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Abstract: While being well known that the diagnosis of 
many genetic disorders relies on a combination of clini-
cal suspicion and confirmatory genetic testing, not rarely, 
however, genetic testing needs much perseverance and 
cunning strategies to identify the causative mutation(s). 
Here we present a case of a thorny molecular diagnosis of 
mucolipidosis type III alpha/beta, which is an autosomal 
recessive lysosomal storage disorder, caused by a defect 
in the GNPTAB gene that codes for the α/β-subunits of the 
GlcNAc-1-phosphotransferase. We used both cDNA and 
gDNA analyses to characterize a mucolipidosis type III 
alpha/beta patient whose clinical diagnosis was already 
confirmed biochemically. In a first stage only one causal 
mutation was identified in heterozygosity, the already 
described missense mutation c.1196C>T(p.S399F), both at 
cDNA and gDNA levels. Only after conducting inhibition 
of nonsense-mediated mRNA decay (NMD) assays and 
after the utilization of another pair of primers the second 
mutation, the c.3503_3504delTC deletion, was identified. 
Our findings illustrate that allelic dropout due to the pres-
ence of polymorphisms and/or of mutations that trigger 

the NMD pathway can cause difficulties in current molec-
ular diagnosis tests.
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Introduction
Mucolipidosis type III (ML III alpha/beta or ML III 
gamma, OMIM: 252600 and 252605, respectively) is a 
rare autosomal recessive disorder caused by deficiency 
of the (UDP)-N-acetylglucosamine: lysosomal enzyme 
N-acetylglucosamine-1-phosphotransferase (termed Glc-
NAc-1-phosphotransferase; EC 2.7.8.17). GlcNAc-1-phos-
photransferase is a Golgi-resident 540-kDa hexameric 
transmembrane enzyme composed by three subunits, 
α2β2γ2, which catalyzes a crucial step in the formation of 
the mannose 6-phosphate (M6P) recognition marker that 
is responsible for the correct targeting of newly synthe-
sized lysosomal enzymes from the Golgi to the lysosomal 
compartment [1]. The enzyme’s polypeptide chains are 
coded by two genes: GNPTAB and GNPTG, which encode 
for the α/β-subunits and the γ-subunit, respectively. While 
mutations in both genes may cause ML III, alterations in 
the GNPTAB gene can also give rise to the more severe 
form ML II (ML II alpha/beta; OMIM: 252500) [2–4]. The 
GNPTAB gene, which contains 21 exons and spans 85 kb 
on chromosome 12q23.3, encodes an α/β-subunit precur-
sor of 1256 amino acids with a predicted molecular mass 
of 144 kDa. Proteolytic processing of the α/β-precursor by 
the site-1 protease generates the α-and β- subunits, whose 
individualization is a prerequisite for the catalytic activity 
of the GlcNAc-1-phosphotransferase enzymatic complex 
[5]. Mutations that severely affect the α/β-subunit activ-
ity and/or the complex structure in such a way that its 
function is abolished result in the severe ML II alpha/beta 
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disease [6, 7], whereas mutations leading to the forma-
tion of a protein with residual phosphotransferase activ-
ity are associated to the milder form of the disorder. MLs 
are devastating diseases with an extremely high morbidity 
rate, a life expectancy that usually does not surpass the 
first decade of life for the severe ML II form and, unfortu-
nately, with no therapy available at the moment. Actually, 
for families at risk (i.e. with confirmed genetic diagnosis) 
a meaningful help to cope with the disorder is to benefit 
from appropriate genetic counseling, promoting informed 
choices that are open by the possibility of screening 
fetuses whenever the causative mutations are known. 
Thus, the identification of genetic defects underlying ML 
III is a challenge with important medical implications.

Here we report the thorny molecular characterization 
of one ML III alpha/beta patient, who was a compound 
heterozygous for two distinct mutations in the GNPTAB 
gene.

Case presentation
The patient was diagnosed at 3  years of age. Biochemi-
cal studies confirmed an impairment of the GlcNAc-
1-phosphotransferase through the demonstration that the 
activities of several lysosomal enzymes were increased 
in the serum and decreased in cultured fibroblasts. 
β-glucocerebrosidase activity was used as a reference 
since this enzyme is transported to the lysosomes in a 
M6P-independent fashion. Biological samples of the 
patient were obtained under parents’ informed consent 
and all procedures followed were in accordance with the 
ethical standards of the responsible committee on human 
experimentation and with the Helsinki Declaration.

Genomic and cDNA analysis

GNPTAB and GNPTG genomic and cDNA analyses were 
performed with specific primers according to previously 
reported conditions [8].

Cycloheximide treatment of control and 
patient fibroblasts

To perform nonsense-mediated mRNA decay (NMD) inhi-
bition assays, patient fibroblast cell lines were cultured in 
the presence of two different concentrations of cyclohex-
imide (1 and 2 mg/mL) for 3 h. Total RNA was isolated, 

cDNA synthesized and GNPTAB cDNA fragments ampli-
fied and sequenced.

Discussion
In order to search for the molecular defect(s) underly-
ing the GlcNac-1-phosphotransferase impairment in the 
patient, cDNA analysis of the GNPTAB transcript was per-
formed and the missense mutation c.1196C>T(p.S399F) [8] 
was identified in heterozygosity. No other alterations were 
detected through repeated amplification of the GNPTAB 
cDNA, even though both the patient clinical presenta-
tion and the biochemical results were incoherent with 
the expectations for a carrier individual. The discrepancy 
prompted further investigation with gDNA, carrying out 
amplification and sequencing of all 21 exons of GNPTAB 
and their intronic flanking regions as well of both the 5′ 
and 3′ untranslated regions of the gene. Once again, no 
other mutations were detected apart from the missense 
c.1196C>T(p.S399F) already identified in the cDNA.

Knowing that GNPTAB codes for only two (α- and β-) 
of the three subunits that form the active GlcNac-1-phos-
photransferase, we questioned whether any mutation(s) 
in the GNPTG gene, which codes for the third subunit (γ-), 
could be contributing to the patient’s phenotype, and so 
a gDNA analysis of all GNPTG exons and corresponding 
flanking regions was performed, failing also to reveal any 
pathogenic alteration.

Next, attention was again focused on the GNPTAB 
gene, exploring the presence of any mutation generating 
a mRNA transcript that could be a candidate for NMD. 
In order to test whether the NMD process was masking/
degrading any mutant transcript, patient’s fibroblasts 
were cultured with cicloheximide in a final concentration 
of 2 mg/mL for 3 h to inhibit the NMD process, rescuing 
eventual aberrant transcripts. After doing so, total RNA 
was isolated from the pelleted cells and the respective 
cDNA synthesized, providing an alternative approach to 
analyse the GNPTAB transcript. Examining the sequence 
of the six fragments, we successfully detected a second 
heterozygous mutation, c.3503_3504delTC, which was 
a relatively common deletion on exon 19 (Figure 1B and 
1C). This was rather surprising, because the alteration 
escaped previous detection at the gDNA level (data not 
shown), despite the methodology to screen for it was very 
well-implemented in our laboratory, as demonstrated in 
previous works where we reported that the deletion was 
the most common mutation among Portuguese patients 
[8, 9]. One possible explanation to the failure to detect 
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the mutation in this patient could rely in the cis presence 
in the allele carrying the deletion of an additional varia-
tion in any of the primer annealing regions, leading to the 
preferential amplification of the other allele when exon 19 
and its boundaries were submitted to PCR. Accordingly, 
the next step was to design a second pair of primers sur-
rounding the target exon but in an outer region relatively 
to the initially used primers’ pair, perform PCR amplifi-
cation in optimal conditions (primer sequences and PCR 
conditions available on request), and at last we were able 
to detect the deletion c.3503_3504delTC in heterozygo-
sity (Figure 1A). Furthermore, one polymorphism was 
identified in the annealing region of the former reverse 
primer, confirming sequence variation as the cause of 
the observed allele-specific dropout. When the patient’s 
parents were analyzed, we found out that the patient’s 
mother was the carrier of the c.3503_3504delTC muta-
tion, which in fact was detected with the two different 
pairs of primers, showing that the polymorphism was not 
inherited in cis with the mutant allele, but instead it was 
likely a de novo variant.

Having elucidated this particular case of allele-drop-
out, is worth mentioning that besides sequence variation, 
other factors do exist accounting for the amplification 
success, that might also cause differential amplification 
of two alleles. It has been demonstrated, for example, 
that differential DNA methylation can affect PCR, result-
ing in allele dropout due to preferential amplification of 
unmethylated alleles [10]. Secondary structures in the 
template DNA may also contribute to compromise the 
amplification efficiency [11].

Finally, and regarding cDNA characterization as a 
routine procedure in molecular diagnoses, as long as 
that persists much attention should be paid in the NMD 
process and its implications in the ability to pinpoint 
causative mutations. As NMD is a cellular quality control 
mechanism that recognizes abnormal mRNAs harboring 

premature termination codons (PTC) and degrades them, 
mutations that do trigger such mechanism may likely fail 
detection through cDNA analysis alone, thereby implying 
that gDNA screening should be always considered when 
cDNA provides negative or unsatisfactory results. Another 
case involving a ML III alpha/beta patient, who was 
studied in our lab can illustrate how NMD may lead to mis-
diagnosis. The patient was diagnosed at the age of 7 years 
presenting with polydistrophic dwarfism. Enzymatic 
assays revealed impaired activity of the GlcNAc-1-phos-
photransferase. Like in the former patient, screening of 
GNPTAB in cDNA only enabled the identification of one 
missense mutation in heretozygozity, c.1208 (p.I403T) [9]. 
Yet, when screening the gDNA, a second pathogenic alter-
ation was identified on exon 13: the nonsense mutation 
c.1999G>T(p.E667*) (data not shown). When the cultured 
fibroblasts from the patient were incubated with ciclohex-
imide, in the novel cDNA sample synthesized using the 
extracted total RNA as template it was possible to detect 
the nonsense mutation (data not shown). Once again, 
NMD was masking the patient’s genotype when inferred 
from cDNA without previous inhibition of NMD.

An important observation about the two NMD-trig-
gering mutations here scrutinized, was their clear identi-
fication before in other patients in whom it was screened 
cDNAs obtained from non-cicloheximide-treated fibro-
blasts [9], which probably reflects the fact that NMD is 
not a mechanism 100% efficient. But yet in general, and 
as the two patients here studied demonstrate, NMD sub-
stantially accounts to degrade translationally abnormal 
mRNAs, implying therefore that the process should always 
be kept in mind when analysing cDNA sequences.

In conclusion, these two instances of tricky molecu-
lar diagnoses highlight the importance of relying in com-
plementary genetic approaches to identify pathogenic 
mutations, in order to reduce the rate of genetically undi-
agnosed cases and consequent dramatic implications 

Figure 1: Electropherograms evidencing the detection of the mutation c.3503_3504delTC (p.L1168Qfs*5) mutation in heterozygosity in 
gDNA (A) and in cDNA obtained from patients fibroblasts untreated (B) and treated with 2 mg/mL of cycloheximide (C).
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especially for prenatal testing, whose value in the clinical 
setting goes hand in hand with quick and accurate results.
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