input sequence in buffers to construct partial
wtrees for each buffer and finally merge all of them to obtain the final wtree. In
more detail, we can extend our algorithms as follows:

1. Read the input sequence S using a buffer of size b. We can use the portion of
main memory that will not be used by the wtree as the buffer.

2. Create a partial wtree without rank/select structures taking the buffer as input.
The partial wtree can be constructed in parallel using our dd algorithm with
O(b lg σ/p) time and O(1) span. (We could also use the pwt if the available
memory is scarce). The starting position of each node in the partial wtree is
stored in a bidimensional array L.

3. Repeat steps 1 and 2 until the complete input sequence is read.
4. After the complete input sequence is read, we compute the final position of

the nodes of all the partial wtrees. These positions are computed performing a
parallel prefix sum[19] over the values of the arrays L’s, similar to the dd algo-
rithm. It takes O(bσ/p+ lg p) time and O(lg(bσ)) span.

5. The final wtree is constructed using Function mergeBA with O(n lg σ/pw) and
O(1) span, where w is the word size of the architecture.

The extension takes O(n lg σ/p + bσ/p + lg p) time and O(n/b + lg(bσ)) span.
Notice that this idea is similar to the dd algorithm and it can be applied on
multiple levels. For example, it can be used on distributed architectures, where
the buffers are processed by different machines, and one machine merges all the
partial wtrees. Additionally, observe that we can use the entire main memory as
the buffer, storing the partial wtrees and the L arrays on disk each time we finish
the processing of a buffer. We leave the implementation and empirical evaluation
of these ideas as future work.

It has become evident that architecture has become relevant again. It is nowa-
days difficult to find single-core computers. Therefore, it seems like a waste of
resources to stick to sequential algorithms. We believe one natural way to improve
performance of important data structures, such as wavelet trees, is to squeeze
every drop of parallelism of modern multicore machines.

References

1. Arroyuelo, D., Costa, V.G., González, S., Maŕın, M., Oyarzún, M.: Distributed search
based on self-indexed compressed text. Inf. Process. Manag. 48(5), 819–827 (2012). DOI
http://dx.doi.org/10.1016/j.ipm.2011.01.008

2. Bingmann, T.: malloc count - tools for runtime memory usage analysis and profiling.
http://panthema.net/2013/malloc_count/ (2013). Last accessed: January 17, 2015

3. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work stealing.
J. ACM 46(5), 720–748 (1999). DOI 10.1145/324133.324234

http://panthema.net/2013/malloc_count/

Parallel Construction of Wavelet Trees on Multicore Architectures 23

4. Brisaboa, N.R., Luaces, M.R., Navarro, G., Seco, D.: Space-efficient representations of
rectangle datasets supporting orthogonal range querying. Inf. Syst. 38(5), 635–655 (2013).
DOI 10.1016/j.is.2013.01.005

5. Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm. Tech.
rep., Digital Equipment Corporation (1994)

6. Claude, F.: A compressed data structure library. https://github.com/fclaude/libcds

(2011). Last accessed: August 13, 2015
7. Claude, F., Navarro, G.: Practical rank/select queries over arbitrary sequences. In: SPIRE,

pp. 176–187. Springer, Berlin, Heidelberg (2009). DOI 10.1007/978-3-540-89097-3 18
8. Claude, F., Navarro, G.: The wavelet matrix. In: SPIRE, vol. 7608, pp. 167–179. Springer,

Berlin, Heidelberg (2012). DOI 10.1007/978-3-642-34109-0 18
9. Claude, F., Nicholson, P.K., Seco, D.: Space efficient wavelet tree construction. In: SPIRE,

vol. 7024, pp. 185–196. Springer, Berlin, Heidelberg (2011)
10. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, third

edn., chap. Multithreaded Algorithms, pp. 772–812. The MIT Press (2009)
11. Faro, S., Külekci, M.O.: Fast multiple string matching using streaming SIMD extensions

technology. In: SPIRE, pp. 217–228. Springer, Berlin, Heidelberg (2012). DOI 10.1007/
978-3-642-34109-0 23

12. Ferragina, P., Manzini, G.: Opportunistic data structures with applications. In:
Proceedings of the 41st Annual Symposium on Foundations of Computer Science,
FOCS ’00, pp. 390–. IEEE Computer Society, Washington, DC, USA (2000). URL
http://dl.acm.org/citation.cfm?id=795666.796543

13. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: String Processing and Informa-
tion Retrieval: 11th International Conference, SPIRE 2004, Padova, Italy, October 5-
8, 2004. Proceedings, chap. An Alphabet-Friendly FM-Index, pp. 150–160. Springer
Berlin Heidelberg, Berlin, Heidelberg (2004). DOI 10.1007/978-3-540-30213-1 23. URL
http://dx.doi.org/10.1007/978-3-540-30213-1_23

14. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed representations of se-
quences and full-text indexes. ACM Trans. Algorithms 3(2) (2007). DOI 10.1145/1240233.
1240243

15. Fuentes-Sepúlveda, J., Elejalde, E., Ferres, L., Seco, D.: Efficient Wavelet Tree Construc-
tion and Querying for Multicore Architectures. In: J. Gudmundsson, J. Katajainen (eds.)
Experimental Algorithms, Lecture Notes in Computer Science, vol. 8504, pp. 150–161.
Springer International Publishing (2014). DOI 10.1007/978-3-319-07959-2\ 13. URL
http://dx.doi.org/10.1007/978-3-319-07959-2_13

16. Gog, S.: Succinct data structure library 2.0. https://github.com/simongog/sdsl-lite

(2012). Last accessed: January 17, 2015
17. González, R., Grabowski, S., Mäkinen, V., Navarro, G.: Practical implementation of rank

and select queries. In: WEA, pp. 27–38. CTI Press, Greece (2005). Poster
18. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes. In: SODA,

pp. 841–850. Soc. Ind. Appl. Math., Philadelphia, PA, USA (2003)
19. Helman, D.R., JáJá, J.: Prefix computations on symmetric multiprocessors. J. Par. Dist.

Comput. 61(2), 265 – 278 (2001). DOI http://dx.doi.org/10.1006/jpdc.2000.1678
20. Illumina, Inc.: An Introduction to Next-Generation Sequencing Technology (2016). URL

http://www.illumina.com/content/dam/illumina-marketing/documents/products/illumina_sequencing_introduction.pdf
21. Ladra, S., Pedreira, O., Duato, J., Brisaboa, N.R.: Exploiting SIMD Instructions in Cur-

rent Processors to Improve Classical String Algorithms. In: ADBIS, pp. 254–267. Springer,
Berlin, Heidelberg (2012). DOI 10.1007/978-3-642-33074-2 19

22. Makris, C.: Wavelet trees: A survey. Comput. Sci. Inf. Syst. 9(2), 585–625 (2012)
23. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed

uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul. 8(1),
3–30 (1998). DOI 10.1145/272991.272995

24. Navarro, G.: Wavelet trees for all. In: CPM, pp. 2–26. Springer, Berlin, Heidelberg (2012).
DOI 10.1007/978-3-642-31265-6 2

25. Navarro, G., Nekrich, Y., Russo, L.M.S.: Space-efficient data-analysis queries on grids.
Theoret. Comput. Sci. 482, 60–72 (2013). DOI 10.1016/j.tcs.2012.11.031

26. Pantaleoni, J., Subtil, N.: Nvbio library. URL http://nvlabs.github.io/nvbio/index.html .
Accessed April 12th, 2016

27. Raman, R., Raman, V., Satti, S.R.: Succinct indexable dictionaries with applications to
encoding k-ary trees, prefix sums and multisets. ACM Trans. Algorithms 3(4) (2007).
DOI 10.1145/1290672.1290680

https://github.com/fclaude/libcds
http://dl.acm.org/citation.cfm?id=795666.796543
http://dx.doi.org/10.1007/978-3-540-30213-1_23
http://dx.doi.org/10.1007/978-3-319-07959-2_13
https://github.com/simongog/sdsl-lite
http://www.illumina.com/content/dam/illumina-marketing/documents/products/illumina_sequencing_introduction.pdf
http://nvlabs.github.io/nvbio/index.html

24 J. Fuentes-Sepúlveda, E. Elejalde, L. Ferres, D. Seco

28. Schnattinger, T., Ohlebusch, E., Gog, S.: Bidirectional search in a string with
wavelet trees and bidirectional matching statistics. Information and Computa-
tion 213, 13 – 22 (2012). DOI http://dx.doi.org/10.1016/j.ic.2011.03.007. URL
http://www.sciencedirect.com/science/article/pii/S0890540112000235 . Special Is-
sue: Combinatorial Pattern Matching (CPM 2010)

29. Shun, J.: Parallel wavelet tree construction. In: Proceedings of the IEEE Data Compression
Conference, pp. 63–72. Utah, USA (2015). DOI 10.1109/DCC.2015.7

30. Singer, J.: A wavelet tree based fm-index for biological sequences
in seqan. Master’s thesis, Freie Universität Berlin (2012). URL
http://www.mi.fu-berlin.de/wiki/pub/ABI/FMIndexThesis/FMIndex.pdf

31. Tischler, G.: On wavelet tree construction. In: CPM, pp. 208–218. Springer, Berlin, Hei-
delberg (2011)

32. Touati, S.A.A., Worms, J., Briais, S.: The Speedup-Test: A Statistical Methodology
for Program Speedup Analysis and Computation. Concurrency and Computation:
Practice and Experience 25(10), 1410–1426 (2013). DOI 10.1002/cpe.2939. URL
https://hal.inria.fr/hal-00764454. Article first published online: 15 OCT 2012

33. Välimäki, N., Mäkinen, V.: Space-efficient algorithms for document retrieval. In: CPM,
LNCS, vol. 4580, pp. 205–215. Springer, Berlin, Heidelberg (2007). DOI 10.1007/
978-3-540-73437-6 22

34. Wetterstrand, K.A.: Dna sequencing costs: Data from the nhgri genome sequencing pro-
gram (gsp). URL http://www.genome.gov/sequencingcosts. Accessed April 12th, 2016

http://www.sciencedirect.com/science/article/pii/S0890540112000235
http://www.mi.fu-berlin.de/wiki/pub/ABI/FMIndexThesis/FMIndex.pdf
https://hal.inria.fr/hal-00764454
http://www.genome.gov/sequencingcosts

	1 Introduction and motivation
	2 Background and related work
	3 Multicore wavelet tree
	4 Experimental evaluation
	5 Conclusions and future work

