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ABSTRACT 

A metabolome is the complete set of small molecules or metabolites present in a biological 

system. It is the result of internal, genetically determined processes, as well as external 

factors. The metabolome can consequently be seen as an interface between the genome and 

the environment. In contrast to gene transcription and translation which do not necessarily 

result in active gene products, metabolite levels are a direct consequence of the active 

phenotype and can therefore provide knowledge about cellular mechanisms in health and 

disease.  

The aim of untargeted metabolomics is large-scale detection and quantification of the 

complete metabolome in a given sample. On a physicochemical level, the metabolome 

constitutes a complex mixture of compounds, making complete metabolome coverage an 

analytical challenge. Liquid chromatography-mass spectrometry (LC-MS), which was used 

throughout this work, is a widely used analytical platform for metabolomics due to its high 

sensitivity and large metabolome coverage. 

In paper I of the present thesis, we identified novel potential metabolite markers for 

pancreatic cancer, comparing serum and plasma samples from patients with pancreatic ductal 

adenocarcinoma (PDAC) and chronic pancreatitis (CP). The comparison with chronic 

pancreatitis is not only clinically relevant, since distinguishing CP and PDAC is a challenge 

with current diagnostic tools; CP also constitutes an inflammatory control condition of the 

pancreas and therefore aids in the exclusion of non-specific, general disease markers. The 

comparison with relevant control groups is an important aspect of biomarker discovery study 

design in general. In paper II we showed that the inclusion of non-related disease controls, 

apart from organ-specific inflammatory controls, can contribute further to the identification of 

disease-specific biomarkers. We compared the serum metabolic profiles of three non-related 

diseases with healthy controls and based on overlap analysis of the results we concluded that 

despite very different etiology and clinical presentation, these three diseases have highly 

similar effects on the levels of metabolites in serum. In paper III we moved from blood-

based, systemic metabolic profiles to the intracellular level. Combining LC-MS 

metabolomics with RNA sequencing, stable isotope tracing and viability assays, we 

characterized metabolic reprogramming associated with drug-resistance in cancer. When the 

experimental aim is to discover novel and unexpected dysregulations of the metabolic profile 

without prior knowledge of the compounds involved, as in papers I-III, large metabolome 

coverage is a key aspect. In paper IV we therefore evaluated the impact of the reconstitution 

solvent on metabolome coverage. Taken together, papers I-IV show the large potential of 

untargeted LC-MS metabolomics as a tool for discovery, to be used as a starting point to trace 

a chain of molecular events to its origin. 
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1 BACKGROUND 

1.1 THE METABOLOME 

The fundamental cellular process referred to as the central dogma of molecular biology starts 

with the transcription of genes to messenger RNA (mRNA), followed by the translation of 

mRNA into proteins. The proteins in turn catalyze the chemical reactions of small molecular 

substrates and products (Figure 1). This thesis will focus on the endpoint of this process: the 

small molecules, i.e. the metabolites, of the human body and specifically how they are altered 

in disease. 

Metabolites have a wide range of cellular functions. Among others, they are intermediates in 

energy metabolism, they are building blocks for cellular structures, and they function as 

signaling molecules activating cellular pathways. In fact, all cellular components consist of 

metabolites, in the sense that nucleotides are the building blocks of DNA molecules, and 

amino acids are the primary building blocks of proteins.  

The complete set of metabolites of any system under investigation – e.g. tissue, cell type or 

bodily fluid – is referred to as the metabolome. The composition of a given metabolome 

depends not only on the sample type, but also on a combination of internal and external 

factors. Hence the metabolome can be seen as an interface between genetically determined as 

well as environmental processes, such as diet and lifestyle. 

 

 

 

Figure 1. Metabolites and the central dogma of molecular biology. Metabolites can be seen as the 

endpoint of a cellular process starting at the genome level. At the same time, metabolites are the 

building blocks of all cellular components. For example, nucleotides and amino acids are the building 

blocks required for DNA molecules and proteins, respectively. 
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1.2 METABOLOMICS 

1.2.1 Untargeted and targeted quantitative metabolomics 

Metabolomics refers to large-scale studies where up to thousands of metabolites can be 

detected and quantified at the same time in a given sample. The expression “metabolomics” 

was first introduced in 2000 in the context of plant functional genomics (Fiehn, Kopka et al. 

2000). 

There are two main approaches to a metabolomics study, targeted and untargeted (Patti, 

Yanes et al. 2012). In a targeted approach, a hypothesis already exists about the importance 

of a specific set of metabolites for the research question at hand. In other words the identities 

or the compound class of the detected metabolites is known beforehand and the analytical 

workflow can be optimized for that particular set of compounds. The main advantages of this 

approach are increased analytical depth due to increased sensitivity, higher precision and the 

possibility to use absolute quantification of metabolite levels. 

In untargeted metabolomics on the other hand - the main approach used in this thesis - the 

identities or the compound classes of the metabolites in a given sample are unknown. Hence 

the aim is the unbiased detection and quantification of a complete metabolome, usually with 

the purpose to generate novel hypotheses to be tested at a later stage in the research process. 

The main advantage of an untargeted approach is the analytical width which allows for the 

possibility to discover novel, unanticipated dysregulations of metabolite levels. Relative 

quantification is used to compare the metabolite levels in two or more groups of samples. 

Regardless of the approach used, it must be pointed out that both targeted and untargeted 

metabolomics are quantitative methods that provide limited information about the underlying 

molecular mechanisms that cause altered metabolite levels. Mechanistic elucidations 

therefore require follow-up experiments, e.g. using metabolic flux analysis (Johnson, 

Ivanisevic et al. 2016). 

1.2.2 Analytical challenges 

As mentioned above, the aim of an untargeted metabolomics study is the unbiased detection 

and quantification of a complete metabolome. However, this aim is an analytical challenge. 

Unlike the proteome, which to a certain extent can be mapped according to the genome, the 

size of the human metabolome is unknown. Currently, it can be estimated to comprise 

approximately 6000 metabolites (Wishart, Jewison et al. 2013), of which around 2000 are 

included in metabolic pathway maps (Thiele, Swainston et al. 2013, Zamboni, Saghatelian et 

al. 2015). The number of characterized endogenous metabolites is approximately 3000 

(Wishart, Jewison et al. 2013), depending on how “endogenous” is defined. Again, unlike the 

proteome - which is based on combinations of 21 amino acids with similar chemical 

properties - the metabolome does not consist of a set of common building blocks. Its diversity 

is instead dictated on the atom level, making it a compound mixture of large complexity as 

regards physicochemical properties such as hydrophobicity/hydrophilicity (logP) and acid 
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dissociation constants (pKa). In addition, metabolite concentrations cover a large dynamic 

range of at least eight orders of magnitude. For example, testosterone can be present in blood 

at concentrations in the range of 10
-9

-10
-12

 M, to be compared with 10
-3

 M for glucose 

(Wishart, Jewison et al. 2013). 

1.2.3 Analytical platforms 

Due to its complexity, different analytical technologies are needed to detect different parts of 

the metabolome. Further, metabolome coverage is significantly increased when the detection 

step is preceded by a metabolite separation method. The two main detectors used in 

metabolomics are 
1
H-nuclear magnetic resonance (NMR) and mass spectrometry (MS). 

While 
1
H-NMR requires the presence of hydrogen protons in the molecular structure, MS 

detects metabolites according to their mass-to-charge ratio (m/z) and therefore requires 

molecular ionization. Another main difference is that while 
1
H-NMR analysis is in most cases 

performed without prior metabolite separation, which limits the number of metabolites 

detected, MS is often coupled online to a separation system. Gas chromatography (GC) and 

liquid chromatography (LC) are the two most common methods of separation used in 

combination with MS for untargeted metabolomics applications.  

Some of the technical and analytical aspects of LC-MS analysis will be discussed more 

thoroughly below, since this platform was used throughout the present thesis; 
1
H-NMR and 

GC-MS however will only be outlined very briefly for the purpose of comparison with LC-

MS (Table 1). 

 

Platform Coverage Pro Contra 
1H-NMR - All compounds containing 

a hydrogen proton 
- Structural 
characterization of 
unknowns 
- Reproducible 
- Absolute quantification 
- Large dynamic range 

- Low sensitivity in 
complex samples 

    

GC-MS - Mw < 500 Da 
- Central carbon 
metabolism 
- Sugars/neutrals 
- Amino acids 

- Identification  
- Small sample amounts 
needed 

- Highly polar 
compounds excluded 
- Low Mw only 
- Identification of 
unknowns not possible 

    

LC-MS - All ionizable compounds, 
i.e. acidic/basic 

- High sensitivity 
- Large coverage 
- Small sample amounts 
needed 

- High maintenance 
- More neutral 
compounds excluded 

Table 1. Comparison of major analytical platforms in metabolomics. Mw, molecular weight. Da, 

Dalton. 
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1.2.3.1 1
H-NMR 

When subjected to electromagnetic radiation of a specific frequency in the presence of a 

strong magnetic field, each metabolite emits a unique energy signature which depends on the 

chemical environment of its constituent hydrogen protons. The chemical environment in turn 

is determined by the position of the hydrogen protons in the molecular structure. Since all 

endogenous metabolites can be expected to contain at least one hydrogen proton, complete 

metabolome coverage is in theory possible using 
1
H-NMR. However, in a complex biological 

sample containing thousands of compounds – typical for untargeted discovery metabolomics 

– unique molecular energy signatures become difficult to distinguish, particularly for low-

abundant metabolites. 
1
H-NMR therefore suffers from low sensitivity (Markley, 

Bruschweiler et al. 2016). Typical compounds detected by 
1
H-NMR include amino acids, 

central energy metabolism intermediates and short chain fatty acids (Shi, Brunius et al. 2016). 

If samples of high purity and concentration are available, 
1
H-NMR – in comparison with GC- 

and LC-MS – is the only platform which allows de novo structural determination of unknown 

compounds. 

1.2.3.2 GC-MS 

In GC, metabolites are separated according to their boiling point. By gradually increasing the 

temperature a high efficiency separation of a complex mixture is achieved. Molecules with 

higher molecular weight require higher temperatures to reach their boiling point; higher 

temperatures are however associated with a risk of thermal metabolite degradation (Fang, 

Ivanisevic et al. 2015). Similarly, more polar metabolites have higher boiling points, which 

can be lowered by derivatization of polar functional groups. Derivatization is however 

performed in a non-aqueous solvent which limits metabolite solubility. In practice, this means 

that polar compounds as well as compounds with a molecular weight > 500 Da (including 

derivatization) are rarely detected using GC.  

Following GC separation, metabolites are commonly ionized and detected by electron 

ionization (EI) MS. EI causes extensive metabolite fragmentation in a pattern unique to each 

compound. The pattern can then be matched against a comprehensive database for metabolite 

identification. Typical compound classes identified include organic acids, amino acids and 

more neutral metabolites such as carbohydrates (Dunn, Broadhurst et al. 2011). 

1.2.3.3 LC 

As previously mentioned, LC can readily be coupled online to MS using atmospheric 

pressure ionization. LC-MS is arguably the most sensitive and widely used analytical 

platform for untargeted metabolomics (Buscher, Czernik et al. 2009, Patti, Yanes et al. 2012). 

It enables the analysis of complex mixtures of large and polar non-volatile compounds in 

solution, typical for biological samples. Compared to 
1
H-NMR and GC-MS there are several 

different LC-MS applications which combined result in the largest metabolome coverage 

(Nordstrom and Lewensohn 2010, Ivanisevic, Zhu et al. 2013). 
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The most commonly used LC application in metabolomics is reversed phase (RP) 

chromatography (Yin and Xu 2014), where metabolites are separated according to their 

hydrophobicity. The liquid sample is injected into a carrier solvent, the mobile phase, which 

transports the sample through a column, the stationary phase. The stationary phase is 

hydrophobic, e.g. coated with saturated carbon chains, commonly of 18-carbon atom length 

(C18); the mobile phase consists of a mixture of H2O and an organic modifier such as 

acetonitrile (ACN). Separation is achieved based on analyte partition between the stationary 

and the mobile phase. Initially, at the time of sample injection, the mobile phase typically 

contains a high percentage of H2O. Hydrophobic metabolites will then have a higher affinity 

for the stationary phase than for the mobile phase and will be more or less retained by the 

column, causing metabolite separation. Polar metabolites on the other hand are minimally 

retained, and therefore minimally separated, by the stationary phase. The organic content of 

the mobile phase is subsequently increased using a linear gradient, causing elution from the 

column of the more hydrophobic metabolites. Compound classes commonly detected by 

RPLC-MS are moderately polar/non-polar and non-neutral metabolites such as organic acids 

(including amino acids), fatty acids and phospholipids. 

Hydrophilic interaction liquid chromatography (HILIC) is based on an orthogonal separation 

mechanism to RPLC. A hydrophilic stationary phase is used, typically in combination with 

close to 100 % organic solvent as initial mobile phase condition. Polar metabolites are then 

retained, and therefore separated, to a higher degree than hydrophobic compounds. The 

aqueous content of the mobile phase can then be gradually increased to elute the more polar 

metabolites from the column. Typical compound classes detected by HILIC-MS include 

more polar organic acids, amino acids, nucleotides and intermediates of central energy 

metabolism (Hemstrom and Irgum 2006). 

1.2.3.4 Electrospray ionization 

Following LC separation, the solubilized metabolites need to be vaporized and ionized when 

they are eluted from the column to enable detection by MS. This can be achieved by the 

application of a high positive or negative voltage (in the range of 2-5 kV) at the MS inlet, 

which in combination with solvent evaporation leads to the formation of desolvated gas phase 

ions. This ionization technique is called electrospray ionization (ESI) (Cech and Enke 2001).  

In contrast to EI, where metabolites in general undergo fragmentation to the point that the 

molecular ion cannot be detected, the ESI process is a so called “soft” ionization technique 

which leaves the molecular ion largely intact. The loss or gain of hydrogen protons is the 

main ionization mechanism in biological samples; due to their small molecular size, 

metabolites typically have only a single charge site and can therefore lose/gain one proton 

only, as opposed to e.g. the multiple charge sites of polypeptides. Apart from proton transfer 

reactions, adduct formation with sodium, potassium and chloride ions is also common. 

The ESI response of different metabolites varies depending on their individual properties. 

Thus two different compounds can have significantly different signal intensity, despite equal 
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sample concentration. Further, some metabolites ionize in both positive and negative mode 

ESI – referring to the negative or positive voltage applied at the MS inlet – while others can 

be detected in one mode only. The highest metabolome coverage is therefore achieved by 

sample analysis in both positive and negative mode ESI (Nordstrom, Want et al. 2008, 

Ivanisevic, Zhu et al. 2013). 

1.2.3.5 Ion suppression 

An analytical concern using LC-MS is ion suppression, commonly as a result of matrix 

effects. This occurs when the compound(s) of interest co-elute with other – detected or 

undetected – molecules which alter the ionization efficiency at the ion source. This is more or 

less inevitable when a complex sample is analyzed since complete compound separation 

cannot be achieved with any LC method. The effect can be a loss of sensitivity, sometimes to 

the extent that a compound is undetectable, although sensitivity enhancement is also possible. 

Further, reproducibility and precision can be affected (Furey, Moriarty et al. 2013). 

Matrix effects are to a large extent dependent on sample type. In a typical untargeted 

metabolomics study design, two or more groups are compared using the same type of sample 

in both groups. It is therefore reasonable to assume that any matrix effects are fairly equal in 

both groups and consequently will not lead to false discoveries. The effects are however 

important to consider for the purpose of increased metabolome coverage, since it is likely that 

ion suppression reduces overall sensitivity and thus the number of species detected. 

1.2.3.6 MS 

As previously mentioned, MS is an analytical technique where molecules are separated 

according to their mass-to-charge ratio (m/z). Essentially, it provides the molecular weight of 

ions which can be used to determine the elemental composition, structure and identity of a 

compound. 

An MS instrument consists of the three major modules ion source, mass analyzer and 

detector. The ion source produces gas phase ions, e.g. by ESI as discussed above, while the 

m/z separation occurs in the mass analyzer. In the final detector module, the number of ions 

with identical m/z is measured to provide an intensity value. If the MS analysis is preceded 

by a separation step such as LC, there will also be a retention time value, apart from the 

intensity, for each m/z. LC-MS data can therefore be described as three-dimensional (Figure 

2). Depending on instrument- and analysis type, a fragmentation step can be performed prior 

to m/z separation and detection. Ions of a particular m/z are isolated and fragmented by 

collision energy. The m/z values and relative intensities of the fragments can then be used for 

compound identification. 

The performance of a mass analyzer depends to a high degree on its mass accuracy and 

resolution. The mass accuracy is calculated by comparing the experimental and theoretical 

mass value of a known compound, usually expressed in parts per million (ppm). High mass 

accuracy is important for compound identification and is closely linked to the resolution: if 

two different compounds of very similar mass value cannot be separated, they will be  
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Figure 2. Schematic representation of LC-MS data. The raw data output from an LC-MS analysis can 

be described as three-dimensional with m/z, retention time and intensity on the axes, also referred to 

as MS1. An ion of interest (red) can be isolated and fragmented for the purpose of identification, 

resulting in a fragmentation spectrum referred to as MS2. 

 

combined into one compound only with an average mass value, leading to low mass 

accuracy. 

The two types of mass analyzer used for untargeted metabolomics are Quadrupole Time-of-

Flight (Q-ToF) and Linear Trap Quadrupole (LTQ) Orbitrap. In a Q-ToF, molecular ions are 

separated according to the time it takes for each ion to pass through a flight tube and reach the 

detector. The flight time is proportional to the m/z value. The quadrupole that precedes the 

flight tube can be used for isolation and fragmentation, after which the m/z values of the 

fragments are determined by the time-of-flight analyzer. Q-ToF-instruments have high linear 

dynamic range combined with high acquisition rate, i.e. the time required for ion collection, 

analysis and detection is short; a property which is of importance in LC-MS applications in 

order to detect a maximal number of compounds as they elute from the LC column. 

In an LTQ Orbitrap, ions are separated based on their resonance frequency in an 

electromagnetic field, which in turn depends on their m/z ratio. In contrast to a Q-ToF, an 

LTQ Orbitrap can perform multiple rounds of sequential fragmentation of a molecular ion for 

structural elucidation purposes (see section on metabolite identification below for further 

information). LTQ Orbitrap analyzers are also capable of very high mass accuracy and 

resolution. 

When the identity of the compound of interest is known, i.e. in targeted applications, a triple 

quadrupole (QQQ) MS is preferable. This type of mass analyzer is based on the stable 

trajectory of a molecular ion and its fragments through an oscillating electric field. Although 

resolution and mass accuracy of a QQQ is low compared to the analyzers mentioned above, it 

has the advantage of high sensitivity and specificity. 
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Figure 3. Schematic of a typical LC-MS based untargeted metabolomics workflow. Following study 

design, sample collection and preparation, LC-MS analysis collecting MS1 data is performed. Data is 

then preprocessed, including e.g. peak picking and filtering, prior to uni- or multivariate statistical 

analysis. Reintegration in raw data, also referred to as recursion, in combination with manual curation 

is an important quality control step. Metabolites are then identified by accurate mass and retention 

time, combined with MS2 fragmentation spectra for structural elucidation, to be placed in a biological 

context. Further analyses such as validation or mechanistic investigations can then be performed 

depending on the research question. 

 

1.2.4 Untargeted metabolomics workflow 

A typical LC-MS based untargeted metabolomics workflow aims to identify differences in 

metabolite levels between different conditions in a particular biological context. The different 

steps of the untargeted workflow are presented as a schematic in figure 3 (some aspects will 

also be discussed further in the following two sections). 

The first step of the workflow is the study design where one important aspect is to decide 

upon relevant control(s) for the condition to be studied. Samples are then acquired, prepared 

by metabolite extraction and screened on the MS1 level to acquire peak integration data for 

relative quantification. Thousands of peaks are usually detected in each sample. 

Following acquisition the MS raw data is processed, including automatic peak picking, 

alignment and integration. Each peak is annotated with an m/z value and a retention time and 

is at this stage referred to as a metabolite feature. 

Next, a uni- or multivariate statistical test is performed to identify the metabolite features that 

discriminate between the different conditions studied. Targeted re-integration, i.e. recursion, 

of the discriminating features is then performed as a feature quality control step. Ideally, 

recursion is performed prior to the statistical test, but since a certain amount of manual 

curation is required for quality control, a means of metabolite feature ranking and selection 

can be necessary already before recursion. 
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For identification, select or pooled samples are re-analyzed in targeted MS2 mode to acquire 

fragmentation spectra for structural information. The MS2-spectra and retention time values 

are ideally matched against a database (in-house or public) together with accurate mass 

values of the molecular ions. Identified metabolites can then be placed in a biological context 

e.g. by pathway analysis. 

Depending on the research question, the metabolites identified in this initial screening process 

can then be confirmed as discriminative in a validation sample cohort as part of e.g. a 

biomarker study; another example is to use the results from the screening process as a 

hypothesis-generating basis for further mechanistic investigations. 

1.2.5 Data analysis 

1.2.5.1 Data preprocessing 

As mentioned above, a number of data processing steps are needed to extract the relevant 

information from an MS raw data file in an untargeted metabolomics study. They can be 

performed automatically using either open-source software like XCMS (Smith, Want et al. 

2006) or a vendor-specific version. 

Peak picking is the first processing step where the peaks are identified and separated from the 

background chemical noise. Peak alignment due to retention time drift is a processing step 

that may be necessary to ascertain that the same peak is compared across all samples for each 

feature. This is particularly important in larger studies where samples are analyzed over long 

periods of time. Compound identification removes the large number of redundant peaks 

arising mainly from isotopic patterns and adduct formation. Peak filtering, where e.g. low 

abundant metabolite features are excluded, reduces the number of false positives and the 

amount of manual curation necessary at later stages. Sample-wise normalization can be 

performed to correct for MS signal intensity drift over time. Since relative quantification 

depends on the correct measurement of differences in metabolite levels that reflect a 

particular phenotype, normalization is an important aspect of untargeted metabolomics 

studies. Several different approaches can be used including global and quality control-sample 

based normalization (Dunn, Broadhurst et al. 2011, Trezzi, Vlassis et al. 2015). 

1.2.5.2 Univariate statistical analysis 

Group-wise statistical analysis is used to identify variables, i.e. metabolites, that are 

significantly different in concentration level between two or more sample groups. 

The most commonly used univariate statistical analysis method is the Student’s t-test, which 

compares the distribution of one variable at a time between two sample groups. Student’s t-

test assumes normal distribution and equal variance. If the sample groups have unequal 

variance, e.g. due to differences in sample size, Welch’s unequal variance t-test can be used 

instead. 
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A typical untargeted metabolomics experiment produces over a thousand variables to be 

tested, which leads to an increased probability that some of them differ between the two 

sample groups by chance alone (i.e. false positives). One commonly used method for 

controlling the number of false positives is the Benjamini & Hochberg false discovery rate 

(FDR) correction method. Typically, it results in corrected (higher) p-values, thus decreasing 

the number of variables passing the significance cut-off level. 

1.2.5.3 Multivariate analysis 

As opposed to the univariate comparison of one variable at a time, multivariate methods take 

all variables into account simultaneously. The multivariate approach identifies metabolite 

patterns, rather than single metabolites, that differ between sample groups. An example of 

such a metabolite pattern could be compounds that belong to the same dysregulated pathway. 

Depending on the research question, there are unsupervised and supervised multivariate 

methods. Principal components analysis (PCA) is an unsupervised method that identifies the 

largest variation in the data set regardless of sample groups. It can be used to get an overview 

of the data, e.g. to assess clustering and outliers. Orthogonal partial least squares-discriminant 

analysis (OPLS-DA) (Trygg and Wold 2002) on the other hand is a supervised method that 

identifies the variation that is related to a predefined classification. Comparing two sample 

groups, OPLS-DA separates the variables that differ between the groups, i.e. the biologically 

relevant information, from those that vary due to unrelated causes, e.g. the technical analysis. 

1.2.6 Metabolite identification 

1.2.6.1 Metabolite databases 

After selecting the metabolite features that are of interest to the research question, metabolite 

identities are required to place these features in a biological context. Ideally, high confidence 

identification is achieved by matching experimental values for i) the accurate mass of the 

molecular ion of interest, ii) its retention time and iii) MS2 fragmentation spectrum against 

the corresponding values for the standard metabolite compound. To enable a retention time 

match, both compounds must be analyzed using the same LC-MS platform. A retention time 

match in combination with the accurate mass measurement (< 5 ppm) is in most cases 

specific enough to confirm metabolite identity; an MS2-spectral match confirms the identity 

even further. 

Since the retention time is an important part of the identification process that depends on the 

analytical platform used, an in-house database containing the retention time for standard 

metabolite compounds is preferable. There are also a number of public databases available 

including the Human Metabolome Database (HMDB) (Wishart, Jewison et al. 2013), 

METLIN (Smith, O'Maille et al. 2005) and MassBank (Horai, Arita et al. 2010). A public 

database search on accurate mass typically returns a number of possible compound hits that 

can be used as a starting point for identification. Depending on compound characteristics 

such as origin and hydrophobicity, some hits can be excluded based on accurate mass alone. 
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Even if public databases cannot provide retention time information, many compounds are 

annotated with MS2-spectra. Complete spectral matching, i.e. of both fragment m/z values 

and intensities, is however difficult to achieve unless the database- and the experimental 

spectrum have been acquired on the same type of MS instrument. 

1.2.6.2 Challenges in metabolite identification 

Novel metabolites are still being discovered and the human metabolic pathway map is far 

from complete. This is apparent in any given untargeted LC-MS metabolomics study, where 

a large number of peaks remain unidentified and uncharacterized. 

Part of the explanation is in-source fragmentation. Certain compounds fragment 

spontaneously during the ionization process in the ESI source. If the individual fragments are 

ionized, they are detected and can be grouped together based on identical retention time and 

chromatographic peak profile; typically their MS2-spectra also contain identical fragments. In 

the case of neutral loss, i.e. when a compound fragment remains unionized, the mass of the 

molecular ion cannot be reconstructed and identification is almost impossible. 

Assuming that the molecular ion is detected, MS2-spectra can be more or less informative 

depending on the compound class. For example, lysophosphatidylcholines (LPCs) have a 

typical fragmentation pattern which in combination with retention time and accurate mass 

results in high confidence identifications. Other compounds are either very hard to fragment, 

yielding no structural information; while others have a too unspecific fragmentation pattern.  

In some cases, additional structural information can be acquired by sequential fragmentation 

(MS
n
) of the MS2 daughter fragments (also referred to as a spectral tree), which in turn may 

lead to compound characterization (Vaniya and Fiehn 2015). 

Provided that the purity and concentration of the compound sample is high enough, NMR is 

the only analytical platform that allows de novo structural identification of an unknown 

compound, as mentioned above. Such a sample is however very difficult to obtain in the case 

of a study on clinical patient material. 

1.3 METABOLIC REPROGRAMMING IN CANCER 

While the transcription of a gene or the translation of mRNA into protein does not necessarily 

result in an active gene product, the metabolite levels directly reflect the functional phenotype 

of a cell. Consequently, untargeted metabolomics can be used to discover and to a certain 

extent investigate novel phenotypes connected to a specific disease, based on the detection of 

perturbations in metabolite levels. 

1.3.1 Cancer development 

Cancer is a multifactorial disease where genetic alterations occur over time in a sequential 

fashion, transforming normal cells into cancer cells. There are six tumor characteristics that 

have been established as necessary for malignant transformation: 1) sustained proliferative 
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signaling; 2) evasion of growth suppressors; 3) cell death resistance; 4) replicative 

immortality; 5) induction of angiogenesis; 6) activation of invasion and metastasis (Hanahan 

and Weinberg 2000). An additional two characteristics, evasion of immune destruction and 

reprogramming of energy metabolism, have been suggested and can be considered 

established as well (Hanahan and Weinberg 2011). The latter characteristic, reprogramming 

of energy metabolism, is an active field of research where metabolomics analyses are clearly 

motivated. Below follows a brief outline of the field and a discussion of the role of 

metabolomics. 

1.3.2 Cancer cell metabolism 

In order to survive and proliferate, tumor cells undergo metabolic reprogramming. This 

affects the interactions between cells and metabolites in a number of different cellular 

compartments. At the cell surface, the metabolite uptake is increased; in the cytosol and 

mitochondria, metabolites function as building blocks for de novo biosynthesis to enable cell 

proliferation; in the nucleus, metabolites are cofactors or substrates for enzymes involved in 

epigenetic regulation of gene expression. The metabolic reprogramming of cancer cells can 

also affect other cell types in the microenvironment (Pavlova and Thompson 2016). 

Two metabolites which are important in the biosynthesis required for cellular proliferation 

are glucose and glutamine (Figure 4). Both show increased uptake in cancer. Regarding 

glucose, a major advantage of upregulated glycolysis is that it provides a number of carbon 

intermediates that can be diverted to biosynthetic pathways. For example, glucose-6-

phosphate is a starting point for nucleotide synthesis, while 3-phosphoglycerate can be used 

for the generation of NADPH, which in turn is used as a reducing agent for the generation of 

e.g. fatty acids and cholesterol. 

Regarding glutamine, the exact mechanisms of its role in cancer metabolism are still being 

investigated. It is however established as an important source of TCA cycle intermediates and 

nitrogen. Exogenous glutamine is e.g. a key molecule in the synthesis of nucleotides and can 

also be used in the production of nonessential amino acids. Further, glutamine can provide 

the starting material for cytosolic acetyl-CoA via the TCA cycle. Acetyl-CoA, just like 

NADPH, is needed for lipid and cholesterol biosynthesis, molecules which are building 

blocks for the cellular membranes required for cell proliferation (Altman, Stine et al. 2016). 

On the genome level, α-ketoglutarate and acetyl-CoA are examples of metabolites which are 

important substrates/cosubstrates and cofactors in epigenetic regulation and posttranslational 

modifications of proteins. Acetyl-CoA provides the acetyl-group for protein acetylation, 

including histones where acetylation is associated with the activation of gene transcription. α-

ketoglutarate is a cosubstrate for a class of enzymes which includes histone and mRNA 

demethylases (Pavlova and Thompson 2016, Vander Heiden and DeBerardinis 2017). 

Metabolites secreted by proliferating cancer cells can change the environment to such a 

degree that other cell types are affected, including immune cells. Examples are the 

extracellular accumulation of lactate as a result of upregulated glycolysis which decreases the 
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immune cell response, and the secretion of kynurenine as a result of increased tryptophan 

metabolism that can lead to tumor progression as well as immunosuppression (Galluzzi, 

Kepp et al. 2013, Pavlova and Thompson 2016). 

 

 

Figure 4. Examples of metabolic reprogramming in cancer cells. Increased uptake of glucose and 

glutamine provides building blocks for the biosynthesis of e.g. nucleotides, phospholipids and fatty 

acids required for cellular proliferation, via glycolysis and the TCA cycle, among others. In the 

nucleus, acetyl-CoA and α-ketoglutarate (αKG) affect cellular transcription levels via epigenetic 

regulation. Secreted lactate and kynurenine affect the extracellular environment leading to e.g. 

suppression of the immune system. Ox phos, oxidative phosphorylation; FAO, fatty acid oxidation. 

 

1.4 METABOLOMICS IN BIOMARKER DISCOVERY 

Based on the assumption that the perturbations of intra- and extracellular metabolite levels in 

e.g. tumorigenesis can be detected on the system level, untargeted metabolomics has become 

widely used in the field of disease biomarker discovery. However, small molecular 

biomarkers and their detection by MS is obviously not a novel concept (Dalgliesh, Horning et 

al. 1966, Horning and Horning 1971, Pauling, Robinson et al. 1971); well-known examples 

routinely used in the clinic include glucose as a marker of diabetes and phenylalanine as a 

marker of congenital metabolic disorder. The discovery of novel biomarkers, e.g. for early 

diagnosis or disease prognosis, could improve treatment in several other disease areas as well, 

including cancer. 
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1.4.1 Novel metabolite biomarkers 

Metabolomics, just as genomics or proteomics, is clearly contributing to the field of 

biomarker discovery. One example is trimethylamine N-oxide which has been identified as a 

marker of cardiovascular disease (Koeth, Wang et al. 2013). Other examples include a panel 

of the three amino acids isoleucine, tyrosine and phenylalanine as markers of future 

development of type 2 diabetes (Wang, Larson et al. 2011); and isoleucine, leucine and valine 

as markers of increased risk for pancreatic cancer development (Mayers, Wu et al. 2014). 

Further, the D-enantiomer of 2-hydroxyglutarate as a marker of IDH1-mutated gliomas is 

currently in clinical trials (Andronesi, Rapalino et al. 2013). 

1.4.2 Biomarker discovery study design 

Biomarker discovery has proven to be a challenging field of research. Although there have 

been several successful applications, none of the omics technologies have led to the large 

advances that were originally hoped for. As a metabolomics case in point, sarcosine was 

previously reported as a potential biomarker for prostate cancer progression (Sreekumar, 

Poisson et al. 2009). However, the results could not be validated in further clinical studies 

using comparable patient samples (Jentzmik, Stephan et al. 2010, Jentzmik, Stephan et al. 

2011). 

Part of the challenge of metabolomics biomarker discovery is the large inter-individual 

variation in metabolite levels as a result of genetic and environmental factors (Suhre, Shin et 

al. 2011, Suhre and Gieger 2012, Dunn, Lin et al. 2015). Contrary to shot-gun proteomics, the 

analysis of large sample cohorts – in order to balance the variation with more statistical 

power – is technically possible in metabolomics; the limiting factor is often the access to 

clinical material. Another important aspect is to obtain detailed patient information, partly to 

avoid known confounding factors such as smoking and body mass index (BMI), partly to 

decrease the variation within the sample groups by stratification according to e.g. disease 

stage. 

Apart from acquiring patient samples from the disease of interest, the acquisition of relevant 

control sample group(s) is an important part of the design of a biomarker study. To avoid the 

identification of general markers of disease rather than disease-specific markers, the control 

samples should include an inflammatory control, e.g. pneumonia as a control for lung cancer 

(Chechlinska, Kowalewska et al. 2010, Kowalewska, Nowak et al. 2010). The need to control 

for non-specific inflammatory mechanisms is an established fact in proteomics (Petrak, 

Ivanek et al. 2008) but is not always implemented in metabolomics. 

Traditionally, potential biomarkers have been identified by univariate statistical analysis as 

single, independent discriminative entities. However, considering that metabolites are highly 

likely to be part of a series of enzymatic reactions dependent on each other, the use of 

multivariate analysis methods has become increasingly common in biomarker discovery 

studies; it has also been shown that a panel of biomarkers can increase biomarker specificity 

(Wang, Larson et al. 2011). 

 



 

 15 

 

 

 

 

 

 





 

 17 

2 THE PRESENT THESIS 

2.1 AIMS 

The overall aim of this thesis work was to use untargeted LC-MS metabolomics as a tool for 

discovery of potential biomarkers and novel disease mechanisms. This included aspects of 

biomarker discovery study design and analytical method development, towards the goal of 

acquiring biologically and clinically relevant information. 

 

The specific aims of papers I-IV were: 

Paper I: To identify metabolites discriminating between PDAC and chronic pancreatitis in 

human serum and plasma by untargeted LC-MS metabolomics, for potential clinical use as 

diagnostic markers. 

Paper II: To determine the extent of overlap between the serum metabolite profiles of three 

diseases in comparison with healthy controls, providing implications for the design of future 

biomarker discovery studies. 

Paper III: To identify transcripts and metabolites differing between drug-resistant and 

sensitive leukemia cells and investigate the underlying molecular mechanisms. 

Paper IV: To investigate the impact of the reconstitution solvent composition on the 

metabolome coverage in untargeted LC-MS metabolomics. 
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2.2 MATERIALS AND METHODS 

In this section, key methods and analytical aspects of papers I-IV are described. Detailed, 

complete descriptions of the materials and methods used can be found in each paper. 

2.2.1 Samples and study design 

Paper I was based on two different sample cohorts. Cohort one, the discovery cohort, 

consisted of clinical serum samples from pancreatic ductal adenocarcinoma (PDAC, n = 44) 

and chronic pancreatitis (CP, n = 23) patients collected in Germany. Cohort two, the 

validation cohort, consisted of plasma samples from PDAC (n = 20) and CP (n = 31) patients 

collected in Sweden. Starting with the discovery cohort, PDAC and CP samples were 

compared to identify metabolites differing between the two groups. The results from this 

comparison were then confirmed in the validation cohort. 

Paper II was based on commercially acquired serum samples from patients with the three 

non-related diseases community acquired pneumonia (n = 25), congestive heart failure (n = 

40) and Non-Hodgkin’s lymphoma (n = 40), as well as healthy controls (n = 40). Each 

disease was compared to the healthy control group followed by overlap analysis of the results 

(Figure 5). 

Paper III was based on chemotherapeutic drug-sensitive and drug-resistant human leukemia 

cell lines. As a first step, the sensitive and resistant cell lines were first compared to identify 

perturbations on the translational and metabolic level. The results from this initial screening 

were then used for further investigations of the molecular characteristics of drug-resistance. 

Paper IV was based on commercially available complex cell medium samples and 

commercially available human serum samples from leukemia patients (n = 20) and healthy 

controls (n = 20). The cell medium samples were used in the initial method evaluation step, 

followed by method application on the human serum samples comparing patient and control 

samples. 

 

Figure 5. Sample groups and study design in paper II. The three non-related diseases congestive heart 

failure (H), Non-Hodgkin’s lymphoma (L) and community acquired pneumonia (P) were compared 

individually to a healthy control group. The resulting differential metabolites were analyzed for 

overlap.  
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2.2.2 LC-MS instrumentation 

In paper I, two different LC-MS platforms were used for the analysis of the discovery and 

the validation cohort.  RPLC-LTQ Orbitrap was used for the screening and metabolite 

identification of the discovery cohort. The validation cohort was analyzed with an RPLC-Q-

ToF instrument in untargeted and targeted mode for relative quantification and identification, 

respectively. The RPLC-Q-ToF platform was also used for untargeted screening in papers II, 

III and IV. Additional structural elucidation by pre-fractionation and direct injection MS
n
 

was performed on an LTQ Orbitrap for paper II. In paper III, a QQQ instrument was used 

for targeted relative quantification of stable isotope-labelled pantothenic acid, CoA and 

acetyl-CoA.  

2.2.3 Data preprocessing 

Peak picking, alignment and integration of the RPLC-LTQ Orbitrap data set from the 

discovery cohort in paper I was performed with the open-source software XCMS. All other 

data sets were processed using vendor-specific software. Sample-wise median normalization 

was applied in papers I, II and IV. For the multivariate data analysis in papers I and IV, the 

software default UV-scaling was used in combination with log transformation. 

2.2.4 Statistical analysis 

Univariate Student’s t-test or Welch’s unequal variance t-test were performed to identify 

differing metabolite features in all papers. 

 In paper I, supervised multivariate OPLS-DA was performed using the software SIMCA 

(Umetrics), in parallel with the univariate approach. The stability and generalizability of 

OPLS-DA models is evaluated by cross-validation, where a subset of randomly chosen 

samples is left out. The OPLS-DA model based on the remaining samples is then used to 

predict which sample group, or class, the samples in the left-out subset belong to. The process 

is then repeated until all samples have been predicted once.  

The selection of discriminant features from the OPLS-DA was made based on the variable 

importance for the projection (VIP). Features with a VIP-value ≥ 1 and significant within a 

95 % confidence interval based on the cross-validation were selected, according to software 

recommendations. In the initial OPLS-DA of the discovery cohort including 4578 features, 

the VIP-value cut-off ≥ 1.5 was used in order to limit the number of features selected for 

manual curation. 

Apart from the VIP-value, the cross-validation is also the basis for three other measures of 

model performance; R2X(cum), Q2(cum) and CV-ANOVA. R2X(cum) is a measure of how 

much the data set is used to build the OPLS-DA model. Q2(cum) is a measure of how well 

the model predicts sample class. CV-ANOVA is a measure of the probability that the model 

is the result of chance only. 
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In paper IV, unsupervised PCA, also performed in SIMCA, was used to detect trends related 

to the composition of the sample reconstitution solvent. 

2.2.5 Raw data curation 

Metabolite feature quality control by manual curation, i.e. raw data inspection of extracted 

ion chromatograms, was an important part of the workflow, above all in papers I and II. 

Automatic peak picking, alignment, integration and compound identification is a necessary 

part of the untargeted metabolomics workflow, but the results need to be verified in the raw 

data to remove e.g. misaligned and low intensity peaks. 

2.2.6  Metabolite identification 

Metabolite identities were determined by in-house and METLIN database matching against 

standard metabolite compounds based on accurate mass, retention time and MS2 spectra in 

all papers. In paper II MS
n
 fragmentation was also performed to gain further structural 

information. 
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2.3 RESULTS AND DISCUSSION 

2.3.1 Paper I 

In this study, two independent sample cohorts were analyzed by untargeted RPLC-MS 

metabolomics to identify single as well as a panel of metabolites discriminating PDAC and 

CP in serum and plasma. Uni- and multivariate analyses were performed in parallel, starting 

with the discovery cohort data set containing 4578 metabolite features including isotopes and 

adducts. 

In the univariate analysis workflow, features were ranked by Welch’s t-test and the top 254 (p 

< 0.05) were selected for further evaluation. FDR correction was not applied at this stage; the 

Welch’s t-test was used only as a tool for metabolite feature ranking and selection. i) 

Acceptable raw data quality, ii) presence in the validation cohort and iii) known identity were 

used as a further set of selection criteria, leaving 17 metabolites. 11 of these were confirmed 

as significant (Welch’s t-test, p < 0.05) in the independent validation cohort. However, fold-

change calculations revealed that eight metabolites, all phospholipids, were regulated in 

opposite directions in the two cohorts. After exclusion of the phospholipids the three 

metabolites glycocholic acid, hexanoylcarnitine and N-palmitoyl glutamic acid remained as 

single discriminative markers for PDAC compared to CP (Figure 6). 

 

Figure 6. Metabolites discriminating PDAC and CP in serum and plasma, as identified by univariate 

analysis and validated in a second independent cohort. Statistical test: Welch’s unequal variances t-

test. Box plot settings: Line at median; range, minimum to maximum. 

 

In the multivariate analysis workflow, OPLS-DA of the discovery cohort data set was used to 

select 259 discriminative metabolite features, based on VIP-values, for further evaluation. 

The three exclusion criteria used in the univariate analysis workflow were applied here as 

well, leaving 19 metabolites. All 19 were confirmed as discriminative in OPLS-DA of the 

validation cohort. However, as in the univariate analysis, 14 phospholipids were regulated in 

opposite directions in the two cohorts and were therefore excluded. The five remaining 

metabolites N-palmitoyl glutamic acid, glycocholic acid, hexanoylcarnitine, 

chenodeoxyglycocholate and phenylacetylglutamine (PAGN) were used to build an OPLS-

DA model to evaluate their performance as a marker panel (Figure 7). As there was a three-

metabolite overlap between the results from the multivariate analysis and the univariate, the 

two approaches corroborated each other. 
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Figure 7. OPLS-DA model of a five-metabolite marker panel in the validation cohort. A. Score scatter 

plot of PDAC (n = 20) and CP (n = 31) samples. The Q2(cum) value was 0.513; i.e. approximately 50 

% of samples were correctly classified. The R2X(cum) value was 0.736. Cross-validated ANOVA 

was p = 8.2E-07. B. Loading scatter plot with dummy PDAC and CP variables. The five metabolites 

are situated to the left of origo, indicating that they are up-regulated in PDAC compared to CP. 

Apart from constituting an inflammatory control of the pancreas for PDAC-specific 

biomarker discovery, CP is a known risk factor for PDAC development. The two conditions 

are however difficult to distinguish clinically since they present with similar inflammatory 

symptoms. Screening of CP patients could therefore be motivated as they constitute a limited, 

well-defined patient group, where a diagnostic biomarker could aid in the early detection of 

PDAC. 

An independent validation cohort, as used in the present work, is an important aspect of a 

biomarker study as it provides a measure of the robustness and generalizability of the 

potential markers. Until very recently, there had been no previous untargeted studies 

comparable to the present one in terms of patient number and validation of results in a second 

cohort. However, Mayerle et al. published a large study (n = 914) comparing PDAC with CP 

as well as healthy and non-pancreatic disease controls in serum and plasma using a 

comprehensive analytical platform combining GC- and LC-MS including lipid analysis 

(Mayerle, Kalthoff et al. 2017). A nine-metabolite marker panel, consisting of lipids and 

organic acids, was identified and validated in an independent test set; a majority of these 

metabolites could not have been detected by the analytical platform used in the present study, 

explaining the lack of overlap in metabolite identities.  

The down-regulation of phospholipids in the discovery cohort as opposed to up-regulation in 

the validation cohort in the present study could possibly be explained by the difference in 

sample matrices, i.e. serum and plasma, of the two cohorts. The different sample handling 

methods of serum and plasma have been shown to affect the concentration levels of some 

metabolites including phospholipids (Yu, Kastenmuller et al. 2011). Ideally, the same sample 

matrix should have been used in both cohorts. Further, the present study would have been 

strengthened by detailed patient information on known confounders, e.g. smoking status, and 

disease stage. Larger clinical studies are needed to evaluate the use of these metabolite 

markers; still, we believe that they have potential as diagnostic markers for PDAC in CP 

patients. 
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2.3.2 Paper II 

In this study, we compared Non-Hodgkin’s lymphoma, community acquired pneumonia and 

congestive heart failure with healthy controls using untargeted RPLC-MS metabolomics in 

positive and negative mode. Results show that the metabolic serum profiles of the three 

diseases display very similar differences when compared to healthy controls, despite very 

different etiology and clinical presentation of the three conditions. 

Each disease was compared individually to the healthy control group using Student’s t-test 

with Benjamini & Hochberg FDR correction (5 %). After exclusion of features overlapping 

between ionization modes and manual curation in raw data to exclude low quality metabolite 

features, a total of 178 differential features remained, of which 66 % were identified. 

A majority of the differential metabolites, 61 %, overlapped between two or all three diseases 

compared to healthy controls (Figure 8). The largest total number of differential metabolites 

(n = 134) was identified in pneumonia, which also had the largest number of unique 

metabolites (n = 51). The number of metabolites unique to heart failure and lymphoma were 

only 12 and 6, respectively. 

 

Figure 8. Overlap analysis of the metabolic profiles of the three non-related diseases congestive heart 

failure (H), Non-Hodgkin’s lymphoma (L) and community acquired pneumonia (P) compared to 

healthy controls. Metabolites differing between disease and control were identified by multiple t-test 

with Benjamini & Hochberg FDR correction (5 %). 61 % of a total of 178 metabolites were shared 

between two or all three diseases (HLP, HL, HP, LP in the Venn diagram).Only 12 and 6 metabolites 

were unique to heart failure and lymphoma, respectively. A majority of the shared metabolites were 

down-regulated in disease as determined by fold-change (FC) calculations. 
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The differential metabolites overlapping between all three diseases were to a large extent (43 

%) LPCs, which show a strong association to various disease states according to the literature 

(references are available in paper II, Supplementary Table 3). 

We further used our data set for three hypothetical lymphoma biomarker studies using 

different types of control groups (Figure 9). First, lymphoma was compared to healthy 

controls, identifying LPC(18:3) as a differential metabolite. Second, different disease stages 

of lymphoma (stage I-IV) were compared, revealing a significant decrease in the level of 

LPC(18:3) during disease progression. In the third study design, heart failure and lymphoma 

were included as non-related disease controls. Using these control groups, it is clear that 

LPC(18:3) is not a lymphoma-specific metabolite marker. 

 

Figure 9. Hypothetical lymphoma biomarker discovery studies using different types of control 

groups. A. When lymphoma (L) is compared to healthy controls (C) only, LPC(18:3) appears to be 

disease specific. B. Comparing different stages of lymphoma, LPC(18:3) levels decrease with disease 

progression. C. When the non-related disease controls congestive heart failure (H) and pneumonia (P) 

are included, LPC(18:3) is no longer specific to lymphoma. Statistical test: Student’s t-test. Box plot 

settings: range, min. to max.; line at median. 

 

The disease specificity of a potential marker is a key aspect of a biomarker discovery study. 

Although admittedly the number of unique metabolites identified in this study could have 

been higher if a second analytical platform such as HILIC-MS had been used, the number of 

metabolites unique to a particular condition was surprisingly low. In addition, some of these 

supposedly unique markers have been previously identified as specific to other, non-related 

conditions as well. A case in point is phenylalanine, unique to lymphoma in the present study, 

but previously identified as unique to e.g. Alzheimer’s disease (Gonzalez-Dominguez, 

Garcia-Barrera et al. 2015).  

LPCs in particular appear unlikely as disease-specific markers, based on this study. Given the 

fact that LPCs are inflammatory mediators (Sevastou, Kaffe et al. 2013) and inflammation 

often is part of a general host response in disease (Chechlinska, Kowalewska et al. 2010), it is 

perhaps not surprising that they have been found in altered levels in a range of different 

conditions. As shown above (Figure 9), the inclusion of non-related disease controls may 

contribute to the exclusion of general disease markers such as LPC(18:3). We therefore 

suggest that future biomarker discovery studies should include control groups from clearly 

separate disease categories, to increase the chances of successful further validation. 
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2.3.3 Paper III 

In this study, we compared drug-resistant with drug-sensitive human cell lines using RNA 

sequencing (RNAseq) and untargeted RPLC-MS metabolomics in positive and negative 

mode. Based on the results from these large-scale screening methods, we investigated 

underlying molecular mechanisms further using e.g. stable isotope tracing and viability 

assays to characterize metabolic reprogramming in drug-resistance. 

We generated a drug-resistant cell line, CEM/R2, from the acute lymphoblastic leukemia 

drug-sensitive cell line CEM, by treatment with increasing concentrations of daunorubicin 

(DNR).  

The transcript levels of the resistant and sensitive cell lines were analyzed using RNAseq and 

compared based on negative binomial distribution (Anders and Huber 2010), identifying 173 

differentially expressed mRNA transcripts. 23 of these transcripts were linked to cell 

metabolism, including cholesterol and glutamine biosynthesis. The changes in cholesterol 

synthesis were investigated further in a subsequent study (Staubert, Krakowsky et al. 2016) 

not included in the present thesis. 

Probing glutamine metabolism, results showed that the resistant cells not only lacked 

glutamine synthase activity, but were also resistant to deprivation of exogenous glutamine; on 

the other hand, they were more dependent on glucose than the sensitive cells. High 

exogenous glutamine dependence is a common characteristic of cancer cells (Altman, Stine et 

al. 2016), although the reverse has also been observed (Pavlova and Thompson 2016); the 

higher glucose dependence observed here may indicate a drug-resistance-linked metabolic 

shift towards glycolysis as the major provider of building blocks for cellular proliferation. 

Next, untargeted metabolomics analysis identified a number of metabolites differing 

(Student’s t-test, FDR 5 %) between the sensitive and resistant cell lines (Figure 10). Large 

fold-change values were observed for e.g. TCA-cycle intermediates, metabolites involved in 

fatty acid oxidation (FAO) and pantothenic acid (PA). 

The level of PA, an essential nutrient and precursor of CoA, was approximately four-fold 

lower in resistant cells than in sensitive. To investigate whether the decrease in PA levels was 

caused by diminished uptake or increased intracellular turnover into CoA, sensitive and 

resistant cells were administered stable isotope-labelled PA. After 24 h, the extracellular level 

of labelled PA was significantly higher in the resistant cells and the rate of de novo CoA 

synthesis was significantly lower (Figure 11). These results suggest that the resistant cells 

have a lower capacity for CoA synthesis due to limitations in PA uptake. Considering the 

central role of CoA in fatty acid metabolism, this was a potential weakness which was tested 

by treatment with fenofibrate, a blood cholesterol lowering agent which simultaneously 

increases the rates of FAO and fatty acid synthesis. Results showed that fenofibrate treatment 

had a larger impact on the proliferation of resistant cells than sensitive, and resistant cells 

were re-sensitized to DNR when co-treated with fenofibrate. 
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Figure 10. Fold-change of significantly different metabolites (with the exception of succinate, 

glutamine and glutamate) comparing resistant over sensitive cells, as analyzed by untargeted LC-MS 

metabolomics. Statistical test: multiple t-test with Benjamini & Hochberg FDR correction (5 %). 

Metabolites associated with fatty acid metabolism are highlighted in red; TCA cycle intermediates are 

highlighted in blue. 

 

In this study, large-scale screening using RNAseq and untargeted metabolomics were used as 

a starting point to characterize the phenotype of a drug-resistant cancer cell line. Metabolic 

reprogramming involving reduced dependence on glutamine, increased dependence on 

glucose and decreased fatty acid metabolism was revealed, which could potentially be 

exploited for the identification of novel drug targets. 
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Figure 11. Stable isotope tracing reveals decreased uptake of pantothenic acid (PA), a precursor for 

CoA, and decreased de novo synthesis of CoA in resistant cells. The extracellular levels of stable 

isotope-labelled PA were higher in resistant cells compared to sensitive, indicating decreased uptake 

of PA in resistant cells. Intracellular levels of CoA were equal between cell lines but the rate of de 

novo synthesis of CoA was significantly lower in resistant cells. Statistical test: Student’s t-test. Box 

plot settings: range, min. to max.; line at median. FAO, fatty acid oxidation. 
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2.3.4 Paper IV 

In this study, we evaluated the impact of the reconstitution solvent on metabolome coverage 

in untargeted RPLC-MS metabolomics on aqueous MeOH-extracted biological samples. Our 

results show that the choice of reconstitution solvent can significantly increase the number of 

metabolite features detected as well as the metabolome coverage, which in turn may increase 

the number of significant discoveries in typical biomarker discovery studies. 

The effect of the reconstitution solvent was first evaluated on MeOH-extracted complex cell 

medium, which represents a commercially available, reproducible biological matrix with a 

complexity similar to that of human serum or plasma. Samples were reconstituted in 

MeOH:H2O ratios ranging from 0-100 % MeOH in 10 % increments. 50:50 MeOH:H2O is a 

commonly used reconstitution solvent composition in untargeted RPLC-MS (Ivanisevic, Zhu 

et al. 2013, Want, Masson et al. 2013, Drogan, Dunn et al. 2015, Fang, Ivanisevic et al. 

2015), representing an effort to increase the metabolome coverage by including not only 

hydrophilic, but also more hydrophobic metabolites which are poorly solubilized in pure 

H2O. 

Using untargeted RPLC-MS analysis the highest number of metabolite features (n = 1491) 

was detected in samples reconstituted in 100 % H2O, and then decreasing linearly by each 10 

% increment of MeOH (Figure 12). 100 % MeOH resulted in the lowest number of features 

detected (n = 1099). Lower feature peak heights as a result of decreased solubility and poorer 

peak shapes as a result of increased solvent strength appeared to be the major reasons for the 

inverse correlation between MeOH ratio and number of features detected. 

 

 

Figure 12. Untargeted LC-MS analysis of samples reconstituted in MeOH:H2O ratios ranging from 0-

100 % MeOH in 10 % increments. Reconstitution in 100 % H2O results in the highest number of 

features detected. The differences in number of features between different increments are statistically 

significant (Student’s t-test, p < 0.05, 5 replicates) except between 80-90 and 90-100 % MeOH. 
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Since the polarity of a metabolite affects its solubility, we investigated whether the effect of 

the reconstitution solvent on metabolite response could be predicted by metabolite polarity, as 

determined by logP. Standard metabolite compounds representing a wide range of 

endogenous metabolite polarity (logP -3.3 – 7.1) were spiked in complex cell medium and 

analyzed by RPLC-MS. Almost all metabolites with logP < 5 increased in response at lower 

ratios of MeOH, i.e. H2O was the preferable reconstitution solvent for this group of 

metabolites. Since 74 % of the metabolites of the known human blood metabolome have a 

logP < 5 (Figure 13) based on the HMDB (Wishart, Jewison et al. 2013), H2O is likely to be 

the preferable reconstitution solvent for a majority of blood metabolites. 

 

Figure 13. The predicted logP distribution of the known human blood metabolome as extracted from 

the HMDB. A majority of metabolites (74 %) have a logP < 5, indicating that a highly aqueous 

reconstitution solvent would be preferable.  

 

Maximizing the metabolome coverage is a central aspect of any untargeted metabolomics 

study since no prior knowledge about the compound(s) of interest is available. Our results so 

far suggested that for MeOH-extracted biological samples, 100 % H2O as reconstitution 

solvent will maximize metabolome coverage in terms of the number of features detected. In 

terms of the composition of the detected part of the metabolome, further investigation was 

needed, especially in comparison with the commonly used 50:50 MeOH:H2O ratio. The 

feature lists from analysis of pure MeOH and H2O were used separately for targeted feature 

extraction in the 50 % MeOH samples to avoid bias toward either solvent (Figure 14A).  

Results showed that there appears to be a large overlap in metabolome coverage between 100 

% H2O and MeOH. The addition of 50 % MeOH to pure water resulted in a sensitivity loss 

for the major fraction of features (57 %), while for the second largest fraction (38 %) the 

response remained unchanged (Figure 14B). Conversely, the addition of 50 % H2O to pure 

MeOH did not affect the response of the majority of features (61 %); in fact, sensitivity 

increased for the second largest fraction of features (28 %, Figure 14C). The magnitudes of 

the changes in response were similar in both cases.  This suggests that the loss of a more 

hydrophobic part of the metabolome when reconstituting samples in 100 % H2O is clearly 

outweighed by the increased coverage of more hydrophilic features. Further, considering that 

MeOH-extracted samples constitute a relatively hydrophilic environment already prior to the 
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reconstitution step, a complementary extraction method e.g. using MeOH/chloroform 

(Mehlem, Palombo et al. 2016) would be more useful than MeOH in terms of increased 

hydrophobic coverage. 

 

 

Figure 14. Effect of the reconstitution solvent on the metabolome coverage in terms of the 

composition of the detected part of the metabolome. A. To avoid bias toward either of the pure 

solvents, the feature lists from samples reconstituted in 100 % MeOH and H2O were used separately 

for targeted feature extraction in samples reconstituted in 50 % MeOH. B. The addition of 50 % 

MeOH to pure H2O results in decreased peak area response for 57 % of metabolite features. The 

response is unchanged for 38 % of features. C. The addition of 50 % H2O to pure MeOH results in 

increased response for 28 % of features while 61 % remain unaffected. Statistical test: Student’s t-test. 

 

To evaluate the impact of our findings we proceeded with untargeted RPLC-MS analysis of 

MeOH-extracted human serum samples from lymphoma patients and healthy controls, 

simulating a basic biomarker discovery scenario. A comparison of the two sample groups 

reconstituted in 0, 50 or 100 % MeOH by Student’s t-test (FDR correction 5 %) resulted in 

the identification of six significantly differential metabolites when using 100 % H2O, as 

opposed to no significant discoveries using 50 or 100 % MeOH. 

In conclusion, this study shows that reconstitution of aqueous MeOH-extracted samples in 

100 % H2O leads to an increased number of metabolite features detected and increased 

metabolome coverage. Specifically, the use of pure water for sample reconstitution increases 

the number of significant features identified in human serum samples; consequently, 100 % 

H2O increases the chances of discovering novel blood-based biomarkers. 
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2.4 GENERAL CONCLUSIONS AND FUTURE PERSPECTIVES 

 

When the use of untargeted quantitative metabolomics became established, the main focus 

was on biomarker discovery applications. In comparison to other omics techniques, 

metabolomics provides a direct read-out of the active cellular phenotype which makes it a 

research area with large potential. However, without denying the contribution of 

metabolomics to biomarker discovery, over time it has become clear that a quantitative 

metabolic profile only does not provide enough information. It should be seen above all as a 

starting point for hypothesis generation where unexpected changes in metabolite levels can be 

exploited to uncover novel mechanistic knowledge in health as well as disease. The four 

studies included in this thesis mirror this development in the field, starting from paper I. Here, 

we performed a classic metabolite biomarker study, validating our results in a second, 

independent cohort. In paper II, we discussed the inclusion of control sample groups in 

biomarker studies to improve the chances of identifying disease-specific metabolite markers. 

In paper IV (which from this point of view should have been paper III) we evaluated the 

impact of a sample preparation step on metabolome coverage in untargeted metabolomics 

studies; to increase the potential of uncovering novel perturbations in metabolite levels, the 

metabolome coverage should be maximized. Finally, in paper III, we applied untargeted 

metabolomics, as well as mRNA sequencing, to generate hypotheses for the mechanisms of 

drug-resistance in cancer cells. We then proceeded to further investigate these hypotheses 

using complementary methods such as viability assays and stable isotope tracing 

experiments, in an effort to increase our understanding of the connection between cell 

metabolism and drug-resistance. Once again, it needs to be pointed out that untargeted 

metabolomics should not be seen as a stand-alone analytical technique. Instead, 

metabolomics discovery results should be incorporated in a larger biochemical context by 

mechanistic investigations performed by the use of complementary techniques. 
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