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Abstract

The growth of wireless networks has resulted in part from requirements for connecting people
and advances in radio technologies. Recently there has been an increasing trend towards enabling
the Internet-of-Things (IoT). Thousands of tiny devices interacting with their environments are
being inter-networked and made accessible through the Internet. For that purpose, several com-
munications protocols have been defined making use of the IEEE 802.15.4 Physical and MAC
layers. The 6LoWPAN Network Layer adaptation protocol is an example which bridges the gap
between low power devices and the IP world. Since its release, the design of routing protocols
became increasingly important and the IPv6 Routing Protocol for Low-Power and Lossy Networks
(RPL) emerged as the IETF proposed standard protocol for IPv6-based multi-hop Wireless Sensor
Networks (WSN).

This thesis considers that the sensor nodes form a large IPv6 network making use of above
technologies and protocols, and that the sensor nodes are enabled to run one or more applications.
It is also assumed that the applications and the sensor nodes to which they are associated, are not
always active, alternating between active and inactive states.

The thesis aims to design a new energy efficient communications solution for WSN by
exploring the hypothesis that the network is aware of the traffic generated by the applications
running in the sensor nodes. Therefore, the thesis provides two major contributions: 1) a cross-
layer mechanism using application layer and network layer information to constrain RPL-defined
routing trees (RPL-BMARQ); 2) an Application-Driven WSN node synchronization mechanism for
RPL-BMARQ.

RPL-BMARQ is designed as an extension to the RPL routing protocol using information shared
by the application and routing layers to construct Directed Acyclic Graphs (DAGs), allowing
the nodes to select parents with respect to the applications they run. By jointly considering the
neighbors of each node, the applications each node runs, and the forwarding capabilities of a node,
we provide a communications solution which enables the data of every application and sensor node
to be transferred, while keeping the overall energy consumed low by reducing the time the nodes
are active and reducing the total number of multicast packets exchanged. Therefore, RPL-BMARQ
helps reducing the network energy consumption since it restricts radio communication activities
while maintaining throughput fairness and packet reception ratio high. The mechanism was
evaluated using four scenarios with different network topologies and compared against "standard
RPL". The results obtained show that the mechanism enables lower energy consumption since
the nodes are more often put a sleep, reducing the total number of packets exchanged, while
maintaining fairness and query success rates hight.

The Application-Driven WSN node synchronization mechanism for RPL-BMARQ was de-
signed to maintain the sensor nodes synchronized according to the duty cycle of the applications
they run. The mechanism jointly uses cross-layer information and the Exponentially Weighted
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Moving Average (EWMA) technique for calculating in run-time average network delays which
are used to control the time the sensor nodes would sleep in the next cycle in order to wakeup just
before the next activity period starts. This mechanism enables all the sensor nodes to go asleep
and to wakeup in synchronism. The mechanism was theoretically evaluated and simulated, and
the results obtained show that the synchronization mechanism works as previewed. The results
also showed that, when designing WSN applications with this mechanism, the nodes not involved
in communications are kept sleeping as much as possible, waking up when necessary and in
synchronism.

In order to confirm the validity of the mechanisms designed, we also tested them in real
environments where the results were confirmed.

Keywords: WSN, Application-Driven WSN, RPL, Node Synchronization.



Resumo

O crescimento das redes sem fios, resultou em parte dos requisitos para interligar pessoas e
dos avanços das tecnologias rádio. Recentemente, tem havido uma tendência crescente no sentido
de desenvolver a Internet-das-Coisas. Milhares de pequenos dispositivos que interagem com o
ambiente têm sido interligados e acessíveis através da Internet. Para tal foram definidos vários
protocolos de comunicação utilizando a camada física e a camada de acesso ao meio definidas pela
norma IEEE 802.15.4. O protocolo de adaptação da camada de rede 6LoWPAN é um exemplo e
preenche o vazio existente entre os dispositivos de baixa potência e o mundo IP. Em combinação
com o 6LoWPAN surgiram novos protocolos de encaminhamento, entre os quais o protocolo de
encaminhamento RPL, proposto pelo grupo IETF como um importante protocolo "normalizado"
para as redes de sensores sem fios (RSSF) "multi-hop IPv6".

Esta tese assume que os nós sensores formam uma grande rede IPv6 e que utilizam as
tecnologias e os protocolos acima indidados. Assume também que os nós sensores são capazes de
executar uma ou mais aplicações e que as aplicações e os nós sensores às quais estão associadas
não estão sempre ativos, alternando entre os estados "ON" e "OFF".

A tese tem como objectivo a concepção de uma nova solução de comunicações energetica-
mente eficiente para RSSF e explora a hipótese de que a rede está ciente do tráfego gerado pelas
aplicações em execução nos nós sensores. Assim, a tese apresenta duas contribuições principais:
1) um mecanismo intercamadas que utiliza informações da camada de aplicação e da camada
de rede para restringir as árvores de encaminhamento (RPL-BMARQ); 2) um mecanismo de
sincronização de nós sensores para as RSSF definidas por aplicações.

A solução RPL-BMARQ é desenhada como uma extensão ao o protocolo de encaminhamento
RPL e utiliza informações compartilhadas pelas camadas de aplicação e de rede para construir
Grafos Acíclicos Direcionados (DAGs), para permitir aos nós sensores selecionar os pais que
correm as mesmas aplicações. Ao considerar em simultâneo os vizinhos de cada nó, as aplicações
que cada nó executa e as capacidades de encaminhamento dos nós, desenvolvemos uma solução
de comunicações que possibilita que os dados de cada aplicação e de cada nó sensor possam ser
transferidos, mantendo o consumo energético total baixo através da redução do tempo em que os
nós estão ativos e reduzindo o número total de pacotes "multicast" trocados. Portanto, a solução
RPL-BMARQ ajuda a reduzir o consumo de energia nas RSSF já que restringe as atividades
de comunicação rádio, mantém a equidade na transferência de pacotes nos nós, possuindo taxa
de receção de pacotes elevada. O mecanismo foi avaliado em comparação com o protocolo
"normalizado RPL", utilizando quatro cenários com diferentes topologias de rede. Os resultados
obtidos mostram que a solução proporciona um menor consumo energético, uma vez que os nós
são mais frequentemente colocados a dormir, o que reduz o número total de pacotes trocados
enquanto se mantém a equidade na transferência de pacotes e as taxas de sucesso de repostas.

O mecanismo de sincronização dos nós para a solução RPL-BMARQ foi desenvolvido para
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manter os nós sensores sincronizados de acordo com o ciclo de trabalho das aplicações que eles
executam. O mecanismo utiliza informações intercamadas em conjunção com a técnica da Média
Móvel Exponencialmente Ponderada (EWMA) para calcular em tempo de execução, o tempo
que os nós sensores deverão dormir até ao próximo ciclo de trabalho. Este mecanismo permite
que os nós sensores acordem apenas o tempo necessário para realização das suas actividades. O
mecanismo possibilita que todos os nós sensores possam adormecer e acordar em sincronismo. O
mecanismo foi avaliado teoricamente e simulado e os resultados obtidos mostram que o mecan-
ismo de sincronização funciona como o esperado.

Por forma a confirmar os resultados obtidos foram também feitas avaliações dos mecanismos
desenvolvidos em ambiente real.

Keywords: RSSF, RSSF a pedido das aplicações, RPL, sincronização de nós.
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Chapter 1

Introduction

The growth of wireless networks has resulted in part from requirements for connecting

people and advances in low power radio technologies. Wireless Personal Networks

(WPANs) are an example of these networks, and Wireless Sensors Networks (WSN)

[5, 6] are an example of WPANs. Sensing nodes measure a wide gamut of physical

data [7] used for multiple applications. Whilst millions of sensing nodes may be

deployed for current and future applications, they are likely to be associated in

networks, interconnected or not to the Internet. Sensing nodes are energy constrained,

and not every node is likely to reach the Internet gateway or other end point in a single

hop; thereby routing strategies capable of finding the more energy-efficient paths are

required.

1.1 Scope and Motivation

Recently there has been an increasing trend towards enabling the Internet-of-Things (IoT)

[8]. As a subset, WSNs constituted by a large number of tiny devices interacting with their

environments may be inter-networked together and accessible through the Internet. For that

purpose, several communications protocols have been defined making use of the IEEE 802.15.4

Physical and MAC layers [9]. The 6LoWPAN Network Layer adaptation protocol [10] is an

example which bridges the gap between low power devices and the IP world. Since its release,

the design of routing protocols became increasingly important [11] and RPL [12] emerged as the

IETF proposed standard protocol for IPv6-based multi-hop WSN.

Energy-efficiency has to be implemented also in large WSN which tend to be self-managed

and self-configured. The behavior of these large systems need to be information-aware, where

applications play the key role of waking up and enabling parts of the system. Our work is focused

on Application-Driven WSN (ADWSN). We define ADWSN as a cross-layer solution aimed to

help minimizing the energy consumed by a network of sensors executing a set of applications.

We assume that sensors form a large network and that a sensor is enabled to run one or more
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applications. We also assume that the applications and the nodes to which they are associated, are

not always active, alternating between on and off states.

1.2 Problem Statement

In actual WSN every node can participate in route discovery and packet forwarding, inde-

pendently of the applications in which the nodes participate. If we reduce the number of nodes

participating in routing and forwarding functions, then energy will be saved. Assuming that, our

hypothesis consists in associating these functions (routing and forwarding) mainly to the nodes

supporting the application associated with the data to be transferred. By letting the nodes not

associated to a given application to remain in a sleep status, we expect to have energy savings.

Also, the nodes need to be awake in order to receive, send, and forward packets to the other nodes.

Therefore, the nodes must be synchronized according to the application cycle they run in order to

be awake almost at same time.

1.3 Objective

The main objective of this thesis is to develop a complete communications solution that can

be used to interconnect a network of sensors. It is intended to be designed as an extension to the

RPL routing protocol with the purpose of making the network aware of the traffic generated by

applications. Sensors are assumed to form a large IPv6 network and a sensor is enabled to run

one or more applications. It is also assumed that the applications and the nodes to which they are

associated are not always active, alternating between on and off states. By jointly considering the

neighbors of each node, the applications that each node runs, and the forwarding capabilities of a

node, we developed a communications solution which enables the data of every application and

node to be transferred while keeping the overall energy consumed by the network low.

We also assume that every node can participate in route discovery and packet forwarding.

However, the nodes forwarding a given type of data, will be primarily selected from the set of

nodes running the same application to which the data is associated.

It is unlikely that all the sensor nodes would join a network at the same time. Having the nodes

active during all the time would deplete their batteries, so nodes have to go sleep and to wake up

periodically. All the nodes have to be awake almost at same times in order to receive sink queries

and to forward them to the other nodes. As a result, nodes must be synchronized according to the

application cycle they run.

In order to pursue this these goals, the research efforts were divided in two particular objec-

tives:

• Provide an Application-Driven mechanism in a form of a RPL extension to create and

maintain DAGs according to the applications the sensor nodes run with minimal impact

on network performance;
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• Provide an Application-Driven WSN Node Synchronization mechanism to synchronize the

nodes with respect to the applications they run and their application duty cycle, and foster

energy efficiency.

1.4 Contributions

This thesis provides two main original contributions:

• A novel mechanism using application-layer information to constrain RPL-defined routing

trees named RPL-BMARQ. It assumes that every node will primarily select its parent from

a set of nodes running the same application and it mainly exchanges packets with neighbors

running the same application, trying to avoid paths which may include nodes that do not

run this application. For that purpose, the application layer of each node shares information

with other layers of the communication stack. Parts of this contribution are also described

in [13, 14, 15].

• A novel Application-Driven WSN node synchronization mechanism for RPL-BMARQ. Since

the nodes may join the network at a non predictable and different times, they must share

some kind of time reference which allow them to be synchronized with respect to the life

cycle of the applications they run. Therefore, we propose an application-driven synchro-

nization mechanism which helps the nodes running the same application to wakeup and to

go asleep in a synchronized manner so they can successfully send, receive, and forward

packets. Parts of this contribution are also described in [15].

1.5 Publications

• Bruno Marques, Manuel Ricardo, "Application-Driven design to extend WSN lifetime",

in 1st Portuguese National Conference on Sensor Networks (CNRS2011), Coimbra, Portu-

gal, March 4, 2011.

• Bruno Marques, Manuel Ricardo, "Improving the energy efficiency of WSN by using
application-layer topologies to constrain RPL-defined routing trees", in 13th Annual

Mediterranean Ad Hoc Networking Workshop, Piran, Slovenia, June 2-4, 2014.

• Bruno Marques, Manuel Ricardo, "Energy-Efficient Node Selection in Application-Driven
WSN", Wireless Networks, Springer Science, New York, ISSN: 1022-0038 (Print) 1572-

8196 (Online), DOI: 10.1007/s11276-016-1194-2.

• Bruno Marques, Manuel Ricardo, "Synchronization of Application-Driven WSN", sub-

mitted to EURASIP Journal on Wireless Communications and Networking, Springer Open.

Expected to be published soon.
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1.6 Document Structure

The structure of this thesis is as follows. Chapter 2 describes the WSN background related to

this thesis; it also reviews the related work regarding Energy efficiency and node synchronization

in Wireless Sensor Networks. Chapter 3 describes and evaluates the proposed Application-Driven

mechanism (RPL-BMARQ). Chapter 4 describes and evaluates the proposed Application-Driven

WSN node synchronization mechanism. Finally, Chapter 5 concludes the thesis and discusses

future work.



Chapter 2

Energy Efficiency and Node
Synchronization in Wireless Sensor
Networks

In this chapter we present and discuss related work in the following main areas: WSN

background, energy efficiency, time synchronization, and wakeup mechanisms for

WSN. Since the contributions of this thesis must be supported by a WSN, Section 2.1

describes related concepts including technologies and protocols. Section 2.2 presents

the state of the art on WSN energy efficiency. Section 2.3 presents the state of the art

on time synchronization for WSN. Section 2.4 presents the state of the art on WSN

nodes wakeup mechanism. Finally, this Chapter is summarized in Section 2.5.

2.1 WSN Background

In this section we discuss in detail some of the technologies and protocols used to achieve the

goals of this thesis. Some of these technologies include the Low-Power and Lossy Network (LLN)

concept, including the IEEE 802.15.4 standard, including IPv6, 6LoWPAN, and routing protocols

for IPv6 WSNs. We also discuss operating systems and simulation environments, with focus

on ContikiOS [16] and COOJA [17], as well hardware platforms that researchers use to perform

analysis and simulation of Wireless Sensor Networks, with focus on the TelosB platform [18].

2.1.1 Low-Power and Lossy Networks

Low-Power and Lossy Networks (LLN) are networks designed for long-lived applications.

They consist of a number of low-power and low-cost nodes, and their communications are per-

formed over multiple hops. LLN nodes may be powered with limited energy batteries what

may lead to intermittent communications. Wireless Sensor Networks (WSN) are considered as

a LLN subset [19]. Due to their capabilities LLNs are increasingly deployed in many application

5
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domains, including industrial monitoring, factory, building and home automation, smart energy

metering, and urban sensing [19, 20, 21]. Usually LLN implement the IEEE 802.15.4 standard

[9], characterized by short range radio communications in the 2.4 GHz band and throughputs

limited to 250 kbit/s.

2.1.2 Overview of the IEEE 802.15.4 Standard

Figure 2.1: IEEE 802.15.4 Star and peer-to-peer networks

The IEEE 802.15.4 Standard [9] supports multiple network topologies, including star and peer-

to-peer networks (see Fig. 2.1). Multiple address types, including 64-bit IEEE and short (16-bit

network-assigned) are provided. Fig. 2.2 shows how IEEE 802.15.4 fits into ISO-OSI model.

Figure 2.2: IEEE 802.15.4 in the ISO-OSI layered network model

IEEE 802.15.4 offers two PHY options that are combined with the MAC layer to enable a

broad range of networking applications. Both PHYs are based on direct sequence spread spectrum

(DSSS), and both share the same basic packet structure. The difference between the two PHYs

is the frequency band they use (Fig. 2.3). The 2.4 GHz PHY specifies operation in the 2.4 GHz

Industrial, Scientific, and Medical (ISM) band, while the 868/915 MHz PHY specifies operation

in the 868 MHz band in Europe and 915 MHz ISM band in the United States. The 2.4 GHz PHY

enables a transmission rate of about 250 kbit/s, while the 868/915 MHz PHY supports rates of 20

kbit/s and 40 kbit/s, respectively [9, 22].
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Figure 2.3: IEEE 802.15.4 channel structure

The 802.15.4 MAC frame structure is kept flexible in order to accommodate the needs of

different applications and network topologies; its format is shown in Fig. 2.4. It consists of the

MAC header (MHR), MAC service data unit (MSDU), and MAC footer (MFR). The first field of

the MAC header is the frame control field; it indicates the type of MAC frame being transmitted,

specifies the format of the address field, and controls the frame acknowledgment. The size of the

address field may vary between 0 and 20 bytes. For instance, a data frame contains both source and

destination information, while the acknowledgment frame does not contain source information -

the acknowledgment frame uses the same sequence number (DSN) of the data or MAC command

frame being acknowledged. Beacon frames contain only source address. Short 16-bit addresses or

64-bit IEEE addresses may be used. The payload field is variable in length, however the complete

MAC frame may not exceed 127 bytes in length. The data contained in the payload depends on

the frame type.

Figure 2.4: General IEEE 802.15.4 MAC frame format

A IEEE 802.15.4 MAC frame can be of four types: beacon frame, data frame, acknowledgment

frame, and command frame. Only the data and beacon frames actually contain information sent by

higher layers; the acknowledgment and MAC command frames are originated at the MAC layer

and are used for MAC peer-to-peer communications. The other fields in a MAC frame are the

sequence number and frame check sequence (FCS). The FCS helps to verify the integrity of the
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MAC frame.

The MAC sub-layer provides two services to higher layers that can be accessed through two

Service Access Points (SAP): the MAC Common Part Sublayer (MCPS-SAP), and the MAC Layer

Management Entity (MLME-SAP), used for the MAC management services. Other MAC features

can be found in [9, 22].

2.1.3 IPv6 in Low-Power Wireless Personal Area Network (6LoWPAN)

The Internet Engineering Task Force (IETF) 6LoWPAN addresses control and sensor networks

working over wireless technologies [23], having designed a standard which defines how IP com-

munications are performed over low-power WPAN [10] and it uses IPv6 [24]. 6LoWPAN [25]

addresses the challenge of enabling wireless IPv6 communications over wireless sensor networks.

A question which often arises is the following: is not the IP protocol too big for low-bandwidth

networks? According to [26], resource conservation is the key factor for low-power wireless

sensor applications. The resources that matter to achieve deployment ubiquity, long-lived power

autonomy, and cost effective devices include: low protocol overhead over the wireless links,

low program and data memory requirements, and low power usage in intermittent and infrequent

sensor operation. On all these dimensions 6LoWPAN achieves efficiencies comparable to those

obtained by non-IP based architectures such as ZigBee, while offering the benefits of end-to-end

communication to a huge range of devices.

6LoWPAN are LLN which try to enable efficient transmission of IPv6 packets over 802.15.4

links [26]. IPv6 has an MTU of at least 1,280 bytes. The IEEE 802.15.4 frame length, in turn, is

127 bytes in order to ensure low packet error; in the worst case only 81 bytes of the frame may be

used to transport data. These facts, combined with the low energy and low computing power of

LLN nodes, present the following challenges to the deployment of IPv6 over IEEE 802.15.4:

1. A large IPv6 packet cannot be transmitted directly in an IEEE 802.15.4 frame, so segmen-

tation and header compression techniques are required. The later is particularly important

since the IPv6 headers could easily reach 80 bytes, leaving no space for data transmission;

2. The IEEE 802.15.4 links are prone to interference, failures, and may be asymmetric. These

characteristics require the network layer to be responsive and adaptive while remaining

energy efficient;

3. The IEEE 802.15.4 technology does not enable mesh, multi-hop, networks, so new network-

ing functions are required.

In order to implement its functions, 6LoWPAN introduces an header between the 802.15.4 and

the IPv6 headers. As it can be seen in Fig. 2.5 the 6LoWPAN header can be of multiple types,

which can appear jointly or alone in the same frame, and may control the fields of the IPv6 header

transmitted in the frame. As it can be observed in the figure, 6LoWPAN defines three headers

[10]:
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• Dispatch header: used to define the type of the next header in the frame;

• Mesh header: used to define the addresses of a packet transported over a multi-link

network;

• Fragmentation header: used to fragment an IPv6 packet, and containing the information

required to re-assemble the frame at the destination.

IEEE 802.15.4 Dispatch

IEEE 802.15.4

IEEE 802.15.4

IEEE 802.15.4

Compressed IP Payload ...

Mesh addressing Dispatch Compressed IP Payload ...

Fragmentation Dispatch Compressed IP Payload ...

Mesh addressing Fragmentation Dispatch Compressed IP Payload ...

Multihop, no fragmentation

Single hop, no fragmentation

Multihop, fragmentation

Single hop, fragmentation
6LoWPAN

Dispatch header (1-2 bytes)
0 1 Dispatch (6)

0 1 0x3F Dispatch (8)

1 1 0 0 0 Datagram size (11) Datagram tag (16)

Datagram size (8)1 1 0 0 0 Datagram size (11) Datagram tag (16)

Fragmentation header (4-5 bytes)

1 0 O F Hops (4) Originator addresses (16-64) Final addresses (16-64)

1 0 O F Hops (8) Originator addresses (16-64) Final addresses (16-64)0xF

Mesh addressing header (4-5 bytes)

Figure 2.5: 6LoWPAN headers

6LoWPAN also uses header stacking to keep orthogonal concepts separate and supports

compact headers by eliding headers that are unused. It defines a mesh addressing header to support

layer two forwarding, a fragmentation header when the IPv6 datagram is too large to fit in a single

802.15.4 frame, and header compression to reduce IPv6 header overhead.

The 6LoWPAN Working Group has also optimized the existent IPv6 Neighbor Discovery

procedure (ND) [27]. The ND protocol uses multicast communications and assumes that the link

provides a single domain broadcast. Since the MAC layer of 6LoWPAN networks does not support

multicast, broadcast communications are used to deliver multicast packets. This solution can

cause some problems due to the lack of the acknowledgment service for the broadcast messages

and moreover this type of transmission is usually more expensive. The challenges, applied by

WG, remove the critical points and minimize the ND’s reliance on multicast, obtaining as result

the 6LoWPAN ND. This protocol uses Router Advertisement (RA) and Router Solicitation (RS)

messages to give the nodes the possibility to find neighboring routers. The RS notifications are

unique messages, sent on multicast mode. The main reasons are: 1) link-local IPv6 addresses

are obtained from MAC addresses, so nodes do not have to perform address resolution; and 2)
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IPv6 addresses, different from link layer addresses, are assumed not to be on-link and therefore

communications with these nodes proceed to local routers.

2.1.4 Routing in IPv6 LLNs

Routing is the process of selecting paths in a network along which to send network traffic.

In LLNs, routing directs packet forwarding, the transit of logically addressed packets from their

source towards their ultimate destination through intermediate sensor nodes. The sensor nodes

in the LLNs can also forward packets and perform routing, though they may suffer from its

constraints [28]. The routing process usually directs forwarding on the basis of routing tables

which maintain a record of the routes to various network destinations. Thus, constructing routing

tables, which are held in the sensor nodes memory, is very important for efficient routing. Most

routing algorithms use only one network path at a time, but multipath routing techniques enable

the use of multiple alternative paths. There are four basic requirements for routing in IPv6 based

LLNs: (i) the sensor node should support sleep mode for considering battery saving; (ii) generated

overhead on data packets should be low; (iii) routing overhead should be low; (iv) computation

and memory requirements should be low. In the following we present and discuss the routing

protocols mostly referenced in the literature that consider LLNs and their interconnection to the

Internet.

2.1.4.1 6LoWPAN Mesh Routing

In 802.15.4 all nodes have a link to the coordinator node. Although IEEE 802.15.4 does not

define mesh capabilities, 6LoWPAN are expected to implement mesh networks. A mesh network

may employ one of two connection arrangements: full mesh topology or partial mesh topology. In

the full mesh topology, each node is connected directly to each of the others. In the partial mesh

topology, each node is connected directly to at least one other node, and there exists a path of

direct connections between every pair of nodes. 6LoWPAN mesh networks may be characterized

by: a) extension of network coverage without increasing transmit power or receive sensitivity; b)

enhanced reliability via route redundancy, c) easier network configuration; d) longer device battery

life due to fewer retransmissions.

According to [26], two important issues for IPv6 over 802.15.4 are how link-level factors

inform routing, and at what layer datagram forwarding occurs. 6LoWPAN in its role as an

adaptation between the link layer and the network layer, introduces two types of mesh capabilities:

the mesh under, and the route over. With mesh under capabilities, the network layer performs no

IP routing; instead, the 6LoWPAN adaptation layer seeks to mask the lack of a full broadcast at

the physical level by transparently routing and forwarding packets within the 6LoWPAN mesh

network. By emulating a full broadcast link, it potentially provides compatibility with IPv6

protocols that expect such communication behavior. Mesh topologies require forwarding over

multiple radio hops, and link-local multicast must deliver packets to all nodes in the entire mesh

network. The mechanisms to form, maintain, and diagnose IP routing must be recreated at the
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link layer for the mesh under network to operate reliably. For mesh under strategies, 6LoWPAN

has defined special routing protocols; one example is the 6LoWPAN Ad Hoc On-Demand Distance

Vector Routing (LOAD) [29]. LOAD is a simplified on-demand routing protocol based on AODV

[30].

Route over, in alternative, performs routing at the IP layer, with each node serving as an

IP router. We can view it as a collection of overlapping link-local scopes, with each link-local

domain defined by the inherent radio connectivity. Unlike mesh under, route over supports layer

three forwarding mechanisms that can utilize network-layer capabilities defined by IP, such as

ICMPv6. Route over also lets IP routing protocols span different link technologies, enabling a

better integration with other IP networks.

2.1.4.2 RPL

RPL [12] is a route over distance–vector (DV) and a source routing protocol that is designed to

operate on top of several link layer mechanisms including IEEE 802.15.4 PHY and MAC layers.

RPL was proposed by the IETF [31] ROLL working group [32] and is referred as Routing Protocol

for Low power and lossy networks. Although RPL is still a RFC, it has gained a lot of maturity

turning it as a promising standardized routing solution for Low Power and Lossy Networks. In

fact, several research works have focused on the design and deployment of RPL protocol and real

world implementations [33, 34, 35, 36, 37]. Moreover, [38] presents an overview on the 6LoWPAN

and RPL technologies. In that work, authors only provide a brief tutorial-like introduction of the

RPL protocol. Olfa Gaddour et al. [39] present a comprehensive survey of the RPL protocol. A

RPL specification is also presented in which the control messages, the Directed Acyclic Graph

(DAG) construction, and the communication paradigms that RPL supports are described. Also

how a RPL network is managed is presented. Based on their descriptions, in the following we

provide an overview of RPL.

Design Objectives - RPL targets collection-based networks, where the nodes periodically send

measurements to a collection point, as well as point-to-multipoint traffic from the central point

to the devices inside LLNs. Point-to-Point traffic is also supported, and a key feature in RPL is

that it represents a specific routing solution for LLNs [39]. Moreover, RPL has been specifically

designed to meet the requirements of resource-constrained nodes. In particular, RPL-enabled

LLNs take into account two main features: (1) the prospective data rate is typically low, and (2)

communication is prone to high error rates, which results in low data throughput. A lossy link is

not only characterized by a high Bit Error Rate (BER) but also the long inaccessibility time, which

strongly impacts the routing protocol design. The protocol was designed to be highly adaptive to

network conditions and to provide alternate routes, whenever default routes are inaccessible.

RPL is based on the topological concept of Directed Acyclic Graphs (DAGs), which defines a

tree-like structure that specifies the default routes between nodes in the LLN. Moreover, the nodes

are organized along a Destination Oriented Directed Acyclic Graph [40] (DODAG), normally

rooted at a border router node or at a sink node, providing a default route to the Internet.
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A network may consist of one or several DODAGs, which form together an RPL instance

identified by a unique ID, called RPLInstanceID. A network may run multiple RPL instances

concurrently and logically independent. An node may join multiple RPL instances, but must only

belong to one DODAG within each instance. Fig. 2.6 shows an example of RPL instances with

multiple DODAGs.
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2 3
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DODAG
Root 1

DODAG
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DAG 1 DAG 2

7 8

109 11

12 13
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Internet, IPv6

Figure 2.6: A RPL network with three DODAGs in two instances

One of the relevant features of RPL is that it combines both mesh and hierarchical topologies.

An RPL-based network topology is inherently hierarchical as it forces underlying nodes to self-

organize as one or several DODAGs, based on parent-to-child relationship. On the other hand,

RPL supports the mesh topology as it allows routing through siblings instead of parents and

children. This combination mesh/hierarchical provides a great flexibility in terms of routing and

topology management, as described in the following [12]:

• Auto-configuration: as RPL is compliant with IPv6, the RPL-based LLN will benefit

from basic IP routing characteristics mainly the dynamic discovery of network paths and

destinations. This feature is guaranteed by the use of the Neighbor Discovery mechanisms.

• Self-healing: RPL proves its ability to adapt to logical network topology changes and node

failures. In fact, links and nodes in LLNs are not stable and may vary frequently. RPL

implements mechanisms that choose more than one parent per node in the DAG to eliminate/

decrease the risks of failure.

• Loop avoidance and detection: a DAG is acyclic by nature as a node in a DAG must have

a higher rank than all of its parents. RPL includes reactive mechanisms in order to detect

loops in case of topology change. In addition, RPL triggers recovery mechanisms (global

and local repair) when the loops occur.
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• Independence and transparency: as in the IP architecture, RPL is designed to operate over

multiple link layers. RPL is able to operate in constrained networks, or in conjunction

with highly constrained devices. Thus, RPL is then independent from data-link layer

technologies.

• Multiple edge routers: it is possible to construct multiple DAGs in an RPL network and

each DAG has a root. A node may belong to multiple instances, and may act different roles

in each instance. Thus, the network will benefit from high availability and load balancing.

Network Model - RPL defines three types of nodes, which are:

• Low Power and Lossy Border Routers (LBRs): it refers to the root of a DODAG that

represents a collection point in the network and has the ability to construct a DAG. The

LBR also acts as a gateway (or edge router) between the Internet and the LLN.

• Router: it refers to a device that can forward and generate traffic. Such a router does not

have the ability to create a new DAG, but associate to an existing one.

• Host: it refers to an end-device that is capable of generating data traffic, but is not able to

forward traffic.

The basic topological component in RPL is the DODAG, a Destination Oriented DAG, rooted

in a special node called DODAG root, as illustrated in Fig. 2.6. The DODAG root has the following

properties: (i) it typically acts as an LBR, (ii) it represents the data sink within the directed acyclic

graph, (iii) it is typically the final destination node in the DODAG, since it acts as a common transit

point that bridges the LLN with IPv6 networks, (iv) it has the ability to generate a new DODAG

that trickles downward to leaf nodes.

Each node in the DODAG is assigned a rank. The rank of a node is defined in [12] as "the

node’s individual position relative to other nodes with respect to a DODAG root". It is an integer

number that represents the location of a node within the DODAG. The rank strictly increases in

the downstream direction of the DAG, and strictly decreases in the up-stream direction. In other

words, nodes on top of the hierarchy receive smaller ranks than those in the bottom and the smallest

rank is assigned to the DODAG root (see Fig. 2.6).

The architecture of a DODAG is similar to a cluster-tree topology where all the traffic is

collected in the root. However, the DODAG architecture differs from the cluster-tree in the sense

that a node can be associated not only to its parent (with higher rank), but also to other sibling

nodes (with equal ranks). The rank is used in RPL to avoid and detect routing loops, and allows

nodes to distinguish between their parents and siblings in the DODAG. In fact, RPL enables nodes

to store a list of candidate parents and siblings that can be used if the currently selected parent

loses its routing ability.

In the construction process of network topology, each router identifies a stable set of parents

on a path towards the DODAG root, and associates itself to a preferred parent, which is selected

based on the Objective Function. The Objective Function defines how RPL nodes translate one
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or more metrics into ranks, and how to select and optimize routes in a DODAG. It is responsible

for rank computation based on specific routing metrics like delay, link quality, and connectivity,

and specifying routing constraints and optimization objectives. The design of efficient Objective

Functions is still an open research issue. A couple of RFCs have been proposed. In [41], the RFC

proposes the Minimum Rank with Hysteresis Objective Function, making use of use the Expected

Number of Transmission (ETX) required to successfully transmit a packet on the link as the path

selection criteria in RPL routing. The route from a particular node to the DODAG root represents

the path that minimizes the sum of ETX from source to the DODAG root. In [42], the RFC

proposes Objective Function 0 (OF0), which is only based on the abstract information carried in

an RPL packet, such as Rank. OF0 is agnostic to link layer metrics, such as ETX, and its goal is

to promote connectivity between network nodes.

Protocol Specification - In the following, the main mechanisms and features provided by RPL

are presented, as defined in the IETF RFCs.

octets: 1 1 2 Variable

Type

RP
L
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ro
l m

es
sa

ge Code Checksum Message Body
base options

bits: 0-2 3 4-7

RPL type Security Reserved

Code field

RPL Type Description

0x00 DODAG Information Solicitation (DIS)

0x01 DODAG Information Object (DIO)

0x02 Destination Advertisement Object (DAO)

0x03 Reserved

Figure 2.7: A RPL control message

1. RPL Control Messages: RPL messages are specified as a new type of ICMPv6 control

messages, whose structure is depicted from Fig. 2.7. The RPL control message is composed

of: i) an ICMPv6 header, which consists of three fields: Type, Code and Checksum; ii) a

message body comprising a message base and a number of options.

The Type field specifies the type of the ICMPv6 control message prospectively set to 155 in

case of RPL. The Code field identifies the type of RPL control message. For this, four codes

are currently defined:

DODAG Information Solicitation (DIS): the DIS message is mapped to 0x00, and

is used to solicit a DODAG Information Object (DIO) from an RPL node. The DIS may
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be used to probe neighbor nodes in adjacent DODAGs. The current DIS message format

contains non-specified flags and fields for future use.

DODAG Information Object (DIO): the DIO message is mapped to 0x01, and is

issued by the DODAG root to construct a new DAG and then sent in multicast through the

DODAG structure. The DIO message carries relevant network information that allows a

node to discover a RPL instance, learn its configuration parameters, select a DODAG parent

set, and maintain the DODAG. The format of the DIO Base Object is presented in Fig. 2.8.

The main DIO Base Object fields are: (i) RPLInstanceID, is an 8 bit information initiated by

the DODAG root that indicates the ID of the RPL instance that the DODAG is part of, (ii)

Version Number, indicates the version number of a DODAG that is typically incremented

upon each network information update, and helps maintaining all nodes synchronized with

new updates, (iii) Rank, a 16 bit field that specifies the rank of the node sending the DIO

message, (vi) Destination Advertisement Trigger Sequence Number (DTSN) is an 8 bit flag

that is used to maintain downward routes, (v) Grounded (G) is a flag indicating whether the

current DODAG satisfies the application-defined objective, (vi) Mode of Operation (MOP)

identifies the mode of operation of the RPL instance set by the DODAG root. Four operation

modes have been defined and differ in terms of whether they support downward routes

maintenance and multicast or not. Upward routes are supported by default. Any node

joining the DODAG must be able to cope with the MOP to participate as a router, otherwise

it will be admitted as a leaf node, (vii) DODAGPreference (Prf) is a 3 bit field that specifies

the preference degree of the current DODAG root as compared to other DODAG roots. It

ranges from 0x00 (default value) for the least preferred degree, to 0x07 for the most preferred

degree, (viii) DODAGID is a 128 bit IPv6 address set by a DODAG root, which uniquely

identifies a DODAG. Finally, DIO Base Object may also contain an Option field.

bits: 8 8 16

RPLInstanceID
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Options

G O MOP Prf

Figure 2.8: The DIO message format

Destination Advertisement Object (DAO): the DAO message is mapped to 0x02, and

is used to propagate reverse route information to record the nodes visited along the upward



16 Energy Efficiency and Node Synchronization in Wireless Sensor Networks

path. DAO messages are sent by each node, other than the DODAG root, to populate the

routing tables with prefixes of their children and to advertise their addresses and prefixes to

their parents. After passing this DAO message through the path from a particular node to

the DODAG root through the default DAG routes, a complete path between the DODAG

root and the node is established. Fig. 2.9 shows the format of the DAO Base Object.
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Figure 2.9: The DAO message format

As shown in the Fig. 2.9, the main DAO message fields are: (i) RPLInstanceID, is an

8 bit information indicates the ID of the RPL instance as learned from the DIO, (ii) K

flag that indicates whether and acknowledgment is required or not in response to a DAO

message, (iii) DAO-Sequence is a sequence number incremented at each DAO message,

(iv) DODAGID is a 128 bit field set by a DODAG root which identifies a DODAG. This

field is present only when flag D is set to 1.

Destination Advertisement Object (DAO-ACK): the DAO-ACK message is sent as a

unicast packet by a DAO recipient (a DAO parent or DODAG root) in response to a unicast

DAO message. It carries information about RPLInstanceID, DAOSequence, and Status,

which indicate the completion. Status code are still not clearly defined, but codes greater

than 128 mean a rejection and that a node should select an alternate parent.

2. DODAG construction: the DODAG construction is based on the Neighbor Discovery (ND)

process, which consists in two main operations (1) broadcast transmission of DIO control

messages issued by the DODAG root to build routes in the downward direction from the

root down to client nodes, (2) unicast of DAO control messages issued by client nodes and

sent up to the DODAG root to build routes in the upward direction.

In order to construct a new DODAG, the DODAG root broadcasts a DIO message to

announce its DODAGID, its Rank information to allow nodes to determine their positions

in the DODAG, and the Objective Function identified by the Objective Code Point (OCP)

within the DIO Configuration option fields. This message will be received by a client node

which can be either a node willing to join or an already joined node.
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When a node willing to join the DODAG receives the DIO message, it (i) adds the DIO

sender address to its parent list, (ii) computes its rank according to the Objective Function

specified in the OCP filed, such that the node’s rank is greater than that of each of its parents,

and (iii) forward the DIO message with the updated rank information. The client node

chooses the most preferred parent among the list of its parents as the default node through

which inward traffic is forwarded.

When a node already associated with DODAG receives another DIO message, it can proceed

in three different ways: (i) discard the DIO message according to some criteria specified by

RPL, (ii) process the DIO message to either maintain its location in an existing DODAG or

(iii) improve its location by getting a lower rank in the DODAG based on computing the

path cost specified by the Objective Function. Whenever a node changes its rank, it must

discard all nodes in the parents’ list whose ranks are smaller than the new computed node’s

rank to avoid routing loops. Fig. 2.10 shows the flowchart summarizing the operation of a

router in a DODAG.

Receive a DIO

Receive DIO 
the 1st time?

Satisfy 
criteria ?

Add the sender to 
the parent list

Yes No

Compute the rank 
based on OF

Forward DIO to 
others in multicast

Discard the 
packet

No

Process the DIO

Yes

Rank < 
Own_Rank ?

Improves its 
location + get the 

lower rank
Maintain location 

in the DODAG

Yes No

Discard the 
parents with lower 

rank

Figure 2.10: Operation of a router in a DODAG

After the construction of the DODAG, each client node would have a default upward route

through which it can transmit its inward traffic at the destination of the DODAG root.

Obviously, the default route is formed by the most preferred parent of each node.

If the Mode of Operation flag in the DIO Base Object is different from zero, downward
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routes from the root to nodes are supported and have to be maintained. In this case,

each client node must send a unicast DAO control message to determine the reverse route

information. When traveling back to the DODAG root, visited nodes are recorded in the

packet along the upward route, and complete route is then established between the DODAG

root and the client node. RPL specifies two modes of operations to maintain downward

routes in an RPL instance:

Storing Mode: in the storing mode, a DAO message is sent in unicast by the child to

the selected parent, which is able to store DAO messages received by its children before

sending the new DAO message with aggregate reachability information to its parent. The

storing mode can enable or disable multicast mode.

Non-Storing Mode: in the non-storing mode, the DAO message is sent in unicast to

the DODAG root, thus, intermediate parents do not store DAO messages, but only insert

their own addresses to the reverse route stack in the received DAO message, then forwards

it to its parent. To maintain the DODAG, each node periodically generates DIO messages

triggered by a trickle [43] timer. The key idea of the trickle timer technique is to optimize the

message transmission frequency based on network conditions. In a nutshell, the frequency is

increased whenever an inconsistent network management information is received for faster

recovery from a potential failure, and decreased in the opposite case. The timer duration

increases exponentially whenever the timer fires. Initially, the timer duration is set to Imin,

which will be doubled Idoubling times until it reaches the maximum value Imax = Imin ·Idoubling.

For any detected change in the DODAG (e.g. unreachable parent, new parent selection, new

DODAG Sequence Number, routing loop, etc.), the trickle timer is reset to Imin, prescribed

in DIO messages.

3. Communication Paradigms: RPL supports three communication paradigms: (i) Multi-

Point-to-Point (MP2P) (or many-to-one); (ii) Point-To-Multi-Point (P2MP) (or one-to-many);

(iii) Point-To-Point (P2P) (or one-to-one), which are detailed in the following.

Multi-Point-to-Point: RPL provides support for multipoint-to-point traffic which per-

tains to data collection traffic forwarded in the upward route direction from multiple nodes

towards the DODAG root. The data collection traffic is referred to as inward unicast traffic.

The MP2P traffic is the main traffic flow in most of LLN applications [44, 45, 46, 47]. The

destinations of MP2P are mainly border routers that play important roles in the network and

provide an interface for connectivity with the Internet. RPL supports MP2P traffic such that

destinations can be reached via DODAG roots. Once the DODAG is constructed, it is used

to build the upward routes from routers to the root. The default routes from nodes to the

roots are established through the preferred parents chain. The DAG root can insert in its

DIO messages the destination prefixes which may also be included by DIOs generated by

the routers through the LLN, to which it can provide connectivity. The main advantage of

MP2P traffic in RPL is that it is supported with little routing state as the node should only

store the destination that leads to the DAG root.
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Point-to-Multipoint: RPL also defines the Point-to-Multipoint Operation, which rep-

resents the traffic transmitted in the downward route direction from the root down to multiple

nodes. This configuration traffic is commonly known as outward unicast traffic, and it is

essential for some LLN applications such as Home Automation [44], and Industrial Au-

tomation [45]. To support P2MP traffic, RPL uses a destination advertisement mechanism,

which supplies down routes to routers until reaching the destination. To install downward

routes, the routers send unicast DAO messages to their parents or to the DAG root. The

DAO messages contain the prefixes within the network, and advertise the routes for each

destination. Each intermediate router that forwards a DAO message towards the root adds

its address to a reverse routing route in the DAO message, thus providing the source with

the ability of performing source routing for reaching the child nodes in the network.

Point-to-Point: RPL provides mechanisms for point-to-point (P2P) routing between

any two nodes in the DODAG. In order to support P2P traffic in a RPL network, a LBR

must be able to transit packets at which point it is source routed to the destination. Two cases

arise: (i) if the destination node is co-located with the sender node in the same transmission

range, then the latter directly sends the message to the destination without passing it through

its parent; (ii) else, the P2P mechanism would depend on whether the network is pre-

configured as storing or non-storing mode. In the non-storing mode, routers do not store

any information about downward routes (no information about their descendants) and only

the root possesses such information. In this case, any packet must be first sent through

the DODAG upward routes to the root, which will forward it to its destination. In the

storing mode, routers locally store the routing information about downward routes. If the

destination is a descendant of the router, then it forwards the message down to the closest

router to the destination. If the destination is not a descendent, the message is forwarded

to the parent node, which will apply the same rules to send the packet to its destination.

Therefore, the packet will be forwarded in the uplink direction of the tree from child to

parent until reaching the router that is the first ancestor of both the source and destination

nodes.

4. Multicast Routing: is supported by RPL only in the storing mode, when the (MOP) field

in the DIO control message is set to 0x03.

RPL relies on the Multicast Listener Discovery (MLD) group registration protocol [48] for

supporting multicast routing. In fact, it maps MLD queries into RPL DAO messages by

transporting a multicast group in DAO target option. This mapping enables a DODAG

root to act as a multicast router as if the listener were directly attached to it. Nodes that

support the multicast operation can join the network as routers, but those that do not support

multicast can only join as leaf nodes.

If a listener is not an RPL node, then it uses the typical MLD protocol to register to a

multicast group. If this listener is attached to an RPL router while multicast is supported,

then the RPL router map the MLD queries into a DAO message for the registration of the
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requesting node. If the listener is already RPL-enabled, then DAO message are used by

default for group registration. MLD requests are then transported as DAO messages within

the DODAG recursively between child and its parent up to the DODAG root.

Multicast routing information are located at each router on the way from the nodes to the

DODAG root, enabling the root to send a multicast packet to all its children that had issued

a DAO message requesting for that multicast group, as well as all the attached nodes that

registered over this multicast group [12].

When a node sends a multicast packet inside the DODAG, the packet is forwarded to the

preferred parent, by default. If the transmission fails, then the packet will be routed to the

alternate parents in the DODAG. The packet is also duplicated to all the registered children,

except for the one that passed the packet.

The multicast operation is then centralized in the DODAG root which acts as an automatic

proxy point for the RPL network, and as source towards the non-RPL domain for all

multicast flows started in the RPL domain.

Network Management - fault-tolerance, QoS-aware routing and security are RPL’s mecha-

nisms for network management. In the following we present them.

1. Fault-Tolerance: RPL is a self-healing routing and topology control protocol. In fact, it

presents mechanisms for: i) DODAG repair operation, triggered when an inconsistency is

detected in the DODAG; ii) loop detection and avoidance mechanisms to avoid loops in

routing.

DODAG Repair: repair mechanisms are of paramount importance for a routing pro-

tocol to dynamically update routing decisions and adapt the network topology to potential

node/link failure. To that end, RPL supports two complementary repair mechanisms: (i)

global repair and (ii) local repair. When a node detects a network inconsistency (e.g. a link

between two nodes fails or a local loop is detected), it triggers a local repair operation. It

consists in urgently finding a backup path without trying to repair the whole DODAG. This

alternate recovery path may not be an optimal path.

If local repairs are not efficient for network recovery due to several inconsistencies, the

DODAG root may trigger a global repair operation and then it increments the DODAG

version number and initiates a new DODAG version. The global repair operation leads to a

fundamental reconstruction of the network topology. Nodes in the new DODAG version can

choose a new position whose rank is neither constrained by nor dependent on their previous

rank within the old DODAG version.

Loop Avoidance and Detection: Loops are a common undesirable problem in dis-

tance–vector routing protocols. To overcome it, RPL relies on rank-based and path-validation

mechanisms for loop avoidance and loop detection. The loop avoidance and detection

mechanisms are different from those defined in traditional IP networks [38]: in fact, in
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LLNs, the overreaction to loop detection is not recommended as opposed to IP networks

where fast reaction is a must, since the prospective traffic in LLNs is very low, thus limiting

the influence of potential loops.

A loop may occur when a node that loses all its parents, for some reasons, and attaches to

another node in its own sub-DODAG. This may happen in particular when DIO messages

are lost, and referred to as DIO loops. Several rules have been defined to avoid loops. The

max_depth rule imposes that: a node cannot select a parent whose rank is higher than the

node minimum rank plus DAGMAXRankIncrease. This rule does not prevent loops from

occurring but avoid the count-to-infinity problem when a loop is formed. For instance,

considering the network in Fig. 2.6, assume that the link between node 2 and the root node

was broken, and node 2 selects node 6 as parent. This situation results in a loop as node

2 has no means to know that node 6 belongs to its sub-DODAG. A local repair operation

will detect and repair the loop after a few network updates, which will end by dissociating

node 2 from node 6. The repair operation works as follows: if DAGMAXRankIncrease =

5, this means that node 2 can join any node with a rank (1+ 5) = 6. If node 2 selects

node 6 as a parent, its new rank is increased to 4. Then, node 5 updates in turn its rank to

5, node 6 updates its rank to 6, and node 2 updates again its rank to 7, which exceed the

maximum allowed rank, that is 7. The loop is then detected, and thus avoided by breaking

the child-parent relation between node 2 and node 6. RPL also prevents nodes looking for

alternate parents to increase their ranks by selecting deeper parents, since this would very

likely results in loops in the network.

Another way to avoid loops is that a node may poison its sub-DAG by advertising a rank of

INFINITE_RANK without having to use DAGMaxRankIncrease. In addition to DIO loops,

DAO loops may occur when a node fails to inform its parent that a destination is no longer

reachable. In other words, the parent maintains a route installed towards a destination based

on old DAO messages from a child, but the child is not able to update its parent about the

non availability of that route, due to DAO message loss. In this case, if the child wants to

send a packet to that destination, its non updated parent will keep sending back the packet

to the child, thus forming a loop. The use of acknowledgment of DAO messages represents

a fundamental solution to avoid DAO loops.

Loops are often hard to avoid. Thus, RPL specifies loop detection mechanisms to resolve

them when they do occur. Detection mechanisms rely on the concept of data path validation,

which consists in carrying control data in data packets to ensure that a packet is moving in

forward direction and not experimenting any loop. Control data are flags making part of

packet headers. For instance, the current RPL version allows one-hop sibling path, which

means that a packet can be forwarded to a sibling only once along its path to the destination.

The packet is then dropped in the second attempt to forward the packet to a sibling of another

node, which can be easily encoded with a flag in packet header.

2. QoS-Aware Routing: RPL is a QoS-aware and constrained-based routing protocol. QoS-
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aware routing means that RPL is able to provide different levels of QoS based on the

underlying QoS metric ruling routing decisions. Constraint-based routing means that RPL

defines constraints that reduce the search space for possible path satisfying QoS require-

ments. QoS metrics and QoS constraints are typically different from each other. A metric

is a quantitative value that helps to find the best path satisfying an Objective Function. For

instance, an Objective Function based on the delay metric would be to find the path that

minimizes the end-to-end delay from the source to the destination. On the other hand, a

constraint is used to include or eliminate links or nodes that do not respect specific criteria

[38]. For example, the Objective Function would recommend to prune/avoid links with poor

quality. A routing metric or constraint can be additive or multiplicative, or selects a path that

contains a maximum or a minimum value. In addition, routing metric can be either local,

when it does not propagate along the DODAG, in contrast to global routing metrics which

should be propagated.

In [49], the ROLL working group specified a set of links and nodes link’s and node’s routing

metrics and constraints that are suitable to LLNs and recommended for the RPL routing

protocol. RPL defines in the DIO control message a common optional header for metrics

and constraints objects, called DAG Metric Container object, with several flags. Flags are

used to specify the nature and features of routing objects, such as whether it represents a

metric or constraints, whether it is local or global, whether a metric is additive or others,

etc. The main routing metric and constraint objects are summarized as follows.

Node State and Attribute (NSA): reports information on node state and attributes such

as CPU overload, available memory. The ROLL working group decided to set a 1 bit flag

when a node faces a congestion situation, assessed according to a local policy. If the flag is

set, traffic will be re-routed to avoid passing through the congested node;

Node Energy: is used as a constraint to avoid using nodes with low power level. In [49],

the Node Energy Object can be described by any combination of the following indicators:

(1) the node power mode, encoded by 2 bit flag indicating the type of the node’s power

sources: main-powered, battery-powered, or scavenger (solar panel, mechanical, etc.), (2)

the estimated remaining lifetime, which provides an estimation of the remaining power-

level for nodes operating with batteries and scavengers, (3) other power-related metrics to

be defined in the future;

Hop Count: reports the number of hops crossed along the path between a node and the

destination;

Link Throughput: reports the range of throughput that the link can handle, in addition

to the current link throughput. It can be used as a metric or constraint. When used as a

metric, it may be considered as additive, or it may report a maximum or a minimum value;

Link Latency: is used to report the path latency. The latency of the path is expressed

as the sum of all latencies, or can be mapped to the maximum/minimum latency along the
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path. It can also be used as a constraint (e.g. pruning all links with a latency higher than a

certain threshold);

Link Reliability: specifies the link reliability level, which can be expressed in several

ways such as packet reception ratio, bit error ratio, mean time between failures, and others.

In [49], two links reliability metrics have been defined: (1) the Link Quality Level (LQL)

object, which quantifies the link reliability using a discrete value, from 0 to 7 where

0 indicates that the link quality level is unknown and 1 reports the highest link quality

level. The mechanisms specifying how to compute LQL has still not been defined and are

implementation specific. (2) Expected Transmission count Metric (ETX), which provides an

estimation of the number of transmission a node has to make along the path to the destination

to deliver a packet. It is typically estimated as 1/(PPRup ·PPRdown) that is the inverse of the

product of packet reception ratio (PRR) in upstream and downstream directions;

Link Color: this constraint allows to assigning 10 bit encoded color to links, where the

meaning of each color is implementation-specific. This administrative static link constraint

is used to avoid or attract specific links for specific traffic types. For instance, it is possible

to assign a blue color for links supporting encryption. This color object can be used to define

specific Objective Function, such as selecting blue colored paths, or paths with maximum

number of blue colored links, if encryption is an important criteria in the routing policy.

2.1.4.3 ZigBee IPv6-based Stack

In the recent past, the ZigBee Alliance introduced a communication stack for wireless sensor

networks meeting the typical requirements of low data-rate lossy links interconnecting low-power

devices. Three device types are defined in ZigBee: ZigBee coordinator, ZigBee routers, and

ZigBee end devices. An reduced function device (RFD) can only be a ZigBee end device, whereas

a full function device (FFD) can be either a ZigBee coordinator or ZigBee router. The ZigBee

coordinator is responsible for starting a new network. ZigBee coordinator and routers are "routing

capable", while the ZigBee end devices cannot participate in routing and have to rely on their

corresponding ZigBee parent routers for that function.

Every node in a ZigBee network has two addresses: a 16 bit short network address, and a 64

bit IEEE extended address. The 16 bit network address is assigned to each node dynamically by

its parent coordinator/router upon joining the network. This address is the only address that is

used for routing and data transmission. There are schemes for assigning the 16 bit short network

addresses in ZigBee mesh networks: the static address allocation, and the tree address allocation.

In both schemes the parent nodes assign an address "block" to their child router which, in turn,

uses it for its decedents. The mesh coordinator/router is responsible to maintain the free address

spaces, the address block size, and the net address to be assigned.

Based on IEEE 802.15.4, ZigBee [50] specifies the application and network layers. The

application layer framework consists of a set of application objects. The ZigBee network layer

defines how the network is formed and how the network address is assigned to each participating
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node. Two routing schemes are available in ZigBee networks: mesh routing, and tree routing.

The mesh routing is similar to the AODV [30] routing algorithm, while the tree routing scheme

resembles the cluster tree routing algorithm described in [51]. In ZigBee mesh routing, a route

request (RREQ) is broadcasted on-demand when data is to be transmitted to a destination of an

unknown path. Routes are constructed based on the route replies, received both intermediate nodes

or the destination node, and a route error (RERR) message is transmitted when a path cannot be

found. The route repair mechanism repairs invalid routes when a previous route can not be found.

Since only coordinators/routers (FFDs) can actively participate in mesh routing, the end devices

(RFDs) have to rely exclusively on their parent nodes to perform mesh routing on their behalves.

ZigBee was not able to easily plug its kind of networks into the IP-based Internet [52], and

with the increasing trend towards the Internet-of-Things, the ZigBee alliance designed the ZigBee

IPv6-based stack [53] for 802.15.4 networks. This changed the "traditional" ZigBee stack to use

6LoWPAN, to use RPL as routing protocol, and to use UDP.

2.1.5 Hardware Platforms for WSN

WSNs can be deployed in a range of hardware products including Tmote Sky (also known

as TelosB) [54, 18], WiSMote [55], Zolertia Z1 mote [56], MICAz [57], eZ430-RF2500 [58],

CC1110 & CC2510 Development Kit [59], and other platforms [60, 61].

Figure 2.11: Crossbow TelosB Mote

The Tmote Sky is an open-source platform developed by University of California, Berkeley

[54]. It provides a very power efficient sensor mote, equipped with the Texas Instruments MSP430

micro-processor, the IEEE 802.15.4 compliant Texas Instruments CC2420 RF chip, 8 ADC

channels for sensing data, sensors for temperature, light and humidity, as well as several interface

ports. USB support is also provided, for an easier programming environment or communication

with a PC. The Tmote Sky is an architecture that is widely supported for both TinyOS and

ContikiOS applications, as well as the COOJA simulator.

There are other platforms available, however we have found that the TMote Sky platform suits

the needs of our work. The Crossbow TelosB [18] shown in Fig. 2.11 is one of the TMote Sky

architecture products available on the market, and when comparing it with others, we consider it

as the most resource limited. We assumed that if we can run our software on it, we will be able to

deploy it on any other platform. For these reasons, we have selected it to carry on the tests on this
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Table 2.1: TelosB technical specifications

Specifications Remarks
Module
Processor Performance 16 bit RISC
Program Flash Memory 48K bytes
Measurement Serial Flash 1024K bytes
RAM 10K bytes
Configuration EEPROM 16K bytes
Serial Communications UART 0-3V transmission levels
Analog to Digital Converter 12 bit ADC 8 channels, 0-3V input
Digital to Analog Converter 12 bit DAC 2 ports
Other Interfaces Digital I/O,I2C,SPI
RF Transceiver
Frequency band 2400 MHz to 2483.5 MHz ISM band
Transmit (TX) data rate 250 kbps
Transmit symbol rate) (62.5 ksymbol/s
RF power -24 dBm to 0 dBm
Receive Sensitivity -90 dBm (min), -94 dBm (typ)
Adjacent channel rejection 47 dB + 5 MHz channel spacing

38 dB - 5 MHz channel spacing
Outdoor Range 75 m to 100 m Inverted-F antenna
Indoor Range 20 m to 30 m Inverted-F antenna
Sensors
Visible Light Sensor Range 320 nm to 730 nm Hamamatsu S1087
Visible to IR Sensor Range 320 nm to 1100nm Hamamatsu S1087-01
Humidity Sensor Range 0-100% RH Sensirion SHT11
Resolution 0.03% RH
Accuracy ±3.5% RH Absolute RH
Temperature Sensor Range -40oC to 123.8oC Sensirion SHT11
Resolution 0.01oC
Accuracy ±0.5oC @25oC
Electromechanical
Battery 2X AA batteries Attached pack
User Interface USB v1.1 or higher
Size (in) 2.55 x 1.24 x 0.24 Excluding battery pack
(mm) 65 x 31 x 6 Excluding battery pack
Weight (oz) 0.8 Excluding batteries
(grams) 23 Excluding batteries
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thesis. Table 2.1 states the technical specifications of the platform, and Table 2.2 details its power

consumption.

Table 2.2: TelosB power consumption

Nominal
Current in Transmit (0 dBm) mode (mA) 19.5

Current in Receive mode (mA) 21.8
Current in MCU on, radio off (mA) 1.8

Current in MCU on, radio on - idle mode (µA) 365
Current in Sleep mode (µA) 5.1

Power supply (V) 3.6

2.1.6 Operating Systems and Simulation Environments for WSN

Operating System (OS) support for WSNs plays a central role in building scalable distributed

applications that are efficient and reliable. Over the years, we have seen a variety of Operating

Sistems (OSes) emerging in the research community to facilitate developing WSN applications.

There are some OSes for WSN, and we have selected two of them, TinyOS/TOSSIM and

ContikiOS/COOJA as we consider them as the most used OSes and simulation environments in

the literature. In [61] Wei Dong et al. provide an overview of existing work in this area, present a

taxonomy of state-of-the-art OSes, discuss various approaches to address design challenges, and

discuss evaluations of a sensornet OS and present some recommendations from the perspectives

of OS developers and OS users.

2.1.6.1 TinyOS

TinyOS [62] is a free and open-source operating system developed for embedded systems

with memory-constrained devices. TinyOS is perhaps the earliest OS for WSN in the literature

[61, 63], and is based on an event-driven architecture and is implemented in NesC [64], which is

a programming language based in C, thus, limiting the portability of the operating system. Fig.

2.12 shows the TinyOS architecture, and in [65] a more in depth description of this architecture is

presented and discussed. b6lowpan [66] (usually called blip) is one implementation of 6LoWPAN

for TinyOS. Blip is more than a 6LoWPAN implementation based on [67]. It is an IPv6 stack

including Neighbor Discovery, support for TCP, UDP, DHCPv6, and has a point-to-point daemon

to communicate with Unix machines and is the basis for the TinyRPL [68] and CoAP implementa-

tions. To enable a flexible architecture and a low resource consumption, TinyOS programming is

based on components which are wired together to create an application at design-time. Component

interactions happen at two directions, i.e., one component can use commands provided by another

component; also, one component can signal events to another component. The execution model

of TinyOS consists of interrupts and tasks. Interrupts execute at a higher priority and can preempt

the execution of tasks. Tasks execute at a lower priority and are scheduled in a FIFO manner.

Tasks in TinyOS are written in a run-to-completion manner, and they can not be preempted or
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self-suspended. For this reason, I/Os are done in split-phases, i.e., a request is done at the end of

a task while signal invokes the start of the next task. TinyOS version 2 (T2) provides telescoping

abstraction, which is a hybrid of horizontal decomposition (for the lower level to support different

kinds of hardware devices) and vertical decomposition (for the higher level to support platform-

independent functionality), and makes it easier to support new hardware platforms. Moreover, T2

provides service distribution, which limits arbitrary component compositions and provides a group

of components (i.e., services) to improve system reliability. Besides architectural improvements,

there are a number of important improvements in implementation, including threading support

[61].

Main
(includes Scheduler)

Application
(user components)

Actuating Sensing Communication

Hardware abstractions

Figure 2.12: TinyOS architecture

TinyRPL [68] is a prototype implementation of the IETF RPL routing protocol in TinyOS 2.x

and supports the RPL draft’s basic mechanisms, while omitting some of RPL’s optional features,

such as the security options. The current implementation provides the OF Zero (OF0) objective

functions [42] or the Minimum Rank with Hysteresis OF (MRHOF) [41] objective function with

the ETX metric. Nevertheless, the modular design of TinyRPL simplifies the use of additional

objective functions.

2.1.6.2 TOSSIM

TOSSIM [69] captures the behavior and interactions of networks of thousands of TinyOS

motes at network bit granularity. The TOSSIM architecture is composed of five parts: support for

compiling TinyOS component graphs into the simulation infrastructure, a discrete event queue,

a small number of re-implemented TinyOS hardware abstraction components, mechanisms for

extensible radio and ADC models, and communication services for external programs to interact

with a simulation.

TOSSIM takes advantage of TinyOS’s structure and whole system compilation to generate

discrete-event simulations directly from TinyOS component graphs. It runs the same code that

runs on sensor network hardware. By replacing a few low-level components, TOSSIM translates

hardware interrupts into discrete simulator events; the simulator event queue delivers the interrupts

that drive the execution of a TinyOS application. The remainder of TinyOS code runs unchanged.
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TOSSIM uses a very simple but powerful abstraction for its wireless network. The network

is a directed graph, in which each vertex is a node, and each edge has a bit error probability.

Each node has a private piece of state representing what it hears on the radio channel. This

abstraction allows testing under perfect transmission conditions (bit error ratio is zero), can capture

the hidden terminal problem (for nodes a,b,c, there are edges (a, b) and (b, c) but no edge (a, c)),

and can capture many of the different problems that can occur in packet transmission (start symbol

detection failure, data corruption, etc.).

The simulator engine provides a set of communication services for interacting with external

applications. These services allow programs to connect to TOSSIM over a TCP socket to monitor

or actuate a running simulation. Details of the ADC and radio models, such as readings and loss

rates, can be both queried and set. Programs can also receive higher level information, such as

packet transmissions and receptions or application-level events.

TOSSIM supports the TinyOS tool-chain, making the transitions between simulated and real

networks easy. Compiling to native code allows developers to use traditional tools such as

debuggers in TOSSIM. As it is a discrete event simulation, users can set debugger breakpoints

and step through what is normally real-time code (such as packet reception) without disrupting

operation. It also provides mechanisms for other programs to interact and monitor a running

simulation; by keeping monitoring and interaction external to TOSSIM, the core simulator engine

remains very simple and efficient.

2.1.6.3 ContikiOS

The ContikiOS [70] is an open source operating system for networked embedded systems in

general, and wireless sensor nodes in particular. It is developed by a team of developers from the

industry and academia.

A running ContikiOS system consists of the kernel, libraries, the program loader, and a set

of processes. Communication between processes always goes through the kernel, which does not

provide a hardware abstraction layer, but lets device drivers and applications communicate directly

with the hardware. A process is defined by an event handler function and an optional poll handler

function. The process state is held in the process private memory and the kernel only keeps a

pointer to the process state. All processes share the same address space and do not run in different

protection domains. Interprocess communication is done by posting events [65].

Looking ContikiOS from a higher perspective, the system is partitioned into two parts: the

core and the loaded programs as shown in Fig. 2.13. Typically, the core consists of the ContikiOS

kernel, the program loader, the most commonly used parts of the language run-time and support

libraries, and a communication stack with device drivers for the communication hardware.

The core is compiled into a single binary image and is usually not modified after deployment.

Programs are loaded into the system by the program loader. The program loader is used to

load/unload the programs into the system either by using the communication stack or directly

to attached storage (as example, the EEPROM).
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Figure 2.13: ContikiOS system

The ContikiOS kernel consists of a lightweight event scheduler that dispatches events to

running processes and periodically calls processes’ polling handlers. All program execution is

triggered either by events dispatched by the kernel or through the polling mechanism. The kernel

does not preempt an event handler once it has been scheduled. The kernel supports two kinds of

events: asynchronous and synchronous events. In addition to the events, the kernel provides a

polling mechanism. Polling can be seen as high priority events that are scheduled in-between each

asynchronous event.

Both the ContikiOS and applications are implemented in the C programming language. There-

fore, ContikiOS is highly portable, being ported to a number of microcontroller architectures, in

which are included the Texas Instruments MSP430 and the Atmel AVR microcontrollers.

ContikiOS incorporates a implementation of the IPv6 protocol stack, called µIPv6 (see figures

2.14 and 2.15), which is optimized for LLN devices. The 6LoWPAN module (known as SICSlow-

pan project [71]) performs header compression and packet fragmentation [67] before transferring

packets to lower layers for transmission. ContikiOS provides two MAC layers: 1) a Carrier Sensing

Multiple Access - Collision Avoidance (CSMA/CA) mechanism; and 2) a NullMAC mechanism

that does not do any MAC-level processing. The default MAC driver is CSMA/CA, which schedules

a packet retransmission (up to five times) if the Radio Duty Clycling (RDC) layer or the radio

layer detects a radio collision. The RDC layer sits below the MAC layer and it implements

RDC mechanisms to switch ON and OFF the radio transceiver to save energy. ContikiOS has

several RDC drivers, being ContikiMAC the default one. ContikiMAC [72] is an asynchronous

duty cycling algorithm, which uses periodical wake-ups to listen for packet transmissions from

neighbors. Specifically, the receivers periodically wake up to check the radio medium for activity

using low-power clear channel assessment (CCA) mechanisms [20].

ContikiOS contains a prototype implementation of the RPL standard, called ContikiRPL [73].

ContikiRPL is the first real-world implementation of RPL developed under ContikiOS. In fact,

the ContikiOS’s academy have developed a comprehensive framework for simulation, experimen-
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Figure 2.14: ContikiOS protocol stack

tation, and evaluation of RPL routing mechanisms under ContikiOS. One of the main features

of ContikiRPL is that it provides a simple programming interface for designing and evaluating

Objective Functions. It consists of four main components [20], shown in Fig. 2.15: 1) a

module for message construction and parsing; 2) a module for handling timers; 3) a module

that implements rules for route discovery and maintenance; and 4) a module that implements the

Objective Functions (OF). The information exchanged between ContikiRPL and other protocol

layers occur through callback functions. As example, ContikiRPL receives updates on link

qualities from µIPv6. Each time ContikiRPL receives such updates, it checks if a better parent

existing among the node’s neighbors according to the chosen OF rule. Currently there are two OFs

supported: 1) the OF Zero (OF0) [42]; and 2) the Minimum Rank with Hysteresis OF (MRHOF)

[41].

With respect to operating systems for WSN and current RPL implementations, Vu Chien et

al. in [65] examine some existing operating systems for WSNs, including ContikiOS and TinyOS,

and compare them by examining some important OS features; ContikiRPL implementation and its

performance is evaluated in [74], and in [20] where also tradeoffs and inefficiencies are discussed.

A detailed analysis of ContikiRPL interoperability with, for example, TinyRPL can be found in

[75] and in [76].
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Figure 2.15: ContikiRPL software architecture and protocol stack

2.1.6.4 COOJA

COOJA is a flexible Java-based simulator designed for simulating networks of sensors running

the ContikiOS [17, 77]. COOJA simulates networks of sensor nodes where each node can be

of a different type, differing not only in on-board software, but also in the simulated hardware.

COOJA is flexible in that many parts of the simulator can be easily replaced or extended with

additional functionality. Example of parts that can be extended include the simulated radio

medium, simulated node hardware, and plugins for simulated input/output.

A simulated node in COOJA has three basic properties: its data memory, the node type, and

its hardware peripherals. The node type may be shared between several nodes and determines

properties common to all these nodes. For example, nodes of the same type run the same program

code on the same simulated hardware peripherals. And nodes of the same type are initialized with

the same data memory. During execution, however, nodes’ data memories will eventually differ

due to e.g. different external inputs.

COOJA currently is able to execute ContikiOS programs in two different ways. Either by

running the program code as compiled native code directly on the host CPU or, for instance,

by running compiled program code in an instruction-level TI MSP430 emulator. COOJA is also

able to simulate non-ContikiOS nodes, such as nodes implemented in Java or even nodes running

another operating system. All different approaches have advantages as well as disadvantages.

Java-based nodes enable much faster simulations but do not run deployable code. Hence, they are

useful for the development of e.g. distributed algorithms. Emulating nodes provides more fine-
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grained execution details compared to Java-based nodes or nodes running native code. Finally,

native code simulations are more efficient than node emulations and still simulate deployable

code. Since the need of abstraction in a heterogeneous simulated network may differ between the

different simulated nodes, there are advantages in combining several different abstraction level

in one simulation. For example, in a large simulated network a few nodes may be simulated at

the hardware level while the rest are implemented at the pure Java level. Using this approach

combines the advantages of the different levels. The simulation is faster than when emulating all

nodes, but at the same time enables a user to receive fine-grained execution details from the few

emulated nodes.

COOJA executes native code by making Java Native Interface (JNI) calls from the Java

environment to a compiled ContikiOS system. The ContikiOS system consists of the entire

ContikiOS core, pre-selected user processes, and a set of special simulation glue drivers. This

makes it possible to deploy and simulate the same code without any modifications, minimizing the

delay between simulation and deployment.

The Java simulator has full control over the memory of simulated nodes. Hence the simulator

may at all times view or change ContikiOS process variables, enabling very dynamic interaction

possibilities from the simulator. The hardware peripherals of simulated nodes are called interfaces,

and enable the Java simulator to detect and trigger events such as incoming radio traffic.

All interactions with simulations and simulated nodes are performed via plugins. An example

of a plugin is a simulation control that enables a user to start or pause a simulation. Both

interfaces and plugins can easily be added to the simulator, enabling users to quickly add custom

functionality for specific simulations.

COOJA allows for simultaneous simulations at three different levels, namely the networking

(or application) level, the operating system level and the machine code instruction level:

• Networking Level: During design and implementation of, for instance, routing protocols,

the specific hardware is often not as important as the networking itself. The most important

factors may instead concern the radio medium, radio devices and perhaps sleep duty cycles

of the sensor nodes. When performing such a design and implementation task it may

be possible, but not necessary, to use a fine-grained simulation environment such as an

instruction-level simulator. COOJA supports code development by enabling the user to

easily exchange certain simulator modules such as device drivers or radio medium modules.

A simulation can be saved and reloaded using other more or less detailed modules, still with

the other simulation parameters unaltered. Furthermore, new radio media and interfaces

such as radio devices can easily be developed in Java and be added to the COOJA simulation

environment.

To further simplify and speed up development in such scenarios, COOJA also supports

adding pure Java code nodes. Without any connection to ContikiOS, these can be useful

when developing high-level algorithms which, when tested and evaluated, will be ported to

deployable sensor node code. Pure Java nodes can also be used in heterogeneous networks
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where the user only needs to focus on a subset of all the simulated nodes. Since such

Java nodes require less memory and processing power, larger heterogeneous network can

be simulated more efficiently. For example, using Java nodes, users may rapidly implement

the functionality of several different nodes together forming a network. And then later

users can, node by node, port the Java code to deployable ContikiOS node code, while still

maintaining full functionality of the network.

• Operating System Level: COOJA simulates the operating system by executing native op-

erating system code as described in the previous section. As the entire ContikiOS, including

any user processes, is executed it is also possible to alter ContikiOS core functionality. This

is useful for example to test and evaluate changes in included ContikiOS libraries.

• Machine Code Instruction Level: Using COOJA, it is possible to create new nodes with

a very different underlying structure than the typical nodes. In [17] it was evaluated this

statement by adding nodes connected to a Java-based microcontroller emulator instead of

a compiled ContikiOS system. The emulated nodes are controlled in a way similar to the

native code nodes. Each simulated node is allowed to run for maximum fixed period of time

or long enough to handle one event. Events are then, by using the current node memory,

transferred via the hardware interfaces to and from the simulator.

• COOJA’s Support for Cross-level Simulation: COOJA supports simulations at these three

different abstraction levels. Note that the individual node is always simulated at one of these

levels. The main advantage of COOJA’s cross-level simulations is that nodes from each of

the levels can co-exist and interact in the same simulation. Thus, for example, an emulated

node can send a radio packet to a Java based node.

Each simulation in COOJA uses a radio model that characterizes radio wave propagation. New

radio models may be added to the simulation environment. The radio model is chosen when a

simulation is created. This enables a user to, for instance, develop a network protocol using a

simple radio model, and then testing it using a more realistic model, or even a custom made model

to test the protocol in very specific network conditions. Often a radio model provides one or

several plugins in order to configure and view the current simulated network conditions. COOJA

supports, except from a completely silent model, a simple model that uses an interference and

a transmission range parameter that can be changed during a simulation run. Ongoing work on

better radio models will provide COOJA with a general ray-tracing based model supporting radio

absorbing material.

2.1.7 Discussion

This section provided an overview on the technologies and on the protocols we used to achieve

the goals of this thesis. We have described the concept of LLN and presented the IEEE 802.15.4

standard. We also described the 6LoWPAN adaptation layer aimed at enabling the transport of

IPv6 packets over IEEE 802.15.4.
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We have also made an overview of routing in WSN supporting IPv6, namely the 6LoWPAN

mesh routing, and RPL routing protocol. With respect to RPL, we have made an deep characteri-

zation of the protocol and described and discussed existing implementations such as TinyRPL and

ContikiRPL.

This section also provided an overview of the available hardware platforms for wireless sensor

nodes, and provided an overview of the available operating systems and simulators for WSNs with

a special emphasis on the ContikiOS and on the COOJA simulator. Besides the operating systems

described, there are others such LiteOS [78] and RIOT OS [79, 80, 81].

Finally, we have selected ContikiOS and COOJA to perform the simulation and experimenta-

tion throughout this thesis. Our choice was due to the ease in programing and to its ease portability,

because the typical ContikiOS memory footprint using full µIPv6 networking and RPL requires

only 10 kBytes of RAM and 30 kBytes of ROM, which represents 100% of available RAM and

62.5% of available ROM of the Tmote Sky sensor node [82], and because it supports the RPL

routing protocol that has been established as the "de-facto" standard routing protocol for WSN.

2.2 Energy Efficiency

Energy efficiency is about energy conservation, i.e., how to reduce the energy consumption of

the nodes evolving in all the nodes activities, including sensing, processing and communication

tasks, so that the network lifetime can be extended to reasonable times. In the following we discuss

in detail some energy related aspects including main sources of WSN nodes power consumption,

energy consumption in WSN and energy conservation in WSN.

2.2.1 Main Sources of WSN Nodes Power Consumption

Sensor nodes are usually battery powered and deployed in large areas in which changing

or replacing batteries may be impractical or even unfeasible. Therefore, minimizing the power

consumption in a node is a primary issue to be considered, and the use of solutions for increasing

the nodes lifetime is fundamental in WSN. It is well known that energy consumed by nodes in

data sensing or processing functions may be negligible [83]. In contrast, data communication

has a strong impact on the nodes battery mainly because of two aspects: 1) the radio transceiver

implies a high power consumption when compared to the other components of the node; and

2), the communications phase is associated with phenomena such as collisions, overhearing,

overemitting, and idle listening, which substantially reduce the nodes battery [84]. Furthermore,

in a WSN, each node plays the dual role of data originator and data router. In the sensor’s data

originator role, each sensor gathers data from the environment through various sensors nodes

which need to be processed and transmitted to nearby sensor nodes for multi-hop delivery to the

sink. On the other hand, in the sensor’s data router role, in addition to originating data, each

sensor node is responsible for relaying the information transmitted by its neighbors, whereas the

low-power communication techniques in WSNs limit the communication range of a sensor node.

In a large network, multi-hop communication is required so that sensor nodes relay the information
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sent by their neighbors to the sink node. Accordingly, the sensor node is responsible for receiving

the data sent by its neighbors and forwarding it to one of its neighbors according to the routing

decisions [85].

Pantazis et al. [83] present a survey on energy consumption based on the hardware of

a typical sensor node. They divide the sensor node into four main components: a sensing

subsystem including one or more sensors for data acquisition, a processing subsystem including

a microcontroller and memory for local data processing, a radio subsystem for wireless data

communication, and a power supply unit. Fig. 2.17 shows the WSN node architecture proposed

by them, constituted by a Sensor Module, by a Processing Module, by Wireless Communication

Module and by a Power Supply Module. These modules work together in order to make the sensor

Power Supply Module (Battery Supply)

Sensor
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ADC

Network

MAC

Transceiver
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Processing 

Module
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Figure 2.16: The architecture of a WSN node

nodes operational in a WSN environment. Therefore, in order to evaluate the energy consumption

of the sensor nodes, it is important to study the energy consumption of their components. There

are a few attempts to propose and discus about models for energy efficiency in WSNs. Most of

them consider the sensor node power consumption model and, at same time, the impact of the

sensor node hardware and external radio environment.

The energy consumption of the wireless sensor nodes based on Fig. 2.16 depends on its

components and is summarized on the following:

• Sensor Module: the energy consumption of sensor module is due to signal sampling, ADC

(Analogue to Digital) signal conversion and signal modulation. Also the energy consump-

tion of this module is related to the sense operation of the node (periodic, sleep/wake, etc.).

For example in periodic mode the energy consumption is modeled as [83]

Esensor = Eon−o f f +Eo f f−on +Esensor−run (2.1)

where Eon−o f f is the one time energy consumption of closing sensor operation, Eo f f−on is

the one time energy consumption of opening sensor operation and Esensor−run is the energy

consumption during the time interval of sensing operation.
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• Processing Module: sensor controlling, protocol communication and data processing are

the main activities of this module. This module supports mostly three operation states (sleep,

idle and run). The Processor energy consumption, denoted as ECPU is the sum of the state

energy consumption ECPU−state, and the state-transition energy consumption ECPU−change

state, modeled as [83]

ECPU = ECPU−state +ECPU−change =

∑
m
i=1 PCPU−state(i) ·TCPU−state(i)+

∑
n
j=1 NCPU−change( j) · eCPU−change( j)

(2.2)

where PCPU−state(i) is the power of state i that can be found on the node’s reference manual,

TCPU−state(i) is the time interval in state i, NCPU−change( j) is the frequency of state transition

j and eCPU−change( j) is the energy consumption of one-time state transition J.

• Wireless Communication Module: the total power consumption for transmitting (PT) and

for receiving (PR), is denoted as [83]

PT (d) = PT B +PT RF +PA(d)

= PT 0 +PA(d)
(2.3)

where
PR = PRB +PRRF +PL

= PR0
(2.4)

where PA(d) is the power consumption of the power amplifier which is a function of

the transmission range d, and it depends on many factors including the specific hardware

implementation, DC bias condition, load characteristics, operating frequency and PA output

power.

• Power Supply Module: this module is related to the manufacturer and the model of each

node. For example, a wireless sensor node TelosB is supplied by two AA batteries, while

the current draw on receive mode is 21mA and on transmit for Tx value 0dBm is 19.5mA.

Also on the sleep mode it consumes less than 5.1 muA.

G. Anastasi et al, in their work [86], also present a sensor node-level architecture, as shown in

Fig. 2.17, which is usually assumed in the literature. It consists of four main components: (1)

a sensing subsystem including one or more sensors (with associated analog-to-digital converters)

for data acquisition; (2) a processing subsystem including a micro-controller and memory for local

data processing; (3) a radio subsystem for wireless data communication; and (4) a power supply

unit. Depending on the specific application, sensor nodes may also include additional components

such as a location finding system to determine their position, a mobilizer to change their location

or configuration (e.g., antenna’s orientation), and so on. Obviously, the power breakdown heavily

depends on the specific node, and the following remarks generally hold [87]:
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Figure 2.17: Anastasis’s architecture of a typical WSN node

• The communication subsystem has an energy consumption much higher than the compu-

tation subsystem. G. Pottie [88] shown that transmitting one bit may consume as much

as executing a few thousands instructions. Therefore, communication should be traded for

computation.

• The radio energy consumption is of the same order of magnitude in the reception, transmis-

sion, and idle states, while the power consumption drops of at least one order of magnitude

in the sleep state. Therefore, the radio should be turned off whenever possible.

• Depending on the specific application, the sensing subsystem might be another significant

source of energy consumption, so its power consumption has to be reduced as well.

Dunkels et al [89], about this same subject, propose Eq. 2.5 which models the energy

consumption based on the hardware components of a typical sensor node, E (J), as

E = (Im× tm + Il× tl + It × tt +

Ir× tr +∑
n
i=1 Ici× tci)×V

(2.5)

where Im is the current consumed by the microprocessor in the time tm during which the micro-

processor is running, Il and tl are the current and time when the microprocessor is in low power

mode, It and tt are the current and the time when the device communication is in transmit mode,

Ir and tr are the current and the time when the device communication is in receive mode, Ici and tci

are the current and the time consumed by other components (e.g. LEDs, ADCs, DACs), and V the

sensor supply voltage. This equation is used in some operating systems such as ContikiOS [16] to

estimate the energy consumption of a node when it reduces the energy consumption by powering

off the microcontroller or other hardware components when they are not used.

An up to date approach regarding the energy consumption of the WSN nodes is presented in

[90].

2.2.2 Energy Consumption in WSN

Some discussion and models on energy efficiency in WSN can be found on the literature,

where technical approaches for prolonging the lifetime of battery-powered sensors have been the
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focus. These approaches include energy-aware protocol development and hardware optimizations,

such as power consumption models for WSN devices and sleeping schedules to keep electronics

inactive most of the time. Pantazis et al [83] provide a good overview on this topic. They discuss

a number of developed energy efficient routing protocols and models, and provide directions to

select the most appropriate to be used in different WSN applications. According to them, most

of the WSNs energy consumption is spent on three main activities: sensing, data processing and

communication. All of these are important factors that should be considered when developing new

protocols for WSNs. Communication in WSN is the major component of the energy consumption.

Therefore, current research in WSNs is mostly concentrated on designing routing protocols that

use the less possible energy during the communication of the nodes. The main objective of these

protocols is not only to find the lowest energy path from a source to a destination, but also to find

the most efficient way to extend the network’s lifetime.

Pantazis et al, in [83], looked at L. Alazzawi et al work [91] and defined some terms related to

WSNs energy efficiency. These terms are used to evaluate the performance of the routing protocols

and bellow we describe the most important related to our work:

• Energy per Packet: refers to the amount of the energy that is spent while sending a packet

from a source to a destination.

• Network Lifetime: there is no unique definition for the network lifetime. In many cases

the term network lifetime corresponds to the time when the first node exhausts its energy,

or when a certain fraction of the network’s nodes is dead, or even when all nodes are dead.

However, the importance of a WSN is to be operational and able to perform its tasks during

its use. In WSNs, it is important to maximize the network lifetime, which means to increase

the network survivability or to prolong the battery lifetime of nodes. Moreover, the lifetime

of a node is effectively determined by its battery life. The main drainage of battery is due to

transmitting and receiving data among nodes and the processing elements.

• Average Energy Dissipated: is a metric related to the network lifetime and shows the

average dissipation of energy per node over time in the network as it performs various

functions such as transmitting, receiving, sensing and aggregation of data.

• Low Energy Consumption: a low energy protocol has to consume less energy than tra-

ditional protocols. This means that a protocol that takes into consideration the remaining

energy level of the nodes and selects routes that maximize the network’s lifetime is consid-

ered as low energy protocol.

• Average Packet Delay: is a metric to compute as the average one-way latency that is

observed between the transmission and reception of a data packet at the sink. This metric

measures the temporal accuracy of a packet.

• Time Until The First Node Dies: is a metric that indicates the duration for which all the

sensor nodes on the network are alive. There are protocols in which the first node on the
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network runs out of energy earlier than in other protocols, but manages to keep the network

operational much longer.

• Idle Listening: a sensor node that is in idle listening mode, does not send or receive data,

it can still consume a substantial amount of energy. Therefore, this node should not stay in

idle listening mode, but should be powered off.

• Packet Size: the size of a packet determines the time that a transmission will last. Therefore,

it is effective in energy consumption. The packet size has to be reduced by combining

several packets into one large packet or by compression.

• Distance: the distance between the transmitter and the receiver can affect the power that

is required to send and receive packets. The routing protocols can select the shortest paths

between nodes and reduce energy consumption.

2.2.3 Energy Conservation in WSN

The failure of a few nodes can cause topological changes and might require rerouting of data

packets and reorganization of the network. In this regard, power conservation and management

take on additional significance.

In [86], G. Anastasi et al. describe a generic WSN node architecture and its associated power

breakdown which they use to propose a solution for reducing consumption in WSN. They describe

different approaches for energy management and conclude that the energy consumption of the

radio is much higher than the energy consumption due to data sampling or data processing. Based

on their wireless sensor node architecture and power breakdown, described in Sec. 2.2.1, they

have exploited several approaches to reduce the power consumption. At a very general level, they

have identified three main enabling techniques, namely, duty cycling, data-driven approaches, and

mobility (see Fig. 2.18).
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Figure 2.18: Taxonomy of approaches to energy saving in WSN

The design of duty cycle schemes is a technique that tries to increase the nodes lifetime by

scheduling the nodes radios states depending on network activity. According to G. Anastasi et al.
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[86] duty cycling can be achieved through two different and complementary approaches: power

management, and topology control.

In the case of the power management approach, it is possible to exploit node redundancy, and

adaptively select only a minimum subset of nodes to remain active for maintaining connectivity;

nodes that are not currently needed for ensuring connectivity can go to sleep and save energy. The

concept of power management is associated with sleep/wakeup schemes which can be defined for

the radio subsystem of the sensor node, without relying on topology or connectivity aspects. On-

demand protocols are examples. The basic idea is that a node should wakeup only when another

node wants to communicate with it. The main problem associated is how to inform the sleeping

node that some other node is willing to communicate with it. A possible solution consists in using

a scheduled rendezvous approach. The basic idea is that each node should wake up at the same

time as its neighbors, according to a wakeup schedule, and remain active for a short time interval

to communicate with their neighbors. Then, they go sleep until the next rendezvous time. The

major advantage of such scheme is that when a node is awake it is guaranteed that all its neighbors

are awake as well. This allows sending link-local multicast messages to all neighbors. On the

opposite, scheduled rendezvous schemes require nodes to be synchronized in order to wake up at

the same time. This scheme, as others such as On-demand and Asynchronous are surveyed and

discussed in [86].

In the case of the topology control approach, finding the optimal subset of nodes that guarantee

connectivity is the main objective. Therefore, the basic idea behind topology control is to exploit

the network redundancy to prolong the network longevity. Moreover, active nodes do not need

to maintain their radio continuously on. They can switch off the radio when there is no network

activity, thus alternating between sleep and wakeup periods. These two approaches are comple-

mentary and implement duty cycling. The concept of topology control is associated with that

of network redundancy. Large WSN typically have some degree of redundancy. In many cases

network deployment is done at random. Therefore, it may be convenient to deploy a number

of nodes greater than necessary to cope with possible node failures occurring during or after

the deployment. Topology control protocols are thus aimed at dynamically adapting the network

topology, based on the application needs, so as to allow network operations while minimizing the

number of active nodes. There are some criteria to decide which nodes to activate/deactivate, and

when. So, topology control protocols are classified in two categories: location driven protocols,

and connectivity driven protocols. Location driven protocols define which node to turn on and

when, based on the location of sensor nodes which is assumed to be known. Connectivity driven

protocols, dynamically activate/deactivate sensor nodes so that network connectivity, or complete

sensing coverage [92], are fulfilled. A detailed survey on topology control in wireless ad hoc and

sensor networks is available in [93].

Other techniques that try to increase the nodes lifetime use data-driven approaches, such as

the data aggregation scheme. This scheme tries to address the case of unneeded samples, aimed

at reducing the energy spent by the sensing subsystem. Some of these schemes can also reduce

the energy spent for communication as well, as they reduce the amount of data to be delivered to
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the sink node. Data aggregation is achieved at intermediate nodes between the sources and the

sink to reduce the amount of data traversing the network towards the sink. The most appropriate

data aggregation technique depends on the specific application and must be tailored to it. We do

not detail this technique because it is not related to our work but, being application-specific, in

[86, 94] we can find a comprehensive and up-to-date survey about Data-driven approaches.

In case some of the sensor nodes are mobile, mobility can be used as a tool for reducing energy

consumption. In a static sensor network packets coming from sensor nodes follow a multi-hop path

towards the sink(s). Thus, a few paths can be more loaded than others, and nodes closer to the sink

have to relay more packets so that they are more subject to premature energy depletion. If some

of the sensor nodes (including the sink) are mobile, the traffic flow can be altered if mobile nodes

are responsible for data collection directly from static nodes. Static nodes wait for the passage of

the mobile node and route messages towards it, so that communication takes place in proximity.

As a consequence, static nodes can save energy because path length, contention and forwarding

overheads are reduced as well [86]. Nevertheless, mobility is out of scope of this Thesis.

2.2.4 Discussion

This section provided an overview on main sources node power consumption, WSN energy

consumption, and WSN energy conservation. The main sources of node power consumption were

analyzed based on node’s architecture. For the WSN energy consumption we have defined terms

related to energy efficiency that are commonly found in the literature; these terms are used to

evaluate the performance of the routing protocols designed for WSNs. Finally, in what concerns

energy conservation in WSN, we have presented and described a taxonomy of approaches used in

the literature to save energy in WSN.

2.3 Time Synchronization

WSNs are constituted by sensor devices equipped with their own local clock for internal

operations [95]. Events related to them, which include sensing, processing, and communication,

are normally associated to timing information. In the particular case of WSN there are many

challenges related to time synchronization because these networks are distributed by nature, and

because of the constraints of the sensor nodes in terms of hardware and of software.

Akyildiz et al. [95] state that in order for the nodes synchronize, they must exchange infor-

mation about their clocks and use this information to synchronize their local clocks. By using

wireless communications, WSNs create challenges for synchronization that result from the error-

prone communication nature of the wireless channel which may cause packet losses due to low

signal to noise plus interference ratios, or highly and variant non-deterministic delays caused

by MAC access and packet retransmissions. These factors affect also the time synchronization

messages. Therefore, some nodes may be unsynchronized. On the other hand, synchronization

messages sent by nodes may lead other nodes to adapt to their unsynchronized local clocks. As a

consequence, the network may be partitioned into different areas with different time, that prevents
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synchronization of the entire network. Also, the wireless channel may introduce asymmetric

delays between two nodes, which is important for synchronization because some synchronization

solutions depend on consecutive message exchange and round-trip-time delays. Therefore, robust

synchronization methods are needed.

We start by identifying some factors that influence the synchronization of the nodes, and that

should be considered in the design of time synchronization mechanisms for WSN. As the Network

Time Protocol (NTP) protocol [96] is a synchronization protocol normally used in IP networks,

we provide an overview of it and also describe synchronization protocols for WSN related to our

work.

2.3.1 Factors Influencing Time Synchronization

According to [97], some of the factors influencing time synchronization in large systems

constituted for example by personals computers, also apply to sensor networks, where temperature,

phase noise, frequency noise, asymmetric delays, clock glitches, and sensors constraints are

examples of these factors. In the case of the temperature, since sensor nodes are deployed in

various places, temperature variations throughout the day may cause the clock to speed up or

slow down. In the case of the Phase noise factor, some of its causes are due to fluctuations in

the hardware interface, response variation of the operating system to interrupts, and jitter in the

network. The frequency noise results from the instability of the clock crystal. In the Asymmetric

delay factor, the delay of the path from one node to another node may be different than the return

path which may result in an asymmetric delay and may cause an offset to the clock, which may go

undetected. Clock glitches are abrupt jumps in time, caused by hardware or software anomalies

such as frequency and time steps. Finally, WSN nodes are constrained by nature because of limited

resources (e.g. low in energy consumption, low in processing power, or low in memory).

The transmission and reception of packets are the factor that causes more energy consumption

in a sensor node. Therefore, a time synchronization protocol for sensor networks should help over-

coming the synchronization problems introduced by the factors described above, avoid frequent

message exchanges and be self-configurable.

2.3.2 Network Time Protocol

The Network Time Protocol (NTP) [96] is the synchronization protocol more often used in the

Internet. This protocol includes several synchronization mechanisms that have been also adapted

for developed WSN synchronization protocols. RBS [1], TPSN [2], LTS [3] and TSync [4] are

some examples of these protocols. NTP is used to adjust the clock of each network node. This

synchronization is achieved by using a hierarchical structure of time servers. The root node is

synchronized with the Coordinated Universal Time (UTC). In each level of this hierarchy, the time

servers nodes synchronize the clocks of their subnetwork peers. NTP uses a two-way handshake

between two nodes to estimate the delay between these nodes and computes the relative offset

accordingly (see Fig. 2.19, where node s will synchronize himself with node r). However, NTP
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Figure 2.19: NTP two-way handshake mechanism

assumes that the transmission delay between two nodes is the same in both directions. This

is reasonable for the Internet, but some of the characteristics of WSN make this assumption

inadequate. NTP is useful to discipline the oscillators of the sensor nodes, but using it to connect

to time servers may be impossible because of sensor node failures, which are frequent in WSN.

Using a single clock reference to synchronize all the nodes could be a problem due to the variations

in network delays. Moreover, NTP requires intensive computing, requires a precise time server

to synchronize the nodes, and does not consider the energy the nodes may spent to synchronize

their clocks. All these problems may cause NTP to inaccurately measure delays and inaccurately

estimate clock offsets.

2.3.3 Synchronization Protocols for WSN
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Figure 2.20: Synchronization delay between a pair of nodes

WSN pose unique challenges in the design of synchronization protocols, which calls for

specific synchronization solutions. An example is the effect of the broadcast wireless channel.

However, wireless communication introduce random delays between two nodes. Let us consider

Fig. 2.20, which represents a handshake scheme. The delay between two nodes is characterized

by four components: i) the sending delay (tsend); ii) the access delay (tacc); iii) the propagation

time (tprop); and iv) the receiving delay (trecv).
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• Sending Delay (tsend): corresponds to the handshake between a pair of nodes. The hand-

shake initiates when node s issues a SYNC packet with the timestamp ts
1. Between the

time the synchronization protocol issues the synchronization command and the time during

which the SYNC packet is prepared, there is a delay resulting from the combination of

operating system delays and transceiver delays on the node’s hardware. Moreover, tsend is

non-deterministic because of the interactions between hardware and software components;

• Access Delay (tacc): corresponds to the additional delay introduced by the wireless channel

after the packet has been prepared and transferred to the transceiver. This delay depends

on the MAC protocol when the node waits for accessing the channel; as an example, MAC

protocols using CSMA introduce a significant amount of access delay when the channel is

very occupied;

• Propagation Delay (tprop): is the amount of time needed to transmit a SYNC packet to a

receiver;

• Receiving Delay (trecv): is the time required for the transceiver of the receiver node r to

receive the packet and process it. The transmission delay, ttx, is a component of the receiving

delay, which is important and characterized by the time needed for the SYNC packet to be

completely received (see Fig. 2.20); it depends on the transmission rate and on the length

of the SYNC packet.

These components contribute to the overall communication delay, also referred as critical

path. Delays are non-deterministic and create challenges when estimating clock offsets using the

NTP’s methods. Most of the synchronization protocols for WSN tend to minimize the effects of

these delays, which are random. In what follows, 4 related existing synchronization protocols are

described, namely RBS [1], TPSN [2], LTS [3] and TSync [4].

2.3.3.1 Reference-Broadcast Synchronization (RBS) [1]
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Figure 2.21: Reference Broadcast. Node 1 broadcasts m messages which are used by the other
nodes for synchronization purposes

In Fig. 2.21 is shown a sender-receiver handshake scheme which introduces a significant

amount of non-deterministic delay [1]. The Reference-Broadcast Synchronization protocol (RBS)
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tries to minimize the overall communication delay in the synchronization process. It eliminates

the effect of the broadcast node. Instead of synchronizing the receiver with the sender, RBS

synchronizes a set of receivers that are within the reference transmission of a sender. Considering

that propagation times are negligible on wireless channels, as soon as a packet is transmitted, it

is received at all sender’s neighbors almost at the same time. Therefore, the synchronization may

be improved if only the receivers are synchronized. As shown in Fig. 2.21, node 1 broadcasts

m reference packets and each one of the receivers, within its broadcast range, records the time

the packets are received. Then, the receiver nodes communicate with each other to estimate

the offsets, just like the traditional synchronization. Fig. 2.22 a) shows the critical path for

traditional synchronization. Sending delays and the access delays should be accurately estimated

to improve the synchronization. Reference Broadcast synchronization does not involve node 1 in

the synchronization; only the receivers (nodes 2, 3, 4, 5, 6 and 7) synchronize among themselves

based on a reference broadcast message from node 1. As shown in Fig. 2.22 b), this reduces the

critical path duration. In fact, the possible origin of uncertainty in RBS is the time between when

a broadcast packet is received and when it is completely processed.
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Figure 2.22: Critical path for different synchronization approaches

A method used to determine with efficiency the clock offset of each node in relation to its

neighbors is the receiver-receiver synchronization method. By exchanging messages with each

neighbor, a node fills a table consisting of relative offsets. Therefore, the main goal of RBS is not to

correct the clocks of the nodes but, every time a packet is received, to translate its timestamp to the
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node’s clock using the relative offset information. This synchronization method can only provide

synchronization in a broadcast area. In order to provide multi-hop synchronization, RBS uses

nodes that receive two or more different reference broadcasts messages. These nodes are called

translation nodes and they are used to translate the time between different broadcast domains (see

Fig. 2.23). As it can be observed, nodes A, B, and C are respectively the transmitter, the receiver,

and the translation nodes. The transmitter node broadcasts its timing messages, the receiver node

receives those messages and, then, nodes synchronize with each other.

A

B

C

Translation nodes

Transmitters Receivers

Figure 2.23: RBS multi-hop synchronization scheme

2.3.3.2 Timing-sync Protocol for Sensor Networks (TPSN) [2]

TPSN uses some of the NTP concepts: it uses a hierarchical structure to synchronize the

entire WSN to a single time server. TPSN uses the root node to synchronize all or part of the

network, consisting of two phases: (1) the discovery phase, where the structure of TPSN is built,

starting from the root node; and (2) the synchronization phase, where pairwise synchronization is

performed across the network. In (1) the root node is assigned to level 0, and to the other nodes in

the network are assigned to levels according to their distance to the root node (see Fig. 2.24).

Level 0 - root

Level 1

Level 2

Figure 2.24: Synchronization architecture of TPSN
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Firstly, the root node starts to construct the TPSN structure. To this end, it broadcasts a special

packet called level_discovery packet. In this structure, to the first level is assigned the number

0, which is the level of the root node. The other nodes that receive this packet are the nodes

that belong to level 1. Afterward, these nodes broadcast their level_discovery packet. Then, the

neighbor nodes receiving those packets are labeled as level 2 nodes, and the process is repeated

until all the nodes in the network are assigned to a level.

In (2) each node in the structure is synchronized with a node from a higher level. The root node

sends another packet (the time_sync packet) which initializes the time synchronization process.

Afterwards, the nodes in the next level start to synchronize with the root node by sending a

synchronization_pulse to it, as shown in Fig. 2.25. In order to avoid collisions with other nodes,

each node in level 1 waits for a random amount of time before transmitting the time_sync packet.

After the reception of this packet, the root node sends an acknowledgment back to finish the

synchronization process. In this way, nodes belonging to level 1 of the structure are synchronized

with root node (see Fig. 2.25). This time_sync packet also serves as a synchronization_pulse to

level 2 nodes. Upon a reception of this packet from a node in level 1, the nodes in level 2 wait for

a random amount of time for the level 1 nodes to finish their synchronization. Then, they initialize

the synchronization process by transmitting a synchronization_pulse. Acting like the root node in

level 0, a level 1 node sends back an acknowledgment, the process continues until all the nodes at

different levels are synchronized, and the entire network becomes synchronized.

n-1

sync pulse Ack

p
1

n

p
2

p
3

p
4

Figure 2.25: Two-way message handshake

In TPSN the receiver synchronizes with the local clock of the sender according to the two-way

message handshake, as shown in Fig. 2.25. For this reason, TPSN is based on a sender-receiver

synchronization method. Hierarchical structures created by TPSN are similar to the structures

created by NTP. Like in NTP, nodes may fail causing nodes to become unsynchronized. Also,

nodes mobility can make the hierarchy useless, as they may move out of their levels. Therefore,

nodes at level n cannot synchronize with nodes at level n− 1, without requiring additional and

periodical synchronization.

2.3.3.3 Lightweight Tree-Based Synchronization (LTS) [3]

LTS is similar to TPSN and follows two design approaches: centralized and distributed. The

centralized design is based on the construction of a tree such that each node is synchronized to the

root node. After the tree is constructed, the root initiates pairwise synchronization with its children

nodes and the synchronization is propagated along the tree to the leaf nodes.
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In the distributed design, LTS does not rely on the construction of a tree and synchronization

can be initiated by any node in the network. Each node performs synchronization only when it

has a packet to send. Therefore, each node is informed about its distance (in number of hops) to

the reference node for synchronization, the desired accuracy, the clock drift, and a record of the

time that has passed since they were synchronized. Then, the nodes adjust its synchronization rate

accordingly. Nodes farther apart from the reference node perform synchronization more frequently

because synchronization accuracy is inversely proportional to distance.

In general, LTS is based on message exchanges between two nodes to estimate the clock drift

between their clocks. This synchronization scheme is named pairwise synchronization scheme

and it is extended for multi-hop synchronization.

2.3.3.4 TSync [4]

TSync combines tree-based synchronization with receiver-receiver synchronization method.

To this end, two versions of the protocol are developed: (1) hierarchical referencing time syn-

chronization and (2) individual time request. Version (1) is a centralized protocol where the

synchronization is initiated through the root node of the tree. In contrast, version (2) is a

distributed protocol where the synchronization mechanism is initiated by any network node.

As a consequence, the nodes synchronize between each other by using the receiver-receiver

synchronization method. Since additional traffic is generated in the network, TSync handles the

contention and the latency of the synchronization messages by providing support to the MAC

layer by reserving a dedicated channel for synchronization messages purposes. Therefore, the

synchronization messages are not affected by other data traffic in the network. However, by

introducing this enhancement to the MAC layer to improve the synchronization accuracy, it is

also increased the complexity required from the nodes because multichannel communication is

necessary. Comparing TSync with RBS, which also uses the receiver-receiver synchronization

method, the centralized implementation of TSync performs better than RBS, while the distributed

implementation does not reach the limits of accuracy provided by RBS. Nevertheless, the total

number of messages exchanged by the nodes is decreased. Therefore, energy consumption in the

synchronization procedures is lower.

2.3.4 Discussion

RBS eliminates the sender-side uncertainty from the critical path. This decreases the synchro-

nization error and improves the efficiency. Each node stores the offset and skew of its neighbors

and the time is translated between nodes according to this information. As a result, local clocks are

not corrected for each synchronization attempt. Moreover, the time synchronization mechanism

is tunable and lightweight since it relies on broadcast messages only. In addition, multi-hop

synchronization is provided through gateway nodes, which translate time from one broadcast

neighborhood to another. RBS is applicable to any medium which has broadcast capabilities

including wired and wireless networks. RBS requires close coupling between the synchronization
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structure and the routing protocol. The route from any node to the sink should contain the

translation nodes so that the time translation can be performed on the packet along its way to

the sink. With the lack of this coupling, there may not be translation nodes on the route along

which the message is relayed. As a result, synchronization services may not be available on some

routes. RBS is not suitable for TDMA-based MAC protocols since network-wide synchronization

is not provided. Compared to the traditional sender-receiver synchronization, e.g., TPSN [2],

receiver-receiver synchronization necessitates each node exchanging timing information between

its neighbors. RBS requires message exchanges with all the neighbors, which translates into O(n2)

message exchanges if there are n nodes in a node’s broadcast range. This increases the energy con-

sumption and may lead to frequent collisions when the network density is high. The large number

of message exchanges between neighbors also increases the convergence time of RBS because of

possible packet errors and collisions in the broadcast wireless channel. Furthermore, the reference

sender cannot be synchronized through RBS. This requires additional synchronization rounds for

the senders to be synchronized with the network [95].

The hierarchical structure of TPSN provides scalability. The synchronization of a node

depends on its parent in the hierarchical structure. Therefore, even if the number of nodes in the

network increases, the high synchronization accuracy can still be achieved. Since the hierarchical

structure covers the entire network based on a root node, the whole network can be synchronized to

the same time reference. As a result, network-wide synchronization is possible. In addition, TPSN

requires each node to exchange timing information with its parent in the hierarchical structure.

Consequently, in TPSN, each node has to exchange synchronization information with only a

single node and the protocol ensures that it is synchronized with all the remaining nodes in its

neighborhood. Moreover, the synchronization cost is relatively low compared to NTP [96]. TPSN

requires a hierarchical structure to exist for synchronization. The maintenance of this structure

in the case of failed nodes increases the energy consumption. The hierarchical structure also

prevents accurate synchronization of mobile nodes. Since the connectivity of different nodes

changes as nodes move, the hierarchical structure needs to be formed accordingly. Moreover, the

synchronization procedure of TPSN is based on adjusting the clocks according to the parent nodes

in the hierarchy. This increases the cost of synchronization compared to other methods where

the relative offsets of the neighbor nodes are stored and the time is translated without adjusting

the physical clock. When multiple root nodes are used in large networks, each cluster can be

synchronized to a different reference time. As a result, the protocol forms islands of times. To

prevent this, each root node should be synchronized in advance. Of course, this increases the

overall cost for synchronization if the root nodes are located far from each other. Furthermore,

multi-hop synchronization is not supported since nodes synchronize only to their parent node.

2.4 Wakeup Mechanisms

WSN are energy-limited so typically the nodes cannot keep radios active during all the

time, having to sleep and to wake up periodically [98]. Addressing this issue, there have been
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proposed several MAC protocols which were categorized as synchronous or asynchronous MAC

protocols. Although asynchronous protocols are simpler, they tend to consume more energy. But

in WSN, where energy must be saved, a different approach may be used. One possibility is to use

synchronous methods. Using these protocols, some techniques are adopted to increase the nodes

lifetime: i) duty cycling; and ii) scheduled rendezvous.

2.4.1 Duty Cycling

Duty cycling is one mechanism widely used for energy-efficient MAC protocols in WSN.

A MAC protocol that implements duty cycling, uses appropriate sleep/wake up mechanisms to

conserve energy, and in [99] it is demonstrated that when sensor nodes remain in the sleep mode

they consume less energy than when in the idle mode. When there is no need for communication,

the radio is put to sleep and, although applying duty cycling energy is conserved, it has some

disadvantages. Putting sensors into sleep mode makes it difficult to the all network to function,

or at least certain part of it. As showed in [100], a few issues are needed to overcome such

as deciding when to switch a device to low power mode or deciding "for how long should a

device remain in the low power mode?". To solve these issues, efficient and flexible duty-cycling

techniques have been proposed. The S-MAC [101] and the T-MAC [102] protocols are examples

of them. These protocols transmit a SYNC packet to notify neighbors about their schedule and

to synchronize the clocks of all nodes in the network. The method only compensates for clock

offset and does not consider clock drift [98]. Moreover, the knowledgement of traffic patterns

can also help to take decisions about wake up. This method is known as adaptive duty cycling.

S-MAC [101] is one of the major energy-efficient MAC protocols that efficiently exploits the

idea of adaptive duty cycling. It uses a periodic sleep-wake up mechanism in order to lower

power consumption. If a node has no packet to receive, it can waste a large amount of energy

by just listen to the channel. Consequently, a node can save a significant amount of energy if

it simply goes to sleep mode by switching off its radios [99]. T-MAC is an improvement over

S-MAC duty cycling. In the T-MAC, listening period ends when no event has occurred for a time

threshold TA. Though it improves on S-MAC, T-MAC has the disadvantage that it can face an early

sleeping problem where a node can go to sleep even though its neighbor may still have messages

for it. Synchronization is also an issue in duty cycling MAC protocols. In [103] is argued that

synchronous MACs such as S-MAC have low energy consumption for sending packets but are

complicated due to the need of synchronization. Conversely, asynchronous MACs, for example

WiseMAC [104], is very simple, but it spends much energy in finding the neighbor’s wake-up time.

Moreover, synchronous methods can be characterized as one-way methods. Usually, the senders

broadcast a reference message and receivers, upon the reception of the message, record the arrival

time by their own clocks and exchange this information among each other to compensate clock

offset between them. In [98] is proposed a synchronous method in which clocks in the all network

are not modified. Instead, the nodes are synchronized with their own clocks. Since the periodic

broadcast event in the network is the same, although they have different measurement results for

this period by their own clock unit independently, they are able to interact with each other at
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the same physical time. Without complicating the estimation process, and without modifying the

clock of a node, this synchronization method becomes simpler and more energy-efficient than the

traditional synchronization one-way method.

2.4.2 Scheduled Rendezvous

This type of MAC protocol requires a prescheduled rendezvous time at which neighboring

nodes wake up simultaneously. In this method, a node wakes up periodically and sleeps until the

next rendezvous time. A scheduled rendezvous scheme is shown in Fig. 2.26 [99].

Asleep

Awake

Asleep

Awake

Asleep

Transmitter

send packets send packets

Asleep

Awake

Asleep

Awake

Asleep

Receiver

received packets

Figure 2.26: A scheduled rendezvous scheme

The advantage of this scheme is that when a node is awake it is guaranteed that all its neighbors

are awake as well. Consequently, it is easier to send/receive packets. Broadcasting a message to all

neighbors is also simpler in scheduled rendezvous schemes. RI-MAC [105] is a receiver-initiated

asynchronous duty cycle MAC protocol for WSN. It uses a receiver-initiated data transmission in

order to proficiently operate over a wide range of traffic loads. It attempts to minimize the time a

sender and the receiver occupy the medium to find a rendezvous time for exchanging data, while

still decoupling the sender and receiver’s duty cycle schedules. A disadvantage of such MAC

protocol is the requirement to maintain strict synchronization, because clock drifting may deeply

affect the rendezvous time.

2.4.3 Discussion

The basic idea of low duty cycle protocols is to reduce the time a node is idle or spends

overhearing an unnecessary activity by putting the node in the sleep state. The main goal

is to put a node sleeping the most of the time and waking it up only when to transmit or

receive packets. In the literature, low duty cycle protocols are classified as synchronous and

as asynchronous low duty cycle MAC protocols. Synchronous low duty cycle MAC protocols

typically comprise predetermined periodic wake-up schedules for data exchanges which consist

of a sleep period and an active, repeated during the time in which the nodes are waked. On the

other hand, asynchronous low duty cycle MAC protocols do not provide prior knowledge about

the global or local timing information and schedules to the nodes in a network to assist with data
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communications. Therefore, the nodes do not need to remember the schedules of its neighbors

which significantly reduce the usage of memory and energy cost due to schedule sharing between

the nodes. Besides the protocols above described, more exist and MR Ahmad et al. in [106]

published a survey of low duty cycle MAC protocols in WSN.

With regard to scheduled rendezvous schemes, the basic idea is that each node should wakeup

at the same time as its neighbors. Typically, nodes wake up according to a wakeup schedule,

and remain active for a short time interval to communicate with their neighbors. Then, they go

to sleep until the next rendezvous time. Different schemes differ in the sleep/wakeup pattern

followed by nodes. According to [107], a drawback of the scheduled rendezvous schemes is

that energy saving is obtained at the expense of an increased latency experienced by messages

to travel through several hops. An additional drawback is that nodes must be synchronized.

Besides the schemes described ind this section, also in the literature (e.g. [108]) several other

clock synchronization protocols have been proposed to keep nodes synchronized. However,

maintaining a tight synchronization among nodes requires a high overhead in terms of exchanged

control messages. This, of course, results in energy consumption. The basic assumption behind

scheduled rendezvous schemes is that the energy spent for keeping nodes synchronized is largely

compensated by the energy saving achieved through power management.

2.5 Summary

Section 2.1 introduced a set of concepts related to WSN, including technologies and protocols

that were used to achieve the goals of this thesis, namely the LLN concept, the IEEE 802.15.4 stan-

dard, the 6LoWPAN adaptation layer, the RPL routing protocol, operating systems and simulation

environments, with special focus on ContikiOS and COOJA.

Section 2.2 provided a detailed characterization on WSN energy efficiency.

Section 2.3 provided an overview on the techniques used to perform time synchronization for

WSN.

Section 2.4 described wakeup mechanisms used to increase the nodes lifetime, namely the

duty cycling and the scheduled rendezvous techniques.



Chapter 3

Application-Driven Wireless Sensor
Network

WSN, being constituted by sensor nodes which are known to be energy constrained,

depends on their nodes lifetime. Thus, in order to reduce nodes energy consump-

tion, routing strategies capable of finding energy-efficient paths are demanded. We

assume that routing protocols must find routes in which the nodes may be kept

asleep the maximum amount of time they can. For that purpose, we use the concept

of application duty cycle time, characterized by states wake and sleep, and their

times. We also assume that WSN forms a mesh network, and that nodes may run

multiple applications. Therefore, how to use mainly the nodes running the application

associated to the data being transferred by the network, so that the nodes associated

with other applications can continue sleeping? In this context, we define Application-

Driven WSN (ADWSN) as a cross-layer solution aimed to help reducing the energy

consumed by a network of sensor nodes executing a set of applications. This paradigm

assumes that each application defines its own network and set of nodes so that the

exchanged information can be confined to the nodes associated with the application.

The nodes share information about the applications they run, and also their duty-

cycles.

3.1 Constraining RPL-defined Routing Trees

RPL-BMARQ stands for RPL By Multi-Application ReQuest. It tries to insure that data of an

application is relayed mainly by the nodes running that application, i.e., RPL-BMARQ constrains

RPL-defined routing trees. When sink nodes query the other nodes, routing paths should involve

preferentially nodes running the same application. For that purpose, each query packet includes

information about the associated application (APPID), which is known by the nodes running that

application. Our routing scheme tries to insure that data of an application is relayed mainly by

the nodes running that application. When the sink node queries the other nodes running the same

53
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application, routing paths follow the DAG created. This DAG is created and maintained by a

change in the RPL protocol scheme which will choose mainly the nodes running that application

as parent; the nodes not associated to this application will not be selected as parent, in a first

attempt. The nodes are put asleep when there is no activity related to their applications. When

nodes receive a query packet they know exactly when they must wake up on the next period. In our

solution the nodes alternate between the wake and sleep states. The amount of time of each phase

is determined by the applications duty cycle. When a node is awake it performs activities including

waiting for a sink query and forwarding packets to neighbors. When the wake up time expires,

the node switches to the sleep state, waking up again by the time computed by the proposed

synchronization mechanism described in Chapter 4.

3.1.1 Cross-layer Information

Cross-layer optimization in WSN has been addressed by multiple studies in different scenarios

[109]. The main idea is to design communications layers such that they can share and react

to information from other layers. In recent years cross-layer design was used to increase the

efficiency of WSN communication systems, and Mendes et al. in [110] survey cross-layering

techniques for WSN, which consider the application, network, medium access control, and phys-

ical layers interaction to design routing protocols because those layers attract special attention by

their impact on the network lifetime. In fact, using cross-layering techniques, the layered structure

of the communications stack can be altered to address many challenges that arise because of the

interactions between the different layers.

RPL-BMARQ uses application layer information in order to create DAGs and to synchronize

the nodes using a synchronous method mechanism. Each ICMPv6 RPL DIO message has infor-

mation about: 1) the application the node runs and application duty-cycle, i.e. the time cycle of the

application and the time the nodes are expected to be woken; 2) the number of neighbors; 3) the

number of neighbors running this application. This information is used by a node to maintain its

neighbor table (Fig. 3.1 represents an entry of this table), to maintain routing tables and to create

and maintain DAGs. From a neighbor table a node knows its neighbors IPv6 addresses (IPADDR:

global and LLADDR: link-local), what kind of node they are (TYPE: DAG root, sink, sensor, or

other), what applications they run (APPID), and their correspondent duty-cycles (TCYCLE and

TON). A node also knows the total number of neighbor it has (NBR1), and how many of them run

its application (NBR2).

16 octet

IPADDR LLADDR TYPE APPID TCYCLE TON NBR1 NBR2

1 octet 1 octet  1 octet 1 octet2 octet 2 octet16 octet

Figure 3.1: Example of tuple in the RPL-BMARQ neighbor information table

Fig. 3.2 shows the DAG metric container object used by RPL-BMARQ which needs to be

included as an extension to any RPL objective function metric container object. A DAG metric



3.1 Constraining RPL-defined Routing Trees 55

container object [12] is a RPL control message option used to compute the rank of a node, and

to help the selection of the best parent. In RPL-BMARQ, this metric object includes information

from the application layer with respect to: the identification of the application that the node runs

(APPID), which may also be used to identify groups of applications with the same duty cycles so

that multiple applications running with the same duty cycle can be included in the same DAG; the

total application cycle time (TCYCLE); the total time the node is expected to be waked (TON);

the number of neighbors that the node has (NBR1); and the number of neighbors that are running

his application (NBR2). The metric container object is mandatory for the RPL-BMARQ solution

because it carries all necessary information to create and maintain DAGs and neighbor tables.

TYPE TONAPPID TCYCLE

1 octet 1 octet  2 octet 2 octet

NBR1 NBR2

1 octet 1 octet

...Metric

Figure 3.2: RPL-BMARQ metric container object

Each time an application layer query packet is sent by sinks the packet is "disseminated" into

the network according to the RPL-BMARQ defined paths. This packet (see Fig. 3.3) is constituted

by the ORIGINATOR field; APPID field; the SEQNO field; the TTX field; the CMD field; and

by the DATA field. The ORIGINATOR field identifies the IPv6 Global Address of the packet

originator; the APPID field identifies the application to which the packet corresponds; the SEQNO

field is used to sequence a packet; the T T X field carries the timestamp (this time corresponds to

the originator clock time); the CMD field specifies the type of the message (query, reply, or other);

finally, the DATA field contains application data. This information is used not only to know if a

packet is to be forwarded in the network layer, but also if it must be replied at the application layer.

The APPID, SEQNO and T T X fields are also used by the synchronization mechanism to maintain

the nodes synchronized, as described in Chapter. 4.

Originator Address CMDAPPID SEQNO DATATTX

16 octets 1 octet1 octet 1 octet variable 4 octet

Figure 3.3: RPL-BMARQ application layer packet

This packet is sent through a particular UDP socket, as observed in the RPL-BMARQ commu-

nications stack (see Fig. 3.4), and included in the data field of a transport layer segment. Then,

this segment is sent to the network layer using an IPv6 link-local address FE80:: as destination.

Since nodes can receive more then one query from neighbors, an incoming query buffer is used

by the RPL-BMARQ routing mechanism which will help to decide if the received query is to be

forwarded again to other neighbor nodes, to decide if the query is to be discarded in case of already

have been received, and to decide if the query is to be replied back. The node consults its neighbor

table to see if it has neighbors running the application from which the query was received. If

there exists at least one neighbor, the query is forwarded again using the same link-local multicast
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address (except if the query was sent by this neighbor); if not, the packet is discarded. Also, if

this node runs the application from which the query was received, the datagram is passed up to the

transport layer which will use the same UDP socket to send the query packet to the application

level. At this level, upon the reception of the query message, the node processes it according to

the information asked and sends back a reply by constructing a similar message packet (Fig. 3.3).

This message is sent to the transport layer using another UDP socket, which will construct a new

segment to be used by the network layer to send a datagram to the sink global IPv6 address. It has

to be noted that queries are sent to a link-local IPv6 multicast address, whereas replies are sent to

global IPv6 unicast addresses.

Figure 3.4: RPL-BMARQ communications stack

3.1.2 DAG Creation Mechanism

Let us assume that every node can participate in route discovery and packet forwarding.

However, the nodes forwarding a given type of data will be primarily selected from the set of

nodes running the same application to which the data is associated. For that purpose, each query

packet includes information about the associated application (APPID), which is known by the

nodes running that application. Our routing scheme tries to insure that data of an application is

relayed mainly by the nodes running that application. When the sink node queries the other nodes

running the same application, routing paths follow the Directed Acyclic Graph (DAG) created.
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This DAG is created and maintained by our changes to the RPL protocol scheme which uses

mainly the nodes running that application; the nodes not associated to this application will not

participate in routing process, in a first attempt. Fig. 3.5 a) shows a network topology supporting

two different applications. Fig. 3.5 b) shows the DAG created with standard RPL, and Fig. 3.5 c)

shows the DAG created by our proposed solution.

a)

1 2 3 4

5

6

715 8

10 11

12 13 14

16

9

1

3

64

5

7

8

11

12

13

14

15

16

b) 

9

10

2

1

3

6

4

5

7

8

11

12

13

14

15

16

c)

9

10

2

Figure 3.5: Application-Driven WSN concept. a) network topology; b) RPL DAG; c) RPL-
BMARQ DAG

As it can be observed in the figure, the DAG creation scheme will use mainly the nodes running

the same application; the nodes not associated to the application will not participate in DAG

creation process, in a first attempt [14]. Algorithm 1 shows how to create DAGs in our solution. A

root node starts to create the DAG by sending DIO messages. The nodes surrounding the root use

the information carried in these DIO messages, compute their rank and join the DAG, in the same

way as in regular RPL. The computed rank is jointly sent with the identification and duty-cycle of

the application, in DIO messages. This information is used by other nodes to update their neighbor

tables, compute their own rank, and advertise their presence by sending new DIO messages. All

node’s neighbor tables record the neighbors IP address, the application that they run and its duty-

cycle. This information is used to help the node to join the DAG, by looking into its neighbor

table. If the node runs the same application of its neighbor and if the latter has a lower rank, the

former may choose it as parent, joining the DAG through it. If the node has neighbors which do

not run its application, but have in turn at least one neighbor running this application, one of them

can be selected as parent. If the neighbor has two neighbors, one root and the other sink, the root

node will be always selected. Therefore, the node will not change parent depending on packets

arrival. Otherwise, a node will always select a sink node neighbor as parent. If a node has only

sensor nodes as neighbors it will select for parent the sensor running the same application which
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has lower rank. Moreover, if the sensor has neighbors not running the same application but in turn

they have other neighbors which run its application, the former will select as parent a neighbor

with lower rank. In other situations, the mechanism switches to regular RPL. This mechanism is

introduced inside a RPL Objective function to create the DAGs accordingly.

Algorithm 1: Pseudocode of RPL-BMARQ DAG creation executed by a node

if (neighbor == is_root) then
add_parent(neighbor);

else
if (neighbor == is_sink && neighbor.rank < node→neighbor.rank) then

add_parent(neighbor);

else
if (neighbor.app_id == node.app_id && neighbor.rank < node→neighbor.rank)

then
add_parent(neighbor);

else
if (neighbor→neighbor.app_id == node.app_id && neighbor.rank <

node→neighbor.rank) then
add_parent(neighbor);

reconfigure(neighbor(app_id, app_duty-cycle));

else
if (neighbor.rank < node→neighbor.rank) then

add_parent(neighbor);

end
end

end
end

end

3.1.3 Application-Driven Multicast Mechanism

The DAG creation mechanism described in above allows the creation and maintenance of the

DAGs and routes, accordingly to our Application-Driven concept. Therefore, it is used mainly to

give routing paths to unicast packets, being examples replies from sensor nodes to sinks queries.

On the other hand, queries issued by sink nodes are forwarded ("link-local multicast") in an

application-driven way through the entire WSN. At this end, it is necessary that all multicast

packets, which are sent on a link-local scope, are received mainly by the nodes which run the

same application from the sinks which issue the query packet. Other nodes running different

applications upon a possible reception of such queries should not forward them to their neighbors,

unless they support the application.
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Figure 3.6: Application-Driven multicast explanation scenario
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Figure 3.7: Application-Driven multicast explanation



60 Application-Driven Wireless Sensor Network

Let us take as example Fig. 3.6. This figure represents a WSN with 16 nodes in a square-lattice

4x4 deployment, supporting two sensor nodes applications: nodes A, B, C, D, H, L, O and P run

one type of the network supported applications (eg. App. A), and the other nodes run the other

application (eg. App. B). In this example, when a query packet is issued, only the nodes B, C, D,

H, L, O or P should forward the same packet in order to allow it to reach all the nodes running App.

A (at least in a first attempt). The other nodes should not be involved in the forwarding process. At

this end a Application-Driven multicast mechanism was designed considering above aspects. Fig.

3.7 demonstrates how in the above example this multicast mechanism should perform: In a), node

A multicasts a query packet which should reach all the nodes in the network, except for the nodes

not running this kind of application. Node A is the App. A sink node, and node E is at same time

the DAG root and the sink node of App. B. When the query packet reaches node E, the mechanism

should not forward the packet because node E does not run App. A and it does not have neighbors

running that application, except for the originator of the packet (node A). Therefore node E should

discard the packet. In b) when the query packet arrives at node B, the packet should be forwarded

because this node runs the same application and it has at least one neighbor which also support the

same application; on the other hand, when the packet arrives to node F, it will be discarded for the

same reason as in a). The process continues, and in c) when the query packet arrives at node C, it

will forward the same packet in order to let node D receive it; node B will discard the packet since

it already has forwarded the packet; on the other hand, node G will not discard the query packet

because it has at least one more neighbors which run App. A (node H), and it should get the query

packet; in d) nodes D and G forward the query packet which will be discarded by node C since it

has already be involved in the forwarding process, and node H should discard the duplicate query

packet received (the last query packet sent by node D or node G); in e) the forwarding process

continues and for the particular case of node F, since it has one neighbor node which runs App.

A (node B), and it does not know that node B had already forwarded this query packet, node F

will forward the query packet, which should be discarded by nodes E and J because they do not

run this application and do not have neighbors who support it; nodes B and G will also discard

the packet because they have been evolved earlier in the process; also, node K having at least two

neighbor that support App. A will forward the packet, which should be discarded by nodes G and

J; Node L should get the query packet from both node H and node K, and should discard the last

packet received; finally, in f) node O receives the packet from node K and since it has one neighbor

running his application (node P) it will forward the packet; node N should discard it, and node P

will most likely receive two query packets, one from node L, and the other from node O, and since

it has no more neighbor nodes which may be evolved in the forwarding process, the process ends

here. At the end, the query packet issued by the sink node A has arrived to all the correspondent

nodes.

In order to know which queries were already sent/forward and by whom, the mechanism needs

a structure (Fig. 3.8) to record this kind of information which will be considered to make decisions

by the Application-Driven multicast mechanism algorithm. The mechanism uses a table called

Application-Driven multicast table (see Fig. 3.8) which records and updates the information
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about the queries already sent/forward. Each tuple in the table contains information about the

originator/forwarder of the packet (ORIGINATOR field), the application identification (APPID

field) and the sequence identification (SEQNO field) of the packets. For each sensor nodes involved

in the process, it should exist as many entries in the table as the query packets sent/forwarded.

1 octet

ORIGINATOR

16 octet

APPID SEQNO

1 octet

Figure 3.8: Application-Driven multicast table

Algorithm 2 shows the rationale of our Application-Driven multicast mechanism. Each node

running the mechanism should go through the following steps: (1) verify if the packet is a multicast

or a unicast packet (multicast packets are sent through link-local IPv6 addresses) - if the packet is

a unicast packet, it should be processed by a unicast process; (2) being a query packet (multicast

packet), and if the originator of the packet already exists in the multicast table, the entry is updated

with the SEQNO information, else a new entry is inserted since that is the first query packet

sent/forwarded by this originator node; (3) the mechanism should also verify if the originator of

the packet is not the node itself, what means that the node received a packet originated by him and

forwarded by a neighbor; (4) since it may be possible to the nodes to receive more than one query

packet, possibly through several neighbors, the mechanism should verify if the packet was already

been received by inspecting the sequence number and the application identification of the packet

received, and by verifying into the multicast table if there exist more than one corresponding entry,

even from different originators. If the sequence number of the entry packet is smaller than or equal

to the query packet sent, then this means that the query packet was not yet been forwarded; (5)

before forwarding the query packet the mechanism must verify if the packet meets the conditions

required to be forwarded, i.e. the node has at least one neighbor running the query’s application

or, when not having one node in such condition, that it has at least one neighbor whose neighbors

satisfy these conditions.
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Algorithm 2: Pseudocode of the Application-Driven multicast mechanism executed by a

node

foreach (packetk received) do
is_to_forward← FALSE;

if (packetk.dest_address <> ll_address) then
/* Process unicast packet! */

ucast_process(packetk);

else
/* Process multicast packet! */

update_bmarq_mcast_table(packetk);

if (node.ll_address <> packetk.orig_address)) then
while (bmarq_mcast_table <> NULL) do

mcast_entry← lookup_bmarq_mcast_table(packetk);

if ((mcast_entry.seqno ≤ packetk.seqno) && (mcast_entry.appid ==

packetk.appid) then
while (neighbor_entry← lookup_neighbor_table() <> NULL) do

if ((packetk.appid == neighbor_entry.app_id) ||

(neighbor_entry→neighbor_entry.app_id == packetk.app_id))

then
is_to_forward← TRUE;

end
end
if (is_to_forward) then

forward(packetk);

end
else

drop(packetk);

end
end

end
end

end
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3.2 RPL-BMARQ Evaluation

3.2.1 Validation Environment

Two different applications are used in our experiments. These applications and their topology

are characterized by the following aspects: static, organized, pre-planned, no mobility, 16 nodes

deployed in a square lattice topology, all sensor nodes battery-powered, except for the sink nodes.

Additionally we consider multi-hop communications, the traffic pattern is point-to-multipoint

when data is queried, and point-to-point when queries are replied by nodes. The first application

(App. A) has a duty-cycle of one hour; every sensor node running this application wakes every

hour remaining awake during one minute for receiving the query and send data back to the sink.

The second application (App. B) has a duty-cycle of 15 minutes; the sensor nodes also wakes for

one minute to sense and to send data to the sink and to communicate. As shown in Fig. 3.9 a), the

period of App. A is 4 times the period of App. B. All sensor nodes are expected to be awake when

data is queried and replied, and sleeping when there is no activity.

Figure 3.9: Applications activity cycle

In order to evaluate the RPL-BMARQ solution, a square lattice of 4x4 nodes was used. The

nodes are distributed as shown in Fig. 3.10, where the four scenarios evaluated are also shown.

All the nodes are within a distance of 25 meters for a transmission range of 30 meters, and support

one of the two applications. Each application is running in eight nodes, and each node runs a

single application. Sink nodes placements where chosen in order to allow long routing paths,

since long paths consume more energy. In Scenario 1 the nodes running App. A were selected

in a way that a long path could be obtained. In Scenario 2 both applications have the same node

distribution; in these scenarios we aim to investigate the influence of the application duty-cycle

in energy consumption. Scenarios 3 and 4 are used to investigate situations where at least one

node from other application is required to relay data. In the scenarios simulated, sink nodes are

always awake, and sink node running App. B (node 9) was chosen as DAG root because of
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its application duty-cycle. Since our solution constrains the paths to the nodes associated to the

application, a node needs to be woken up only when its applications run and not for generic routing

and forwarding purposes. In contrast, RPL was used as shown in Fig. 3.9 b); in this case despite

the applications having different periods, all the nodes would have to wake up every 15 minutes

in order to process routing messages. In our solution, a query is "multicasted" only to the nodes

associated to the application and not the entire WSN. When the application nodes reply, only the

nodes running the application will send and forward unicast packets. So, using the RPL-BMARQ

solution, the routing paths are chosen not only according to RPL objective functions, but also

considering the nodes belonging to the application for which the paths are required, and the total

number of neighbors a node has, at least in the first attempt. Fig. 3.10 c) shows a case of node

deployment where some of the nodes of App. A (nodes 7 and 8) are unable to receive sink queries

because they are isolated. Fig. 3.10 d) shows a very particular node deployment, where nodes

10, 13, and 16 running application B are unable to receive sink queries because they are isolated.

In this case, node 8 would be selected to participate in the routing and forwarding process, being

selected by node 16 as parent. This last scenario raises a routing issue and it is discussed separately

in section 3.2.3.2.

Figure 3.10: Nodes deployment in different square lattice mesh topologies

In order to evaluate the performance gains of our solution, first we estimate the magnitude of

energy consumption improvements introduced by our solution. Then, we present and discuss the

simulation results of the four scenarios and, finally, we present and discuss the results from two

real testbed implementations.

3.2.2 Estimation of Energy Consumption

This study was focused on Packet energy consumption, considering the energy consumed when

"broadcast", and "unicast" packets are sent and received by the nodes, and used to estimate energy

gains.
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3.2.2.1 DAGs Used

Fig. 3.11 shows the DAGs selected for theoretical evaluation. For RPL-BMARQ solution we

have manually selected the DAGs so that the nodes may send and received packets as expected.

For RPL the DAGs were selected in order to allow for shortest paths considering the hop count

metric.
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Figure 3.11: DAGs used in theoretical evaluation

3.2.2.2 Packet Energy Consumption

Considering that a node is implemented as a CrossBow TelosB [18] sensor hardware, and the

energy is consumed by its CPU and RF transceiver, the total energy consumed can be described as
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follows:
E = Eon +ET XBcast +ERXBcast +ET XUcast

+ERXUcast +EIdle +ESleep
(3.1)

where Eon is the energy consumed during the time that node is waked, ET XBcast is the energy

consumed when sending "broadcast" packets, ERXBcast is the energy consumed when receiving

"broadcasted" packets, ET XUcast is the energy consumed when sending unicast packets, ERXUcast is

the energy consumed when receiving unicast packets, EIdle is the total energy consumed when the

node is in the idle state (the state where a node has its radio on and waiting to send or to receive a

data packet), and ESleep is the total energy consumed when the node is sleeping.

The energy consumed by a node in idle state is computed by EIdle = IIdle (A) ×V × tIdle (s),

considering IIdle = 365 µA, V = 3.6 V , and tIdle the time the node is idle, which depends on the

communications scenario. The energy consumed by a sleeping node is computed as ESleep = ISleep

(A) ×V × tSleep (s), considering ISleep = 5.1µA, V = 3.6 V, and tSleep the total time the node is

sleeping. The values are extracted from Table 2.2, obtained from [111].

We assume the simplest case of having no collisions and all the packets being correctly

received. We also assume that a unicast packet is acknowledged at the MAC Layer, whilst a

"broadcast" packet is not. The energy consumed per packet considering the information of Table

2.2, and the IEEE 802.15.4 specification [112], can be computed as follows.

• Transmission of "broadcast" packet: non-beacon enabled IEEE 802.15.4 networks use

an unslotted CSMA-CA channel access mechanism [113, 114]. We assume that each time a

device needs to transmit, it waits for a random number of unit backoff periods in the range

{0,2BE−1} before performing the Clear Channel Assessment CCA. If the channel is found

to be idle, the device transmits. If the channel is found to be busy, the device waits another

random period before trying to access the channel again. Assuming the channel is found to

be free, and also assuming that the backoff exponent BE is set to macMinBE which has the

default value of 3, and the access time can be computed as

TCA = InitialBacko f f Period +CCA

= (23−1)×aUnitBacko f f Period +CCA

= 7×320µs+128µs

= 2.37ms

(3.2)

The CCA detection time is defined as 8 symbol periods. aUnitBackoffPeriod is defined as

20 symbol periods, where 1 symbol corresponds to 16 µs.

As shown in Fig. 3.12, the energy consumed is computed as ET XBcast = Ei +EPT X ; Ei is

the energy consumed during the Channel Access period (CA) which is TCA×PIdle; PIdle is

the power consumed by the node in the idle mode which is 1.31 mW. EPT X is the energy

consumed during the time required to send the packet of size S (in octets). EPT X = S×
Toctet ×PT X ; Toctet is the time required to send one octet, which is 32 µs, and PT X is the

power consumed in the transmission of the same octet, which is 70.2 mW.
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Figure 3.12: Energy consumed by a node when transmitting a "broadcast" packet of size S octets

• Reception of "broadcast" packet: when a node receives a "broadcast" packet of size S,

the energy consumed is ERXBcast = EPRX = S×Toctet×PRX where Toctet is the time required to

receive one octet, which has the same value as the time required to send one octet. PRX =

78.5 mW is the power consumed by receiving the same octet, as shown in Fig. 3.13.

Figure 3.13: Energy consumed by a node when receiving a "broadcast" packet of size S octets

• Transmission of unicast packet: when a node sends a unicast packet, the amount of

energy consumed is computed as the energy required to transmit the packet plus the energy

consumed during the reception of the acknowledge frame. The transmission of an acknowl-

edgment frame in a non-beacon enabled network commences aTurnaroundTime symbols

after the reception of the data frame, where aTurnaroundTime is equal to 192µs. This gives

the device enough time to switch between transmit and receive mode.

As shown in Fig. 3.14, the total energy consumed is ET XUcast = Ei +EPT X +ETAck +EMAck ;

Ei is the energy consumed during the Channel Access period; EPT X is the energy consumed

during the time required to transmit the packet of size S; ETAck is the energy consumed

while waiting for the reception of the acknowledgment, which is 0.252 µJ, and corresponds

to aTurnaroundTime times the power consumed in the idle mode which is 1.31 mW;

EMAck is the energy consumed during the time required to receive the complete MAC

acknowledgment frame which has a size of 11 bytes, and corresponds to 27.6 µJ.

• Reception of unicast packet: the energy consumed to receive a unicast packet of size S

is ERX Ucast = EPRX +ETAck +EMAck . EPRX is the energy consumed during the time needed to

receive the packet of size S; ETAck is the energy consumed during the TAck time to wait before

sending the acknowledge packet (this value is the same as the waiting time before receiving

the acknowledge packet); EMAck is the energy consumed during the time of the transmission
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Figure 3.14: Energy consumed by a node when transmitting a unicast packet of size S octets

of the acknowledge MAC frame - TMack times the power consumed in the transmission mode

which is 70.2 mW, corresponding to 24.7 µJ, (see Fig. 3.15).

Figure 3.15: Energy consumed by a node when receiving a unicast packet of size S octets

• Energy gain estimation: we define the energy gain of our routing solution as:

ERPL−EBMARQ

ERPL
×100 (3.3)

where ERPL is the total energy consumed by the nodes for the RPL routing solution, and

EBMARQ is the total energy consumed by the nodes for our routing solution. The values are

given in %.

3.2.2.3 Results and Discussion

We characterized the energy consumed by the nodes running simultaneously both applications,

we take into account the number of "broadcast" (more exactly, link-local multicast) and unicast

packets, and the time the nodes are wake, sleeping, or in idle mode during one hour. We also

compare our solution against the generic RPL routing solution. The analysis was performed based

on packets of 127 octets (application data size of 81 octets, plus the IEEE 802.15.4 MAC layer

header and PHY layer header size of 46 octets). The packet size chosen reflects worst cases in the

analysis performed. MAC layer collisions were not considered. For simplicity we assumed that

all packets were sent and received with no errors and no retransmissions. The calculus was made

using a C program that implements both solutions.

• Energy: Fig. 3.16 shows the total energy consumed by each node. As can be seen, our

solution always consumes less energy. The total of energy consumed is computed as the sum

of the energies consumed by individual nodes. The energy consumed by each node is given
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by Eq. 3.1, and Fig. 3.17 shows the total of energy gains using de RPL-BMARQ solution in

each scenario. The gain is computed using Eq. 3.3. Fig. 3.18 shows the energy consumption

by each solution in the scenarios studied. As it can be seen, nodes using the Standard

RPL solution always consume more energy. In the selected scenarios the mean energy

consumed for the RPL-BMARQ solution considering the 4 scenarios, is 5.95 J, and for the

RPL solution is 8.76 J. The mean gain, considering the 4 scenarios, is 32.7%. Concerning

to the time the nodes are sleeping, results show that for the RPL-BMARQ solution, nodes

sleep more time than for the RPL solution. For the selected scenarios, and for the RPL-

BMARQ solution, the sum of time the nodes are sleeping is 57,000 s, while for the RPL

solution is 56,640 s. In the idle mode energy is also consumed.

• Application packets transmitted and received: Fig. 3.19 shows the distribution of the

"broadcast" packets generated by each node in the four scenarios. As shown, the number of

"broadcast" packets sent using our solution is lower than the number of packets sent using

the RPL solution. In scenarios 3 and 4, the RPL-BMARQ solution needs node 9 and node

8, respectively, to forward packets. Those nodes forward 5 "broadcast" packets in scenarios

3 and 4. The total number of "broadcast" packets sent in each scenario corresponds to the

packets sent when sink nodes issue queries. In our solution, only the nodes belonging to

the application forward the packets, thus network flooding is bounded to the nodes of the

application. In the case of the RPL solution, when a sink issues a query the packets are

"broadcasted" to the entire network. Since there are two applications running, the network

is "broadcasted" twice. For example in scenario 1 our solution sends 40 packets, while the

RPL solution sends 80 packets.

Fig. 3.20 shows the distribution of "broadcast" packets received by each node. As shown,

the number of "broadcast" packets received with our solution is lower than the number of

packets received using the RPL solution. For the RPL solution, in the scenarios considered,

4 nodes are used more often (nodes 5, 6, 7, and 12). They are placed in the middle of the

topology and receive more packets than the others, since they have more neighbors. With

the RPL-BMARQ solution, the distribution of the nodes inside the topology has influence.

Looking at scenario 1, node 10 receives more packets than the others nodes (16 packets).

This node runs application B, thus it is used 4 times per hour. It also receives more packets

since it has more neighbors. In the case of scenario 4, there are 2 nodes (11, 15) which

receive respectively 12 and 8 packets, because node 8 relays packets from nodes running

application B. When analyzing Fig. 3.19 and 3.20, we also conclude that with the RPL-

BMARQ solution application B generates more "broadcast" packets than application A,

since queries are four fold. With RPL, all nodes are waked in order to receive and to send

"broadcast" packets, so the node distribution does not influence the number of "broadcast"

packets. Moreover with RPL, queries are issued 5 times per hour (one from application A,

and 4 from application B). Fig. 3.19 and 3.20 also show "broadcast" "hotspots".

Fig. 3.21 shows the distribution of unicast packets sent by each node in the four scenarios
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Figure 3.16: Total of energy consumed in each scenario for the RPL-BMARQ and the RPL
solutions
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Figure 3.17: RPL-BMARQ energy gains in each scenario (in %)

Figure 3.18: Energy consumption in each scenario (in J)
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Figure 3.19: Total number of "broadcast" packets generated in each scenario for the RPL-BMARQ
and the RPL solutions
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Figure 3.20: Total number of "broadcast" packets received in each scenario for the RPL-BMARQ
and the RPL solutions
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Table 3.1: Theoretical results

Scenario 1 Scenario 2 Scenario 3 Scenario 4
BMARQ RPL BMARQ RPL BMARQ RPL BMARQ RPL
Tx Rx Tx Rx Tx Rx Tx Rx Tx Rx Tx Rx Tx Rx Tx Rx

BCast (packets) 40 94 80 240 40 90 80 240 41 84 80 240 44 88 80 240
UCast (packets) 84 191 90 88 100 249 106 347 51 119 120 383 124 262 106 344
Time waked (s) 600 960 600 960 600 960 645 960

Time sleeping (s) 57,000 56,640 57,000 56,640 57,000 56,640 56,955 56,640
Time idle (s) 597.43 955.88 596.93 955.35 598.21 955.01 641.66 955.37

Energy consumed (J) 5.86 8.73 5.88 8.76 5.82 8.78 6.24 8.76
Energy Gain (%) 33.0 33.0 33.8 28.9

considered. We can verify that the total number of unicast packets sent in each scenario is

lower for RPL-BMARQ than for RPL, except for scenario 4, where RPL-BMARQ needs

to send more unicast packets. In this scenario nodes need to forward more packets in

order to reply to sink queries. Since RPL-BMARQ uses mainly the nodes belonging to

the applications, node 11 is more often used. In the scenarios considered, and analyzing the

DAGs used (see Fig. 3.11) the paths selected by the RPL-BMARQ solution are longer than

those selected by the RPL solution, which makes no distinction between nodes. In the case

of scenario 4, node 8 is also used to forward packets from nodes running other application.

In this situation, node 8 transmits 13 packets. Since for the RPL solution all nodes must be

awake, in scenario 4, node 11 is the node with more activity, and it transmits 26 packets per

query. The number of the unicast packets received in our solution is smaller than in RPL, as

shown in Fig. 3.22). As example, in scenario 1 the total number of unicast packets received

for the RPL-BMARQ solution is 191, while for the RPL solution is 290. The results are

summarized in Table 3.1. They show that, for the scenarios studied, our solution provides

significant energy gains.

• Analysis for large networks: the above theoretical results were obtained for small topolo-

gies. But one could ask how the proposed solution could lead to non-optimal path when

large networks are involved. Let us take as example a large network, characterized by a

square lattice topology of 100 nodes and consider two limit node distributions: i) 50 nodes

running application A and 50 nodes running application B (Fig. 3.23 a), and ii) 10 nodes

running application A and 90 nodes running application B (Fig. 3.23 b). These topologies

represent large WSNs with different node distributions by applications (ratios 1/1 and 1/9)

and, simultaneously, the usage of several nodes of running one application being used to

relay packets generated by nodes running the other application. To perform this study we

used the same method employed in Sec. 3.2.2.3.

Results are summarized in Table 3.2. As it can be observed, in both topologies the energy

consumed by RPL-BMARQ is always lower than the energy consumed by RPL. In topology

a) and topology b) we can observe that our solution presents gains respectively of 30%

and 90%. This difference comes from the sensors nodes distributions: in a) the application

distribution ratio is the same (same number of sensor nodes for each application); in b) 90%
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Figure 3.21: Total number of unicast packets transmitted in each scenario for the RPL-BMARQ
and the RPL solutions
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Figure 3.22: Total number of unicast packets received in each scenario for the RPL-BMARQ and
the RPL solutions
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a) b) 

Figure 3.23: Impact on large networks: a) 50 nodes running application A and 50 nodes running
application B; b) 10 nodes running application A and 90 nodes running application B

of the sensor nodes run one application which is four times grater then the duty cycle of the

application running in the other 10% of the nodes.

Analyzing the total number of layer 3 packets sent and received, we observed that the

RPL-BMARQ solution presents lower values than RPL. In a) the total number of broadcast

packets received by RPL-BMARQ and RPL are respectively 848 and 930; the total number

of unicast packets received by RPL-BMARQ and RPL are respectively 5,339 and 5,998.

With respect to topology b) the total number of broadcast packets sent by RPL-BMARQ

and RPL are respectively 379 and 500; the total number of broadcast packets received by

RPL-BMARQ and RPL is are respectively 1,324 and 1,800; The total number of unicast

packets sent by both solutions is the same (5,607) and the total number of unicast packets

received by RPL-BMARQ is lower (20,953) than RPL (21,109).

From these results we can conclude that for large WSNs the number of hops does not affect

our solution as it still provides significant energy gains.

Table 3.2: Results obtained for large networks

Topology a) Topology b)
BMARQ RPL BMARQ RPL

Tx Rx Tx Rx Tx Rx Tx Rx
BCast (packets) 255 848 255 930 379 1,324 500 1,800
UCast (packets) 1,707 5,339 1,707 5,998 5,607 20,953 5,607 21,109
Time waked (s) 14,700 23,520 22,200 324,000

Time sleeping (s) 338,100 336,000 203,400 336,000
Energy consumed (J) 28.24 40.05 42.42 441.66

Energy Gain (%) 29.5 90.4
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3.2.3 Simulations

In order to study the behavior of the RPL and the RPL-BMARQ solutions, both have been

implemented in ContikiOS [16], which is an operating system used for wireless sensor networks.

ContikiOS 2.6 was chosen because it includes an IPv6 stack with 6LoWPAN support, as well as

ContikiRPL, which is a basic RPL implementation. The communication between the nodes is

achieved using the CSMA/CA access scheme with NullRDC, which means that the Mac Layer,

by it-self, does not put the nodes in the on and off states. The simulations were performed using

Cooja [17], a simulator for ContikiOS, which allows developers to test code and systems before

running it on a target hardware. The hardware platform selected was TelosB [18] which uses IEEE

802.15.4 radios. The 2.4 GHz radio model chosen was the Unit Disk Graph Medium (UDGM).

UDGM models the transmission range between the nodes as an ideal disk; the nodes outside it

do not receive packets, while the nodes within the transmission distance receive all the messages.

UDGM confirms the functionality and behavior of our solution. Packets have a IPv6 Payload of

82 bytes, except for signaling.

Table 3.3 shows the code-size in bytes for sink and sensor nodes for RPL and for RPL-BMARQ

solutions. As it can be verified, code-size overhead resulting from RPL-BMARQ implementation

is about 7.1% for sinks, and 6.4% for sensor nodes. In contrast, code in RAM size is reduced by

about 9.6% for sinks and 10% for sensor nodes.

Table 3.3: Code-size for RPL and RPL-BMARQ solutions. Shown is ROM (.text) and RAM (.bst
+ .data) in bytes

RPL RPL-BMARQ
ROM RAM ROM RAM

Sink 42280 186 7400 45492 186 6688

Sensor 42260 186 7400 45170 186 6662

3.2.3.1 Results and Discussion

We have simulated RPL-BMARQ solution in two situations. The first corresponds to a situation

where all the nodes join the network at same time, so that the designed nodes synchronization

mechanism is not used, being represented in figures as BMARQ (no sync). In the second situation,

the nodes will join the network at different time, and it is represented in the figures as BMARQ

(sync). The later implies the use of our second contribution, the synchronization mechanism

described in Chapter 4, in order to keep the nodes synchronized with respect to the applications

they run. The nodes join the network at different times which was randomly generated, and the

expected random time value for a node to join a network is defined as

E[tc] = 1
2 ·Max(TCycleA ,TCycleB),

tc ∈ [0,Max(TCycleA ,TCycleB)].
(3.4)
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For the evaluated scenarios, TCycleA equals 1 hour and TCycleB 15 min. So, the average delay for

a node to join the network is 1800 sec. Table 3.4 shows the time required to boot the network in

these conditions.

Table 3.4: Nodes association time randomly generated

Scenario Node type Application Node
Boot

(in sec.)

1

Sensor

A
2, 3, 4 561

5, 6, 7, 8 1027

B
10, 12, 15 940

11, 13, 14, 16 1102

2

A
2, 3, 5, 6 561

4, 7, 8 1027

B
10, 11, 13, 14 940

12, 15, 16 1102

3

A
2, 3, 4, 5 561

6, 7, 8 1027

B
10, 11, 12, 13 940

14, 15, 16 1102

4

A
2, 3, 5 561

4, 6, 7, 8 1027

B
11, 12, 14, 15 940

10, 13, 16 1102

All Sink
A 1 399

B 9 317

• DAGs created: Fig. 3.24 shows the DAGs generated during simulations. For each scenario

the simulations ran constructed the same DAGs. In this figure it can be verified that RPL-

BMARQ solution constructs the DAGs as expected. A particular attention must be given to

scenario 4 where node 16 choses node 8 as parent which does not run its application. In

this situation, node 8 should not send packets from nodes 10, 13 and 16 to its parent (node

7), but use other link, sending them directly to node 15 which will forward them so that

the node 9 (sink) can receive the packets. This aspect raised some issues and therefore it is

discussed separately.

• Energy consumption: operating systems for wireless sensor networks such as ContikiOS

[16] reduce energy consumption by powering off the microcontroller and hardware compo-

nents when they are not used. The on-line energy estimation mechanism [89] defines the

total energy consumption of a sensor node, E (J), as

E = (Im× tm + Il× tl + It × tt +

Ir× tr +∑
n
i=1 Ici× tci)×V

(3.5)
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Figure 3.24: DAGs generated during simulations
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being Im the current consumed by the microprocessor in the time tm during in which the

microprocessor is running, Il and tl the current and time when the microprocessor is in low

power mode, It and tt the current and the time when the device communication is in transmit

mode, Ir and tr the current and the time when the device communication is in receive mode,

Ici and tci the energy consumed by other components (eg. LEDs, ADCs, DACs), and V the

sensor supply voltage.

We consider energy consumption related only to communication aspects, e.g. packet trans-

mission, reception, radio "idle" the state where a node has its radio on and is waiting to

send or to receive a data "packet", and radio interferences. We aim to investigate how much

energy is consumed by the nodes in these states, as shown by Eq. 3.6.

E = ET X +ERX +EIdle +EInt (3.6)

ET X is the total energy consumed when sending packets, ERX is the total energy consumed

when receiving packets, EIdle is the total energy consumed by a node when it has the radio

in the idle state, and EInt is the total energy consumed by a node when it suffers radio

interferences from it’s neighbors. Generically, we compute energy Estate as Istate×V × tstate,

considering Istate the current consumed by the node in the state, V the voltage supplied

to the node, and tstate the total time the node is in that state. The Istate and V values

depend on existing platforms (e.g. TelosB [18]), and a generic energy model defining

the total energy consumed by the nodes is detailed in [13]. From the results obtained,

we extracted data related to communications time which is shown in Fig. 3.25. This figure

shows the mean, and 25, 50 and 75% percentiles of relevant radio state times. As one can

observe, the permanence time in each state is lower for RPL-BMARQ (both no sync and

sync implementations) than for RPL. Using RPL-BMARQ, the time where radios are in the

idle state is less then that using RPL, which reflects the major contribution of RPL-BMARQ

design. Applying the information of Table 2.2, which was extracted from [18], to Eq. 3.6,

we can compute the total energy consumed by the nodes (see Fig. 3.26). Results show that

the total energy consumed by the nodes considering those states, and using the RPL-BMARQ

solution using both implementations is very low, as it turns the node’s radio off during

more time than RPL. Using Eq. 3.3 we compute the energy gain for RPL-BMARQ and

results show that, using the RPL-BMARQ solution not implementing the synchronization

mechanism, the nodes spend about 92% less energy than the same nodes running RPL.

In the case of the second implementation of RPL-BMARQ in which the synchronization

mechanism is used, the nodes spend about 85% less of energy than RPL. The difference in

gain between the two implementations of RPL-BMARQ is due to the excess time the nodes

in the synchronized implementation need to be awaked, thus spending more energy. Even

though, this enables us to conclude that RPL-BMARQ extends the network lifetime.

• Query Success Ratio: Query Success Ratio (QSR) is defined as the ratio between the
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Figure 3.25: Radio Activity Times (in seconds)

Figure 3.26: Energy consumed by each solution in each scenario (in J)
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Figure 3.27: RPL-BMARQ energy gain in each scenario (in %)

number of reply packets received by a sink node in response to a query packet, and the

number of replies the sink expects to receive (see Eq. 3.7).

QSR = number_o f _received_replies
number_o f _expected_replies ,

0≤ QSR≤ 100%
(3.7)

Adapting Eq. 3.7 to our case, the number of received replies is 7. Fig. 3.28 presents

the results obtained. One can conclude that RPL presents better result than RPL-BMARQ,

although the values from both solutions are very close. Please note that in Fig. 3.28 we are

representing QSR values between 96 and 100%. We can conclude that with RPL-BMARQ,

QSR does not suffer much, presenting a average value of 98.5%, when compared to RPL,

which presents a similar value of 99.5%. At the end, the difference value of 1% has no great

significance.

Figure 3.28: Query Success Ratio - QSR (in %)
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• QSR fairness: fairness metrics are used in network engineering to determine whether users

or applications are receiving a fair share of system resources. There are several definitions

of fairness. Jain’s fairness index is an example, and it is defined in Eq. 3.8 [115], and it

describes the fairness of a set of values where there are n users and xi is the throughput for

the ith user. A straightforward computation shows that the fairness measure γ ranges from 1
n

(maximum unfairness) to 1 (all xi are equal) [116]. In the evaluation of our proposed solution

also we want to know if the sensor nodes nodes have the same opportunity to receive and to

reply to query packets. We also use the Jain’s fairness index as it is independent of scale,

it applies to any number of sensor nodes, and it is bounded between 0 and 1, where γ = 1

indicates a totally fair network.

γ (x1,x2, · · · ,xn) =
(∑n

i=1 xi)
2

n ·∑n
i=1 x2

i
(3.8)

Applying Eq. 3.8 to this evaluation, xi corresponds to the QSR per node. Fig. 3.29 shows

QSR fairness mean values obtained from simulations for the 3 scenarios. In average, those

values show that all solutions present fairness indexes above 99%. The same figure also

presents fairness values for each of the application supported by the network, and their

average.

Figure 3.29: QSR fairness

• Delay: we define delay (∆) as the time interval between the time instant a query was sent by

a sink node and the time the sink receives the correspondent reply, as shown in Fig. 3.30.

We compute this delay as

∆k,n = tRk,n− tQk (3.9)
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where ∆k,n is the delay for the reply from the node n to a query k, tQk is the time the query k

was sent, and tRk,n is the time the reply k from the node n was received. Fig. 3.31 presents

Figure 3.30: Delay definition

the results obtained. These values were computed as defined in Fig. 3.30. We note that

with RPL-BMARQ we achieve higher mean delays. For instance, in Scenario 3, the mean

delay value is 1.524 s for RPL-BMARQ with the synchronization mechanism implemented,

1.539 s for RPL-BMARQ not using the synchronization mechanism, and 1.375 s for RPL.

This is expected since nodes using RPL-BMARQ have bigger processing times. Also,

analyzing the DAGs generated (Fig. 3.24) we note that, in average, RPL-BMARQ creates

longer DAGs so the packets would take more time to reach their destinations. In average,

the delay value for RPL is 1.24 s, the delay value for RPL-BMARQ (no sync) is 1.39 s,

and the delay value for RPL-BMARQ (sync) is 1.36 s. This corresponds to more 10,8%

and 8,8% of delay time, respectively for RPL-BMARQ (no sync) and RPL-BMARQ (sync)

implementations. Finally, analyzing delays for both RPL-BMARQ implementations, when

nodes use the synchronization mechanism, they would not be active all at same time, but

when necessary. This has the effect of reducing communication activities, occupying the

transmission media for less time. One problem that our solution may raise is related to load

balancing between nodes. There are applications which require the transmission of more

packets per time unit than others and, as a consequence, nodes belonging to the subnetwork

defined by the high packet rate applications are required to process more packets. This

may create load balancing related issues such as higher network delays through some of the

network paths. These delays may be higher in our solution than in regular RPL. However,

if the offered loads are low and stable, as it is the case of the traffic scenarios envisaged,

these differences should not be relevant for our claims that are related to energy savings,

as may be observed for instance in Fig. 3.31 and in Fig. 3.39, where one application

demands the transmission of more packets than the other; therefore, the nodes in the

subnetwork defined by the high packet rate application process more packets and delays
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Figure 3.31: Delay (in s)

become higher. RPL does not subdivide the network and routing paths do not depend on

applications and, for this reason, RPL presents lower delays. Fig. 3.31 and Fig. 3.39

enable us to estimate the magnitude of increasing delays (in %) introduced by our solution.

Analyzing Fig. 3.31 and comparing to regular RPL we can verify that: for scenario 1,

and not using the synchronization mechanism, RPL-BMARQ presents 10,8% more delay,

whereas using the synchronization mechanism the same is 10%; for scenario 2, and not

using the synchronization mechanism, RPL-BMARQ presents 10,2% more delay, whereas

using the synchronization mechanism the increase is 7,2%; and for scenario 3, and not using

the synchronization mechanism, RPL-BMARQ presents 10,7% more delay, whereas using

the synchronization mechanism the increase is 9,8%. For the case of scenario 4, from Fig.

3.39 we can observe that, when not using the synchronization mechanism, RPL-BMARQ

presents an increase of delay of 17,7%, whereas using the synchronization mechanism the

same increase is 16,8%. In this scenario delays are higher because there is a node running

one application which is required also to process packets from the other application. From

the above analysis we may conclude that our solution makes delays to increase about 10%,

in average, but our claims on energy still hold.

• Packets per query: in the simulations performed, the sink node running App. A generates

a total of 24 queries, whilst sink node running App. B generates 96 queries. Analyzing the

data extracted from simulations we could investigate on a per-query basis, how many Layer

3 multicast and unicast packets were sent and received by all the nodes. We consider also

routing packets. Fig. 3.32 presents our results. For all the scenarios, both RPL-BMARQ

solutions present lower mean number of total Layer 3 multicast packets sent and received.

For Scenario 1, using RPL-BMARQ (no sync), per-query, the mean number of total packets

sent is 10 and the mean number of total packets received is 25; using RPL-BMARQ (sync),

the mean number of total packets sent is 8 and the mean number of total packets received
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is 17; using RPL, the mean number is higher (15 packets sent and 45 packets received).

For Scenario 2, using RPL-BMARQ (no sync) the mean number of total multicast packets

sent is 9 and the mean number of total multicast packets received is 24; using RPL-BMARQ

(sync) the mean number of total multicast packets sent is 7 and the mean number of total

multicast packets received is 17; using RPL, the mean number of total multicast packets

is also higher (15 for packets sent and 45 for packets received). Finally, for Scenario 3,

using RPL-BMARQ (no sync) the mean number of total multicast packets sent is 10 and the

mean number of total multicast packets received is 26; using RPL-BMARQ (sync) the mean

number of total multicast packets sent is 7 and the mean number of total multicast packets

received is 16; using RPL, the mean number of total multicast packets is also higher (15

packets sent and 45 packets received). For the mean number of total Layer 3 unicast packets

sent and received, the results show that also both RPL-BMARQ implementation present

lower numbers. For Scenario 1 the mean number of total unicast packets sent using RPL-

BMARQ (no sync) is 33, using RPL-BMARQ (sync) is 29, and using RPL is 45; for the same

scenario, using RPL-BMARQ (no sync) the mean number of total unicast packets received

is 77, using RPL-BMARQ (sync) is 49, whilst using RPL the same is 135. For Scenario

2 the mean number of total unicast packets sent is 36 for RPL-BMARQ (no sync), 32 for

RPL-BMARQ (sync), and 50 for RPL. The mean number of total unicast packets received is

76 for RPL-BMARQ (no sync), 61 for RPL-BMARQ (sync), and 141 for RPL. Finally, for

Scenario 3 the mean number of total unicast packets sent is 37 for RPL-BMARQ (no sync),

33 for RPL-BMARQ (sync), and 53 for RPL, and the mean number of total unicast packets

received is 59 for RPL-BMARQ (no sync), 53 for RPL-BMARQ (sync), and 144 for RPL.

From above analysis we conclude that the major gain of the RPL-BMARQ solution relies

on the total number both multicast and unicast packets sent and received which is lower

than the equivalent RPL. Table 3.5 summarizes simulation results showing the total number

of multicast and unicast packets transmitted and received by the nodes in each network

solution.

• Reaction to topology changes: RPL-BMARQ solution behaves just like RPL with respect

to convergence times, and the reaction to network topology changes are similar to those

observed for RPL. RPL-BMARQ uses the same Trickle timer mechanism. When a node does

not agree with its neighbors, that node communicates quickly to resolve the inconsistency.

On the other and, when nodes agree they slow their communication rate exponentially, and

end by exchanging packets very infrequently. Instead of flooding a network with packets,

the algorithm controls the sending rate so that each node hears a small trickle of packets,

just enough to stay consistent [43].

3.2.3.2 Special Case: Scenario 4

This scenario was simulated as the others, and while running and analyzing preliminary results,

this scenario presented an issue: node 9 (sink from application B) does not receive replies from
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Figure 3.32: Total number of packets per query
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Table 3.5: Mean total number of packets per query

Multicast Unicast
Scenario Solution

TX RX TX RX
RPL 15 45 45 135

BMARQ
(no sync)

10 25 33 77
1

BMARQ
(sync)

8 17 29 49

RPL 15 45 50 141
BMARQ
(no sync)

9 24 36 76
2

BMARQ
(sync)

7 17 32 69

RPL 15 45 53 144
BMARQ
(no sync)

10 26 37 59
3

BMARQ
(sync)

7 6 33 53

nodes 10, 13 and 16, although queries are received and replied by them. This behavior is caused by

node 8 which, although running application A, is also parent of node 16 and therefore responsible

to forward packets from nodes 16, 13 and 10. Since node 8 selects node 7 as parent (see Fig.

3.24 d.), reply packets are never forwarded by node 7 because it does not run the application

of nodes 10, 13 and 16. To solve this issue, node 8 upon the reception of nodes 10, 13 and 16

reply packets, should forward them directly not to node 7, but to node 15, which runs the same

application, to allow node 9 to received the expected reply packets. In this kind of scenarios, every

node being parent of nodes not running the same application, and having selected as parent a node

running the same application, should send directly all received reply packets to a neighbor node

running the same application from which reply packets where originated. A close snapshot of

this is showed in Fig. 3.33 where node 8 has selected node 7 (fe80::212:7407:7:707) as parent,

but detecting that a reply packet is, as example, from node 10 and node 16 (aaaa::212:740a:a:a0a

and aaaa::212:7410:10:1010) from the application it doesn’t run, changes the link to node 15

(fe80::212:740f:f:f0f).

Figure 3.33: Changing link-local address to correctly forward reply packets
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• Energy consumption: we consider energy consumption related only to communications

aspects and from the results obtained we present the durations of relevant communications

states in Fig. 3.34. As can be observed, the permanence time in energy consuming states is

lower for RPL-BMARQ (both no sync and sync implementations) than for RPL.

Figure 3.34: Mean total radio activity time for scenario 4 (in s)

We have computed the total energy consumed by the nodes using Eq. 3.3, and presented

results in Fig. 3.35. They show that the total energy consumed by the nodes running RPL-

BMARQ is very low, as it turns the nodes radio off during more time than RPL. We have

also computed the energy gain for RPL-BMARQ as described in Sec. 3.2.2.2. Results show

that, when the synchronization mechanism is not used the nodes spend about 93% less

energy than the same nodes running standard RPL. On the other hand, if the synchronization

mechanism is used, the nodes still spend less energy (about 85%). Using the RPL-BMARQ

Figure 3.35: Energy consumed by each solution for scenario 4 (in J)

solution not implementing the synchronization mechanism, the nodes spend about 93% less

energy than the same nodes running RPL. In the case of the second implementation of RPL-

BMARQ in which the synchronization mechanism is used, the nodes spend about 85% less

of energy than RPL, as shown in Fig. 3.36.

• Query Success Ratio: Fig. 3.37 shows simulation results for Query Success Ratios.

Although the values from both solutions are very close, RPL presents better results than
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Figure 3.36: RPL-BMARQ energy gain for scenario 4 (in %)

RPL-BMARQ. Please note that in this figure we are representing QSR values between 96

and 100%, and considering that the difference value is about 1%, we can conclude that with

RPL-BMARQ QSR does not suffer much.

Figure 3.37: Query Success Ratio (QSR) for scenario 4 (in %)

• QSR fairness: Fig. 3.38 shows that QSR fairness values obtained from simulations present

similar fairness indexes (about 99.9%) for both solutions.

• Delay: Fig. 3.39 shows delay values using both solutions. We note that with RPL-BMARQ

we achieve higher delays. The mean delay value for RPL-BMARQ is 1.55 s, and 1.28 s

for RPL. This is also expected since in this scenario RPL-BMARQ constructs a longer DAG

(see Fig. 3.24), so nodes use more hops to communicate. Also, in each node is used more

processing time.

• Packets per query: In the simulations performed, the sink node running App. A generates

a total of 24 queries, whilst sink node running App. B generates 96 queries. Analyzing

the data extracted from simulations we evaluated on a per-query basis how many Layer 3
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Figure 3.38: QSR fairness for scenario 4 (in %)

Figure 3.39: Delay for scenario 4 (in s)
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multicast and unicast packets were sent and received by all the nodes. We consider also

routing packets.

Fig. 3.40 shows on a per-query basis, the number of packets transmitted and received. Both

RPL-BMARQ solutions present lower mean number of total Layer 3 multicast packets, sent

and received. Using RPL-BMARQ (no sync), the mean number of total packets sent is 11

and the mean number of total packets received is 29; using RPL-BMARQ (sync), the mean

number of total packets sent is 9 and the mean number of total packets received is 22; using

RPL, the mean number is higher (15 packets sent and 45 packets received). For the mean

number of total Layer 3 unicast packets sent and received, the results show that also both

RPL-BMARQ implementations present lower numbers. The mean number of total unicast

packets sent using RPL-BMARQ (in both implementations) is 44, whilst using RPL this

value is 50; the mean number of total unicast packets received using both implementations

of RPL-BMARQ is 82 and using RPL the same is 135.

Figure 3.40: Total number of packets per query for scenario 4

From the above analysis we conclude that the RPL-BMARQ presents the same behavior as in the

other scenarios, and that the major gain introduced by RPL-BMARQ solution is the capability to

wake and to sleep the sensor nodes in an synchronized manner, reducing radio activity time, while

maintaining QSR and fairness ratios high.

3.2.4 Testbed Experiments

In order to confirm the results obtained from simulations, we also tested RPL-BMARQ in a

real environment. For that purpose, two of the scenarios studied were selected (scenarios 1 and 3)

and deployed. Since it was not possible to reproduce them at same scale, the scenarios deployed

corresponds to a 3x3 square lattice topology, while keeping all the assumptions of the evaluated

scenarios. In order to obtain reliable terms of comparison, we have simulated these deployments
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using the same methods as in section 3.2 and compared the simulated results with those obtained in

testbeds. Fig. 3.41 shows both deployments, which were realized in an Auditorium inside Escola

Superior de Tecnologia e Gestão de Viseu facilities (see Fig. 3.42). The nodes were placed at a

distance of 5 meters, and the radio transmission power was reduced to -7dBm in order to reduce

nodes radio influence space. Application A runs in five nodes (1, 2, 3, 4 and 5), while application

B in four nodes (9, 10, 11 and 12). Node 9, is at the same time the root of the DAGs and sink.

Node 1 is the other sink.

Figure 3.41: Scenarios deployed

Figure 3.42: Local of testbed deployment

3.2.4.1 Energy Metering Hardware

It was necessary to measure real power consumption to compare with the energy consumption

obtained from simulations. Again, a node (node 5) was randomly selected to measure real power
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consumption. For this, it was necessary to implement a small Energy meter, which could measure

in real-time the energy consumed by this node. Fig. 3.43 shows this implementation which uses

a BeagleBone Black platform [117] responsible to acquire analog values from the measured node.

These values are acquired using an instrumentation amplifier which samples the voltage drop of a

serial shunt resistor, supplied to the measured node. This platform runs a python program which

acquires every second 25 samples, returning their mean value, and uses it to compute the power

consumption. For accuracy it was necessary to measure real values, compare and correct them

from the nodes datasheet [18], and use them in the simulations to reflect real values. As such, for

power supply the value was corrected to 3 V; and the power consumption when MCU is on and

the Radio Off to 12 mA.

Figure 3.43: Energy meter implemented

3.2.4.2 Results and Discussion

• Energy consumption: Fig. 3.44 shows simulation and real implementation results for the

scenarios deployed. Simulation and real implementation results for the scenarios deployed

demonstrated that, in the real testbed implementations, the node consumes a little more

energy than in simulations. Additionally the energy recorded corresponds not only to other

hardware components consumption that the nodes have (e.g. LEDs, ADCs) which were

not considered in the simulation platform, but also to the total number of transmitted and

received packets by the node which was not possible to record. In the first deployment,

simulation showed that the node consumes 485.83 J, and in the second 534.26 J. Node real

measurements have shown a consumption of 567.73 J and 552.41 J. In the first deployment

the node consumes more 16.8% of energy whereas in the second the same node consumes

more 3.4% of energy, when compared to simulations results. From these results, and consid-

ering that some hardware platform components were not considered in the simulations, we
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can conclude that the real node energy consumption in each deployment can be considered

as valid.

Figure 3.44: Energy consumed by the selected node for each scenario (in J)

• Query Success Ratio: Fig. 3.45 shows simulation and real implementation results. As it

can be seen, both present same values (100%), which means that also in real testbeds, the

nodes reply to all the queries sent by sinks, maintaining their synchronization.

Figure 3.45: Query Success Ratio (QSR) for the scenarios selected (in %)

• QSR fairness: Fig. 3.46 shows QSR fairness mean values obtained from simulations and

testbeds implemented. In average, QSR fairness values obtained from simulations and

testbeds implemented present same values (100%). This also means that in real testbeds,

the nodes have the same opportunity to reply to all the queries sent by the sinks, as all the

queries are equally received by all the nodes.

• Delay: Fig. 3.47 shows simulation and real implementation delay results. As one can

observe, both present almost the same values (about 900 ms), which means that nodes in the

testbeds have the same behavior as in the simulation environment. Note that in this figure

we are representing delay between 600 and 950 ms.



3.2 RPL-BMARQ Evaluation 97

Figure 3.46: QSR fairness for scenario 4 (in %)

Figure 3.47: Delay for the selected scenarios (in %)
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From the above results we can conclude that there are no major differences between what was

observed in the simulation environment and that what was expected in the testbed environment,

and consider valid the testbeds, confirming the usability of RPL-BMARQ.

3.3 Summary

This chapter describes our first contribution. In section 3.1 we present and discuss our

Application-Driven WSN concept, and describe how we changed the RPL routing protocol in order

to constrain RPL-defined routing trees. Section 3.1.1 presents the RPL-BMARQ communications

stack and describes its cross-layer characteristics. Section 3.1.2 describes the mechanism added to

RPL as an extension (RPL-BMARQ) in order to create the DAGs according to our rationale.

By the time we were conducting our research, the ContikiOS did not fully supported IPv6 mul-

ticast. Therefore, we specified an Application-Driven multicast mechanism, which is described in

Section 3.1.3.

In Section 3.2 we evaluated the proposed solution, first by conducting theoretical studies to

estimate the gains introduced, second by simulating the solution, and third by implementing two

testbeds, being the results presented and discussed.

Theoretical studies showed that when using RPL-BMARQ the sensor nodes send and receive

less packets, as they are kept as much as possible in sleep state, waking only when necessary

(according to their applications duty cycle). As a result, the solution presents less energy con-

sumption.

The results obtained from the simulations confirmed the theoretical results, and showed that

the sensor nodes nodes have the same opportunity to receive and to reply to query packets,

presenting, in average, a fairness of 99%. Also, simulations showed that most of the queries

sent by the sink nodes are replied, which is reflect by a QSR of about 99.5%. On the other hand,

our solution makes delays to increase about 10%, in average, but our claims on energy still hold;

compared to standard RPL, our solution presents, in average, energy gains of about 92%, which

enables us to conclude that RPL-BMARQ extends the network lifetime.

Finally, in what concerns the testbeds, it was necessary to implement a energy metering

hardware in order to measure real power consumption to compare with the energy consumption

resulted from simulations. The obtained results from the testbeds demonstrated that the sensor

nodes consume a little more energy than in simulations because the energy recorded includes

hardware components which were not considered in the simulation. The results showed that QSR

and fairness values are the same (100%). From these results we can conclude that there are no

major differences between what was observed in the simulation environment and that what was

expected in the testbed environment, confirming the usability of RPL-BMARQ.



Chapter 4

Application-Driven WSN Node
Synchronization for RPL-BMARQ

In Chapter 3 we defined Application-Driven WSN as a cross-layer solution aimed

to help reducing the energy consumed by a network of sensors executing a set of

applications. This paradigm assumes that each application defines its own network

and set of nodes so that the exchange of information can be confined to the nodes

associated to the application. The nodes share information about the applications they

run and their duty-cycles, and nodes are put asleep when there is no activity related to

their applications. When nodes receive a query packet they know exactly when they

must wake up on the next period. The nodes alternate between wake and sleep states,

and the amount of time spent in each phase is determined by the applications duty

cycle. When the wake up time expires, the node switches to the sleep state, waking

up again by the time computed by the synchronization mechanism proposed in this

thesis.

Figure 4.1: Application-Driven WSN concept. a) network topology; b) RPL DAG; c) BMARQ-
RPL DAG

99
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We assume that every node can participate in route discovery and packet forwarding.

However, the nodes forwarding a given type of data will be primarily selected from

the set of nodes running the same application to which the data is associated. For

that purpose, each query packet includes information about the associated application

(APPID), which is known by the nodes running that application. Our routing scheme

tries to insure that data of an application is relayed mainly by the nodes running

that application. When the sink node queries the other nodes running the same

application, routing paths follow the Directed Acyclic Graph (DAG) created. This

DAG is created and maintained by a change to the RPL protocol scheme which uses

mainly the nodes running that application; the nodes not associated to this application

will not participate in routing process, in a first attempt. In our proposal the subset of

nodes running the same application forms a "subnetwork" with multi-hop connectivity

and application packets carry out also information about the applications duty cycle

(TCYCLE and TON) that is used to create and maintain the DAGs in which not only the

the nodes running the same application, but also the nodes having the same application

duty cycle can be "grouped". Fig. 4.1 a) shows a network topology supporting two

different applications. Fig. 4.1 b) shows the DAG created with standard RPL, and Fig.

4.1 c) shows the DAG created by our proposed solution. The wake up mechanism is

based on the applications time cycle information (TCYCLE and TON), carried by

every application query sent by the sink nodes. When a node receives a query packet

it knows exactly when it must wake up on the next period.

4.1 Application-Driven Synchronization Mechanism

According to our application-driven concept, synchronization is achieved between the nodes

that run the same applications, or between the nodes that have the same application duty-cycle,

by considering their duty-cycles. Therefore, the first time a node joins the network it waits for

an application query packet to adjust its virtual clock to the time carried by the query packet.

We realize that this corresponds to setting the time’s nodes to a value which does not consider

network delays but, as demonstrated below, this has no impact on our synchronization mechanism

as the nodes dynamically adjust their sleeping offset (see β · |δk,n| component in Eq. 4.2) and

wake-up and sleep almost at same time during the network lifetime. As such, the synchronization

algorithm takes advantage of the application query packets that are sent by the sink nodes once in

every application duty-cycle to maintain the sensor nodes synchronized. A network may support

several applications but only the nodes running the same application, or having the same duty-

cycle will synchronize between them. Therefore, a network supporting different applications may

have different sets of nodes with different synchronizations, and still be fully functional. Without

having to send or to receive other type of packets for synchronization purposes, the nodes will

rely only on the queries received to synchronize. In fact, this algorithm is centralized on a sink

node but its design is simple and adequate for our purposes. A distributed design would be more
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complex and imply the use of other type of packets for synchronization, often broadcasted through

the network, which would have impact in energy consumption due to packet transmission and

reception costs.

It is unlikely that all the sensor nodes would join a network at the same time. Having the

nodes active during all the time would deplete their batteries, so nodes have to go sleep and to

wake up periodically. All the nodes have to be awake almost at same times in order to receive

sink queries and to forward them to the other nodes. As a result, nodes must be synchronized

according to the application cycle they run. In order to synchronize all the nodes in the network,

our proposed synchronization mechanism uses a synchronous method which includes two phases:

the synchronization setup phase and the synchronization maintenance phase, described below.

4.1.1 The Synchronization Setup Phase

Figure 4.2: Synchronization setup phase

When a sensor node joins the network, it remains in the wake state and waits for the reception

of its first query packet sent by the sink node and forwarded by other nodes. Upon its reception, the

node adjusts a virtual clock to the timestamp carried by the query. As it can be observed from Fig.

4.2, the query packet sent by a sensor node n towards a sensor node n+1 is the same query packet

that node n received from the sink node. The timestamp carried by the query is extracted from the

query packet. This phase is used to readjust the virtual clock; the periodicity of this readjustment

depends on how often the nodes have to readjust their virtual clock. It is known that this phase

corresponds to setting the time’s nodes to a value which does not consider network delays.

In the example shown in Fig. 4.3 a), sink node A issues a query (Qk, j) before sink node B.

The query packet is disseminated through the network as expected using the RPL-BMARQ routing

solution [14]. Sensor nodes C and D, which run this sink’s application, set their virtual clock to

the timestamp carried out by the packet. Sensor node E, not running this application, also sets his

virtual clock to the timestamp carried out by the query packet since it is the first query it receives.

The same query packet (Qk, j) is then forwarded to the other sensor nodes (nodes G, H, and K)

which will also set their virtual clock to the same timestamp. Sensor node E will not forward

the query packet Qk, j since it does not run this application, and does not have neighbors running

it. Similarly, node F, upon the first query packet (Qk,i) reception from sink node B, and because

it runs the same application, adjusts it virtual clock to the time carried out by the sink B query
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Figure 4.3: Example of nodes synchronization
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packet. As this sink has already adjusted is virtual clock using the sink A timestamp, sensor node

F will have the same time as the other nodes. Again, the query Qk,i will be forwarded to the other

sensor nodes (nodes I, J, and L) which will perform the same virtual clock adjustment. Fig. 4.3

b) shows the same virtual clock adjustments, but in this case it is sink node B that issues the first

query packet and adjusts all the network node’s virtual clocks.

4.1.2 The Synchronization Maintenance Phase

Figure 4.4: Synchronization maintenance phase

Since all the nodes know the characteristics of the applications they run, after the reception of

the first query packet they expect to receive the second query packet by t ′2 = t1 +TON +TOFF . The

time the nodes are sleeping (TOFF ) is defined as TCycle−TON where TCycle is the application duty

cycle time and TON is the time the nodes are awaked during each duty cycle. However, because

network delays are variable, the nodes will receive this second query packet not in t ′2 but in t2,

as shown in Fig. 4.4. There is a difference between the expected value t ′2 and the real value t2,

δ2 = t ′2− t2. For example, if a node is expected to receive a query packet by t ′2 = 100 and receives

it by t2 = 102, then δ2 = −2. A negative value means that a query was received in delay, and

a positive value means that the query was received in advance. Moreover, delays are the sum

of all per-hop delays for each sensor query packet reception and characterized by the sum of the

processing and queueing delays in intermediate and destination sensor nodes, and the transmission

delays and propagation delays in intermediate nodes. An in depth characterization of these delays

may be found in [118].

Our proposed mechanism estimates δk,n by using the Exponentially Weighted Moving Average

(EWMA) technique (see Appendix A). According to Fig. 4.4, the difference between the expected

time to receive the next query and the time it is really received is computed by Eq. 4.1

t ′k,n = tk−1,n +TON +TOFF

δk,n = (1−α) ·δk−1,n +α · (t ′k,n− tk,n);0 < α < 1
(4.1)
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where t ′k,n is the expected packet reception time, and tk,n is the real packet reception time. δk,n is

evaluated according to EWMA as in Eq. A.1 with α reflecting the weight of last observation. The

δk,n value is dynamically adjusted every time a node wakes and receives a query packet, and it is

used to control the time the node would sleep in the next cycle, given by Eq. 4.2.

TSleepk,n = TOFF −β · |δk,n| (4.2)

In Eq. 4.2, the β factor is used to amplify the δk,n value to guarantee that the sensor node will

wake sometime before the next application cycle. β · |δk,n| is the sleeping offset and represents

the time the node will wakeup before the start of the next application duty cycle. Algorithm 3

shows the pseudo-code of the Application-Driven Synchronization Mechanism with values given

to α and β , and to the virtual clock adjustment periodicity time (ad just_periodicity_time).

Algorithm 3: Pseudocode of the proposed synchronization mechanism

foreach (app.queryk received) do
α = 0.125;

β = 10;

if (first(app.query) then
set_clock(query→ TT X );

adjust_periodicity_time = 3600 · 24 (eg. 24 hours);

adjust_counter = ad just_periodicity_time
TCYCLE

;

else
if (app.query_id == node.app_id) then

t’k,n= tk−1,n + TON + TOFF ;

tk,n = node.queryTRX ;

δk,n = (1−α) ·δk−1,n +α · (t ′k,n− tk,n);

TSleepk,n = app.TOFF - β · |δk,n|;
adjust_sleep_timer(TSleepk,n);

adjust_counter = adjust_counter - 1;

end
if (adjust_counter == 0) then

set_clock(query→ TT X );

adjust_counter = ad just_periodicity_time
TCYCLE

;

end
end

end
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4.2 Evaluation

In order to validate this mechanism, first we present a study on how the nodes can maintain

their synchronization by estimating and evaluating the parameters presented in Eq. 4.1 and Eq.

4.2, which corresponds to investigate in depth the synchronization maintenance phase. We also

present and discuss results from the proposed synchronization mechanism using different values

for α and β parameters, and Query Success Ratio (QSR) results from simulations performed in

[14], and finally present and discuss some of the results obtained from two real testbeds. The QSR

metric [14] is defined as the ratio between the number of reply packets received by a sink node in

response to a query packet, and the number of replies the sink expects to receive.

4.2.1 Theoretical

The nodes synchronization mechanism was evaluated considering the following probabilistic

distribution of network delays: 1) constant delay; 2) uniform distribution; 3) gaussian distribution;

and 4) exponential distribution.

Fig. 4.5 shows one sink node and three sensor nodes. The sink node transmits queries

regularly. Each query time reception is affected by those different network delays, and the sensor

nodes upon their reception will adjust their sleep time in order to try to wake up at same time on

the next application duty cycle. For each node different mean delays were considered: sensor node

1: 0.5 s; sensor node 2: 1 s; sensor node 3: 2 s.

Sink

Sensor 1

Sensor 2

Sensor 3

Network

delays

Q
n

Q
n

Q
n

Q
n

Figure 4.5: WSN delay model

A Python program was written in order to randomly generate different network delay distri-

butions. The program generates 105 queries, uses Eq. 4.1 to estimate the new expected query

reception time by each node, and uses it to adjust the time each node must sleep (Eq. 4.2) in order

to wake up on time for the next application cycle. Finally, the program computes how many time

the nodes are waked up simultaneously. We consider that nodes are simultaneously awaked up

if the 3 sensors are awaked for at least ∆ = 80% ·TON . Let us also define TSensorsON as a random

variable which captures the time during which the 3 sensors are simultaneously on the ON state,

having values TSensorsON ∈ [0s,TONs] (see Fig. 4.6). An occurrence of TSensorsON is computed as the

time the first sensor goes asleep minus the time the last sensor wakes up.
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Figure 4.6: Nodes adjustment of TON simultaneity

In a first attempt, for α in Eq. 4.1 the value was set to 0.125, following current IETF

recommendations for managing TCP timers [119], and for Eq. 4.2, the β value was empirically

set to 10. All the sensor nodes wake every 15 min remaining waked for 1 min (TON=60 s and

TOFF=840 s).

Fig. 4.7 shows results from the first situation evaluated - constant network delays. In Fig. 4.7

a) we can see the histogram of these delays: 0.5 s for sensor 1; 1.0 s for sensor 2; and 2.0 s for

sensor 3. In Fig. 4.7 b) is shown TSensorsON ’s histogram; TSensorsON has always the same value, which

equals almost TON (60 s); we observe that the probability P[TSensorsON ≥ ∆] = 1, which means that

the nodes will always be synchronized. We can infer from Eq. 4.2 that δk,n has always a value of

zero, what also demonstrates the validity of our Python program.

Fig. 4.8 shows results for the second situation evaluated - uniformly distributed network

delays, with delays varying between ±20% ·0.5 s, ±20% ·1.0 s, and ±20% ·2.0 s. In Fig. 4.8 a)

one can see the histogram of randomly generated delays; Fig. 4.8 b) shows TSensorsON ’s histogram.

Again we can observe that P[TSensorsON ≥∆] = 1. In fact, it is verified that TSensorsON ∈ [57.88,59.66]

s, and the mean value of E[TSensorsON ] = 58.7 s. As in the first situation, the nodes maintain

synchronism in all the cycles.

Fig. 4.9 shows results for the third situation evaluated - gaussian distributed network delays,

with delays having a standard deviation which is 20% of the mean values which are 0.5 s, 1.0 s and

2.0 s respectively. In Fig. 4.9 a) we can observe the histogram of randomly generated delays; Fig.

4.9 b) shows TSensorsON ’s histogram. As it can be observed, δk,n factor from Eq. 4.2 also affects the

time each node must sleep (TSleepk,n). Similarly to the previous cases P[TSensorsON ≥ ∆] = 1, and the

mean value is E[TSensorsON ] = 58,77 s. In this situation the nodes will also maintain synchronism

in every application cycle.

Fig. 4.10 shows results from the last situation evaluated - exponentially distributed network

delays, with mean delays targeting 0.5 s, 1.0 s and 2.0 s respectively. In Fig 4.10 a) is shown

the histogram and, as expected, there are variations; Fig. 4.10 b) shows TSensorsON ’s histogram.

As can be observed, there are situations where the success condition is not satisfied. In this



4.2 Evaluation 107

0 1 2 3 4 5

a) Delay (in s)

0.00

0.20

0.40

0.60

0.80

1.00

O
cc

ur
re

nc
e

Node 3
Node 2
Node 1

35 40 45 50 55 60 65 70 75
b) TSensorsON (in s)

0.00

0.20

0.40

0.60

0.80

1.00

O
cc

ur
re

nc
e

∆

E[TSensorsON
] =58.5

Std[TSensorsON
] =0.0

∆ =48.0

Figure 4.7: Constant network delays with α = 0.125, β = 10. a) delay histogram; b) TSensorsON ’s
histogram



108 Application-Driven WSN Node Synchronization for RPL-BMARQ

0 1 2 3 4 5

a) Delay (in s)

0.00

0.10

0.20

0.30

0.40

0.50

O
cc

ur
re

nc
e

Node 3
Node 2
Node 1

45 50 55 60 65 70 75
b) TSensorsON (in s)

0.00

0.10

0.20

0.30

0.40

0.50

O
cc

ur
re

nc
e

∆

E[TSensorsON
] =58.7

Std[TSensorsON
] =0.3

∆ =48.0

Figure 4.8: Uniformly distributed network delays. a) delay histogram; b) TSensorsON ’s histogram



4.2 Evaluation 109

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

a) Delay (in s)

0.00

0.10

0.20

0.30

0.40

0.50

O
cc

ur
re

nc
e

Node 3
Node 2
Node 1

45 50 55 60 65 70 75
b) TSensorsON (in s)

0.00

0.10

0.20

0.30

0.40

0.50

O
cc

ur
re

nc
e

∆

E[TSensorsON
] =58.8

Std[TSensorsON
] =0.5

∆ =48.0

Figure 4.9: Gaussian distributed network delays. a) delay histogram; b) TSensorsON ’s histogram



110 Application-Driven WSN Node Synchronization for RPL-BMARQ

0 2 4 6 8 10 12

a) Delay (in s)

0.00

0.10

0.20

0.30

0.40

0.50

O
cc

ur
re

nc
e

Node 3
Node 2
Node 1

40 45 50 55 60 65 70 75
b) TSensorsON (in s)

0.00

0.10

0.20

0.30

0.40

0.50

O
cc

ur
re

nc
e

∆

E[TSensorsON
] =57.5

Std[TSensorsON
] =2.0

∆ =48.0

Figure 4.10: Exponentially distributed network delays. a) delay histogram; b) TSensorsON ’s
histogram



4.2 Evaluation 111

case E[TSensorsON ] = 57.52 s and TSensorsON ∈ [25.06,59.99] meaning that the nodes will maintain

synchronism by about 99% of the cycles.
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Figure 4.11: Box plot for β · |δk,n|, the sleeping offset represented in Eq. 4.2

Finally, Fig. 4.11 shows the box plot for the β · |δk,n| component, which corresponds to the

amount of time the nodes use to adjust sleep timers in order to wake up in synchronism in the next

cycle. The worst value for the mean value of the β · |δk,n| component is 1.11 s and it corresponds to

the exponential distribution, what means that a node will not sleep during TOFF s but, in average,

will sleep during TOFF −1.11 s.

The box plot figures in this chapter give the standard metrics: the 25th percentile, the 75th

percentile, and the red line is the median value. The top and bottom of the whiskers show the

maximum and minimum values, respectively. Finally, the black dashed line in the box represents

the mean value.

From this analysis we may conclude that the synchronization mechanism may be adequate for

our purposes. In order to increase the trust in these results, a sensibility analysis is also carried

out, in order to understand how TSensorsON is affected by different values of α and β .

4.2.1.1 α and β Values Estimation

We performed studies using different values for the synchronization mechanism parameters

α and β . We considered 4 sensor nodes and assumed a uniformly distributed delays varying in

±20% · 0.5 s, ±20% · 1.0 s, ±20% · 2.0 s. Figures 4.12 to 4.20 show the results obtained when

considering different values for the α and β parameters. Each of these figures present: a) the

histogram of the network delays; b) the TSensorsON ’s histogram; c) the box plot for β · |δk,n|. The

box plot gives the standard metrics: the 25th percentile, the 75th percentile, and the red line is the

median value.
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In the sensibility analysis shown below, we select two discrete set of values for α and β ,

α ∈ {0.125,0,5,0.875} and β ∈ {10,50,100}. We vary one parameter at time while maintaining

the other constant.

4.2.1.1.1 α Estimation: the weight given to the last sample in the calculation δ . Therefore,

we want to investigate how it affects the synchronization mechanism by giving α different values,

namely 0.125, 0.50, and 0.875.

4.2.1.1.2 β Estimation: since the δk,n value from Eq. 4.1 is small, we amplify it. The

amplifying factor is the β parameter, and for it we selected three values, β ∈ {10,50, and 100}.
Figures 4.12-4.20 show the results obtained for different combinations of the parameter’s

values. Table 4.1 summarizes it, showing: (a) the α and β values, (b) the E[TSensorsON ], (c) average

E[TSensorsON ]’s time in % of TON , and (d) E[β · |δk,n|] component, the resulting sleeping offset. In

this Table, blue bold values correspond to the ones that better satisfy our purposes.

Table 4.1: Summary of synchronization mechanism results as a function of α and β

Parameter Results

α β E[TSensorsON ] (in sec) E[TSensorsON ] (in % of TON ) E[β · |δk,n|]

0.125

10 58.7 97.82 0.149

50 59.0 98.33 0.745

100 58.2 97.04 1.491

0.50

10 59.0 98.26 0.648

50 55.6 92.59 3.241

100 50.5 84.20 6.479

0.875

10 58.3 97.12 1.285

50 50.3 83.87 6.428

100 40.0 66.59 12.854

For the selection of the α and β values we considered the values that satisfy at same time: i)

values of TSensorsON in % of TON above 80%; and ii) lowest β · |δk,n| component value.

4.2.1.2 Results and Discussion

This analysis of the results showed that not all the values chosen for α and β parameters

satisfy our synchronization mechanism requirements. In fact, if we consider respectively α = 0.50

and β ∈ {50;100} the mechanism will fail because the probability P[TSensorsON ≥ ∆] < 1 (see

respectively Fig. 4.16 and 4.17, what means that the sensor nodes will not be synchronized in

all their duty cycles. The same applies if we consider α = 0.875 and β ∈ {50;100}, as shown in

Figures 4.19 and 4.20. From c) we can observe that there are occurrences for TSensorsON below 80%,

the threshold established for success, being in average equal to 97.82% of TON . Therefore, those

values do not satisfy our selection criteria. From the other values evaluated we may consider that
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Figure 4.12: Uniformly distributed network delays with α=0.125; β=10. a) delay histogram; b)
TSensorsON ’s histogram; c) Box plot for TSensorsON (% of TON); d) Box plot for β · |δk,n|
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Figure 4.13: Uniformly distributed network delays with α=0.125; β=50. a) delay histogram; b)
TSensorsON ’s histogram; c) Box plot for TSensorsON (% of TON); d) Box plot for β · |δk,n|
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Figure 4.14: Uniformly distributed network delays with α=0.125; β=100. a) delay histogram; b)
TSensorsON ’s histogram; c) Box plot for TSensorsON (% of TON); d) Box plot for β · |δk,n|
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Figure 4.15: Uniformly distributed network delays with α=0.50; β=10. a) delay histogram; b)
TSensorsON ’s histogram; c) Box plot for TSensorsON (% of TON); d) Box plot for β · |δk,n|

0.0 0.5 1.0 1.5 2.0 2.5 3.0

a) Delay (in s)

0.00

0.10

0.20

0.30

0.40

0.50

O
cc

ur
re

nc
e

Node 3
Node 2
Node 1

35 40 45 50 55 60 65 70

b) TSensorsON
(in s)

0.00

0.10

0.20

0.30

0.40

0.50

O
cc

ur
re

nc
e

∆

E[TSensorsON
] =55.6

Std[TSensorsON ] =2.8
∆ =48.0

1
c) TSensorsON

(in % of TON )
82.0

84.0

86.0

88.0

90.0

92.0

94.0

96.0

98.0

100.0

T
O
N

92.59

1

d) β · |δk,n| (in s)

0.00

2.00

4.00

6.00

8.00

10.00

Ti
m

e
3.241

α = 0.50;β = 50;

Figure 4.16: Uniformly distributed network delays with α=0.50; β=50. a) delay histogram; b)
TSensorsON ’s histogram; c) Box plot for TSensorsON (% of TON); d) Box plot for β · |δk,n|

0.0 0.5 1.0 1.5 2.0 2.5 3.0

a) Delay (in s)

0.00

0.10

0.20

0.30

0.40

0.50

O
cc

ur
re

nc
e

Node 3
Node 2
Node 1

20 30 40 50 60 70

b) TSensorsON
(in s)

0.00

0.10

0.20

0.30

0.40

0.50

O
cc

ur
re

nc
e

∆

E[TSensorsON ] =50.5
Std[TSensorsON

] =6.0
∆ =48.0

1
c) TSensorsON

(in % of TON )
60.0

65.0

70.0

75.0

80.0

85.0

90.0

95.0

100.0

T
O
N

84.20

1

d) β · |δk,n| (in s)

0.00

5.00

10.00

15.00

20.00

Ti
m

e

6.479

α = 0.50;β = 100;

Figure 4.17: Uniformly distributed network delays with α=0.50; β=100. a) delay histogram; b)
TSensorsON ’s histogram; c) Box plot for TSensorsON (% of TON); d) Box plot for β · |δk,n|
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Figure 4.18: Uniformly distributed network delays with α=0.875; β=10. a) delay histogram; b)
TSensorsON ’s histogram; c) Box plot for TSensorsON (% of TON); d) Box plot for β · |δk,n|
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Figure 4.19: Uniformly distributed network delays with α=0.875; β=50. a) delay histogram; b)
TSensorsON ’s histogram; c) Box plot for TSensorsON (% of TON); d) Box plot for β · |δk,n|
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Figure 4.20: Uniformly distributed network delays with α=0.875; β=100. a) delay histogram; b)
TSensorsON ’s histogram; c) Box plot for TSensorsON (% of TON); d) Box plot for β · |δk,n|
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α = 0.125 and β = 10, are the values that better satisfy our purposes, for the scenarios considered.

Comparing to other pair os values for α and β , these values present at same time: i) greater

TSensorsON value (58.7), which is almost the same theoretical value of TON ; ii) all the occurrences

for TSensorsON in terms of TON% are above 97%, being in average equal to 97.82%; and iii) the mean

β · |δk,n| component has, in average, the lowest value 0.149 what means that the sensor nodes have

to wakeup before the next duty cycle less time than in the other cases. This will have impact in

energy consumption since the sensor nodes do not have to stay unnecessary time awaked.

4.2.2 Simulations

In [14] two different applications were used in three different scenarios, being the nodes

distributed as shown in Fig. 4.21. Simulations ran in Contiki Cooja simulator [120]. All the

nodes are within a distance of 25 meters for a transmission range of 30 meters, and support one

of the two applications. Each application is running in eight nodes, and each node runs a single

application. In Scenario 1 the nodes running App. A were selected in a way that a long path could

be obtained; in Scenario 2 both applications have the same node distribution; Scenario 3 is used

to investigate situations where at least one node from other application is required to relay data.

In the scenarios simulated, sink nodes are always awake, and sink node running App. B (node 9)

was chosen as the network DAG root because of its application duty-cycle. For the nodes running

Application A, TON = 60 s, TOFF = 3540 s; for the nodes running Application B, TON = 60 s,

TOFF = 840 s.

Figure 4.21: Scenarios simulated

We simulated two situations: i) a situation where all the nodes join the network at same time,

so that the proposed synchronization mechanism is not used as, in simulations with COOJA, clock

drifting is the same for all the sensor nodes; and ii) the nodes will join the network at different

time. The later implies the use of the synchronization mechanism described in Sec. 4.1 in order to

keep the nodes synchronized with respect to the applications they run. The nodes join the network

at different times which were randomly generated between 317 and 1102 s.



4.2 Evaluation 117

4.2.2.1 Results and Discussion

Each time a node receives a query it computes the time it must wakeup before the start of the

next application cycle in order to be able to receive and forward packets, and to reply back to the

sink successfully. The synchronization mechanism was configured with α = 0.125 and β = 10.

In the the simulations 16 nodes have been used, half of them running each application. Each

scenario was simulated ten times and information was extracted in order to estimate delays, QSR,

energy, and the E[β · |δk,n|] component. The results obtained are the following.

4.2.2.1.1 Delays: we considered delay as the sum of all per-hop delays for each sensor query

packet reception and characterized by the sum of the processing and queueing delays in inter-

mediate and destination sensor nodes, and the transmission delays and propagation delays in

intermediate nodes. Fig. 4.22 shows the nature of the delays observed and, as it can be seen,

network delays are uniformly distributed.
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Figure 4.22: Mean delays histogram, for each scenario (in ms)

4.2.2.1.2 Per Hop β · |δk,n| Component: from the simulations we have extracted information

about the β · |δk,n| component on a per hop basis. Fig. 4.23 shows the box plot for this component

in scenario 1. We can observe that, except for the first hop, this component presents per hop similar

values, and sensor nodes would have to wake with an average sleeping offset of about 0.232 s. In

the first hop the sleeping offset has a grater value (0.49 s in average) because in this hop we can

observe some congestion, particularly between the sink node (node 1) and the sensor node 2.

Fig. 4.24 shows the box plot for the β · |δk,n| component in scenario 2. As in scenario 1, we

can also se that this component presents similar values per hop, with an average sleeping offset of

about 0.176 s.

Finally, Fig. 4.25 shows the box plot for the β · |δk,n| component in scenario 3. As in the

other two scenarios, we observed that this component presents similar values per hop, in a average

about 0.242 s. In the case of the sleeping offset for 2 hop nodes, it has in average a grater value

(0.35 s). Analyzing this scenario’s topology, and the traffic that may occur, we can observe some

congestion around sensor nodes 3 and 13. For sensor node 3 it needs to forward replies from
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Figure 4.23: Box plot for β · |δk,n|, with α=0.125 and β=10, for each hop in scenario 1
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sensor nodes 4, 7 and 8. For sensor node 13 it also forwards replies from sensor nodes 11, 12, 14,

15 and 16. However, this sleeping offset value can be also considered as negligible as has a small

additional value.
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Figure 4.25: Box plot for β · |δk,n|, with α=0.125 and β=10, for each hop in scenario 3

Fig 4.26 shows the histogram of the β · |δk,n| component. As it can be seen, this sleeping offset

component accepts values between 0.40 s and 0.75 s. In this interval, the component has a uniform

behavior.
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Figure 4.26: β · |δk,n|, with α=0.125 and β=10, histogram for each scenario (in sec)

In Fig 4.27 is shown the box plot for the expected sleeping offset value for each of the

three scenarios studied. As it can be verified, the nodes would sleep not the TOFF time, but in

average TOFF − 0.716 s. Moreover, we observed that, independently of the network topology,

this component has almost the same values, what confirms that the synchronization mechanism

proposed is adequate for our purposes. Moreover, comparing the results from Fig 4.26 and Fig 4.27

we observe that for scenarios 2 and 3 the maximum and minimum β · |δk,n| values are different. In

scenario 2 the nodes have more neighbors running the same application, what implies that each of

them may need more time to access the wireless medium to forward a query. This is also reflected

on the network delays and affects the β · |δk,n| component.
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Figure 4.27: Box plot for β · |δk,n|, with α=0.125 and β=10, for each scenario (in sec)

4.2.2.1.3 QSR: Fig. 4.28 shows the box plot for QSR. In this figure is showed: (1) the results

using the standard RPL routing protocol, (2) the results using RPL-BMARQ solution proposed

in [14] without the synchronization mechanism implemented, and (3) the results using the same

RPL-BMARQ solution fully implemented. As it can be observed, in average, 98.8% of the queries

sent by sinks are replied by sensor nodes. With this success ratio, we can argue that the quality of

the proposed synchronization mechanism is confirmed.

Figure 4.28: Mean Query Success Ratio - QSR for each scenario (in %)

4.2.2.1.4 Energy: in order to estimate the impact of the synchronization mechanism in the

nodes energy consumption, we considered energy consumption related only to communication

aspects: packet transmission, reception, radio "idle" the state where a node has its radio on and is

waiting to send or to receive a data "packet", and radio interferences, as shown in Eq. 3.6.
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Fig. 4.29 shows the energy consumed by the nodes in three situations evaluated for each

scenario: i) using the standard RPL; 2) using RPL-BMARQ without the implementation of the

synchronization mechanism; and 3) using RPL-BMARQ with the synchronization mechanism

implemented. In this figure we can observe that the nodes using RPL solution consume much

more energy than using RPL-BMARQ. The RPL solution does not perform radio duty cycling, and

does not put the sensor nodes to sleep when there is no activity associated to them. RPL must rely

on lower layers to perform radio duty cycling. On the other hand, RPL-BMARQ performs radio

duty cycling, putting asleep, and wakening the nodes according the application duty cycles they

run. The figure also shows that with the RPL-BMARQ solution fully implemented we have much

lower power consumption, compared to energy spent by the nodes when the "standard" RPL is

used. On the other hand, if we use RPL-BMARQ without the synchronization mechanism, the

energy consumption is even lower because the nodes wakeup exactly when the next application

duty cycle starts, and sleep also exactly at same time.
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Figure 4.29: Energy consumed by each solution in each scenario

4.2.3 Testbed Experiments

Figure 4.30: Scenarios deployed
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In order to confirm the results obtained from theoretical studies and simulations, we also tested

our proposed solution in a real environment. For that purpose, two of the scenarios studied were

selected (scenarios 1 and 3) and deployed. Since it was not possible to reproduce them at same

scale, the scenarios deployed correspond to a 3x3 square lattice topology, while keeping all the

same assumptions. In order to obtain reliable terms of comparison, we have simulated these

deployments using the same methods as in section 4.2.2 and compared the simulated results with

those obtained in testbeds.Fig. 4.30 shows both deployments, which were realized using TelosB

motes [18] (see Fig. 2.11), placed at distances of 5 meters, and the radio transmission power was

reduced to -7 dBm in order to reduce nodes radio influence space. Application A runs in five

nodes (1, 2, 3, 4 and 5), while application B runs in four nodes (9, 10, 11 and 12). Node 9 is,

at the same time, the root of the DAGs and a sink. Node 1 is the other sink. The nodes were

coded using ContikiOS (2.6)[16]. ContikiOS is a Operating System for WSN which incorporates

a implementation of the IPv6 protocol stack and uses RPL as the default routing protocol.

4.2.3.1 Results and Discussion

Each experiment was carried out for 4 hours. To log real time data, two Raspberry Pi platforms

were used, connected to both sink nodes via a serial connection. Inside each Raspberry Pi

[121] platform was a python program running, responsible to get timestamp data from each sink

with respect to query packets sent and reply packets received. In order to verify our proposed

synchronization mechanism we considered in this work: i) synchronization parameter’s values

α=0.125 and β=10; ii) packet reception time on the sink nodes side to estimate the expected

reception time and to compute the sleeping offset component (β · |δk,n|); iii) QSR results. The

main results obtained include the following:
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Figure 4.31: β · |δk,n|, with α=0.125 and β=10, histogram for each deployment (in %)

4.2.3.1.1 β · |δk,n] Component: Fig. 4.31 shows β · |δk,n| component, the sleeping offset

represented in Eq. 4.2) histogram for each deployment. As expected it presents the same uniform

distribution characteristics as the theoretical evaluation, and the simulations performed. Moreover,

we can see in Fig. 4.32 that this component presents in average a sleeping offset of 0.185 s.
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Figure 4.32: Box plot for β · |δk,n|, with α=0.125 and β=10, for each deployment (in sec)

4.2.3.1.2 QSR: Fig. 4.33 shows simulation and real implementation results. As it can be seen,

both present same values (100%), which means that also in real testbeds, the nodes reply to all the

queries sent by sinks, going to sleep and waking up while being synchronized.

Figure 4.33: Query Success Ratio (QSR) for the scenarios deployed (in %)

From the above results we can conclude that there are no major differences between what

was observed in the theoretical studies, in the simulation environment, and what was expected

in the testbed environment. This confirms the usability and the quality of the synchronization

mechanism proposed, when applied to Application-driven WSNs with the characteristics described

in this work.

In contrast to our centralized and synchronous proposed synchronization mechanism, in [122]

is proposed a synchronous protocol that provides a distributed strategy which guarantees con-

vergence for any undirected connected communication graph. This strategy tries to control the

nominal clock period and the clock offset based on the information received from neighbor nodes

in order to achieve synchronization. Moreover, when a underlying communications graph is

known, the authors purpose an optimal design strategy which can be used to study the effect

of noise and external disturbances on the steady-state performance.
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The integration of WSN with the IoT raises security issues as these networks may be subject

of malicious attacks. In contrast to our work, which does not address security in WSN, in [123]

is proposed the average-consensus-based time synchronization protocol (ATS) which does not

depend on any reference node or network topology, making it robust to different kinds of network

attacks. ATS is vulnerable to message manipulation attacks but the authors propose solutions to

overcome them. Firstly, they investigate the impact of message manipulation attacks and derive

a necessary condition for ATS to converge. Secondly, authors propose a new adjusting parameter

which exploits the two-hop neighboring information to constrain the attackers. Finally, the authors

incorporate all checking processes into a secure average-consensus-based time synchronization

protocol (SATS). This work proves that SATS guarantees the network time synchronization with

an exponentially converging speed.

In [124] WSN time synchronization follows two strategies: i) Maximum Time Synchronization

(MTS) to simultaneously synchronize the skew and offset of each node when the communication

delay is negligible, and ii) a Weighted Maximum Time Synchronization (WMTS) when the com-

munication delay between the nodes is random. In contrast to our work, in which we synchronize

a virtual clock, these authors attempt to synchronize the clock skew, in order to obtain acceptable

synchronization accuracies. The main idea of MTS and WMTS is to drive all clocks to the

maximum value among the network. In [124] are considered random communication delays

with normal distribution, while we validated our solutions against gaussian and exponentially

distributed delays. This solution can be classified as distributed and asynchronous algorithm,

whereas ours can be classified as centralized and synchronous.

4.3 Summary

This chapter describes our second contribution. In Section 4.1 we present and describe the

proposed Application-Driven WSN Synchronization Mechanism to maintain synchronized all the

sensor nodes in WSNs. The mechanism uses the EWMA technique to control the time the sensor

nodes would wake before the start of a new application cycle. In Section 4.2 an evaluation

of the synchronization mechanism is made, in which it was assumed that the sensor nodes are

affected by different network delay distributions. In Section 4.2.2 we performed simulations using

ContikiOS and Cooja to evaluate the mechanism in different network topologies, and confirmed

its functionalities.

Finally, two real testbeds were implemented and the experiments confirmed our simulations

results, showing that the mechanism also works in real applications.
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Conclusion

In this thesis we developed the RPL-BMARQ communications solution that can be used to

interconnect a network of sensor nodes. The solution extends the RPL routing protocol with the

purpose of improving energy efficiency by making the network aware of the traffic generated by

its applications. The developed solution assumes that sensors form an IPv6 network, each sensor

is enabled to run a single application, and the sensor nodes are not always active. By considering

the neighbors of each node and the application each node runs, the developed communications

solution enables the data of every application and node to be transferred while keeping the overall

energy consumed by the network low. The sensor nodes are expected to join the network at

different times and they are not synchronized. Therefore, a synchronism mechanism for the

developed communications solution is also proposed.

5.1 Work Review

Chapter 2 describes the IEEE 802.15.4 standard, 6LoWPAN, routing protocols for IPv6 based

WSNs, operating systems and simulation environments for WSN, and sensor hardware platforms.

This chapter also summarizes the state of the art on Energy efficiency and node synchronization in

Wireless Sensor Networks. Each sensor device in a WSN has hardware and software constraints

and is equipped with its own local clock, presenting synchronization challenges because of the

distributed nature of these networks. Therefore, the chapter also presents, describes and discusses

the state of the art regarding time synchronization in WSN. Finally, this chapter presents and

discusses techniques related to wakeup mechanisms that try to increase the nodes lifetime, namely

duty cycling techniques and scheduled rendezvous techniques.

Chapter 3 describes the RPL-BMARQ communications solution, an extension to the RPL

routing protocol that provides the creation of the DAGs following the Application-Driven WSN

concept. The solution tries to insure that data of an application is relayed mainly by the sensor

nodes running that application. The DAGs are created and maintained by choosing mainly the

nodes running the same application as parent; the nodes not associated to that application will

not be selected as parent. The solution was evaluated against standard RPL. For this purpose
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four network scenarios with different network topologies were selected and several simulations

were performed. Obtained results were analyzed considering: (1) DAGs created, (2) energy

consumption, (3) Query Success Ratio, (4) QSR fairness, (5) delay, (6) number of packets per

query, and (7) reaction to topology changes. The results showed that RPL-BMARQ: (1) follows

the Application-Driven concept and constructs the DAGs differently from the RPL solution; (2)

presents major energy gains with, in average, values of about 92%; (3) presents a QSR of 98%,

similar to the RPL solution; (4) presents, in average, QSR fairness index values for both solutions

above 99%; (5) makes delays to increase about 10%, in average, but our claims on energy saving

still holding; (6) presents lower total number of packets sent and received than the equivalent RPL;

and (7) presents a behavior just like RPL with respect to convergence times. In order to confirm

the results obtained from simulations, we also tested RPL-BMARQ in a real environment. For that

purpose, two of the scenarios studied were selected and deployed. The real power consumption

was measured and compared to the energy consumption obtained from simulations.

Chapter 4 proposes an Application-Driven WSN node synchronization mechanism to synchro-

nize the sensor nodes according to the application cycle they run, since it is unlikely that all

the sensor nodes would join a WSN at the same time. Therefore, all the sensor nodes need to

be awaken almost at same times in each application cycle in order to receive sink queries and

forward them to the other nodes. This synchronization mechanism uses a synchronous method

which includes a synchronization setup phase and a synchronization maintenance phase. The

mechanism makes use of the Exponentially Weighted Moving Average (EWMA) technique in order

to control the time a sensor node would wakeup in the next cycle. The work presents a study of this

mechanism assuming that the sensor nodes are affected by different network delay distributions,

allowing the nodes to go asleep and to wakeup in synchronism. A theoretical evaluation of the

mechanism is performed in order to estimate the α and β synchronization parameters, responsible

to control the time a sensor node need to wakeup in the next cycle before the reception of a packet.

To this end, different types of network delays (constant, uniform, gaussian and exponential) were

studied in order to observe the behavior of the mechanism and help selecting the better values

for α and β . Finally, the mechanism was evaluated by means of simulations, and confirmed its

functionalities.

5.2 Contributions Summary

This thesis provides two major original contributions:

• A novel mechanism using application-layer topologies (RPL-BMARQ) to constrain
RPL-defined routing trees: a communications stack named RPL-BMARQ is proposed

to insure that data of an application is relayed mainly by the sensor nodes running that

application. At this end, the solution changes RPL in order to change how the network DAGs

are created and maintained, by choosing mainly the nodes running the same application as

parent. RPL-BMARQ assumes that every node will primarily select its parent from a set

of nodes running the same application to which the data is associated, mainly exchanging
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packets between neighbors running the same application, avoiding paths which may include

nodes that do not run this application. Also, the solution puts the sensor nodes asleep when

there is no activity related to their applications. Parts of this contribution have also been

presented in [13, 14, 15].

• A novel Application-Driven WSN node synchronization mechanism for RPL-BMARQ:

the sensor nodes must share some kind of time reference which allow them to be synchro-

nized with respect to the life cycle of the applications they run. Therefore, an application-

driven synchronization mechanism is proposed which will help the nodes running the same

application to wakeup and to go asleep in a synchronized manner. The mechanism makes

use of the EWMA technique for calculating run-time average network delays to control the

time the sensor nodes would sleep before the next cycle, so they can successfully send,

receive, and forward packets. Parts of this contribution have also been presented in [15].

5.3 Future Work

Future work related to this work may include the following topics:

• Support for multiple applications: In the scenarios evaluated the network and the nodes

support two different applications, running one application per sensor. It would be inter-

esting to explore scenarios where more applications may be supported by the network and

the nodes. Also, having support for different applications with the same duty cycle would

be interesting to verify. As such, further experiments are envisaged using nodes randomly

deployed to identify shortcomings.

• IPv6 Multicast Support: By the time we started our developments, ContikiOS did not yet

implemented IPv6 multicast. For that reason, we had to design our Application-Driven Mul-

ticast Mechanism. Since last ContikiOS version released (3.0) IPv6 Multicast is supported;

it would be interesting to use this implementation which could open new research topics.

• ZigBee IPv6-based stack for 802.15.4 networks: Since ZigBee was not able to easily

plug its kind of networks into the IP-based Internet, the ZigBee alliance designed the

ZigBee IPv6-based stack for 802.15.4 networks, which changed the "traditional" ZigBee

stack to use 6LoWPAN, to use RPL as routing protocol, and to use UDP. In this context,

the deployment of both the RPL-BMARQ and its Application-Driven node synchronization

mechanism in this new stack would open an interesting engineering topic.

• IEEE 802.11ah (low power): Wi-Fi networks are widely available and interconnected to

the Internet. Although the Wi-Fi power consumption can be an issue for WSN, the latest

IEEE 802.11ah Low power Wi-Fi standard addresses this issue. Therefore, this low-power

Wi-Fi standard may be emerging as an alternate to IEEE 802.15.4. The deployment of both

the RPL-BMARQ and its Application-Driven node synchronization mechanism in this new

standard arises as another interesting research topic.
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• Node mobility: In this thesis node mobility was not considered. We have always assumed

that the nodes in the network are static. It would be interesting to investigate how our

contributions behave in a dynamic WSN, in which the nodes may move.
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Appendix A

Exponentially Weighted Moving
Average

The Exponentially Weighted Moving Average (EWMA) [125] is a technique used for calculat-

ing a run-time average characterized by giving less and less weight to data as they get older and

older. EWMA is easily plotted and may be also viewed as a forecast for the next observation.

The EWMA equals the present predicted value plus lambda times the present observed error of

prediction,
EWMA = ŷt +λ (yt − ŷt) (A.1)

where ŷt is the predicted value at time t (the old EWMA), yt is the observed value at time t, yt− ŷt

is the observed error at time t, and λ is a constant (0< λ < 1) that determines the depth of memory

of the EWMA. Eq. A.1 can be written as

ŷt+1 = λyt +(1−λ )ŷt (A.2)

EWMA statistics are currently used, for instance, by TCP to recover from undelivered segments;

the mechanism is based on [126] and EWMA is used to estimate the timeout value that depends

on Round Trip Time.
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