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Chemical changes of heat treated pine and eucalypt wood monitored 4 

by FTIR 5 
 6 

Abstract 7 

A hardwood, Eucalyptus globulus Labill., and a softwood Pinus pinaster Aiton., were heat treated at 8 
temperatures between 170 and 210ºC in an oven and in an autoclave. The samples were pre-extracted with 9 
dichloromethane, ethanol and water and ground prior to Fourier Transform Infrared (FTIR) spectroscopic 10 
analysis. 11 

The heat treatment caused significant changes in the chemical composition and structure of wood, in 12 
lignin and polysaccharides. Hemicelluloses were the first to degrade as proved by the initial decrease of the 1730 13 
cm-1 peak due to the breaking of acetyl groups in xylan.  Hardwood lignin changed more than softwood lignin, 14 
with a shift of maximum absorption from 1505 cm-1 to approximately 1512 cm-1 due to decrease of methoxyl 15 
groups, loss of syringyl units or breaking of aliphatic side-chains. The macromolecular structure becomes more 16 
condensed and there is a clear increase of non-conjugated (1740 cm-1) in relation to conjugated groups (1650 cm-17 
1). However, the changes induced by the thermal treatment are difficult to monitor by FTIR spectroscopy due to 18 
the different chemical reactions occurring simultaneously. 19 

 20 

 21 
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 23 

Introduction 24 

Heat treatment is one of the processes for modifying the wood with greater 25 

commercial success. There are different treatments: the Thermowood® process, originated in 26 

Finland, uses steam (Viitanen et al. 1994), the Plato® process, developed in the Netherlands, 27 

uses a combination of steam and heated air (Tjeerdsma et al. 1989), the Retiwood® process, 28 

of French origin, uses an inert gas (Dirol and Guyonnet 1993), the OHT® from Germany, 29 

uses hot oil (Sailer et al. 2000) and the Perdure® process, initially developed in France but 30 

later sold to a company from Canada (Kocaefe et al. 2008a) uses steam. 31 

Heat treatments lower the equilibrium moisture content of wood (Jämsa and 32 

Viitaniemi 2001; Wang and Cooper 2005; Esteves et al. 2007a, b; 2008a), increase its 33 

dimensional stability (Viitaniemi et al. 1997; Yildiz 2002. Wang and Cooper 2005. Esteves et 34 

al. 2007 a, b), and increase its durability (Dirol and Guyonnet 1993. Kamdem et al. 2002) and 35 

its darkness (Mitsui et al. 2001; Bekhta and Niemz 2003; Esteves et al 2008c). The main 36 

disadvantage of these heat processes is the reduction of the wood mechanical strength 37 

properties, such as static and dynamic bending strength (Yildiz 2002; Esteves et al. 2007 b) 38 

and resistance to compression (Unsal and Ayrilmis 2005).  39 

There are chemical changes in the the wood during heating. They start by 40 

deacetylation of hemicelluloses followed by depolymerization catalysed by the released acetic 41 
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acid (Tjeerdsma et al. 1998; Sivonen et al. 2002; Nuopponen et al. 2004). Simultaneously 42 

hemicelluloses undergo dehydratation with the decrease of hydroxyl groups (Weiland and 43 

Guyonnet 2003). In accordance with Esteves et al. (2008 b) hemicelluloses are affected first, 44 

followed by cellulose and lignin. 45 

FTIR is widely used in quantitative and qualitative analysis of wood because of its 46 

capacity to give information on the presence of functional groups, on composition and on 47 

some specific structural features. 48 

The main objective of this paper was to track the chemical changes occurring along 49 

the heat treatment (two different treatments, one with hot air and the other with steam) of a 50 

hardwood (Eucalyptus globulus) and a softwood (Pinus pinaster) by FTIR. 51 

 52 

Material and methods 53 

 54 

Two of the most important tree species in Portugal were tested: the hardwood 55 

Eucalyptus globulus Labill. and the softwood Pinus pinaster Aiton.. The pine samples were 56 

taken from the sapwood of a 40 year old tree from the Portuguese region of Águeda. For the 57 

eucalypt samples only heartwood was used from a tree with approximately 1 m in diameter, 58 

from the same region. The samples were treated in an oven and in an autoclave under several 59 

operating conditions. 60 

Cubic samples were prepared, with 40 mm edge, free from knots, resin canals or other 61 

singularities, with faces parallel to radial, tangential and longitudinal directions. The samples 62 

were stabilized during three weeks in a room conditioned at 50% relative humidity and 20°C. 63 

The equilibrium moisture content and the mass of all samples were determined.  64 

 65 

 66 

Oven heat treatments  67 

The stabilized samples were treated in a Selecta 125 litre oven without forced 68 

convection but with an outlet for gases exhaustion. The trials were conducted in the presence 69 

of air during 2, 6, 12 and 24 h, at 170ºC and 180°C. The time to reach the treatment 70 

temperature was one hour. Four samples were used in each test, making up a total of 32 71 

samples for each species. At the end of the heat treatment all samples remained for one hour 72 

in a desiccator and were weighted. The mass loss was determined for each sample in relation 73 

to its initial dry mass in accordance with: 74 

Mass loss (%) = (dry mass- treated mass) /dry mass * 100 75 
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 where the dry mass is the mass of the specimen without treatment, and the treated mass 76 

corresponds to the dry mass of the specimen after heat treatment. 77 

 Autoclave heat treatment  78 

The heat treatment in autoclave was carried out in an industrial prototype (Fig. 1), 79 

used for the production of expanded cork agglomerates, installed in an industrial plant of the 80 

Amorim Group located in Silves, Portugal. 81 

  82 

 83 

 84 

 85 

 86 

 87 

 88 

 89 

 90 

 91 

 92 

Figure 1. Autoclave used in the heat treatment in the absence of oxygen. 93 

  94 

The autoclave (1 m2 x 0.5 m in height), is divided into two parts by a metal plate 95 

placed vertically. The heating was achieved by superheated steam jacket as well as a mixture 96 

of superheated and saturated steam (Figure 1) from bottom to top. Since the experiments were 97 

made with a free autoclave volume, without any flow resistance, the steam rises vertically 98 

through the plate holes but with a preferentially horizontal direction from left to right with 99 

some projection against the wall on the right side, rising and moving then to the left. 100 

Tests were performed at normal pressure and temperatures between 190°C and 210°C 101 

for 2, 6 and 12 h. It was not possible to test the samples at lower temperatures since the 102 

minimum working temperature for the autoclave was 190ºC. The heating in the autoclave was 103 

done slowly up to 130°C through the sleeve and between 130°C and the working temperature 104 

the heating was quick and done with a mixture of saturated and superheated steam introduced 105 

inside the autoclave. The temperature of the treatment was maintained through the heating by 106 

the autoclave sleeve. The samples were taken from the autoclave after the treatment and 107 

placed in a desiccator. The mass loss was determined for each sample in relation to its initial 108 

dry mass as mentioned before. 109 
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For FTIR analysis, samples with approximately the same mass loss were chosen for 110 

both species and treatments. For each treatment, at least three samples were chosen, one with 111 

mass loss less than 1%, another one with mass loss around 3% which is generally considered 112 

the necessary mass loss to obtain a good stability, and a higher mass loss. For eucalypt treated 113 

in the autoclave a sample with mass loss less than 1% could not be obtained because all of the 114 

samples had a higher mass loss due to the treatment. 115 

 116 

FTIR Analysis 117 

Treated and untreated samples were cut into small pieces and then ground separately 118 

in a knife mill Retsch SMI, followed by a Thomas mill. The crushed material was subject to a 119 

screening using a Retsch AS200basic with 40, 60 and 80 mesh sieves. The sieving was 120 

carried out during a period of 20 minutes at a speed of 50 rpm. The sample was separated into 121 

4 fractions (>40, 40-60, 60-80 and <80 mesh). The samples from the 40-60 fraction were then 122 

extracted with dichloromethane, ethanol and water and air dried, according to Tappi Standard 123 

(T 264 om-88). After that 200 mg of air-dried wood were weighted, placed in an oven at 60°C 124 

overnight. The next day the samples were ground in a ball mill (Mixer Mill MM2, Retsch) for 125 

30 min at maximum power and left in a desiccator over phosphorus pentoxide. Heat treated 126 

pine and eucalypt wood samples with similar mass losses were chosen to collect the spectra. 127 

One spectrum was collected for each treatment-time-species combination. 128 

The spectra were obtained with 1.50 to 1.55 mg of material with 200 mg of dry KBr 129 

ground in a ball mill (Mixer Mill MM2, Retsch) for 20 s. Disk (13 mm in diameter) were 130 

formed on a 10 tons load hydraulic press. The sample and reference spectra were obtained 131 

with 32 scans in a Bio-Rad FTS spectrometer 165 with a DTGS detector at 4 cm-1 resolution 132 

for the 500-4000 cm-1 range. As reference we used the empty sample compartment. The 133 

spectra were analysed with the program OPUS (Bruker), fixing the baseline on 20 points. No 134 

normalization was made since no band stayed unaltered throughout the treatment. To clarify 135 

some results the band height ratio between 1740 and 1650 cm-1 was determined according to 136 

Faix and Böttcher (1992). 137 

  138 

Results and Discussion 139 

  140 

Figures 2 and 3 present the FTIR spectra of pine and eucalypt wood without treatment 141 

and after heat treatment in the oven. Eucalypt wood treated at 170ºC for 2, 6, 12, and 24 h had 142 
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mass losses of 0.1%, 1.1%, 2.7% and 3.7%, respectively. While pine wood treated at 180ºC 143 

during 2, 6, 12, and 24 h had mass losses of 0.8%, 1.4%, 4.0% and 7.4%, respectively. 144 

Figures 4 and 5 present the FTIR spectra of pine and eucalypt wood without treatment 145 

and after treatment in autoclave. Eucalypt wood treated at 190ºC during 2 and 12 h had mass 146 

losses of 4.8% and 9.0% respectively. While pine wood treated at 190ºC during 2 and 6 h and 147 

at 210ºC during 12 h had mass losses of 0.4%, 3.5% and 13.2% respectively. In order to show 148 

more than one spectrum in each figure a shifting in the y axis was made. 149 

  150 

Figure 2. FTIR spectra of pine wood: from top to bottom without treatment initial  and after 151 

treatment in an oven at 180ºC for 2 h, 6 h, 12 h and 24 h 152 

 153 
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Figure 3. FTIR spectra of eucalypt wood: from top to bottom without treatment initial  and 154 

after treatment in oven at 170ºC for 2 h, 6 h, 12 h and 24 h 155 

  156 

Figure 4. FTIR spectra of pine wood: from top to bottom without treatment initial and after 157 

treatment in autoclave at 190ºC for 2 h, 6 h, and at 210ºC for 12 h 158 

 159 

  160 

Figure 5. FTIR spectra of eucalyptus wood: from top to bottom without treatment initial and 161 

after treatment in autoclave at 190ºC for 2 h and 12 h 162 

Table 1 presents the most important bands that are observed in an infrared spectrum of 163 

wood and their assignment to functionality. 164 

 165 

5001000150020002500300035004000

A
b

so
rb

an
ce

Wavenumber (cm-1)

5001000150020002500300035004000

A
b

so
rb

a
n

ce

Wavenumber (cm-1)



 

7 

 

 166 

 167 

Table 1. Main bands of infrared spectrum of wood and their assignment to functionality  168 

 Wavenumber 

(cm-1) 
Functionality Vibrating type 

   

   

3400 O-H of alcohols, 

phenols and acids 
O-H stretching 1,2 

2970-2850 CH2, CH- and CH3 C-H stretching 1,2 
1750-1720 C=O of esters, 

ketones, aldehydes 

and acids 

C=O stretching, non-

conjugated1,2 

1700-1550 Conjugated C=O and 

C=C 

Conjugated C = O 

stretching, and C=C 

stretching1,2 
1600 Aromatic ring Benzene ring 

stretching vibrations 
1,2 

1515-1500 Aromatic ring Benzene ring 

stretching vibrations 
1,2 

1460 CH C-H deformations 2 

1420 Aromatic ring and CH Benzene skeletal 

combined with C-H 

deformations1,2 
1240-1330 Lignin S and G units 

and OH 

C-O stretching and 

bending OH1,2 

antisymmetric 

stretching vibration of 

the acetyl ester groups 
1140 G- Guaiacyl lignin 

and C-O 
C-H deformations in 

G lignin and C-O 

stretching3 
1128 S- Syringyl lignin and 

C-O 
C-H deformations in S 

lignin and C-O 

stretching1,3 
1025-1035 C-O-C Deformation 1,2 

897 anti-symmetric out-

of-phase stretching in 

pyranose ring 

stretching in pyranose 

ring 1,2 

1 Rodrigues et al. (1998); 2Mitchell and Higgins (2002) 3Faix (1991) 169 

The differences between spectra from untreated and heat treated wood were difficult to 170 

interpret since there are several reactions occurring at the same time. Nevertheless, there were 171 

changes in the FTIR spectra of wood with the heating treatments even for the mildest 172 

conditions corresponding to small mass losses, as can be seen in the spectrum of eucalypt 173 

treated in oven (Figure 3) at 170ºC during 2 h, corresponding to 0.1% mass loss. Even thought 174 

there aren’t significant changes from untreated wood a small decrease of the 1740 cm-1 peak 175 
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was noticeable. With an increase in mass loss all of the wood compounds were affected 176 

leading to several changes in the spectrum.  177 

It is a well known fact that chemical changes due to heat treatment start by 178 

deacetylation followed by depolymerization catalysed by the released acetic acid (Tjeerdsma 179 

et al 1998; Sivonen et al 2002; Nuopponen et al 2004). At the same time there is a 180 

carbohydrate dehydratation that reduces accessible OH groups (Weiland and Guyonnet 2003) 181 

and leading to the formation of furfural and hydroxymethylfurfural (Tjeerdsma and Militz 182 

2005). Lignin bonds are cleaved, resulting in a higher concentration of phenolic groups 183 

(Kollmann and Fengel 1965). The increased reactivity leads to lignin autocondensation and 184 

condensation reactions with aldehydes. 185 

The FTIR spectra of heat-treated pine and eucalypt wood (Figures 2-5) showed a 186 

broadening to lower wavenumbers of the band at 3430 cm-1 corresponding to the O-H 187 

stretching vibration from alcohols (3600-3300 cm-1) and carboxylic acids (3300-2500 cm-1), 188 

present either in polysaccharides and lignin. We suggest that this broadening might be due to 189 

the increase in carboxylic acids due to primary OH oxidation and/or hydrolysis of acetyl 190 

groups from hemicelluloses. Moreover the change of O-H stretching frequencies can also be 191 

due to the modification of cellulose crystallinity influenced by dehydration effects (Moharram 192 

and Mahmoud 2008, Spiridon et al. 2011). Even though O-H stretch due to polysaccharides 193 

should decrease, at the same time O-H from phenolic groups in lignin increases since it is a 194 

well known fact that the lignin percentage increases due to carbohydrate degradation (Esteves 195 

et al. 2011).  196 

The two bands at 2900-2800 cm-1 are composed by the overlapping  of the stretch 197 

asymmetric vibrations of -CH2- (generally around  2935-2915 cm-1 ) and -CH3 (2970-2950 cm-198 

1) and by the overlapping of stretch symmetric vibrations of -CH2- (2865-2845 cm-1) and -199 

CH3 (2880-2860 cm-1). Normally the asymmetric band presents a higher absorptivity. The 200 

apparent shift in frequency for the maximum of CH band is due to structural and relative 201 

composition changes, namely changes at cellulose crystallinity level which influences the C-202 

H and O-H stretch frequencies (Moharram and Mahmoud 2008, Spiridon et al. 2011), and 203 

changes in the relative importance of lignin methoxyl groups for which the CH3 stretching 204 

vibrations have lower CH stretching frequencies (Coates, 2000). If the OCH3 increases by 205 

reduction of the carbohydrates this implies that the contribution of the OCH3 becomes larger 206 

and the consequence is that we can see that the right shoulder becomes maximum. Although 207 

the asymmetric/symmetric stretch of methylene group (-CH2-) appears at slightly lower 208 

Eliminado:  209 

Formatada: Inglês (Reino Unido)

Formatada: Inferior à linha

Formatada: Inferior à linha
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wavelengths this does not necessary mean that there is an increase in methylene groups at the 210 

expense of methyl groups. 211 

The C=O linkage exhibits strong absorptions in FTIR spectra between 1750 and 1700 212 

cm-1, and the precise wavenumber depends of the functional group (carboxylic acid: at about 213 

1725-1700 cm-1; ester, ketone: 1725-1705 cm-1, aldehyde: 1740-1720 cm-1) and of its 214 

structural location, with lower wavenumbers for conjugated C=O. According to Mitchell and 215 

Higgins (2002), the band around 1730 cm-1 is almost exclusively due to the carbonyl groups 216 

of acetoxy groups in xylan. In the spectra of eucalypt and pine oven treated wood (Figures 2 217 

and 3) this band decreased initially but for longer treatments the band increased, shifting to 218 

smaller wavenumbers. The decrease at the beginning of the heat treatment (with mass losses 219 

around 1%) might be due to the breaking of acetyl or acetoxy groups in xylan. Similar results 220 

were obtained by Tjeersdsma and Militz (2005) after the first hydrothermal step of the Plato 221 

process and by Kocaefe et al. (2008b) with wood treated by the Perdure process. In the 222 

spectra of wood treated in autoclave (Figures 4 and 5) there was no initial decrease but only 223 

an increase and shifting to about 1730 cm-1. A possible reason for the absence of the initial 224 

decrease in these spectra is that the smaller mass losses for autoclave heat treated wood are 225 

around 4-5 % and the cleavage of acetyl groups had already occurred, possible around 1-2% 226 

mass loss. At these mass losses (4-5%) the decrease can no longer be seen because another 227 

effect superimposes. The increase and shifting for smaller wavenumbers with increasing 228 

treatment severity may be due to an increase of carbonyl or carboxyl groups in lignin or 229 

carbohydrates by oxidation. This increase was also obtained by Kotilainen et al. (2000) with 230 

Pinus sylvestris and Picea abies and González-Peña et al. (2009) who attributed this increase 231 

to lignin condensation reactions at the expense of C=C double bonds in conjugated carbonyl 232 

groups in lignin, vibrating at 1654 cm−1. Tjeerdsma and Militz (2005), who studied the FTIR 233 

spectra of holocellulose and lignin of heat-treated Fagus sylvatica and Pinus sylvestris, 234 

concluded that the increase of the 1740 cm-1 band was due only to the lignin as there was no 235 

increase in holocellulose. These authors considered this increase to be due to the occurrence 236 

of estherification when the existent acid reacts with the hydroxyl groups of the cell-wall 237 

material. If estherification occurs the band at 1240 cm-1 should also increase due to 238 

antisymmetric stretching vibration of the acetyl ester groups which with our samples doesn’t 239 

happen. Nevertheless since this is a composed band the eventual increase could be overlapped 240 

by the decrease of other compound. Li et al. (2002) studied the heat degradation of lignin in 241 

hardwood and softwood and obtained an increase in the peak at 1720 cm-1 with increasing 242 

temperature, which they concluded to be due to the production of C=O bonds in lignin 243 
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To better understand what happens between 1800 and 1600 cm-1 wavenumber Figure 6 244 

shows this range of Figure 2 in detail (Pine oven treated wood) and presents also the ratio of 245 

the band heights at 1740 and 1650 cm-1. In this figure an initial decrease followed by an 246 

increase of the 1740 cm-1 band in relation to 1650 cm-1 band can be seen. The maximum of 247 

the 1740 cm-1 band shifts from the initial point around 1738 cm-1 to about 1729 cm-1. 248 

 249 

Figure 6. FTIR spectra of pine wood in the wavenumber range from 1800 to 1600 cm-1. From top to 250 
bottom: without treatment and after treatment in an oven at 170ºC for 2 h, 6 h, 12 h and 24 h and ratio 251 
of band heights at 1740 cm-1 / 1650 cm-1. 252 

 253 

The increase of the peak at 1740 cm-1 in relation to 1650 cm-1 means that non-254 

conjugated C=O groups increased in relation to conjugated groups. Similar results were 255 

described by González-Peña et al. 2009. 256 

The band at 1595 cm-1 corresponds to vibrations in the aromatic ring of lignin plus 257 

C=O stretching. The band at 1595 cm-1 broadens to about 1613 cm-1 for eucalypt but not for 258 

pine wood (Figures 2 to 5). This peak broadening suggests that there was an increase of 259 

structural diversity around the aromatic rings, absorbing at a greater range of frequencies. The 260 

height of the band seemed to increase only in the spectrum of eucalypt wood treated in 261 

autoclave (Figure 5). According to Kotilainen et al. (2000) this band increases due to an 262 

increase in the percentage of lignin in treated wood. Li et al. (2002) also obtained an increase 263 

of the peak at 1595 cm-1 in lignin at temperatures between 25ºC and 460°C, although no 264 

explanation was given. 265 

Ini 0.95

2h 0.94

6h 1.03

12h 1.07

24h 1.08

1740/1650
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Aromatic rings exhibit, most of the times, a characteristic band at approximately 1500 266 

cm-1, corresponding to benzene ring stretching vibrations. This band is very important 267 

because it is at about 1505 cm-1 for hardwood lignin (Guaiacyl - G and Syringyl - S) and at 268 

about 1510 cm-1 for softwood lignin (Guaiacyl-G) (Faix 1991). The band at 1505 cm-1 for 269 

eucalypt wood decreased, shifting to about 1512 cm-1 (Figure 7). This can be due to the 270 

decrease of the methoxyl groups in lignin which would lead to a lignin more similar to 271 

softwood (G-lignin) or to the loss of S units, since this monomer is generally less condensed 272 

by C-C bonds than guaiacyl monomers and is more prone to be liberated by a thermal 273 

degradation (Faix et al. 1990). 274 

 275 

Figure 7. FTIR spectra of eucalypt wood from top to bottom without treatment  and after treatment in 276 
oven at 170ºC for 2 h, 6 h, 12 h  and 24 h in the range 1750-1200 cm-1 277 

The shifting of this band is in agreement to the results presented by Windeisen et al. 278 

(2007) and Kocaefe et al. (2008b), and attributed to the breaking of aliphatic side-chains in 279 

lignin and/or condensation reactions. 280 

The band at 1460 cm-1 corresponds to the asymmetric deformation of C-H bond of 281 

xylan, while the band at 1420 cm-1 corresponds to the vibration of the aromatic ring of lignin, 282 

but also to the C-H bending in cellulose (Mitchell and Higgins 2002). No consistent variation 283 

was found for the 1460 cm-1 and 1420 cm-1 peaks. According to Kotilainen et al. (2000) and 284 

Weiland and Guyonnet (2003) the peaks at 1460 cm-1 and 1420 cm-1 increase with heat 285 

treatment. The band at 1375 cm-1 broadened to smaller wavenumbers but with no consistent 286 

variance. The band at 1333 cm-1 represents the contributions of all structural components of 287 

wood because it corresponds to C-H bending of polysaccharides which joins the band at 1327 288 

15051515 1245

120013001400150016001700

A
b

so
rb

an
ce

Wavenumber (cm-1)

Eliminado: 1700289 



 

12 

 

cm-1 of S and G lignin condensed units (Faix 1991). There was a clear increase at 1330 cm-1 290 

corresponding to an increase in lignin condensation. The same was reported by Windeisen et 291 

al. (2007). 292 

For eucalypt wood (Figures 3, 5 and 7) the band at 1245 cm-1, decreased in height but 293 

broadened which once again confirms the existence of a more condensed structure 294 

(Windeisen et al. 2007; Kocaefe et al. 2008b). According to Kotilainen et al. (2000) this peak 295 

increases, but no explanation was given. The band at 1140 cm-1 is the result of the sum of the 296 

contribution of C-H deformation in aromatic rings and C-O stretching in primary alcohols. 297 

This band has a shoulder at 1140 cm-1 in woods with G lignin (Figure 2 and 4) and 1128 cm-1 298 

in the woods with GS lignin (Figures 3 and 5) (Faix 1991). No consistent variation was found 299 

for this band. 300 

The peak at 897 cm-1, corresponding to the sugar ring tension, seemed to decrease with 301 

increasing severity of the treatment which is consistent with ring opening (Figures 2 to 5). 302 

Similar results were obtained by Kotilainen et al. (2000) and González-Peña et al. (2009). 303 

These results are generally consistent with the chemical changes determined by wet 304 

chemistry for heat treated pine and eucalypt in oven and in autoclave (Esteves et al. 2006; 305 

Esteves et al. 2008b; Esteves et al. 2011). In the beginning of the treatment, hemicelluloses 306 

are the first to degrade, as proved here by the initial decrease of the 1740 cm-1 peak attributed 307 

to the cleavage of acetyl or acetoxy groups in xylan. The attack on polysaccharides during 308 

heating is clear by the decrease of the peak at 897 cm-1 corresponding to the pyranose ring 309 

opening. The increase in lignin content that derived from the carbohydrate loss can be seen by 310 

the later increase of the 1740 cm-1 peak which according to Li et al (2002) is due to the 311 

formation of carbonyl groups in lignin. 312 

No significant differences between oven and autoclave treatments were observed. In 313 

the range of the studied thermal treatments and wood mass losses, no influence of air or steam 314 

heating was detected by FTIR analysis. The different chemical reactions occurring at the same 315 

time make the existing differences between spectra very difficult to follow. 316 

 317 

Conclusions 318 
  319 

The heat treatment caused significant changes in the chemical composition and 320 

structure of wood, by changing polysaccharides and lignin. That can be observed by FTIR 321 

analysis. Hemicelluloses are the first components to degrade due to deacetylation. Hardwood 322 

lignin changes more than softwood lignin, due to demethoxylation, loss of S units or breaking 323 
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of aliphatic side-chains. The macromolecular lignin structure becomes more condensed with 324 

the presence of non-conjugated/conjugated groups. The changes induced by the thermal 325 

treatment are due to different chemical reactions occurring simultaneously. 326 
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