
Universidade da Madeira

Centro de Ciencias Exactas e da Engenharia

PhD THESIS

presented in fulfilment of the requirement for
the degree of Doctor of Philosophy

Major: Software Engineering

Code Generation for Event-B

presented by

VÍCTOR ALFONSO RIVERA ZÚÑIGA

supervised by

NÉSTOR CATAÑO COLLAZOS

June 2014

JURY

Timothy Wahls Dickinson College, USA Reviewer
Camilo Rueda Javeriana University, Colombia Reviewer
Pedro Campos University of Madeira, Portugal Reviewer
José Carmo University of Madeira, Portugal Rector
Néstor Cataño Madeira-ITI, Portugal Supervisor

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Digital da Universidade da Madeira

https://core.ac.uk/display/80519343?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Code Generation for Event-B

To my parents and Laura N. Mazaira.

Acknowledgments

The fulfilment of this thesis would not have been possible without the con-
tribution of Néstor Cataño, my thesis supervisor. I want to thank him for his
guidance during all this process, his encouragement, and dedication. Specially
thanks for his support and patience. I also want to thank Camilo Rueda and
Tim Wahls for their ideas, and discussions. Thanks to Madeira Interactive
Technologies Institute (M-ITI - Portugal) and Departamento Administrativo de
Ciencia, Tecnoloǵıa e Innovación (Colciencias - Colombia) for funding my re-
search over these years. Many thanks, from the bottom of my heart, to my
mother Esperanza Zúñiga (R.I.P.) and my father Luis Rivera for their love and
their enthusiasm that have carried me out this far.

I apologize to all those not mentioned that have helped me in one way or
another. Even though I have unconsciously omitted their names, I am very
grateful for the help they provided.

This work was supported by the Portuguese Foundation for Science and
Technology (FCT) grant PTDC/EIA-CCO/105034/2008 (FAVAS: A FormAl
Verification for real-time Systems), and Colciencias, The Colombian Agency for
Science and Technology Development.

Contents

1 Introduction 15

1.1 Thesis overview . 18

2 Background 22

2.1 The B method . 22

2.2 The Event-B Method . 23

2.3 Tool support for Event-B . 25

2.3.1 Rodin Proof Obligations 25

2.4 The Java Modeling Language (JML) 27

2.4.1 Tool support for JML . 30

2.5 Dafny . 31

2.6 Software Design Patterns . 31

3 Translating B Machines to JML Specifications 34

3.1 The Translation from B to JML 36

3.1.1 Translating Substitutions 36

3.1.2 Beyond Substitutions . 39

3.2 The B2Jml Tool . 43

3.3 Using the B2Jml Tool . 43

3.3.1 An Example in B . 43

3.3.2 Generating JML-annotated Abstract Java Classes 45

3.4 Conclusion . 47

4 Translating Event-B Machines to JML Specifications 49

4.1 The Translation from Event-B to JML 50

4.1.1 Additional Translation Operators 55

4.1.2 A Java Framework for Event-B 56

4.2 The EventB2Jml Tool . 56

4.3 Using the EventB2Jml Tool . 57

4.3.1 An Example in Event-B 57

4.3.2 The JML-annotated Java abstract class 59

4.4 Conclusion . 61

8 CONTENTS

5 Translation of Event-B Machines to JML-annotated Java Code 63
5.1 The translation from Event-B machines to JML-annotated Java

Code . 65
5.1.1 The Helper Operators . 74
5.1.2 The Translation of Event-B to Sequential Java Programs 76
5.1.3 Support for Event-B Model Decomposition 76
5.1.4 Support for Code Customisation 78

5.2 Proof of Soundness . 78
5.3 The EventB2Java Tool . 79

5.3.1 EventB2Java Rodin Plug-in Structure 79
5.3.2 Java Implementation of Event-B Mathematical Notations

in EventB2Java . 82
5.3.3 Decision on using Reentrant lock/unlock methods . . . 83

5.4 Using the EventB2Java tool . 85
5.4.1 An Example in Event-B 85
5.4.2 The Generated JML-annotated Java code 87

5.5 Software Development with EventB2Java 91
5.5.1 Strategy on Software Development using MVC design pat-

tern . 91
5.5.2 Strategy on Software Testing 92

5.6 Conclusion . 93

6 Translating Event-B Machines Proof Obligations to Dafny 95
6.1 Rodin Proof Obligations . 96
6.2 Expressing Event-B Proof Obligations in Dafny 106

6.2.1 Translating Event-B machines 106
6.2.2 Translating Event-B proof obligations 108

6.3 The EventB2Dafny Tool . 115
6.4 Conclusion . 117

7 Case Studies 118
7.1 The Social-Event Planner . 119

7.1.1 Requirement Document for the Social-Event Planner . . . 119
7.1.2 The Event-B Model of the Social-Event Planner 121
7.1.3 Generating JML-annotated Java code for the Social-Event

Planner Event-B model 124
7.1.4 The View and Controller Parts of the Social-Event Planner125

7.2 Tokeneer . 129
7.2.1 TIS Components . 130
7.2.2 TIS Operations . 130
7.2.3 An example of User Entry Operation 133
7.2.4 Conversion from Z to Event-B 134
7.2.5 Modelling the Tokeneer ID Station (TIS) in Event-B . . . 137
7.2.6 Generating Java code for the TIS Event-B model 141
7.2.7 Writing JUnit Tests . 141

7.3 Comparing EventB2Java . 145

CONTENTS 9

7.4 Conclusion . 149

8 Future Work 151

9 Conclusion 154

List of Figures

2.1 Substitutions in B . 23
2.2 General structure of Event-B machine (taken from [4]). 24
2.3 General structure of Event-B context (taken from [4]). 25
2.4 Events of an Event-B abstract and refinement machines 26
2.5 A JML specification of a social networking class. 29
2.6 MVC design pattern. 33

3.1 A B-machine for social networking. 44
3.2 A JML specification of a social networking class. 46

4.1 The translation of the Event-B machine M , and the context ctx
that M sees to JML-annotated Java abstract class. 51

4.2 A framework for executing JML-annotated Java classes trans-
lated from Event-B machines. 56

4.3 An excerpt of the abstract Event-B machine for MIO (left: ma-
chine abstract . Right: context ctx1 that M see). 58

4.4 Part of an Event-B machine for MIO (left: refinement 1 machine.
Right: context). 59

4.5 A partial JML specification of the MIO Event-B model. 60
4.6 An implementation for the abstract Java class presented in Figure

4.5. 61

5.1 The translation of machine M , and the context C that M sees. . 66
5.2 The translation of a standard Event-B event with local variables. 72
5.3 The translation of a standard event. 73
5.4 The translation of a standard Event-B event with local variables

to a sequential Java program. 77
5.5 A framework for executing Java classes translated from Event-B

machines in a sequential fashion. 78
5.6 General structure of EventB2Java Rodin plug-in. 79
5.7 Specific structure of EventB2Java Rodin plug-in 80
5.8 EventB2Java: Contextual menu in Rodin 82
5.9 Exp 1: Execution times ‘bakery’ vs ‘synchronized’ vs

‘lock/unlock’ . 84

LIST OF FIGURES 11

5.10 Exp 2: CPU usage ‘bakery’ vs ‘synchronized’ 85
5.11 An extract of the Binary Search algorithm in Event-B 86
5.12 JML-annotated Java code generated by EventB2Java from the

bin m2 depicted in Figure 5.11. 88
5.13 Binary Search: code generated for the inc event 89
5.14 Excerpt of the sequential JML-annotated Java code generated by

EventB2Java from the bin m2 depicted in Figure 5.11. 90
5.15 Excerpt of the sequential Java code generated for the inc event . 90
5.16 Binary Search: Sequential Java code generated for the inc event 91

6.1 An abstract and context machine in Event-B 97
6.2 Refinement machine in Event-B 98
6.3 Formalising relation structures in Dafny. 106
6.4 Translation rule for an Event-B machine and its context to Dafny 107
6.5 Proof Obligation generated by Rodin 115
6.6 Partial EventB2Dafny output . 116

7.1 Excerpt of the ref 6 socialevents (and the context it sees) Event-
B machine for the Social-Event Planer model 122

7.2 Excerpt of the ref 7 socialinvite Event-B machine for the Social-
Event Planer model . 124

7.3 Excerpt of the ref 8 socialpermission Event-B machine for the
Social-Event Planer model . 125

7.4 Excerpt of the translation of machine ref 8 socialpermissions to
Java . 126

7.5 Excerpt of the translation of event create social event to Java . 127
7.6 Screenshots Social-Event Planner 128
7.7 The Tokeneer System. 129
7.8 Hierarchy of certificate types. 131
7.9 Excerpt State Diagram User Entry to TIS. 134
7.10 Excerpt third refinement machine TIS Event-B model 140
7.11 Partial translation of machine ref 3 entry L1 141
7.12 Partial translation of event BioCheckRequired 142
7.13 The UserEntry1 Test Case in JUnit 144

8.1 Future Work. 152

Abstract

Refinement Calculus and Design-by-Contract are two formal methods widely
used in the development of systems. Both methods have (dis-)advantages: in
Refinement Calculus a model starts with an abstraction of the system and more
details are added through refinements. Each refinement is probably consistent
with the previous one. Hence, the reasoning about abstract models is possi-
ble. However, a high level of expertise is necessary in mathematics to have
a good command of underlying languages, techniques and tools, making this
methodology less popular; on the other hand, Design-by-Contract works on the
program rather than the program model so developers in software industry are
more likely to have expertise on it. However, the benefits of reasoning over more
abstract models are lost.

A question arises, is it possible to combine both methods so users can use
them together in the development of systems taking the best of both? This thesis
solves this question by translating Refinement Calculus with Event-B to Design-
by-Contract with Java and JML so users can take full advantage of both formal
methods without losing their benefits. This thesis presents a set of syntactic
rules that translates Event-B to JML-annotated Java code. It also presents
the implementation of the syntactic rules as the EventB2Java tool. We used
EventB2Java to translate several Event-B models. The tool generated JML-
annotated Java code for all the considered Event-B models that serve as final
implementation. We also used EventB2Java for the development of two software
applications. Additionally, we compared EventB2Java against two other tools
that also generate Java code from Event-B. EventB2Java enables users to start
the development of software in Event-B where users can model the system and
prove it consistently, to then transition to JML-annotated Java code using our
tool, where users can continue the development.

Key Words— Refinement Calculus, Event-B, Design-by-Contract, Java,
JML, EventB2Java.

Resumo Português

Refinement Calculus e Design-by-Contract são dois métodos formais utilizados
no desenvolvimento de sistemas. Ambos têm (des-)vantagens: em Refinement
Calculus um modelo começa com uma abstração do sistema e mais detalhes são
adicionados através de refinamentos. Cada refinamento é provavelmente consis-
tente com o anterior. Assim, o racioćınio sobre modelos abstratos é posśıvel.
No entanto, um alto ńıvel de conhecimento é necessário em matemática para
ter um bom domı́nio da sintaxe da linguagem, técnicas e ferramentas tornando
esta metodologia menos popular; Design-by-Contract trabalha no programa, e
não no modelo do programa de modo que os desenvolvedores na indústria de
software são mais predispostos a ter conhecimento sobre ele. No entanto, os
benef́ıcios do racioćınio em relação aos modelos mais abstratos são perdidos.

Surge uma questão, é posśıvel combinar ambos métodos para que os uti-
lizadores possam utilizá-los conjuntamente no desenvolvimento de sistemas
tomando o melhor dos dois? Esta tese resolve essa questão, traduzindo Refine-
ment Calculus com Event-B para o Design-by-Contract com Java e JML assim é
posśıvel tirar o máximo proveito de ambos métodos formais. Apresenta-se aqui
um conjunto de regras sintáticas que traduz Event-B para o código Java com
anotações JML. Apresenta também a implementação das regras sintáticas como
a ferramenta EventB2Java. Usamos EventB2Java para traduzir vários modelos
em Event-B. A ferramenta gerou código Java com anotações JML para todos
os modelos considerados que servem de implementação final. Também usamos
EventB2Java para o desenvolvimento de duas aplicações de software. Além
disso, comparamos EventB2Java com duas outras ferramentas que também
geram código Java do Event-B. EventB2Java permite que os utilizadores ini-
ciem o desenvolvimento de software em Event-B onde podem modelar o sistema,
prová-lo de forma consistente e fazer a transição para código Java com anotações
JML utilizando a nossa ferramenta, onde os utilizadores podem continuar o de-
senvolvimento.

Palavras-chave— Refinement Calculus, Event-B, Design-by-Contract,
Java, JML, EventB2Java.

Chapter 1

Introduction

Information systems have become essential to people. As an example of this,
people use web systems to search for things to buy, and use bank transaction
systems to make payments, and even trust their lives to critical software systems,
such as control software used by airplanes. Often, people are unaware of the
consequences that malfunctioning software can do to their lives. Hence, they
must be built in a correct fashion.

Concepts such as robustness and reliability are important in software today:
people expect software systems to work well. Several approaches to software
reliability and robustness exist [53, 89], which might be supplemented with
Software Testing [13, 14]. However, testing techniques alone are not adequate
to ensure the correctness of a critical software (or any other software). As Edsger
Dijkstra said “Testing shows the presence, not the absence of bugs”. Tests can
only show the situations where a system will fail, but cannot say anything about
the behaviour of the system outside the testing scenarios. While it is true that
validating the code against certain properties, as in testing, makes software
testing popular and important, it is also true that testing does not validate the
system as a whole: system behaviours beyond the ones considered by the tests
can produce casualties.

A way to ensure the correctness of critical software is using formal meth-
ods [29] which are mathematically based on rigorous techniques for the spec-
ification of systems (well-formed statements in a mathematical logic) from re-
quirements, the verification (rigorous deductions in that logic), and the imple-
mentation of software (and hardware) systems. Formal methods enable users to
express properties over the system that must be proven true for all possible in-
puts. Formal methods are concerned with the system as a whole, proving that
each component of the system interacts with each other in a correct way. It
seems right then to think that formal methods are the key for the construction
of correct software. Testing can be seen as a complement of formal methods:
one can model a system using formal methods ensuring the correctness of the
system w.r.t. some requirements and then testing to be sure that what one
proved mathematically was indeed what one wanted.

16 Chapter 1 – Introduction

Refinement Calculus techniques [52, 80, 79, 9] are techniques to implement
software systems based on formal methods. In Refinement Calculus, users write
an abstract model of a system, and then transform the model into an imple-
mentation via a series of refinement steps, where each refinement adds more
detail to the system. The behaviour of each refinement is provably consistent
with the behaviour of the previous step. The final refinement is the actual im-
plementation of the system modelled. This technique is known as correctness-
by-construction, as it allows to reasoning about the model ensuring that all
functionality is correct. B [2] and Event-B [4] are examples of formal techniques
based on Refinement Calculus: B is a method for specifying, designing and cod-
ing software systems introduced by J.-R. Abrial. Atelier B [8] is an IDE that
enables user to work with B method; Event-B models are complete developments
of discrete transition systems. Event-B was also introduced by J.-R. Abrial and
it is derived from the B method. Rodin [28] is an Eclipse IDE that provides
support for Event-B. The correctness of models in B and Event-B is achieved by
discharging proof obligations. Proof obligations are correctness conditions on
the model of the system which need to be proven true. Several provers exist that
help the process of discharging proof obligations. For instance, Atelier B (for
working with B) comes with its own automatic prover. Rodin (for working with
Event-B) comes also with its own automatic prover. Other provers could be
used in the process of discharging proofs obligations. For example, Dafny [65] is
an imperative object-based language with built-in specification constructs that
comes with an automatic prover, Z3 [49], one could express proof obligations
in the input language of Dafny and then use its automatic provers to discharge
the proof obligations.

Limitations of Refinement Calculus techniques come from the level of ex-
pertise in mathematics required to use the underlying languages and tools. As
J. Bowen and V. Stavridou describe in [24], one of the principal issues of the
wide adoption of formal methods is that they require mathematical expertise.
For instance, when applying refinement techniques, making the behaviour con-
sistent of a refinement with the behaviour of the previous step is heavy burden,
particularly when the refinement is close to the implementation. Developers
of software are not correctly educated (as states by J.-R. Abrial in [4]), since
they have little or no mathematical background, making Refinement Calculus
complex to use.

Another technique to implement software systems based on formal methods
is Design-by-Contract (DbC) [78]. The general idea about Design-by-Contract
is that a software contract exists between a method and a client. The client must
fulfil the pre-condition of the method that is called and this must ensure its post-
condition. Design-by-Contract techniques work on the program rather than on
the program model, so developers in software industry are more likely to have
expertise in this technique. Java Modeling Language (JML) [70, 25, 71] is based
on Design-by-Contract in which code is verified against a formal specification.
Likewise Refinement Calculus, DbC techniques have some limitations, Design-
by-Contract does not have the mathematical based rigorous as in Refinement
Calculus, so reasoning over more abstract models is lost.

17

The main goal of this thesis is to bridge Refinement Calculus with Event-
B to Design-by-Contract with Java and JML. Thus, software developers can
benefit from both formal methods in the software development of applications.
This thesis presents a code generator for Event-B that generates JML-annotated
Java code. Thus, the software development of an application starts with a formal
model in Event-B on which users can define properties on that can be proven
correct by discharging proof obligations in Event-B. Then, the user translates
the model to a JML-annotated Java code using our code generator. The user
decides the level of model abstraction in Event-B. Once the code is generated,
the user can continue the system development of the application in Java.

The work presented in this thesis allows users of different expertise to work
together in the development of systems. For instance, a user expert in the
notation underlying Event-B and expert in mathematics can work at early stages
of the system development, then transition to JML-annotated Java code of the
Event-B model using our code generator, where an expert software developer
can continue with the final implementation of the system.

The code generator from Event-B to JML-annotated Java code is formally
defined by means of translation rules. This thesis presents the translation rules
and its implementation as the EventB2Java tool. EventB2Java automates the
process of code generation from Event-B models. The code generator, addition-
ally to generating Java code of Event-B models, also generates JML specifica-
tions. Thus, users can customise the Java code and verify it against the JML
specifications to make sure the customisation does not invalidate the initial
Event-B model.

We have validated EventB2Java by using the tool in the process of generating
JML-annotated Java code from an ample set of Event-B models. This thesis
presents these Event-B models and the code generated by EventB2Java, and
also presents a benchmark in which EventB2Java is compared against other
tools for generating Java code from Event-B models. We used EventB2Java in
the development of two case studies: the first case study is on the development
of an Android [61] application that follows the MVC (Model-View-Controller)
design pattern [60]; the second case study is on testing an Event-B model by
translating it to Java and performing Java Unit (JUnit) testing of the generated
Java code.

This thesis also introduces a tool that generates Dafny code from Event-B
proof obligations (PO) to assist users in the process of proving the system cor-
rect. The translation of Event-B POs to Dafny is defined by means of translation
rules. Rules were implemented as the EventB2Dafny tool. EventB2Dafny helps
users on discharging Event-B POs by translating them to the input language of
Dafny where the user can use Z3, the Dafny automatic prover to prove the PO.

Thesis Summary: The development of the work presented in thesis started
by proposing a translation from B machines to JML specifications (described in
Chapter 3). We saw B method a good starting candidate for the development
of systems since systems are first modeled in an abstract way. Next, the model

18 Chapter 1 – Introduction

is proven to satisfy certain safety and security properties, and then transformed
to code via a series of property preserving refinement steps. We proposed the
B2Jml tool that generates JML specifications from B, where users can manually
write Java code. Then we realised that Event-B method (an evolution of the B
method) is a better starting candidate for the development of systems, so we
proposed a translation from Event-B machines to JML specifications. Chapter
4 discusses how one can see Event-B method better than B, the chapter also
discusses the translation and the implementation of the EventB2Jml tool. In
modelling a system in Event-B, one needs to prove the soundness of the model.
A series of proof obligations are generated and needed to be discharged to gain
confidence of the model. Discharging proof obligation can be a difficult task, so
we proposed a translation from Event-B proof obligations to the input language
of Dafny, thus users can use Dafny as a prover. Our intention is to provide tools
that help users in the process of proving an Event-B model sound. Chapter 6
describes this translation and presents the EventB2Dafny tool that automates
the process of translation. Once we developed this tool and EventB2Jml, we
used them to generate JML specifications from the Event-B model MIO. Then
we manually generated Java code for those specifications. We then realised that
is more useful to have a tool that automatically generates Java code and we saw
the importance of embedded JML specifications into the code since users might
want to customise the generated code without invalidating the initial model.
We proposed and implemented (discussed it in Chapter 5) a translation from
Event-B models to JML-annotated Java code. We implemented it as the Event-
B2Java tool. Having the JML specifications embedded into the Java code also
gives a insight of documentation of the code that can be read easily.

1.1 Thesis overview

Chapter §1. Introduction This chapter describes the problem addressed
by this thesis and describes the importance of using more-formal methods to
build systems

Chapter §2. Background This chapter provides the background knowledge
required to understand the work done in this thesis.

Chapter §3. Translating B Machines to JML Specifications. This
thesis work started with the idea of generating JML specifications from B. This
chapter is about that. The translation is defined using syntactic rules and it is
implemented as the B2Jml tool, and integrated to ABTools [18] (an open source
environment for developing B). B2Jml enables users to use B’s strong support
for model verification during early stages of software development to generate a
fully verified model of an application, and then transition to JML specifications
to simplify the task of generating a Java implementation and to take advantage
of JML (semi-) automatic tools such as runtime or static assertion checkers.

1.1 Thesis overview 19

Contributions. The main contributions of this chapter are i) the definition
of a set of sound rules to translate B to JML, ii) the implementation of the rules
as the B2Jml tool. Work done in this chapter have been published in [41, 36].
I participated in the design and testing of the syntactic rules and in the design
of B2Jml and its integration to the ABTools suite.

Chapter §4. Translating Event-B Machines to JML Specifications.
This chapter presents a translation from Event-B to JML. This work goes in
the same direction as the work presented in Chapter 3 as they both generate
JML specifications from a formal model. I decided to change the initial formal
method from B to Event-B since Event-B presents a simpler notation than B,
which is easier to learn, use, and translate. In addition to this, the B method is
devoted to the development of correctness-by-construction software, while the
purpose of Event-B is used to model full systems (including hardware, software
and environment of operation). Chapter 4 presents a set of syntactic rules to
generate JML specifications from Event-B. It presents the implementation of
the rules as the EventB2Jml tool. EventB2Jml is implemented as a Rodin
[28] plug-in. This chapter also shows the application of the tool to a model in
Event-B.

Contributions. The main contributions of this chapter are the definition of a
translation from Event-B models to JML specifications, and the implementation
of the translation as the EventB2Jml tool. This translation allows experts
in Event-B to work together with software developers usually expert in main
stream programming languages like Java. For instance, an expert in the notation
underlying Event-B starts the development of a system, then uses EventB2Jml
to transition to JML where a software developer writes Java code from the
JML specifications. I participated in the definition of the syntactic rules of the
translation and I fully implemented the EventB2Jml tool.

Chapter §6. Translating Event-B Machines Proof Obligations to
Dafny. This chapter presents a translation of Event-B proof obligations to
the input language of Dafny by means of syntactic rules, Dafny [65] is an im-
perative object-based language with built-in specification constructs. The rules
were implemented as the EventB2Dafny Rodin plug-in. To prove an Event-B
model consistent it is necessary to discharge a serie of proof obligations. Typi-
cally, proof obligations are automatically discharged by Rodin provers. However,
there are some proofs that need users’ assistance to be discharged. EventB2-
Dafny assists users on the process of discharging proof obligations by translating
them to Dafny. EventB2Dafny generates Dafny code that is correct if and only
if the Event-B refinement-based proof obligations hold.

Contributions. The main contributions of this chapter are the definition of
a translation from Event-B proof obligations to Dafny and the implementation
of the translation as the EventB2Dafny tool. Work done in this chapter has been

20 Chapter 1 – Introduction

published in [35]. I participated in the definition of the translation from Event-
B proof obligations to Dafny programming language and in the implementation
of EventB2Dafny.

Chapter §5. Translation of Event-B Machines to JML-annotated Java
Code. We decided to extend the work described in Chapter 4 to not just
generate JML specifications, but also to generate Java code from Event-B mod-
els. This chapter presents the core work of this Ph.D. thesis. It describes the
translation of Event-B models to JML-annotated Java code. The translation
is achieved through syntactic rules and it is implemented as the EventB2Java
tool.

Contributions. The main contributions of this chapter are i) the definition
of a set of sound rules to translate Event-B models to JML-annotated Java code,
ii) the implementation of the rules as the EventB2Java tool. Users can benefit
from the work accomplished in this chapter since the following reasons

• the EventB2Java tool generates both sequential and multithreaded Java
code,

• EventB2Java can be applied to both abstract and refinement Event-B
models, and

• the generation of JML specifications enable users to write customised code
that replaces the code generated by EventB2Java, and then to use existing
JML tools [40, 66] to verify that the customised code is correct.

Work done in this chapter have been published in [91] and in a book chapter
[36], and submitted to a journal paper [92]. My participation was to define the
sound rules for the translation of Event-B models to JML-annotated Java code,
and to fully implement the EventB2Java tool.

Chapter §7. Case Studies. We have validated the implementation of
EventB2Java by applying it to several Event-B models. This chapter presents
the set of Event-B models and the JML-annotated Java code generated by
EventB2Java. This chapter also presents two case studies using EventB2Java:
the first case study is on the development of an Android [61] application. This
development demonstrates how EventB2Java can be used as part of a software
development methodology to generate the functionality (the Model) of an An-
droid application that is organised following the MVC (Model- View-Controller)
design pattern [60]; the second case study is on testing the behaviour of an
Event-B model of the Tokeneer safety critical system [47]. This development
demonstrates how EventB2Java and Java Unit (JUnit) testing [73] can be used
to refine (improve) an Event-B model to conform to an existing System Test
Specification (STS) document. This chapter also presents a benchmark that
compares the EventB2Java tool with existing tools for generating Java code
from Event-B models. We compare EventB2Java against EB2J [77], Code Gen-
eration [54] tools for nine Event-B models and six comparison criteria.

1.1 Thesis overview 21

Contributions. The main contributions of this chapter are i) the presen-
tation of two case studies using the EventB2Java tool, ii) the presentation of
a benchmark comparing EventB2Java against two existing tools that generates
Java code from Event-B models. Work done in this chapter have been published
in [92, 36]. My participation on this work was: regarding the first case study,
I modelled the system in Event-B (and discharged all proof obligations). The
system is an extension of an existing Event-B model of a Social Network. I also
implemented the Controller of the system in Java, and implemented the View
using Android API; regarding the second case study, I participated modelling
the Event-B model for Tokeneer and discharging proof obligations of the model.
I implemented the Java Unit test cases; I participated in the definition of the
criteria for the benchmark, and I undertook the comparison of the existing tools
for generating Java code from Event-B models against EventB2Java.

Chapter 2

Background

2.1 The B method

The B method [2] is a strategy for software development in which an abstract
model of a system is transformed into an implementation via a series of refine-
ment steps, whereby the behaviour of each refinement is provably consistent
with respect to the behaviour of the previous step. A model Mi+1 of a system
at stage i + 1 is said to refine the model Mi at stage i . The refined model
must keep a palpable behavioural relation with its abstraction. This relation
is modelled through a “gluing invariant” property. Refinement steps generate
proof obligations to ensure that the system works correctly. Roughly speaking,
a refinement model should be such that it can replace the refined model without
the user of it noticing any change.

B models are called machines, composed of a static part: variables, constant,
parameters and invariants; and a dynamic part: operations, which describe how
the system evolves. B machines use predicate calculus (essentially predicate
logic and set theory) to model properties. Machine operations are defined using
various forms of substitutions. The following explains the different forms:

Figure 2.1 shows the syntax and the semantics of substitutions in B (taken
from [2]). The semantics are to be valid for any predicate R. In Figure 2.1,
P , Q , and R are predicates, and S and T are substitutions of variables by
expressions. [S]R, with S equals x := E , denotes the predicate resulting from
the substitution of any free occurrence of variable x in R by expression E .

A preconditioned substitution P | S denotes the substitution S under the
operation pre-condition P . Hence, the correct behaviour of the substitution S
is only ensured when it is activated in a state in which P holds. When P does
not hold, P | S is not guaranteed to verify any predicate R and a crash of the
system occurs. A guarded substitution P =⇒ S executes a substitution S under
the assumption P , hence if P does not hold, the substitution is able to establish
any predicate R.

A bounded choice substitution S []T non-deterministically implements a sub-

2.2 The Event-B Method 23

stitution among S or T . The semantics of a bounded choice substitution ensures
that either substitution is implemented it must satisfy R.

An unbounded choice substitution ∀ x ·S generalises a bounded choice sub-
stitution for any substitution S . Figure 2.1 presents a particular unbounded
substitution that further requires x to make predicate P true. P and S both
depend on x and the machine variables. Guarded bounded substitutions combine
bounded choice and guarded substitutions. Var Choice is a syntactic extension
to the bounded choice substitution.

Substitution Syntax Definition Semantics

Preconditioned
PRE P
THEN S
END

P | S
[P | S]R
⇔
P ∧ [S]R

Guarded
SELECT P
THEN S
END

P =⇒ S
[P =⇒ S](R)
⇔
(P ⇒ [S]R)

BoundedChoice
CHOICE S
OR T
END

S []T
(S []T)(R)
⇔
([S]R ∧ [T]R)

UnboundedChoice

ANY x
WHERE P
THEN S
END

∀ x ·
(P =⇒ S)

∀ x ·P =⇒ [S]R

GuardedBounded

SELECT P
THEN S
WHEN Q
THEN T
END

CHOICE
P =⇒ S

OR
Q =⇒ T

END

(P =⇒ S [] Q
=⇒ T)(R)
⇔
(P ⇒ [S]R) ∧

(Q ⇒ [T]R)

V ar Choice
VAR x
IN S
END

∀ x ·
(true =⇒ S)

∀ x ·true =⇒ [S]R

Figure 2.1: Substitutions in B

2.2 The Event-B Method

Event-B [4] models are complete developments of discrete transition systems.
Event-B was introduced by J-R. Abrial, and is derived from the B method.
Event-B models are composed of machines and contexts. Three basic relation-
ships are used to structure a model. A machine sees a context and can refine
another machine. And a context can extend another context.

Machines contain the dynamic parts of a model (e.g. variables, invariants,
events). And contexts the static part of a model (e.g. carrier sets, constants).
Figure 2.2 shows a general structure of an Event-B machine. It contains a list of

24 Chapter 2 – Background

machines and contexts the machine refines and sees. It also contains a list of
variables used in the machine, a list of invariants that restricts the possible
values the variables can take, and a variant which is a numeric expression that
has to be decreased by special events. The events of a machine determine
the way the system evolve. The system evolves via a serie of substitutions
of variables whenever an event is triggered. events contain a clause status
that defines an event as ordinary, convergent (the event has to decrease the
variant), or anticipated (the event must not increase the variant). It also
contain a list of local variables (they can be seen as parameter of the event)
under the clause any. Events contain a guard (under clause where) that needs
to be true in order for the event to be triggered. If the guard is true, the
event might perform its actions. Actions are under the clause then and they
define how the system evolves by means of substitutions. In Event-B there
are two kind of substitutions: deterministic assignment, which takes the form
of <variable identifier> := <expression>; and non-deterministic assignment,
which takes the form of <variable identifier list> :| <before after predicate>,
the before after predicate is the relationship that exists between the value of
a variable just before and just after the assignment. It may contain machine
variables. Non-deterministic assignments generalise deterministic assignments.
For example, v := v + w can be expressed as v :| v ′ = v + w , where v ′ is the
value of v after the assignment.

<machine identifier >
refines
< machine identifier >

sees
< context identifier list >

variables
< variable identifier list >

invariants
< label >: < predicate >

variants
< variant >

events
< event list >

Figure 2.2: General structure of Event-B machine (taken from [4]).

Figure 2.3 shows a general structure of an Event-B context. It contains a
list of extends which defines which contexts this context is extending. It also
contains a list of carrier sets (sets) and a list of constants. Finally, it defines
axioms which sets and constants must obey.

2.3 Tool support for Event-B 25

<context identifier >
extends
< context identifier list >

sets
< set identifier list >

constants
< constant identifier list >

axioms
< label >: < predicate >

Figure 2.3: General structure of Event-B context (taken from [4]).

2.3 Tool support for Event-B

The Rigorous Open Development Environment for Complex Systems (RODIN)
[28] is an open-source Eclipse IDE that provides support for Event-B and that
provides a set of tools for working with Event-B models, e.g. an editor, a proof
generator, and provers. Existing Rodin plug-ins provide extended functionality
such as model checking and animation [72].

Rodin come with an API that offers a series of Java interfaces for manipulat-
ing Event-B components called the data model. It also comes with a persistence
layer (called the Rodin database) that uses XML files to store these components.
It is intended to abstract the concrete persistence implementation from the data
model. The database API is located in the org.rodinp.core package. Full
source code for Rodin is available in [93].

2.3.1 Rodin Proof Obligations

In modelling in Event-B, users transform an abstract machine to code via a
series of refinements. Refinements add new information to the system. Each
refinement must be correct with the previous one. Hence a set of Proof Obliga-
tions (PO) is generated. POs are axioms that need to be proven true in oder
for the underlying system to be correct. Rodin automatically generates them.
Rodin provides the tool proof generator, and several provers. The provers asso-
ciated to Rodin help users to discharge PO, however sometimes it is necessary
the assistance of the user to discharge them. Generated POs are describe in this
section.

The Rodin proof-obligation generator automatically generates proof obliga-
tions based on both the machine and the context. As explained above, there
are three kind of relations between machines and contexts: i) a machine sees
a context, ii) a concrete machine can refine an abstract machine, and iii) a
context can extend another context. Given the abstract event evt0 and the
concrete event evt in Figure 2.4, and given an abstract and a concrete machine
declaring the events respectively, Rodin generates several proof obligations to

26 Chapter 2 – Background

evt0
any x where G(s, c, v , x)
then

act v :| BA0(s, c, v , x , v ′)
end

evt refines evt0
any y where H (y , c,w)
then

act w :| BA(s, c,w , y ,w ′)
end

Figure 2.4: Events of an Event-B abstract and refinement machines

ensure that the machines are models of the same system yet at a different level
of abstraction. In Figure 2.4, s and c are the sets and constants seen by the
abstract and concrete machines, v is the set of abstract variables, w , which
includes v , is the set of concrete variables, predicates G and H are the abstract
and concrete guards, BA0 and BA are before-after predicates that relate the
state of variables before and after actions occur1.

In Event-B, the symbol :| represents non-deterministic assignment. Non-
deterministic assignments generalise deterministic assignments (formed with the
aid of :=), e.g. the deterministic assignment x := x + z can be expressed as the
non-deterministic assignment x :| x ′ = x + z .

An abstract machine can declare an abstract invariant I and a concrete ma-
chine can additionally declare an invariant J (also called “gluing” invariant) that
depends on the context and the local machine variables respectively. Contexts
can further declare a set of theorems and axioms.

Rodin generates invariant preservation proof obligations (INV) for every ab-
stract (concrete) event of the abstract (concrete) machine expressing that, given
the axioms and theorems, the abstract (gluing) invariant, the guard of the event,
and the before-after predicate, then the abstract (the concrete) invariant holds in
the after state. Rodin generates a guard strengthening proof obligation (GRD)
for every event expressing that the guard of the concrete event must be as
least as strong as the guard of the abstract event. It generates a feasibility
proof-obligation (FIS) for the action of every event stating that a solution to
the before-after predicates exists. For every event merging two abstract events,
Rodin generates a merging proof obligation (MRG) that ensures that the guard
of the merging event is stronger than the disjunction of the guards of the ab-
stract events. For every event, Rodin generates a simulation proof obligation
(SIM) that ensures that abstract actions are correctly simulated by the concrete
actions. That is, the result produced by the concrete action does not contra-
dict the result produced by the abstract action. Rodin also generates numeric
and finite proof obligations to ensure that variable declarations are well-defined

1Primed variables refer to after-states.

2.4 The Java Modeling Language (JML) 27

(WD) and sets are finite (FIN).
In Rodin, one can further declare a machine variant positive integer expres-

sion n that must be decreased by specialised events to ensure that they do
not monopolise the system (NAT). Machine events can be declared anticipated
(convergent), and Rodin generates proof obligations expressing that the modi-
fied variant (evaluated after executing the event action) should be (strictly) less
than or equal to the variant evaluated before the event action occurs (VAR).

One can declare a witness of a refinement event with the aid of the with
clause of Rodin. A witness expression relates bounded variables of an abstract
event with bounded variables of the concrete event, e.g. one could have added
the expression with x : x ′ = y to the declaration of the concrete event evt in
Figure 2.4, meaning that bounded variable x in the abstract event is renamed
as bounded variable y in the concrete event. Rodin generates a witness proof
obligation (WFIS) for every event witness expressing that a solution for the
witness expression exists.

Theorems must be provable from contexts or machines (THM). In Event-B,
Theorems are used to simplify complex proof-obligations.

2.4 The Java Modeling Language (JML)

JML [70, 25, 71] is an interface specification language for Java – it is designed
for specifying the behaviour of Java classes, and is included directly in Java
source files using special comment markers //@ and /*@ */. JML’s type sys-
tem includes all built-in Java types and additional types representing mathe-
matical sets, sequences, functions and relations, which are represented as JML
specified Java classes in the org.jmlspecs.models package. Similarly, JML
expressions are a superset of Java expressions, with the addition of notations
such as ==> for logical implication, \exists for existential quantification, and
\forall for universal quantification.

JML class specifications can include invariant clauses (assertions that
must be satisfied in every visible state of the class), initially clauses (spec-
ifying conditions that the post-state of every class constructor must satisfy),
and history constraints (specified with the keyword constraint, which are
similar to invariants, with the additional ability to relate pre- and post-states
of a method). Concrete JML specifications can be written directly over fields of
the Java class, while more abstract ones can use specification-only model and
ghost fields. ghost fields are not related to the concrete state of the class
and can be declared final, while model fields are related to Java implemen-
tation fields via a represents clause, which acts much like a gluing invariant
in Event-B refinement.

JML provides pre-post style specifications for Java methods describing soft-
ware contracts [78]: if the caller of a method meets the pre-condition, the
method must ensure the post-condition. JML uses keywords requires for
method pre-conditions, ensures for normal method post-conditions, signals
and exsures for method exceptional post-conditions, and assignable and

28 Chapter 2 – Background

modifies for frame conditions (lists of locations whose values may change
from the pre-state to the post-state of a method). An assignable clause
of \nothing prevents any location from being modified from the pre- to the
post-state, and an assignable clause of \everything allows any side- effect.
Declaring a method as pure has the same effect as assignable \nothing.
The pre-state is the state on method entry and the post-state is the state on
method exit. A normal behavior method specification states that if the
method pre-condition holds in the pre-state of the method, then it will always
terminate in a normal state, and the normal post-condition will hold in this
state. A JML exceptional behavior method specification states that if
the method pre-condition holds in the pre-state of the method, then it will al-
ways terminate in an exceptional state, throwing a java.lang.Exception,
and the corresponding exceptional post-condition will hold in this state. In an
ensures or signals clause, the keyword \old is used to indicate expressions
that must be evaluated in the pre-state of the method – all other expressions
are evaluated in the post-state. The \old keyword can also be used in history
constraints, providing a convenient way to specify (for example) that the post-
state value of a field is always equal to the pre-state value, thus making the field
a constant.

Figure 2.5 presents a simple example of a JML specified Java abstract
class. This class defines an excerpt of a Social Network. In JML, model and
ghost fields are both specification-only. That is, they exist in JML but they do
not exist in the Java code. A significant difference is that model fields are an
abstraction of the mutable part of an object’s state and should be related to an
implementation field through the JML represents clause in any concrete class
that inherits from SOCIAL NETWORK. While ghost fields can be used to rep-
resent immutable data. Classes JMLEqualsSet and JMLEqualsToEquals-
Relation (in the org.jmlspecs.models package) are built-in to JML and
represent mathematical sets and relations, respectively. The invariant is an
assertion that all instances of the class must satisfy in all visible states, and
the initially clause is an assertion that the initial values of the fields must
satisfy.

The specification of the transmit rc method uses two specification cases
(the keyword also) - the first specifying that content rc is transmitted to
person pe if pe and ow are actually person of the network, rc belongs to the
content of the network, belongs to person ow, and rc has not been transmitted
yet to person pe. The second specifying that attempting to transmit rc to a
person pe when either pe or ow are not actually people of the network, or rc
does not belong either to the content of the network or to person ow, or rc
has been already transmitted to person pe, has no effect. The specification of
the transmit rc method demonstrates the syntax of existentially quantified
assertions in JML, and the use of exceptional behavior specification cases
to specify when exceptions are to be thrown.

2.4 The Java Modeling Language (JML) 29

//@ model import org.jmlspecs.models.JMLEqualsSet;
//@ model import org.jmlspecs.models.JMLEqualsToEqualsRelation;

public abstract class SOCIAL_NETWORK {
//@ public final ghost JMLEqualsSet<Integer> PERSON;
//@ public final ghost JMLEqualsSet<Integer> RAWCONTENT;
//@ public model JMLEqualsSet<Integer> person;
//@ public model JMLEqualsSet<Integer> rawcontent;
//@ public model JMLEqualsToEqualsRelation<Integer,Integer> content;

/*@ public invariant person.isSubset(PERSON)
&& rawcontent.isSubset(RAWCONTENT)
&& (new Relation<Integer, Integer> (person, rawcontent)).has(content)
&& content.domain().equals(person)
&& content.range().equals(rawcontent);*/

/*@ public initially person.isEmpty() &&
rawcontent.isEmpty() && content.isEmpty();*/

/*@ public normal_behavior
requires rawcontent.has(rc) && person.has(ow)

&& person.has(pe) && !ow.equals(pe)
&& !content.has(ModelUtils.maplet(pe,rc));

assignable content;
ensures (\exists JMLEqualsSet<Integer> prs;\old(prs.isSubset(person));

content.equals(\old(ModelUtils.toRel(content.union(ModelUtils.
toRel(ModelUtils.maplet(pe,rc)))).union(ModelUtils.cartesian(
prs, ModelUtils.toSet(rc))))));

also
public exceptional_behavior
requires !(rawcontent.has(rc) && person.has(ow)

&& person.has(pe) && !ow.equals(pe)
&& !content.has(ModelUtils.maplet(pe,rc)));

assignable \nothing; signals (Exception) true;*/
public abstract void transmit_rc(Integer rc, Integer ow,
Integer pe);

}

Figure 2.5: A JML specification of a social networking class.

30 Chapter 2 – Background

2.4.1 Tool support for JML

There are different techniques that work with JML specifications along with the
proper tooling to avoid error-prone. The most basic technique is parsing and
type-checking the JML specifications as done by the JML checker jml. Several
tools have been developed to help users with the correct specification of JML
clauses. For instance, the CHASE tool [31] checks the assignable clause of a
JML-annotated Java program. It checks for every method its assignable clause
by checking for every assignment and for every method call in the body, whether
it agrees with the assignable clause of the method that is checked. The tool
gives feed-back to the user on the forgetting variables that may be modified by
a specific method. Another tool that helps users on specifying JML clauses is
Daikon [57]. Daikon automatically infers invariants from JML-annotated Java
programs.

Another more specialised technique that works with JML consists of check-
ing the correctness of JML by run-time checking. In run-time checking one
runs the Java code and tests some safety conditions. Such run-time checking is
done by the JML compiler jmlc [43]. jmlc is an extension of the Java compiler
that compiles JML-annotated Java programs into Java bytecode. The compiled
bytecode contains the safety properties (assertions) as pre-conditions, normal
and exceptional post-conditions, invariants, and history constraints. If an asser-
tion is violated, an error message is arisen. Another tool for assertion checking
during testing phase is jmlunit [105]. jmlunit uses the JML specification as a test-
ing oracle, automating the process of generating JUnit tests. The tests creating
by this tool catches any assertion given by the JML run-time assertion, thus it
checks if, for instance, a pre-condition or an invariant is violated, meaning the
Java code does not meet the JML specification.

The major problem with run-time checking is that it is limited by the exe-
cution paths done by the test suite (since it is executed in run-time). Another
technique that works with JML is the static verification of the Java code. This
can give more assurance in the correctness of the Java code as it establishes
the correctness for all possible execution paths. Typically, this technique gen-
erates proof obligations from the JML specification and uses a theorem prover
to discharge them. There are several tool for working using this technique: the
LOOP tool [99] works over sequential Java implementations. It translates proof
obligations and uses PVS [84] or Isabelle [88] to discharge the proof obligations;
Krakota [75] is well suited for Java Cards Applets. Krakota receives as an input
an JML-annotated Java program and translates it to the input language of the
WHY tool [58]. WHY is used to automatically generate proof obligations and
uses COQ [16] prover to discharge the proofs; ESC/JAVA2 [46] is intended to
detect more simple errors, like null pointers, out of bound array access. ES-
C/JAVA2 uses provers like Z3 [49] to discharge proofs obligations; OpenJML
[45] translates JML specifications into SMTLIB [12] (Satisfiability Modulo The-
ories Library) format and passes the proof problems implied to backend SMT
solvers; the JACK tool [26] works on Java cards applets. The input for JACK
is a JML-annotated Java program where user needs to express the proof obli-

2.5 Dafny 31

gation (property) that want to proof. The tool translates the program to the
input language of B method, and translates the proof obligations to lemmas in
B. Lemmas are proven using a prover developed within Atelier B [8]; jmle [67]
translates JML specifications to Java programs that are executed using the Java
Constraint Kit.

There are several more tools for checking the JML specification against the
Java code. L. Burdy et. al. had made an overview of said tools in [25].

One limitation about these tools is no one has been developed to work with
Java 7 that introduces generics types. A generic type is a generic class that is
parameterised over types, so it is not possible to know the specific type in a
static manner.

2.5 Dafny

Dafny [65] is an imperative object-based language with built-in specification
constructs. The Dafny static program verifier can be used to verify the func-
tional correctness of programs. Dafny runs under Microsoft Visual Studio, and
from the command line, which requires a .NET virtual machine. Dafny provides
support for the annotation of program as contracts: pre- and post-conditions.
Also provides support for abstract specifications through the definition and use
of ghost variables and methods, and for the definition and specification of
mathematical functions. Functions are specification-only constructs; they exist
for verification-only purposes and are ghost by default. The requires spec-
ification of the function (which goes in the same direction of requires JML
clause) may be used to define its domain (partial functions). Post-conditions
are written as ensures specifications (which also goes in the same direction of
ensures JML clause). It represents the post-state of the function and must
hold for every possible invocation of the function. Pre- and post-conditions
must be written at the beginning of the function. The assert clause can be
written somewhere in the middle of the function. It tells that a particular ex-
pression always holds when control reaches that part of the code. The reads
part declares the function’s frame condition, which is all the memory locations
that the function is allowed to read [65]. Finally, the decreases part states
the termination metrics of the function.

Program verification with Dafny works by translating the program written
in Dafny to the Boogie 2 proving engine [11] in such a way that the correctness
of the Boogie program implies the correctness of the Dafny program.

2.6 Software Design Patterns

Code patterns are common to many software solutions. According to [7], a
software pattern “creates a common structure to help software developers to
resolve recurring problems encountered throughout software development”.

Gamma et. al. popularised the term Software Design Patterns [60], which

32 Chapter 2 – Background

is a reusable solution to a common problem within a given context. A Design
Pattern is not an implementation of a solution but a template for how to address
the problem. Gamma describes different kind of design patterns, some examples
are the following:

Singleton: ensures that a class has one instance, provides a global point of
access. For instance, in the development of a game that defines a board to be
modified among the players. The board needs to be instantiated once since the
players are going to be in the same game.

Facade: provides a unified interface to a set of interfaces in a subsystem. For
instance, a common way to reduce complexity in the development of software is
to implement the system into subsystems. However, that means the subsystems
need to communicate each other. In order to minimize this communication
burden, and dependencies between subsystems, one can use a facade as a front-
end.

Abstract Factory: provides an interface for creating families of related or
dependent objects without specifying their concrete classes. For instance, it can
be used when developing a framework that needs to be portable to different
platforms.

Visitor: allows to define a new operation without changing the classes of
the elements on which it operates. For instance, when defining a translation
from language A to language B , one normally creates an Abstract Syntax Tree
(AST) for A and then the translation to B is attached to the nodes of that
tree. Once the AST is built one can also think about another feature of the
development like the pretty print option. However, it will be messy to combine
the translation with this new feature. The Visitor design pattern proposes a
solution to add this new feature without changing the AST.

Model-View-Controller (MVC): models software as composed of three
components: a model (M), a controller (C), and views (V). It separates the
internal representation of the information from the way the users see it. All
components interact with each other; the Controller is a bridge between the
Model and the Views, sends commands to the Model for it to update its state.
It also sends commands to the Views to change the presentation of the Model
(this process is called rendering); the Model contains the logic of the system,
sends information to the Controller and the Views every time the Model changes
its state; the Views, which are the graphical representation of the information,
request information from the Model necessary to update the information pre-
sented to the user.

This design pattern is commonly used for the development of Graphical User
Interfaces (GUI) since the separation of the internal presentation of information
allows developers to change just the Views.

2.6 Software Design Patterns 33

Figure 2.6: MVC design pattern.

A common interaction of the MVC components is depicted in Figure 2.6 for
the development of a web calculator. The View deploys the graphical part of
the calculator. The user interact with the View generating a request from the
Model (e.g. 3 + 1). The Controller intercepts the user interaction and sends a
command to the Model for the Model to change its state. The Model receives
the command, processes it, and communicates with the View, so View changes
the representation of the information that users see (e.g. 4).

Chapter 3

Translating B Machines to
JML Specifications

This chapter. This chapter presents a translation from B machines to JML
specifications defined through syntactic rules. It also presents the implementa-
tion of this translation as the B2Jml tool. The tool enables B experts to use
Refinement Calculus techniques to develop critical components in B, and then
translate the result to JML for developers with less mathematical expertise to
be able to implement code that respects the JML specification. B2Jml enables
developers to use lightweight JML tools such as the jmle tool for executing
JML specifications [66, 40], runtime assertion checkers and static analysers [25].
B2Jml fully supports the B syntax except for the B constructs for multiple in-
cremental specification of machines, e.g. for including, importing, seeing, or
extending other machines. We integrated B2Jml to the ABTools suite [18]. We
have validated the tool by applying it to a moderately complex B model of a
social networking site. We further executed the resulting JML specifications
against a suite of test cases developed for a hand-translation of a B model. The
full code of the implementation of the B2Jml tool is available at [20].

The work presented in this chapter inspired the work presented in the rest
of this thesis. It has been published in [41, 36]. I participated in this work at
the end of the implementation of the B2Jml tool.

The rest of this chapter is organised as follows. Section 3.1 describes the
set of transition rules that translate B models to JML abstract class. These
rules are implemented as the B2Jml tool and integrated into the ABTools suite.
Section 3.2 presents the implementation. We have validated B2Jml by applying
it to the B model presented in Section 3.3. The B model is a moderately complex
model of a social networking site. That section also presents the resulting JML
abstract Java class. Finally, Section 3.4 gives conclusions.

Contributions. i) We present the definition of the translation of B machines
into JML specifications via syntactic rules, and ii) we present the implemen-

35

tation of this translation as B2Jml tool. Users might prefer to use JML since
a) implementing a JML specification in Java is much more straightforward than
implementing an equivalent B machine in Java. And b) the user may be more
familiar with JML syntax than B notation.

Related work. Jin and Yang [62] outline an approach for translating VDM-
SL to JML. Their motivations are similar to B2Jml tool in that they view
VDM-SL as a better language for modelling at an abstract level (as in B), and
JML as a better language for working closer to an implementation level. Their
approach has not been automated – they describe only a strategy for translating
specifications by hand.

Boulanger [19] describes partially automated translations between B and
VHDL (in both directions). This approach permits co-design – verified B im-
plementation machines can be translated to VHDL for realisation in hardware,
and translations of VHDL libraries can be used by B machines. Hence, these
translations allow designers to verify models of hardware components.

Bouquet et. al. have defined a translation from JML to B[22] and imple-
mented their approach as the JML2B tool [23]. Although their translation goes
in the opposite direction from the work presented here, their motivation is quite
similar – they view translation as a way to gain access to more appropriate tools
for the task at hand, which in this case is verifying the correctness of an abstract
model without regard to code. JML verification tools are primarily concerned
with verifying the correctness of code with respect to specifications, while B has
much stronger tool support for verifying models.

In some ways, translating from JML to B is a more difficult problem than
the reverse, as JML includes many concepts (objects, inheritance, exceptions,
etc.) that do not appear in B. Hence, Bouquet et al. were required to build
representations of these concepts in B for use by their translated machines.
Distinguishing pre- and post-state values required considerable effort, while in
B2Jml translation it was relatively clear which parts of a B machine should be
evaluated in the pre-state, and which parts needed to be evaluated in the post-
state. The translations are also similar because the correspondence between PRE
substitutions and requires clauses; invariants in both languages; B operations
and JML methods and so on is straightforward. One significant difference is that
Bouquet et. al. translate a JML class specification to a B machine that has
a set variable containing all instances of the class. Additional variables of the
machine represent each JML field as a function from this set of instances to the
value of the field for that instance. This provides a mechanism for distinguishing
pre- and post-state values (by making copies of these functions), but also forces
the B operation representing a JML method take the calling object as an explicit
parameter, rather than referring directly to the machine variables in the usual
way. This makes the correspondence between the JML specification and the B
machine more difficult to see.

36 Chapter 3 – Translating B Machines to JML Specifications

3.1 The Translation from B to JML

The translation from B to JML is implemented with the aid of a B2Jml operator.
It is defined (via syntactic rules), it takes B syntax as input and returns the
corresponding JML specification. To assist in this translation, we defined a
MOD operator. It calculates the set of variables modified by an operation.
The definition of MOD is inspired by the syntactic rules backing the analysis
performed by the Chase tool in [31]. Further, a TypeOf operator is employed
(without definition) to denote the inference of the type of a B variable and its
translation into a corresponding JML type. Correspondence between B and
JML types is briefly described at the end of section 3.1.2.

B2Jml translates a B abstract or refinement machine to a JML annotated
abstract Java class. The machine variables become model fields, and operations
are translated to abstract methods with JML specifications. A preconditioned
substitution in B generates JML (normal and exceptional) method specifica-
tion cases. Additionally, although substitutions in B have no explicit notion
of post-condition, B2Jml translates other substitutions to JML post-conditions
that relate the pre- and post-state values of the variables modified by the sub-
stitution. The rules defining B2Jml are deterministic so one cannot apply two
different rules at the same time. In this sense, these rules define a calculus that
computes the translation of B into JML.

Section 3.1.1 presents the translation of general substitutions, Section 3.1.2
presents the translation of other B syntax.

3.1.1 Translating Substitutions

Rule Sel translates a guarded substitution to a JML implication (==>) in which
the antecedent is obtained from the translation of the guard and the consequent
is obtained from the translation of the nested substitution, this matches the def-
inition of guarded substitution in B presented in Figure 2.1 where in a guarded
substitution WHEN P THEN S END, substitution S is executed under the as-
sumption of P . Rules When generalise rule Sel. The first rule When is a synonym
of rule Sel, in B, the construct for WHEN in the form WHEN P THEN S END
can be seen as SELECT P THEN S END so it is translated in the same way as
SELECT. The second rule When considers two guards1.

Pred(P) = P B2Jml(S) = S
(Sel)

B2Jml(SELECT P THEN S END)
=

\old(P) ==> S

Pred(P) = P B2Jml(S) = S
(When)

B2Jml(WHEN P THEN S END)
=

\old(P) ==> S

1The rule for the simultaneous substitution S || SS is presented later in this section.

3.1 The Translation from B to JML 37

Pred(P) = P B2Jml(S) = S
Pred(Q) = Q B2Jml(T) = T

(When)
B2Jml(SELECT P THEN S

WHEN Q THEN T END)
=

(\old(P) ==> S) &&
(\old(Q) ==> T)

Rules If and IfElse translate the IF and IF ELSE substitutions to JML.

Pred(P) = P B2Jml(S) = S
(If)

B2Jml(IF P THEN S END)
=

\old(P) ==> S

Pred(P) = P B2Jml(S) = S B2Jml(T) = T
(IfElse)

B2Jml(IF P THEN S ELSE T END)
=

(\old(P) ==> S) ∧ (!\old(P) ==> T)

Rule Pre presents the translation of preconditioned substitutions. A pre-
conditioned substitution is conceptually different from a guarded substitution.
While a guarded substitution imposes a condition on the internal behaviour
of the machine, a preconditioned substitution imposes a condition (the pre-
condition) on the caller. Hence, a preconditioned substitution aborts if the
pre-condition does not hold. This matches the definition of preconditioned sub-
stitutions presented in Figure 2.1 where in order to execute the substitution S
in a preconditioned substitution PRE P THEN S END one must prove P . In
JML, this behaviour is modelled by throwing an exception.

Pred(P) = P MOD(S) = A B2Jml(S) = S
(Pre)

B2Jml(PRE P THEN S END) =
/*@public normal behavior

requires P; assignable A;
ensures S;

also public exceptional behavior
requires !P; assignable\nothing;
signals(Exception) true; */

Rule Choice below introduces the translation for bounded choice substitu-
tions, whose meaning is the meaning of any of the nested substitutions.

B2Jml(S) = S B2Jml(T) = T
(Choice)

B2Jml(CHOICE S OR T END) = S || T

38 Chapter 3 – Translating B Machines to JML Specifications

Rule Any generalises rule When for unbounded choice substitutions. The
type of the variable x is inferred from its usage in the predicate P and substi-
tution S . If at least one value of x satisfies P , any value can be chosen for use
in S . If no x satisfies P , the substitution is equivalent to skip.

Pred(P) = P B2Jml(S) = S TypeOf(x) = Type
(Any)

B2Jml(ANY x WHERE P THEN S END) =
(\exists Type x; \old(P) && S) ||
(\forall Type x; !\old(P))

The VAR construct in B introduces a local variable x in the scope of a sub-
stitution S , and so is equivalent to an ANY substitution that does not constrain
its bound variable [2].

(Loc)
B2Jml(VAR x IN S END)

=
B2Jml(ANY x WHERE TRUE THEN S END)

Rule Asg presents the translation of an assignment from an expression E
to a variable v , the simplest nontrivial substitution in B. This substitution is
mapped to a JML predicate in which the value of the variable in the post-state
equals the value of the expression evaluated in the pre-state.

Pred(E) = E
(Asg)

B2Jml(v := E) = v.equals(\old(E))

Rule Sim presents the rule for the simultaneous substitution S || SS , in
which SS could be another simultaneous substitution. As the name indicates,
the nested substitutions occur simultaneously. Note that our rules translate
x := y || y := x to x.equals(\old(y)) && y.equals(\old(x)), which
matches the B semantics. B does not allow simultaneous assignments to the
same variable.

B2Jml(S) = S B2Jml(SS) = SS
(Sim)

B2Jml(S || SS)
=

S && SS

Further, frame conditions are checked; the only variables modified by a gen-
eral substitution are those variables modified by assignments within the sub-
stitution. Hence, a set of Mod rules are defined to calculate the set of these
variables. In rule ModAsg below, the assigned variable is added to the frame-
condition set. Another rules for B substitutions are ModSel, ModGua, ModAny,
ModCho and ModSim. These rules are similar to the ones underpinning the
checking performed by the Chase tool [31].

3.1 The Translation from B to JML 39

(ModAsg)
MOD(v := E) = {v}

MOD(S) = S
(ModSel)

MOD(SELECT P THEN S END)
=
S

MOD(S) = S MOD(T) = T
(ModGua)

MOD(SELECT P THEN S WHEN Q THEN T END)
=

S ∪ T

MOD(S) = S
(ModAny)

MOD(ANY x WHERE P THEN S END)
=
S

MOD(S) = S MOD(T) = T
(ModCho)

MOD(CHOICE S OR T END)
=

S ∪ T

MOD(S) = S MOD(T) = T
(ModSim)

MOD(S || T)
=

S ∪ T

As the variable introduced by a VAR substitution is local to that substitution,
it should not appear in an assignable clause and so is removed via rule
ModVar.

MOD(S) = S
(ModVar)

MOD(VAR x IN S END)
=

S − {x}

3.1.2 Beyond Substitutions

First the translation of an entire B machine into a JML-annotated Java class is
presented, followed by the translation of the components of that machine. As

40 Chapter 3 – Translating B Machines to JML Specifications

presented here, the translation considers only a single carrier set, only a single
variable and so on, but can easily be extended to multiple carrier sets, variables,
etc.

B2Jml(SETS s) = S B2Jml(CONSTANTS c) = C
B2Jml(VARIABLES v) = V B2Jml(PROPERTIES P) = P
B2Jml(INVARIANT I) = I B2Jml(ASSERTIONS A) = A
B2Jml(INITIALISATION B) = B B2Jml(Q) = Q

(M)
B2Jml(MACHINE M

SETS s
CONSTANTS c
PROPERTIES P
VARIABLES v
INVARIANT I
ASSERTIONS A
INITIALISATION B
OPERATIONS op = Q
END) =

public abstract classM {
S C V P I A B

Q
public abstract void op();
}

As there is not information about carrier sets, they are simply modelled
as sets of integers as shown in Rule Set. All constants are being translated
as final ghost variables, using ghost variables because JML model vari-
ables can not be declared final. Like model variables, ghost variables are
specification only and so do not appear directly in implementations. Note that
different instances of the class could use different carrier sets, so the field should
not be static.

(Set)
B2Jml(SETS s)

=
/*@ public final ghost
JMLEqualsSet<Integer> s; */

Rule Enum translates enumerated sets to sets of strings, where each string
is the name of an enumeration constant.

(Enum)
B2Jml(VARIABLES v = {s1, . . . , sn}) =
/*@ public static final ghost

JMLEqualsSet<String> v
= JMLEqualsSet.convertFrom(

new String [] {“s1′′, . . . , “sn ′′});*/

3.1 The Translation from B to JML 41

Rule Cons uses TypeOf to infer the type of a constant from the PROPERTIES
section of the machine.

TypeOf(c) = Type
(Cons)

B2Jml(CONSTANTS c)
=

//@ public static final ghost Type c;

As B PROPERTIES clauses specify properties of constants, Rule Prop trans-
lates them as static invariants.

Pred(P) = P
(Prop)

B2Jml(PROPERTIES P)
=

//@ public static invariant P;

Ordinary machine variable declarations are translated to JML model vari-
ables. The type of the variable is inferred from the machine invariant.

TypeOf(v) = Type
(Var)

B2Jml(VARIABLES v)
=

//@ public model Type v;

B invariant are translated to JML invariants and B assertions are trans-
lated as redundant invariants, as both assertions and redundant invariants are
implied by ordinary invariants.

Pred(I) = I
(Inv)

B2Jml(INVARIANT I) = //@ public invariant I;

Pred(I) = I
(Ass)

B2Jml(ASSERTIONS I) = //@ public invariant redundantly I;

A B INITIALISATION clause is translated to a JML initially clause, as
both provide initial values for variables. The assertion within the initially
clause uses == rather than calling the equals method if the type of v is prim-
itive.

Pred(E) = E
(Init)

B2Jml(INITIALISATION v := E) = //@ initially v.equals(E);

Here, the body of a B operation is assumed as its PRE substitution, so the
translation of Q is defined by Rule PRE in Section 3.1.1. Also, rules for cases
in which the body of a B operation is not a PRE are defined, for B operations
with input parameters, and for B operations with single and multiple output

42 Chapter 3 – Translating B Machines to JML Specifications

parameters. The return type of the corresponding method is either the trans-
lated type of the single output parameter, or Object [] in order to contain
the values of multiple output parameters.

The language used in B expressions is essentially predicate logic and set
theory. In the translation, sets, binary relations and binary functions are being
presented by the JML library model classes JMLEqualsSet, JMLEqualsTo-
EqualsRelation, and JMLEqualsToEqualsMap respectively. These classes
test membership using the equals method of the class that the elements belong
to, rather than the Java == operator. Several examples of rules for translating
B operators on these types are presented below, where si ’s are sets and r is a
relation.

Pred(s1) = s1 Pred(s2) = s2
(Subset)

B2Jml(s1 ⊆ s2) = s1.isSubset(s2)

Pred(x) = x Pred(s) = s
(Has)

B2Jml(x ∈ s) = s.has(x)

Pred(r) = r Pred(s) = s
(Image)

B2Jml(r [s]) = r.image(s)

TypeOf maps a B set type to the JML model class JMLEqualsSet, a re-
lation type to JMLEqualsToEqualsRelation, and a function type to JML-
EqualsToEqualsMap. As the types of B variables are specified implicitly (by
stating membership in some possibly deferred set), the type must be inferred
from its usage within the machine. This type inference was already implemented
in ABTools (see Section 3.2), so in the implementation is translated from the
representation of B types used by ABTools to the corresponding JML types.
A library code to capture additional properties of B types is being used. For
instance, given the B expression:

d ∈ P(N) & r ∈ P(N) & f ∈ d → r

which states that f is a total function from d to r , the type of f is trans-
lated as JMLEqualsToEqualsMap<Integer, Integer> and the following
is generated as part of the class invariant:

(new Total<Integer, Integer>(d, r)).has(f)

Library class org.jmlspecs.b2jml.util.Total represents the set of
all total functions from the specified domain to the specified range, so the has
method returns true if and only if f is a total function from d to r .

3.2 The B2Jml Tool 43

3.2 The B2Jml Tool

The B2Jml tool is integrated into ABTools [18], which is an open source en-
vironment for developing B language processing tools. Full source code for
ABTools and B2Jml is available in [20]. ABTools uses ANTLR [87] to gener-
ate a parser for B. The parser constructs abstract syntax trees, which are then
traversed (using an ANTLR tree walker) to infer and attach type information
to each node. ABTools can currently generate refinement proof obligations and
translate B machines to ASCII, LATEX, HTML and XML formats, and has some
initial support for generating C and Java implementations. This functionality
is also implemented via ANTLR tree walkers.

The bulk of the B2Jml implementation is realised as an additional ANTLR
tree walker, which implements the B2Jml, MOD, and TypeOf operators presented
previously. The tree walker traverses the syntax tree constructed by ABTools
to generate the JML specification as indicated by the rules for B2Jml, collecting
the variables that are modified by each operation as a side effect. Additional
utility classes implement the B operators on functions, relations and sequences
that do not directly correspond to methods of the JML model classes, as well as
providing support for B typing via classes such as org.jmlspecs.b2jml.-
util.Total as previously described.

Installing the B2Jml tool: B2Jml is part of the ABTools distribution, so
to use it one needs to install ABTools from eclipse. It can be installed in Eclipse
downloading the sources from the SVN repository https://abtools.svn.
sourceforge.net/svnroot/abtools. To run B2Jml one needs to add the
argument -toJML. More detailed instructions on how to install and use the tool
can be found at [33].

3.3 Using the B2Jml Tool

We have validated B2Jml tool by applying it to a moderate complex B model
of a Social Networking. The model was taking from [38].

3.3.1 An Example in B

The B model presented in this section is a model of a social networking site
taken from [38] that models social network content, social network friendship
relations, and privacy on contents. Figure 3.1 presents a simplified version of
the B method. Machine SOCIAL NETWORK declares two sets, PERSON and
RAWCONTENT, representing the set of all possible persons and the set of all
possible content (text, video, photographs, etc.) in a social network respectively.
Variables person and rawcontent are the sets of all persons and content that are
actually in the network, and content is a relation mapping people to their own
content.

https://abtools.svn.sourceforge.net/svnroot/abtools
https://abtools.svn.sourceforge.net/svnroot/abtools

44 Chapter 3 – Translating B Machines to JML Specifications

MACHINE SOCIAL NETWORK
SETS

PERSON;
RAWCONTENT

VARIABLES
person, rawcontent , content

INVARIANT
persons ⊆ PERSON∧
rawcontent ⊆ RAWCONTENT∧
content ∈ person ↔ rawcontent ∧
dom(content) = person ∧
ran(content) = rawcontent

INITIALISATION
person := ∅ ‖
rawcontent := ∅ ‖
content := ∅

OPERATIONS
transmit rc(ow , rc, pe) =̂

PRE
rc ∈ rawcontent ∧
ow ∈ person ∧
pe ∈ person ∧
ow 6= pe ∧
pe 7→ rc 6∈ content

THEN
ANYprs
WHERE

prs ⊆ person
THEN

content := content ∪ {pe 7→ rc} ∪ prs × {rc}
END

END
END

Figure 3.1: A B-machine for social networking.

3.3 Using the B2Jml Tool 45

A common operation in social networking sites is sharing content to people
in the social networking. The B example is modelling this by transmitting raw
content to a set of persons in the social networking (see operation transmit rc).
The operation is publishing a raw content rc (e.g. a photo) from the page of
ow (i.e. the owner of rc) in the page of pe. If transmit rc is invoked when
its pre-condition (following PRE) is true, the meaning of the operation is the
meaning of its substitution (the code following THEN). The operation is not
guaranteed to achieve any result if invoked when its pre-condition is false.

In the definition of transmit rc, pe 7→ rc represents the pair of elements
(pe, rc), so that the content rc is explicitly transmitted to person pe. The
construct ANY models unbounded choice substitution; it gives the implementer
the opportunity to choose any value for the bound variable prs that satisfies
the WHERE condition prs ⊆ person. This gives a refining or implementation
machine the flexibility to additionally transmit the content rc to all of an as yet
unspecified set of people.

3.3.2 Generating JML-annotated Abstract Java Classes

We used B2Jml tool to translate the most abstract B machine for the social net-
working site described in [38]. Then, the resulting JML-annotated Java abstract
class was typed and syntax-checked with OpenJML [45]. Figure 3.2 presents
the output of applying the B2Jml tool to the B model in Figure 3.1. Figure
3.2 shows how B2Jml tool translates B carrier sets as final ghost variables
with type JMLEqualsSet<Integer>, and B variables as model variables and
the type is calculated from the B invariant using the TypeOf operator pre-
viously introduced. The B invariant is translated as a JML invariant. The
JML invariant is an assertion that all instances of the class must satisfy in
all visible states, and the initialisation in B is translated as initially clause
in JML which is an assertion that the initial values of the fields must satisfy.

In the specification of the transmit rc method, the normal behavior case
guarantees that if the requires clause (pre-condition) is satisfied, no exception
will be thrown, only the locations listed in the assignable clause can be
modified by the method, and the post-state will satisfy the ensures clause
(post-condition). In an ensures clause, expressions in \old are evaluated
in the pre-state, while all other expressions are evaluated in the post-state.
The exceptional behavior case specifies that the method will throw an
exception and no locations will be modified if its pre-condition is satisfied.

As a further validation step, the translated specification was executed using
the jmle tool [66, 40]. This tool translates JML specifications to constraint pro-
grams, which can then be run using the Java Constraint Kit (JCK) [1]. Methods
in the generated constraint programs can be called from ordinary Java code, so
the programs can be used directly as (large and slow) Java implementations of
the JML specifications they were generated from. As the translation rules were
being developed for B2Jml, they were used to produce a hand-translation of
the social networking machine. jmle was used to execute this hand-translation
against a suite of JUnit test cases designed to check that the behaviour of this

46 Chapter 3 – Translating B Machines to JML Specifications

import org.jmlspecs.models.*;

public abstract class SOCIAL_NETWORK{
//@ public final ghost JMLEqualsSet<Integer> PERSON;
//@ public final ghost JMLEqualsSet<Integer> RAWCONTENT;
//@ public model JMLEqualsSet<Integer> person;
//@ public model JMLEqualsSet<Integer> rawcontent;
//@ public model JMLEqualsToEqualsRelation<Integer,Integer> content;

/*@ public invariant person.isSubset(PERSON)
&& rawcontent.isSubset(RAWCONTENT)
&& new Relation<Integer, Integer>(person, rawcontent)).has(content)
&& content.domain().equals(person)
&& content.range().equals(rawcontent);*/

/*@ public initially person.isEmpty() &&
rawcontent.isEmpty() && content.isEmpty();*/

/*@ public normal_behavior
requires rawcontent.has(rc) && person.has(ow)

&& person.has(pe) && !ow.equals(pe)
&& !content.has(ModelUtils.maplet(pe,rc));

assignable content;
ensures (\exists JMLEqualsSet<Integer> prs;
\old(prs.isSubset(person));

content.equals(\old(ModelUtils.toRel(
content.union(ModelUtils.toRel(
ModelUtils.maplet(pe,rc)))).union(ModelUtils.cartesian(prs,
ModelUtils.toSet(rc))))));

also public exceptional_behavior
requires !(rawcontent.has(rc) && person.has(ow)

&& person.has(pe) && !ow.equals(pe)
&& !content.has(ModelUtils.maplet(pe,rc)));

assignable \nothing; signals(Exception) true;*/
public abstract void transmit_rc(Integer rc, Integer ow, Integer pe);

}

Figure 3.2: A JML specification of a social networking class.

3.4 Conclusion 47

translation was as it was expected. This also provided a convenient way to
check that B2Jml behaved as expected - when the implementation was mature
enough, B2Jml was used to translate the B machine to JML, and then used jmle
to translate the JML specification to a constraint program. The suite of JUnit
test cases were ran against this program, confirming that the behaviour of the
specification generated by B2Jml matched the behaviour of the hand translation
for this set of test cases.

Finally, as all operations of the B model have been verified to preserve the
machine invariant using Atelier B [8], the tool gives the confidence that all
methods in the JML specification preserve the invariant as well. Note that the
meanings of B machine invariants and JML class invariants are closely related
- both are assertions that the machine variables/class fields must satisfy both
before and after the execution of any operation/public method.

3.4 Conclusion

In this chapter we presented some translation rules to produce JML specifica-
tions from B machines. We also introduced the implementation of the rules as
the B2Jml tool which is integrated to the ABTools suite. We validated B2Jml
by applying it to a social networking model written in B. The B model is com-
posed of an abstract machine that defines the core of a social networking and
five refinements that add functionality to it. B2Jml was able to generate JML
specifications from the fifth refinement of the Social Networking B model. As
a further validation of B2Jml we used OpenJML [45] to type-check the JML
specifications generated for the Social Networking B model. OpenJML uncov-
ered some problems with our tool regarding type inference of variables, we used
OpenJML’s feed-back to correct these problems.

We believe software developers might find B2Jml useful in the development
of correct applications. B2Jml enables users to model systems in B, where the
model can be proven correct w.r.t. some properties. Then, the user decides
the level of abstraction in B so as to generate JML specifications of the model.
From the JML specification, the user can manually write Java code and use JML
machinery, such as OpenJML [45] or jmle [66], to verify if the manually written
Java code meets the JML specification. B2Jml bridges Refinement Calculus
with B and Design-by-Contract with JML making the process of software de-
velopment easy. B2Jml allows people from different backgrounds to use formal,
as with B, and less-formal, as with JML, techniques together in the develop-
ment of software. B2Jml makes easy the process of writing Java code from a B
machine since having the translation in JML the Java implementation is more
straightforward rather than directly implement Java code from the B machine,
or refine the B machine close to an implementation machine. Besides, software
developers are more familiar with the notation underlying JML than with the
one in B.

The work presented in this chapter has some limitations: B2Jml does not
fully support the syntax underlying B. This imposes restrictions to the user

48 Chapter 3 – Translating B Machines to JML Specifications

to translate B models to JML; the translation has not been proven correct in
the logic of a prover. We have validated B2Jml by applying it to a B model,
however, in order to gain full confidence of the tool we need to prove that the
translation rules are correct in the logic of a prover; and B2Jml translates the
type of B variables to JML as instances of class org.jmlspecs.b2jml.*.
The classes defined in org.jmlspecs.b2jml.* are defined as generic Java
classes. The issue is there is not (yet) any JML tool that allows users to verify
the Java code against JML specifications when the code contains generic classes.

We decided not to maintain this tool any longer since we realised that Event-
B offers more benefits (discussed later on) than B. We decided to put our effort
on defining and implementing a tool that works over Event-B (as explained in
Chapter 4). Event-B is in some ways a simpler language than B and so it is easier
to translate. In particular, many of the constructs for multiple incremental spec-
ification of machines (such as the INCLUDES, IMPORTS, and SEES keywords)
that we have not yet implemented in B2Jml are not included in Event-B, so
we would not need to define translation rules for machine composition. Given
the event-driven nature of Event-B, this work requires us to develop both a
translation of events to JML specifications and a Java framework that models
the firing behaviour of events.

Chapter 4

Translating Event-B
Machines to JML
Specifications

This chapter. The work presented in this chapter goes in the same direction
as the one described in the previous chapter. The previous chapter showed how a
B machine is translated to JML specifications. This chapter shows a translation
of Event-B machine to JML. Event-B method is a derivative formalism of the
B method, also introduced by Abrial J.-R. in [4].

We decided to translate Event-B machines rather than B machines firstly,
because Event-B is in some ways a stronger language than B. For instance,
Event-B enables users to define new events that refine the skip event, whereas
this is disallowed in classical B. Second, an event in Event-B can be refined as
several events whereas this it not possible in B. Third, the B method is de-
voted to the development of Correctness-by-Construction software, while the
purpose of Event-B is used to model full systems (including hardware, software
and environment). Fourth, the syntax of Event-B is simpler than the syntax
of B so it is easier to learn, and easier to translate to another language. For
instance, B is composed of two different and complementary languages, namely,
the modelling language (e.g. syntax like WHEN P THEN S END) and the im-
plementation language (e.g. syntax like IF P THEN S END), whilst Event-B is
composed just of a modelling language. Many of the constructs for multiple
incremental specification of machines (such as the INCLUDES, IMPORTS, and
SEES keywords) that we did not implement in B2Jml tool are not included in
Event-B, so their translation rules do not need to be defined for machine com-
position. Fourth, machine and event refinement conditions are neater and easier
to handle in Event-B.

This chapter presents the definition rules for a translation from Event-B to
JML specifications and the implementation of this translation as the Event-
B2Jml tool [34], which is a plug-in for the Rodin platform. The translation

50 Chapter 4 – Translating Event-B Machines to JML Specifications

has been validated by applying the EventB2Jml tool to a moderately complex
Event-B model, MIO. The MIO model is presented in [37]. The tool generated
a JML-annotated Java abstract class. We further generated (manually) Java
code for the abstract class generated by the tool. The rest of this chapter is
organised as follows. Section 4.1 presents our approach to the translation of
Event-B models into JML specifications. Section 4.2 presents the EventB2Jml
tool that implements the translation, and Section 4.3 shows an example on the
use of out tool. Finally, Section 4.4 gives conclusions.

Contributions. The main contributions of this chapter are i) The definition
of a translation of Event-B models to JML through a collection of rules, one for
each component of an Event-B model. ii) The implementation of this translation
as the EventB2Jml tool, allowing users to specify an abstract system in Event-B
and to concretely design it and implement it in JML.

Related work. In [77], Méry and Singh present the EB2ALL tool-set that in-
cludes the EB2C, EB2C++, EB2J, and EB2C] plug-ins, each translating Event-
B machines to the indicated language. Unlike EventB2Java, EB2ALL supports
only a small subset of Event-B’s syntax, and users are required to write a final
Event-B implementation refinement in the syntax supported by the tool. In
[83], Ostroumov and Tsiopoulos present the EHDL prototype tool that gener-
ates VHDL code from Event-B models. The tool supports a reduced subset of
Event-B’s syntax and users are required to extend the Event-B model before
it can be translated. In [103], Wright defines a B2C extension to the Rodin
platform that translates Event-B models to C code. The Code Generation tool
[54] generates concurrent Java and Ada programs for a tasking extension [55] of
Event-B. As part of the process of generating code with the Code Generation
tool, the model need to be in a concrete refinement, and users are asked to model
the flow of the execution of events in the tasking extension. EventB2Jml differs
from all of these tools in that EventB2Jml does not require user intervention
before translation, and can translate a much larger subset of Event-B syntax.

Jin and Yang [62] outline an approach for translating VDM-SL [63] to JML.
Their motivations are similar to ours in that they view VDM-SL as a better
language for modelling at an abstract level (much the way that we view Event-
B), and JML as a better language for working closer to the implementation
level. In fact, they translate VDM variables to Java fields, thus dictating the
fields of an implementation.

4.1 The Translation from Event-B to JML

The translation from Event-B to JML is implemented with the aid of an EB2Jml
operator, which translates an Event-B machine and any context that it “sees”
to a JML annotated Java abstract class. Operator EB2Jml uses three helper
operators (introduced later on): Pred that takes any predicate or expression
in Event-B and translate it to the JML counterpart. MOD collects the set of

4.1 The Translation from Event-B to JML 51

EB2Jml(sets s) = S
EB2Jml(constants c) = C
EB2Jml(axioms X (s, c)) = X
EB2Jml(theorems T (s, c)) = T
EB2Jml(variables v) = V
EB2Jml(invariants I (s, c, v)) = I
EB2Jml(events e) = E

(M)
EB2Jml(

context ctx
sets s
constants c
axioms X (s, c)
theorems T (s, c)

end

machine M sees ctx
variables v
invariants I (s, c, v)
events e

end) =
public abstract classM {
S C X T V I E
}

Figure 4.1: The translation of the Event-B machine M , and the context ctx
that M sees to JML-annotated Java abstract class.

variables to be assigned in an Event-B event. And, TypeOf that translates the
type of a variable in Event-B to the corresponding JML variable type.

Figure 4.1 presents Rule M, which translates a machine M that sees con-
text ctx . All Event-B proof obligations are assumed to be discharged before a
machine is translated, so that proof obligations and closely associated Event-B
constructs (namely, witnesses and variants) need not be considered in the trans-
lation. A witness contains the value of a disappearing abstract event variable,
and a variant is an expression that should be decreased by all convergent Event-
B events and should not be incremented by any anticipated Event-B events. An
Event-B machine is translated to a single JML-annotated Java abstract class,
which can then be extended by a subclass that implements the abstract meth-
ods. This allows the translation to be re-run when the Event-B model is updated
without risk of losing hand-written or generated Java code 1. The translation
of the context ctx is incorporated into the translation of machines that “see”
the context.

1Rule defined in Chapter 5 for Event-B machines does not translate an Event-B machine
to an abstract Java class but to a Java concrete class since rules in Chapter 5 generate an
actual implementation of an Event-B machine.

52 Chapter 4 – Translating Event-B Machines to JML Specifications

In JML, model fields are an abstraction of the mutable part of an object’s
state, and so are appropriate for representing machine variables. Carrier sets
and constants are also translated as model fields with the addition of a history
constraint that prevents any change in the value of the field. model fields
can be attached to a represents clause to the declaration of the associated
implementation field2. As there is no type information about carrier sets in
Event-B, they are simply translated as sets of integers as depicted by rule Set.

(Set)
EB2Jml(sets s) =

/*@ public model BSet<Integer> s;
public constraint s.equals(\old(s)); */

Translation of constants and machine variables is similar, except that con-
stants are constrained to be immutable as previously described. If the constant
c is of a primitive type, the translation will use == rather than the equals
method. The helper operator TypeOf translates the type of an Event-B variable
or constant to the JML representation of that type.

TypeOf(c) = Type
(Cons)

EB2Jml(constants c) =
/*@ public model Type c;

public constraint c.equals(\old(c)); */

TypeOf(v) = Type
(Var)

EB2Jml(variables v) =
//@ public model Type v;

As axioms are often used to specify properties of constants, they are trans-
lated as invariants. In Event-B, theorems should be provable from axioms,
matching the semantics of the invariant redundantly clause in JML3.
Event-B invariants are naturally translated as JML invariants. Operator
Pred translates an Event-B predicate or expression to its JML counterpart.

Pred(X (s, c)) = X
(Axiom)

EB2Jml(axioms X (s, c)) =
//@ public invariant X;

Pred(T (s, c)) = T
(Theorem)

EB2Jml(theorems T (s, c)) =
//@ public invariant redundantly T;

2Carrier sets, constants and variables in Chapter 5 are translated as concrete Java (static
final) fields, so no model field specification is then generated.

3Rules defined in Chapter 5 for Event-B axioms and theorems are defined as static
making clearer that they should refer just to carrier sets and constants.

4.1 The Translation from Event-B to JML 53

Pred(I (s, c, v)) = I
(Inv)

EB2Jml(invariants I (s, c, v)) =
//@ public invariant I;

An initialisation event executes once to initialise the machine variables, and
so is naturally translated to a JML initially clause. EB2Jml is used recur-
sively to translate the actions of the initialisation event.

EB2Jml(A(s, c, v)) = A
(Init)

EB2Jml(events initialisation then A(s, c, v) end) =
//@ public initially A;

Each other event is translated to two JML methods: a guard method that
tests if the guard of the corresponding event holds, and a run method that
models the execution of the corresponding event. In Rule Any below, variables
bound by an any construct are existentially quantified in the translation, as any
values for those variables that satisfy the guards can be chosen. The translation
of the guard is included in the post-condition of the run method in order to bind
these same variables, as they can be used in the body of the event. Translation
of an event defined using a when construct (Rule When) is simpler as no variables
need to be bounded. Translation of events uses an additional helper operator
MOD, that calculates the set of variables assigned by the actions of an event
(the JML assignable clause). Rules Any and When defined in Chapter 5 vary
from the ones presented here. Rules in Chapter 5 translate an Event-B method
to a Java class that extends Java Thread so to simulate the execution of the
system as Event-B does. We defined the variables bound by an any construct as
parameter of the methods guard and run since is more natural to treat them
as parameters. Thus the JML spec does not define an quantifier existential.

TypeOf(x) = Type Pred(G(s, c, v , x)) = G
MOD(A(s, c, v , x)) = D EB2Jml(A(s, c, v , x)) = A

(Any)
EB2Jml(event evt any x where G(s, c, v , x)

then A(s, c, v , x) end) =
/*@ requires true;

assignable \nothing;
ensures \result <==> (\exists Type x; G); */

public abstract boolean guard evt();

/*@ requires guard evt();
assignable D;
ensures (\exists Type x; \old(G) && A);

also
requires !guard evt();
assignable \nothing;
ensures true; */

public abstract void run evt();

54 Chapter 4 – Translating Event-B Machines to JML Specifications

Pred(G(s, c, v)) = G MOD(A(s, c, v)) = D EB2Jml(A(s, c, v)) = A
(When)

EB2Jml(event evt when G(s, c, v)
then A(s, c, v) end) =

/*@ requires true;
assignable \nothing;
ensures \result <==> G; */

public abstract boolean guard evt();

/*@ requires guard evt();
assignable D;
ensures A && \old(G);

also
requires !guard evt();
assignable \nothing;
ensures true; */

public abstract void run evt();

The JML specification of each run method uses two specification cases. In
the first case, the translation of the guard is satisfied and the post-state of
the method must satisfy the translation of the actions. In the second case,
the translation of the guard is not satisfied, and the method is not allowed to
modify any fields, ensuring that the post-state is the same as the pre-state. This
matches the semantics of Event-B – if the guard of an event is not satisfied, the
event cannot execute and hence cannot modify the system state.

The translation of ordinary and non-deterministic assignments via opera-
tor EB2Jml is presented below. The symbol :| represents non-deterministic as-
signment. Non-deterministic assignments generalise deterministic assignments
(formed with the aid of :=), e.g. v := v +w can be expressed as v :| v ′ = v +w .
The translation does not generate the \old operators shown below when trans-
lating an initialisation event to an initially clause. If variable v is of a
primitive type, the translation will use == rather than the equals method.

Pred(E(s, c, v)) = E
(Asg)

EB2Jml(v := E) = v.equals(\old(E))

Pred(P(s, c, v , v ′)) = P TypeOf(v) = Type
(NAsg)

EB2Jml(v :| P) =
(\exists Type v ′; \old(P) && v.equals(v ′))

Multiple actions in the body of an event are translated individually and the
results are conjoined. For example, a pair of actions:

act1 x := y
act2 y := x

4.1 The Translation from Event-B to JML 55

is translated to x == \old(y) && y == \old(x) for integer variables x
and y , which correctly models simultaneous actions as required by the semantics
of Event-B.

4.1.1 Additional Translation Operators

The MOD operator collects the variables assigned by Event-B actions. The cases
of MOD for assignments are shown below. For the body of an event, MOD is
calculated by conjoining the variables assigned by all contained actions.

MOD(v := E) = {v} MOD(v :| P) = {v}

The Pred operator translates Event-B predicates, boolean, relational and
arithmetic expressions in the natural way. While some operations on Event-B
sets, functions and relations have direct counterparts in the model classes JML-
EqualsSet and JMLEqualsToEqualsRelation that are built-in to JML(as
shown in Chapter 3), many other operations do not. To supply these operations,
an implemented (and specified in JML) model classes is presented (see Section
5.3.2) BSet (as a subclass of JMLEqualsSet) and BRelation (as a subclass of
BSet, a BSet of pairs). Note that an Event-B relation can be used anywhere
that a set can appear (a relation is a set of pairs), but unfortunately JML-
EqualsToEqualsRelation is not a subclass of JMLEqualsSet. Several of
the rules defining Pred that translate applications of Event-B operators to calls
of the corresponding methods of classes BSet and BRelation are presented
below. In these rules, the si ’s are sets and r is a relation.

Pred(s1) = s1 Pred(s2) = s2
(Subset)

Pred(s1 ⊆ s2) = s1.isSubset(s2)

Pred(x) = x Pred(s) = s
(Has)

Pred(x ∈ s) = s.has(x)

Pred(r) = r Pred(s) = s
(Image)

Pred(r(s)) = r.image(s)

Particular types of Event-B relations (total relations, functions, etc.) are
translated as BRelations with appropriate restrictions in the invariant as ex-
plained in Chapter 3.

The TypeOf operator translates the type of Event-B variables and constants
given by Rodin to the corresponding JML type. All integral types are translated
as type Integer, all relations and functions are translated as type BRelation,
and all other sets are translated as type BSet (Section 5.3.2 explains the im-
plementation of BSet and BRelation).

56 Chapter 4 – Translating Event-B Machines to JML Specifications

public class Framework {
public static void main(String[] args) {

M m_impl = new M_Impl();
int n = /* the number of events in M */;
java.util.Random r = new java.util.Random();
while (m_impl.guard_evt_1() || m_impl.guard_evt_2()

|| ... || m_impl.guard_evt_n()) {
switch (r.nextInt(n)) {

case 0 : if (m_impl.guard_evt_1())
m_impl.run_evt_1(); break;

...
case n - 1 : if (m_impl.guard_evt_n())

m_impl.run_evt_n(); break;
}

}
}

}

Figure 4.2: A framework for executing JML-annotated Java classes translated
from Event-B machines.

4.1.2 A Java Framework for Event-B

An Event-B machine continues to operate until no event can be executed – in
particular, a machine can run indefinitely if the guard of at least one event al-
ways holds4. Any event with a satisfied guard can be executed, and all event
executions are atomic. Class Framework of Figure 4.2 presents a typical sched-
uler implementation of this behaviour, assuming that class m impl extends the
abstract class resulting from the translation of an Event-B machine M , that
overrides all abstract methods of class M appropriately, and that the events of
machine M are evt 1, evt 2, . . . , evt n. Note that the result of the translation
is a JML-annotated Java abstract class that must extended by a non-abstract
class (m impl in this case) before the methods can be executed.

4.2 The EventB2Jml Tool

The EventB2Jml tool is implemented as a Rodin plug-in. It uses the recom-
mended interfaces [94] to traverse the statically checked internal database of
Rodin. EventB2Jml was developed in Java and has been tested on version 2.8
of Rodin.

EventB2Jml uses the Rodin API to collect all components of the machine
to be translated (i.e. carrier sets, constants, axioms, variables, invariants and
events) as well as the necessary information (such as the gluing invariant) from
the refined machines. All this information is stored in the Rodin database and
can be accessed using the org.eventb.core library. Event-B expressions
and statements are parsed and stored as abstract syntax trees, which can be
accessed and traversed using the AST library in the org.eventb.core.ast
package [100]. The AST library provides services such as parsing a mathe-

4variants are not considering in this discussion.

4.3 Using the EventB2Jml Tool 57

matical formula; that is, computing its abstract syntax tree from a string of
characters (typically entered by the end-user), and navigating through formulas
implementing the Visitor design pattern.

The EventB2Jml implementation uses the visitor design pattern provided by
this package to traverse the abstract syntax tree, generating JML specifications
as described in Section 4.1. As Event-B includes set-theoretical notations that
are not built in to JML, additional utility classes have been developed imple-
menting the Event-B operators on sets and relations as JML-annotated Java
classes. This allows users to generate JML specifications from any stage of the
Event-B system (i.e. from the most abstract machine to any refinement). The
generated specifications include the imports of the library classes just described
(in the poporo.models.JML package), and is written to a file with the same
name as the machine being translated (with .java extension). Full source code
for EventB2Jml is available at [34].

Installing EventB2Jml tool: To work with the plug-in, one must download
Rodin from http://sourceforge.net/projects/rodin-b-sharp/
(EventB2Jml has been tested in Rodin version 2.8). Then one needs to add
EventB2Jml update site to the list of the update-sites in Rodin 5. More
detailed instruction on how to install and use the tool can be found at [34].
This tool is not longer maintained since we updated the translation to include
Java code (see Chapter 5).

4.3 Using the EventB2Jml Tool

We have validated EventB2Jml tool by applying it to a moderate complex Event-
B model, the MIO model [37]. Subsection 4.3.1 explains the Event-B model and
Subsection 4.3.2 shows the output obtained after applying EventB2Jml to the
Event-B model. This subsection also shows an excerpt of the implementation
of the JML-annotated Java abstract class generated by the tool.

4.3.1 An Example in Event-B

The MIO is an Event-B model of a transportation system that includes articu-
lated buses following the main corridor routes of a city [37]. The transportation
system is complemented with feeding buses connecting the city with its out-
skirts. A partial Event-B model of the MIO is depicted in Figures 4.3 and 4.4
(abstract and first refinement machines). The abstract machine (see left Fig-
ure 4.3) models the number of parked buses through the variable parked , and
defines an invariant parked ∈ 0 . . min(n,m) that must hold before and after all
the machine events. At this refinement stage, constants n and m are abstrac-
tions of the number of buses and stations of the system. These constants are
defined in the machine context ctx (see Figure 4.3 right).

5EventB2Jml update site: http://poporo.uma.pt/Projects/EventB2JmlUpdate

http://sourceforge.net/projects/rodin-b-sharp/
http://poporo.uma.pt/Projects/EventB2JmlUpdate

58 Chapter 4 – Translating Event-B Machines to JML Specifications

machine abstract sees ctx1
variables
parked
invariant
inv1 parked ∈ 0 . . min(n,m)
events
initialisation
then
act1 parked := 0
end
leave
when
grd1 parked > 0
then
act1 parked := parked − 1

end
end

context ctx1

contants n m

axioms
ax1 n ∈ N1
ax2 m ∈ N1

end

Figure 4.3: An excerpt of the abstract Event-B machine for MIO (left: machine
abstract . Right: context ctx1 that M see).

The abstract machine further defines the event leave that models when a bus
leaves any station. At this stage, the model does not show either the specific
bus or the station. Unlike B, in which operations are called, Event-B defines
events that might be executed/triggered when the guard is true. For instance,
in order for a bus to leave a station (leave event), the number of parked buses
must be greater than 0. The guard of the event is represented as parked > 0,
specifying that there is at least one bus parked. The meaning of an event is the
meaning of the substitution (parked := parked − 1) in its body. The machine
defines more events not shown in the figure.

The refinement of this machine (see left Figure 4.4) introduces more details
to the system. It declares (in the context, right Figure 4.4) two sets, BUSES
and STATIONS, representing the set of all possible buses and the set of all
possible stations in the system. Additionally, it says that the cardinality of
the set BUSES is equal to n and the cardinality of the set STATIONS is equal
to m (constants defined in the abstract machine). The refinement machine
defines another variable busStation that maps buses to stations, representing
which bus is parked at which station. The variable busStation is defined as a
partial injective function (denoted in Event-B as 7�), which enforces that a bus
in the domain of busStation (buses parked) must be in one station only and
that each station can hold just one bus. The refinement machine extends the
abstract event leave by adding more details (it also extends other events from
the abstract machine not shown in the figure). Specifically, in order for a bus b
to leave a station (the clause any gives the machine implementer the opportunity
to choose any value that satisfies the predicate in the guard), the bus b must be

4.3 Using the EventB2Jml Tool 59

machine ref 1 refines abstract sees ctx2
variables parked busStation
invariant
inv1r1 busStation ∈ BUSES 7� STATIONS
inv2r1 card(busStation) = parked
events
initialisation
begin act1 parked := 0

actr1 busStation := ∅
end
leave extends leave
any bwhere
grdr1 b ∈ dom(busSta)
then
actr1 busSta := busSta\{b 7→ busSta(b)}

end
end

context ctx2 extends ctx1

sets BUSES STATS

axioms
ax1 finite(BUSES)
ax2 finite(STATS)
ax3 card(BUSES) = n
ax3 card(STATS) = m

end

Figure 4.4: Part of an Event-B machine for MIO (left: refinement 1 machine.
Right: context).

a bus of the system and needs to be parked at one station (grdr1). If the guard
holds, the actions might be executed. Hence, the number of parked buses is
decremented by one and the pair {b 7→ busSta(b)} is subtracted to the function
busStation, indicating that bus b left the station where it was parked (actr1).

4.3.2 The JML-annotated Java abstract class

We used EventB2Jml tool to generate a Java abstract class of the MIO Event-B
model. Figure 4.5 depicts an excerpt of the output generated by the tool. It
defines Event-B carrier sets, constants, and variables with model JML clause
so user can attached those variables to an actual implementation. Carrier and
constants are defined with a JML constraint that prevents them to mutate
their values.

As validation step, the generated JML specifications (partially depicted by
Figure 4.5) was executed using the jmle tool [66, 40], validating the syntax and
type correctness of the generated file. The jmle tool translates JML specifica-
tions to constraint programs, which can then be run using the Java Constraint
Kit (JCK) [1]. Methods in the generated constraint programs can be called from
ordinary Java code, so the programs can be used directly as (large and slow)
Java implementations of the JML specifications they were generated from.

Figure 4.6 shows an implementation of the abstract Java class in Figure 4.6.
Carrier sets and constants were defined as final so they cannot mutate their

60 Chapter 4 – Translating Event-B Machines to JML Specifications

public abstract class ref1{
/*@ public model Integer m;
public constraint m.equals(\old(m)); */
/*@ public model Integer n;
public constraint n.equals(\old(n)); */
/*@ public model BSet<Integer> BUSES;
public constraint BUSES.equals(\old(BUSES)); */

/*@ public model BSet<Integer> STATS;
public constraint STATS.equals(\old(STATS)); */

//@ public static invariant NAT1.instance.has(n);
//@ public static invariant NAT1.instance.has(m);
//@ public static invariant BUSES.finite();
//@ public static invariant STATS.finite();
//@ public static invariant BUSES.int_size() == n;
//@ public static invariant STATS.int_size() == m;

//@ public model BRelation<Integer,Integer> busSta;
//@ public model Integer parked;

/*@ public invariant
(new Range(0,(new BSet<Integer>(n,m)).min())).has(parked) &&
busSta.isaFunction() && busSta.inverse().isaFunction() && busSta.domain().

isSubset(BUSES) && busSta.range().isSubset(STATS) &&
busSta.finite() && busSta.int_size() == parked; */

/*@ public initially parked == 0 && busSta.isEmpty(); */

/*@ requires true; assignable \nothing;
ensures \result <==> (\exists Integer b;

(parked > 0 && busSta.domain().has(b))); */
public abstract boolean guard_arrive();

/*@ requires guard_leave();
assignable parked, busSta;
ensures (\exists Integer b;

\old((parked > 0
&& busSta.domain().has(b)))
&& parked == \old(parked - 1)
&& busSta.equals(\old(busSta.difference((new BRelation<Integer,Integer>((

new JMLEqualsEqualsPair<Integer,Integer>(b,busSta.apply(b)))))))));
also
requires !guard_leave(); assignable \nothing;
ensures true; */
public abstract void run_leave();

}

Figure 4.5: A partial JML specification of the MIO Event-B model.

4.4 Conclusion 61

public class ref1_impl extends ref1{

public static final Integer mI = 3; //@ represents m = mI;
public static final Integer nI = 3; //@ represents n = nI;
public static final BSet<Integer> BUSESI = new BSet<Integer>(1,2,3); //@

represents BUSES = BUSESI;
public static final BSet<Integer> STATSI = new BSet<Integer>(1,2,3); //@

represents STATS = STATSI;

public BRelation<Integer,Integer> busStaI; //@ represents busSta = busStaI;
public Integer parkedI; //@ represents parked = parkedI;

@Override
public boolean guard_leave() {

return (parkedI > 0 && busStaI.domain().has(b));
}

@Override
public void run_leave() {

parkedI = parkedI - 1;
busStaI = busStaI.difference((

new BRelation<Integer,Integer>((
new JMLEqualsEqualsPair<Integer,Integer>(b,busStaI.apply(b))))));

}
}

Figure 4.6: An implementation for the abstract Java class presented in Figure
4.5.

value. All variables contain the JML represents that binds the abstract
variable with the actual definition.

4.4 Conclusion

In this chapter we presented a set of syntactic rules to translate Event-B models
to JML specifications. We also introduced the implementation of these rules as
the EventB2Jml tool which is a Rodin’s plug-in. We validated EventB2Jml by
applying it to a model of a transportation system (MIO) written in Event-B.
Then, we manually wrote Java code from the JML specifications. Working with
EventB2Jml suggests us that software developers can find the tool appealing to
the development of software, specially to develop critical software. One of the
advantages of EventB2Jml is that it enables users to first model the system in
Event-B where the user can prove the system consistent, to then transition to
JML specifications, where the user can manually write Java code. Our experi-
ence also suggests that EventB2Jml makes the use of Event-B formal method
more popular since the user does not have to refine the Event-B model until
an implementation, which is heavy burden, rather the user decides the level of
detail in Event-B to then translate the model to JML.

As a validation step, we applied EventB2Jml to an Event-B model, this
gave us the insight that EventB2Jml provides a relatively quick and easy way

62 Chapter 4 – Translating Event-B Machines to JML Specifications

to generate a Java implementation from an Event-B model. However, we need
to apply our tool in a wider variety of models. We found out that the process
of manually generating Java code from the JML specifications generated by
EventB2Jml can be optimised: the manual Java code closely follows the JML
specification. We decided, instead of maintaining EventB2Jml, to upgrade the
tool so it can automatically generate Java code along with the JML specification.
Thus, the user do not have to spend time on manually writing the Java code.
Chapter 5 discusses this upgrade.

Chapter 5

Translation of Event-B
Machines to
JML-annotated Java Code

This chapter. The work presented in previous chapters show how this thesis
evolved in time: we started first by proposing a translation from B to JML;
then we realised that Event-B is a better starting point for the modelling of
critical software, so we proposed a translation from Event-B machines to JML;
in the process, we proposed a translation of Event-B Proof Obligations (PO) to
Dafny, so users can assist the process of discharging PO by translating them to
Dafny; finally, we realised that the manual process of implementing Java code
for the JML specifications generated by the EventB2Jml tool was error-prone
and time consuming. Hence, this chapter presents a translation of Event-B
machines to JML-annotated Java classes. It also presents the implementation
of the underlying translation rules as the EventB2Java tool which is a Rodin
plug-in.

Work done in this chapter is based on author’s paper [91], co-authored by
N. Cataño, a submitted journal paper [92], and a book chapter to appear in
[36]. The rest of this chapter is organised as follows: Section 5.1 presents the
translation from Event-B to JML-annotated Java programs, and Section 5.3
presents the implementation of the EventB2Java tool. Section 5.4 shows an ex-
ample of applying EventB2Java to an Event-B model. Section 5.5 proposes two
software development strategies using the EventB2Javatool. Finally, Section 5.6
concludes and mentions future work.

Contributions. The main contributions of this work are i) the definition of
a full-fledged translation from Event-B to JML-annotated Java programs, and
ii) the implementation of this translation as the EventB2Java tool. The Event-
B2Java Java code generator largely supports Event-B’s syntax. A first key
feature of this translation is that it can be applied to both abstract and refine-

64
Chapter 5 – Translation of Event-B Machines to JML-annotated

Java Code

ment machines. Hence, EventB2Java tool users can generate code for a very
abstract (and incomplete) Event-B model of a system, check user’s intention
in Java - whether the system behaves as expected, and then continue develop-
ing the Event-B model to correct any issues and add additional functionality
as needed. EventB2Java can generate both sequential and multi-threaded Java
implementations of Event-B models.

A second key feature of this translation is the generation of (JML) formal
specifications along with the Java code. This feature enables users to write
custom code that replaces the code generated by EventB2Java, and then use
existing JML tools to verify that the custom code is correct.

Related work. In [77], Méry and Singh present the EB2ALL tool-set that in-
cludes the EB2C, EB2C++, EB2J, and EB2C] plug-ins, each translating Event-
B machines to the indicated language. Unlike EventB2Java, EB2ALL supports
only a small subset of Event-B’s syntax, and users are required to write a final
Event-B implementation refinement in the syntax supported by the tool. In
[83], Ostroumov and Tsiopoulos present the EHDL prototype tool that gener-
ates VHDL code from Event-B models. The tool supports a reduced subset of
Event-B’s syntax and users are required to extend the Event-B model before
it can be translated. In [103], Wright defines a B2C extension to the Rodin
platform that translates Event-B models to C code. The Code Generation tool
[54] generates concurrent Java and Ada programs for a tasking extension [55] of
Event-B. As part of the process of generating code with the Code Generation
tool, users have to decompose the Event-B model by employing the Machine De-
composition plug-in. The decomposed models are refined and non-deterministic
assignments are eliminated. Finally, users are asked to model the flow of the
execution of events in the tasking extension. EventB2Java differs from all of
these tools in that EventB2Java does not require user intervention before code
generation, and can translate a much larger subset of Event-B syntax.

In [48], Damchoom presents a set of rules that translate Event-B to Java.
However, the rules account for only a small part of Event-B’s syntax and have
not been implemented. Toom et. al [98] have a similar motivation; they present
Gene-Auto, an automatic code generator toolset for translating from high level
modelling languages like Simulink/Stateflow and Scicos to executable code for
real-time embedded systems. Their approach is to work at a higher level of
abstraction when verifying a solution (in the same way that we use Event-B),
and then to add implementation details.

Although the modelling of timing properties is not directly supported by
Event-B, a discrete clock can certainly be designed and implemented in Event-
B. In [95, 96], Mohammad Reza Sarshogh and Michael Butler introduce three
Event-B trigger-response patterns, namely, deadlines, delays and expires, to
encode discrete timing properties in Event-B. A “deadline” means that a set of
events must respond to a particular event within a bounded time. For a “delay”,
the set of response events must wait for a specified period after the triggering of
an event. An “expiry” pattern prevents response events from triggering after the

5.1 The translation from Event-B machines to JML-annotated Java
Code 65

occurrence of an event. The authors translate timing properties as invariants,
guards and Event-B actions. We are interested in investigating on how our code
generation framework can be extended to support timing properties in Event-B,
and in encoding this extension in EventB2Java once the Rodin platform fully
supports the use of discrete timing events.

The Open Group has recently undertaken an effort to produce a Real-Time
Java programming language called Safety-Critical Java (SCJ) [74] that aug-
ments Java with event handlers, memory areas and a Real-Time Specification
for Java [101]. The design of SCJ is organised into levels so that it facilitates
the certification of Safety-Critical Systems. Providing support for the encoding
of real time properties in EventB2Java might require us to use SCJ rather than
Java as the implementation language for Event-B. In [42], a refinement tech-
nique for developing SCJ programs based on the Circus language is proposed.
Circus is based on Z, CSP, and Timed CSP so it can be used for the modelling
of safety-critical systems. However, code generation is not supported by Circus.

5.1 The translation from Event-B machines to
JML-annotated Java Code

We present our translation from Event-B to Java and JML using three operators
(EB2Prog, EB2Java and EB2Jml), which we define via syntactic rewriting rules.
The primary operator is EB2Prog, which translates Event-B to JML-annotated
Java programs. It uses EB2Java to obtain the Java part of the translation
and EB2Jml to obtain the JML part. For example, Event-B invariants are
translated only as JML specifications, and so the definition of EB2Jml has a rule
for invariants, while EB2Java does not. On the other hand, the translation of
constants includes a Java part and a JML part, so the EB2Prog rule for constants
refers to both EB2Java and EB2Jml rules for constants. The translation further
employs operators MOD that returns the set of variables that a Java method
can assign to, Pred that translates an Event-B predicate or expression, TypeOf
that returns the type of a variable or constant, FreeVar that returns the set of
variables that occur free in an expression, and Stat1 and Stat2 that are used in
translating Event-B machine variants.

A machine is translated as a Java class. In translating an Event-B machine,
EB2Prog not only considers the information provided by the machine, but also
the contexts the machine sees. Figure 5.1 presents Rule M that translates a
machine M that sees context ctx . The machine is translated as a Java class
that includes JML class and method specifications. The translation of the ma-
chine includes the translation of the context the machine sees. Hence, the Java
translation of the machine includes the translation of carrier sets, constants,
axioms and theorems declared within the machine context. It also includes the
translation of variables and invariants declared within the machine. Notice that
we are not translating Event-B models to a Java abstract class as explained in
Chapter 4, hence the translation of carrier sets, constants, and variables does

66
Chapter 5 – Translation of Event-B Machines to JML-annotated

Java Code

EB2Prog(sets S) = S
EB2Prog(constants c) = C
EB2Jml(axioms X (s, c)) = X
EB2Jml(theorems T (s, c)) = T
EB2Java(variables v) = V
EB2Jml(invariants I (s, c, v)) = I
EB2Prog(variant E(s, c, v)) = Va
EB2Prog(events e) = E
EB2Jml(event initialisation then A(s, c, v) end) = I1
EB2Java(event initialisation then A(s, c, v) end) = I2

(M)
EB2Prog(

context ctx
sets S
constants c
axioms X (s, c)
theorems T (s, c)

end

machine M sees ctx
variables v
invariants I (s, c, v)
variant E(s, c, v)
event initialisation then A(s, c, v) end
events e

end) =
E
public class M {
X T I
S C V

Va

public Lock lock =newReentrantLock(true);

/*@public normal behavior
requires true;
assignable\everything;
ensuresI1; */

publicM(){
I2
// creation of Java Threads
}

}

Figure 5.1: The translation of machine M , and the context C that M sees.

5.1 The translation from Event-B machines to JML-annotated Java
Code 67

not use the JML keyword model since they are already Java variables. For this
reason, we are not using represents as suggested in Chapter 4.

Refinement machines are translated in the same way as abstract machines
since Rodin properly adds abstract machine components to the internal repre-
sentation of the refining machine. Refining and extending events (defined using
refines and extends, respectively) are translated in the same manner as abstract
events for the same reasons.

We translate carrier sets and constants as class attributes, and restrict those
attributes for verification purposes. Hence, carrier sets are translated as class
attributes with the addition of a history constraint that prevents any change
in their values. As we have no type information about carrier sets, they are
simply translated as sets of integers.

EB2Jml(sets S) = SM EB2Java(sets S) = SA
(Set)

EB2Prog(sets S) = SMSA

(Set)
EB2Jml(sets S) =
//@public static constraint

S.equals(\old(S));

(Set)
EB2Java(sets S) =
public static finalBSet<Integer> S =
newEnumerated(
Integer.MIN VALUE,Integer.MAX VALUE);

Translation of constants follows a similar pattern to the translation of
carrier sets, except that in Event-B, the values of constants are constrained
by axioms. The helper operator TypeOf translates the type of an Event-
B variable or constant to the Java representation of that type. Function
AxiomTheoremValue<Type> returns a value of type Type that satisfies the
axioms defined in the contexts the machine sees1.

EB2Jml(constants c) = CM EB2Java(constants c) = CA
(Cons)

EB2Prog(constants c) = CMCA

(Cons)
EB2Jml(constants c) =
//@public static constraint

c.equals(\old(c));

1Function AxiomTheoremValue<Type> has not yet been implemented in EventB2Java.

68
Chapter 5 – Translation of Event-B Machines to JML-annotated

Java Code

TypeOf(c) = Type
val = AxiomTheoremValue<Type>()

(Cons)
EB2Java(constants c) =
public static finalType c = val;

As axioms are mainly used to specify properties of constants and car-
rier sets, they are translated as static invariants. A JML static
invariant can only refer to static fields, and so this approach is consistent
with our translation of constants and carrier sets as static fields. Trans-
lating axioms to static invariants makes it clearer that they should not
refer to machine variables, for example. In Event-B, theorems that appear
in contexts should be provable from axioms, matching the semantics of the
invariant redundantly clause in JML.

Pred(X (s, c)) = X
(Axiom)

EB2Jml(axioms X (s, c)) =
//@public static invariantX;

Pred(T (s, c)) = T
(Thm)

EB2Jml(theorems T (s, c)) =
//@public static invariant redundantlyT;

Machine variables are translated to class attributes. The JML keyword
spec public makes a protected or private attribute or method public
to any JML specification.

TypeOf(v) = Type
(Var)

EB2Prog(variables v) =
/*@spec public*/ privateType v;

In Event-B, every event must maintain the machine invariants. In JML,
invariants state properties that must hold in every visible system state, specifi-
cally after the execution of the class constructor and after a method terminates.
This is semantically equivalent to conjoining the invariant to the post-condition
of each method and the constructor. Since the initialisation event translates to
the post-condition of the class constructor (see below), and the actions of each
other event translate as the post-condition of an “atomic” run evt method (in
Figure 5.2), Event-B invariants are naturally translated as JML invariants.

Pred(I (s, c, v)) = I
(Inv)

EB2Jml(invariants I (s, c, v)) =
//@public invariantI;

Machines include a specialised initialisation event that gives initial values to
state variables. This event is translated by EB2Jml as the post-condition of

5.1 The translation from Event-B machines to JML-annotated Java
Code 69

the (only) constructor for the Java class resulting from the translation of the
machine, and by EB2Java as the body of that constructor. Both translations
give initial values to the translation of the machine variables.

EB2Jml(A(s, c, v)) = A
(Init)

EB2Jml(event initialisation then A(s, c, v) end) = A

EB2Java(A(s, c, v)) = A
(Init)

EB2Java(event initialisation then A(s, c, v) end) = A

Other (non-initialisation) Event-B events can be either ordinary, convergent
or anticipated. Convergent events are used for modelling terminating systems.
Anticipated events denote some abstract behaviour that is to be made precise
in a future refinement. Convergent events must monotonically decrease the
machine variant (a given natural number expression), and anticipated events
cannot increase the machine variant. Events that are convergent or anticipated
are only enabled if the value of the variant is non-negative. An Event-B variant
expression “variant E (s, c, v)” is translated by EB2Prog as a method that returns
the result of evaluating the translation of E .

Pred(E(s, c, v)) = E
(Variant)

EB2Prog(variant E(s, c, v)) =
/*@public normal behavior

requires true;
assignable \nothing;
ensures\result == E;*/

public /*@ pure */ intvariant() {
returnE;

}

Rules Status1 and Status2 below are used (by rules Any in Figure 5.2, page 72,
and When in Figure 5.3, page 73) to impose the conditions associated with vari-
ants on the guards and actions of convergent and anticipated events. Translating
variant expressions in this manner allows the user to verify that a customised
method implementation is consistent with the meaning of the translated event
– for example, since the translation of a convergent event refers to the transla-
tion of the variant in the post-condition of its JML specification, the user can
employ JML machinery to verify that the customised implementation does in
fact decrease the variant. The return type of method variant() above is int.
This and the use of rule Status1 in Rule Any (and When) ensure that the variant
is a natural number expression as required by Event-B2.

2We translate variants to JML and Java since we came to realise that users might customise
the Java code and after customisation users must be able to check that the customisation of
a convergent event monotonically decreases the machine variant and the customisation of an
anticipated event does not increase it. Not as suggested in Chapter 3.

70
Chapter 5 – Translation of Event-B Machines to JML-annotated

Java Code

(Status1)
Stat1(status ordinary) =

true

(Status1)
Stat1(status convergent) =

m.variant() >= 0

(Status1)
Stat1(status anticipated) =

m.variant() >= 0

(Status2)
Stat2(status ordinary) =

true

(Status2)
Stat2(status convergent) =

m.variant() < \old(m.variant())

(Status2)
Stat2(status anticipated) =

m.variant() <= \old(m.variant())

Standard (non-initialisation) events are translated as Java threads. In Event-
B, non-mutually exclusive event guards allow the interleaving of the execution
of events whereas mutually exclusive guards force events to run sequentially.
We translate the latter case (see Section 5.1.2) without overriding the run()
method, forcing the implementation to run sequentially. We translate the for-
mer case by overring the method run() as explained in the following. The
translation of a standard event is defined by Rules Any in Figure 5.2, and when
in Figure 5.3: Rule Any refers to Event-B events with local variables bounded
by the Event-B clause any. Each such event is translated as a subclass of the
Java Thread class that includes a reference to the machine class implementa-
tion. The class implementing the event contains three methods: a guard evt
method that tests if the guard of the event evt holds, a run evt method that
models the execution of evt , and a run() method that overrides the corre-
sponding Java Thread method. Method run evt is atomic – it is executed
within lock and unlock instructions using a Reentrant lock from the Java
concurrent Library (Section 5.3.3 explains our decision of using Reentrant
lock rather than Java synchronized methods or an implementation of the
Bakery algorithm).

Variables bounded by the any construct are translated as parameters of
the run evt and guard evt methods (see Rule Any). The expression
GuardValue<Type>.next() in method run() returns a random value of

5.1 The translation from Event-B machines to JML-annotated Java
Code 71

type Type that might satisfy the event guard. The helper operator MOD com-
putes the set of variables assigned to in the actions of the event.

The JML specification of run evt uses two specification cases. In the first
case, the translation of the guard is satisfied (and the current value of the variant
is non-negative for convergent and anticipated events), and the post-state of the
method must satisfy the translation of the event actions and the translation of
the variant restriction. In the second case, the translation of the guard is not
satisfied, and the method is not allowed to modify any fields, ensuring that the
post-state is the same as the pre-state. This matches the semantics of Event-B:
if the guard of an event is not satisfied, the event cannot execute and hence
cannot modify the system state.

An event body consists of potentially many deterministic and non-
deterministic assignments. In Event-B, the symbol :| represents non-
deterministic assignment. Non-deterministic assignments generalise determin-
istic assignments (formed with the aid of :=). For example, v := v + w can be
expressed as v :| v ′ = v + w , where v ′ is the value of v after the assignment.
The first Rule NAsg and the first Rule Asg below translate non-deterministic
and deterministic assignments to JML (respectively). They are used within
JML method post-conditions. The JML translation of a non-deterministic as-
signment v :| P is a JML existentially quantified expression. The expression
\old(P) ensures that P is evaluated in the method pre-state. This matches
the Event-B semantics for assignments, in which the left-hand side is assigned
the value of the right-hand side evaluated in the pre-state. The expressions
v.equals(v’) and v.equals(\old(E)) ensure that the value v ′ of a vari-
able v in the post-state is properly characterised.

The second Rule NAsg and the second Rule Asg below translate non-
deterministic and deterministic assignments to Java (respectively). They
are used by rules Any and When to translate the body of an event.
PredicateValue<Type>(P) returns a value of type Type that satisfies pred-
icate P3.

Pred(P(s, c, v , v ′)) = P TypeOf(v) = Type
(NAsg)

EB2Jml(v :| P) =
(\existsType v’; \old(P)&&v.equals(v’))

TypeOf(v) = Type
val = PredicateValue<Type>(P)

(NAsg)
EB2Java(v :| P) =

v = val;

Pred(E(s, c, v)) = E
(Asg)

EB2Jml(v := E) = v.equals(\old(E));

3The EventB2Java tool does not yet implement function PredicateValue.

72
Chapter 5 – Translation of Event-B Machines to JML-annotated

Java Code

EB2Jml(A(s, c, v , x)) = A EB2Java(A(s, c, v , x)) = B
Pred(G(s, c, v , x)) = G MOD(A(s, c, v , x)) = D
Stat1(status St) = St1 TypeOf(x) = Type
Stat2(status St) = St2

(Any)
EB2Prog(event evt

status St
any x where G(s, c, v , x)
then A(s, c, v , x) end) =

public classevtextendsThread {
privateM m;

/*@public normal behavior
requires true;
assignable\everything;
ensuresthis.m == m; */

publicevt(M m){
this.m = m;

}

/*@public normal behavior
requires true;
assignable\nothing;
ensures\result<==> G && St1; */

public /*@ pure */ booleanguard evt(Type x) {
return G && St1;

}

/*@public normal behavior
requiresguard evt(x);
assignableD; ensuresA && St2;

also
requires!guard evt(x);
assignable\nothing; ensurestrue; */

publicvoidrun evt(Type x) {
if(guard evt(x)) { B }

}

public voidrun() {
while(true) {
Type x = GuardValue<Type>.next();
m.lock.lock();
run evt(x);
m.lock.unlock();
}

}

}

Figure 5.2: The translation of a standard Event-B event with local variables.

5.1 The translation from Event-B machines to JML-annotated Java
Code 73

EB2Jml(A(s, c, v)) = A EB2Java(A(s, c, v)) = B
Pred(G(s, c, v)) = G MOD(A(s, c, v)) = D
Stat1(status St) = St1 Stat2(status St) = St2

(When)
EB2Prog(event evt

status St
when G(s, c, v)

then A(s, c, v) end) =
public classevtextendsThread {
privateM m;

/*@public normal behavior
requires true;
assignable\everything;
ensuresthis.m == m; */

publicevt(M m){
this.m = m;
}

/*@public normal behavior
requires true;
assignable\nothing;
ensures\result<==> G && St1; */

public /*@ pure */ booleanguard evt() {
return G && St1;
}

/*@public normal behavior
requiresguard evt();
assignableD; ensuresA && St2;

also
requires!guard evt();
assignable\nothing; ensurestrue; */

publicvoidrun evt() {
if(guard evt()) { B }
}

public voidrun() {
while(true) {
m.lock.lock();
run evt();
m.lock.unlock();

}
}

}

Figure 5.3: The translation of a standard event.

74
Chapter 5 – Translation of Event-B Machines to JML-annotated

Java Code

Pred(E(s, c, v)) = E
(Asg)

EB2Java(v := E) =
v = E;

Simultaneous assignments in the body of an event are translated individually
and the results are conjoined. Assignments translate to both JML and Java.
For example, a pair of simultaneous actions x := y || y := x is translated to the
JML post-condition x == \old(y) && y == \old(x) for variables x and y
of type integer.

EB2Jml(A1) = A1
EB2Jml(A2) = A2

(ParAsg)
EB2Jml(A1 || A2) = A1 && A2

EB2Java(A1) = A1
EB2Java(A2) = A2

(ParAsg)
EB2Java(A1 || A2) = A1 A2

In Java, simultaneous actions are implemented by first calculating the value
of each right hand side of the assignment into a temporary variable. The Java
translation of x := y || y := x is:

TypeOf(x)x temp = x;
TypeOf(y)y temp = y;
x = y temp;
y = x temp;

Some Event-B constructs do not translate to Java or JML for various rea-
sons. For example, consider the with construct that is used in the definition
of a refinement event as a “witness” of a disappearing abstract (refined) event
variable. A witness predicate specifies how the disappearing variable is imple-
mented by the refinement event. A witness plays a similar role for an event as a
“gluing invariant” does for a machine. A witness for an abstract event variable
x is a predicate P(x) involving x . A deterministic witness for a variable x is an
equality predicate x = E , where E is an expression free of x . As Rodin ensures
that x does not appear in the refinement event (x is replaced by E), we do not
need to translate witnesses to Java or JML.

5.1.1 The Helper Operators

In the following, we present the helper operators MOD, Pred, and TypeOf used
in the translation (they closely follow the definition of these operators in pre-
vious chapters). The MOD operator collects the variables assigned by Event-B
actions4. The cases of MOD for assignments are shown below. For the body

4MOD’s rules largely follow the syntactic rules of the Chase tool [31].

5.1 The translation from Event-B machines to JML-annotated Java
Code 75

of an event, MOD is calculated by the union of the variables assigned by all
contained actions.

MOD(v := E) = {v} MOD(v :| P) = {v}

The Pred operator translates predicates, boolean, relational and arithmetic
expressions in the natural way. To simplify the translation process, we imple-
mented (and developed full JML specifications for) classes BSet and BRel-
ation, representing Event-B sets and relations. In particular, these classes
provided a convenient mechanism for implementing the operations on these
types. Here, we present several of the rules defining Pred for applications of
Event-B set and relation operations, largely by translating them to calls of the
corresponding methods. In these rules, the si ’s are sets and r is a relation.

Pred(s1) = s1 Pred(s2) = s2
(Subset)

Pred(s1 ⊆ s2) = s1.isSubset(s2)

Pred(x) = x Pred(s) = s
(Has)

Pred(x : s) = s.has(x)

Pred(r) = r Pred(s) = s
(Image)

Pred(r [s]) = r.image(s)

EB2Jml translates Event-B set comprehension expressions to JML (see Rule
Set-Comp) set comprehensions. Operator FreeVar returns the set of variables
that occur free in an expression. The rules shows the different ways of expressing
set comprehension in Event-B and the translation for each. For simplicity, we
assume that E contains a single free variable x in the second rule, and that E
and P do not contain a variable named e in either rule (i.e. e 6∈ FreeVar(E)∧e 6∈
FreeVar(P)). We do not translate set comprehensions to Java code since it is
not possible in general – set comprehensions can denote infinite sets.

Pred(E) = E TypeOf(x) = Type
Pred(P) = P TypeOf(E) = Type e

(Set-Comp)
EB2Jml({x · P | E}) =

newBSet<Type>(
newJMLObjectSet {Type e e |
(\exists Type x; P; e.equals(E))})

Pred(E) = E TypeOf(x) = Type
FreeVar(E) = {x} Pred(P) = P
TypeOf(E) = Type e

(Set-Comp)
EB2Jml({E | P}) =

newBSet<Type>(
newJMLObjectSet {Type ee |
(\exists Type x; P; e.equals(E))})

76
Chapter 5 – Translation of Event-B Machines to JML-annotated

Java Code

5.1.2 The Translation of Event-B to Sequential Java Pro-
grams

An event is enabled only if the event guard holds in the current state. This
could be the case for several events and so the interleaving semantics of Event-B
ensures that one of these events is non-deterministically selected and executed,
and thus there can be just one executing at the time. On the other hand,
mutually exclusive event guards force machine events to run sequentially.

The translation rules for sequential Java implementation are similar to the
ones presented previously for multi-threaded Java, in which events and machines
are translated as standard Java classes rather than threads5, as shown in Rule
Any Seq.

For the execution of these sequential Java implementations we can use the
framework defined in Chapter 4. The framework that enables users to experi-
ment with Event-B models. Class Framework in Figure 5.5 presents a typical
scheduler implementation of this behaviour, assuming that class M is the trans-
lation of the Event-B machine M , the sequence x1, . . . , xn represents Event-
B variables bounded by an any constructs, and the events of machine M are
evt1, evt2, . . . , evtn.

5.1.3 Support for Event-B Model Decomposition

When modelling systems with Event-B, one usually starts with the design of a
single closed machine that includes both the system and the surrounding envi-
ronment. The machine is then refined into a more concrete model of the system.
Abstract machines usually include few events, variables and invariants, whereas
(advanced) refinements typically contain many of them. The plethora of com-
ponents in machines at later stages in the refinement chain often makes the
discharge of the corresponding proof obligations in Rodin rather intricate. In
certain cases an Event-B model may be regarded as being composed of two semi-
independent sub-models in the sense that variables and the events affecting them
in the integrated model could, in principle, be neatly split between those two
sub-models. In this case, it would be very useful to provide a machine decompo-
sition mechanism that allows one to construct two independent machines whose
combined behaviour could nevertheless be provably shown to correspond to the
integrated model. In [5], J.-R. Abrial and S. Hallerstede propose a technique
for machine decomposition based on shared variables in which each decomposed
machines simulates the behaviour of other decomposed machines through the
use of external events. In [27] M. Butler proposes a technique for machine de-
composition by shared events in which decomposed machines include copies of
all of the variables that events in that machine use. The latter technique is
implemented in Code Generation [54]. Both machine decomposition techniques
produce independent machines that include local copies of shared variables or
local events that simulate the effect of other decomposed machines acting on the

5The EventB2Java tool permits users to select between a multi-threaded or sequential Java
implementation.

5.1 The translation from Event-B machines to JML-annotated Java
Code 77

EB2Jml(A(s, c, v , x)) = A EB2Java(A(s, c, v , x)) = B
Pred(G(s, c, v , x)) = G MOD(A(s, c, v , x)) = D
Stat1(status St) = St1 TypeOf(x) = Type
Stat2(status St) = St2

(Any Seq)
EB2Prog(event evt

status St
any x where G(s, c, v , x)
then A(s, c, v , x) end) =

public classevt {
privateM m;

/*@public normal behavior
requires true;
assignable\everything;
ensuresthis.m == m; */

publicevt(M m){
this.m = m;
}

/*@public normal behavior
requires true;
assignable\nothing;
ensures\result<==> G && St1; */

public /*@ pure */ booleanguard evt(Type x) {
return G && St1;
}

/*@public normal behavior
requiresguard evt(x);
assignableD; ensuresA && St2;

also
requires!guard evt(x);
assignable\nothing; ensurestrue; */

publicvoidrun evt(Type x) {
if(guard evt(x)) { B }
}
}

Figure 5.4: The translation of a standard Event-B event with local variables to
a sequential Java program.

78
Chapter 5 – Translation of Event-B Machines to JML-annotated

Java Code

public class Framework {
public static void main(String[] args) {
M machine = new M();
int n = /* the number of events of M */;
java.util.Random r = new java.util.Random();
while (true) {
// x1 ... xn are declared and given random values
switch (r.nextInt(n)) {

case 0 :
if (machine.guard_evt1(x1))
machine.run_evt1(x1); break;

...
case n - 1 :

if (machine.guard_evtn(xn))
machine.run_evtn(xn); break;

}
}

}
}

Figure 5.5: A framework for executing Java classes translated from Event-B
machines in a sequential fashion.

shared variables. Since the result of decomposing a machine are valid machines,
these are correctly translated by our tool.

5.1.4 Support for Code Customisation

The JML specifications generated by EventB2Java enable users to replace the
generated Java code with bespoke implementations. The user can then employ
existing JML tools [25] to verify the customised implementation against the
JML specification generated by the EventB2Java tool. For example, the code
generated by EventB2Java will represent an Event-B function variable using an
instance of class BRelation as described earlier in this section. A developer
may wish to represent this variable using a Java HashMap instead, as this will
make looking up the value of a given domain element more efficient. After gen-
erating this customised implementation, the developer can verify it against the
generated JML specification, likely making use of the existing JML specification
of the HashMap class [45].

5.2 Proof of Soundness

To gain confidence about our translation from Event-B to JML, it is necessary
to prove that the proposed rules (explained in the previous section) are indeed
sound. Having a proof of soundness of our translation, the user can be sure that
the JML specifications generated by our rules are modelling what the user ini-
tially modelled in Event-B. Néstor et. al. proposed an initial proof of soundness
of the translation [39]. The soundness proof ensures that any state transition
step of the JML semantics of the translation of some Event-B construct into
JML can be simulated by a state transition step of the Event-B semantics of

5.3 The EventB2Java Tool 79

that construct. The work provides the proof for invariants and the standard
Event-B initialising event. It does not include full machines or Event-B con-
texts.

They expressed Event-B and JML constructs as types in Event-B, then im-
plemented the translation rules explained in the previous section (denoted by
operator EB2Jml) as type transducer rules. They defined a semantics of Event-B
and JML types as state transducers. And finally proved that the semantics of
the JML translation of Event-B constructs is simulated by the Event-B seman-
tics of those constructs. The soundness condition is stated as a theorem and
proved interactively in Rodin.

5.3 The EventB2Java Tool

The EventB2Java tool is implemented as a plug-in of Rodin [28]. Rodin is an
open-source Eclipse IDE for Event-B that provides a set of tools for working with
Event-B models. Rodin comes with an API that provides extra functionality
on top of its core platform so as to support the implementation of applications
as plug-ins. EventB2Java uses the Rodin API to collect the information of all
the components of the machine to be translated. Figure 5.6 depicts a general
structure of the EventB2Java tool. Rodin is composed of several plug-ins, e.g.
an editor, a proof generator, provers, and model checkers and animators [72]
(Figure 5.6 depicts these plug-ins in dotted squares). EventB2Java is another
plug-in for Rodin. It takes an Event-B model and translates it to a JML-
annotated Java program.

Figure 5.6: General structure of EventB2Java Rodin plug-in.

In the following we describe the structure of the EventB2Java plug-in in
full detail. We first describe the structure of the Rodin platform and its main
components, and then describe how the EventB2Java plug-in interfaces with
these components to produce JML-annotated Java code. EventB2Java relies on
a series of recommended interfaces [94] to interface with the Rodin components.

5.3.1 EventB2Java Rodin Plug-in Structure

Figure 5.7 shows the main components of Rodin, shown as org.* squares.
It also shows the relation among those components and the EventB2Java

80
Chapter 5 – Translation of Event-B Machines to JML-annotated

Java Code

Figure 5.7: Specific structure of EventB2Java Rodin plug-in

plug-in (the solid arrows). Rodin is built on top of the Eclipse IDE. The
org.rodinp.core component implements the core functionality of Rodin,
e.g. a database for manipulating Event-B models, and for storing elements such
as proof obligations and proofs. It further includes a static checker, a proof obli-
gation generator and a prover. The org.eventb.core.ast component in-
cludes a library for manipulating mathematical formulas in the form of Abstract
Syntax Trees. It provides an abstract class (a Visitor) for parsing the mathemat-
ical formulas. The Sequent Prover (org.eventb.core.seqprover) compo-
nent contains a library for proving sequents. And the Event-B User Interface
(org.eventb.ui) component contains the Graphic User Interfaces that allows
users to write Event-B models and to interact with the interactive proof engine.

EventB2Java uses the Rodin org.eventb.ui component to manipulate
context menus, e.g. to enable users to choose the type of implementation (se-
quential or multi-threaded) to be generated (see Figure 5.8). The relation be-
tween the org.eventb.ui component and EventB2Java is depicted in Figure
5.7 with a double-headed arrow: from the component to EventB2Java to cap-
ture the user’s request; and from EventB2Java to the component to show the
code generated.

Event-B models can include contexts and machines. Contexts can include
carrier sets, constants, and axioms. Machines can include variables, invariants,
and events. EventB2Java uses the Rodin org.eventb.core component to
collect all the information of the machine and context to be translated, i.e.
carrier sets, constants, axioms, variables, invariants and events. Figure 5.7
represents the relation between this component and EventB2Java with a single-
headed arrow since our tool does not change the Event-B model, it just reads
it.

In Event-B, models are expressed using mathematical language. The org.-
eventb.core.ast component encodes Event-B’s mathematical language as
nodes of an Abstract Syntax Tree (AST). This component provides various
services such as parsing a formula (that is, computing its AST from a string
of characters), pretty-printing a formula, constructing new formulas directly
using the API library, type-checking formulas (that is, inferring the types of
the expressions occurring within and decorating them with their types), test-

5.3 The EventB2Java Tool 81

ing formulas for equality, among others. EventB2Java uses the parsing service
provided by this component to parse mathematical formulas to be translated to
JML-annotated Java code.

The org.eventb.core.ast component implements a library to traverse
trees (a Visitor) and to attach information to tree nodes. Figure 5.7 uses a single-
headed arrow between the org.eventb.core.ast component and our plug-
in since the formulas are not changed. The input to org.eventb.core.ast
is part of the information collected from the org.eventb.core component.
EventB2Java extends the Visitor to traverse the abstract syntax trees and pro-
duce Java code and the JML specifications. Since Event-B includes mathemati-
cal notations that are not built-in to Java or JML, we implemented them as Java
classes. The implementation allows EventB2Java to support Event-B’s syntax
(described in Section 5.3.2, and Appendix A shows for each Event-B syntax the
translation to JML and Java).

After collecting the information of the Event-B contexts and machines and
parsing them using the Visitor implementation, EventB2Java generates an
Eclipse Java project. This project contains various packages: The machine
package contains the translation of the machines and contexts. This package
includes a main Java class with information about carrier sets, constants, and
variables from the Event-B model. It also contains JML specifications generated
from axioms and invariants in Event-B. This package also contains the transla-
tion of each event and a test file to run the generated Java implementation.

The Eclipse project generated by EventB2Java further includes an
eventb prelude package that contains the Java classes necessary to support
all the Event-B syntax as explained in the next section. Finally, the Util pack-
age in the Eclipse project generated by EventB2Java includes utility methods.
For instance, it includes an implementation of a SomeVal method that returns
a random value contained within a set. It also includes the implementation of
a SomeSet method that returns a random subset of a set.

EventB2Java is available at http://poporo.uma.pt/EventB2Java.
This web site includes detailed instructions on how to install and use the
tool. The EventB2Java Eclipse plug-in’s update site is http://poporo.uma.
pt/Projects/EventB2JavaUpdate, and EventB2Java has been tested on
Rodin version 2.8.

EventB2Java Tool Usage: In a typical interaction with EventB2Java, a
user right-clicks an Event-B machine in the Explorer panel of Rodin and selects
“Translate to multi-threaded Java” or “Translate to sequential Java” (as shown
in Figure 5.8). EventB2Java generates an Eclipse project that includes the
JML-annotated Java implementation of the machine and the libraries needed
to execute the Java code. This Eclipse project is available in the “Resource”
perspective of Rodin. The Eclipse project includes a folder that contains the
generated code, and an “eventb prelude” sub-folder that contains the libraries
implementing sets and relations in Java.

http://poporo.uma.pt/EventB2Java
http://poporo.uma.pt/Projects/EventB2JavaUpdate
http://poporo.uma.pt/Projects/EventB2JavaUpdate

82
Chapter 5 – Translation of Event-B Machines to JML-annotated

Java Code

Figure 5.8: EventB2Java: Contextual menu in Rodin

5.3.2 Java Implementation of Event-B Mathematical No-
tations in EventB2Java

The Event-B modelling language is composed of five mathematical languages
(see Chapter 9 of [4]), namely, a) a Propositional Language, b) a Predicate Lan-
guage, c) an Equality Language, d) a Set-Theoretic Language, and e) Boolean
and Arithmetic Languages. Each language defines a series of constructs to
model systems. To provide support for the translation from Event-B, we have
implemented a series of JML-annotated Java classes; other Event-B constructs
are supported natively in Java. These classes are: BOOL, INT, NAT, NAT1,
Enumerated, Pair, BSet, BRelation, and ID (implementing, respectively,
booleans, integers, natural numbers with and without 0, the enumerated type,
pairs of elements, sets, relations, and the identity relation). BSet is imple-
mented as a subclass of the standard Java class TreeSet, and BRelation as
a set of pairs.

We had previously implemented versions of these classes, for the work
described in [41] (used also in the work described in Chapter 4). Partic-
ular kinds of Event-B relations (total relations, functions, etc.) are trans-
lated as BRelations with appropriate restrictions added to the invariant
For example, Pred(r ∈ D � R) for sets D and R equals: r.isaFunc-
tion() && r.inverse().isaFunction() && r.domain().equals(D)
&& r.range().isSubset(R), which is added to the invariant. We further
define classes Enumerated, ID, INT, NAT, NAT1, Pair and BOOL. For example,
Pred(i ∈ N) = NAT.instance.has(i), which restricts i to be non-negative.
The TypeOf operator translates the type of Event-B variables and constants to
the corresponding Java type. All integral types are translated as type Integer,
all relations and functions are translated as type BRelation, and all other sets
are translated as type BSet.

Some of the constructs of the Propositional Language are supported natively
in Java. Negation (¬) translates as !, conjunction (∧) as &&, and disjunction
(∨) as ||. Other constructs such as ⇒ and ⇔ are implemented as methods of
the class BOOL. The Predicate Language introduces constructs for universal and
existential quantification. Universally and existentially quantified predicates ∀ x
· (P) and ∃ x · (P) are translated as the JML universally and existentially quan-

5.3 The EventB2Java Tool 83

tified expressions (\forall TypeOf(x) x; P) and (\exists TypeOf(x)
x; P) respectively, where P is the JML translation of P6. The Predicate Lan-
guage also includes a construct e 7→ f that maps an expression e of type E to
an expression f of type F . EventB2Java translates this construct as an instance
of Pair<E,F>.

The Event-B Equality Language introduces equality predicates E = F for
expressions E and F , translated as E.equals(F), if E and F are object refer-
ences, or E == F, if they are of a primitive type. The Set-Theoretic Language
introduces sets and relations in Event-B. Set operations include membership
(∈), cartesian product (×), power set (P), inclusion (⊆), union (∪), intersection
(∩), and difference (\). These operations are all implemented as methods of the
class BSet. Operations on relations in Event-B include domain restriction (�),
range restriction (�), etc. All these operations are implemented as methods
of the class BRelation. Relations also include notations for surjective rela-
tions ↔→, total surjective relations ↔↔, functions, etc. EventB2Java translates
all these as instances of BRelation with JML invariants that constrain
the domain and the range of the relation, e.g. a total function is a relation in
which each element in the domain is mapped to a single element in the range.

The Boolean and Arithmetic Languages define the set BOOL, containing
elements TRUE and FALSE, Z, containing the integer numbers, N, containing
the natural numbers (0 inclusive), and N1, containing the natural numbers (0
exclusive). EventB2Java includes implementations of these constructs in Java,
namely, classes BOOL, INT, NAT, and NAT1. The Arithmetic Language defines
constructs over numbers. Operators such as ≤, ≥, etc. are directly mapped
into Java operators <=, >=, etc. The construct a . . b, which defines an inter-
val between a and b, is implemented as an appropriate instance of the class
Enumerated.

5.3.3 Decision on using Reentrant lock/unlock methods

There are several ways to implement the problem of the Critical Section in
Computer Science. We compared the execution times and CPU usage for
three methods in order to decide which method the EventB2Java tool should
use. We compared an implementation of the Bakery algorithm [69], the
synchronized native Java method, and methods lock/unlock from the
concurrent Java library. All experiments are available at http://poporo.
uma.pt/EventB2Java/exps.zip

We first compared the execution times for four multithreaded Java code
using the methods for implementing the critical section explained above. We
used a multithreaded implementation of a Binary and Linear search in an array,
the Minimum element of an array, and the Sorting algorithm of an array. We
ran the implementation varying the size of the arrays. Figure 5.9 depicts the
execution times taken for the four algorithms.

We also compared the CPU usage for them. For this experiment we used the

6EventB2Java does not generate Java code for quantified predicates.

http://poporo.uma.pt/EventB2Java/exps.zip
http://poporo.uma.pt/EventB2Java/exps.zip

84
Chapter 5 – Translation of Event-B Machines to JML-annotated

Java Code

-100

 0

 100

 200

 300

 400

 500

 600

 700

 800

 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Ti
m

e
(m

ili-
se

c)

size array

Reentrant
Bakery

synchronized

(a) Binary Search

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 100 200 300 400 500 600 700 800 900 1000

Ti
m

e
(m

ili-
se

c)

size array

Reentrant
Bakery

synchronized

(b) Linear Search

 0

 10000

 20000

 30000

 40000

 50000

 60000

 100 200 300 400 500 600 700 800 900 1000

Ti
m

e
(m

ili-
se

c)

size array

Reentrant
Bakery

synchronized

(c) Minimum Element

 0

 10000

 20000

 30000

 40000

 50000

 60000

 10 15 20 25 30 35 40 45 50

Ti
m

e
(m

ili-
se

c)

size array

Reentrant
Bakery

synchronized

(d) Sorting

Figure 5.9: Exp 1: Execution times ‘bakery’ vs ‘synchronized’ vs
‘lock/unlock’

5.4 Using the EventB2Java tool 85

2 multithreaded implementations that run forever. The code was ran for 5 min-
utes, we took the CPU usage every minute for both methods. Figure 5.10 shows
the CPU usage for both method during the 5 minutes. It can be seen that the
‘Bakery’ method outperforms the ‘synchronized’ method. For the ‘Bakery’
algorithm, in average the CPU usage was 8% whilst for the ‘synchronized’
method was 89%.

(a) Bakery

(b) Synchronized

Figure 5.10: Exp 2: CPU usage ‘bakery’ vs ‘synchronized’

Figure 5.9 depicts that the ‘lock/unlock’ method outperforms both the
‘Bakery’ algorithm and ‘synchronized’ method. This is due both approaches
guarantee fairness by putting each Thread to sleep for a random number (we
used a random number from 1 to 100), while ‘lock/unlock’ method guarantees
fairness by passing a boolean parameter to the constructor of the class lock7

Our decision on using ‘lock/unlock’ methods from the concurrent Java li-
brary in the EventB2Java was based on these two experiments: ‘lock/unlock’
makes better use of the CPU and outperforms the time execution to both
“synchronized’ method and ‘Bakery’ algorithm. Another reason is the li-
brary guarantees fairness by itself.

5.4 Using the EventB2Java tool

We have validated our tool by applying it to an ample set of Event-B models.
They are described in Section 7.3. We describe in next subsections an Event-B
model modelled by J.-R Abrial in [3] and show the JML-annotated Java code
generated by EventB2Java.

5.4.1 An Example in Event-B

The Binary Search algorithm finds the index of an element within a sorted array.
It works by choosing a pivot index in the domain of the array and comparing
the value at the index with the element one is searching for; if the value at the

7from the documentation of the class: “The constructor for this class accepts an optional
fairness parameter. When set true, under contention, locks favor granting access to the longest-
waiting thread. Otherwise this lock does not guarantee any particular access order.”

86
Chapter 5 – Translation of Event-B Machines to JML-annotated

Java Code

machine bin m2 sees bin c0
variables r p q
invariant
inv1 p ∈ 1 . . n
inv2 q ∈ 1 . . n
inv3 r ∈ p . . q
inv4 v ∈ f [p . . q]
events
initialisation
then
act1 p := 1
act2 q := n
act3 r := (n + 1) div 2
end
inc
when
grd1 f (r) < v
then
act1 r := (r + 1 + q) div 2
act2 p := r + 1

end
dec
when
grd1 f (r) > v

then
act1 r := (p + r − 1) div 2
act2 q := r − 1

end
found grd1 f (r) = v
end

end

context bin c0
constants n f v
axioms
axm1 f ∈ 1 . . n→N
axm2 ∀ i , j . i ∈ 1 . . n
∧j ∈ 1 . . n∧
i ≤ j
⇒
f (i) ≤ f (j)

axm3 v ∈ ran(f)
theorem
thm1 n ≥ 1

end

Figure 5.11: An extract of the Binary Search algorithm in Event-B

index is greater than the element, then the algorithm recursively searches for
the element in the sub-array to the left of the pivot, if the value is lesser than
the element then the algorithm searches for the element in the sub-array to the
right of the pivot; otherwise it returns the index of the element. In [3], J.-R.
Abrial presents the full model of the algorithm in Event-B. Context bin c0 in
Figure 5.11 declares constants f , n, and v to be the array, its size, and the value
the algorithm searches for, respectively. The correct values of these constants
are axiomatised within the context representing the preconditions of the Binary
Search algorithm. Axiom axm1 declares f to be a total function. Axiom axm2
requires f to be a sorted array, and axiom axm2 requires the value v to exist
within the array f . Theorem thm1 can be deduced from axiom axm1.

The current left and right indexes of the array are given by variables p

5.4 Using the EventB2Java tool 87

and q , which are given initial values 1 and n, respectively. The algorithm
searches for an index p ≤ r ≤ q in the domain of f such that f (r) = v . These
conditions are modelled as machine invariants in Event-B (see left Figure 5.11).
The initialisation event picks up the middle value for the pivot index r . The
machine bin m2 declares three standard events inc, dec, and found . Event inc
models the case when the value is to the right of the pivot, dec the case when
the value is to the left of the pivot, and found when the value is at the pivot so
no further actions are made.

5.4.2 The Generated JML-annotated Java code

Figures 5.12, and 5.13 show the JML-annotated Java code generated by Event-
B2Java for the Event-B model depicted in Figure 5.11. Figure 5.12 shows the
translation for the machine, and Figure 5.13 depicts the event inc (events dec
and found are not shown). EventB2Java translates Event-B constants such as f ,
n and v , directly into Java as static final variables. However, the tool does
not generate initial values for these variables. The initial values depend on the
constraints imposed by axioms and theorems. For instance, f must be a sorted
array, as described by axiom axm2, which contains a value v , as described by
axiom axm3. Nonetheless, EventB2Java generates JML specifications for these
axioms which one can use to verify whether the initial values one conjectured
for these constants are correct or not. EventB2Java translates variables as
private class fields with the respective spec public JML clause so variables
can be used for verification. It also defines the corresponding getter and mutator
methods (not shown in the figure). EventB2Java translates Event-B invariants
as JML invariants. Finally, defines the initial values of variables according
to the initialisation Event-B event, and creates the corresponding threads (i.e.
each Event-B event is translated as a Java class that extends Thread).

Figure 5.13 shows the JML-annotated Java code that EventB2Java generates
for event inc. It declares a variable machine which is a reference to the main
Java class that contains the definition of carrier sets, constants, and variables.
It defines 3 methods as explained in previous sections: the guard inc method
that returns true if the evaluation of applying the variable r to the relation f
is less than the value v (the value that the algorithm is looking for). That cor-
responds to guard of the event inc in the Event-B model; the run inc method
that performs the actions of the event updating the variable r to (r+1+q) /
2, and variable p to r + 1. Notice that it is important to get the value of
variables before the assignment (e.g. r tmp), if that was not the case the vari-
able p would have been assigned to a wrong value; the run method overriding
a method from Thread. It implements a critical section for the execution of
the method run inc simulating the behaviour of executing events in Event-B.

88
Chapter 5 – Translation of Event-B Machines to JML-annotated

Java Code

public class bin_m2{
...
public Lock lock = new ReentrantLock(true);

/******Constant definitions******/
//@ public static constraint f.equals(\old(f));
public static final BRelation<Integer,Integer> f = Test_bin_m2.random_f;

//@ public static constraint n.equals(\old(n));
public static final Integer n = Test_bin_m2.random_n;

//@ public static constraint v.equals(\old(v));
public static final Integer v = Test_bin_m2.random_v;

/******Axiom definitions******/
/*@ public static invariant f.domain().equals(new Enumerated(new Integer(1),n)

) && f.range().isSubset(NAT.instance) && f.isaFunction() && BRelation.
cross(new Enumerated(new Integer(1),n),NAT.instance).has(f); */

/*@ public static invariant
(\forall Integer i; (\forall Integer j; ((

new Enumerated(new Integer(1),n).has(i) &&
new Enumerated(new Integer(1),n).has(j) &&
i.compareTo(j) <= 0) ==> (f.apply(i).compareTo(f.apply(j)) <= 0)))); */

/*@ public static invariant f.range().has(v); */
/*@ public static invariant_redundantly (n).compareTo(new Integer(1)) >= 0; */

/******Variable definitions******/
/*@ spec_public */ private Integer p;
/*@ spec_public */ private Integer q;
/*@ spec_public */ private Integer r;

/******Invariant definition******/
/*@ public invariant

NAT.instance.has(r) &&
new Enumerated(new Integer(1),n).has(p) &&
new Enumerated(new Integer(1),n).has(q) &&
new Enumerated(p,q).has(r) &&
f.image(new Enumerated(p,q)).has(v); */

/*@ public normal_behavior
requires true;
assignable \everything;
ensures p.equals(1) &&
q.equals(n) &&
r.equals(new Integer(new Integer(n + 1) / 2));*/

public bin_m2(){
p = 1;
q = n;
r = new Integer(new Integer(n + 1) / 2);

// Threads initialisation
}

}

Figure 5.12: JML-annotated Java code generated by EventB2Java from the
bin m2 depicted in Figure 5.11.

5.4 Using the EventB2Java tool 89

public class inc extends Thread{
/*@ spec_public */ private bin_m2 machine;

/*@ public normal_behavior
requires true;
assignable \everything;
ensures this.machine == m; */

public inc(bin_m2 m) {
this.machine = m;

}

/*@ public normal_behavior
requires true;
assignable \nothing;
ensures \result <==>

machine.f.apply(machine.get_r()).compareTo(machine.v) < 0; */
public /*@ pure */ boolean guard_inc() {

return machine.f.apply(machine.get_r()).compareTo(machine.v) < 0;
}

/*@ public normal_behavior
requires guard_inc();
assignable machine.p, machine.r;
ensures guard_inc() &&

machine.get_r(),equals(\old(new Integer(new Integer(machine.get_r() +
1 + machine.get_q()) / 2))) &&

machine.get_p().equals(\old(new Integer(machine.get_r() + 1)));
also
requires !guard_inc();
assignable \nothing;
ensures true; */

public void run_inc(){
if(guard_inc()) {

Integer r_tmp = machine.get_r();
Integer p_tmp = machine.get_p();

machine.set_r(new Integer(new Integer(r_tmp + 1 + machine.get_q()) / 2));
machine.set_p(new Integer(r_tmp + 1));

}
}

public void run() {
while(true) {

machine.lock.lock(); // start of critical section
run_inc();
machine.lock.unlock(); // end of critical section

}
}

}

Figure 5.13: Binary Search: code generated for the inc event

90
Chapter 5 – Translation of Event-B Machines to JML-annotated

Java Code

public class bin_m2{
...
public inc evt_dec = new dec(this);
public dec evt_inc = new inc(this);
public found evt_found = new found(this);

...

public bin_m2(){
p = 1;
q = n;
r = new Integer(new Integer(n + 1) / 2);

}
}

Figure 5.14: Excerpt of the sequential JML-annotated Java code generated by
EventB2Java from the bin m2 depicted in Figure 5.11.

public class inc extends Thread{
/*@ spec_public */ private bin_m2 machine;

...
public inc(bin_m2 m) {

...
}

...
public /*@ pure */ boolean guard_inc() {

...
}

...
public void run_inc(){

...
}

}

Figure 5.15: Excerpt of the sequential Java code generated for the inc event

Notice that the execution of the Event-B model describe in Figure 5.11 is
sequentially: the guards of the events are mutually exclusive. In this case, it
is not necessary to translate the model to a multithreaded Java version. The
EventB2Java tool allows user to generate sequential Java code for those models
that their execution is sequential. Figures 5.14 and 5.15 present the sequential
JML-annotated Java code generated by EventB2Java. Notice that the transla-
tion of the machine define neither threads nor the reentrant lock, and it declares
the classes corresponding to the translation of the events as class fields. Notice
also that the translated Java class of the event inc neither extends Thread nor
overrides the run method.

EventB2Java generates an additional Java class defining a framework (as
described in Section 5.3.2) that executes the logic of the system, Figure 5.16

5.5 Software Development with EventB2Java 91

public class Framework{
public static void main(String[] args){
bin_m2 machine = new bin_m2();
int n = 3; //the number of events in the machine
while (true){

switch (rnd.nextInt(n)){
case 0: if (machine.evt_found.guard_found())

machine.evt_found.run_found(); break;
case 1: if (machine.evt_inc.guard_inc())

machine.evt_inc.run_inc(); break;
case 2: if (machine.evt_dec.guard_dec())

machine.evt_dec.run_dec(); break;
}

}
}

}

Figure 5.16: Binary Search: Sequential Java code generated for the inc event

depicts it. The user can customise the proposed Framework by changing the
condition of the while for machine.evt found.guard found().

5.5 Software Development with EventB2Java

We have validated the EventB2Java tool by generating JML-annotated Java
code for several Event-B models and by comparing our tool with different Java
code generators for Event-B (as shown in previous section). We have validated
EventB2Java also by applying it in two case studies presented in next chapter
(see Chapter 7). The case studies follow two strategies for software development
describe in the following. The first one, (described in Section 5.5.1), shows how
EventB2Java can be used as part of a software development strategy to generate
the core functionality (the Model) of an Android application that is organised
following the MVC (Model-View-Controller) design pattern [60]. The second
one (described in Section 5.5.2) shows how EventB2Java and Java Unit (JUnit)
testing can be used to refine (improve) an Event-B model system to conform to
an existing System Test Specification (STS) document.

5.5.1 Strategy on Software Development using MVC de-
sign pattern

Typical software applications include an interface (the View) that interacts with
the user, a functional core (the Model) that implements the basic functionality
of the application, and a linking part (the Controller) that disguises all requests
made by the user so that they can be understood by the Model. The Model
implements methods to edit data and to access the internal state of the ap-
plication. It might also include a registry of dependent Views to notify when

92
Chapter 5 – Translation of Event-B Machines to JML-annotated

Java Code

data changes occur during the rendering of the interface. The Controller imple-
ments wrapping code that transforms mouse input and keyboard shortcuts to
commands in the Model.

EventB2Java can be used to develop a system that follows the MVC design
pattern. The View-Controller components are developed using Usability Engi-
neering techniques as advocated by J. Nielsen in [82]; the core functionality is
modelled in Event-B and the EventB2Java tool is used to generate the Model
in Java.

The strategy comprises the following steps:

1. a system is modelled in Event-B and it is refined to the desired level of
abstraction via a hierarchy of machine refinements.

2. all proof obligations of the above Event-B model are discharged in Rodin,
so one can be sure about the soundness of the system modelled.

3. the Event-B model is automatically translated to Java using the EventB-
2Java tool.

4. the View part of the system is developed using Usability Engineering tech-
niques. EventB2Java generates getter and setter methods for machine
variables in the Java code generated enable communication between the
Model and the View.

This strategy has been successfully applied for the development of a Social-
Event Planner explained in Section 7.1.

5.5.2 Strategy on Software Testing

The use of a formal specification language to model software requirements elim-
inates ambiguity and reduces the chances that errors can be introduced during
software development. Naturally, it still remains the issue of coming up with a
formal specification that matches customer expectations, and an implementa-
tion that matches the formal specification.

EventB2Java can be used as part of a formal methods strategy for testing
the behaviour of a reactive system modelled in Event-B.

The strategy comprises the following steps:

1. one models the reactive system in Event-B following an existing System
Requirements Specification (SRS) document.

2. all proof obligations of the above Event-B model are discharged in Rodin,
so one can be sure about the soundness of the system modelled.

3. the Event-B model is translated to Java code using EventB2Java.

4. based on an existing System Test Specification (STS) document, one man-
ually writes Java Unit (JUnit) [73] tests that exercise the functionality of
the generated Java code.

5.6 Conclusion 93

If a JUnit test fails, the Event-B model is inspected and evolved to conform
to the STS document, and EventB2Java is used again to generate Java code.
This testing process is repeated until all of the JUnit tests pass. The soundness
of the Event-B model can then be verified by discharging proof obligations using
standard Event-B tooling. After making any changes to the model needed for
verification, it is translated to Java using EventB2Java, and the test suite run
once more to check that the behaviour is still as expected. Note that these
steps are complementary in that they address very different questions about the
model – testing with EventB2Java checks whether the model behaves as the user
expects, while verification checks whether the model is sound. In particular, a
sound model might not have the behaviour that the developer actually intended.
This testing strategy can further be combined with the use of the ProB model
checker [72]. The difference is that ProB works directly on the Event-B model
whilst our strategy incorporates the use of a STS document with software testing
conducted in Java. That is, the strategy uncovers inconsistencies in the Event-B
model vis a vis the STS (detecting whether the Event-B model captures user’s
intentions), while ProB determines if any valuation (a program) exists that
implements the Event-B model.

This strategy has been successfully applied for the testing of the Tokeneer
reactive system explained in Section 7.2.

5.6 Conclusion

In this chapter we presented a series of rules to generate JML-annotated Java
code from Event-B models. We also introduced the implementation of these
rules as the EventB2Java tool which is a Rodin plug-in. EventB2Java enables
users to generate an actual implementation of Event-B models in Java. The
Java code contains JML specifications that enable users to customise the Java
code to further check if the customised code does not invalidate the initial
model in Event-B. EventB2Java generates both sequential and multithreaded
implementations of the models. We have validated the tool by applying it to an
ample set of Event-B models to generate Java implementations. This chapter
shows a small example, Chapter 7 shows the use of EventB2Java in several
Event-B models.

The process followed to generate JML-annotated Java implementations from
Event-B models made easier the definition of the translation rules and the im-
plementation of the tool: we started by defining a translation from B machines
to JML specification (see Chapter 3), then defining a translation from Event-
B machines to JML specifications (see Chapter 4), the definition of the rules
presented in this chapter and the implementation of the EventB2Java tool were
relatively easy since we already had the expertise on the previous translations.

Software developers can benefit of EventB2Java since they can start the
software development in Event-B, where the system is modelled and proven
consistent. Once the model is correct and has the necessary detail, developers
can translate it to Java using EventB2Java. Developers can customise the Java

94
Chapter 5 – Translation of Event-B Machines to JML-annotated

Java Code

code being sure that the initial model is not invalidated since the JML spec-
ifications help them to check if the customised Java code is correct. While it
is true that using Rodin users can obtain a final implementation of the models
by refining the model until a very close machine implementation, it is also true
that the process of refining involves a lot of mathematical expertise since every
refinement machine needs to be proven consistent with the previous one. Event-
B2Java makes this process easy since users can decide the level of abstraction
in the Event-B model and use the tool to generate Java code.

Chapter 6

Translating Event-B
Machines Proof Obligations
to Dafny

This chapter. One uses Event-B for the formal modelling of critical software.
In modelling in Event-B, one needs to prove the system consistent by discharging
proof obligations (POs). Rodin, the Eclipse IDE for working with Event-B,
automatically generates the POs. There exist different ways to discharge POs:
Rodin comes with a prover (New PP) that can automatically discharge proofs;
Rodin also comes with third-party provers (they need to be installed as plug-ins)
to automatically discharge POs; and the user can attempt to discharge proof
obligations interactively using the interactive proving that Rodin provides. The
work described in this chapter seeks to help users to discharge Event-B POs
by translating them to the input language of Dafny. This chapter presents a
translation of Event-B proof obligations to the input language of Dafny and the
implementation of the translation as the EventB2Dafny Rodin plug-in. We do
not use the programming language of Dafny but the automatic verifier associated
to it to discharge the generated PO. EventB2Dafny supports the full Event-B
syntax. The work presented in this chapter is published in [35]. I participated in
the definition of the translation rules from Event-B Proof Obligations to Dafny
and its implementation. The rest of this chapter is organised as follows. The
description of the type of proof obligations generated by the Rodin platform are
shown in Section 6.1. Then, the translation of Rodin proof-obligations to Dafny
programs is explained in Section 6.2. Section 6.3 shows the implementation of
the EventB2Dafny tool. Finally, Section 6.4 gives conclusions.

Contributions. i) The definition of a translation from Event-B proof obli-
gations to Dafny through a collection of rules, one for each component of an
Event-B proof obligation, ii) the implementation of this translation as the Event-
B2Dafny tool. The translation allows Refinement Calculus based approaches to

96
Chapter 6 – Translating Event-B Machines Proof Obligations to

Dafny

have access to an ample set of formal techniques. iii) The implementation of a
prelude in Dafny language that implements sets (e.g. sets, relations, functions)
as datatypes and operations over these structures as functions.

Related work. In [51], David Déharbe presents an approach to translate
Rodin platform proof-obligations to the input language of the SMT-solvers. The
approach handles proof obligations that include boolean expressions, integer
arithmetic expressions, and basic sets and relations. The EventB2Dafny plug-in
works in a similar direction. Yet, by generating bespoke Dafny/Boogie proof
obligations, we can improve the performance of the Z3 SMT solver [49] on which
Boogie works.

In [76], D. Mentré, C. Marché, J. Filliâtre and M. Asuka present the bpo2why
tool that translates proof-obligations generated by the Atelier B suite into
Why [58] programs. Therefore, proof-obligations can be discharged using the
Krakatoa tool [59] or other automatic provers like Z3 [49]. The EventB2Dafny
plug-in works in a similar direction as the bpo2why tool, but our target language
is Dafny rather than Why.

6.1 Rodin Proof Obligations

The Rodin proof-obligation generator automatically generates proof obligations
(POs) based on both the underlying machines and contexts as explained in
Section 2.3.1. This section presents the type of POs generated by Rodin in a
detailed way and explains some of them through an example presented by J.-R.
Abrial in [4] (Chapter 5). We present proof obligations (POs) as Sequents: given
the set of hypotheses H and the goal G , a Sequent is represented by

H
`
G

A sequent reads as follows: under the hypotheses H , prove the goal G .
Figures 6.1 and 6.2 (taken from the example presented in [4] - Chapter 5)

depict an Event-B example (both machines see the context shown in Figure 6.1
right). The example presents an Event-B model for searching an element in a
sequence of integers. The model finds an index i of an element v in a sequence
f . Context ctx0 in Figure 6.1 defines a constant n to be a natural number. It
represents the size of the sequence f . Sequence f is defined as a total function
(axiom ax2) that maps natural numbers (from 1 to n) to elements of set D.
Constant v is defined as a natural number and axiom ax3 states that v is present
in the range of function f . The most abstract machine (Figure 6.1) models the
search process in one step. The search event defines a local variable k that
takes a value from 1 to the number of elements in the sequence. Additionally,
the evaluation of the function f in k is equal to value v , so the variable i takes
that value (notice that the value v is always presented in the sequence f , axiom
ax3 in the context ctx0 states that).

6.1 Rodin Proof Obligations 97

machine m0 a sees ctx0
variables
i
invariants
inv1 i ∈ 1 . . n
events
initialisation
then
act1 i := 1
end
search
any
k where
grd1 k ∈ 1 . . n
grd2 f (k) = v
then
act1 i := k

end
end

context ctx0

sets D
constants n f v
axioms
ax1 n ∈ N
ax2 f ∈ 1 . . n→ D
ax3 v ∈ ran(f)

theorem
thm1 n ∈ N1

end

Figure 6.1: An abstract and context machine in Event-B

The first refinement of the model (see Figure 6.2), introduces the search
strategy. The strategy introduces variable j that starts at value 0 (see event
initialisation) and it is then incremented by 1 (see event progress). According
to theorem thm1 r1, the value v is in the evaluation from j + 1 to n, of the
sequence f . Once variable j takes the value in which the evaluation of f (j + 1)
is equal to v (guard grd1 r1), the search event might be triggered and i will
take the value j + 1.

The set of proof obligations generated by Rodin to prove the consistency of
a system are:

The Invariant Preservation Proof Obligation: it states that events
must conform to machine invariants. Rodin generates a “evt/inv/INV” proof
obligation that states that the event evt conforms the invariant inv. Let evt be
as follows

evt
any x
where
G(s, c, v , x)

then
v :| BA(s, c, v , x , v ′)

end

The sequent takes as hypotheses the axioms and theorems, the invariant,

98
Chapter 6 – Translating Event-B Machines Proof Obligations to

Dafny

machine m1 a refines m0 a sees ctx0
variables i j
invariants
inv1 r1 j ∈ 0 . . n
inv2 r1 v 6∈ f [i . . j]
thm1 r1 v ∈ f [j + 1 . . n]
variant n − j
events
initialisation extends initialisation
then
act1 r1 j := 0
end
search refines search
when
grd1 r1 f (j + 1) = v
with k: j + 1 = k
then
act1 r1 i := j + 1

end
progress
status convergent
when
grd1 r1 f (j + 1) 6= v
then
act1 r1 j := j + 1

end
end

Figure 6.2: Refinement machine in Event-B

the guard of the event, and the before-after predicate, and one needs to prove
that the modified invariant holds

Axioms and theorems A(s, c)
Invariants I (s, c, v)
Guards of the event G(s, c, v , x)
Before − after predicate of the event BA(s, c, v , x , v ′)
` `
Modified specific invariant inv(s, c, v ′)

For the example presented in Figure 6.1 Rodin generates a search/inv1/INV
proof obligation that states that the new value of i (denoted i ′) must respect
the machine invariant

6.1 Rodin Proof Obligations 99

n ∈ N f ∈ 1 . . n→ D
v ∈ ran(f) n ∈ N1
i ∈ 1 . . n k ∈ 1 . . n
f (k) = v i ′ = k
`
i ′ ∈ 1 . . n

The Guard strengthening Proof Obligation: it states that the guards
of the refinement machine must be stronger than the abstract event’s guards.
Rodin generates a “evt/grd/GRD” proof obligation that states that the guards
of the refinement event evt are stronger that the guard grd of event evt . Let
event evt0 and its refinement evt be as follows

evt0
any x
where
grd g(s, c, v , x)
. . .
then
. . .

end

evt refines evt0
any y
where
H (y , s, c,w)

with
x : W (x , s, c,w , y)

then
. . .

end

The sequent takes as hypothese the axioms and theorems, the abstract and
concrete invariants, the concrete event guards, and the witness predicates for
parameters, and one needs to prove that the guard of the event of the abstract
machine holds

Axioms and theorems A(s, c)
Abstract invariants I (s, c, v)
Concrete invariants J (s, c, v ,w)
Concrete Event Guards H (y , s, c,w)
Witness predicates for parameters W (x , s, c,w , y)
` `
Abstract event specific guard g(s, c, v , x)

For the example presented in Figures 6.1 and 6.2, Rodin generates a
“search/grd2/GRD” proof obligation that states that the guards of the concrete
event search are stronger than the guard grd2 in the abstract event search:

100
Chapter 6 – Translating Event-B Machines Proof Obligations to

Dafny

n ∈ N
f ∈ 1 . . n→ D
v ∈ ran(f)
n ∈ N1
i ∈ 1 . . n
j ∈ 0 . . n
v 6∈ f [i . . j]
v ∈ f [j + 1 . . n]
f (j + 1) = v
j + 1 = k
`
f (k) = v

The Simulation Proof Obligation: it states that the execution of a con-
crete event evt is not contradictory with the execution of the abstract event that
evt is refining. Rodin generates a “evt/act/SIM” proof obligation that states
that the execution of the actions of a concrete event evt does not contradict the
execution of the action act from the evt0 abstract event. The follows illustrates
an event evt0 and its refinement evt

evt0
any x
where
. . .
then
act v :| BA1(s, c, v , x , v ′)

end

evt refines evt0
any y
where
H (y , s, c,w)

with
x : W 1(x , s, c,w , y ,w ′)
v ′ : W 2(v ′, s, c,w , y ,w ′)

then
act2 w :| BA2(s, c,w , y ,w ′)

end

The sequent takes as hypothese the axioms and theorems, the abstract and
concrete invariants, the concrete event guards, the witness predicates for vari-
ables and parameters, and the concrete before-after predicate of the abstract
machine, and one needs to prove that the before-after predicate of the abstract
event holds

Axioms and theorems A(s, c)
Abstract invariants I (s, c, v)
Concrete invariants J (s, c, v ,w)
Concrete Event Guards H (y , s, c,w)
Witness predicates for parameters W 1(x , s, c,w , y ,w ′)
Witness predicates for variables W 2(v ′, s, c,w , y ,w ′)
Concrete before − after predicate BA2(s, c,w , y ,w ′)
` `
Abstract before − after predicate BA1(s, c, x , v ′)

6.1 Rodin Proof Obligations 101

For the example presented in Figures 6.1 and 6.2, Rodin generates a
“search/act1/SIM” proof obligations :

n ∈ N
f ∈ 1 . . n→ D
v ∈ ran(f)
n ∈ N1
i ∈ 1 . . n
j ∈ 0 . . n
v 6∈ f [i . . j]
v ∈ f [j + 1 . . n]
f (j + 1) = v
j + 1 = k
`
k = j + 1

The numeric variant Proof Obligation: it states that under the guards
of each convergent or anticipated event, the numeric variant is a natural number.
Rodin generates a “evt/NAT” proof obligation that states that under the guards
of event evt , the variant is a natural number. Let machine m and event evt be
as follows

machine m
variables
v
invariants
I (sc, v)
variant
n(sc, v)
events
. . .

end
end

evt
status convergent
any x
where
G(s, c, v , x)

then
. . .

end

The sequent takes as hypotheses the axioms and theorems, the invariant,
and the guards of the event, and one needs to prove that the variant is a natural
number

Axioms and theorems A(s, c)
Invariants I (s, c, v)
Guards of the event G(s, c, v , x)
` `
A numeric variant is a natural number n(s, c, v ′) ∈ N

For the example presented in Figures 6.1 and 6.2 Rodin generates a
progress/NAT proof obligation

102
Chapter 6 – Translating Event-B Machines Proof Obligations to

Dafny

n ∈ N
f ∈ 1 . . n→ D
v ∈ ran(f)
n ∈ N1
i ∈ 1 . . n
j ∈ 0 . . n
v 6∈ f [i . . j]
v ∈ f [j + 1 . . n]
f (j + 1) 6= v
`
n − j ∈ N

The Variant Proof Obligation: it states that each convergent event de-
creases the numeric variant, and each anticipated event does not increase the
numeric variant. Rodin generates a “evt/VAR” proof obligation that states
that a convergent event evt decreases the variant, also that an anticipated event
evt does not increase the variant. Let m be a machine and evt an event as
follows

machine m
variables
v
invariants
I (sc, v)
variant
n(sc, v)
events
. . .

end
end

evt
status convergent
any x
where
G(s, c, v , x)

then
. . .

end

The sequent takes as hypotheses the axioms and theorems, the invariant,
the guards of the event, and the before-after predicate of the event, and one
needs to prove that the value of the modified variant is smaller than the value
of variant without modification

Axioms and theorems A(s, c)
Invariants I (s, c, v)
Guards of the event G(s, c, v , x)
Before − after predicate of the event BA(s, c, v , x , v ′)
` `
Modified variant smaller than variant n(s, c, v ′) < n(s, c, v)

For anticipated events, one needs to prove that the modified variant is not
greater than the variant (. . . ` n(s, c, v ′) ≤ n(s, c, v)). For the example pre-
sented in Figures 6.1 and 6.2 Rodin generates a progress/VAR proof obligation

6.1 Rodin Proof Obligations 103

n ∈ N
f ∈ 1 . . n→ D
v ∈ ran(f)
n ∈ N1
i ∈ 1 . . n
j ∈ 0 . . n
v 6∈ f [i . . j]
v ∈ f [j + 1 . . n]
f (j + 1) 6= v
j ′ = j + 1
`
n − (j + 1) < n − j

The non-deterministic witness Proof Obligation: it states that each
witness of a concrete event indeed exists. Rodin generates a “evt/x/WFIS”
proof obligation that states that a witness x of a concrete event evt exists. Let
evt be a concrete event

evt refines evt0
any y
where
H (y , s, c,w)

with
x : W (x , s, c,w , y ,w ′)

then
BA2(s, c,w , y ,w ′)

end

The sequent takes as hypotheses the axioms and theorems, the abstract and
concrete invariants, the concrete event guards, and the concrete before-after
predicate, and one needs to prove that the witness exists

Axioms and theorems A(s, c)
Abstract invariants I (s, c, v)
Concrete invariants J (s, c, v ,w)
Concrete Event Guards H (y , s, c,w)
Concrete before − after predicate BA2(s, c,w , y ,w ′)
` `
Existance of witness ∃ x ·W (x , s, c,w , y ,w ′)

For the example presented in Figures 6.1 and 6.2, Rodin generates a
“search/k/WFIS” proof obligation

104
Chapter 6 – Translating Event-B Machines Proof Obligations to

Dafny

n ∈ N
f ∈ 1 . . n→ D
v ∈ ran(f)
n ∈ N1
i ∈ 1 . . n
j ∈ 0 . . n
v 6∈ f [i . . j]
v ∈ f [j + 1 . . n]
f (j + 1) = v
i ′ = j + 1
`
∃ k ·j + 1 = k

The theorem Proof Obligation: it states that a context or a machine
theorem is indeed provable. For the example presented in Figure 6.1, Rodin
generates a “thm1/THM” proof obligation to prove that the theorem thm1 is
indeed provable

n ∈ N
f ∈ 1 . . n→ D
v ∈ ran(f)
`
n ∈ N1

The Well-Definedness Proof Obligation: it states that axioms, theo-
rems, invariants, guards, actions, variants, and witnesses are well defined. For
the example presented in Figure 6.1, Rodin generates a “search/grd2/WD”
proof obligation that states that guard grd2 of event search is well defined:

n ∈ N
f ∈ 1 . . n→ D
v ∈ ran(f)
n ∈ N1
i ∈ 1 . . n
k ∈ 1 . . n
`
k ∈ dom(f) ∧ f ∈ Z 7→ D

The Feasibility Proof Obligation: it states that a non-deterministic ac-
tion is feasible. Rodin generates a “evt/act/FIS” proof obligation that states
that the non-deterministic assignment in action act of event evt is feasible. Let
evt be an event

6.1 Rodin Proof Obligations 105

evt
any x
where
G(s, c, v , x)

then
act v :| BA(s, c, v , x , v ′)

end

The sequent takes as hypotheses the axioms and theorems, the invariants,
and the event guards, and one needs to prove the existence of v ′

Axioms and theorems A(s, c)
Invariants I (s, c, v)
Event Guards G(s, c, v , x)
` `
∃ v ′ ·before − after predicate ∃ v ′ ·BA(s, c, v , x ,w ′)

The Guard Merging Proof Obligation: it states that the guards of a
concrete event that merges two abstract events are stronger that the disjunction
abstract events’ guards. Rodin generates a “evt/MRG” proof obligation that
states that the evt ’s guards are stronger than the disjunction of the abstract
events evt is refining. Let evt be an event that refines both evt01 and evt02
abstract events

evt01
any x
where
G1(s, c, v , x)

then
S

end

evt02
any x
where
G2(s, c, v , x)

then
S

end

evt refines
evt01
evt02

any x
where
H (s, c, v , x)

then
S

end

The sequent takes as hypotheses the axioms and theorems, the abstract
invariants, and the concrete event guards, and one needs to prove the disjunction
of the abstract guards

Axioms and theorems A(s, c)
Abstract Invariants I (s, c, v)
Concrete Event Guards H (s, c, v , x)
` `
Disjunction of abstract guards G1(s, c, v , x) ∨G2(s, c, v , x)

Next section shows how each proof obligation generated by Rodin is trans-
lated to the input language of Dafny.

106
Chapter 6 – Translating Event-B Machines Proof Obligations to

Dafny

datatype Pair<S,T> = Pr(x: S, y: T);

datatype Relation<D,R> =
Rel(domain: set<D>, range: set<R>,

map: set<Pair<D,R>>);

Figure 6.3: Formalising relation structures in Dafny.

6.2 Expressing Event-B Proof Obligations in
Dafny

Dafny programming language does not natively support all structures for pred-
icate and set theory used in Event-B. Sets, relations, and other Event-B struc-
tures were defined in Dafny as datatypes, and operations over these structures
as functions. A relation Relation<D,R> between a set of type D and a set of
type R is a constructed type in Dafny, formalised with the aid of a Rel type
constructor, which has three parameters, domain of type D, range of type R,
and a map between the domain and the range, formalised as a set of pairs (as
depicted in Figure 6.3). For the Rel type constructor, in the style of other lan-
guages like Objective Caml or the PVS language [85], Dafny implicitly declares
a Rel? predicate that returns true of any constructed element formed with
the type constructor Rel.

Modelling relations and sets as datatypes rather than as classes has two main
advantages in Dafny. First, instances of classes require new allocations, and
second, their fields would need method frame declarations (the modifies clause
of Dafny), which can degrade the performance of Dafny/Boogie/Z3. However,
note that an Event-B relation can be used anywhere that a set can appear
(a relation is a set of pairs), but unfortunately datatypes cannot be inherited.
Therefore, the translation from Event-B to Dafny makes sure that operations
are called on the right datatype.

The following sections present the translation of contexts and machines,
proof obligations and Event-B operators.

6.2.1 Translating Event-B machines

It is necessary to translate Event-B machine and context information to Dafny
for Dafny to be able to discharge the proof obligations: definition of carriers
sets, constants, and variables are necessary since sequents use them and they
need to be defined in Dafny; definition of axioms, theorems, and invariants are
also necessary since sequents are composed of them as explained in the previous
section. The translation of Event-B machines to Dafny uses operators that
were defined via syntactic rules. Dafny operator translates Event-B machines
and contexts to Dafny programming language. Dafny is helped by operator
TypeOf which translates the type of Event-B variables and constants to the

6.2 Expressing Event-B Proof Obligations in Dafny 107

Dafny(constants c) = C Dafny(sets S) = S
Dafny(axioms X (s, c)) = X Dafny(theorems T (s, c)) = T
Dafny(invariants I (s, c, v)) = I Dafny(variables v) = V

(Prel)
Dafny(

machine M
sees ctx
variables v
invariants I (s, c, v)
events e

end

context ctx
sets S
constants c
axioms X (s, c)
theorems T (s, c)

end

) =
S C X

T V I

Figure 6.4: Translation rule for an Event-B machine and its context to Dafny

corresponding type in Dafny, using the datatypes explained above. It also uses
the operator Pred to translate any Event-B predicate or expression to Dafny.

Figure 6.4 depicts the syntactic rule Prel to translate Event-B machine M
and the context it sees to Dafny. This information is necessary to discharge the
proof obligations. Translation of refinement machines follows the same struc-
tures as rule M adding the gluing invariant and the new variables.

Carrier sets are being modelled as set of integers.

(Sets)
Dafny(Sets S) =

varS : Set<Integer>;

As Dafny does not include constants or axioms, constants are being modelled
as 0-ary integer functions and axioms as boolean functions with a post-condition
that introduces the axiom. Constants are assumed in the translation of a proof
obligation. Theorems are translated similar to axioms, but they are checked
(the clause assert) instead. The operator TypeOf in rules Constants and Var
returns the corresponding Dafny datatype type as explained at the beginning
of this section (Section 6.2)

TypeOf(c) = Type
(Constants)

Dafny(constants c) =
function c() : Type;

Pred(A) = A
(Axioms)

Dafny(axioms A) =
function axm() : bool

ensuresA

108
Chapter 6 – Translating Event-B Machines Proof Obligations to

Dafny

Event-B variables are modelled as variables in Dafny

TypeOf(v) = Type
(Var)

Dafny(variables v) =
var v : Type;

Invariants are modelled as boolean functions with postconditions that can be
assumed or asserted. Event-B variables, constants, and carrier sets are implicitly
non-null. This non-nullness condition has to be made explicit in Dafny and
assumed by all machine invariants. In Rule Invariants, the operator DafnyVar
collects all variables from the invariant.

Pred(I) = I DafnyVar(I) = setVar
(Invariants)

Dafny(Invariants I) =
functionnonNullnessCond() : bool{
setVar != null

}

function inv() : bool;
requiresnonNullnessCond();
ensuresI;

6.2.2 Translating Event-B proof obligations

The translation of Event-B proof obligations to Dafny uses operators that were
defined via syntactic rules, one for each proof obligation generated by Rodin (e.g.
INV, MRG, GRD, Sim, NAT, FIS, WFIS, VAR). The parameters for each operator
depend on the type of the PO, for instance, the operator FIS for the feasibility
proof obligation takes one parameter, an Event-B machine, whereas the operator
GRD takes two, an Event-B machine and its refinement. Depending on the
type of proof obligation generated by Rodin, a ghost method is declared that
might or might not assume local invariants, theorems or axioms. An additional
operator (Ctx) is defined that translates Event-B axioms and theorems presented
in a context to Dafny. The rules are presented as follows:

The Invariant Preservation Proof Obligation: rule INV generates a
method in Dafny that assumes the translation of the invariants of the abstract
and concrete machines, the translation non-nullness axiom and theorems, the
translation of the predicate related to the witness, the translation of the before-
after predicate of the concrete event, and the translation of the guards of the
refined event. The method finally asserts the result of the translation of the
modified invariant.

6.2 Expressing Event-B Proof Obligations in Dafny 109

Ctx(Ctx) = AT
Dafny(invariant I (s, c, v)) = I Dafny(invariant J (s, c, v ,w)) = J
Pred(H (y , s, c,w)) = H Pred(W 2(v ′, s, c,w , y ,w ′)) = W2
Pred(BA2(s, c,w , y ,w ′)) = BA2 Dafny(invariant J (s, c, v ′,w ′)) = J’

(Inv)
Inv Concrete(

machine M sees Ctx
variables v
invariant I (s, c, v)
event evt0

. . .
end

end ,

machine N refines M
variables w
invariant J (s, c, v ,w)
event evt refines evt0

any y where
H (y , s, c,w)

with
v ′ :| W 2(v ′, s, c,w , y ,w ′)

then
w :| BA2(s, c,w , y ,w ′)

end
end)

=
ghost method evt inv INV ()
assumeAT&&I&&J&&H&&W2&&BA2;
assertJ’;

Rule Inv also takes into account the invariant preservation proof obligation
for just an abstract machine. Rule Inv showed bellow generates a Dafny method
that assumes the translation of the abstract invariant, the translation of the
non-nullness axiom and theorems, the translation of the before-after predicate
and guards of the abstract event. The method finally asserts the result of the
translation of the modified invariant.

Ctx(Ctx) = AT
Dafny(invariant I (s, c, v)) = I Pred(G(s, c, v , x)) = G
Pred(BA(s, c, v , x , v ′)) = BA Dafny(invariant I (s, c, v ′)) = I’

(Inv)
INV Abstract(
machine M sees Ctx
variables v
invariant I (s, c, v)
event evt

any x where
G(s, c, v , x)

then
v :| BA(s, c, v , x , v ′)

end
end)
=
ghost method evt inv INV ()
assumeAT&&I&&G&&BA;
assertI’;

110
Chapter 6 – Translating Event-B Machines Proof Obligations to

Dafny

The Feasibility Proof Obligation: rule Feas generates a Dafny method
that assumes the translation of the invariants, the translation of the non-nullness
axioms and theorems, and the translation of the guard of the event. The method
finally asserts the result of the translation of the existence of the witness value
ensuring the before-after predicate of the event.

Ctx(Ctx) = AT Dafny(invariants I (s, c, v)) = I
Pred(G(s, c, v , x)) = G Pred(BA(s, c, v , x , v ′)) = BA

(Feas)
FIS(
machine M sees Ctx
variables v
invariant I (s, c, v)
event evt

any x where
G(s, c, v , x)

then
v :| BA(s, c, v , x , v ′)

end
end) =
ghost method evt act FIS()
assume AT&&I&&G;
assert (exists v ′::BA);

The Guard Strengthening Proof Obligation: rule Grd generates a
method in Dafny that assumes the translation of the abstract and concrete
invariants, the translation of the non-nullness axioms and theorems, the trans-
lation of the guard of the refined event, and the translation of the predicate
related to the witness. The method finally asserts the result of the translation
of the guard of the abstract event.

Dafny(invariants I (s, c, v)) = I Ctx(Ctx) = AT
Dafny(invariant J (s, c, v ,w)) = J Pred(H (y , s, c,w)) = H
Pred(W (x , s, c,w , y)) = W Pred(g(s, c, v , x)) = G

(Grd)
GRD(

machine M sees Ctx
variables v
invariant I (s, c, v)
event evt0

any x where
grd g(s, c, v , x)

then
. . .

end
end ,

machine N refines M
variables w
invariant J (s, c, v ,w)
event evt refines evt0

any y where
H (y , s, c,w)

with x :| W (x , s, c,w , y)
then . . .
end

end)
=
ghost method evt grd GRD()
assume AT&&I&&J&&H&&W;
assertG;

6.2 Expressing Event-B Proof Obligations in Dafny 111

The Guard Merging Proof Obligation: rule MRG generates a method
in Dafny that assumes the translation of the abstract invariant, the translation
of the non-nullness axioms and theorems, and the translation of the guard of
the concrete event. The method finally asserts the result of the translation of
the disjunction of the guards of the abstract events being merged.

Ctx(Ctx) = AT
Dafny(invariants I (s, c, v)) = I Pred(H (s, c, v , x)) = H
Pred(G1(s, c, v , x)) = G1 Pred(G2(s, c, v , x)) = G2

(MRG)
MRG(

machine M sees Ctx
variables v
invariant I (s, c, v)
event evt01

any x where
G1(s, c, v , x)

then
S

end

event evt02
any x where

G2(s, c, v , x)
then

S
end

end ,

machine N refines M
variables w
invariant J (s, c, v ,w)
event evt refines

evt01
evt02

any x where
H (s, c, v , x)

then
S

end
end)

=
ghost method evt MRG()
assume AT&&I&&H;
assertG1 ∨ G2;

The Simulation Proof Obligation: rule Sim generates a Dafny method
that assumes the translation of the abstract and concrete invariants, the trans-
lation of the non-nullness axioms and theorems, the translation of the guard of
the concrete event, the translation of the predicate related to the witness, and
the translation of the before-after predicate of the concrete event. The method
finally asserts the result of the translation of the before-after predicate of the
abstract event.

112
Chapter 6 – Translating Event-B Machines Proof Obligations to

Dafny

Dafny(invariants I (s, c, v)) = I Ctx(Ctx) = AT
Dafny(invariants J (s, c, v ,w)) = J Pred(H (y , s, c,w)) = H
Pred(W 1(x , s, c,w , y ,w ′)) = W1 Pred(BA2(s, c,w , y ,w)) = BA2
Pred(W 2(v ′, s, c,w , y ,w ′)) = W2 Pred(BA1(s, c, v , x , v ′)) = BA1

(Sim)
Sim(

machine M
sees Ctx

variables v
invariant I (s, c, v)
event evt0

any x
where

. . .
then

v :| BA1(s, c, v , x , v ′)
end

end ,

machine N
refines M

variables w
invariant J (s, c, v ,w)
event evt
refines evt0

any y
where

H (y , s, c,w)
with

x :| W 1(x , s, c,w , y ,w ′)
v ′ :| W 2(v ′, s, c,w , y ,w ′)

then
w :| BA2(s, c,w , y ,w ′)

end
end)

=
ghost method evt act SIM ()
assume AT&&I&&J&&H&&W1&&W2&&BA2;
assert BA1;

The Numeric Variant Proof Obligation: rule Nat generates a Dafny
method assumes the translation of the machine invariant, the translation of the
non-nullness axioms and theorems, and the translation of the guard of the event.
The method finally asserts the result of the translation when the evaluation of
the variant is a natural number. In rule Nat, Nat is defined as set in Dafny that
contains natural numbers. Dafny

6.2 Expressing Event-B Proof Obligations in Dafny 113

Dafny(invariants I (s, c, v)) = I Ctx(Ctx) = AT
Pred(G(s, c, v , x)) = G Pred(n(s, c, v)) = n

(Nat)
NAT(
machine M sees Ctx
refines . . .
variables v
invariant I (s, c, v)
variant n(s, c, v)
event evt

status convergent //or anticipated
any x where

G(s, c, v , x)
then

. . .
end

end) =
ghost method evt NAT ()
assume AT&&I&&G;
assert Nat .has(n);

The Variant (VAR): There exist two different proof obligations related to
the variant. It regards on the status of the event (i.e. convergent or anticipated).
The following is the rule translation for variant proof for a convergent event, the
method asserts the result of the translation when the evaluation of the variant
with the new values of variables is lower than the previous evaluation

Dafny(invariants I (s, c, v)) = I Ctx(Ctx) = C
Pred(G(s, c, v , x)) = G Pred(BA(s, c, v , x , v ′)) = BA
Pred(n(s, c, v)) = n Pred(n(s, c, v ′)) = n’

(Conv)
VAR Conv(
machine M sees Ctx
variables v
invariant I (s, c, v)
variant n(s, c, v)
event evt
status convergent

any x where
G(s, c, v , x)

then
v :| BA(s, c, v , x , v ′)

end
end) =
ghost method evt VAR()
assume AT&&I&&G&&BA;
assert n’ < n;

For an anticipated status in an event, the method asserts the result of the
translation when the evaluation of the variant with the new values of variables

114
Chapter 6 – Translating Event-B Machines Proof Obligations to

Dafny

is lower than equal the previous evaluation

Dafny(invariants I (s, c, v)) = I Ctx(Ctx) = C
Pred(G(s, c, v , x)) = G Pred(BA(s, c, v , x , v ′)) = BA
Pred(n(s, c, v)) = n Pred(n(s, c, v ′)) = n’

(Ant)
VAR Ant(
machine M sees Ctx
variables v
invariant I (s, c, v)
variant n(s, c, v)
event evt
status anticipated

any x where
G(s, c, v , x)

then
v :| BA(s, c, v , x , v ′)

end
end) =
ghost method evt VAR()
assume AT&&I&&G&&BA;
assert n’ ≤ n;

The non-deterministic witness (WFIS): The translated method assumes
the invariants of the abstract and concrete machines, the non-nullness axioms
and theorems, the guard of the refined event, and the before-after predicate of
the refined event. The method finally asserts the result of the translation of the
existence of a value x that ensures the witness’ predicate

Dafny(invariants I (s, c, v)) = I Ctx(Ctx) = AT
Dafny(invariants J (s, c, v ,w)) = J Pred(H (y , s, c,w)) = H
Pred(BA2(s, c,w , y ,w ′)) = BA2 Pred(W (x , s, c,w , y ,w ′)) = W

(With)
WFIS(

machine M sees Ctx
variables v
invariant I (s, c, v)
event evt0

. . .
end

end ,

machine N refines M
variables w
invariant J (s, c, v ,w)
event evt refines evt0

any y where
H (y , s, c,w)

with
x :| W (x , s, c,w , y ,w ′)

then
w :| BA2(s, c,w , y ,w ′)

end
end)

=
ghost method evt witness WFIS()
assume AT&&I&&J&&H&&BA2;
assert (exists x ::W);

6.3 The EventB2Dafny Tool 115

6.3 The EventB2Dafny Tool

The EventB2Dafny tool is integrated to Rodin as an Eclipse plug-in. Full source
code for EventB2Dafny is available in [30]. The EventB2Dafny tool parses
Rodin proof obligations into a Dafny program. The proof obligation can include
information about a machine context, e.g. sets and axioms, or machine variables
and invariants, which might be conjoined with machine variables and invariants
from a refinement machine. EventB2Dafny directly works on proof obligations
as generated by Rodin, so the soundness of EventB2Dafny directly lies on the
soundness of the proof-generation mechanism backing the Rodin platform.

Figure 6.6 shows a partial output of applying EventB2Dafny to the Event-
B model depicted in Figure 6.5. The input is the invariant preservation proof
obligation generated by Rodin for the Event-B model showed in Figure 6.5
(page 97) regarding search event with respect to invariant inv1 : i ∈ 1 . . n.

n ∈ N1
f ∈ 1 . . n→ D
v ∈ ran(f)
i ∈ 1 . . n
k ∈ 1 . . n
f (k) = v
`
k ∈ 1 . . n

Figure 6.5: Proof Obligation generated by Rodin

The user has to prove that given axioms, theorems, invariants, and guards
of the event (in this case search) the invariant inv1 holds after the action act1
(i := k).

EventB2Dafny defines the carrier set D as a set of integers. Constants are
defined as 0-ary Integer functions. Axioms are translated as 0-ary boolean
functions where the axiom is taken as a post-condition. For instance, axiom
ax2 (defined in Event-B as f ∈ 1 . . n→D) is translated as function ax2 which
ensures that the variable f is a total function where its domain is equal to the set
of number from 1 to n (denoted by upto). And its range is equal to D (type Int
is the representation of Integers). The translation also defines the non-nullness
condition that stands all variables and constants cannot be null values (this is
an implicit condition in Event-B). The invariant inv1 is translated as a boolean
function that requires the non-nullness condition and ensures the translation of
the invariant. Finally, a ghost method is defined (search inv1 INV) that
assumes the non-nullness condition, the invariants, and the guard of the event.
It asserts on the evaluation of the invariant after the execution of the event
(where variables have new values) (i.e. k ∈ 1 . . n).

116
Chapter 6 – Translating Event-B Machines Proof Obligations to

Dafny

var D : Set<Integer>;
function f() : Relation<Integer, Integer>;
function n() : Integer;
function v() : Integer;
var i : Integer;

function ax1() : bool
ensures Nat.has(n());

function ax2() : bool
ensures f().isTotalFunction() &&

f().domain == Int.Init().upto(Integer.Init(1), n()).instance &&
f().range == D.instance;

function ax3() : bool
ensures f().range.has(v());

function thm1() : bool
ensures Nat1.has(n());

function nonNullnessCond() : bool
ensures i!= null && D!= null && f!= null && n!= null && v!= null;

function inv1() : bool
requires nonNullnessCond();
ensures Int.Init().upto(Integer.Init(1), n()).has(i);

ghost method search_inv1_INV(){
assume nonNullnessCond();
assume inv1();
assume ax1();
assume ax2();
assume ax3();
assume thm1();
assume f().funcImage(k).equals(v());
assert Int.Init().upto(Integer.Init(1), n()).has(k);

}

Figure 6.6: Partial EventB2Dafny output

6.4 Conclusion 117

6.4 Conclusion

In this chapter we presented a serie of translation rules to generate Dafny code
from Event-B proof obligations. We also introduced the implementation of the
rules as the EventB2Dafny tool which is a Rodin’s plug-in. We have validated
EventB2Dafny by applying it to an Event-B model.

Users of Event-B could benefit from EventB2Dafny since the tool might
help them in the process of discharging proof obligations. Proof obligations for
complex systems are complex and difficult to discharge. EventB2Dafny gives
additional alternatives in the process of discharging a proof obligation by porting
it to Dafny. Once the proof obligation is in Dafny, users can use the automatic
provers (e.g. Z3 SMT solver) that come with it to prove the proof obligations.

Discharging proof obligations in Dafny is semi-automatic and relies on
Dafnys provers performance. We plan to integrate EventB2Dafny to Dafny
so that discharging proof obligations would include the following steps

i) to choose a proof obligation in Event-B, ii) to use EventB2Dafny to trans-
late it to Dafny, iii) to receive feed-back directly from Dafny in Rodin (Event-
B2Dafny will automatically run Microsoft Visual Studio to discharge the proof,
and feed Rodin with the feed-back that Dafny provides).

Chapter 7

Case Studies

This chapter. Through this thesis we have defined a series of tools to
work with different formal methods. The work has ended in the translation
of Event-B models to JML-annotated Java code. we have also proposed two
different techniques on software development where EventB2Java can be used.
This chapter shows two case studies on the use of EventB2Java as part as two
different software developments, and a benchmark that compares EventB2Java
with two existing tools for generating Java code from Event-B models.

The first case study (see Section 7.1) describes the development of a Social-
Event Planner using EventB2Java and the Model-View-Controller design pat-
tern. The Social-Event Planner is an Android [61] application of a planner for
social events in which a user can create a social event and invite a list of people to
join it. The second case study (see Section 7.2) presents the use of EventB2Java
in testing a security-critical access control system modelled in Event-B.

Contributions. The main contributions of this chapter are to show how the
EventB2Java tool can be incorporated as part of two different software develop-
ment, showing that different people from different expertise can work together
in the said development. To compare our tool with existing tools for generating
Java code from Event-B models.

Related work. related work: A preliminary version of an Event-B model of
the Tokeneer ID Station (TIS) is presented in [86]. However, the model is a
reduced model of the TIS; it consists of a single abstract machine; no machine
refinement was defined and a few proof obligations remained undischarged, so
we decided to write our Event-B model of Tokeneer afresh.

In [21], an automatic approach to provide correct testing inputs for pa-
rameters associated to axioms is described. We can use this work to extend
EventB2Java to automatically assign values for constants in Event-B contexts.
The work in [15] further constructs test data sets from formal specifications.

In [32], a strategy called JFly is proposed to evolve informal (written in
natural language) software requirements into formal requirements written in

7.1 The Social-Event Planner 119

JML. This work can be reused to structure the writing of JUnit tests from a
STS document.

7.1 The Social-Event Planner

This section describes the development of a Social-Event Planner following a
Model-View-Controller (MVC) design pattern. Sections 7.1.1, 7.1.2, and 7.1.3
describe the implementation of the Model of the system by modelling it in
Event-B to then transition to Java code using the EventB2Java tool. Section
7.1.4 describes the implementation of the View and Controller of the system.

7.1.1 Requirement Document for the Social-Event Plan-
ner

The Social-Event Planner was modelled as a piece of software that runs over
the existing Social Network in [37] (the Social Network model is briefly ex-
plained Section 4.3.1). For modelling the Social-Event Planner, We followed
the “parachute” software development strategy of Event-B proposed by J.-R
Abrial in [2]. We classify the requirements within two categories:

• Those concerned with the functionalities of the application labeled FUN.

• Those concerned with the decision making labeled DEC (e.g. when a user
has to make a decision on either going to a social-event or declining).

The main functionality of the Social-Event Planner application is to allow
a user to create a social-event and invite other users to it. A social-event shall
consist of the content visible to any invited user. The user creating the social-
event might enforce a specific privacy policy over the social-event. Such a privacy
policy shall consist of a set of restricted users from which the creator of the
social-event wants to keep the social event hidden. The creator of the social-
event can allow other invited users to further invite additional users to the
social-event. These additional users must not belong to the aforementioned set
of restricted users. To illustrate this, a user (UserA) within the social network
creates an event ‘Picnic in the Park’. He invites the lists of users ‘Close Friends’
and ‘Trekking Friends’. He decides he doesn’t want any user belonging to the list
‘Professors’ to be invited. An invite will be sent from UserA to every member
of ‘Close Friends’ and ‘Trekking Friends’ that do not belong to list ‘Professors’.
He grants the users in list ‘Close Friends’ the ‘Invite’ privilege. A user (UserB)
from the list ‘Close Friends’ decides to invite the users in the list ‘Institute’.
The social-event will be shared with (an invite will be sent to) every user in the
list ‘Institute’ that doesn’t belong to the list ‘Professors’. In the following, we
present the requirements of the social-event planner.

120 Chapter 7 – Case Studies

The users of the Social Network can create
social-events.

FUN-1

The creator of a social-event can associate con-
tent with it.

FUN-2

The invited users to the social-event can either ‘Join’ the event, ‘Decline’
the invitation or reply with a ‘Maybe’.

The ‘invited’ users can reply to the social-
event.

FUN-3

A reply to an invitation shall be either 1) Join
2) Decline 3) Maybe or the user can choose
not to reply.

DEC-1

A user invited to a social-event can swap their
reply between Join, Decline or Maybe.

FUN-4

A user who has been invited to a social-event
can view all the content associated with the
social-event.

FUN-5

The users of the Social Network invited to a social-event can be granted per-
missions to View or Edit content associated with the social-event. Additionally
specific users can be granted permission to invite additional users.

The users shall be able to view or edit a social-
event or invite other users to the social-event
based on permissions.

FUN-6

The following permissions can be awarded
over a social-event to a user on the Social Net-
work: 1) View 2) Edit 3) Invite.

DEC-2

The creator of the event, called the ‘owner’, might allow the invited users to
further invite users by explicitly granting them the permission to do so.

The user that creates a social-event shall be
designated the owner of the social-event.

FUN-7

The owner of any social-event shall be granted
all privileges over it.

DEC-3

A user can invite a list of users to a social-
event.

FUN-8

The owner of a social-event can grant ‘Invite’
permissions to any user that has been invited.

FUN-9

A user with an ‘Invite’ permission to a social-
event shall be allowed to invite other users to
the social-event.

FUN-10

The users that has been invited to a social-
event can add content to the social-event in
the form of comments.

FUN-11

7.1 The Social-Event Planner 121

Refinement Strategy. Below is listed the order in which the various pro-
posed requirements were taken into account.

ref socialevents. Once we have the social networking core we incorporate the
possibility for a user to create social-events and associate content with it.
In this direction we take care of requirements FUN-1, FUN-2.

ref socialinvite. This refinement includes the functionality for the owner of a
social-event to invite other users to the social-event. The owner can grant
permissions to specific invited users allowing them to invite other users.
An invited user can reply to an invitation with Join/Decline or Maybe or
change and existing reply. This refinement satisfies requirements FUN-
3,FUN-4,FUN-7, FUN-8,FUN-9,FUN-10, FUN-11, DEC-1 and DEC-2.

ref socialpermissions. Then we add privileges in order for people to view
and edit content associated with social-events. It takes into account re-
quirements FUN-5 and FUN-6.

7.1.2 The Event-B Model of the Social-Event Planner

The Social-Event Planner works on top of the Event-B model for Social Net-
working presented in [38]. The Social Networking specifies a social network as
composed of people and content (e.g. photos, videos, comments). People within
the social network can share their own content. For that, the model defines
permissions over the content. The Social-Event Planner can be regarded as a
plug-in of the Social Networking. The Social-Event Planner is composed of three
machines (ref 6 socialevents, ref 7 socialinvite and ref 8 socialpermissions) that
constitute refinements of the Social Networking model. The follow explains part
of the machines. The full source (the Social Networking and the Social-event
Planner) is available at [90].

In the following, we explain the refinements of the Social-Event Planner :

ref6 socialevents: This machine represents the core of the Social-Event
Planner. A user in the social network can create social-events and upload in-
formation to it. Figure 7.1 depicts part of the Event-B machine.

Machine ref 6 socialevents sees context ctx event depicted in the right of
Figure 7.1. The context defines a carrier set EVENTS containing all possible
social-events. The machine defines variable events representing the actual social-
events created within the Social Networking. Variable scontents is a set of
contents present in the social-event (e.g. a picture or a comment within a specific
social-event). Variable eventcontents is a relation that maps contents to social-
events. This relation allows the system to know which content belongs to which
social-event. The relation is defined as a total relation so that a social-event
can contain several contents and a content must be in at least one social-events.
And variable eventowner defined as a total function that maps social-events to
person. It models each social-event has an unique owner. Variables contents,
and person were defined in previous refined machine, they describe the contents

122 Chapter 7 – Case Studies

in the social networking, and the set of actual people in the social network,
respectively.

machine ref 6 socialevents
refines ref 5 lists sees ctx events

variables sevents scontents
eventcontents eventowner

invariant
invr6 1 sevents ⊆ EVENTS
invr6 2 scontents ⊆ contents
invr6 3 eventcontents ∈ scontents ←↔ sevents
invr6 4 eventowner ∈ sevents → persons
events
create social event
any pe se
where
grdr6 1 pe ∈ persons
grdr6 2 se ∈ EVENTS\sevents
then
actr6 1 sevents := sevents ∪ se
actr6 2 eventowner(se) := pe

end
end
upload principal content planner

extends upload principal
any se where
grdr6 1 se ∈ sevents
then
actr6 1 scontents := scontents ∪ c2
actr6 2 eventcontents :=
eventcontents ∪ c2 7→ se

end
end

context ctx events
extends ctx lists

sets EVENTS
end

Figure 7.1: Excerpt of the ref 6 socialevents (and the context it sees) Event-B
machine for the Social-Event Planer model

Event create social event models the creation of a new social-event se (not
presented already in the social-event Planner) by a user pe that belong to the
Social Networking. The execution of this event adds the new social-event
se to the set of existing social-events and defines pe as the owner. Event
upload principal content planner allows users of the social-event to upload a
principal content in the social-event (local variable c2 correspond to the content
and it is defined in the abstract event). Symbols 7→, ∪, \, and ⊆ model a pair
of elements, set union, set difference, and set subset in Event-B, respectively.
The machine defines more events not shown in the figure.

7.1 The Social-Event Planner 123

ref7 socialinvite: This machine specifies the users invited to a social-event.
Figure 7.2 depicts part of the Event-B refinement. The machine refines machine
ref 6 socialevents and sees the same context, it models the set of invited people
to a social-event by using the variable invited , which is a relation that maps
social-events to invited people. The variable is defined as a relation, so that,
a user can be invited to several social-events and a social-event can contain
several invited people. An invited user can reply to an invitation. The user can
either ‘join’ the event, or reply as a ‘maybe’ or ‘decline’. This is represented
by variables join, maybe and decline that are modelled as relations that map
social-events to person. A user can be in just one of these states. This is ensured
by invariants invr7 5, invr7 6, and invr7 7. Invariant invr7 8 states that
a user can reply to one of these states if the user is invited to the social-event.
The owner of the social-event and a set of invited people to that social-event
have the privilege to invite more people. This is modelled using the variable
populate.

Invariant invr7 10 states that the owner of a social-event has the right to
invite any one to it. Finally, invariant invr7 11 states that people with the
right to invite other people are invited to the social-event.

The machine also defines the event sent invite allows the invited people
to the social-event se who are in the populate variable (grdr7 3 se 7→ pe ∈
populate) to invite more people from a list l1. Variable listpe is defined in a
previous refined machines. It is defined as relation that maps a list identifier to
a set of people. Event grant populate grants permission to an invited user to
invite more people. Just the owner of the social-event can grant such permission.
Events reply with join, reply with maybe, and reply with decline model the
possibility to reply a social-event with ‘join’, ‘maybe’ or ‘decline’, respectively
(these events are not shown in Figure 7.2). Symbols ×, and ∅ model a cartesian
product, and empty set in Event-B, respectively.

ref8 socialpermission: Finally, machine ref 8socialpermission specifies
the permission over the content involved in a specific social-event. An invited
user can have permission to view or edit a specific content. The machine models
these permissions by using the variables socialview , which is defined as a relation
that maps social content within the social-event to person that has privilege to
view that content. And the variable socialedit which is defined as a relation that
maps social content to person that has privilege to edit that content. Figure 7.3
depicts part of the Event-B machine.

The invariant invr8 3 specifies that any invited person to a social-event
has privilege to view the content on it. Invariant invr8 4 states that the owner
of the social-event has privilege to edit the content on it. Finally, invariant
invr8 5 models that who has privilege to edit a content, has also privilege to
view it.

This machine does not define any new event, but it extends the previous ones.
For instance, when a user pe creates a social-event, that user has permission to
view and edit the content involved in that social-event. The symbol � models

124 Chapter 7 – Case Studies

machine ref 7 socialinvite refines ref 6 socialevents sees ctx events
variables invited populate join maybe decline
invariant

invr7 1 invited ∈ sevents ↔ persons invr7 2 join ∈ sevents ↔ persons
invr7 3 maybe ∈ sevents ↔ persons invr7 4 decline ∈ sevents ↔ persons
invr7 5 join ∩maybe = ∅ invr7 6 join ∩ decline = ∅
invr7 7 maybe ∩ decline = ∅ invr7 8 join ∪ maybe ∪ decline ⊆ invited
invr7 9 populate ∈ sevents ↔ persons invr7 10 eventowner ⊆ populate
invr7 11 populate ⊆ invited

events
sent invitate
any pe se l1
where
grdr7 1 l1 ∈ dom(listpe) grdr7 2 se ∈ sevents
grdr7 3 se 7→ pe ∈ populate
then
actr7 1 invited := invited ∪ (se × listpe[l1])

end
grant populate
any ow pe se
where

grdr7 1 ow ∈ persons grdr7 2 se ∈ sevents
grdr7 3 ow = eventowner(se) grdr7 4 pe ∈ persons
grdr7 5 se 7→ pe ∈ invited

then
actr7 1 populate := populate ∪ se 7→ pe

end
end

Figure 7.2: Excerpt of the ref 7 socialinvite Event-B machine for the Social-
Event Planer model

a range restriction in Event-B.
We model the Social-Event Planner in Rodin. All proof obligations generated

by Rodin were discharged.

7.1.3 Generating JML-annotated Java code for the Social-
Event Planner Event-B model

We used EventB2Java to generate JML-annotated Java code for the last refine-
ment of the Social-Event Planner. The EventB2Java tool generates one Java
class (see an excerpt of the Java class in Figure 7.4) containing the translation
of the carrier sets, constants and variables (with their respective initialisations),
and the Event-B invariant.

The tool also generates a Java Thread implementation for each machine
event. Figure 7.5 shows the translation of one event: create social event ,

7.1 The Social-Event Planner 125

machine ref 8 socialpermissions refines ref 7 socialinvite sees ctx events
variables
socialviewp socialeditp
invariant
invr8 1 socialviewp ∈ scontents ↔ persons
invr8 2 socialeditp ∈ scontents ↔ persons
invr8 3 eventcontents; invited ⊆ socialviewp
invr8 4 eventcontents; eventowner ⊆ socialeditp
invr8 5 socialeditp ⊆ socialviewp

events
create social event extends create social event
then
actr8 1 socialviewp := socialviewp ∪ (dom(eventcontents � se)× pe)
actr8 2 socialeditp := socialeditp ∪ (dom(eventcontents � se)× pe)

end
end

Figure 7.3: Excerpt of the ref 8 socialpermission Event-B machine for the
Social-Event Planer model

where m is a reference to the machine class implementation (used to
access machine variables via getter and setter methods). Methods
guard create social event and run create social event imple-
ment the behaviour of the create social event event in Java. The
first method checks the event guard, and the second may execute when
that guard holds. Whether run create social event executes when
guard create social event holds is determined by the run() method
of create social event in coordination with the respective run() meth-
ods of all existing events.

Variables contents tmp, pages tmp, . . . hold temporary values of vari-
ables contents, pages, . . . , respectively. EventB2Java uses these temporary
values to implement simultaneous assignment in Java.

The JML-annotated Java code generated by EventB2Java from the last re-
finement of the Social-Event Planner Event-B model represents the Model (M)
of a MVC design pattern development. We extended this core functionality to
implement a usable version of the Social-Event Planner as an Android applica-
tion.

7.1.4 The View and Controller Parts of the Social-Event
Planner

The View and Controller part of the system were developed in Java using the
Android API. The View part allows users to interact with the Social-Event
Planner. The Controller part makes a bridge between the View part and the
Model. Figure 7.6 depicts two of the main screen shots of the user interface for

126 Chapter 7 – Case Studies

public class ref8_socialpermissions{
public Lock lock = new ReentrantLock(true);
//@ public static constraint PERSON.equals(\old(PERSON));
public static final BSet<Integer> PERSON = new Enumerated(min_integer,

max_integer);

//@ public static constraint EVENTS.equals(\old(EVENTS));
public static final BSet<Integer> EVENTS = new Enumerated(min_integer,

max_integer);
...

/*@ spec_public */ private BSet<Integer> persons;
/*@ spec_public */ private BSet<Integer> sevents;
/*@ spec_public */ private BRelation<Integer,Integer> eventowner;
...

/******Invariant definition******/
/*@ public invariant

persons.isSubset(PERSON) &&
sevents.isSubset(EVENTS) &&
eventowner.domain().equals(sevents) &&
eventowner.range().isSubset(persons) && eventowner.isaFunction() && BRelation.

cross(sevents,persons).has(eventowner) &&
... */

// ... getter and mutator method definition

/*@ public normal_behavior
requires true;
assignable \everything;
ensures

persons.isEmpty() &&
sevents.isEmpty() &&
eventowner.isEmpty() &&
... */

public ref8_socialpermissions(){
persons = new BSet<Integer>();
sevents = new BSet<Integer>();
eventowner = new BRelation<Integer,Integer>();
...

// Thread initialisation
}

}

Figure 7.4: Excerpt of the translation of machine ref 8 socialpermissions to Java

7.1 The Social-Event Planner 127

public class create_social_event extends Thread{
/*@ spec_public */ private ref8_socialpermissions machine;

/*@ public normal_behavior
requires true; assignable \everything;
ensures this.machine == m; */

public create_social_event(ref8_socialpermissions m) {
this.machine = m;

}

/*@ public normal_behavior
requires true; assignable \nothing;
ensures \result <==> (machine.get_persons().has(pe)
&& !machine.get_sevents().has(se)); */

public /*@ pure */ boolean guard_create_social_event(Integer pe, Integer se) {
return (machine.get_persons().has(pe)

&& !machine.get_sevents().has(se));
}

/*@ public normal_behavior
requires guard_create_social_event(pe,se);
assignable m.sevents, m.eventowner, ...;
ensures m.get_sevents().equals(\old((m.get_sevents()

.union(new BSet<Integer>(se)))))
&& m.get_eventowner().equals(\old((m.get_eventowner()
.override(new BRelation<Integer,Integer>(
new Pair<Integer,Integer>(se,pe)))))) && ...;

also
requires !guard_create_social_event(pe,se);
assignable \nothing;
ensures true; */

public void run_create_social_event(Integer pe, Integer se) {
if(guard_create_social_event(pe,se)) {
BSet<Integer> sevents_tmp = m.get_sevents();
BRelation<Integer,Integer> eventowner_tmp = m.get_eventowner();
...
m.set_sevents((sevents_tmp.union(new BSet<Integer>(se))));
m.set_eventowner((eventowner_tmp.override(

new BRelation<Integer,Integer>(new Pair<Integer,Integer>(se,pe)))));
...
}
}

public void run() { ... }
}

Figure 7.5: Excerpt of the translation of event create social event to Java

128 Chapter 7 – Case Studies

the Social-Event Planner.

(a) Screen 1: Part of the user interface for
the Social-Event Planner.

(b) Screen 2: Part of the user interface for
the Social-Event Planner.

Figure 7.6: Screenshots Social-Event Planner

The user interface is composed of three main screens:

1) where the events (created by the user or invited for someone else) are
displayed. The user has the option to reply to a social-event, to create another
social-event, or to see the information of a specific social-event (see Figure 7.6a).
The information of a specific social-event (see Figure 7.6b) is the name of the
event, the description (e.g. date, venue), the list of the invited people (if the
user is the owner of the event, there is an option to invite more people) and
finally there is a ‘wall’ where the invited people can comment or share content.
The user can also reply to an invited event. 2) The second screen allows the
user to see its friends, as well as add/delete more friends. 3) Finally, the user
has the possibility to see/change its personal information.

All the sources and the code generated and implemented for the Social-
Event Planner are available at http://poporo.uma.pt/EventB2Java/
EventB2Java_studies.html. Additionally, Table 7.4 in Section 7.3 (page
145) presents relevant statistics for the Social-Event Planner.

http://poporo.uma.pt/EventB2Java/EventB2Java_studies.html
http://poporo.uma.pt/EventB2Java/EventB2Java_studies.html

7.2 Tokeneer 129

Figure 7.7: The Tokeneer System.

7.2 Tokeneer

The Tokeneer system was developed by Praxis High Integrity. Praxis modelled
Tokeneer in Z [6, 102] and implemented it in Spark Ada [10]. The Tokeneer
system consists of a secure enclave and a set of system components as shown in
Figure 7.7. The Tokeneer ID Station (TIS) is responsible for reading a finger-
print and, based on a number of protocols and checks, ensuring that any person
trying to access the enclave is indeed permitted to enter the enclave, and giving
the corresponding grants as a user or administrator. The TIS communicates
with a number of external components to perform its analysis. The physical
devices that are interfaced to the TIS are a fingerprint reader, a smart-card
reader, a floppy drive, and a door and a visual display. Individuals enter the
secured enclave via the door by providing the credentials either to the finger-
print reader or the card reader. The visual display shows messages that help to
track the progress of the user entry process into the secured enclave. An Audit
Log logs all events and actions performed or monitored by the TIS. The Token
is the card that is inserted by the user to enter the enclave. There are different
types of certificates that are used for verification of each Token, and certificates
are a crucial part of the Tokeneer system.

The TIS is about 10K lines of code. Praxis wrote the software specifications
of the TIS in Z following a System Requirements Specification (SRS) document
written by them, and manually translated the Z specification to Spark Ada.
The documents described below were written and used by Praxis for developing
the TIS and can be found at [47].

• The System Requirements Specification (SRS) includes the TIS software
requirements.

• The Formal Specification of the TIS includes the TIS software require-

130 Chapter 7 – Case Studies

ments written in Z.

• The specifications in the above document were later refined and extended
in a document called the Formal Design in which operations in Z are
extended and more system invariants are considered.

• The System Test Specification (STS) presents the test cases for the TIS.

The following sections describe in more detail the components, and the op-
erations of the TIS. Very detailed information can be found in [47].

7.2.1 TIS Components

TIS is mainly composed of four main physical components used to comunicate
the ID Station with the exterior as depicted in Figure 7.7. The TIS contains:

The Door: allows user to enter to the enclave. The door has two possible
states, it can be open or closed. It has a latch that can be locked or unlocked,
and an alarm.

The Fingerprint Reader: collects information about the fingerprint of the
users. It is used to compare if the fingerprint of the user trying to the enclave
matches the fingerprint already stored in the system.

The Display: shows short messages to the user on a small display during the
attempt to enter to the enclave. For instance a message could be AUTHEN-
TICATING USER, ENTER TOKEN.

Card Reader: reads the card (token, explained later in this section) that
belongs to the user attempting to enter the enclave. The card provides useful
information about the user to the system, the system processes this information,
and allows (or not) the entering of the user.

7.2.2 TIS Operations

TIS contains a series of operations (dis-) allowing the user of the TIS to perform
certain activities. The following presents some concepts necessary to understand
the operations:

Certificates: Certificates are used for a user validation during enrolment to
the TIS (as explained later in this section). It always contains a unique identifier,
and a validity period during which time the certificate is valid. Certificates also
have an asymmetric key for verification, that could be optional.

There are different types of certificates in the system. Their hierarchy is
shown in Figure 7.8. A Certificate can be an ID Certificate or an Attribute
Certificate.

7.2 Tokeneer 131

Figure 7.8: Hierarchy of certificate types.

ID Certificate (IDCert) contains a reference to a certificate of the system,
the name of the user being identified, and the asymmetric key of the user.

Attribute Certificate (AttCert) contains a reference to a certificate of the
system, and a reference of the ID Token related to the certificate. It also contains
a reference to an IDCert. An AttCert can be private Certificate (privCert),
an Identification and Authentication Certificate (IandACert), or Authorisation
Certificate (authCert).

Private Certificate (privCert) contains additional attributes: a role, it
can be a user only, a guard a securityOfficer, or an auditManager (role de-
termines privilege over the TIS); and a clearance that determines the ordered
classifications on documents, areas, and people. It can be: unmarked, unclassi-
fied, restricted, confidential, secret, or top secret.

Identification and Authentication Certificate (iandACert) contains
a fingerprint template which contains information reading from a fingerprint,
this information is used to compare if the fingerprint of the user being identified
matches the information in the system.

Authorisation Certificate (authCert) contains the same structure as
privCert. It is used for different checkins to enter the TIS.

Tokens (tokens) are smart cards belong to each user of the system. The
smart card contains a unique ID, a series of certificates: idCert, privCert, Ian-
dACert, and an optional authCert.

Operations over tokens are

• a token is valid if each certificate on it correctly cross-references to the
IDCert, and each certificate correctly cross-references to the token ID.

132 Chapter 7 – Case Studies

• if the Authorisation Certificate is present, it is valid if it correctly cross-
references to the token ID, and the IDCert.

• a token is current if all certificates on it are current, it means, if the current
Time is within the validity period of each certificate.

User Entry Operations

These operations describe the process a user needs to do to be authenticated
to further enter the enclave. It is presented as a state transition diagram.
Operations are:

User Token Tears: If the user tears the Token out before the operation is
complete then the operation is terminated unsuccessfully.

Reading the User Token: This operation performs actions that reads an
inserted token.

Validating the User Token: Once TIS has read the user token, the token
content needs to be validated. The token passes the validation state if

• the token is valid and it contains an authCert Certificate that cross-checks
correctly with the token ID and the ID certificate. The token must be
current and both the authCert and IDCert certificate can be validated. In
this case Biometric checking is not performed, or

• the token is consistent, current, and the IDCert, priviCert, and iandACert
can be validated. In this case, Biometric checks will be required, or

• in the case where there is a valid authCert certificate the biometric checks
are passed.

The biometric checks are only required if the authCert Certificate is not present
or not valid. In this case the remaining certificates on the card must be checked.

Reading and Validating a Fingerprint: During the entering process,
users might be asked to provide the fingerprint as a validation process (biometric
check). This operation reads users’ fingerprint and compares it against the
fingerprint information already stored in the system.

Writing the User Token: This operation attempts to write an authorisa-
tion certificate in the user’s token, it may (un-)successfully written.

Validating Entry and Unlocking Door: The system will validate the
entrance of the user, if the user’s token passes all checks, the door will be
unlocked.

7.2 Tokeneer 133

Operations within the Enclave

Users of the TIS may have permission to operate the Enclave. Those users
are called administrator and they can performed additional operation with the
Enclave. The process to operate the Enclave is also presented as state transition
diagram. The following describes these operations

Enrolment of an ID Station: In order for a user to perform administrator
operations he has to enrol the TIS. The user needs to request the enrolment to
the system providing information in a floppy, the system validates the informa-
tion, and if the data is valid, enrols the user as an administrator. After this
process the user (administrator) needs to provide his token to the system.

Administrator Token Tear: If the administrator tears his token will result
in his logging out from the system.

Administrator Log-in: In order for an administrator to log-in the system,
the administrator needs to insert a valid token into the token reader. If the
information provided is valid, the administrator can enter the enclave and will
have the privileges indicated in the token.

Administrator Log-out: The logging-out of an administration can happen
for either the administrator removes his token from the TIS or the authorisation
certificate expires.

Administrator Operations: The administrator has a set of operations to
perform. The administrator can archive the log, update the configuration data,
overrideLock, or shutdown the system. The privileges administrators have are
written in his token.

7.2.3 An example of User Entry Operation

Figure 7.9 is an excerpt of the transition state diagram for users’ authentication
and entry process. The figure shows just the transition process for a user to
enter the enclave with a token that does not contain any authCert certificate,
and valid and current privCert and iandACert Certificates. The system requires
the user to pass the biometric checks, and finally writes its token.

In Figure 7.9, the ovals represents the states and the lines represent the
operation performed (the transition). The red oval represents the starting and
ending point of the diagram. The system starts in a quiescent state. Once
the user puts his token in the card reader, the operation ReadUserToken is
performed. This operation requires the status of the system to be in quiescent,
and the token to be present. The operation changes the status to gotUserToken
and displays a message in the display (“AUTHENTICATING USER, PLEASE
WAIT”). The system evolves and goes to state gotUserToken. Since the token

134 Chapter 7 – Case Studies

Figure 7.9: Excerpt State Diagram User Entry to TIS.

inserted does not contain authCert Certificate and the privCert and iandACert
certificates are valid and current, the system requires the user for a biometric
check. The biometric check is to read the fingerprint. The system evolves
to state waitingFinger. The user puts the fingerprint in the finger reader (as
stated by transition ReadFingerOk). The system goes to state gotFinger. The
operation ValidateFingerOK checks that the information of the fingerprint
read by the fingerprint reader indeed matches with the information stored in
the system, if so, the system evolves to waitingUpdateToken that changes the
status to waitingEntry. Since the status is waitingEntry, the token of
the user is still inserted, and the certificates on it are valid and current, the
user is granted permission to enter the enclave. The system evolves to the state
waitingRemoveTokenSuccess where the system waits until the user remove the
token to finally unlock the door.

7.2.4 Conversion from Z to Event-B

This section discusses the strategy we followed to convert the existing model
of TIS in Z to Event-B. Z is a notation for writing specifications based on set
theory and first order logic. It includes a notation for discrete mathematics (set
theory and predicate calculus) and for describing and combining schemas (the
schema calculus) that allows one to define possible states as well as operations
that can change the state.

In Z, one can define a variable (in capital letters) to express basic types. For
instance, the Z schema defined above defines two sets USER and TOKENID as
the sets of all possible users and token ids of the system:

[USER]
[TOKENID]

7.2 Tokeneer 135

That definition goes in the same direction as carrier sets in Event-B. We
modelled Z variables in capital letter as carrier sets in Event-B. For instance,
the definition of the Z schemas [USER] and [TOKENID] is in Event-B:

context ctx
sets USERS TOKENID

end

In Z, one can define a schema that defines variables. The schema Certificate
(shown below) defines a common certificate in Tokeneer: a certificate contains
a unique identifier (denoted by variable id), it also contains a validity period in
which that certificate is valid (denoted by variable validityPeriod), and a asym-
metric key that validates the certificate (denoted by variable isValidatedBy).

Certificate
id : CertificateId
ValidityPeriod : PTIME
isValidatedBy : optional KEY

In Z, one can instantiate schemas and refer to variables of that schema
using the notation dot (.). For instance one can define a certificate c and refer
the variable id as c.id . Since this is not possible in Event-B, we decided to
model Z schemas in Event-B as several relations that map the type schema to
each variable. For instance, the following Event-B machine defines the schema
Certificate in Event-B:

machine m sees ctx
variables certificates certificateID validityPeriods publicKeys isValidatedBy
invariants
inv1 certificates ⊆ CERTIFICATES
inv2 publicKeys ⊆ KEYS
inv3 certificateID ∈ certificates � CERTIFICATEID
inv4 validityPeriods ∈ certificates ←↔ N
inv5 isValidatedBy ∈ certificates 7� publicKeys

end

Where context ctx defines the carrier sets CERTIFICATES, KEYS, and CER-
TIFICATEID (not shown here). The model of variables in Event-B follows the
Z specification of them and the System Requirement Specification (SRS) docu-
ment. For instance, just from the Z specification is not possible to deduce that
id variable needs to be defined as a total injection. However, reading the SRS
document one can realise id variable define a unique id for each certificate in the
system. In Z, one can define a variable as optional, we model that as a partial
injection (7� in Event-B), meaning there can be a certificate that does not have
any public key associated to it. To create a new certificate one needs to update

136 Chapter 7 – Case Studies

all variables as:

. . .
then
act1 certificates := certificates ∪ {new c}
act2 publicKeys := publicKeys ∪ {new pk}
act3 certificateID := certificateID ∪ {new c 7→ new certid}
act4 validityPeriods := validityPeriods ∪ {new c 7→ new valtime}
act5 isValidatedBy := validityPeriods ∪ {new c 7→ new pk}

end

So to access the identifier value of a certificate c (as in Z is c.id), in Event-B
one does certificateID .apply(c).

In Z, one can also define a schema composed of two parts divided by a
line: above the line one can define variables or import another schemas al-
ready defined, below the line one can define predicates. The following Z schema
ReadUserToken depicts this kind of schema:

[STATUS ::= {quiescent , gotUserToken,waitingFinger}]
[PRESENCE = {absent , present}]
[DISPLAYMESSAGE ::= {wait ,welcome, insertFinger}]

Context
status : STATUS
tokenPresence : PRESENCE
display : DISPLAYMESSAGE

ReadUserToken
Context

status = quiescent
tokenPresence = present
status’ = gotUserToken
display’ = wait

Z Schema ReadUserToken is partially defining one of the states defined in
Figure 7.9. The schema is not defining any new variable but it is importing
schema Context so predicate expressions like status = quiescent can be used.
We translate a schema as an Event-B event where the predicate is the guard
of the event. Notice that Schema ReadUserToken defines a predicate with the
aid (′), that is how schemas evolve in time. For instance, predicate status ′ =
gotUsertToken means the new value for variable status will be gotUsertToken.
Z predicates with the aid of ′ is translated to Event-B in the actions of the event.
the following Event-B machine translates the schemas:

7.2 Tokeneer 137

machine m sees ctx
variables status tokenPresence display
invariants
inv1 status ∈ STATUS
inv2 tokenPresence ∈ PRESENCE
inv3 display ∈ DISPLAYMESSAGE

ReadUserToken
where
grd1 status = quiescent
grd2 tokenPresence = present
then
act1 status := gotUserToken
act2 display := wait

end
end

Context ctx defines carrier sets STATUS, PRESENCE, and DISPLAYMES-
SAGE, and defines the corresponding axioms. For instance the axiom related to
STATUS is

ax1 STATUS = {quiescent , gotUserToken,waitingFinger}

Notice that the Event-B translation of the Z schema Context does not define
variables as relation (as shown for Z schema Certificate). Our decision on doing
that is that schema Context defines variables status, tokenPresence, and display
that are always the same during the execution of the system, whereas schema
Certificate can be instantiated any time a new certificate is created.

We follow the notion of translation described in this section to translate the
TIS system modelled in Z to Event-B.

7.2.5 Modelling the Tokeneer ID Station (TIS) in Event-B

We modelled the Tokeneer ID Station (TIS) in Event-B following the Z model
of the TIS and the documentation provided by Praxis. We followed the
“parachute” software development strategy of Event-B proposed by J.-R Abrial
in [2]. Table 7.1 lists a few software requirements of the TIS. The table includes
some functional (FUN) and environmental (ENV) requirements. We wrote an
abstract machine, six machine refinements and an additional AuditLog machine
as shown in Table 7.2.

The abstract machine models certificates. The first and the second refine-
ments include specialised certificates. These first three machines model certifi-
cates and its hierarchy as shown in Figure 7.8. The third refinement models
fingerprints and the internal status to enter the enclave. The fourth refinement
models entry to the enclave and the display used by the TIS. The fifth refinement
models enrolments to the enclave using a certificate, and the sixth refinement
models some administrative functionality. Machine AuditLog models a log of all
events and actions performed or monitored by the TIS.

138 Chapter 7 – Case Studies

Req. Description
FUN-1 Certificates have a unique ID, a period during which they are

valid, and a public key of the user (used to sign and verify the
certificate).

FUN-2 The system contains two kinds of certificates: ID and Attribute
certificates. They are used during enrolment and are present on
tokens.

FUN-3 Attribute certificates are categorised into three types as follows:
Authorisation and Privilege certificates which have the same
structure, and I&A certificates.

FUN-4 Tokens are used to store all the required information of a user.
Each token contains ID, Privilege, I&A, and Authorisation (op-
tional) certificates.

ENV-1 Tokens are the data read from an inserted Smart Card. The sys-
tem contains a card reader to read tokens.

FUN-5 Tokens should be valid (certificates correctly cross reference to
the ID Certificate) and current (all included certificates are up to
date) before processing.

FUN-6 TIS enrolment transition is defined by the transition state diagram
in [47] (41 2.pdf/pp. 59/ Fig. 7.1).

ENV-2 The system contains a floppy drive

FUN-7 The TIS maintains an audit log with fixed size that logs all the
actions taken within the enclave.

FUN-8 TIS administrators are users with higher security privileges. Ad-
ministrators may log on to the TIS console, log-off, or start an
operation.

ENV-3 The System contains a fingerprint reader. Fingerprints are used
if bio-metric security is required.

ENV-4 The System contains a small display outside the enclave.

ENV-5 The door controls user entry to the enclave, and is either open or
closed.

FUN-9 The user entry transition is defined by the transition state diagram
in [47] (41 2.pdf/pp.43/ Fig.6.1), which tracks progress through
user entry.

Table 7.1: System Requirements Specification of TIS

7.2 Tokeneer 139

Machines Level Description
Abstract FUN-1 Basic certificates (Level-0).

Ref-1 FUN-2 IDCert, AttCert (Level-1)

Ref-2 FUN-3 PrivCert, AuthCert, I&ACert
(Level-2)

Ref-3 ENV-1,
FUN-4,
FUN-5

Token, fingerprint, and internal
status to enter the enclave

Ref-4 ENV-4,
ENV-5,
FUN-9

Entry to the enclave, the display

Ref-5 FUN-6 Enrolment

Ref-6 FUN-8 Admin

AuditLog FUN-7,
ENV-2

Audit Log

Table 7.2: Refinement Strategy for the Tokeneer system.

Figure 7.10 shows an excerpt of the third refinement of the TIS Event-B
model. Machine ref 3 entry L1 models the entry of an user to the enclave. The
machine sees context ctx ref 3 (not shown in the figure) that defines carrier sets
CERTIFICATES (the set of all type of certificates), KEYS (the set of asymmet-
ric keys used for signing and validating certificates), TOKENID (the set of all
tokens), and ENTRY STATUS (the set of all possible status for entering the
enclave). Variables certificates, publicKeys, isValidatedBy , and validityPeriods
define the properties of each certificate as specified by the functional requirement
FUN-1. Variable attCert defines the properties of one kind of certificate (At-
tribute Certificates) as specified by the functional requirement FUN-2. Variables
privCert , iandaCert , and authCert define the properties of Attribute Certificates
as specified by the functional requirement FUN-3. Variables tokenPrivCert ,
tokenIandaCert , tokenAuthCert , tokenID , and attCertTokID define the prop-
erties for tokens as specified by the functional requirement FUN-4. Variable
entry status defines the status on the entry of a user to the enclave. For in-
stance, the diagram depicted in Figure 7.8 shows an excerpt of the process of
a user to enter the enclave. The states of the diagram are represented by vari-
able entry status, it starts with the value quiescent, after having checked the
user token, the system goes to next state, giving the value of gotUserToken to
entry status. Variable currentToken models the token is being read from the
card reader.

Figure 7.10 shows a single event of machine ref 3 entry L1, event BioCheck -
Required . Once the user that wants to enter to the enclave puts its token into
the card reader, the system reads the information within the token smart card.
A biometric check is required when

140 Chapter 7 – Case Studies

machine ref 3 entry L1 sees ctx ref 3
variables certificates publicKeys isValidatedBy validityPeriods attCert

privCert iandaCert authCert tokenPrivCert tokenIandaCert
tokenAuthCert entry status currentToken tokenID attCertTokID

invariants
inv1 certificates ⊆ CERTIFICATES inv2 publicKeys ⊆ KEYS
inv3 validityPeriods ∈ certificates ←↔ N
inv4 isValidatedBy ∈ certificates 7� publicKeys
inv5 attCert ⊆ certificates inv11 entry status ∈ ENTRY STATUS
inv6 partition(attCert , privCert , iandaCert , authCert)
inv7 tokenID ⊆ TOKENID inv12 currentToken ∈ TOKENID
inv8 tokenPrivCert ∈ tokenID � privCert
inv9 tokenIandaCert ∈ tokenID � iandaCert
inv10 tokenAuthCert ∈ tokenID 7� authCert
inv13 attCertTokID ∈ attCert � tokenID

BioCheckRequired
any currentTime where
grd1 entry status = gotUserToken grd2 currentTime ∈ N
grd3 (currentToken ∈ dom(tokenAuthCert)∧

currentTime 6∈ validityPeriods[tokenAuthCert(currentToken)])
∨currentToken 6∈ dom(tokenAuthCert)

grd4 currentToken ∈ ran(attCertTokID)∧
attCertTokID(currentToken) ∈ dom(isValidatedBy)

grd5 currentToken ∈ dom(tokenPrivCert)∧
tokenPrivCert(currentToken) ∈ dom(isValidatedBy)

grd6 currentToken ∈ dom(tokenIandaCert)∧
tokenIandaCert(currentToken) ∈ dom(isValidatedBy)

then
act1 entry status := waitingFinger

end
end

Figure 7.10: Excerpt third refinement machine TIS Event-B model

• the status of the entry is gotUserToken as stated by guard grd1,

• the user token is valid for entry into the enclave, i.e if the token

– is consistent (e.g. currentToken ∈ dom(tokenPrivCert)),

– ID certificate, Privilege certificate and IandA certificate can be vali-
dated (e.g. tokenPrivCert(currentToken) ∈ dom(isValidatedBy)) as
stated by guards grd4, grd5, and grd6, and

• the Authorisation Certificate is not present (e.g. currentToken 6∈
dom(tokenAuthCert)) or not valid (e.g. currentTime 6∈
validityPeriods[tokenAuthCert(currentToken)])) as stated by guard
grd3.

7.2 Tokeneer 141

public class ref3_entry_L1{
BioCheckRequired evt_BioCheckRequired = new BioCheckRequired(this);

public static final BSet<Integer> CERTIFICATES = new Enumerated(INT.min,INT.max);
// ... definition of the rest of carrier sets

private BSet<Integer> attCert;
private BRelation<Integer,Integer> isValidatedBy;
// ... definition of the rest of variables

// ... definition of getter and mutator methods

public ref3_entry_L1(){
attCert = new BSet<Integer>();
isValidatedBy = new BRelation<Integer,Integer>();
// ... initialisation of class fields

}
}

Figure 7.11: Partial translation of machine ref 3 entry L1

The biometric check consists in reading the fingerprint of the user so the
system can compare it against the fingerprint already stored in the system. If a
biometric check is required, the system goes to state waitingFinger as stated by
the action act1.

7.2.6 Generating Java code for the TIS Event-B model

After modelling TIS in Event-B and discharging all proof obligations, we gener-
ated Java code of the model using EventB2Java. Figure 7.11 depicts an excerpt
of the translation of the machine ref 3 entry L1 and Figure 7.12 shows an
excerpt of the translation of the event BioCheckRequired .

Figure 7.11 defines carrier sets, variables, and a constructor of the class.
Figure 7.12 shows a partial translation of event BioCheckRequired where

machine is a reference to the machine class implementation. The Java code
includes methods guard BioCheckRequired (the translation of the event
guard) and run BioCheckRequired (the translation of the event body). The
JML specifications generated by EventB2Java are omitted since the specifica-
tions are not used in generating tests or customising code in this example.

7.2.7 Writing JUnit Tests

Software Testing [17] can be used to validate software requirements that are
expressed in a formal language. A common way of testing is the formulation
of expected results. Hence, testing is achieved by comparing the results from
executing the system against the expected ones.

The System Test Specification of the TIS includes 32 test cases organised in
eight categories as shown in Table 7.3. We wrote Java code for these 32 test
cases in two steps. We first used the EventB2Java tool to translate the Event-B
model of the TIS to Java. We generated a sequential version of the model in

142 Chapter 7 – Case Studies

public class BioCheckRequired{
private ref3_entry_L1 machine;

public BioCheckRequired(ref3_entry_L1 m) {
this.machine = m;

}

public boolean guard_BioCheckRequired(Integer currentTime) {
return (

machine.get_entry_status().equals(machine.gotUserToken) &&
machine.get_tokenAuthCert().domain().has(machine.get_currentToken()) &&
!machine.get_validityPeriods().image(new BSet<Integer>(machine.

get_tokenAuthCert().apply(machine.get_currentToken()))).has(
currentTime) || !machine.get_tokenAuthCert().domain().has(machine.
get_currentToken()) && ...;

}

public void run_BioCheckRequired(Integer currentTime){
if(guard_BioCheckRequired(currentTime)) {

Integer entry_status_tmp = machine.get_entry_status();
machine.set_entry_status(machine.waitingFinger);

}
}

}

Figure 7.12: Partial translation of event BioCheckRequired

Java since the tests are run sequentially. We then gave initial values for Java
constants that respect the axioms on those constants defined in the Event-B
model.

We ran the 32 JUnit tests using the input data provided by Praxis. Then
we compared the obtained results against the expected results also provided
by Praxis. As an example of a test, Praxis defined UserEntry1 as one of the
test cases of the UserEntry category. The test allows an administrator with
role “Security Officer” to enter the enclave and acquire a valid Auth Certificate.
The test follows the state diagram presented in Figure 7.9, it goes through the
following steps:

• ReadUserToken

• BioCheckRequired

• ReadFingerOK

• ValidateFingerOK

• ConstructAuthCert

• WriteUserTokenOK

• EntryOK

• UnlockDoorOK

7.2 Tokeneer 143

Category Test Description
Enrolment 3 tests for starting an un-enrolled TIS attempting to

enroll using different types of certificates.

UserEntry 14 tests for allowing administrators with different
roles and users with different kinds of certificates to
enter the enclave.

UpdateConfig 5 tests for allowing different kinds of administrators
to update the configuration of the enclave.

Override 1 test for overriding the operation of the door by the
guard administrator.

Admin Login 3 tests for allowing an administrator to log-in to the
TIS.

Admin Logout 1 test for logging-out of the TIS.

Shutdown 2 tests for shutting down the system.

ArchiveLog 3 tests for actions over the AuditLog component.

Table 7.3: System Test Specification of the TIS.

Figure 7.13 shows the JUnit implementation of test UserEntry1. Variable
machine (a reference to the machine in the Java implementation) gives access
to all the variables and events of the model. Method set test UserEntry1
is used to initialise variables, variables are initialised according to initial values
given by Praxis. When executed, this test will fail if any guard evt method
returns false, or if any run evt method does not set the proper screen and
display messages, as stated by Praxis documentation in Expected Results. The
final result of this test matches the expected result: the messages on the screen
were correct, and Authorisation Certificate was created, and the door is open
so user can enter to the enclave.

During the first round of testing, the Java code did not pass all 32 JUnit tests.
We inspected the Event-B model and discovered that the model was creating a
specialised Authorisation Certificate for a user in the wrong event. As this error
did not invalidate the model, it could not be detected via model verification in
Event-B. We corrected the Event-B model, discharged all the proof obligations
again, and used the EventB2Java tool to regenerate the Java code. We repeated
this process until the code passed all 32 JUnit tests. Our Event-B model of the
TIS, the Java code generated by the EventB2Java tool, and the 32 JUnit tests
that we wrote can be found at http://poporo.uma.pt/Tokeneer.html.

There are several benefits that can be obtained by applying our strategy
for testing. The user gains confidence in the correctness and appropriateness of
the modelled system by discharging all the Event-B proof obligations in Rodin.
The JUnit tests provide an additional layer of confidence by checking that the

http://poporo.uma.pt/Tokeneer.html

144 Chapter 7 – Case Studies

@Test
public void test_UserEntry1(){
set_test_UserEntry1(machine);

// ReadUserToken
Assert.assertTrue("Guard evt_ReadUserToken not satisfied.", machine.

evt_ReadUserToken.guard_ReadUserToken(token_user_to_read));
machine.evt_ReadUserToken.run_ReadUserToken(token_user_to_read);
Assert.assertEquals(machine.get_displayMessage1(), ref6_admin.wait);

// BioCheckRequired
Assert.assertTrue("Guard evt_BioCheckRequired not satisfied.", machine.

evt_BioCheckRequired.guard_BioCheckRequired(currentTime));
machine.evt_BioCheckRequired.run_BioCheckRequired(currentTime);
Assert.assertEquals(machine.get_displayMessage1(), ref6_admin.waitingFinger);

machine.set_FingerPresence(machine.present);
// ReadFingerOK
Assert.assertTrue("Guard evt_ReadFingerOK not satisfied.", machine.

evt_ReadFingerOK.guard_ReadFingerOK());
machine.evt_ReadFingerOK.run_ReadFingerOK();
Assert.assertEquals(machine.get_displayMessage1(), ref6_admin.wait);

Integer fingerPrint = User01fp;
// ValidateFingerOK
Assert.assertTrue("Guard evt_ValidateFingerOK not satisfied.", machine.

evt_ValidateFingerOK.guard_ValidateFingerOK(fingerPrint));
machine.evt_ValidateFingerOK.run_ValidateFingerOK(fingerPrint);
Assert.assertEquals(machine.get_displayMessage1(), ref6_admin.wait);

// ConstructAuthCert -> built-in writeUserTokenOK
// WriteUserTokenOK
Assert.assertTrue("Guard evt_WriteUserTokenOK not satisfied.", machine.

evt_WriteUserTokenOK.guard_WriteUserTokenOK(cert_params));
machine.evt_WriteUserTokenOK.run_WriteUserTokenOK(p_id_cert, p_priv, p_ce,

p_tid, p_serial, p_issuer, p_period, p_pubkey, p_class);
Assert.assertEquals(machine.get_displayMessage1(), ref6_admin.wait);

// EntryOK
Assert.assertTrue("Guard evt_EntryOK not satisfied.", machine.evt_EntryOK.

guard_EntryOK(currentTime));
machine.evt_EntryOK.run_EntryOK(currentTime);
Assert.assertEquals(machine.get_displayMessage1(), ref6_admin.openDoor);

machine.set_userTokenPresence(machine.absent);
// UnlockDoorOK
Assert.assertTrue("Guard evt_UnlockDoorOK not satisfied.", machine.

evt_unlockDoorOK.guard_unlockDoorOK(currentTime));
machine.evt_unlockDoorOK.run_unlockDoorOK(currentTime);
Assert.assertEquals(machine.get_displayMessage1(), ref6_admin.doorUnlocked);

}

Figure 7.13: The UserEntry1 Test Case in JUnit

7.3 Comparing EventB2Java 145

Event-B Model LOC # Mch # Evt
Social-Event Planner [90] 1326 9 35
MIO [37] 586 7 21
Heating Controller [56] 458 15 32
State Machine [97] 86 2 5
Binary Search [3] 101 3 3
Linear Search [3] 54 2 2
Minimum Element [3] 64 2 3
Reversing Array [3] 64 2 2
Sorting Array [3] 137 3 4

Table 7.4: Statistics of the Event-B Models

behaviour of the Event-B model in Java is what the user actually intended. The
Java code generated by the EventB2Java tool is an actual initial implementation
of the Event-B model that can be used as is, or further refined and customised
as needed.

7.3 Comparing EventB2Java

We are interested in comparing our EventB2Java tool against other tools that
generate Java implementations from Event-B models. In particular, we have
compared EventB2Java with Code Generation [54, 55] by A. Edmunds and M.
Butler, and EB2J [77] by D. Méry and N. Singh. Although Code Generation
can generate Ada code in addition to Java, we were interested in examining
and analysing its ability to generate Java code only. Likewise, EB2J is able to
generate C, C++ and C# code, but we did not consider this in our comparison.

The comparison defines a set of six performance criteria as follows. i) “Gen-
eration Process” – does the user need to adapt the Event-B model before using
the tool to generate Java code. It might be a) “Automatic”, if the user does
not need to edit or extend the Event-B model, or b) “Assisted”, if the user
does need to do so, or c) “Automatic/Assisted”, if the user needs to do so in
some cases and does not in other. ii) “Executable” – does the generated code
compile and run as is. iii) “Support for Code Customisation” – does the tool
furnish a mechanism for the user to be able to customise the generated code
and to verify whether the customised code is correct. iv) “Support for Event-B’s
Syntax” – does the tool a) “Fully”, b) “Largely”, or c) “Scarcely” support the
current syntax of Event-B. v) “Execution Time” – how long does it take for the
generated code to execute and to give a result (if the execution terminates).
Finally, vi) “Effective Lines of Code” – the actual number of lines of Java code
generated by the tool.

In addition to defining a set of performance criteria, we need to provide a
fair context for comparing tools. We selected the nine Event-B models shown
in Table 7.4. We developed two of the systems – the Social-Event Planner

146 Chapter 7 – Case Studies

Tool Gen. Exec. EB Code
Proc. Code support Custom.

EventB2Java Aut./ Ast. Yes Largely Yes
Code Gen. [54] Ast. Yes Fairly No
EB2J [77] Ast. Yes Scarcely No

Table 7.5: Tool Comparison

[90] and the MIO model [37]. The Social-Event Planner is presented as a case
study in Section 7.1. MIO is an Event-B model of a massive transportation
system that includes articulated buses following the main corridor routes of a
city (briefly described in Chapter 4). The Heating Controller [56] and the State
Machine [97] models were developed by one of our tool competitors. The Heating
Controller is an Event-B model of a heating controller that provides an interface
to adjust and display a target temperature, and to sense and display the current
temperature, among other functionality. State Machine is an Event-B model of
state machines. The rest of the examples in Table 7.4 are sequential program
developments written by J.-R. Abrial in [3]. Linear and Binary Search are the
Event-B models of the respective searching algorithms. Minimum Element is
an Event-B model for finding the minimum element of an array of integers.
Reversing and Sorting Array are Event-B models for reversing and sorting an
array respectively. Square Root Number is an Event-B model for calculating
the square root of a number.

Table 7.4 presents some statistics about the Event-B models used in the
comparison. “LOC” stands for Lines of Code in Event-B, and “# Machines”
and “# Events” for the number of machines and events respectively of the
Event-B model. EventB2Java successfully generated JML-annotated Java code
for all the models in Table 7.4 – we were able to run the Java code as generated
in each case. All of the examples in Table 7.4 are available from http://
poporo.uma.pt/EventB2Java/EventB2Java_studies.html. The site
includes the Event-B models and the Eclipse projects with the generated JML-
annotated Java implementations. The Eclipse projects also include test files that
can be used to run the Java code. These test files are generated automatically
by EventB2Java, except in cases where the Event-B models make use of axioms.
In those cases, we wrote and added the test files manually. For example, Binary
Search defines a constant v to be the searched for value, and a function f to
be the array containing the values, so that v ∈ ran(f). For the EventB2Java
generated code to work, one needs to manually assign a value to v that is in the
array f . In writing a file to test the Java code of the of Binary Search algorithm,
one must consider those conditions on v and f .

Table 7.5 shows how the tools considered in our comparison compare on
the criteria of Generation Process (Gen. Proc.), Executable Code (Exec.
Code), Support for Event-B’s Syntax (EB Support) and Support for Code
Customisation (Code Custom.). Regarding “Generation Process”, EB2J and
Code Generation are (always) “Assisted” (Ast.) since tool users (always) need

http://poporo.uma.pt/EventB2Java/EventB2Java_studies.html
http://poporo.uma.pt/EventB2Java/EventB2Java_studies.html

7.3 Comparing EventB2Java 147

to modify (extend) the Event-B model for the tools to be able to generate
code. EventB2Java is “Automatic/Assisted” (Aut/Ast.). More precisely, it is
“Automatic” in all cases except when the Event-B model makes use of axioms.
As EventB2Java does not yet generate Java code for axioms (which constrain the
values of constants), the user must choose values for those constants. EventB2-
Java does generate JML specifications for axioms, so the user can employ JML
machinery [25] to confirm that the values chosen are valid with respect to the
original Event-B model.

The Code Generation tool (Code Gen.) is “Assisted” as it always requires
the user to employ the Event Model Decomposition Rodin plug-in [5] to decom-
pose Event-B models into sub-models. For example, if the Event-B machine
models the system and the environment components of a reactive system, then
the plug-in can generate each part separately. In addition to decomposing the
model, users of Code Generation have to explicitly specify the execution order
for events in the Java implementation. If the Event-B model includes axioms
and constants, tool users need to conjecture values for the constants in Event-B
and use the Rodin platform to discharge related proof obligations.

Regarding the comparison criterion “Support for Event-B’s Syntax” (EB.
Support), EventB2Java largely supports Event-B’s syntax, in part by gener-
ating and using libraries supporting Event-B syntax in Java as described in
Section 5.3.2. None of the three tools in the comparison can translate non-
deterministic assignments to Java (although EventB2Java does generate JML
specifications for them). EB2J and Code Generation require the user to write a
final Event-B refinement that does not include non-deterministic assignments.
The EB2J tool “Scarcely” provides support for Event-B’s syntax and so users are
required to furnish an additional Event-B refinement that only uses the syntax
supported by the tool. For instance, EB2J is unable to translate the invariant
inv pages ∈ contents ↔↔ persons that states that pages is a total surjective re-
lation that maps contents to persons. For EB2J to support the syntax of that
invariant, the user has to write an Event-B model refinement that includes the
definition of a total surjective relation, e.g. through the three invariants shown
below.

invA owner ∈ contents ↔ persons
invB dom(owner) = contents
invC ran(owner) = persons

Table 7.5 indicates whether the code generated by each tool is executable as
generated. However, there were cases in which EB2J was incorrect. For example,
for the Minimum Element model, the tool was unable to infer the type of the
constant n, which is defined as natural number greater than 0 and represents the
number of elements in the array to be searched. EB2J issued the message “/*
No translatable type found for [n] */”. EB2J was also unable to infer the types
of constants n, f , and variable g in the Reversing Array example. f is the array
to be reversed, defined as a function mapping from 1 . . n to the set of integers,
and g is the reversed array. Finally, EB2J did not translate parallel assignments

148 Chapter 7 – Case Studies

Code Gen. EB2J EventB2Java
Social Event Planner N/A N/A 1531 (+391)
MIO N/A N/A 825 (+272)
Heating Controller 285 N/A 1612 (+418)
State Machine 48 N/A 198 (+62)
Binary Search N/A N/A 71 (+33)
Linear Search N/A N/A 48 (+31)
Minimum Element N/A 68 68 (+46)
Reversing Array N/A 66 55 (+39)
Sorting Array N/A 79 92 (+64)
Square Root Number 60 51 53 (+31)

Table 7.6: eLOC for the generated Code

properly for the Reversing, Sorting Array, and the Square Root Number models.
For example, EB2J translated g := g �− {i 7→ g(j)}�− {j 7→ g(i)} as g[i] =
g[j]; g[j] = g[i]. However, this translation is incorrect since assignments
in Event-B are to be executed simultaneously.

EventB2Java is the only tool that provides support for “Code Customisa-
tion”. The JML specifications generated by EventB2Java enable users to replace
(parts of) the code generated by EventB2Java with bespoke implementations.
Thus, the user may customise the generated implementation and then use JML
machinery [25] to verify the customised implementation against the JML spec-
ification generated by the EventB2Java tool.

Table 7.6 shows the eLOC (Effective Lines of Code) generated by each tool.
eLOC is a measure of all logical lines in the Java code, and does not include
blank spaces, comments, specifications, or single curly brackets. We used the
ELocEngine software [50] to calculate eLOCs. As shown in the table, the Code
Generation tool was able to generate Java code for only three of the ten Event-B
models. We were unable to decompose the remaining seven models (marked as
“N/A”) since they included many variables, which made it too challenging. The
EB2J tool was able to generate code for four out of the ten Event-B models.
However, the generated code contained minor errors in Java that we were able to
fix. The errors concerned inferring the types of some variables and translating
parallel assignments as explained above. For the remaining six models, EB2J
issued only one error message. The Binary Search model uses universal quantifi-
cation, which is not supported by the tool. EventB2Java was able to generate
JML-annotated Java code for all models, and this code compiled and ran in
each case. In particular, the universally quantified assertion mentioned above
appeared in an axiom, which EventB2Java translates to JML but not Java. In
Table 7.6, the number in parentheses for EventB2Java gives the number of lines
of JML specifications generated for each model.

Finally, the Event-B models for Binary and Linear Search, Minimum Ele-
ment, and Reversing and Sorting Arrays include events whose guards are mutu-
ally exclusive. Hence, we used EventB2Java and EB2J to generate (sequential)

7.4 Conclusion 149

Array Size
Sorting Array Reverse Array Minimum Array

EventB2-
Java

EB2J
EventB2-

Java
EB2J

EventB2-
Java

EB2J

100,000 23 13093 264 1 29 0

200,000 28 51910 258 55 28 1

300,000 37 182311 198 305 30 1

400,000 152 329614 416 406 32 1

500,000 172 497133 457 548 28 1

Table 7.7: Execution times in milliseconds for the Java code generated by Event-
B2Java and EB2J for the Sorting, Reverse and Minimum Array Event-B models.

Java implementations for each of these models, and because the generated im-
plementations always complete execution, compared the times the generated
implementations took to complete for various inputs. In each case, we ran the
implementations 10 times and took the average time. Table 7.7 shows how the
times compare for the Sorting, Reverse Array and Minimum Array models. For
the Sorting Array model, the code generated by EventB2Java outperformed
that generated by EB2J. For the Minimum Array model, EB2J outperformed
EventB2Java, though times are close. For the Reverse Array model, EB2J out-
performed EventB2Java as well, although EventB2Java approaches EB2J as the
input size gets larger. The experiment shows that both tools generate runnable
implementations for the considered Event-B models. For EventB2Java, the
Java classes that implement the Event-B mathematical constructs exhibit good
performance, especially when dealing with large inputs. This is due to the
implementation using the TreeSet Java class. EB2J did outperform EventB2-
Java in some cases. We believe that this is largely due to the implementation of
method apply (applying a relation to a set of elements) of class BRelation.
In EventB2Java, the method apply iterates over each element of the relation,
so searching for an element is O(n) and searching for k elements is O(k ∗ n).
EB2J uses arrays to store relations, so applying a relation to a set is linear in k .

All times reported in Table 7.7 were collected by running the Java code
generated by EventB2Java and EB2J on a Mac OS X laptop with an Intel Core
i5 2.3 GHz processor. The Event-B models, generated code and timing harness
used are available at http://poporo.uma.pt/EventB2Java/tests.zip.

7.4 Conclusion

In this chapter we presented two case studies on software development using
EventB2Java, demonstrating the effectiveness of using the EventB2Java tool:
the first case study was the implementation of a Social-Event Planner Android
application developed using a Model-View-Controller (MVC) design pattern;
the second case study was the testing of Tokeneer, a security-critical access con-
trol system. We also presented a benchmark comparing EventB2Java against

http://poporo.uma.pt/EventB2Java/tests.zip

150 Chapter 7 – Case Studies

two existing tools for generating Java code from Event-B models. The bench-
mark was composed of the 9 Event-B models and 6 comparison criteria.

Our experience on developing the first case study suggests that software
developers can benefit of EventB2Java in several ways: modelling in Event-B
enables users to define properties that the software needs to preserve. For in-
stance, regarding permissions over social-events, an interesting property is that
invited people to a social-event have permissions over that event to view and
edit its contents. We formalised this property (and many others) as Event-B
invariants. We proved that the model was consistent by discharging all proof
obligations. We were sure that the Java code generated by EventB2Java re-
spects those properties; software developers can also benefit of EventB2Java
since they do not have to refine the Event-B model until it is close to a ma-
chine implementation whereas the software developers decide that the model
has enough details to be translated to Java using EventB2Java; finally, software
developers can benefit of EventB2Java since having a Java implementation of
an Event-B model allows the model to interact with other implementations.
For instance, the Java code generated by the tool represents the Model in a
MVC development that can interact with the implementation of the Controller
in Java, and the implementation of the View in Android.

Our experience on developing the second case study shows us that software
developers can benefit of EventB2Java since the tool can be used in testing the
correct behaviour of an Event-B model by translating it to Java and performing
JUnit tests in Java. The process allows system developers to be sure that the
behaviour of the model is indeed the behaviour that they intended from the
beginning. The process of developing the second case study, initially shows
us that, even though the Event-B model was correct (all proof obligations were
discharged), the model was not behaving according to our intentions. The JUnit
tests uncovered an issue in the Java code generated by the tool for one of the
Event-B events. We inspected that event in Event-B, found and corrected the
error. We discharged again the proof obligations to be sure the model was still
consistent, and used EventB2Java to generate again Java code of the model. We
repeated this process until the generated code passed all 32 JUnit test cases.
The final generated code is an actual implementation of a model in Event-B
that was proven correct, and the code is behaving according to what we expect.

The benchmark showed us that EventB2Java outperforms other Java code
generators for Event-B in several ways: EventB2Java generates (and embeds)
JML specifications in the Java code. That enables users to customise the Java
code to further check if the customised code does not invalidate the initial model.
We found out that the EB2J and Code Generation tools do not support code
customisation; the generation of Java code process in EventB2Java is automat-
ically/assisted whilst for the other two tools is always assisted. This makes our
tool more useful since it is easy to use.

We are planning on undertaking a more complex case study where experts
in modelling in Event-B and experts in developing in Java (and JML) can work
together.

Chapter 8

Future Work

The work presented in this thesis can be extended in different ways. Figure 8.1
depicts my future work (in red), which is explained below. The figure shows (in
black) the work done during this thesis.

• Currently, proof obligations generated by EventB2Dafny are manually fed
into Dafny. We are planning on integrating EventB2Dafny to Dafny and
Microsoft Visual Studio, so the process of discharging POs is automatic
and Rodin can directly have feed back from Dafny (this is depicted in
Figure 8.1 as (1)). We also want to investigate and to characterise the
type of POs for which Boogie outperforms existing Rodin proof-engines.

• Rodin provides a lasso functionality whereby users can select or dese-
lect hypotheses of a proof obligation having common variables with the
variables of the goal. We plan to implement a similar functionality for
EventB2Dafny.

• In [39], Cataño et. al. proposed a proof of soundness of the transla-
tion from Event-B models to JML specifications. The proof takes into
account any Event-B substitutions, invariants, and the standard Event-B
initialising event. We are planning on extending the proof to fully prove
the translation of Event-B machines and contexts to JML, and proving the
soundness of the translation from Event-B to Java code (this is depicted
in Figure 8.1 as (2)). Providing a proof of soundness of our EventB2Java
tool gives the user confidence about the generated JML-annotated Java
code.

• One major frustration in our work is the inadequate tool support for ver-
ifying Java programs with respect to JML specifications. Existing verifi-
cation tools such as KeY [64] and Krakatoa [75] can not handle the full
syntax of Java and JML, particularly with regard to generics. We would
like to undertake a case study on replacing parts of the code generated
by EventB2Java with bespoke implementations and then verifying those

152 Chapter 8 – Future Work

Figure 8.1: Future Work.

implementations against the generated JML specifications. However, per-
forming such verification without adequate tool support is time consuming
and prone to error.

• EventB2Java translates Event-B axioms as JML static invariants.
These axioms determine the possible values that constants can take.
EventB2Java cannot automatically generate values for constants that sat-
isfy the axioms. We plan on investigate translating the Event-B defini-
tions of constants and axioms to the input language of the Z3 SMT solver
[81], and then using Z3 to find values for the constants. Another solution
could be to propose a constraint system where constants in Event-B are
represented as variables in Java, and Event-B axioms and theorems as
constraints, and then use a Java constraint library like CHOCO [44] to
obtain correct values for these variables (this is depicted in Figure 8.1 as
(3)).

• In Section 7.2 we showed a case study where EventB2Java was applied for
testing the behaviour of an Event-B model by translating it to Java using
EventB2Java and perform manually written JUnit test. An issue with
this strategy is users can introduce errors while manually writing the JUnit
tests. We are planning on automating this process so to avoid error prone.
In [32], a strategy called JFly is proposed to evolve informal (written in
natural language) software requirements into formal requirements written
in JML. This work can be reused to structure the writing of JUnit tests

153

from a System Test Specification document (this is depicted in Figure 8.1
as (4)). Likewise, we are planning on investigating a way to map Event-
B requirements with a System Requirements Specification document to
avoid error prone. In [68], an approach is proposed to obtain a correct
representation of requirement specifications in Event-B from a specific
semantics also proposed in that approach (this is depicted in Figure 8.1
as (5)).

• As a validation step of an Event-B model behaviour, we proposed to trans-
late the model to Java and perform JUnit tests (as stated in the previ-
ous bullet). Another validation step is to simulate the Event-B model so
user can see if its behaviour matches the user expectations. In [104], a
JavaScript simulation framework for Event-B (JeB) is proposed. It trans-
lates Event-B models to JavaScript in order to animate the Event-B model.
The idea goes in the same direction as ProB [72]. We are planning on ex-
tending the EventB2Java tool so it can generate this kind of simulation
so users can check the behaviour of the Event-B model (this is depicted
in Figure 8.1 as (6)). Our proposal will outperform JeB in that EventB2-
Java generates Java code that serves as a final implementation. The idea
is also to have a unique framework that comprises everything: users can
obtain JML-annotated Java code from Event-B models, they can check if
the behaviour of the Event-B model is the expected by performing JUnit
tests or simulating the model in Java.

• Although the modelling of timing properties is not directly supported by
Event-B, a discrete clock can certainly be designed and implemented in
Event-B. In [95, 96], M. Sarshogh and M. Butler introduce three Event-B
trigger-response patterns, namely, deadlines, delays and expires, to encode
discrete timing properties in Event-B. A “deadline” means that a set of
events must respond to a particular event within a bounded time. For a
“delay”, the set of response events must wait for a specified period after the
triggering of an event. An “expiry” pattern prevents response events from
triggering after the occurrence of an event. The authors translate timing
properties as invariants, guards and Event-B actions. We are interested in
investigating on how our code generation framework can be extended to
support timing properties in Event-B, and in encoding this extension in
EventB2Java once the Rodin platform fully supports the use of discrete
timing events.

Chapter 9

Conclusion

This thesis investigated the answer to the question: is it possible to combine
Refinement Calculus and Design-by-Contract together in the development of
systems taking the best of both? For this purpose, this thesis presented the
translation from Event-B models to JML-annotated Java code. The trans-
lation is defined by means of syntactic rules. These rules were implemented
as the EventB2Java tool which is a Rodin plug-in (described in Chapter 5).
EventB2Java bridges Refinement Calculus with Event-B to Design-by-Contract
with JML and Java, answering the research question we proposed from the be-
ginning: EventB2Java does allow users to combine Refinement Calculus and
Design-by-Contract together in the development of systems enabling users to
take advantage of the strengths and avoiding the weaknesses of each approach.
EventB2Java generates Java executable code directly from abstract (or more re-
fined) Event-B models, providing the option to verify the code against the gen-
erated JML specifications whenever users decide to customise the code. When
modelling in Event-B, users need to prove the system to be consistent by dis-
charging proof obligations. Rodin generates these proof obligations which some
of them are automatically discharged by Rodin’s provers and some others need
the intervention of the user. The manually proving of proof obligations can be
a difficult task, so we proposed a translation from Event-B proof obligations
to the input language of Dafny, thus users can use Z3 (the automatic prover
associated to Dafny) as a prover (described in Chapter 6). Our intention is to
provide tools that help users in the process of proving an Event-B model sound.

The findings of this investigation could be of interest to both researchers
working with Event-B and software developers working with JML and Java.
Using Event-B in the early stages of the software development gives develop-
ers excellent support for modelling software systems in an abstract manner,
and particularly for verifying safety, security and correctness properties of those
models. Transitioning to JML at an appropriate point (as determined by the de-
velopers themselves, rather than being dictated by the tools being used) allows
developers to take full advantage of data structures and APIs in the imple-
mentation language, and permits software developers with less mathematical

155

expertise to contribute earlier in the development process. Furthermore, having
the JML specifications embedded into the Java code also gives an insight of
documentation of the code that can be read easily.

Researchers investigating about the translation from a language A to a lan-
guage B might also find this thesis of interest. Researchers can see the develop-
ment of this thesis as a guide for defining translation rules and its implementa-
tion from one language to another.

Code generation for Event-B is not a new concept. For instance, modelling
in Event-B one can refine an Event-B model until accomplishing an actual im-
plementation. However, this is difficult since users have to discharge proof
obligations that become harder through refinements. This particular issue can
make the use of formal methods less popular. Another way of code generation
for Event-B is the use of existing tools. There are tools that allow users to trans-
late Event-B models to different programming languages. Our tool outperforms
these tools since: EventB2Java fully supports the Event-B syntax, except for
non-deterministic assignments for which the tool generates JML specifications.
Hence, EventB2Java does not impose restrictions on the syntax of the model to
be translated, users can decide the level of abstraction in the model then transi-
tion to Java code. Current tools for generating Java code from Event-B models
impose restrictions to users since the tools do not fully support the Event-B no-
tation, so users need to evolve the Event-B model to use the syntax supported
by those tools; on the other hand, as far as I can tell, our tool is the only one
that generates JML specifications embedded in the Java code. This gives the
user another layer of confidence when the user decides to customise the code
since the generated code can be verified against the JML specifications.

In my experience on developing software without formal methods I have
seen that one can end up with a final implementation of the software in a rel-
atively short time. However, in many cases, the non use of formal methods
makes the implementation misbehave so one needs to correct the implementa-
tion, making the maintenance of software a difficult task and a waste of time.
For instance, since we are not using formal methods, reasoning about the model
is not possible, so finding an error is difficult. One could use testing to uncover
misbehaviours/erros, but testing can tell about problems among the scope of the
testing process but nothing beyond. I have found very interesting the develop-
ment of software using EventB2Java since the development starts in Event-B,
where one can propose properties that the system needs to preserve and one
must prove that the model indeed preserves those properties, for which Event-
B2Dafny can help in this process. Then, use the EventB2Java tool to generate
Java code where the development can continue. The generated Java code is an
actual implementation of the Event-B model and contains two main advantages:
i) the code preserves the initial properties that the user defined, and ii) the code
contains JML specifications so users can customise the code being able to check
if the customised code meets the JML specifications. Users can argue that the
use of Event-B can be difficult since one needs to discharge proof obligations
delaying the development of software at early stages. However, my experience
on using Event-B at early stages of development suggests that the final imple-

156 Chapter 9 – Conclusion

mentation of the development needs not to be maintained since the code does
not contain errors. So, regarding times of development of software, the use of
EventB2Java is better than using just Java or any other language.

I believe that having a tool that translates Refinement Calculus models into
Design-by-Contract makes formal techniques and tools more usable. This is of
paramount importance since the popularity of formal methods has not increased
as much as researchers might want due to the level of expertise needed to work
with these methods. Having tools that automise the process of working with
these methods give the popularity formal method should have. I have seen
the popularity of different things being increased by the development of tools.
For instance, theorem proving was introduced by Begriffsschrift in 1884, but
just until a couple of years ago theorem proving has become more popular
thanks to the implementation of tools that assist users in the process. I see
the use of Event-B and JML increasing thanks to EventB2Java since the tool
enables people to automatise the process of combining Event-B and Java+JML
in the development of software. EventB2Java still needs to be more developed,
specially in proving the soundness of the entire translation rules, but I believe
the investigation of this thesis is one step forward on making formal method
more popular.

As a result of my study, further research might be to undertake a more
complex software development using EventB2Java, involving different expertise
researchers, experts in the notation underlying Event-B and Java-JML develop-
ers. An interesting case study is to implement the same software development
using three approaches: using our tool, using just Java, and using just Event-B.
So we could take metrics to compare the three developments to have an in-
sight on the time to develop the software, on the effort put by modellers and
implementers, and on the time used to maintain the software.

Another interest further research might be to use EventB2Java in Academia
to help students to relate formal developments in Event-B with Java and JML.
Nowadays, the use of formal methods is done by theoretic researchers, software
developers are not so much familiarised with mathematics, logics, so they do
not use formal methods. Hence, they are skeptical on their use. On the other
hand, theoretic researchers do not use much programming languages. Both
sides can argue about (dis-)advantages of each approach. It is quite difficult
to convince any end to use another approach. I truly believe, the combination
of methods like Event-B with Java and JML can be accomplished by teaching
future software developers and theoretic researchers from their education. I see
EventB2Java can fullfil this purpose since the tool enables students to relate
formal methods and code in software development.

Bibliography

[1] S. Abdennadher, E. Krämer, M. Saft, and M. Schmauss. JACK: A Java
Constraint Kit. In M. Hanus, editor, Electronic Notes in Theoretical Com-
puter Science. Elsevier, 2002.

[2] J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge
University Press, 1996.

[3] J.-R. Abrial. Sequential Program Development: Teaching Re-
sources. http://deploy-eprints.ecs.soton.ac.uk/122/1/
sld.ch15%2Cseq.pdf, 2009.

[4] J.-R. Abrial. Modeling in Event-B: System and Software Design. Cam-
bridge University Press, New York, NY, USA, 2010.

[5] J.-R. Abrial and S. Hallerstede. Refinement, Decomposition and Instan-
tiation of Discrete Models: Application to Event-B. Fundamentae Infor-
matica, 77(1,2):1–24, 2007.

[6] J.-R. Abrial, S. Schuman, and B. Meyer. Specification Language. In On
the Construction of Programs, R. McKeag and A. Macnaghten, editors,
pages 343–410. Cambridge University Press, 1980.

[7] B. Appleton. Patterns and software: essential concepts and terminology,
2000.

[8] Atelier B, the industrial tool to efficiently deploy the B Method, January
2008.

[9] R. Back and J. Wright. Refinement Calculus, Part I: Sequential Nonde-
terministic Programs. In J. de Bakker, W. de Roever, and G. Rozenberg,
editors, REX Workshop, volume 430 of Lecture Notes in Computer Sci-
ence, pages 42–66. Springer, 1989.

[10] J. Barnes. High Integrity Software: The SPARK Approach to Safety and
Security. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2003.

http://deploy-eprints.ecs.soton.ac.uk/122/1/sld.ch15%2Cseq.pdf
http://deploy-eprints.ecs.soton.ac.uk/122/1/sld.ch15%2Cseq.pdf

158 BIBLIOGRAPHY

[11] M. Barnett, B. Chang, R. DeLine, B. Jacobs, and K. Leino. Boogie: A
modular reusable verifier for object-oriented programs. In Formal Methods
for Components and Objects, volume 4111 of Lecture Notes in Computer
Science. Springer, 2006.

[12] C. Barrett, A. Stump, and C. Tinelli. The Satisfiability Modulo Theories
Library (SMT-LIB). www.SMT-LIB.org, 2010.

[13] B. Beizer. Software testing techniques (2nd ed.). Van Nostrand Reinhold
Co., New York, NY, USA, 1990.

[14] B. Beizer. Black-Box Testing: Techniques for Functional Testing of Soft-
ware and Systems. Verlag John Wiley & Sons, Inc, 1995.

[15] G. Bernot, M. Gaudel, and B. Marre. Software testing based on for-
mal specifications: a theory and a tool. Software Engineering Journal,
6(6):387–405, 1991.

[16] Y. Bertot, P. Castran, G. Huet (informaticien), and C. Paulin-Mohring.
Interactive theorem proving and program development : Coq’Art : the
calculus of inductive constructions. Texts in theoretical computer science.
Springer, Berlin, New York, 2004.

[17] R. Black. Managing the Testing Process. Wiley Publishing, Inc., 2009.

[18] J. Boulanger. ABTools: Another B Tool. In Proceedings of Application of
Concurrency to System Design, 2003.

[19] J. Boulanger. B/HDL: design of safety circuit. In Information and Com-
munication Technologies, volume 2, pages 2855 – 2860, 2006.

[20] J. Boulanger. The ABTools Suite. http://sourceforge.net/
projects/abtools/, 2011.

[21] F. Bouquet, J. Couchot, F. Dadeau, and A. Giorgetti. Instantiation of
Parameterized Data Structures for Model-Based Testing. In B’2007, the
7th Int. B Conference, volume 4355 of LNCS, pages 96–110. Springer,
January 2007.

[22] F. Bouquet, F. Dadeau, and J. Groslambert. Checking JML specifications
with B machines. In Proceedings of ZB, volume 3455 of Lecture Notes in
Computer Science, pages 435–454. Springer Verlag, April 2005.

[23] F. Bouquet, F. Dadeau, and J. Groslambert. JML2B: Checking JML Spec-
ifications with B Machines. In J. Julliand and O. Kouchnarenko, editors,
Proceedings of B: Formal Specification and Development in B, volume 4355
of Lecture Notes in Computer Science, pages 285–288. Springer Berlin /
Heidelberg, 2006.

[24] J. Bowen and V. Stavridou. Safety-Critical Systems, Formal Methods and
Standards. Software Engineering Journal, 8:189–209, 1993.

www.SMT-LIB.org
http://sourceforge.net/projects/abtools/
http://sourceforge.net/projects/abtools/

BIBLIOGRAPHY 159

[25] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. Leavens, K. Leino,
and E. Poll. An overview of JML tools and applications. International
Journal on Software Tools for Technology Transfer, 2005.

[26] L. Burdy and A. Requet. JACK: Java Applet Correctness Kit. In In
Proceedings, 4th Gemplus Developer Conference, 2002.

[27] M. Butler. Decomposition Structures for Event-B. In Proceedings of
the 7th International Conference on Integrated Formal Methods, IFM ’09,
pages 20–38, Berlin, Heidelberg, 2009. Springer-Verlag.

[28] M. Butler, C. Jones, A. Romanovsky, and E. Troubitsyna, editors. Rig-
orous Development of Complex Fault-Tolerant Systems [FP6 IST-511599
RODIN project], Lecture Notes in Computer Science. Springer, 2006.

[29] R. Butler. What is Formal Methods?, 2001. Available at http:
//shemesh.larc.nasa.gov/fm/fm-what.html.

[30] N. Cataño. The EventB2Dafny Tool, 2012. Available at
http://poporo.uma.pt/eventb2dafny/index.html.

[31] N. Cataño and M. Huisman. Chase: A Static Checker for JML’s
Assignable Clause. In L. Zuck, P. Attie, A. Cortesi, and S. Mukhopad-
hyay, editors, Proceedings of Verification, Model Checking, and Abstract
Interpretation, volume 2575 of Lecture Notes in Computer Science, pages
26–40, New York, NY, USA, January 9-11 2003. Springer-Verlag.

[32] N. Cataño, J. Pestana, and R. Rodrigues. JFly: A JML-Based Strategy
for Incorporating Formal Specifications into the Software Development
Process. In Luis Barbosa and Miguel P. Correia, editors, Portuguese forum
of Informatics, Braga, Portugal, September 2010.

[33] N. Cataño and V. Rivera. The B2Jml Tool, 2012. Available at http:
//poporo.uma.pt/favas/b2jml.html.

[34] N. Cataño and V. Rivera. The EventB2Jml Tool, 2012. Available at
http://poporo.uma.pt/favas/eventb2jml.html.

[35] N. Cataño, V. Rivera, and R. Leino. The EventB2Dafny Rodin Plug-In.
In 2nd Workshop on Developing Tools as Plug-ins (TOPI), pages 49–54,
Zurich, Switzerland, June 3 2012. IEEE Xplore.

[36] N. Cataño, V. Rivera, C. Rueda, and T. Wahls. Formal Methods Applied
to Industrial Complex Systems: Implementation of the B Method, chapter
Translating B and Event-B Machines to Java and JML, pages 211–252.
Computer Engineering Series. Wiley, July 2014.

[37] N. Cataño and C. Rueda. Teaching Formal Methods for the Uncon-
quered Territory. In 2nd International Formal Methods Europe Confer-
ence on Teaching Formal Methods, Lecture Notes in Computer Science,
The Netherlands, 2009. Springer-Verlag.

http://shemesh.larc.nasa.gov/fm/fm-what.html
http://shemesh.larc.nasa.gov/fm/fm-what.html
http://poporo.uma.pt/favas/b2jml.html
http://poporo.uma.pt/favas/b2jml.html
http://poporo.uma.pt/favas/eventb2jml.html

160 BIBLIOGRAPHY

[38] N. Cataño and C. Rueda. Matelas: A Predicate Calculus Common Formal
Definition for Social Networking. In M. Frappier, editor, Proceedings of
ABZ 2010, volume 5977 of Lecture Notes in Computer Science, pages
259–272, Québec, Canada, 2010. Springer Berlin Heidelberg.

[39] N. Cataño, C. Rueda, and T. Wahls. A Machine-Checked Proof for a
Translation of Event-B Machines to JML. CoRR, abs/1309.2339, 2013.

[40] N. Cataño and T. Wahls. Executing JML Specifications of Java Card
Applications: A Case Study. In 24th ACM SAC, Software Engineering
Track, Waikiki Beach, Honolulu, Hawaii, 2009.

[41] N. Cataño, T. Wahls, C. Rueda, V. Rivera, and Danni Yu. Translating
B Machines to JML Specifications. In 27th ACM Symposium on Applied
Computing, Software Verification and Testing track (SAC-SVT), Trento,
Italy, March 26-30 2012.

[42] A. Cavalcanti, F. Zeyda, A. Wellings, J. Woodcock, and K. Wei. Safety-
critical Java programs from Circus models. Real-Time Systems, 49(5):614–
667, 2013.

[43] Y Cheon and G. Leavens. A runtime assertion checker for the Java Mod-
eling Language (JML). In Proceedings of the international conference on
Software Engineering Research and Practice , Las Vegas, pages 322–328.
CSREA Press, 2002.

[44] Choco Team. Choco: an open source Java constraint programming library.
Research report 10-02-INFO, École des Mines de Nantes, 2010.

[45] D. Cok. OpenJML: JML for Java 7 by Extending OpenJDK. In NASA
Formal Methods Symposium, pages 472–479, 2011.

[46] D. Cok and J. Kiniry. ESC/Java2: Uniting ESC/Java and JML - Progress
and issues in building and using ESC/Java2. In In Construction and
Analysis of Safe, Secure and Interoperable Smart Devices: International
Workshop. SpringerVerlag, 2004.

[47] Ada Core. Tokeneer. http://www.adacore.com/sparkpro/
tokeneer/download, 2013.

[48] K. Damchoom. An Incremental Refinement Approach to a Development
of a Flash-Based File System in Event-B. PhD thesis, University of
Southampton, 2010.

[49] L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In Tools and
Algorithms for the Construction and Analysis of Systems 2008, volume
4963 of Lecture Notes in Computer Science, pages 337–340. Springer, 2008.

[50] D. Dean. eLoc Engine. Accessed September 2013. http://
sourceforge.net/projects/elocengine/, (2013).

http://www.adacore.com/sparkpro/tokeneer/download
http://www.adacore.com/sparkpro/tokeneer/download
http://sourceforge.net/projects/elocengine/
http://sourceforge.net/projects/elocengine/

BIBLIOGRAPHY 161

[51] D. Déharbe. Integration of SMT-solvers in B and Event-B development
environments. Science of Computer Programming, 2011. Available online.

[52] E. W. Dijkstra. Guarded Commands, Nondeterminacy and Formal Deriva-
tion of Programs. Commun. ACM, 18(8):453–457, August 1975.

[53] P. Duvall, S. Matyas, and A. Glover. Continuous Integration: Improv-
ing Software Quality and Reducing Risk (The Addison-Wesley Signature
Series). Addison-Wesley Professional, 2007.

[54] A. Edmunds and M. Butler. Tool Support for Event-B Code Generation.
In Workshop on Tool Building in Formal Methods, Québec, Canada, 2010.
J. Wiley and Sons.

[55] A. Edmunds and M. Butler. Tasking Event-B: An Extension to Event-B
for Generating Concurrent Code. In PLACES 2011, 2011.

[56] A. Edmunds and A. Rezazedah. Development of a Heating Controller
System, 2011. Available at http://wiki.eventb.org/index.php/
Development_of_a_Heating_Controller_System.

[57] M. Ernst, J. Cockrell, W. Griswold, and D. Notkin. Dynamically Dis-
covering Likely Program Invariants to Support Program Evolution. In
Proceedings of the 21st International Conference on Software Engineer-
ing, ICSE ’99, pages 213–224, New York, NY, USA, 1999. ACM.

[58] J. Filliâtre. Why: a multi-language multi-prover verification tool. Re-
search Report 1366, LRI, Université Paris Sud, 2003.

[59] J. Filliâtre and C. Marché. The Why/Krakatoa/Caduceus platform for
deductive program verification. In W. Damm and H. Hermann, editors,
Conference on Computer-Aided Verification, volume 4590 of Lecture Notes
in Computer Science, pages 173–177, 2007.

[60] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: ele-
ments of reusable object-oriented software. A. Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1995.

[61] Google Inc. The Android Platform. http://developer.android.
com/design/index.html, 2012.

[62] D. Jin and Z. Yang. Strategies of Modeling from VDM-SL to JML. In
International Conference on Advanced Language Processing and Web In-
formation Technology, pages 320–323, 2008.

[63] C. Jones. Systematic Software Development Using VDM. International
Series in Computer Science. Prentice Hall, second edition, 1990.

[64] The KeY Project, Integrated Deductive Software Design. http://www.
key-project.org/.

http://wiki.eventb.org/index.php/Development_of_a_Heating_Controller_System
http://wiki.eventb.org/index.php/Development_of_a_Heating_Controller_System
http://developer.android.com/design/index.html
http://developer.android.com/design/index.html
http://www.key-project.org/
http://www.key-project.org/

162 BIBLIOGRAPHY

[65] J. Koenig and K. Leino. Getting Started with Dafny: A Guide. In T. Nip-
kow, O. Grumberg, and B. Hauptmann, editors, Software Safety and Secu-
rity - Tools for Analysis and Verification, volume 33 of NATO Science for
Peace and Security Series – D: Information and Communication Security,
pages 152–181. IOS Press, May 2012.

[66] B. Krause and T. Wahls. jmle: A Tool for Executing JML Specifications
via Constraint Programming. In Proceedings of FMICS, volume 4346 of
Lecture Notes in Computer Science. Springer-Verlag, 2006.

[67] B. Krause and T. Wahls. jmle: A Tool for Executing JML Specifica-
tions via Constraint Programming. In Proceedings of Formal Methods for
Industrial Critical Systems, volume 4346 of Lecture Notes in Computer
Science, Bonn, Germany, 2006. Springer-Verlag.

[68] K.Traichaiyaporn. Modeling Correct Safety Requirements Using KAOS
and Event-B. Master’s thesis, Japan Advanced Institute of Science and
Technology, 2013.

[69] L. Lamport. A new solution of Dijkstra’s concurrent programming prob-
lem. Commun. ACM, 17(8):453–455, August 1974.

[70] G. Leavens, A. Baker, and C. Ruby. Preliminary Design of JML: A Be-
havioral Interface Specification Language for Java. ACM Special Interest
Group Software Engineering, 2006.

[71] G. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, P. Müller,
J. Kiniry, P. Chalin, D. Zimmerman, and W. Dietl. JML Reference Man-
ual. http://www.eecs.ucf.edu/˜leavens/JML/OldReleases/
jmlrefman.pdf, May 2013.

[72] M. Leuchel and M. Butler. ProB: A Model Checker for B. In Formal Meth-
ods Europe, Lectures Notes in Computer Science 2805. Springer-Verlag,
2003.

[73] J. Link. Unit Testing in Java. M. Kaufmann, 2003.

[74] D. Locke, B. Andersen, B. Brosgoal, M. Fulton, T. Henties, J. Hunt,
J. Nielsen, M. Schoeberl, J. Tokar, J. Vitek, and A. Weillings.
Safety Critical Java Specification, version 0.78. Technical report, The
Open Group, http://jcp.org/aboutJava/communityprocess/
edr/jsr302/index.html, 2010.

[75] C. Marche, C. Paulin-mohring, and X. Urbain. The Krakatoa Tool for
Certification of Java/JavaCard Programs Annotated in JML, 2003.

[76] D. Mentré, C. Marché, J. Filliâtre, and M. Asuka. Discharging Proof
Obligations from Atelier B using Multiple Automated Provers. In ABZ
Conference, Pisa, Italy, June 2012.

http://www.eecs.ucf.edu/~leavens/JML/OldReleases/jmlrefman.pdf
http://www.eecs.ucf.edu/~leavens/JML/OldReleases/jmlrefman.pdf
http://jcp.org/aboutJava/communityprocess/edr/jsr302/index.html
http://jcp.org/aboutJava/communityprocess/edr/jsr302/index.html

BIBLIOGRAPHY 163

[77] D. Méry and N. Singh. Automatic code generation from Event-B models.
In Proceedings of the Second Symposium on Information and Communi-
cation Technology, SoICT. ACM, 2011.

[78] B. Meyer. Applying “Design by Contract”. Computer, 25(10):40–51, Oc-
tober 1992.

[79] C. Morgan. The Specification Statement. ACM Transactions on Program-
ming Languages and Systems, 10(3):403–419, July 1988.

[80] J. Morris. A theoretical basis for stepwise refinement and the programming
calculus. Science of Computer Programming, 9(3):287 – 306, 1987.

[81] L. De Moura and N. Bjorner. Z3: An Efficient Solver. http://
research.microsoft.com/en-us/um/redmond/projects/z3/,
2010.

[82] J. Nielsen. Usability Engineering. AP Professional, San Diego, CA, USA,
1993.

[83] S. Ostroumov and L. Tsiopoulos. VHDL Code Generation from Formal
Event-B Models. In Proceedings of the 14th Euromicro Conference on
Digital System Design, Euromicro Conference on Digital System Design,
pages 127–134, Washington, DC, USA, 2011. IEEE Computer Society.

[84] S. Owre, J. Rushby, and N. Shankar. PVS: A Prototype Verification
System. In Deepak Kapur, editor, 11th International Conference on Au-
tomated Deduction, volume 607 of Lecture Notes in Artificial Intelligence,
pages 748–752, Saratoga, NY, jun 1992. Springer-Verlag.

[85] S. Owre, N. Shankar, J. Rushby, and D. Stringer-Calvert. PVS Language
Reference. Computer Science Laboratory, SRI, 2006.

[86] S. Padidar. A Study In The Use Of Event-B For System Development
From A Software Engineering Viewpoint. Master’s thesis, University of
Edinburgh, 2010.

[87] T. Parr. The Definitive ANTLR Reference: Building Domain-Specific
Languages. Pragmatic Bookshelf, 2007.

[88] L. Paulson. Isabelle: a Generic Theorem Prover. Number 828 in Lecture
Notes in Computer Science. Springer – Berlin, 1994.

[89] D. Peled, D. Gries, and F. Schneider, editors. Software reliability methods.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2001.

[90] V. Rivera and N. Cataño. The Social-Event Planner, 2012. Available at
http://poporo.uma.pt/favas/Social-Event_Planner.html.

http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://poporo.uma.pt/favas/Social-Event_Planner.html

164 BIBLIOGRAPHY

[91] V. Rivera and N. Cataño. Translating Event-B to JML-Specified Java
programs. In 29th ACM Symposium on Applied Computing, Software
Verification and Testing track (SAC-SVT), Gyeongju, Korea, March 24-
28 2014.

[92] V. Rivera, N. Cataño, T. Wahls, and C. Rueda. Code Generation for
Event-B. Submitted to Software Tools for Technology Transfer, 2014.

[93] Rigorous Development of Complex Fault-Tolerant Systems. Ac-
cessed February 2012. http://sourceforge.net/projects/
rodin-b-sharp/, (2011).

[94] Rodin Developer Support. Accessed February 2012. http://wiki.
event-b.org/index.php/Rodin_Developer_Support, (2011).

[95] M. Sarshogh and M. Butler. Specification and refinement of discrete tim-
ing properties in Event-B. Electronic Communications of the European
Association of Software Science and Technology, 46, 2011.

[96] M. Sarshogh and M. Butler. Extending Event-B with Discrete Timing
Properties. http://deploy-eprints.ecs.soton.ac.uk/401/1/
Journal.pdf, 2012.

[97] State-Machines and Code Generation. Accessed August 2013.,
2012. Available at http://wiki.event-b.org/index.php/
State-Machines_and_Code_Generation.

[98] A. Toom, T. Naks, M. Pantel, M. Gandriau, and Indrawati. Gene-
Auto: an Automatic Code Generator for a safe subset of Simulink/S-
tateflow and Scicos. In Akadeemia IB Krates OÜ, University of Toulouse
IRIT-ENSEEIHT, F. Alyotech CRIL Technologies, and Tallinn University
of Technology, editors, Embedded Real Time Software, 2008.

[99] J. van den Berg and B. Jacobs. LOOP compiler for Java and JML. In
Tools and Algorithms for the Construction and Analysis of Systems, pages
299–312. Springer, 2001.

[100] L. Voisin. Description of the Rodin Prototype: RODIN Deliverable
D15. http://rodin.cs.ncl.ac.uk/deliverables/rodinD15.
pdf, 2006.

[101] A. Wellings. Concurrent and Real-Time Programming in Java. J. Wiley
& Sons, 2004.

[102] J. Woodcock and J. Davies. Using Z: Specification, Refinement, and Proof.
International Series in Computer Science. Prentice-Hall, Inc., 1996.

[103] S. Wright. Automatic Generation of C from Event-B. In Workshop on
Integration of Model-based Formal Methods and Tools. Springer-Verlag,
2009.

http://sourceforge.net/projects/rodin-b-sharp/
http://sourceforge.net/projects/rodin-b-sharp/
http://wiki.event-b.org/index.php/Rodin_Developer_Support
http://wiki.event-b.org/index.php/Rodin_Developer_Support
http://deploy-eprints.ecs.soton.ac.uk/401/1/Journal.pdf
http://deploy-eprints.ecs.soton.ac.uk/401/1/Journal.pdf
http://wiki.event-b.org/index.php/State-Machines_and_Code_Generation
http://wiki.event-b.org/index.php/State-Machines_and_Code_Generation
http://rodin.cs.ncl.ac.uk/deliverables/rodinD15.pdf
http://rodin.cs.ncl.ac.uk/deliverables/rodinD15.pdf

BIBLIOGRAPHY 165

[104] F. Yang, J. Jacquot, and J. Souquières. The Case for Using Simulation to
Validate Event-B Specifications. In APSEC, pages 85–90, 2012.

[105] D. Zimmerman and R. Nagmoti. JMLUnit: The Next Generation. In
Proceedings of the 2010 International Conference on Formal Verification
of Object-oriented Software, FoVeOOS’10, pages 183–197, Berlin, Heidel-
berg, 2011. Springer-Verlag.

Appendix A

Event-B syntax supported
by EventB2Java

This appendix shows the full syntax of Event-B and the translation to Java
and JML. The Event-B modelling language is composed of five mathematical
languages (see Chapter 9 of [4]), namely, a) a Propositional Language, b) a
Predicate Language, c) an Equality Language, d) a Set-Theoretic Language,
and e) Boolean and Arithmetic Languages. The following shows the translation
of each construct in the Event-B languages to Java and JML.

P and Q are predicates, E and F are expressions, x is a variable, S and T are
sets, f and g are relations, Pr is a Pair, and a and b are Integers. The construct
Type(tt) translates the type of the Event-B variable tt to the corresponding
Java type.

A.1 The Propositional Language

Event-B Op. JML Java
¬P !P same as JML

P ∧Q P && Q same as JML
P ∨Q P || Q same as JML
P ⇒Q BOOL.implication(P,Q) same as JML
P ⇔Q BOOL.bi implication(P,Q) same as JML

A.2 The Predicate Language

Event-B Op. JML Java
∀ x ·P (\forall Type(x) x ; P) not supported yet!
∃ x ·P (\exists Type(x) x ; P) not supported yet!

E 7→ F new Pair(E,F) same as JML
E = F E.equals(F) same as JML

A.3 The Set-Theoretic Language 167

A.3 The Set-Theoretic Language

Event-B Op. JML Java
E ∈ F F.has(E) same as JML

A.3.1 Axioms of set theory

Event-B Op. JML Java
E × F BRelation.cross(E,F) same as JML
P(E) E.pow() same as JML

{x ·P | F}

new BSet<Type(x)>(new
JMLObjectSet Type(e) e |
(\exists Type(x) x; P;
e.equals(E)))

not supported yet!

E = F E.equals(F) same as JML

A.3.2 Elementary set operators

Event-B Op. JML Java
S ⊆ T S.isSubset(T) same as JML
S ⊂ T S.isProperSubset(T) same as JML
S ∪ T S.union(T) same as JML
S ∩ T S.intersection(T) same as JML
E\T S.difference(T) same as JML
∅ BSet.EMPTY same as JML

A.3.3 Generalisation of elementary set operators

Event-B Op. JML Java
union(S) BSet.union(S) same as JML

⋃
x ·P | E

BSet.union(new
BSet<Type(x)>(new
JMLObjectSet Type(e)
e | (\exists Type(x) x;
P; e.equals(F))))

not supported yet!

inter(S) BSet.intersection(S) same as JML

⋂
x ·P | E

BSet.intersection(new
BSet<Type(x)>(new
JMLObjectSet Type(e)
e | (\exists Type(x) x;
P; e.equals(F))))

not supported yet!

168 Chapter A – Event-B syntax supported by EventB2Java

A.3.4 Binary relation operators

Event-B Op. Java JML
S ↔ T BRelation<Type(S),Type(T)> *
S ←↔ T BRelation<Type(S),Type(T)> *
S ↔→ T BRelation<Type(S),Type(T)> *
S ↔↔ T BRelation<Type(S),Type(T)> *
dom(f) f.domain() same as Java

range(f) f.range() same as Java
f −1 f.inverse() same as Java

S � f f.restrictDomainTo(S) same as Java
S � f f.restrictRangeTo(S) same as Java
S �− f f.domainSubtraction(S) same as Java
S �− f f.rangeSubtraction(S) same as Java

f [x] f.image(x) same as Java
f ; g f.compose(g) same as Java
f ◦ g f.backwardCompose(g) same as Java

f �− g f.override(g) same as Java
f ⊗ g f.directProd(g) same as Java
f ‖ g f.parallel(g) same as Java

∗ JML specifications associate to this operator is explained in A.5

A.3.5 Functions operators

Event-B Op. Java JML
id new ID() same as JML

S 7→ T BRelation<Type(S),Type(T)> *
S → T BRelation<Type(S),Type(T)> *
S 7� T BRelation<Type(S),Type(T)> *
S � T BRelation<Type(S),Type(T)> *
S 7� T BRelation<Type(S),Type(T)> *
S � T BRelation<Type(S),Type(T)> *
S �� T BRelation<Type(S),Type(T)> *

prj1(Pr) Pr.fst() same as Java
prj2(Pr) Pr.snd() same as Java

∗ JML specifications associate to this operator is explained in A.5

A.4 Boolean and Arithmetic Language 169

A.4 Boolean and Arithmetic Language

Event-B Op. JML Java
BOOL BOOL same as JML
TRUE true same as JML
FALSE false same as JML

Z INT same as JML
N NAT same as JML
N1 NAT1 same as JML

succ(a) a+1 same as JML
pred(a) a-1 same as JML

0 0 same as JML
1 1 same as JML

. . .
a + b a + b same as JML
a ∗ b a + b same as JML
a ̂ b Math.pow(a,b) same as JML

A.4.1 Extension of the arithmetic language

Event-B Op. JML Java
a ≤ b a.compareTo(b) <= 0 same as JML
a < b a.compareTo(b) < 0 same as JML
a ≥ b a.compareTo(b) >= 0 same as JML
a > b a.compareTo(b) > 0 same as JML

finite(S) S.finite() same as JML
a . . b new Enumerated(a,b) same as JML
a − b a - b same as JML
a/b a / b same as JML

a mod b a % b same as JML
card(S) S.size() same as JML
max (S) S.max() same as JML
min(S) S.min() same as JML

A.5 Some other JML specs

All Event-B functions and relations are translated as instances of BRelation.
Restrictions made by each kind of function/relation are translated to the JML
invariant:

170 Chapter A – Event-B syntax supported by EventB2Java

Event-B Op. JML spec
f ∈ S ↔ T f.domain().isSubset(S) &&

f.range().isSubset(T)
f ∈ S ←↔ T f.domain().equals(S) &&

f.range().isSubset(T)
f ∈ S ↔→ T f.domain().isSubset(S) &&

f.range().equals(T)
f ∈ S ↔↔ T f.domain().equals(S) &&

f.range().equals(T)
f ∈ S 7→ T f.isaFunction() &&

f.domain().isSubset(S) &&
f.range().isSubset(T)

f ∈ S → T f.isaFunction() &&
f.domain().equals(S) &&
f.range().isSubset(T)

f ∈ S 7� T f.isaFunction() &&
f.inverse().isaFunction() &&
f.domain().isSubset(S) &&
f.range().isSubset(T)

f ∈ S � T f.isaFunction() &&
f.inverse().isaFunction()
&& f.domain().equals(S) &&
f.range().isSubset(T)

f ∈ S 7� T f.isaFunction() &&
f.domain().isSubset(S) &&
f.range().equals(T)

f ∈ S � T f.isaFunction() &&
f.domain().equals(S) &&
f.range().equals(T)

f ∈ S �� T f.isaFunction() &&
f.inverse().isaFunction()
&& f.domain().equals(S) &&
f.range().equals(T)

	Introduction
	Thesis overview

	Background
	The B method
	The Event-B Method
	Tool support for Event-B
	Rodin Proof Obligations

	The Java Modeling Language (JML)
	Tool support for JML

	Dafny
	Software Design Patterns

	Translating B Machines to JML Specifications
	The Translation from B to JML
	Translating Substitutions
	Beyond Substitutions

	The B2Jml Tool
	Using the B2Jml Tool
	An Example in B
	Generating JML-annotated Abstract Java Classes

	Conclusion

	Translating Event-B Machines to JML Specifications
	The Translation from Event-B to JML
	Additional Translation Operators
	A Java Framework for Event-B

	The EventB2Jml Tool
	Using the EventB2Jml Tool
	An Example in Event-B
	The JML-annotated Java abstract class

	Conclusion

	Translation of Event-B Machines to JML-annotated Java Code
	The translation from Event-B machines to JML-annotated Java Code
	The Helper Operators
	The Translation of Event-B to Sequential Java Programs
	Support for Event-B Model Decomposition
	Support for Code Customisation

	Proof of Soundness
	The EventB2Java Tool
	EventB2Java Rodin Plug-in Structure
	Java Implementation of Event-B Mathematical Notations in EventB2Java
	Decision on using Reentrant lock/unlock methods

	Using the EventB2Java tool
	An Example in Event-B
	The Generated JML-annotated Java code

	Software Development with EventB2Java
	Strategy on Software Development using MVC design pattern
	Strategy on Software Testing

	Conclusion

	Translating Event-B Machines Proof Obligations to Dafny
	Rodin Proof Obligations
	Expressing Event-B Proof Obligations in Dafny
	Translating Event-B machines
	Translating Event-B proof obligations

	The EventB2Dafny Tool
	Conclusion

	Case Studies
	The Social-Event Planner
	Requirement Document for the Social-Event Planner
	The Event-B Model of the Social-Event Planner
	Generating JML-annotated Java code for the Social-Event Planner Event-B model
	The View and Controller Parts of the Social-Event Planner

	Tokeneer
	TIS Components
	TIS Operations
	An example of User Entry Operation
	Conversion from Z to Event-B
	Modelling the Tokeneer ID Station (TIS) in Event-B
	Generating Java code for the TIS Event-B model
	Writing JUnit Tests

	Comparing EventB2Java
	Conclusion

	Future Work
	Conclusion
	Event-B syntax supported by EventB2Java
	The Propositional Language
	The Predicate Language
	The Set-Theoretic Language
	Axioms of set theory
	Elementary set operators
	Generalisation of elementary set operators
	Binary relation operators
	Functions operators

	Boolean and Arithmetic Language
	Extension of the arithmetic language

	Some other JML specs

