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ABSTRACT 
 

The surface epithelium that lines the nasal passages is often the first tissue in the airway to 

encounter inhaled pathogens. It collaborates closely with the innate immune system, a 

subsystem of the immune system that defends the host from infection by organisms, mainly by 

initiating a local inflammatory reaction. Pattern-recognition receptors (PRRs) are important in 

pathogen recognition, cell activation and regulation of immune responses and include Toll-like 

receptors (TLRs), nucleotide-binding oligomerization domain-like receptors (NLRs) and 

retinoic acid-inducible gene 1 (RIG-I)-like receptors (RLRs). The transforming growth-factor 

beta (TGF-β) superfamily and their type I receptors, the activin receptor-like kinases (ALKs), 

are important mediators that promote remodelling and have recently also been shown to 

regulate airway inflammation. Even though PRRs and ALKs are essential in preventing 

disease, disruption of these systems is generally believed to be involved in the pathogenesis of 

airway inflammatory diseases such as asthma and chronic rhinosinusitis with nasal polyp 

(CRSwNP). Hence, the overall aim with this thesis was to investigate the role of PRRs and 

ALKs in airway inflammation. 

Human airway smooth muscle cells (HASMCs) are essential for the regulation of airflow; 

importantly, they are also involved in the shortness of breath that characterises microbial-

induced exacerbations of asthma. The present thesis showed that stimulation of TLR2, TLR3, 

TLR4, TLR7 and NOD1 on HASMCs resulted in cytokine release, upregulation of 

inflammatory cell surface markers and downregulation of receptors involved in smooth muscle 

cell contraction.  

The nasal epithelium was found to express TLR3, TLR7, TLR9, RIG-I and MDA-5 and 

stimulation resulted in an increased inflammatory response characterised by the release of 

chemokines and cytokines. In addition, a specific role for TLR9 was found in patients with 

CRSwNP that might be linked to polyp growth via downregulation of VEGFR expression and 

lowered release of inflammatory cytokines.  

Virus-related ligand stimulation of TLR7 induced a rapid release of the neuropeptide, substance 

P (SP), from human nasal epithelial cells (HNECs) and sensory neurons. The released SP 

promptly upregulated the epithelial TLR expression. This suggests a role for SP in rapid 

priming of the innate immune system during viral infections. 

Polyp epithelial cells from patients with CRSwNP expressed high levels of ALK1-6. Polyp 

epithelial cells stimulated with ALK-ligands demonstrated a potential anti-inflammatory role 

for ALKs in polyps. Previous reports have demonstrated low levels of ALK-ligands in patients 

with CRSwNP, suggesting that ALKs could contribute to uncontrolled inflammation 

promoting the progression of CRSwNP. BMP4, an ALK-ligand, suppressed inflammation and 

hyperplasia in the turbinate tissue of patients with CRSwNP. This effect was absent in the 

corresponding polyp, suggesting that BMP4-ALK3 interaction might be involved in polyp 

growth in patients. 

In summary, this thesis demonstrates a role for specific epithelial PRRs and ALKs in CRSwNP 

and for smooth muscle PRRs in asthma. In addition, it proposes a novel role for substance P in 



kick starting the innate immune system by upregulating PRRs in response to microbial 

stimulation. These findings could generate new potential targets for the treatment of 

inflammatory airway diseases. 
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1. BACKGROUND 

1.1 CHRONIC RHINOSINUSITIS 

Chronic rhinosinusitis (CRS) is a disabling disease that affects more than 10% of the European 

population1. CRS was initially seen as one homogenous disease, but recently several 

phenotypes and endotypes have been established in a step towards developing personalised 

medicine for these patients2, 3. CRS is clinically associated with nasal obstruction, nasal 

discharge, facial pain or pressure and/or reduction/loss of smell persisting for longer than 12 

weeks1. The cause of CRS is not entirely known but defects in the sinonasal epithelial barrier, 

malfunctioning mucociliary clearance and tissue remodelling are all processes that contribute 

to the chronic inflammatory condition, characteristic of CRS1. CRS can be divided in chronic 

rhinosinusitis with and without nasal polyps (CRSwNP and CRSsNP)1. CRS, allergic rhinitis 

and asthma are often co-morbid and share the same trend of increasing prevalence4. Recent 

studies also demonstrate that innate immune responses are involved in the pathogenesis5.   

 

Figure 1. Overview of polyps in the nose. From Medical Dictionary, © 2009 Farlex and Partners.  

1.1.1 Chronic rhinosinusitis with nasal polyps 

CRSwNP was reported to have a prevalence of 2.7% in the total Swedish population6. 

CRSwNP is regarded as a type 2 (Th2) inflammatory disease in Europe1 that is driven by 

cytokines like IL-4, IL-5 and IL-13, and enhanced infiltration of eosinophils, basophils and 

mast cells7, 8. In Asian patients, CRSwNP is instead characterised by a non-eosinophilic 

inflammation and a mixed T cell immune response9, 10. Nasal polyps are characterised by 

eosinophils, oedema formation, lack of collagen in the extracellular matrix and pseudocysts 

consisting of albumin accumulation11-13. Nasal polyps arise from the mucosa of the nasal 

sinuses (commonly at the outflow tract of one or more of the sinuses) or from the mucosa of 

the nasal cavity (Figure 1). The origin and progression of nasal polyposis is still unknown. One 

hypothesis is that an inaccurate or excessive immune response to foreign agents results in 

extended mucosal inflammation and an increased cellular infiltration14, 15. Virus, bacteria, 

fungi and allergens are the agents most associated with the pathogenesis of CRSwNP and 

could be one explanation for the progression of polyposis seen in these patients1.  
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1.1.2 Chronic rhinosinusitis without nasal polyps 

Chronic rhinosinusitis without nasal polyps (CRSsNP) is, in contrast to CRSwNP, 

characterised by increased neutrophilic inflammation and fibrosis formation within the 

extracellular matrix of the nasal mucosa16. A thickening of collagen fibres can be detected, but 

pseudocysts are not present12. 

 

1.2 ASTHMA 

Asthma is a chronic inflammatory airway disease affecting more than 300 million people 

worldwide, with prevalence still rising17. The pathophysiological manifestations of asthma are 

reversible airflow obstruction, airway inflammation and acute airway hyperresponsiveness 

(AHR)18. Airflow obstruction is a consequence of airway smooth muscle cell contraction, 

airway wall thickening, airway oedema or a combination of all of these factors. Asthma may 

be either allergic or non-allergic, depending on the inflammatory cascade. Allergic asthma is 

often eosinophilic, whereas non-allergic asthma, such as aspirin-, exercise- and infection-

induced asthma, is often neutrophilic. Non-allergic asthma is often severe and associated with 

steroid-resistance19. 

 

1.3 SMOOTH MUSCLE CELLS 

Human airway smooth muscle cells (HASMCs) line the lower airways and are involved in 

AHR, remodelling and inflammation in asthma20. Contraction of HASMCs narrows the airway. 

Phenotypically, HASMCs can be either contractile or proliferative; the latter phenotype induce 

airway thickening and release multiple cytokines and chemokines, like IL-6, IL-8 and eotaxin, 

initiating airway inflammation20. HASMCs can respond to various stimuli, including 

inflammatory mediators, neurotransmitters or exogenous substances and constrict or relax 

depending on the stimulus21.  

 

1.4 EPITHELIAL CELLS 

The airway epithelium constitutes a first line of defence against pathogens and consists of the 

basement membrane, basal cells, goblet mucous cells, epithelium with pseudostratified 

columnar epithelial cells and the mucous layer22. Epithelial cells are important as a physical 

barrier, as well as in the production of cytokines and chemokines and the control of innate and 

acquired immune responses22, 23. The epithelium also retains and activates innate lymphoid 

cells (ILCs), which is important for the defence against viruses24. Epithelial cells have 

protective functions but are also involved in the pathogenesis of various inflammatory airway 

diseases. Decreased tight junctions with increased permeability, impaired mucociliary 

clearance and a reduced production of antimicrobial peptides are all epithelial-related 

deficiencies described in CRSwNP and allergic rhinitis25-27. In addition, epithelial cells 
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demonstrate impaired or dysregulated function of innate immune receptors such as pattern-

recognition receptors (PRRs), contributing to inflammatory airway diseases28.  

 

1.5 PATTERN-RECOGNITION RECEPTORS 

PRRs recognise conserved molecular motifs of microbial origin termed pathogen-associated 

molecular patterns (PAMPs) or endogenous molecules produced by injured or dying cells 

called danger-associated molecular patterns (DAMPs)29, 30. PRRs consists of three receptor 

families: Toll-like receptors (TLRs), NOD-like receptors (NLRs) and RIG-I-like receptors 

(RLRs) (Figure 2). 

 

Figure 2. Schematic picture of TLRs, NLRs and RLRs and their respective ligands. 

1.5.1 Toll-like receptors 

Ten different TLRs have been discovered in humans and include both intracellular and 

extracellular receptors31 (Figure 2). TLR1, TLR2, TLR4, TLR5, TLR6 and TLR10 are mainly 

expressed on the cell surface and recognise extracellular microorganisms like viruses, bacteria 

and fungi. The ligand for TLR10 is currently not known but TLR10 is thought to 

heterodimerise with TLR232. TLR3, TLR7, TLR8 and TLR9 are intracellular and recognise 

microorganisms and ligands that have already entered the cell. TLR11-TLR13 have been 

shown in mice, these TLRs recognise parasites, but are still believed to be absent in humans33, 

34. TLRs are involved in the protection against pathogens, but also contribute to pathogenesis 

of airway diseases35. 
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1.5.2 TLR3, TLR7, TLR8 and TLR9  

In resting cells, TLR3, TLR7, TLR8 and TLR9 are synthesised and stored in the endoplasmic 

reticulum (ER). From there, the intracellular TLRs are folded and translocated to cytosolic 

endosomes via numerous chaperone proteins, one of which is named UNC-93B36, 37. TLR3, 

TLR7/TLR8 and TLR9 recognise different molecular motifs (e.g., TLR3: double-stranded 

RNA (dsRNA); TLR7/8: single-stranded RNA (ssRNA) and TLR9: unmethylated CpG motifs 

in viral and bacterial DNA), common to many respiratory viruses38, 39. In addition, TLR7 can 

recognise miRNA and anti-viral compounds of the imidazoquinolines family40, 41. TLR3, TLR7 

and TLR8 sense viral RNA from, for example rhinoviruses, influenza viruses and respiratory 

syncytial viruses (RSV), which are all common upper respiratory viruses, and induce a robust 

immune response42-45. Upon recognition, TLR7, TLR8 and TLR9 use the MyD88-dependent 

pathway to initiate signalling. TLR3 instead signals via the TRIF-dependent pathway to induce 

the production of both pro-inflammatory cytokines and interferons46.  

 

1.5.3 TLR4 

Resting respiratory epithelial cells express intracellular TLR4, located in pools in the Golgi 

complex47. Upon cell activation, TLR4 is rapidly transferred to the cell surface for pathogen 

recognition48. TLR4 in complex with myeloid differentiation factor 2 (MD-2) recognise LPS 

from gram-negative bacteria49. The response to LPS is also dependent on CD1450. TLR4 

signalling uses a MyD88-dependent and MyD88-independent pathway. The MyD88-

dependent pathway activates NFκB and mainly takes place at the plasma membrane51, whereas 

the MyD88-indenpendent pathway signals through TRIF, leading to interferon regulatory 

factor-3 (IRF3) activation in early endosomes52. 

 

1.5.4 Nod-like receptors 

To date, 22 Nod-like receptors in humans have been characterised. The NLR family has been 

divided in four subgroups based on the variation in their N-terminal domain: acidic domain 

containing (NLRA), BIR domain containing (NLRB), CARD domain containing (NLRC) and 

pyrin domain containing (NLRP)53. It has been shown that the NLRC members, nucleotide-

binding oligomerisation domain 1 (NOD1) and NOD2, are important bacterial sensors that 

recognise muropeptides, peptides released from the peptidoglycan layer of the bacterial cell 

membrane that stimulate innate immunity54, 55. Other NLRs like NLRP1, NLRP3, NLRP6 and 

NAIP form inflammasomes that activate inflammatory processes56. All NLRs have been 

associated with human airway diseases56, 57. 

 



 

 11 

1.5.5 Rig-I-like receptors 

The RLR family includes three receptors located in the cytoplasm: retinoic acid-inducible 

gene-1 (RIG-I), melanoma differentiation-associated gene 5 (MDA-5) and laboratory of 

genetics and physiology 2 (LGP-2). RIG-I is activated by dsRNA or 5′-triphosphate moiety 

from viral RNA, whereas MDA-5 is activated only by dsRNA58. This viral activation results 

in production of cytokines such as type I interferons (IFNs)59. LGP-2 remains poorly described 

but is believed to regulate RIG-I and MDA-5 signalling60.  

 

1.6 NEURONS AND NEUROPEPTIDES 

The upper and lower airways are innervated by sensory nerves61, 62. Sensory nerves release 

neuropeptides including tachykinins, such as substance P (SP), neurokinin A (NKA) and 

neurokinin B (NKB)63. Tachykinins bind and act through their NK receptors64. The release of 

SP induces vasodilation, increased vascular permeability and leucocyte recruitment, 

phenomena that are collectively referred to as neurogenic inflammation65, 66. Sensory nerve 

fibres are hypersensitive in airway inflammatory diseases and play a role in airway disease 

pathology67-70. Elevated levels of SP have been reported during viral infection, stimulating both 

eosinophil accumulation in the nasal mucosa as well as bronchoconstriction in the lower 

airways71, 72. SP has also been shown to be upregulated during exacerbations in asthmatic 

patients73.  

 

1.7 TISSUE REMODELLING 

Chronic inflammation in tissues is often accompanied by structural changes, referred to as 

remodelling74. Remodelling is thought to originate from persistent inflammation and aberrant 

repair mechanisms. The remodelling pattern differs in all airway diseases. In CRSwNP, 

remodelling is characterised by oedematous stroma with albumin deposition, pseudocyst 

formation, hyperplasia and subepithelial and perivascular infiltration of inflammatory cells12, 

75, 76.  Plasma proteins are enriched due to vascular leakage and transportation through the 

dysfunctional epithelial layer, enabling an increased oedema formation77. In CRSsNP, 

remodelling is characterised by fibrosis, basement membrane thickening and goblet cell 

hyperplasia. 

 

1.8 TRANSFORMING GROWTH-FACTOR BETA SUPERFAMILY  

The transforming growth factor beta (TGF-β) superfamily consists of 33 members, which can 

be divided in subgroups that include the TGF-βs, activins/inhibins, bone morphogenetic 

proteins (BMPs) and growth and differentiation factors (GDFs)78. The TGF-β ligands bind to 

type I transmembrane serine/threonine kinase receptors, also named activin receptor-like 

kinases (ALKs), and type II transmembrane serine/threonine kinase receptors78. Upon binding, 

activation of downstream signalling mediators occurs by phosphorylation of multiple Smads. 

Smads act as signal integrators and translocate to the nucleus to interact with other signalling 
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pathways that regulate gene transcription79, 80. Additionally, TGF-β can activate a Smad-

independent pathway via activation of mitogen-activated protein kinase (MAPK), extracellular 

signal-regulated kinase (ERK), p38 MAPK and c-Jun-N-terminal kinase (JNK)80. A role for 

the TGF-β superfamily in airway inflammation has been demonstrated81, 82.   

TGF-β is an important mediator promoting remodelling and fibrosis and is elevated in 

CRSsNP83. However, in CRSwNP the reported levels of TGF-β have been contradictory. Some 

studies demonstrate low levels of TGF-β in CRSwNP compared to control tissue83, 84, while 

others demonstrate elevated levels of TGF-β85, 86. Activin A, another important member of the 

TGF-β superfamily, shows a similar release pattern to TGF-β, with low levels in CRSwNP and 

high levels in CRSsNP84.  

 

1.8.1 Bone morphogenetic protein 

BMPs, a group of growth factors, regulate tissue architecture throughout the body. BMPs, like 

other members of the TGF-β superfamily, binds to type I and II transmembrane 

serine/threonine kinase receptors, the former receptor also termed ALKs. Unlike other TGF-β 

members, BMPs are able to bind and signal via ALKs in the absence of type II receptors87. 

Activated BMP receptors phosphorylate Smads, which regulate gene transcription80. BMP4 

binds primarily to ALK3 and ALK6  on airway epithelial cells where it inhibits proliferation 

and epithelial–mesenchymal transitions (EMT)88. BMP4 release is upregulated in murine 

ovalbumin-induced lung inflammation89 and has anti-inflammatory properties, inhibiting 

epithelial pro-inflammatory cytokines90. Mutations in the genes encoding BMP4 cause juvenile 

polyposis, polyp formation and growth in the colon91. 

 

Figure 3. Schematic representation of the TGF-β-superfamily pathway in epithelial cells, including ligands, ALKs 

and Smads. Formation of the ligand-receptor complex leads to phosphorylation and activation of Smad. This 

subsequently activates or blocks NFκB and gene transcription. P indicates phosphorylation. 
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1.9 ACTIVIN RECEPTOR-LIKE KINASES 

To date, seven type I transmembrane serine/threonine kinase receptors have been identified in 

mammals, termed activin receptor-like kinases 1- 7. ALK 1-7 are utilised by numerous ligands 

in the TGF-β superfamily92 (Figure 3). The ALKs form a hetero-tetrameric complex pairing 

with type II receptors resulting in downstream signalling93. Ligands have the ability to bind 

multiple ALKs, but the affinities between different ALKs vary. ALK1 (ACVL1) acts as a main 

receptor for TGF-βs and BMPs94. ALK2 (ACVR1) is activated by various TGF-βs, activins 

and BMPs95. ALK3 (BMPRIA) binds BMP2 and BMP4 with high affinity80. ALK4 

(ACVR1B) is activated by activins, binding Activin A with high affinity96. ALK5 (TGFBR1) 

is characterised as the primary receptor for TGFβ1-397. ALK6 (BMPRIB) binds BMP2 and 

BMP498. Little is known about ALK7 (ACVR1C), but it is known to bind Activin B with high 

affinity99 (Figure 3). Activation of ALKs has both pro-inflammatory and anti-inflammatory 

effects, and has additionally been shown to be profibrogenic in human airways100.  

 

1.10 INFLAMMATORY CYTOKINES AND RECEPTORS 

Studies have demonstrated that pro-inflammatory cytokines, such as IL-6, IL-8, CSF and MIP-

1β, can promote survival and/or proliferation, activation and differentiation of multiple cells. 

In addition, they play a crucial role in microbial-induced exacerbations of inflammatory airway 

diseases101. IL-6 induces B-cell antibody production and T-cell activation and 

differentiation102. The major role for IL-8 is to recruit and activate neutrophils103. CSF 

stimulates eosinophil and neutrophil infiltration104, 105, whereas MIP-1β attracts lymphocytes, 

eosinophils, neutrophils and monocytes106. IFN-β has antiviral properties, upregulating TLR 

expression and inducing protection against subsequent viral infections by inhibiting viral 

replication107, 108. 

In addition to pro-inflammatory cytokines, multiple receptors also have pro-inflammatory 

functions, as they are involved in microbial intrusion and increase inflammation. ICAM1 is the 

main receptor for rhinoviruses109. HLA-DR on epithelial cells from allergic patients drives the 

inflammatory process by increasing eosinophilic inflammation and activation of other 

inflammatory cells110, while VEGFR participates in angiogenesis by enhancing proliferation, 

migration and vascular permeability111.  
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2. AIMS OF THE THESIS 

 

The overall aim of this thesis is to investigate the interaction between the epithelium, airway 

inflammation and innate immunity in upper airway diseases, including infectious rhinitis and 

chronic rhinosinusitis with nasal polyps (CRSwNP). 

 

The specific aims of the thesis are to: 

 

 Characterise pattern-recognition receptors (PRRs) on human airway smooth muscle 

cells. 

 

 Examine the expression and function of viral recognising PRRs in human nasal 

epithelial cells. 

 

 Analyse the role of Toll-like receptor 9 (TLR9) on polyp and turbinate tissues from 

patients with CRSwNP. 

 

 Reevaluate the role of neuropeptides in airway disease by investigating links between 

substance P (SP) release and epithelial TLR activity.  

 

 Describe the expression and function of activin receptor-like kinases (ALKs) in the 

polyp epithelium of patients with CRSwNP, focusing on proliferation and local 

mucosal inflammation. 

 

 Investigate the function of bone morphogenetic protein 4 (BMP4) in the epithelium of 

patients with CRSwNP by exploring its effects on angiogenesis, proliferation and 

inflammation. 
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3. MATERIALS AND METHODS 

This section contains a brief overview of the materials and methods used in the thesis. For more 

detailed descriptions, the reader is referred to the individual articles, paper I-VI. 

 

3.1 SUBJECTS AND STUDY DESIGN  

The local ethics committee approved all studies. All participants gave their written informed 

consent. All procedures were conducted according to the principles expressed in the 

Declaration of Helsinki. 

 

 

Figure 4. Picture visualising a nasal polyp, the middle turbinate and the inferior turbinate  

in a patient with CRSwNP. 

Patients with chronic rhinosinusitis with nasal polyp (CRSwNP) were defined by historic and 

endoscopic criteria and computed tomography (CT) changes1. Biopsies were taken during 

functional endoscopic sinus surgery (FESS) or local anaesthesia and collected from polyps 

and turbinate tissue. Turbinate tissue was defined as the area where the mucosa had a 

nonpolypoid appearance and bordered the polyp or the tissue showing polypoidal changes. 

The location of the turbinate tissue was close to the middle nasal meatus, from the middle 

turbinate or the inferior turbinate (Figure 4). Biopsies from healthy controls were taken from 

the inferior turbinate after topical application of local anaesthesia or obtained in conjunction 

with nasal surgery (resection of the lower turbinate). 

In all patients, steroids were withheld for at least 4-6 weeks (topically) and 8-12 weeks 

(systemically) prior to participation. Patients on daily inhaled steroid medication were 

excluded from the study. Steroids have anti-inflammatory, immunosuppressive and anti-

proliferative effects and have been demonstrated to increase innate immune receptors112.  A 

“washout” period minimises the appearance of steroid-related artefacts. In paper III, patients 

with more than four episodes of FESS were excluded from the study. Further inclusion 

criteria are specified in paper I-VI. 
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3.2 NASAL ADMINISTRATION OF CPG  

In paper III, the in vivo effects of CpG were studied in patients with CRSwNP. These patients 

were randomised to receive physiological saline solution with or without CpG, applied by 

intranasal spray to both nostrils. Biopsies from polyps and turbinate tissue were taken 24 h 

after the CpG/placebo administration, during FESS. 

 

3.3 TISSUE CULTURE 

Biopsies from polyps or turbinate tissue were taken from patients with CRSwNP. Biopsies 

from healthy controls were taken from the inferior turbinate. Biopsies were analysed 

immediately with flow cytometry or used for stimulation experiments. The tissue pieces used 

for stimulation were separated into equally sized pieces, stimulated and incubated on 24-well 

culture plates in DMEM/F-12 supplemented with foetal bovine serum (FBS), penicillin, 

streptomycin and amphotericin B.  

 

3.4 ISOLATION OF HUMAN CELLS 

Primary cells are a biologically relevant tool when studying human biology and lack the genetic 

changes that allow indefinite cultivation in vitro. To study primary human nasal epithelial cells 

(HNECs), nasal brushings of polyps and turbinate tissue were performed on patients with 

CRSwNP, as well as of turbinate tissue on healthy controls. Nasal brushing is a gentle and 

efficient way to collect epithelial cells without harming the cells or the patient. Epithelial cells 

derived from nasal brushings were either analysed immediately with flow cytometry or 

cultured for in vitro experiments. Flow cytometry was performed to verify protein expression 

on cultured cells compared to fresh cells. 

 

3.5 CELL CULTURE 

3.5.1 Culture of human cells 

Human pharyngeal epithelial cell lines Detroit-562 (CCL-138) and FaDu (HTB-43) were 

obtained from ATCC. Detroit-562 and FaDu were cultured in MEM medium with Earl's salts 

and L-glutamine, FBS, penicillin and streptomycin. The medium for Detroit-562 also 

contained sodium pyruvate, non-essential amino acids, gentamicin and amphotericin B. 

To improve our studies on cell lines, we developed cultures of primary human nasal epithelial 

cells (HNECs). To study multiple functions of these cells, HNECs were cultured in collagen-

coated flasks in keratinocyte serum-free medium (KSFM) supplemented with bovine pituitary 

extract, epidermal growth factor, penicillin, streptomycin and amphotericin B (complete 

KSFM), specific for epithelial cell growth. In all experiments, cells from passages 2–7 were 
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used, and cells were all positive for EpCAM. EpCAM is an epithelial specific marker113, 

enabling separation of epithelial cells from other cells in the nose. 

To study airway smooth muscle cells, tracheal and bronchial human airway smooth muscle 

cells (HASMCs) from non-asthmatic, healthy subjects were obtained from Promocell or Lonza 

in passage 2. HASMCs were cultured in smooth muscle cell growth medium (SMCGM) 

supplemented with FBS, epidermal growth factor, basic fibroblast growth factor, insulin, 

penicillin, streptomycin and amphotericin B. Cells were cultured up to passage 7.  

All cells were cultured at 37°C in a humidified 5% CO2 air atmosphere. Cells were passaged 

and plated on multiwell culture plates at a density of 100,000- 250,000 cells/ml medium and 

incubated to reach confluence. For HASMC culture, cells were growth-arrested in serum-

free medium for 24 h, and then incubated in SMCGM containing 2% FBS during cell 

stimulation. 

 

3.5.2 Isolation and culture of murine trigeminal sensory neurons  

To study the specific function of ganglia, murine trigeminal ganglia were quickly dissected 

from six-to-eight-week female C57BL/6N mice and digested. Following mechanical 

dissociation, cells were separated from debris and enriched for neurons by two-step 

centrifugation. Cells were seeded at a concentration of 500,000 cells/well, onto 24-well cell 

culture plates or on glass coverslips. Cells were cultured in F12 medium, supplemented with 

FBS, penicillin, streptomycin, Amphotericin B and recombinant β-Nerve Growth Factor.  

 

3.5.3 Isolation and culture of murine nasal epithelial cells  

To compare the findings in human nasal epithelial cells with murine trigeminal ganglia (TGN), 

murine nasal epithelial cells (MNECs) were used to compare epithelial cell function over the 

species barrier. C57BL/6N mice were sacrificed and the septal mucosa was dissected. Nasal 

septa were pooled and transferred to MEM supplemented with Pronase and DNase for 1 h, after 

which DMEM/F12 containing FBS was added to stop the reaction. Tissue was passed through 

a cell strainer twice and resuspended in DMEM/F12 with penicillin, streptomycin, 

amphotericin B, FBS, epidermal growth factor and ITS liquid media supplement. The 

suspension was incubated on Primaria culture dishes to eliminate non-epithelial cells. 

Remaining cells were seeded onto collagen-coated 24-well plates at 250,000 cells/ml.  

 

3.6 IMMUNOSTAINING AND MICROSCOPY 

Immunohistochemistry can be used for the detection and localisation of multiple proteins in 

tissues. Immunohistochemistry can also be used for quantification of protein expression in 

tissues.  
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3.6.1 Immunohistochemistry of biopsies  

Biopsies were fixed, embedded in paraffin and subsequently cut into 5μm sections on a 

microtome. Following deparaffinisation, rehydration and heat-mediated antigen retrieval, 

sections were permeabilised and blocked for non-specific binding. Biopsies from patients with 

CRSwNP and controls were incubated in a Sudan black B solution to minimise 

autofluorescence. The sections were incubated at room temperature (RT) (1 h) or at 4°C 

(overnight) with antibodies targeting ALK2, 3, 5, 7, TLR2, 3, 4, 7, 9, NOD1, RIG-I, MDA-5, 

EpCAM, substance P or β III tubulin and subsequently incubated with secondary antibodies. 

To visualise or analyse expression of a single protein in tissue, DAB staining was performed. 

To analyse multiple proteins or specify location or movement in a cell, immunofluorescence 

staining was performed. 

In paper I-II, the labelled streptavidin biotin (LSAB+) System-horseradish peroxidase (HRP) 

or the Dako Cytomation Envision+ System HRP kit was used. Sections were incubated with 

HRP-labelled polymer followed by 3,3’-diaminobenzidine (DAB) substrate-chromogen and 

then rehydrated. In paper V, sections were incubated with Avidin-Biotin-Complex followed by 

3,3’-DAB. To visualise nuclei, counterstaining with Mayer's haematoxylin was performed. The 

sections were examined using light microscopy. Image analysis was carried out using ImageJ. 

Images were initially deconvoluted to separate the DAB and haematoxylin channels; 

subsequently the total DAB stained epithelial area was measured. 

In paper IV-VI, all sections were incubated with a fluorescent-labelled secondary antibody. 

Sections were mounted in ProLong Diamond Antifade Mountant with DAPI. Negative control 

sections were stained with secondary antibody only. Imaging was performed on a Zeiss 

LSM800 confocal microscope or on an Olympus Provis microscope, connected to an Olympus 

U-PS camera. 

 

3.6.2 Immunocytochemistry of cultured cells 

In paper I-II, cells were seeded (50,000-300,000 cells/chamber) in 4-well chamber slides, 

cultured, fixed, permeabilised and treated with hydrogen peroxidase. The cells were incubated 

at RT for 1 h with antibodies targeting TLR2, 3, 4, 7, 9, NOD1, RIG-I and MDA-5. Cells were 

later treated with HRP-labelled polymer, followed by 3,3′-DAB substrate-chromogen. To 

visualise nuclei, counterstaining with Mayer's haematoxylin was performed. The sections were 

examined using light microscopy. 

In paper IV, cultured cells were stimulated and subsequently fixed, permeabilised and blocked 

for non-specific binding. Cells were incubated with antibodies against TLR4, 7 and 

Neurofilament H followed by fluorescent-labelled secondary antibodies. Coverslips were 

mounted onto slides with ProLong Diamond Antifade Mountant with DAPI. All imaging was 

performed on a Zeiss LSM800 confocal microscope or Olympus Provis microscope, connected 

to an Olympus U-PS camera. 
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3.7 FLOW CYTOMETRY 

Flow cytometry can measure multiple physical and chemical properties on individual cells 

based on how they scatter light from laser beams. Multiple filters then enable the detection 

of information about the cell, regarding cells size (Forward scatter, FSC), granularity (Side 

scatter, SSC) and the intensity of fluorochrome-conjugated antibodies. The number of 

positively labelled cells and the medium fluorescence intensity (MFI) can be calculated. By 

gating cells on EpCAM on the X-axes, epithelial cells can be distinguished (Figure 5A). 

Doublets can be excluded by gating on Forward-Height (FSC-H) and Forward-Area (FSC-

A) (Figure 5B). The Vybrant Apoptosis Assay Kit was used to assess the percentage of viable 

cells (Figure 5B).  

 

Biopsies used for flow cytometry were first placed through a 100-µm cell strainer, into 

DMEM/F-12 containing FBS and incubated for 5 min. The cells were washed and 

centrifuged, after which the supernatant was aspirated and discarded. All cells were gated 

based on forward and side scatter and events in the range of 10,000–50,000 were collected.  

In papers II-VI, the epithelial-specific marker EpCAM was used to identify epithelial cells. 

In papers I-IV, cells were analysed for their expression of TLR1-9, NOD1, RIG1, MDA-5, 

CysLT1R, β2-AR, ICAM1, HLA-DR, VEGFR2 and NK1R. The IntraPrep Permeabilisation 

Reagent kit was used to detect intracellular proteins. Isotype controls relevant for each 

antibody were used for the detection of background staining. In papers V-VI, cells were 

analysed for their expression of ALK1-7, ICAM1, VEGFR, BMI-1, HLA-DR, and Ki67. A 

transcription factor buffer set was used to detect the intracytoplasmic and intranuclear 

proteins. For analysis of Smad phosphorylation, cells were incubated with warm Phosflow, 

washed and subsequently incubated with cold Phosflow Perm Buff III to minimise auto-

phosphorylation. 

For all antibody stainings, cells were incubated with antibody or isotype control for 15-20 min 

at RT, thereafter washed and fixed in formaldehyde. 

In paper I-II, cells were analysed on a Coulter Epics XL flow cytometer (Beckman Coulter). 

Data was analysed with Expo32 ADC (Beckman Coulter). In paper III-VI, cells were 

Figure 5. Epithelial cells gated based on expression of EpCAM (A).                                                                          

Single cells gated based on Forward Height (FSC-H) and Forward Area (FSC-A) and viability (B). 
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analysed on an LRSFortessa analyser (BD). Data was analysed with FlowJo Analysis 

Software (©Tree Star). 

 

3.8 CELL PROLIFERATION 

To examine proliferation and viability of smooth muscle cells, alamarBlue® Cell Viability 

Reagent was used. The number of cells was proportional to the colour change. AlamarBlue 

reagent was added to plates containing HASMCs. After 2 h of incubation, the absorbance 

was measured on a spectrophotometer. The proliferation was depicted as percent difference 

in reduction between control and treated cells according to the equation in paper I. 

 

3.9 ELISA 

ELISA is a specific method for detection and quantification of proteins present in, for 

example, cell culture supernatant. In a sandwich ELISA, a capture antibody detecting the 

antigen of interest is coated onto a microplate. Standard and samples are added and the 

specific antigen binds to the capture antibody. Thereafter, an antigen specific enzyme-linked 

antibody is added for detection. Lastly, a substrate initiate’s colour development proportional 

to the amount of antigen in the sample. In paper I-II and V-VI, ELISA kits from R&D 

Systems were used to determine levels of IL-6, IL-8, GM-CSF, TGF-β1, eotaxin, RANTES 

and BMP4. In paper I, ELISA kits from PBL Interferon Source were used to measure IFN-β 

and ELISA kit from PBL Biomedical Laboratories was used to detect IFN-α. In paper IV, 

substance P was measured using an EIA Kit allowing detection of human and mouse 

substance P. All samples were analysed in duplicates to control the stability of the method.  

 

3.10 MULTIPLEX CYTOKINE MEASUREMENT 

Multiplex cytokine measurement is a method that quantifies a large number of proteins or 

peptides simultaneously in one sample of cell culture supernatants. The assay principle is 

similar to a sandwich ELISA, but the antibodies directed against an antigen are covalently 

coupled to magnetic beads dyed with fluorescent dyes. As the Multiplex assays can measure 

multiple proteins at the same time, less sample is required. In addition, multiplex assays have 

a broader range and a lower minimal detection limit of all measured proteins as compared to 

an ELISA assay. In paper III, a Human Cytokine Standard 17-plex (Bio-Rad Laboratories) was 

used and quantified on the Luminex200 system.  

 

3.11 RNA EXTRACTION AND REAL-TIME PCR 

Real-time PCR enables quantification of gene expression. Investigating mRNA in 

combination with protein levels provides a total picture of the receptor expression. The 
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procedure starts with extraction of total RNA followed by reverse transcription of RNA into 

complementary DNA (cDNA). Cyclic heating and cooling denatures the double stranded 

cDNA, where attachment of DNA probes binds and enables annealing/extension of new 

DNA strands. During amplification, light is emitted and a threshold cycle (Ct) value is 

determined.  

To investigate the gene expression of various receptors, biopsies and cells were lysed and 

RNA was extracted using an RNeasy Mini Kit. The quality and quantity of the obtained RNA 

was determined by spectrophotometry using the wavelength absorption ratio (260/280 nm). 

Reverse transcription of total RNA into cDNA was performed using the Omniscript reverse 

transcriptase kit (Qiagen) with oligo(dT)16 primer in a Mastercycler personal PCR machine. 

The RNA samples were denatured (65° for 5 min), chilled (4° for 5 min) and amplified (37°C 

for 1 h) in a final volume of 20 µl using a Mastercycler PCR machine (Eppendorf, Hamburg, 

Germany).  

Real-time reverse transcription PCR was performed using Stratagene Brilliant QPCR with 

FAM™ labelled probes for TLR3, 7, 9, RIG-I, MDA-5 and β-actin. Stratagene Mx3000P 

was also used with FAM™ labelled probes for TLR1-10, NOD1-2, NLRP3, RIG-I, MDA-5, 

LGP-2 and GAPDH together with Brilliant® QPCR Master Mix. FAM™ labelled probes 

were used with the TaqMan-based detection, a specific and sensitive method, allowing 

detection of low number of copies and two different sequences in one tube. The thermal 

cycler was set to perform an initial set-up (95°, 10 min) and 45 cycles of denaturation (95°, 

15 or 30 sec) followed by annealing/extension (60°, 1 min). In paper I, primers for MLCK 

and GAPDH were designed and synthesised by DNA Technology A/S. PCR reactions were 

performed using the Brilliant® II SYBR® Green QPCR Master Mix. SYBR® Green-based 

detection can be used to detect any double stranded DNA sequence and no probe is required. 

The thermal cycler was set to perform 95°C for 15 min, followed by 46 cycles of 94°C for 

30 s and 55°C for 60 s. For SYBR® Green-based detection, melting curve analysis was 

performed to ensure specificity of the amplified PCR products.  

The relative amount of mRNA for the specific genes was determined by subtracting the Ct 

values for the gene of interest from the Ct value for the control genes (GAPDH or β-actin) 

(ΔCt). The amount of mRNA was expressed in relation to 105 β-actinmolecules or GAPDH 

(2-ΔCt ×105). 

 

3.12 STATISTICS 

Data was analysed using GraphPad Prism Software (San Diego, CA, USA). Results are 

expressed as individual dots with mean or mean ± standard error of mean (SEM). In paper I-II, 

n equals the number of independent experiments (passages) or donors. In paper III-VI, n equals 

the number of human donors. In paper IV, experiments involving cultured murine epithelial 

cells or neurons, n is equal to the number of individual replicate measurements.  
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Normally distributed data was analysed using parametric tests and data not normally distributed 

by non-parametric tests. For comparison of two data sets, paired or unpaired t-tests were 

employed for parametric data, whereas Wilcoxon’s matched-pairs signed rank tests were used 

for non-parametric data. For more than two paired data sets, one-way repeated measures 

ANOVA followed by Dunnett's or Bonferroni’s multiple comparison post-test was used for 

parametric data. A Kruskal-Wallis test or a Friedman’s test followed by a Dunn’s multiple 

comparison post-test was used for non-parametric data. In paper I, a Grubbs' outlier test was 

carried out on the replicate analyses to identify possible outliers. A p-value of 0.05 or less was 

considered statistically significant. 
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4. RESULTS AND COMMENTS 
 

4.1 PATTERN-RECOGNITION RECEPTORS IN HUMAN AIRWAY SMOOTH 

MUSCLE CELLS (PAPER I) 

Human airway smooth muscle cells (HASMCs) are central to airway hyperresponsiveness 

(AHR), remodelling and inflammation in asthma patients114. The first study was designed to 

characterise the expression and function of pattern-recognition receptors (PRRs), involved in 

microbe-induced exacerbation115, on HASMCs. HASMCs were cultured with PRR-ligands to 

study release of cytokines and chemokines and expression of cell surface molecules. Poly(I:C) 

(TLR3) induced a significant release of IL-6, IL-8, GM-CSF, eotaxin and RANTES. 

Pam3CSK4 (TLR1/2), FSL-1 (TLR2/6), LPS (TLR4), R-837 (TLR7) and iE-DAP (NOD1) 

stimulation induced release of IL-6, IL-8 and GM-CSF (Figure 6A-E). To verify this effect, 

cells were incubated with Pam3CSK4, poly(I:C), LPS, R-837 and iE-DAP in multiple 

concentrations. This revealed a concentration-dependent increase in the release of IL-6 and IL-

8 with an exception of LPS stimulation where the release of IL-6 and IL-8 plateaued after the 

lowest LPS concentration. TGF-β1 release was not altered by PRR stimulation (Figure 6F). In 

addition, Pam3CSK4, poly(I:C), LPS, R-837 and iE-DAP stimulation increased the expression 

of ICAM-1 and HLA-DR. As the specificity of R-837 for TLR7 has been questioned, HASMCs 

were pre-treated with the TLR7 antagonist IRS661. Results showed that IRS661 eliminated the 

R-837-induced IL-6 release.   

 

Figure 6. HASMCs were cultured (24h) with/ without Pam3CSK4 (TLR1/2), FSL-1 (TLR2/6), poly(I:C) (TLR3), 

LPS (TLR4), flagellin (TLR5), R-837 (TLR7), R-848 (TLR7/8), CpG (TLR9), iE-DAP (NOD1), MDP (NOD2) 

and poly(I:C)/LyoVec (RIG-I/MDA-5). (A) IL-6 (n=14), (B) IL-8 (n=14), (C) GM-CSF (n=14), (D) eotaxin (n=7), 

(E) RANTES (n=7) and (F) TGF-β1 (n=6) was analysed using ELISA. All values: mean ±SEM. 
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TLR1/2, TLR3, TLR4, TLR7 and NOD1 were expressed on both mRNA and protein levels on 

cultured HASMCs. Pam3CSK4, poly(I:C), LPS, R-837 and iE-DAP stimulation also 

downregulated expression of myosin light-chain kinase (MLCK) and cysteinyl leukotriene 1 

receptor (CysLT1R) (Figure 7A-B).  In addition, poly(I:C) stimulation increased expression of 

β2-adrenoceptor (β2AR) (Figure 7C).  

 

Figure 7. HASMCs were cultured (24 h) in the absence or presence of Pam3CSK4, poly(I:C), LPS, R-837 and iE-

DAP. (A) MLCK mRNA expression was analysed using real-time RT-PCR. (B) CysLT1R and (C) β2AR 

expression was analysed using flow cytometry (n = 7). All values: mean ±SEM. 

 

4.2 COMMENTS (PAPER I) 

HASMCs are involved in asthma pathogenesis, as they play a role in airway contraction, airway 

wall thickening and generation of cytokines and chemokines that leads to airflow obstruction, 

remodelling and local inflammation18.  

Cultured HASMCs can have a contractile and a synthetic/proliferative phenotype, the former 

being characterised by high expression of contractile proteins and the latter by low 

expression116. The switch between these phenotypes is referred to as phenotypic plasticity. 

HASMCs grown in 5-10 % serum develop a synthetic phenotype117. A long starvation period 

can induce a hyper-contractile phenotype in HASMCs118. However, HASMCs need serum to 

proliferate and grow in vitro119. In addition, plasticity is modulated by confluency of the cell 

culture118. The phenotypic plasticity occurs in vitro, but whether it also occur in vivo is not 

known. However, optimising in vitro culture models/conditions is important as phenotypic 

plasticity of HASMCs is associated with changes in contractile protein and ion channel 

expression, which can be functionally significant when conducting in vitro experiments120.  

A high TLR3 expression was evident on the HASMCs and the strongest responses were seen 

upon stimulation with the TLR3 ligand poly(I:C), demonstrated by the release of pro-

inflammatory cytokines, eotaxin and RANTES. HASMCs stimulated with poly(I:C) have 

previously been demonstrated to increase the chemotactic activity on eosinophils121, which 

may be related to the release of  these mediators. Poly(I:C) additionally downregulated MLCK 

and CysLT1R, and induced β2AR expression. The function of MLCK is to phosphorylate the 

myosin light chain, leading to contraction, and elevated levels of MLCK have been found in 
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asthmatic HASMC114. β2AR binds β2-agonists and mediate smooth muscle relaxation via the 

release of cAMP. The β2AR-cAMP axis is abnormally regulated in asthma and is a common 

target in asthma treatment122. These findings strengthen the function of TLR3 as both limiting 

contractile receptors and promoting relaxant receptors. Unlike our data, Morishima et al. have 

demonstrated that poly(I:C) does not affect the expression of CysLT1R123. These discrepancies 

may be explained by different culture models/conditions discussed above, or by donor and 

origins differences of the HASMCs (tracheal vs. bronchial). However, our results emphasise 

that TLR3 is an important receptor on HASMCs, regulating both local inflammation and 

relaxation. 

Results from studies on the expression of TLR7 on HASMCs have been contradictory. By 

immunohistochemistry, functional TLR7 expression has been demonstrated on guinea pig 

airway smooth muscle cells124. However, other human studies demonstrate TLR7 expression 

on nerve fibres innervating the airways, and not on airway smooth muscle cells125. 

Comparatively, our study clearly demonstrates functional TLR7 expression on cultured 

HASMCs. In line with this, TLR7 expression on cultured foetal and adult HASMCs has been 

demonstrated126. R-837 induced release of IL-6 and IL-8 and downregulated expression of 

MLCK and CysLT1R, indicating that R-837 induces pro-inflammatory cytokine release and 

relaxation of HASMCs.  

It is important to note that the TLR7 agonist R-837 has a multitude of different effects. Binding 

of R-837 to TLR7 can induce pro-inflammatory cytokines or rapidly initiate a calcium 

release127, 128. Previous studies have shown that R-837 administration induced a rapid airway 

relaxation, both in vivo and in vitro via disruption of calcium homeostasis in HASMCs or 

through nitric oxide release from nerves125, 129. Studies have also showed that certain effects of 

R-837 are independent of TLR7 expression130. Synthetic TLR7 and TLR8 agonists are 

structurally related to imidazoquinolines and quinolines and have been demonstrated to relax 

pre-contracted guinea pig and human airways131. Topical R-837 induces strong responses in 

skin of Tlr7−/− mice, independently of TLR7 and adaptive immune responses132. The receptor 

involved in this response remains unknown133. Therefore, R-837 studies have to be carefully 

designed to not include/exclude cells based purely on their expression of TLR7. In addition, it 

is vital to conduct experiments that include TLR7 agonists, that do not belong to the quinolone 

family, or to block TLR7, to demonstrate whether the effects are TLR7-dependent. In our 

study, a TLR7 specific antagonist termed IRS661 was used and demonstrated that our cytokine 

release was TLR7-dependent.  

To summarise, expression of TLR2, TLR3, TLR4, TLR7 and NOD1 was found on HASMCs 

and activation of these receptors promotes the development of a synthetic phenotype of 

HASMCs. This was characterised by a release of various cytokines, an upregulation of several 

inflammatory cell surface markers and downregulation of receptors involved in smooth muscle 

cell contraction. 

 



 

26 

 

4.3 PATTERN-RECOGNITION RECEPTORS IN THE NASAL EPITHELIUM 

(PAPER II-III) 

 

The airway epithelium provides protection against pathogens through barrier functions, as well 

as the release of epithelial-derived chemokines and cytokines22. The first study aimed to 

evaluate the presence of virus recognising PRRs on primary human nasal epithelial cells 

(HNEC) and their role in inflammation in healthy subjects. First, mRNA expression of TLR3, 

TLR7, TLR9, RIG-I and MDA-5 was demonstrated in nasal biopsies. Immunohistochemistry 

(IHC) was used to determine the location of the receptors and revealed that the expression of 

all five receptors was most abundant on the surface epithelium (Figure 8). 

 

 
Figure 8. Sections of nasal biopsies stained for TLR3 (A), TLR7 (B), TLR9 (C), RIG-I (D), MDA-5 (E) and 

control slides (F), visualised by 3, 3′-DAB (brown). All slides were counterstained with haematoxylin (blue). The 

figure shows one representative biopsy out of four. The arrows indicate positive stained cells. 

 

Since the highest expression of PRRs was evident in the nasal epithelium, receptor expression 

was evaluated in HNEC and in the nasopharyngeal epithelial cell lines Detroit-562 and FaDu. 

mRNA expression for TLR3, TLR7, TLR9, RIG-I and MDA-5 was detected in HNEC. These 

findings were verified in Detroit-562 and FaDu with the exception of TLR7 and TLR9, which 

were barely detectable. In contrast, protein expression of TLR3, TLR7, TLR9, RIG-I and 

MDA-5 could be demonstrated in all cells using IHC and flow cytometry.  

The release of IL-6, IL-8, GM-CSF and IFN-β was evaluated after PRR-ligand stimulation of 

nasal biopsies. Poly(I:C) (TLR3) induced release of IL-6 whereas R-837 (TLR7) induced 

release of IL-6 and GM-CSF. CpG (TLR9) stimulation resulted in a significant upregulation of 

IL-8 whereas poly(I:C)/LyoVec (RIG-I/MDA-5) stimulation resulted in a release of IFN-β 

(Figure 9A). In HNECs, Poly(I:C) induced release of IL-6, IL-8 and GM-CSF whereas R-837 

induced release of IL-6. Poly(I:C)/LyoVec stimulation resulted in a release of IFN-β (Figure 

9B). In addition, ICAM1 expression on HNEC was upregulated after poly(I:C) stimulation. 

Stimulating Detroit-562 and FaDu with PRR-ligands demonstrated similar release patterns; 

however, certain differences could be detected.  
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Figure 9. Nasal biopsies (A) and HNECs (B) were cultured in the absence (Untreated) or presence of poly(I:C) 

(TLR3), R-837 (TLR7), CpG (TLR9) and poly(I:C)/LyoVec (RIG-I/MDA-5). After 24 h, supernatants were 

collected and analysed for levels of IL-6, IL-8, GM-CSF and IFN-β using ELISA (n=5-9). All values: mean ± 

SEM. 

 

Disruption in the PRR immune response contributes to pathogenesis of airway diseases5, 35.  

One hypothesis in the progression of chronic rhinosinusitis with nasal polyps (CRSwNP) is 

that an inaccurate immune response to foreign agents results in an extended mucosal 

inflammation14, 15.  Virus recognising TLRs were evaluated in the nasal mucosa of patients with 

CRSwNP. TLR9 expression was not evident in epithelial cells derived from turbinate tissue of 

patients whereas it was present in epithelial cells derived from polyps of the same patients, and 

epithelial cells derived from healthy controls (Figure 10A). However, following in vitro CpG 

stimulations, and in vivo CpG-treatment, the TLR9 expression on epithelial cells derived from 

turbinate tissue was restored (Figure 10B). To investigate if CpG stimulations altered cytokine 

and chemokine release, supernatants were analysed. The release of G-CSF, IL-6 and MIP-1β 

from turbinate tissue was reduced towards levels demonstrated in healthy controls. In addition, 

epithelial VEGFR2 expression was downregulated after CpG stimulations on turbinate tissue 

(Figure 10C), in vitro, and a small decrease could be detected after CpG-treatment in vivo. 
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Figure 10. TLR9 expression on epithelial cells (n = 5) (A). CRSwNP-patients nasally challenged with CpG (n = 4) 

or placebo (n = 4). Epithelial TLR9 expression was analysed in biopsies from turbinate tissue obtained after 24 h 

(B). Epithelial VEGFR2 expression after 24 h of culture with vehicle/CpG analysed using flow cytometry (n = 5) 

(C). All values: mean ±SEM.   

 

Comparisons of cytokine and chemokine release between polyp and turbinate tissue 

demonstrated that IL-5 and IL-10 release from polyps was significantly higher compared to 

turbinate tissue from patient and healthy control.  

 

4.4 COMMENTS (PAPER II-III) 

TLR3 activation via poly(I:C) stimulation induced the release of multiple cytokines from both 

nasal biopsies and HNECs, demonstrating that HNECs are important players in the release of 

pro-inflammatory cytokines seen following infections in the nose. Among viruses that may 

infect nasal epithelial cells, rhinovirus is the most common and is recognised by TLR3134. 

TLR3 activation on HNECs is important for the antiviral responses upon rhinovirus infections 

in the nasal mucosa. However, TLR3 is also involved in unwanted effects in airway diseases135. 

CRS is generally characterised by Th2 inflammation driven by cytokines like IL-4 and IL-

13136. Th2 cytokines greatly enhance TLR3 signalling on epithelial cells137, resulting in 

excessive release of TLR3-induced pro-inflammatory cytokines, driving inflammation during 

viral-induced exacerbations. In addition, activation of TLR3 resulted in an upregulation of 

ICAM1 on HNECs. ICAM1 is the main receptor to which dsRNA viruses such as rhinoviruses 

binds109, and an upregulation could enhance the susceptibility to more severe or prolonged 

airway infections. Since TLR3 activation on HNECs increases pro-inflammatory cytokines and 
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enhances ICAM1-binding of airway viruses, this PRR could be important with regards to virus-

induced exacerbations of airway diseases.  

The finding that RIG-I/MDA-5 activation on HNECs is responsible for the majority of IFN-β 

release in the nasal epithelium is central. IFN-β is involved in the protection of epithelial cells 

against further viral infections. Impairment of virus-induced IFN-β release is associated with 

increased viral replication in epithelial cells107, 108. Prolonged infections may lead to chronic 

inflammatory conditions such as allergic airway inflammation or CRS. Indeed, in CRS, 

HNECs demonstrate a delayed clearance of virus, less released IFN-β and lower MDA-5 

expression upon rhinovirus infections138. Altogether, therapeutics towards RIG-I/MDA-5 

activation could be of use to inhibit prolonged inflammation and progression of CRS and other 

airway inflammatory conditions. 

To summarise, this study demonstrates that TLR3, TLR7, TLR9, RIG-I and MDA-5 are 

expressed on HNECs and recognise virus-related products causing an increased inflammatory 

response. The induction of IFN-β underscores that RIG-I/MDA-5 on HNECs are important 

PRRs involved in viral clearance in the nose. These receptors may have the ability to affect an 

ongoing inflammatory process in the nasal mucosa.  

 

TLR9 activation is known to induce a Th1 immune response139, reversing and preventing a Th2 

inflammation that is associated with CRSwNP. Studies have shown that the TLR9 agonist CpG 

has immunomodulatory properties in vitro140 and in vivo in humans141, 142, and in mice143. These 

findings show that CpG activates a Th1-biased immune response in multiple cells. The 

deficient TLR9 expression on turbinate tissue in CRSwNP could be of relevance to the 

malfunctioning immune response upon viral intrusions, known to cause aggravated 

inflammation and progression of polyps144. Restoration of TLR9 with CpG stimulation may 

curtail the predominant Th2 inflammation, as well as more quickly deplete viral infections, 

lowering the risk for polyp growth. In line with this, studies in mice have shown that activation 

of innate immune defences by CpG can protect against a wide range of pathogens, including 

respiratory syncytial virus, Mycobacterium tuberculosis and herpes simplex virus145.  

Recent studies have also demonstrated various factors important in the expression of TLR9. 

DNases are required for processing of viral DNA into shorter products, enabling TLR9 

recognition146. As DNases control TLR9-ligands, they consequently control the regulation and 

expression of TLR9. In addition, cleavage of TLR9 seems to be required for correct TLR9 

activation147. Whether TLR9 deficiency is a consequence of a Th2 inflammation or that other 

factors, like those mentioned above, alter the TLR9 expression and recognition, lowers the Th1 

inflammation and therefor enables a stronger Th2 inflammation, remains to be established. 

Upon CpG stimulation, the release of G-CSF, IL-6 and MIP-1β of turbinate tissue from patients 

with CRSwNP was reduced to levels demonstrated in healthy controls. IL-6 induces B-cell 

antibody production, T-cell activation and differentiation102. G-CSF stimulates eosinophil and 

neutrophil infiltration104, 105, whereas MIP-1β attracts eosinophils and neutrophils106. An 

inhibition of these cytokines could hinder a further progression of CRSwNP and possibly delay 

polyp recurrence, even after the polyp has been surgically removed.  
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In summary, defects in the TLR9-mediated microbial defence were evident in turbinate tissues 

from patients with CRSwNP. CpG stimulation upregulated expression of TLR9, 

downregulated the expression of VEGFR and the release of IL-6, G-CSF and MIP-1β. 

Activation of TLR9 may therefore have a role in restricting nasal polyp growth or recurrence. 

 

4.5 SUBSTANCE P REPRESENTS A NOVEL FIRST-LINE DEFENSE 

MECHANISM IN THE NOSE (PAPER IV) 

Substance P (SP) has previously been shown to play a critical role in animal models of 

continuous airway inflammation148, 149, but this has been hard to validate clinically150, 

suggesting an alternative role for SP in humans. Our experiments were designed to study if 

TLR activation could contribute to early SP release during viral infection and if SP, 

subsequently, affected the innate immune response.  

Our study demonstrated a widespread expression of TLR3, TLR4 and TLR9 in human nasal 

mucosa, whereas TLR7 was almost exclusively found on epithelial cells and nerve fibres. To 

further examine the level of neuronal-TLR expression, human trigeminal ganglia were 

evaluated. This revealed high TLR7 and TLR9 expression and low TLR3 and TLR4 expression 

in the ganglia. TLR7 was also demonstrated to co-localise with SP on innervating sensory nerve 

fibres. 

 

Figure 11. Substance P (SP) production by TGN (A) and HNEC (n=4-5) (B), comparing unstimulated vs. 

stimulated cells. Black line: Mean. Epithelial TLR4 expression in unstimulated HNEC (C, E) and SP-stimulated 

HNEC (100nM SP, 30 min) (D, F). Representative images from one healthy subject demonstrating expression of 

TLR4 (green) and nucleus (blue) (n=5). Scale bar: 50 µm. 

Stimulation with the TLR7 agonist R-837 and the TLR7/8 agonist R-848 resulted in a rapid 

(15 min) concentration-dependent release of SP from cultured murine sensory neurons (TGN) 

and HNEC (Figure 11A-B). Levels remained significantly high after 30 min and 4 h (Figure 

11A-B). R-848 stimulation on HNECs resulted in a similar SP release, but the effect was less 

prominent (Figure 11B).  
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Stimulation with SP on HNECs induced upregulation of TLR1, TLR3, TLR4, TLR7 and TLR9 

expression of HNECs within 30 min. TLR2, TLR5, TLR6 and TLR8 were unresponsive to SP 

stimulation. The TLR4 upregulation on HNECs was shown to be the result of TLR-movement 

from intracellular compartments close to the nucleus (Figure 11C, E), to the cell surface (Figure 

11D, F) after 30 min of SP stimulation. Some cells demonstrated punctate (yellow arrow) or 

polarised (white arrow) TLR expression (Figure 11D, F). The SP receptor, neurokinin 1 

receptor (NK1R), was found to be expressed on HNECs (Figure 12A). Upregulation of TLR1, 

TLR4, TLR7 and TLR9 expression was blocked when HNECs were pre-treated with the NK1R 

antagonist, aprepitant, prior to SP stimulation (Figure 12B, D, E, F). TLR3 upregulation was 

not blocked by aprepitant (Figure 12C). 

 

Figure 12. HNEC unstained (black histogram), isotype (grey histogram) and NK1R stained (red histogram) (A). 

HNEC expression of TLR1 (B), TLR3 (C), TLR4 (D), TLR7 (E) and TLR9 (F) 30 min after SP stim (100 nM), 

with/without prior incubation (3 min) with Aprepitant (10 nM) (n=5). All values: mean ±SEM. 

 

4.6 COMMENTS (PAPER IV) 

SP production in response to airway viral infection is a well-established phenomenon151, 152, 

and results suggest that SP increases inflammation and symptoms upon infection153. This is the 

first study to show that both sensory neurons and HNECs release SP in a single burst within 

minutes of TLR7 stimulation. The release of SP from sensory neurons was found to be 500 

times higher than the release from HNEC, when the SP release was expressed in relation to the 

number of cells involved. Although this demonstrates a profound capability for neurons to 

produce SP, HNECs are local and they far outnumber neurons in the nose, indicating that they 

have a powerful role in releasing SP in the nasal mucosa. Upon recognition, TLR7 traditionally 

uses the MyD88-dependent pathway to initiate signalling46. Recently, activation of TLRs has 

been demonstrated to induce calcium-signalling154, possibly by sensitising receptors 

responsible for calcium release155. TLR7 can bind and activate the transient receptor potential 

ankyrin 1 (TRPA1), initiating SP release via an influx of extracellular Ca2+ 156. Activated TLR7 
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interacts with TRPA1 on sensory neurons157 and on airway epithelial cells158. Since our results 

show that the release of SP is rapid, one could speculate that this release is linked to calcium 

fluxes. The ability for both sensory neurons and epithelial cells to rapidly secrete SP in response 

to TLR activation represents a novel first-line defense mechanism for these cells. 

Neuropeptides may be designed for kick starting the immune system, locally regulating or 

priming acute inflammation in the airways. More importantly, this regulation is also present in 

resident non-neuronal cells.  

Since the TLR upregulation after SP stimulation was rapid, it is likely due to alterations in 

intracellular trafficking, rather than de novo synthesis159. Recently, the intracellular trafficking 

of different viral-recognising TLRs has emerged as an important factor in TLR recognition. 

TLRs are often sequestered into intracellular stores. However, TLR-recognition only occurs in 

acidified endosomes or on the cell membrane, since other compartments contain chloroquine 

or ammonium chloride, preventing acidification160. Resting respiratory epithelial cells express 

intracellular TLR4, located in pools in the Golgi complex47. Upon cell activation, TLR4 is 

folded and transported to the cell surface for pathogen recognition, within minutes48. TLR3, 7 

and 9 reside both in the endoplasmic reticulum (ER) and in the Golgi complex in resting cells 

and traffic from these stores to the endosomes upon stimulation37, 161-163. Proteins involved in 

folding and intracellular trafficking of TLRs are gp96, CNPY3, CNPY4 and UNC93B137, 164, 

165. The recycling endosome resident GTPase, Rab11a, has also been showed to be involved in 

redistribution of TLR4 and TLR9166, 167. In addition to this, SP-induced recycling of NK1R is 

also dependent on Rab11a168. One possible explanation for SP-induced TLR-transportation, 

demonstrated in our paper, could be due to the activation of Rab11a. 

 

 
Figure 13. Summary of the main findings in Paper IV. 

The conclusions from this study are that TLR7 ligands stimulate a rapid release of neuronal 

and epithelial SP. The released SP acts as an initial defensive response by upregulating 

epithelial TLR expression, via relocation of TLR within the epithelial cell (Figure 13). In line 

with this, pre-treating cells with SP has been shown to enhance the response to TLR-ligands169. 
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Altogether, this study demonstrates that SP has the ability to kick-start the immune system and 

thereby prepare the epithelium against incoming microbial antigens (Figure 13).  

 

4.7 ACTIVATION OF ACTIVIN RECEPTOR-LIKE KINASES CURB MUCOSAL 

INFLAMMATION AND PROLIFERATION IN CHRONIC RHINOSINUSITIS WITH 

NASAL POLYPS (PAPER V) 

The transforming growth-factor beta (TGF-β) superfamily and their type I receptors, named 

activin receptor-like kinases (ALKs) have recently been proposed to be involved in local 

airway inflammation in CRSwNP83. The study was designed to examine the presence and 

potential function of ALKs in CRSwNP.  

Figure 14. ALK on epithelial cells from controls (n=8) and CRSwNP-patients (n=13) (A). All values: mean±SEM. 

Representative pictures from one control and one patient demonstrating ALK5 (green), EpCAM (red), nucleus 

(DAPI) (B), scale bar: 50 µm. 3-4 controls and patients were stained.  

Expression of ALK1-6 was significantly elevated on epithelial cells from polyps compared to 

controls (Figure 14A). The high expression of ALKs was confirmed by immunohistochemistry 

(IHC). IHC revealed an abundance of ALK5 in the epithelial layer of the polyps compared to 

control tissue (Figure 14B). In addition, strong expression of ALK2, ALK3 and ALK7 was 

demonstrated in the epithelial layer of the polyps. ALK2 and ALK7 expression was also seen 

in submucosal compartments. Low to moderate expression levels of ALK2, ALK3, ALK5 and 

ALK7 was seen in the nasal mucosa of healthy controls. Ki67 immunostaining was increased 

in polyp epithelium compared to control epithelium, with expression being confined to basal 

cells. Expression of ICAM1 was significantly upregulated and the release of IL-8 was slightly 

increased in polyps compared to controls, both present in the epithelium. 

Stimulation with TGF-β1 resulted in a downregulation of Ki67 expression on cultured polyp 

epithelial cells, whereas stimulation with Activin A, BMP4 and Activin B did not affect Ki67 

expression. Control epithelial cells exhibited no change in Ki67 upon ligand stimulation. 
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Stimulation with TGF-β1, Activin A and Activin B downregulated IL-8 release and ICAM1 

expression in polyp epithelial cells, whereas no corresponding changes were found in control 

epithelial cells. 

 

 
Figure 15. Epithelial cells stimulated with TGF-β1 (A), Activin A (B), BMP4 (C) or Activin B (D), for 20h after 

which TNF-α was added (4h) and ICAM1 expression was analysed (n=5-7). All values: mean±SEM. 

To investigate if ALK-ligands had the ability to inhibit the local inflammatory response in 

epithelial cells, cells were exposed to TNF-α with and without the presence of TGF-β1, Activin 

A, BMP4 and Activin B. TNF-α caused an upregulation of ICAM1 expression compared to 

unstimulated cells in both polyp and control epithelial cells (Figure 15A-D). Pre-treatment for 

20 h with TGF-β1, Activin A or Activin B, respectively, markedly inhibited TNF-α-induced 

ICAM1 expression on polyp epithelial cells compared to controls (Figure 15A, B, D). Further, 

pre-treatment with BMP4 inhibited TNF-α-induced ICAM1 expression on polyp epithelial 

cells, although this did not reach statistical significance (Figure 15C). 

 

4.8 COMMENTS (PAPER V) 

ALK signalling was previously believed to be restricted to endothelial cells170. The present 

study demonstrates that polyp epithelial cells express high levels of 6 out of 7 ALKs and that 

the expression of ALK5 is the one most prominent on the surface epithelium of polyps. This 

strengthen the impression that ALK signalling together with cytokines produced in the tissue 

micromilieu is important in disease remodelling and inflammation171, 172. 

Ki67 is a marker for proliferating cells and a positive correlation between Ki67 expression and 

the severity of epithelial remodelling has been described173-175. Studies have also demonstrated 
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a correlation between high Ki67 expression and polyp eosinophilia176. In addition, steroid 

treatment, the most effective pharmacologic therapy for nasal polyps, has been reported to 

downregulate the expression of Ki67176. Our study demonstrated that the polyp epithelium 

expresses increased Ki67 and that TGF-β1 stimulation downregulates this expression. These 

results suggest that TGF-β1 may inhibit polyp epithelial cells with abnormal or defective 

proliferation. This effect may be even more pronounced in patients with high eosinophilia, a 

group considered more difficult to treat and in frequent need of repeated surgery177. 

IL-8 release and ICAM1 expression are events necessary for leukocytes recruitment178 and are 

important in the pathogenesis of nasal polyps179. The presented results show that stimulation 

with TGF-β1, Activin A and Activin B downregulated ICAM1 expression and decreased IL-

8 release. Interestingly, studies have shown a low release of both TGF-β1 and Activin A from 

nasal polyps180. Activin A was specifically decreased at sites in the polyp exhibiting a massive 

B-cell infiltration181. Activin B has been shown to stimulate wound closure and cause 

reepithelialisation in mice182. This implies that a reduction of TGF-β1, Activin A and B 

decrease the anti-inflammatory effects they normally convey, increasing the local 

inflammation in CRSwNP.  

Patients with CRSwNP often experience periods of disease worsening, characterised by 

increased polyp growth, triggered by local infections in the nose. TNF-α is produced upon 

bacterial, fungal and/or viral infections and is known to play a role in this process183, 184. In this 

study, TNF-α stimulation induced an upregulation of ICAM1 expression on both polyp and 

control cells. Pre-treatment with TGF-β1, Activin A or Activin B, respectively, inhibited TNF-

α-induced ICAM1 expression on polyp epithelial cells. TGF-βs, Activins and BMPs bind to 

their corresponding receptor and phosphorylate Smads, which trigger a nuclear translocation 

of the Smad complexes185. In epithelial cells, the phosphorylated Smad complex brings 

myocardin-related transcription factors (MRTFs) into the nucleus through direct interactions186, 

187. Upon translocation of MRTFs into the nucleus, MRTFs form a complex with NFκB, 

blocking NFκB activity. NFκB plays a key role in ICAM1, IL-8 and HLA-DR gene 

transcription. Blocking NFκB thereby inhibits inflammatory responses such as ICAM1 gene 

expression188-190. Altogether, this could be one explanation to the now reported anti-

inflammatory effects of TGF-β1, Activin A and Activin B on polyp epithelial cells. 

In conclusion, the present study demonstrates that polyp epithelial cells express high levels of 

six ALKs. It also presents data indicating an anti-inflammatory role for TGF-β1, Activin A 

and Activin B in polyps. Previous studies have demonstrated low levels of TGF-β1 and Activin 

A in nasal polyps83, 180, and a further downregulation of these mediators by virus infections191, 

192. This generally reduced ALK activation could possibly contribute to uncontrolled 

inflammation promoting the progression of CRSwNP. 

 

4.9 IMPAIRED EFFECTS OF BMP4 RELEASE IN CRSWNP; A POTENTIAL 
MECHANISM FOR POLYP DEVELOPMENT (PAPER VI) 
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The expression of ALK3 and release of BMP4 has been reported to be upregulated in airway 

inflammation89. They demonstrate important anti-inflammatory effects by inhibiting epithelial 

pro-inflammatory cytokine release90. This study was designed to evaluate the role of BMP4 in 

nasal polyposis. 

 
 

Figure 16. BMP4 release from biopsies after 24 h of culture, measured using ELISA (A) (n=6-9). All values: 

mean± SEM. Representative images demonstrating BMP4 in control, turbinate and polyp tissue with 

magnifications of images demonstrating BMP4 in polyp. (n=3-5). BMP4 (green); DAPI (blue); EpCAM (red), 

negative controls (Neg) (B). Scale bar: 50µm. 

 

A higher release of BMP4 from polyps was noted, as compared to turbinate tissue from 

patients and controls (Figure 16A). Using IHC, BMP4 expression was detected in the surface 

epithelial layer as well as in the submucosal layer of polyps (Figure 16B, right panels). In 

contrast, no BMP4 expression could be detected in control tissue or in turbinate tissue (Figure 

16B, left and middle panels). 

A high expression of ALK3 was found in turbinate and polyp tissue from patients with 

CRSwNP, most abundant in the epithelial layer. In contrast, low expression of ALK3 was 

found in turbinate tissue from controls. The high expression of ALK3 was subsequently 
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evaluated on HNECs. The expression of ALK3 on turbinate epithelial cells from patients was 

significantly elevated compared to control epithelial cells. To test the function of ALK3, 

epithelial cells were stimulated with the ALK3-ligand BMP4. This revealed a strong 

intracellular phosphorylation of Smad in turbinate epithelial cells from patients(Figure 17A).  

This phosphorylation did not occur in epithelial cells from polyps or control tissue (Figure 

17A).  

 

 

Figure 17. Phosphorylated Smad1/5/8 (pSmad1/5/8) in epithelial cells after BMP4 stimulation (2 h) (A) (n=3-4). 

Epithelial cells cultured without (0) or with BMP4 (200ng/ml) (48h) and expression of BMI-1 (B), VEGFR (C) 

and HLA-DR (D) was analysed using flow cytometry (n=3-5). All values: mean± SEM. 

To further investigate the effects of BMP4, markers for angiogenesis, proliferation and 

inflammation were analysed on epithelial cells. Expressions of VEGFR, BMI-1 and HLA-DR 

was downregulated on turbinate epithelial cells upon BMP4 stimulation (Figure 17B-D). No 

changes could be detected on polyp epithelial cells (Figure 17B-D). 

 

4.10 COMMENTS (PAPER VI) 

In contrast to the other ALK-ligands, the effects of BMP on polyp epithelial cells was limited. 

However, the effects on the turbinate mucosa close to the polyp was more prominent and 

mediated Smad phosphorylation. Many patients demonstrate high eosinophil infiltration in 

their polyps193. Eosinophilic nasal polyposis is a disease that is difficult to control and with a 

high risk of polyp recurrence194. Eosinophils release toxic mediators like eosinophilic 

peroxidase (EPO) and major basic protein (MBP) that damage the upper airway mucosa195, 196. 

EPO, MBP and eosinophil-derived neurotoxin (EDN) have been demonstrated to relocate 

ALK3 from the membrane to the nucleus, preventing ALK3 to activate Smad signalling197. 

This relocation could explain the loss of functional ALK3 activation in polyp epithelial cells. 

The disrupted BMP4-ALK3 signalling in polyps, due to the eosinophilic infiltration could be 
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a factor contributing to the high recurrence of polyps. Eosinophilic depletion might therefor 

be a way to reduce the disease thereby restoring the BMP4 signalling. 

Expression of ALK3 is also regulated by other factors, one of them being the TGF-β type III 

receptor198. The TGF-β type III receptor co-localises with ALK3 and retains the receptor on 

the cell surface198, thereby enabling signalling. Downregulated expression of TGF-β type III 

receptor has been reported in nasal polyps12. This could be an additional factor contributing to 

the non-functional BMP4 signalling and the malfunctioning epithelium in polyps.  

VEGF receptors can be expressed on polyp epithelial cells and it is known to promote cell 

hyperplasia in polyposis 199, 200. BMI-1 is involved in epithelial cell proliferation and 

contributes to polyp growth201. BMP4 reduced the expression of VEGFR and BMI-1 on 

turbinate epithelial cells from patients with CRSwNP suggesting an ability for BMP4 to lower 

hyperplasia in the turbinate tissue. As no such reduction was seen in the polyps from the same 

patients, this could be an additional factor behind disease progression in patients with 

CRSwNP.  

To summarise, this study demonstrates that BMP4 initiate a phosphorylation of Smad in 

turbinate epithelial cells and this activation suppresses hyperplasia and inflammation in the 

turbinate tissue of patients with CRSwNP. This effect was absent in corresponding polyp 

epithelial cells, which may explain the polyp development and growth seen in these patients. 

Smad signalling in nasal polyps could become a target in attempts to treat CRSwNP.  
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5. CONCLUSIONS 
 

 Human airway smooth muscle cells were found to express functional TLR2, TLR3, 

TLR4, TLR7 and NOD1. Stimulation with the corresponding agonists Pam3CSK4, 

poly(I:C), LPS, R-837 and iE-DAP resulted in a release of various cytokines, an 

upregulation of several inflammatory cell surface markers and downregulation of 

receptors involved in smooth muscle cell contraction. These results indicate a role for 

PRRs in the development of a synthetic phenotype of HASMCs in respiratory 

diseases. 

 

 It was established that human nasal epithelial cells express functional TLR3, TLR7, 

TLR9, RIG-I and MDA-5. Activation of these receptors via recognition of virus-

related products resulted in epithelial cell responses through the release of 

inflammatory cytokines. PRRs on nasal epithelial cells could affect an ongoing 

inflammatory process in the nasal mucosa. 

 

 Defects in the TLR9-mediated microbial defence were evident in turbinate tissues 

from patients with CRSwNP. This was not seen in the polyp tissue or in the healthy 

turbinate tissue. CpG stimulation upregulated TLR9 expression and downregulated 

VEGFR expression in turbinate tissues from patients with CRSwNP. Activation of 

TLR9 may therefore restrict nasal polyp growth or recurrence. 

 

 Virus-related ligand stimulation of TLR7 induced a rapid release of SP from nasal 

epithelial cells and sensory neurons. The released SP promptly upregulated the 

epithelial TLR expression, via SP-induced redistribution. This suggests a role for SP 

in rapid priming of the innate immune system during viral infections. 

 

 Activin receptor-like kinases (ALKs) were demonstrated in the nasal polyp 

epithelium. Concurrently, these receptors was found on epithelial cells from the nasal 

polyps with increased levels of ALK1-6 in comparison to nasal epithelial cells from 

healthy controls. Activation of these receptors reduced the aberrant proliferation and 

inflammation that characterise polyp epithelial cells, proposing a role for ALKs in 

restricting progression of CRSwNP. 

 

 BMP4 suppressed hyperplasia and inflammation in the turbinate tissue derived from 

patients with CRSwNP via phosphorylation of Smad. This effect was absent in the 

corresponding polyps. The lack of suppression in the polyp might contribute to the 

progression of the disease. Hence, targeting Smad signalling might be a future 

therapeutic target in CRSwNP.  
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6. GENERAL DISCUSSION 

6.1 IN VITRO CULTURES 

In most papers in the present thesis, cells have been isolated from patients and healthy control 

individuals, cultured in vitro, and subsequently analysed using various methods. Single cell 

cultures do not mirror the function of cells in vivo, where they interact with surrounding cells 

and the unique tissue milieu, but they may still reveal important information. In paper II, both 

nasal biopsies and HNECs were stimulated with the same PRR-ligands, enabling a comparison 

of functions of a single cell with that of the whole tissue. In paper III, the cell function of CpG 

in vitro was confirmed by the study of cell function in vivo. Importantly, in all our studies, 

primary cells were taken directly from their normal environment in patients or controls for 

immediately analyse or culture. The signalling pattern observed in these cells is therefore, at 

least to some extent, still affected by the intrinsic components of the host, like the imprint of 

genetic and epigenetic factors. Epithelial cell lines are easy to grow, but they are either 

immortalised or cancerous and are therefore less ideal representations of the nasal airway 

epithelium202. To minimise the off-target effects seen using serum, our HNEC cultures are 

serum-free. This is especially important when investigating PRRs.  

There are few animal models of relevance in polyp research. Previously, rabbits have been used 

to study polyp formation203, but recently a new murine model was presented204. The 

morphology of the rabbit and mouse polyp is clearly different from that of the human polyp, 

especially evaluating the epithelium204, 205. This increases the need for better in vitro cultures. 

An attempt in this direction is the use of air-liquid interface (ALI) system of polyp epithelial 

cells206. In this model, human cells maintain roughly the same transcriptomes as in vivo 

epithelial cells207, enabling improved conditions hopefully resulting in outcomes with 

improved clinical relevance. These cultures contain ciliated columnar epithelial cells, goblet 

cells and mucous cells206, and can be used for analysis of inhalationtoxicity, ciliary 

coordination, hyperplasia, infection and colonisation, as well as for pharmaceutical prevention 

or treatment studies. Additional methodological development, using three-dimensional (3D) 

culture system, might further improve the relevance of the outcome, especially when it comes 

to the role of tight junctions and inflammatory responses208. 

 

6.2 TURBINATE TISSUE FROM PATIENTS WITH CRSWNP 

Studies on patients with CRSwNP have long been focused on evaluating the role of the polyp 

itself. Our articles have broadened that perspective, by investigating two different locations in 

the nose of patients with CRSwNP, the polyp itself and the seemingly healthy turbinate mucosa 

close to the polyp. Previous studies have shown that polyp formation is only one of several 

signs of a generally inflamed nasal mucosa209. In line with this, it is well established that asthma 

and allergy both are signs of a more generally systemic Th2 type inflammatory conditions, 

further underscored by the frequent coexistence of these diseases, not seldom also in 

combination with CRSwNP193, 210.  Altogether, this made us to believe that in certain 

phenotypes of CRSwNP, the cause of the disease is to find in the turbinate mucosa rather than 

in the polyp itself.  This might be especially relevant when seeking a cause for the 40% risk of 
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polyp recurrence seen after surgery, among certain patients with CRSwNP177, 211. Future 

CRSwNP research should therefore include the mucosa surrounding the polyp. It is also 

tempting to speculate that, in these cases, a more complete removal of sinus mucosa during the 

polyp surgery may reduce the risk of symptoms and disease recurrence. 

 

6.3 FUTURE PERSPECTIVES 

In these studies, PRRs have proven to be important receptors in mediating a robust immune 

response via the release of inflammatory cytokines. PRRs are also involved in initiating a Th1 

immune response and reducing smooth muscle cell contraction. Different PRRs have multiple 

functions and are known to cooperate with each other. PRRs clearly play vital roles, but there 

are risks in manipulating these receptors, as they are expresses on almost all cells in the body. 

More promising treatment options need to minimise the systemic effects of PRR stimulation. 

It is equally important to consider factors like dosing and timing of the PRR-ligands. However, 

their beneficial effects as bronchodilators, anti-inflammatory mediators and as anti-virals in 

inflammatory airway diseases, are important. To clarify if there are any use of PRRs therapy 

one first needs to specify which patients would best benefit from such manipulations, both for 

therapy and surgery. As research is starting to focus on more specific and personalised 

medicine, this could open up new ways to carefully use PRRs in driving inflammation in a 

more appropriate direction. 

Despite great functional effects in animal models, treatment targeting substance P and its 

receptors have had no great clinical effects in humans until recently150. Our presented results 

could open up new ways of using neuropeptides to inhibit or monitor exacerbations of viral-

induced airway diseases. To do this one must evaluate the functions of neuropeptides on PRR-

regulation in asthmatics, allergics and CRSwNP patients. As a subgroup of patients with 

CRSwNP still suffers from high recurrence of nasal polyps, one must first characterise these 

patients and evaluate their SP levels. Neuropeptides may in the future be used as biomarkers 

and markers for uncontrolled viral-induced exacerbations. 

ALKs on epithelial cells demonstrate a possible role in restoring a malfunctioning epithelium 

in polyps. Understanding the complete role of defects in the mucosal defence and barrier 

function in polyps would enable further ways of inhibiting progression of polyposis. 

ALKs are also expressed on other cells such as regulatory T-cells (Tregs). Nasal polyps are 

characterised by impaired Treg presence and function10. TGF-β and ALK5 are essential 

components for the generation of Tregs. In mice, depletion of ALK5 depletes generation of 

Treg212. Activin A induces generation of Tregs that suppress Th2 inflammation and provide 

protection against allergic airway disease213. These reports could indicate that a loss of ALKs 

is important for multiple cells in nasal polyps and therefore needs to be further assessed.  
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7. POPULÄRVETENSKAPLIG SAMMANFATTNING 
 

Immunförsvaret kan förenklat delas in i en medfödd och en förvärvad, adaptiv del. Det 

medfödda immunförsvaret är snabbt, relativt ospecifikt och utan minne. Det utgörs bland annat 

av patogen-igenkännande receptorer (PRRs). PRRs finns på många olika celler och dess 

uppgift är att känna igen främmande mikrober som bakterier, virus och svampar. När en PRR 

stöter på en främmande mikrob svarar cellen den sitter på med ett inflammatoriskt svar. På så 

vis kan mikrober bekämpas tidigt och om det inflammatoriska svaret är framgångsrikt 

förhindras en infektion. Det har dock visats att mutationer eller felaktiga och långdragna 

aktiveringar av dessa PRRs kan leda till sjukdomar i luftvägarna som t.ex. astma och 

näspolyper. En annan grupp av receptorer utgörs av så kallade ALKs. Dessa proteiner finns, 

likt PRRs, på flertalet celler och aktivering av dessa bidrar till strukturförändringar i vävnader 

och ändringar av kroppens inflammatoriska försvar. Felaktig aktivering av ALKs finns 

beskrivet för en rad olika sjukdomar där några är i luftvägarna. 

 

Astma är en inflammatorisk sjukdom som ger förträngning av luftvägarna och svårighet att 

andas och detta styrs till stor del av celler i den glatta muskulaturen. När dessa celler drar ihop 

sig krymper luftvägarna och man kan få andnöd. I avhandlingen undersöktes funktionen av 

PRRs på luftvägarnas glattmuskelceller. Det visade sig att aktivering av PRRs orsakade en 

relaxation av den glatta muskulaturen samtidigt som den startar ett inflammatoriskt svar. Detta 

betyder att aktivering av PRRs kan ge en direkt luftvägsdilatation, något som skulle kunna 

användas vid luftvägssjukdomar som astma.  

 

I näsan finns, likt luftvägarna i övrigt, ett yttre skikt bestående av epitelceller. Flera av 

avhandlingens delarbeten undersökte PRRs funktion på dessa epitelceller. Resultaten visade 

att aktivering av PRRs bidrar till kroppen snabba försvar genom att epitelcellerna släppte ut 

signalämnen som kan locka till sig andra celler och starta ett inflammatoriskt svar. I ett av 

delarbetena undersöktes epitelceller från patienter med näspolyper. Vi kunde konstatera att 

PRR uttrycket på den till synes friska slemhinnan bredvid polypen var avvikande. Denna 

slemhinna uppvisade ett felaktigt uttryck av PRR och kan inte ge ett bra försvar mot 

inträngande mikrober. Detta ger en ökad infektionsrisk och en ökad inflammation som kan 

bidra till en polyptillväxt. Genom att förbättra PRRs funktioner på slemhinnan hos patienter 

med näspolyper kan nya framtida terapimöjligheter utvecklas. 

 

Neuropeptider är speciella signalsubstanser i kroppen som frisätts av nerver. I ett av delarbetena 

i avhandlingen har en neuropeptid, substans P, studerats och hur denna påverkar PRR uttrycket 

i näsan. Eftersom forskning nyligen visat att substans P också kan frisättas från epitelceller så 

studerades även dessa celler. Virus-liknande molekyler kunde bidra till snabb frisättning av 

substans P både från nerver och epitelceller. Substans P aktiverade i sin tur PRRs på näsans 

epitelceller. Detta delarbete visar att neuropeptider påverkar vårt medfödda immunförsvar på 

ett helt nytt sätt och öppnar upp för ett nytt sätt att se på funktionen av neuropeptider som del 

av vårt snabba immunförsvar. 

 

I avhandlingens sista arbeten kartlades uttrycket av ALK hos patienter med näspolyper. 

Epitelceller från patienter med näspolyper uttryckte höga nivåer av ALK. Aktivering av dessa 
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visade sig ge ett skydd mot inflammation vid infektion. Näspolyper innehåller dock låga nivåer 

av molekyler som aktiverar ALK, i jämförelse med frisk nässlemhinna. Man kan därför tänka 

sig att denna brist på ALK aktivering i polypen kan bidra till ett lokalt försämrat 

infektionsförsvar och därmed indirekt även bidra till tillväxten av polyper i samband med 

infektion. Resultaten visade även att BMP4 som aktiverar en speciell ALK minskar den 

inflammatoriska reaktionen i slemhinnan runt polypen. Detta skulle kunna användas i 

terapeutiskt syfte för att förhindra att polyper växer tillbaka i slemhinnan efter en operation. 

 

Sammanfattningsvis visar denna avhandling att både PRRs och ALKs på epitelceller utgör en 

viktig del av vårt immunförsvar. Förändringar av dessa receptorers uttryck och funktion 

påverkar flera luftvägssjukdomar som näspolyper. I ett av delarbetena visas det att substans P 

snabbt frisätts av virus-liknande molekyler och kan aktivera PRRs på epitelceller. 

Avhandlingen stärker betydelsen av PRRs, ALKs och neuropeptider vid ett immunologiskt 

skydd mot invaderande mikroorganismer.  
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