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A b s t r a c t :

The main objective of this work is to obtain a method that achieves the best accuracy results with a low false positive rate in the classification of K-complexes, a kind of 
transient waveform found in the Electroencephalogram. With this in mind, the capabilities of several machine learning techniques were tried. The inputs for the models 
were a set of features based on amplitude and duration measurements obtained from waveforms to be classified. Among all the classifiers tested, the Support Vector 
Machine obtained the best results with an accuracy of 88.69%. Finally, to enhance the generalization capabilities of the classifiers, while at the same time discarding the 
existing irrelevant features, feature selection methods were employed. After this process, the classification performance was significantly improved. The best result was 
obtained applying a correlation-based filter, achieving a 91.40% of accuracy using only 36% of the total input features.
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1. Introduction

Sleep staging classification is one of the most important tasks within the context of sleep studies. Over the last few decades the gold
standard for the characterization of patients’ sleep macrostructure has been based on the set of rules proposed by Rechtschaffen and Kales
(R&K) [37], which assigns labels to time intervals representing different states of sleep: Wakefulness (W), stages 1–4, and Rapid Eye Movement
(REM). This method has been recently modified by the American Academy of Sleep Medicine (AASM) [23] which reduced the four non-REM
stages into only three stages: stage 1, stage 2 and stage 3 (this last being the union of what were previously stages 3 and 4). To help in sleep
stage characterization, a micro structural analysis is necessary. Transient events such as micro arousals, sleep spindles, K-complexes and other
patterns need to be analyzed [23].

According to the current AASM definition [23], K-complex is a “well-delineated negative sharp wave immediately followed by a positive
component standing out from the background Electroencephalogram (EEG), with total duration ≥ 0.5 s, usually maximal in amplitude when
recorded using frontal derivations”. Some works have also imposed a maximum duration generally comprised between 1 and 3 s
[8,26,27,38,39]. K-complexes are one of the key features that contributes to sleep stages assessment, specifically is one of the hallmarks of
stage 2. Unfortunately, their visual identification is very time-consuming (there are typically 1–3 K-complexes per minute in stage 2 of young
adults [28]) and rather dependent on the knowledge and experience of the clinician, since it cannot be performed on a regular basis. Hence
poor agreements among experts are reported in the literature
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[8,40]. This explains why automatic identification of K-complexes is of great interest. The main difficulty of the automated K-

complex identification problem has been the lack of specific characterization of the wave and its similarity to other EEG waves

such as delta or vertex waves. In spite of this difficulty, this task has been the purpose of several published efforts that will be

analyzed in more detail in the next section.

Based on shape analysis, one of the most relevant works in the K-complex detection so far has been that of Bankman et al.

[4], where a feature-based detection approach is presented. However, analysis of the relevance of the different features has

not been fully carried out, so our fundamental hypothesis is that classification of K-complexes based on shape analysis can be

improved by the application of feature selection methods. This paper deals with the extraction and classification of isolated

waveforms. The capabilities of several machine learning techniques were tried for this classification task where the inputs for

the classifiers were the features described in Bankman’s work, based on amplitude and duration measurements. To enhance the

generalization capabilities of the classifiers, while discarding the existing irrelevant features, feature selection methods were

employed. Feature selection is arguably the most popular dimensionality reduction technique, whose goal is to obtain a subset

of features that properly describes the given problem attempting to improve the classification performance and generalization

capacity [16]. Moreover, there are other benefits associated with a smaller number of features: a reduced measurement cost and

hopefully a better understanding of the domain. These facts have been demonstrated in earlier work by the authors of this paper

for the identification of EEG arousals [3]. Given the properties mentioned above, feature selection is a broadly used technique

in the machine learning field [7,43,49]. In order to investigate the previous hypothesis, the goal of this research is therefore to

propose a reduction in the number of necessary features whilst improving the K-complex classification accuracy.

The paper is structured as follows: Section 2 presents different methods available to identify K-complex patterns, Section 3

proposes the research methodology, Section 4 describes the materials and methods used in the research, Section 5 presents the

results obtained and, finally, discussion and conclusions are presented in Section 6.

2. Background

Several attempts for K-complex automatic identification have been found in the literature : some of them deal with the

K-complex wave detection [8,11,12,26,27,41,42,44] and work with the complete night recording while others deal with the clas-

sification problem [4,24,25,34,35,38,47] using EEG segments of fixed length to determine if they are K-complexes or not.

The firsts attempts trying to characterize the K-complex waves, involved the design of an electronic detection system capable

of operating in real time, although the accuracy of the detection system is argumentative [8]. Later, Jansen et al. describe in [25]

a knowledge-based approach to automated sleep EEG analysis. The system is tested on the detection of K-complexes and sleep

spindles and its performance indicates that the approach followed is feasible but the data set used is not meaningful. Another

explorative study [24] investigates the performance of artificial neural networks (ANN) for the detection of K-complexes using

the raw and filtered digitized data but this approximation leads to poor results. A detector of vertex waves and K-complexes has

been proposed by Da Rosa et al., which models neuronal feedback loops and detects the transient events through a maximum-

likelihood estimator [39]. In real sleep signals, the number of K-complexes detections in which automatic and visual scoring

agreed reaches a level of 94% with a false positive rate of 13%.

In 1992, Bankman et al. [4] present a feature-based detection approach using ANNs that provides good agreement with visual

K-complex recognition. A sensitivity of 90% is obtained with about 8% false positives (FPs). The information contained in the

features provides significantly better results than the classification based on raw data, as the work states.

Later, Jansen presents a study aimed to improve Bankman and his own results [25], using simulated and real EEG data involv-

ing two basic ANNs architectures [26]. These ANNs received normalized magnitude and phase values, obtained through Fourier

transformation, as input. Nevertheless, the results achieved over real data are disappointing with poor classification rates for

both network approaches. Even better results were obtained using the knowledge-based approach with the same data. Tang

and Ishii present in [44] a method for recognizing the K-complex waveform based on Discrete Wavelet Transform parameters

instead of amplitude and frequency in time-domain analysis. The method is tested on records of EEG containing auditory evoked

K-complexes, obtaining 87% and 10% true and false positive rates, respectively. However, they considered the K-complex to be

overridden by a sleep spindle but it can also occur isolated or even accompanied by alpha events (K-alpha) or embedded with

delta waves [19]. In [42], the authors use a combined method of the one suggested by Bankman [4] and an ANN classifier as

proposed by Jansen [24]. The features used as inputs to the classifier are a subset of those defined by Bankman with the goal of

emulating visual recognition as closely as possible. Unfortunately, the authors do not provide numerical results.

Richard and Lengelle propose a detection structure which can be interpreted as joint time and time-frequency domains

[38]. Nevertheless, this structure does not deal with the detection of K-complexes but rather with the classification among K-

complexes and delta waves. The performance reported in the K-complexes classification task is 90% true positive rate and 9.2%

false positive rate, slightly worse than Bankman’s [4]. Kam et al. develop a novel algorithm based on Continuous Density Hidden

Markov Model for K-complexes detection [27]. The approach is evaluated in two manners: first, using segments of K-complexes

(classification problem) where it achieves a 7% error rate; and, second, using a whole night record (detection problem) where

the performance is within the variance of the human scorers which achieve an average of 85.3% true positive rate.

In [11] a method based on feature extraction and likelihood thresholds is presented. The detection performance is evaluated

on the basis of two human scorings performed independently. True positive rates of 61.72% and 60.94% are respectively obtained

with scorer 1 and 2. Moloney et al. [34] develop a procedure based on nonsmooth optimization and classification methods.

A combination of Radial Basis Function and Extended cutting angle method with a Multilayer Perceptron produced the best
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Fig. 1. The K-complex classification methodology.
classification results. Lately, the attempts for K-complexes detection are in terms of comparing matched filter and ANN methods

[41]. The sensitivity obtained for the ANN is higher (96.06%) than the one obtained for the matched filter (86.47%). The inputs

for the ANN are similar to Bankman’s features. Erdamar, Duman and Yetkin [12] proposed an algorithm for automatic detection

of K-complex using amplitude and duration properties of the waveform. This algorithm is based on wavelet and teager energy

operator combined to obtain a robust decision. The results obtained were evaluated with the ROC analysis and proved up to 91%

success in detecting K-complex. In [47] a new feature extraction method is proposed. This method transforms visual features

of the K-complex wave into mathematical representation and classifies it using a hybrid-synergic machine learning method.

Their results indicate that the proposed model is at least as good as human experts in K-complex detection. Recently, in [35]

feature extraction with a Generalized Radial Basis Function Extreme Learning Machine algorithm is applied to obtain K-complex

waves from EEG signals. In addition, they use feature selection to reduce the input space and improve their performance results.

However, they only tested a feature selection method; it is based on a Sequential Forward Selection strategy and the Mahalanobis

distance between classes as evaluation function. A fair comparative study is not possible due to differences in both datasets and

evaluation methods.

To the best knowledge of the authors of this paper there is only an attempt [35] in the literature to take advantage of fea-

ture selection methods in order to improve the classification performance, generalization capacity or simplicity of the induced

model, in this specific field of application. Therefore, in this work several feature selection models are evaluated to confirm the

aforementioned advantages.

3. Research methodology

The main objective of this work is to obtain a method that achieves the best accuracy results with a low FP rate in the K-

complexes classification task. Over the EEG signal of a set of sleep recordings, and after applying a band filter, a set of isolated

waveforms were obtained. Using these patterns, two approaches were tested. The first uses the set of 14 Bankman’s features

[4] and over a set of classifiers, chooses the best one in terms of accuracy. The second approach uses feature selection over the

14 features previously mentioned to check whether irrelevant features exist and, again, to choose the best classifier in terms of

accuracy with the selected features. The goal of this second approach is to achieve comparable or better results than the first one,

and also check the existence of possible redundant or irrelevant features that could be discarded so as to obtain a simpler final

model. An outline of the proposed methodology is shown in Fig. 1.
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Fig. 2. Positive and negative K-complex examples.

Table 1

The features of the K-complex defined by Bankman.

Feature Formula Explanation

f1 xmax − xend Peak-to-peak amplitude

f2 xmax − xstart Amplitude of the sharp positive wave

f3 xstart − xend Difference between the start point and the minimum of the negative wave

f4 tend − tstart Trough-to-trough duration

f5 tmid1 − tbase1 Duration of the sharp wave

f6 tmin − tmax Duration of the falling slope

f7 tbase2 − tbase1 Duration at the baseline

f8 f5/f7 Ratio of the positive wave’s width to the baseline wave’s width

f9 (tlevel2 − tlevel1)/(tbase2 − tmid2) Sharp of the negative wave

f10 (tmid2 − tmid1)/(tmin − tmax) Continuity of the falling side

f11 f1/f4 Aspect ratio of the wave (global sharpness)

f12 (xmax − xstart)/(tmax − tstart) Slope of the rise

f13 f2/f1 Ratio of the positive wave’s to the peak-to-peak amplitudes

f14 Ntmin

tmax
crossBaseline Number of the times the baseline is crossed in tmax to tmin
3.1. Data processing

The initial step of the proposed methodology is the processing of the available EEG signals. It is widely known that the EEG

signal is very sensitive to noise, which may hinder the identification of the features as proposed by Bankman [4]. In order to

overcome this problem, the raw data was digitally filtered using two different criteria. In the first one we tried to get rid of,

as much as possible, all of the frequency components outside the characteristics band of the K-complexes. In this respect we

used a band-pass filter in the 0.5–2.3 Hz frequency band, with the resulting data identified as Dataf. And, in the second one, we

investigated a less conservative approach in which only the very high frequency components were filtered out by means of a

low-pass filter with cut-off at 18 Hz. The resulting data is referred to as Dataf2.

The next step in the methodology is to obtain the isolated waveforms. The positive examples were identified by the medical

expert and in order to achieve a balanced data set, the same number of negative examples were selected from the whole set

of recordings. To get these negative examples, the Bankman features were calculated for each recording over signal segments

of three seconds duration, due to the K-complex maximum duration [11]. Then, the signal segments with an appropriate value

for the first Bankman feature, the peak-to-peak amplitude, were selected and the segments corresponding to positive examples

were discarded.

Fig. 2 shows an example of a K-complex pattern identified by the medical expert, Fig. 2(a), and an example of background EEG

waveform, Fig. 2(b), i.e., a negative example as previously described. Due to the highly stochastic nature of the EEG, a K-complex

can have a large variety of shapes and it is not always distinctly different from the background EEG, as can be seen in the figure.

The positive example is a arguable case as it is superimposed with varying levels of higher frequency EEG and its morphology

is somewhat altered. Nevertheless it is a K-complex confirmed by the medical expert. The negative example is not a K-complex

due to subtle differences presented in some features, such as the sharp of the negative wave and the slope of the rise (f9 and f12

in Table 1 respectively).
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Fig. 3. A schematic K-complex with amplitude and time labels.
3.2. Feature extraction

As we have pointed out, the features used are those defined in [4], based on several amplitude and duration measurements

taken on significant points of the K-complex waveform. Fig. 3 shows a schematic K-complex in which the timing and amplitude

labels of the significant points are marked.

Table 1 describes the whole set of features.

3.3. Feature selection

Feature selection is a dimensionality reduction technique which consists of detecting the relevant features and discarding the

irrelevant ones [16]. This technique has several advantages, such as:

• Improving the performance of machine learning algorithms.

• Data understanding, gaining knowledge about the process and helping to visualize it.

• Data reduction, limiting storage requirements and helping in reducing costs.

• Simplicity, possibility of using simpler models and gaining speed.

Feature selection methods can be divided into wrappers, filters and embedded methods. While wrapper models involve

optimizing a predictor as part of the selection process, filter models rely on the general characteristics of the training data to select

features with independence of any predictor. The embedded methods generally use machine learning models for classification,

and then an optimal subset or ranking of features is built by the classifier algorithm. On the other hand, wrappers and embedded

methods tend to obtain better performances but at the expense of being very time consuming and having the risk of overfitting

when the sample size is small. On the other hand, filters are faster and, therefore, more suitable for large data sets. They are also

easier to implement and scale up better than wrapper and embedded methods. For all these reasons, filters will be the focus of

this work.

Three feature selection methods were chosen for this study, among those available throughout the literature [6], namely

Correlation-based Feature Selection (CFS), Consistency-based filter and INTERACT, with the aim of employing filters that use

different metrics to select the final features. CFS is one of the most well-known and most frequently used filters, INTERACT

is based on the interaction between features and, finally, Consistency-based is based on the consistency in the class values. A

detailed explanation of each filter method is given in the following sections.
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3.3.1. Correlation-based feature selection, CFS

Correlation based feature selection is a simple filter algorithm that ranks feature subsets according to a correlation-based

heuristic evaluation function [17]. The bias of the evaluation function is toward subsets that contain features that are highly

correlated with the class and uncorrelated with each other. Irrelevant features should be ignored because they will have low

correlation with the class. Redundant features should be screened out as they will be highly correlated with one or more of the

remaining features. The acceptance of a feature depends on the extent to which it predicts classes in areas of the instance space

not already predicted by other features. CFS’s feature subset evaluation function is:

MS = krc f√
k + k(k − 1)r f f

, (1)

where MS is the heuristic ‘merit’ of a feature subset S containing k features, rc f is the mean feature-class correlation (f ∈ S) and

r f f is the average feature–feature intercorrelation. The numerator of this equation provides an indication of how predictive of

the class a set of features is; and the denominator of how much redundancy there is among the features.

The application of this algorithm consists of two steps. First, the numeric features are discretized and then, a measure known

as Symmetrical Uncertainty, SU [36], is employed. SU is defined as the ratio between the information gain (I) and the entropy (H)

of two features, X and Y:

SU(X,Y) = 2
I(X;Y)

H(X) + H(Y)
, (2)

where:

• The entropy (H) quantifies the uncertainty present in the distribution of a feature X, randomly chosen, and it is defined as

H(X) = −
∑

x∈X

p(x) log p(x),

where the lower case x denotes a possible value that the variable X can adopt.

• The Information Gain (I) is defined as

I(X;Y) = H(Y) + H(X) − H(X|Y),

being H(X) the entropy of feature X and H(X|Y) the entropy of feature X once the values taken by another feature Y are

known, computed as:

H(X|Y) = −
∑

y∈Y

p(y)
∑

x∈X

p(x|y) log p(x|y).

The value of IG denotes the relevance of a given feature with respect to others. Thus, in the case that IG(X, Y) > IG(Z, Y) it is

demonstrated that feature Y is more correlated with feature X than with feature Z.

Returning to the CFS algorithm, the SU measure (Eq. (2)) is used to estimate the degree of association between two different

features and, then, obtaining different subsets of features. In the second step of the algorithm, we use MS (Eq. (1)) to select the

optimal subset of features.

3.3.2. Consistency-based filter

The consistency-based filter [10] evaluates the worth of a subset of features by the level of consistency in the class values when

the training instances are projected onto the subset of attributes. The algorithm generates a random subset S from the number

of features in every round. If the number of features of S is less than the current best, the data with the features prescribed in S

is checked against the inconsistency criterion. If its inconsistency rate is below a pre-specified one, S becomes the new current

best.

The inconsistency criterion, which is the key to the success of this algorithm, specifies to what extent the dimensionally

reduced data can be accepted. If the inconsistency rate of the data described by the selected features is smaller than a pre-

specified rate, it means that the dimensionally reduced data is acceptable.

The inconsistency rate is calculated as follows:

(a) Two patterns are considered inconsistent if they match all but their class labels. For example, an inconsistency is caused

by two instances (0 1, 1) and (0 1, 0), in which the two features take the same values for these two samples, while the class

attribute varies.

(b) The inconsistency count for a pattern is the number of times it appears in the data minus the largest number among

different class labels. For example, let us assume there are n matching patterns, among which c1 patterns belong to label1;

c2 to label2 and c3 to label3 where c1 + c2 + c3 = n. If c3 is the largest among the three, the inconsistency count is (n − c3).

(c) The inconsistency rate is the sum of all the inconsistency counts for all possible patterns of a feature subset divided by the

total number of patterns.
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3.3.3. INTERACT

The INTERACT algorithm [50] is a method based on symmetrical uncertainty (SU) [36], defined in Eq. (2), that introduces the

detection of interaction between features.

The motivation behind the development of this algorithm is based on the idea that, in theory, a feature not very correlated

with the class label might be deemed as irrelevant. However, if it is combined with other features, it might be highly correlated

with the class label, becoming an important feature for the prediction task. Dealing with the possible interaction between all the

features is practically unfeasible, and that is why algorithms previous to INTERACT seldom tackle this problem and they usually

assumed independence between features.

The authors of INTERACT consider that the interaction between features can be managed with a thorough design of the

evaluation measure (consistency contribution) and a backward search strategy.

The main measure employed by this algorithm, besides SU (Eq. (2)), is the consistency contribution (c-contribution).

C-contribution of a feature is an indicator about how significantly the elimination of that feature will affect consistency. The

algorithm consists of two major parts. In the first part, the features are ranked in descending order based on their SU values.

In the second part, features are evaluated one by one starting from the end of the ranked feature list. If the c-contribution of

a feature is less than an established threshold, the feature is removed, otherwise it is selected. The authors stated in [50] that

INTERACT can thus handle feature interaction, and efficiently selects relevant features.

3.4. Classification

In this section, we provide an overview of the methods used in the research for K-complex classification (see Fig. 1). Several

approaches were considered, three lineal models —a one-layer feedforward neural network, a logistic regression and a proximal

support vector machine—, and two non linear ones —a multilayer feedforward neural network and a support vector machine—.

• One-layer feedforward neural network

The one-layer feedforward neural network (FNN) is a single-layer FNN without hidden layers. This is a linear classification

system that was trained using the supervised learning method proposed in [9]. The contribution of this learning method is

that it is based on the use of an alternative cost function that measures the errors before the nonlinear activation functions

instead of after them, as is normally the case. An important consequence of this formulation is that the solution can be

obtained directly using a system of linear equations due to the fact that the new cost function is convex [13]. So, the

method avoids local minima, and a very good approximation to the global minimum of the error function is obtained.

• Logistic regression

Logistic regression is part of a category of statistical models called generalized linear models. The goal of logistic regression

is to correctly predict the category of outcome for individual cases using the most parsimonious model. To accomplish this

goal, a model is created that includes all predictor variables that are useful in predicting the response variable. Logistic re-

gression does not assume a linear relationship between the dependent (outputs) and independent variables (inputs), finds

a “best fitting” equation using a maximum likelihood method, which maximizes the probability of getting the observed

results given the fitted regression coefficients [32].

• Multilayer Feedforward Neural Network

The multilayer feedforward neural network is one of the most commonly used neural network classification algorithms

[5]. The architecture used for the classifier consisted of a two layer feed-forward neural network: one hidden and one

output layer. It has been demonstrated that, with an appropriate number of hidden neurons, one hidden layer is enough

to model any continuous function [21]. The optimal number of hidden neurons for this problem was empirically obtained.

• Support Vector Machine, SVM

A Support Vector Machine is a supervised classification technique that works by nonlinearly projecting the training data

in the input space to a feature space of higher (infinite) dimension by the use of a kernel function. This results in a lin-

early separable data set by a linear classifier. In many instances, classification in high dimension feature spaces results in

overfitting in the input space; however, in SVMs, overfitting is controlled through the principle of structural risk mini-

mization [46]. The empirical risk of misclassification is minimized by maximizing the margin between the data points and

the decision boundary [30].

• Proximal Support Vector Machine, pSVM

The proximal Support Vector Machine [14] is a method that classifies points assigning them to the closest of two parallel

planes (in input or feature space) that are pushed as far apart as possible. The difference with a SVM is that this one classi-

fies points by assigning them to one of two disjoint half-spaces. The pSVM leads to an extremely fast and simple algorithm

by generating a linear or nonlinear classifier that merely requires the solution of a single system of linear equations.

3.5. Performance measures

After the classifiers were trained, the performance of the system is evaluated in terms of different measures of relevance to

the problem in question. The definitions of the performance measures are provided as follows:

• The classification accuracy is computed as the percentage of correctly classified instances on a data set.

• The false positive rate is the proportion of normal patterns erroneously classified as K-complexes.
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• The sensitivity (or true positive rate) is the proportion of K-complexes which are correctly identified as such.

In the context of K-complex classification, it is preferable to miss a K-complex rather than to false identify it [4]. Therefore, it

is interesting to minimize the false positives while retaining a satisfactory level of sensitivity.

3.6. Multiple-criteria decision-making, MCDM

Classification algorithms are normally evaluated in terms of multiple criteria which can be handled by a single evaluation

model using Multiple-Criteria Decision-Making [48]. This model is focused on addressing the aforementioned issue. MCDM

methods evaluate classifiers from different aspects and produce rankings of classifiers [15]. Among many MCDM methods that

have been developed up to now, Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) [22] is a well-known

method that will be used. TOPSIS finds the best algorithms by minimizing the distance to the ideal solution whilst maximizing

the distance to the anti-ideal one.

4. Materials and methods

The aim of this work is to present a methodology to improve previous results on K-complex classification presented in

Bankman et al. study [4]. The materials and methods used in this work are described in this section.

4.1. Datasets

In the experiments made, 32 different recordings scored at the Brain Research Center of the Medical University of Vienna

were used. The EEG signals of these recordings were sampled with a frequency of 200 Hz and later analyzed by a medical expert

who detected a total of 111 K-complexes.

According to the methodology shown in Section 3.1, two approaches for filtering the data were applied, resulting in two

banks of data named Dataf and Dataf2. Then, and in order to achieve a balanced set, the same number of negative examples were

selected from the whole set of recordings. In this manner, both Dataf and Dataf2 data sets have 222 samples.

4.2. Experimental procedure

The experimental procedure is detailed as follows:

1. Extract the initial set of features to be used as inputs.

2. Apply the three feature selection methods (CFS, Consistency-based filter and INTERACT) presented in Section 3.3 to provide

the subset of features than describe properly the given problem.

3. For each nonlinear classifier, establish its architecture/parameters.

(a) For FNNs, set the number of hidden units by training independently each of the FNNs. In order to choose this num-

ber, the results stated by Hecht-Nielsen [20] were used. These results establish that a FNN should never possess a

number of hidden units more than twice plus one the number of its input units (i). Therefore, several FNN topolo-

gies were trained using from 2 to 2 times i + 1. Then, for the multilayer model set the number of output units

(1 vs. 2). Among these models, we try a one hidden layer architecture and a two hidden layer architecture. Logistic

transfer functions were used for each neuron in both the hidden and the output layers. The learning algorithm used

was the conjugate gradient [33] with the mean squared error cost function. A maximum number of 3000 epochs

were performed on the training set.

(b) For the SVM, set the kernel function. We try a linear, polynomial of degree 2, and Gaussian (choosing different sigma

values: 1, 100, 1000, 10,000) kernel functions. The cost parameter value was set to values in the range [100, ∞].

4. Take the whole data set and apply a 10-fold cross validation in order to better estimate the true error rate of each model.

5. Obtain the accuracy measures, and a decision threshold for the output of each model and select the best one. For the

resulting model obtain false positive rate and sensitivity measures.

6. Apply the TOPSIS method to the performance measures previously obtained.

The experiments performed in this work were executed using the software tools Matlab and Weka, described as follows:

• Matlab [31] is a numerical computing environment, well known and widely used by scientists and researchers. It was de-

veloped by MathWorks in 1984 and its name comes from Matrix Laboratory. Matlab allows matrix manipulations, plotting

of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in

other languages, including C, C++, Java, and Fortran.

• Weka (Waikato Environment for Knowledge Analysis) [18] is a collection of machine learning algorithms for data mining

tasks. The algorithms can either be applied directly to a data set or called from your own Java code. Weka contains tools

for data pre-processing, classification, regression, clustering, association rules, and visualization. It is also adequate for

developing new machine learning schemes.
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Table 2

K-complex classification results. Mean test set accuracy, false positive and sen-

sitivity (%) of a 10-fold cv. Best values marked in boldfont.

Accuracy False positive Sensitivity

Dataf Dataf2 Dataf Dataf2 Dataf Dataf2

One-lay. FNN 85.52 87.78 1.61 5.43 74.77 86.48

Log. Reg. 84.16 87.33 8.60 7.69 85.58 90.09

FNN 1out 85.07 87.33 8.14 8.14 86.48 90.99

FNN 2out 84.16 87.33 7.69 5.88 83.78 86.48

FNN 2lay-1out 85.97 87.33 8.60 4.52 89.20 83.78

SVM 84.61 88.69 9.95 5.88 89.20 89.20

pSVM 82.35 86.88 6.79 4.52 78.37 82.88
5. Results

In this section the results obtained with and without feature selection are shown and compared in terms of the three effective-

ness measures described in Section 3.5. Notice that, for obtaining the results without feature selection, step 2 in the experimental

procedure (presented in the previous subsection) should be skipped.

5.1. Results without feature selection

From the sets previously detailed, the results over Dataf —data filtered between 0.5 and 2.3 Hz— and Dataf2 —data after apply-

ing a 18 Hz low-pass filter— are shown. Using these two sets, and according to the method previously described in Section 4.2,

several models for each classifier were trained (except for the linear ones). For the sake of clarity, we only show the results that

correspond with the models using the optimal number of hidden neurons and the optimal classifier parameters.

Table 2 shows the accuracy, false positive rate and sensitivity measures obtained by the selected models over a 10-fold cross

validation for the K-complex classification with all the Bankman features.

For the Dataf data set, the best accuracy obtained was 85.97% with a 14-8-6-1 FNN. For this model we achieved a sensitivity

of 89.20% and a FP rate of 8.60%. These values are similar of those obtained by Bankman et al. in [4] with a 14-3-1 ANN.

Among the linear models tested (one-layer FNN, Logistic regression and pSVM), the one-layer FNN was the best option,

achieving even the lowest FP rate (1.61%) but with a sensitivity of 74.77%. Over the non-linear models, the two-layer FNN obtains

the best results.

On the other side, the Dataf2 data set presents an improvement over the previous data set (Dataf). This could be because Dataf2

allows us to obtain values more adjusted to the features due to the fact that the K-complex wave derived is more similar to the

real one. Besides, the 0.5–2.3 Hz band-pass filter from which Dataf resulted, was too aggressive and some relevant features were

missed. In this sense, the results improve for all the classifiers. Using the Dataf2 data set, the best behavior is achieved by the

SVM (RBF kernel, C=inf) with 88.69%, 5.88% and 89.19% values of accuracy, FP rate and sensitivity, respectively.

5.2. Results with feature selection

In this section, we present the results of the different classifiers using the features obtained after the feature selection process.

Again, these results are analyzed in terms of accuracy, false positive rate and sensitivity.

Using the sets previously detailed, Dataf and Dataf2, and according to the experimental procedure (see Section 4.2), several

models for each classifier were trained (except for the linear ones). Again, for the sake of clarity, we only show the results that

correspond with the models using the optimal number of hidden neurons and the optimal classifier parameters.

Tables 3, 4 and 5 show the accuracy, false positive rate and sensitivity measures obtained by the selected models over a 10-

fold cross validation for the K-complex classification with the different feature selection methods used (indicating in brackets

the number of features). The best values for each data set are marked in boldfont, whereas the best value per column is marked

in italic.

The application of feature selection turns out, in general, to have better performance results than the classification made with

all Bankman features. This fact can be observed in both data sets, Dataf and Dataf2.

The accuracy results obtained with the application of feature selection methods outperform the results achieved with the

complete set of features for any of the classifiers. Over Dataf, the two-layer FNN, with a 4-10-8-1 layer architecture, obtains the

best results with CFS and Consistency-based filters. In particular, the Consistency-based filter obtains the best accuracy (88.68%)

with a 2.71% of FP rate and a sensitivity of 82.88%. This fact is accomplished for the Dataf2 data set as well. In this case, the

CFS filter with a 5-10-8-1 FNN obtains the highest accuracy (91.40%). With this model, 3.17% and 89.19% values for FP rate and

sensitivity are obtained, respectively. The model with the smallest FP rate is chosen as in the K-complex classification task, it is

interesting to minimize this value.



10

Table 3

K-complex classification results. Mean test set accuracy (%) of a 10-fold cv.

Feature selection methods

CFS Consistency Interact

Dataf Dataf2 Dataf Dataf2 Dataf Dataf2

(3.8) (5) (4.5) (4.5) (5.4) (7.9)

One-lay. FNN 86.42 90.04 86.42 89.14 86.42 89.14

Log. Reg. 85.52 89.59 85.52 89.14 85.52 89.14

FNN 1out 86.88 90.95 86.88 90.95 87.33 90.95

FNN 2out 86.88 91.40 85.97 89.59 86.88 89.14

FNN 2lay-1out 87.88 91.40 88.68 90.50 86.42 90.50

SVM 85.97 90.49 85.06 90.04 85.97 90.04

pSVM 84.16 89.14 84.16 88.69 84.16 88.69

Table 4

K-complex classification results. Mean test set false positive rate (%) over a

10-fold cv.

Feature selection methods

CFS Consistency Interact

Dataf Dataf2 Dataf Dataf2 Dataf Dataf2

(3.8) (5) (4.5) (4.5) (5.4) (7.9)

One-lay. FNN 7.24 4.98 7.24 6.33 7.24 6.33

Log. Reg. 9.95 3.62 5.43 3.17 7.69 3.17

FNN 1out 1.81 3.17 4.52 5.43 1.36 2.71

FNN 2out 4.98 4.52 5.43 4.07 4.07 4.52

FNN 2lay-1out 5.43 3.17 2.71 7.24 5.88 6.33

SVM 5.88 3.17 6.33 5.43 6.33 5.43

pSVM 6.33 4.07 6.33 3.62 6.33 3.62

Table 5

K-complex classification results. Mean test set sensitivity (%) over a 10-fold cv.

Feature selection methods

CFS Consistency Interact

Dataf Dataf2 Dataf Dataf2 Dataf Dataf2

(3.8) (5) (4.5) (4.5) (5.4) (7.9)

One-lay. FNN 87.39 90.09 87.39 90.99 87.39 90.99

Log. Reg. 90.99 86.48 81.98 84.68 86.48 84.68

FNN 1out 74.77 88.29 82.88 92.79 74.77 87.39

FNN 2out 83.78 91.89 82.88 87.39 81.98 87.39

FNN 2lay-1out 86.49 89.19 82.88 95.49 84.68 93.69

SVM 83.78 87.39 82.88 90.99 84.68 90.99

pSVM 81.08 86.48 81.08 84.68 81.08 84.68
Among the linear models tested (one-layer FNN, logistic regression and pSVM), the one-layer FNN showed the best perfor-

mance, achieving the highest accuracy and sensitivity over the two data sets and for all the filters used. Nevertheless, in this case

the logistic regression and the pSVM are the ones with the lowest FP rate.

5.3. Overall analysis

The results obtained in the previous sections do not allow us to conclude which method is the best. Taking into account the

accuracy, FP rate and sensitivity (SEN) measures for the models both with and without feature selection (FS), and for the two

data sets (band-pass and low-pass filter approaches), the results were evaluated with the TOPSIS method (see Section 3.6). Due

to the importance of avoiding false positives in the detection of K-complexes, the FP rate measure is assigned a weight double the

other two measures. Among the different models evaluated, Table 6 shows the top ten ranking over a total of 56 (seven classifier

models, three FS methods, one method with no FS and two filter approaches).

These results confirm that the performance of the K-complex classification task is better when using feature selection, al-

though there is no one filter method that clearly outperforms the others. In fact, the results obtained by methods without feature

selection rank last. Regarding the filtering approach, low-pass band filtering populates 90% of the top 10. Finally, there is no clear

decision of which classifiers perform best. FNN places 40% of the top 10 and, moreover, it obtains the three best results in terms
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Table 6

Ten best results from TOPSIS method.

TOPSIS Filter FS Model Accuracy FP(%) SEN

0.9343 low-pass INT 8-15-1 FNN 90.95 2.71 87.39

0.9237 low-pass CFS 5-10-8-1 FNN 91.40 3.17 89.19

0.9148 low-pass CFS 5-15-1 FNN 90.95 3.17 88.29

0.9044 low-pass CFS SVM1 90.49 3.17 87.39

0.8714 band-pass Cons. 4-8-6-1 FNN 88.68 2.71 82.88

0.8656 low-pass INT Log. Reg. 89.14 3.17 84.68

0.8656 low-pass Cons. Log. Reg. 89.14 3.17 84.68

0.8508 low-pass CFS Log. Reg. 89.59 3.62 86.48

0.8206 low-pass INT pSVM 88.69 3.62 84.68

0.8206 low-pass Cons. pSVM 88.69 3.62 84.68

1 kernel=polynomial, C = 103.

Table 7

False positive rate (%) for different

sensitivity levels in the test set.

Sensitivity

85% 90% 95%

Bankman 6.1 8.1 14.1

Dataf 5.4 7.7 9.9

Dataf2 4.5 6.2 8.6
of accuracy, FP rate and sensitivity. Five out of ten results were obtained by linear models (logistic regression and pSVM) whilst

the remaining five were obtained by non linear models (FNN and SVM).

5.4. Overall signal results

Once it has been determined which model achieves the best results in terms of classification accuracy, with and without

feature selection, experiments over the entire signal length were performed. The Bankman features were calculated over signal

segments of three seconds of duration with an overlap of 0.5 s, due to the K-complex maximum and minimum duration respec-

tively [11]. A K-complex is identified when its waveform falls in the middle of the window. From the two approaches for filtering

the data, detailed in Section 3.1, the low-pass filter allows the classifiers to achieve better classification results than the band-

pass filter. With this approach, results improve when features selection is applied and, over the classifiers tested, the 5-10-8-1

FNN model achieves the best classification results.

In this scenario, the performance measures obtained over the entire signal were 88.73%, 10.99% and 78.31% for accuracy, FP

rate and sensitivity, respectively. The results achieved are slightly worse than those obtained in Section 5.2 for the two-layer FNN

model with CFS filter applied (Dataf data set). This behavior is somehow expected on models working on real situations. Among

the records analyzed by the medical expert, five of them have no K-complexes marked and this is not a common situation, as

there are typically 1–3 K-complexes per minute in stage 2 of young adults [28]. The complete set of 32 recordings were analyzed

using the entire signal of EEG and the absence of K-complex annotations in the recordings mentioned could be one of the reasons

for obtaining slightly worse results.

5.5. Comparative study with previous results

The results presented in the previous tables, are achieved when focusing on maximizing accuracy. Nevertheless, to compare

these results with those of Bankman et al. [4], the decision threshold is oriented to accomplish a required sensitivity of 85%, 90%

and 95%. Table 7 shows the sensitivity and false positive rate measures published in [4] for a FNN model with three hidden units

and those corresponding to this work for Dataf (band-pass filter approach) and Dataf2 (low-pass filter approach) data sets.

The values obtained for Dataf correspond to the 4-10-8-1 FNN model, using as inputs the Consistency-based filter features

selected. For the Dataf2 data set and using as inputs the CFS filter features selected, the values shown correspond to a 5-10-8-1

FNN model. The FP rate decreases for all the sensitivity levels and following the results obtained in this work, Dataf2 achieves the

best values. Fig. 4 depicts the ROC analysis results of the FNN models for the two data sets: solid line for Dataf and dashed line

for Dataf2. Three area values are calculated as 0.85, 0.90 and 0.95 unit square, respectively. Both curves were obtained setting the

threshold in the range of [0–1], with increments of 0.01. These results verify the experimental results given in Table 7 for this

work. Obviously, and although this comparison has to be interpreted carefully as the data set used in each work is different, it

has to be noticed that the K-complex classification can be improved using a reduced set of features.
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Fig. 4. ROC results for the best FNN models.

Fig. 5. Vertex, Delta and K-complex waves.
5.6. Rationale of the selected features

With the feature selection procedure, the features chosen over the 10 fold cross-validation are f1, f2 and f11 for Dataf; and f1,

f2, f3 and f11 for Dataf2. The first feature represents the peak-to-peak amplitude whilst the second one is the amplitude of the

sharp positive wave. The third feature shows the difference between the start and the minimum negative points, and, finally, f11 is

the “aspect ratio” of the onset wave, involving the amplitude feature. The feature f1 confirms the fact that a K-complex (Fig. 5c) is

recognized by an increase in the EEG amplitude. Its contribution to the identification of this transient waveform is discriminatory.

But this behavior appears in vertex waves too. The vertex wave consists of a small spike of positive polarity followed by a large

negative wave, which is almost always the most prominent feature. Vertex waves have a negative deflection of 50–150μv and

last at least 0.5 ms duration [29,45]. Fig. 5a shows an example of a vertex wave. Thus, it is necessary to have some other features

to help in the K-complex recognition procedure, as the amplitude of the sharp positive wave (f2) does. This feature is the second

(following) discriminatory one, as there must be an amplitude ratio between the positive and the negative waves to identify a

K-complex. Nevertheless, there exists another transient wave that presents similar values for this f feature. The delta wave is
2
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a high amplitude brain wave with a frequency of oscillation between 0 and 4 Hz. They are the slowest, but highest amplitude

brainwaves [29]. Fig. 5b shows an example of a delta wave. The visual distinction between a delta wave and a K-complex is the

sharpness of the whole wave and this value is represented by f11, the wave’s “aspect ratio”. So, the relevance of this feature is

justified. The f11 feature allows to discard delta waves as it discriminates between sharp/spike waves and slow waves.

6. Conclusions

This paper presents a comparative study over the K-complex classification task involving three feature selection filters, and

five different classification algorithms. The main goal was to find a classifier that achieves the best accuracy results with a low

FP rate and, in view of the results, to explore the application of feature selection methods over the set of Bankman features to

improve the performance of the classifiers employed and, therefore, the K-complex classification task.

As a starting point, the set of features defined by Bankman for the classification of the K-complexes was used. This set, ob-

tained over amplitude and duration measurements, was the input of different classifiers to choose the best one in terms of

accuracy values. To extract the features we used two different data sets corresponding to two different bandwidth filters. The

first one is centered on the basic frequency of the K-complex, while the second one is obtained heuristically to help the feature

calculation procedure.

Using the first data set (Dataf, data filtered between 0.5 Hz and 2.3 Hz), the best results were obtained with the two-layer FNN

(accuracy of 85.97%); but we achieved an improvement on all the classifiers when using the second one (Dataf2, data obtained

applying a 18 Hz low-pass filter). In this case, SVM outperforms the remaining classifiers (accuracy of 88.69%).

When feature selection is applied, the results improve significantly. Using Dataf, all the classifiers obtain better accuracy val-

ues, and the CFS method achieves the best one (88.68%). This result was obtained with a two-layer FNN. Again, using Dataf2 an

improvement for all the classifiers was carried out. In this scenario, the best configuration is the Correlation-based filter with

a 91.40% value of accuracy and a reduction of 64% in the number of features. Even though this comparison has to be inter-

preted carefully, if these results are contrasted with Bankman’s, for required sensitivity levels, an improvement in FP rate is again

achieved.

The results reported show that if the inputs to the classifier are relevant morphological features, the classification can have

a potential contribution to EEG waveform detection. Similar results have been obtained in an previous investigation by the

authors in a different application domain for the detection of EEG arousals. In this work, the features selected for the K-complex

identification were all related to amplitude details. In fact, the most important one is the peak-to-peak amplitude. This could

mean that a K-complex wave is basically defined by an increase in the EEG amplitude, but some other features are needed to

distinguish this wave from other EEG waves. In particular, it seems that the amplitude of the sharp positive wave could allow

discarding bursts with maximal amplitude as vertex waves. Moreover, another important feature is the “aspect ratio” of the wave,

based on its global sharpness, which is the feature that permits visual distinction between a delta wave and a K-complex.

As a conclusion, in this work the extraction and classification of isolated waveforms was carried out. The feasibility of the K-

complex identification using a reduced set of the Bankman features has been probed. The features selected represent amplitude

values and the aspect ratio of the onset wave. There is no single filter method that precisely outperforms the others and even

though there is no clear decision of which classifiers perform best, it seems that FNN models are good candidates for K-complex

classification. The results obtained pave the way for facilitating the incorporation of this information as decision rules in a sleep

analysis system to improve the performance of the K-complex classification task [1,2]. This will constitute our main further

research on this topic. Moreover, we plan to test the use of ensembles of classifiers, trying to take advantage of the strengths of

the different algorithms tested here and combine them in order to improve the classification accuracy.
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