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ABSTRACT 

The discovery that commensal gut microbiota can influence host development and physiology 
beyond the gastrointestinal (GI) tract has triggered a paradigm shift in our conceptualization of 
the origin of human diseases. A growing body of preclinical research has demonstrated that gut 
microbiota exert a modulatory role on the development and function of brain circuits involved 
in motor control, emotion and cognition. These findings have lent support to the hypothesis 
that gut bacteria may play a role in the etiology and/or pathophysiology of human brain 
disorders. The current challenge is to understand the precise mechanisms mediating the 
communication between the microbiota and the brain. In the present thesis, we used a 
combination of mouse models (e.g., germ-free; GF, antibiotic treated, and transgenic mice), 
molecular, biochemical, and behavioral approaches to gain a deeper insight into the role of gut 
microbiota on brain development and behavior. A major goal was to explore whether microbial 
products from the commensal gut microbiota can be translocated into the developing brain and 
be sensed by pattern recognition receptors (PRRs) of the innate immune system. 

In Paper I, we took advantage of the GF mouse model (mice raised throughout development 
in an environment devoid of bacteria) to study the influence of gut microbiota on social 
behavior. Using the three-chamber social approach task, we demonstrated significant 
differences in social approach behavior between GF and conventionally raised mice (specific 
pathogen-free, SPF). Adult GF Swiss-Webster mice displayed higher levels of sociability than 
SPF mice, as indicated by a stronger preference for time spent close to the unfamiliar stimulus 
mouse versus the novel object. In addition, they showed reduced expression levels of total 
BDNF and BDNF exon-containing transcripts I-, IV-, VI-, and IX in the amygdala, a brain 
region involved in the processing of social stimuli. These findings suggest that alterations in 
the expression of specific BDNF exon transcripts within the amygdala may contribute to the 
abnormal development of social behavior in GF mice. 

In Paper II, we investigated whether antibiotic-induced perturbation of the maternal gut 
microbiota during pregnancy influences brain development and behavior of the offspring. The 
juvenile offspring of antibiotic-treated dams showed hyperactivity and sex-specific changes in 
social behavior (similar to that observed in GF mice), without changes in body weight. In 
addition, the male juvenile offspring had reduced BDNF mRNA and protein expression in the 
amygdala. Interestingly, we found a negative correlation between time spent interacting with 
an unfamiliar stimulus mouse and levels of BDNF protein. These findings in mice indicate that 
antibiotic-induced perturbation of the maternal gut microbiota during pregnancy has profound 
effects on brain development leading to abnormal motor and social development of the 
offspring. 

In Paper III, we examined the possibility that fragments of bacterial peptidoglycan (PGN), a 
major component of the bacterial cell wall, derived from commensal gut microbiota can cross 
the blood brain barrier under normal conditions and influence the developing brain via 
activation of PRRs. Using various expression-profiling techniques (i.e., qRT-PCR, Western 
Blot and immunohistochemistry), we showed that two families of PRRs that specifically detect 
PGN and its derivates (PGN recognition proteins and NOD-like receptors), and the PGN 
transporter PepT1 are highly expressed in the developing brain during critical windows of 
postnatal development. In addition, we demonstrated that the expression of several of these 
PGN-sensing molecules are sensitive to manipulation of the gut microbiota (i.e., GF conditions 
and antibiotic exposure in early life). Finally, we demonstrated that the absence of PGN 



recognition protein 2 (Pglyrp2; which is an N-acetylmuramyl-L-alanine amidase that 
hydrolyzes bacterial PGN between the sugar backbone and the peptide chain) leads to sex-
specific changes in social behavior in the prepubertal period. However, we did not observe 
changes in motor or anxiety-like behavior at this age. These novel findings support the notion 
that central activation of PRRs by bacterial PGN fragments could be one of the signaling 
pathways mediating the communication between the gut microbiota and the developing brain. 

In Paper IV, we tested the hypothesis that the modulatory role of PGN recognition proteins 
(PGRPs) on behavior changes with age, by using Pglyrp2 knockout (KO) mice. Using a battery 
of behavioral tests, we demonstrated sex-dependent alterations in motor and anxiety-like 
behavior in 15-month-old Pglyrp2 KO mice, as well as mild changes in the expression of 
synaptophysin (a presynaptic marker) and gephyrin (a protein associated with inhibitory 
synapses) in key brain regions implicated in the processing of emotional stimuli. These 
observations indicate that the mammalian Pglyrp2 plays an important role in the modulation of 
brain circuits involved in motor control and anxiety in later life.  

In summary, this thesis provides conceptually novel evidence that the central activation of 
PRRs by bacterial PGN fragments could be one of the signaling pathways mediating the 
communication between the gut microbiota and the developing brain. This new signaling 
pathway may be a new entry point for the exploration of the role of gut microbiota on brain 
development, function and behavior. Finally, we propose that alterations within different 
components of this signaling pathway could lead to deviations in brain developmental 
trajectories, thus increasing risk for neurodevelopmental and psychiatric disorders. 
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1 INTRODUCTION 

Human brain development is a protracted process that starts in the third gestational week and 

extends into adulthood. This process involves a complex, constantly changing interaction 

between genes and environmental factors (Stiles and Jernigan, 2010). Over the past decades, it 

has become clear that environmental influences during pre- and/or early postnatal life may 

profoundly affect brain developmental trajectories and function in later life. One such 

environmental factor is the commensal gut microbiota, the microorganisms that inhabit the 

gastrointestinal (GI) tract. The interaction between the host and the microbiota is an evolutionary 

driven process in which the gut microbiota adapted to coexist in a commensal or mutually 

beneficial relationship with the host (Hooper and Gordon, 2001). The gut microbiota play a 

crucial role in overall health and in aspects of host development and function such as in digestion, 

immune system maturation and gut homeostasis (Sommer and Backhed, 2013). Research has 

revealed that the gut microbiota can also impact developmental processes beyond the GI tract 

including brain development, function and behavior (Sekirov et al., 2010, Cryan and Dinan, 

2012). The mechanisms mediating the crosstalk between the gut microbiota and the brain are still 

poorly understood (Collins et al., 2012). Novel insights into the pathways by which the gut 

microbiota can impact brain development and function may provide new treatment opportunities 

for neurodevelopmental and psychiatric disorders. 

1.1 The gut microbiota  

Although microorganisms reside on almost all mucosal surfaces, the majority can be found in the 

intestinal tract where they are in close contact with the mucosal tissues. It has been estimated that 

the GI tract contains 10 to 100 trillion microorganisms (Gill et al., 2006, Sender et al., 2016). 

These microorganisms represent a diverse community of predominantly bacteria, but also 

archaea, viruses, protozoa and fungi. Anaerobic bacteria dominate the typical gut flora and more 

than 1000 different bacteria species reside in the adult gut. Firmicutes and Bacteroidetes are the 

two most abundant phyla in the adult intestine, while other phyla such as Proteobacteria, 

Verrucomicrobia, Actinobacteria, Fusobacteria and Cyanobactera are present in lower numbers 

(HumanMicrobiomeProject, 2012). The combined genome of all gut microorganisms is 150 

times larger than the human genome, however the number of bacterial cells has been estimated 

to be similar to the total number of human cells (Qin et al., 2010, Sender et al., 2016).  

Neonatal colonization process. Bacterial colonization starts during birth and thereafter, when 

the newborn is rapidly and densely populated by microbes. The primary colonizers are facultative 

anaerobes that are thought to change the intestinal milieu in a way that allows anaerobic bacteria 

to colonize the GI tract (e.g., Bacteroides and Clostridium) (Rodriguez et al., 2015). The 

composition and diversity of the gut flora changes dramatically during the first two years of life. 

The microbial community stabilizes around the second year of life and resembles an “adult-like” 

composition (Sekirov et al., 2010, Sommer and Backhed, 2013). Interestingly, the bacteria 

colonization period coincides with key stages of brain development (Borre et al., 2014). The  
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human brain undergoes pronounced changes during the first years of postnatal life. This period 

represents the peak of synaptogenesis (the formation of new synapses) and myelination (the 

formation of myelin sheaths around axons). Moreover, during the first two years of life the human 

brain grows from approximately 36% to about 80% of its adult size (Tau and Peterson, 2009, 

Diaz Heijtz, 2016).  

Factors influencing the infant microbiome. The microbial colonization of the infant intestinal 

tract is a crucial process. Several factors are known to affect the assembly of the neonate gut 

microbiota including the mode of delivery (vaginal birth versus caesarean (c) -section), diet 

(breastfeeding versus formula), early-life antibiotics, prenatal stress and life-style, among others 

(Fig. 1). The mode of delivery is a crucial factor that shapes the initial neonate microbiome. 

Vaginally delivered babies are colonized by the maternal vaginal and faecal bacteria (e.g., 

Lactobacillus and Prevotella) (Dominguez-Bello et al., 2011). C-section born babies, on the 

other hand, do not directly acquire maternal microbes, but are populated by bacteria related to 

the skin (not necessarily related to the mother) and the hospital environment. It has been shown 

that the mode of delivery impacts the gut microbiota composition and diversity up to months or 

even years after birth (Dominguez-Bello et al., 2011, Eggesbo et al., 2015, Jakobsson et al., 

2014). Another relevant factor that shapes the neonate gut microbiota is the mode of feeding 

(breastfeeding or formula feeding). Mother’s milk has a rich and diverse microbiota and also 

contains a large number of oligosaccharides that enhance the growth of favorable bacteria for 

instance Bifidobacterium (Zivkovic et al., 2011). This may facilitate beneficial health effects 

(e.g., improved cognitive development) (Quigley et al., 2012).  

Early-life antibiotic use is another common perinatal intervention that disturbs the assembly of 

the neonate gut microbiota and has long lasting effects on microbial diversity (Mueller et al., 

2015a). For example, higher proportions of Proteobacteria and lower proportions of 

Bifidobacterium (Fouhy et al., 2012). Moreover, several epidemiological studies have shown that 

prenatal or early-postnatal antibiotic treatments were associated with metabolic alterations and 

obesity (Ajslev et al., 2011, Trasande et al., 2013, Azad et al., 2014, Murphy et al., 2014, Cox 

and Blaser, 2015b, Mueller et al., 2015c) and increased risk for immune related disorders (e.g., 

asthma) (Stokholm et al., 2014, Metsala et al., 2015, Stensballe et al., 2013). These findings 

highlight that antibiotic treatment during early life, before the microbial colonization process is 

completed, may result in adverse effects later in life. Other factors that have been shown to affect 

the assembly of the infant microbiota include preterm birth, prenatal stress and life-style (Fig. 1). 
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1.2 Models of gut microbiota-host interactions 

Several experimental approaches have been used to investigate gut microbiota-host interactions, 

which include both invertebrate and vertebrate model systems including Hawaiian bobtail squid, 

fruit fly, zebrafish, and mice. The mouse model system is highly relevant because of its similarity 

to the human in terms of genetics and microbiota composition (Kostic et al., 2013). A wide range 

of mouse model systems are currently used to explore the potential modulatory effects of the gut 

microbiota on host development and physiology (Mayer et al., 2015). Since the late 1950s 

researchers have been able to raise germ-free (GF) mice (devoid of microorganisms) throughout 

development in sterile isolators (Reyniers, 1959, Midtvedt, 1997). These isolators are carefully 

monitored for contamination and incoming air, food and water are sterilized. GF animals can be 

colonized with one or more bacteria strains (i.e., gnotobiotic animals) enabling the study of taxa-

specific effects on the host. The microorganism composition of gnotobiotic animals is known 

(Williams, 2014). Treatment with antibiotics (mainly broad-spectrum) is another approach to 

perturb the intestinal microbiota. The first two to three years in humans, and the first three to four 

weeks in mice are crucial to establish an “adult-like” gut microbiota. Antibiotic treatment during 

this critical time window can alter the bacterial composition permanently and result in profound 

Figure 1. Factors that can affect the development of the neonate gut microbiota. A large number of factors impact the 

assembly of the neonate gut microbiota including the mode of feeding, mode of delivery, early-life antibiotic treatments, 

prenatal stress, the environment, pre- and/or early postnatal infections, gestational age and genetics. Cartoon from (Diaz 

Heijtz, 2016). 
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later life consequences. For example, Martin Blaser and colleagues showed that antibiotic-

induced microbiota perturbations early in life can affect metabolic activity later in life, 

influencing body mass by either promoting weight gain or inhibiting growth (Cox and Blaser, 

2015a). Over the last years, faecal microbiota transplantation gained interest to “repair” a 

perturbed microbial gut ecology (Khoruts and Weingarden, 2014), but also to investigate the 

impact of the microbiota composition on host physiology and behavior (Bercik et al., 2011a). 

Together these experimental approaches are very important tools to further clarify the interaction 

between the gut microbiota and the host.   

1.3 The role of the gut microbiota on host development and physiology 

1.3.1 Gut microbiota effects on the periphery 

Gut microbes are involved in numerous developmental and physiological processes including 

the development and maturation of the immune system and GI tract, bone homeostasis, 

absorption of nutrients, metabolism and digestion (Sommer and Backhed, 2013). For instance, 

studies in  GF mice have shown that the gut microbiota is required for the development of Peyer’s 

patches and mesenteric lymph nodes (Round and Mazmanian, 2009). Moreover, the intestinal 

microbiota plays an important role in the immune cell differentiation of T-cells. Deshmukh and 

colleagues showed that antibiotic treatment decreased the number of interleukin-17 producing 

cells and reduced the production of granulocyte colony-stimulating factor, which was restored 

by the introduction of “normal” gut microbiota (Deshmukh et al., 2014). The gut microbes also 

play a crucial role in inflammation responses, by directly or indirectly affecting the production 

of cytokines, chemokines, and antimicrobial peptides (Sommer and Backhed, 2013, Hooper et 

al., 2012). The gut microbiome has also been strongly linked to the development, vascularization, 

and homeostasis of the GI tract. Sharma and collaborators showed that the development of the 

intestinal mucus layer, that covers the epithelial cells and forms a physical barrier to protect 

against bacteria, depends on the presence of gut microbiota (Sharma et al., 1995). Devoid of a 

gut microbiota, GF mice developed a larger caecum and have reduced intestinal surface area, as 

well as, increased epithelial permeability (Sommer and Backhed, 2013). The gut microbiota is 

also beneficial to the host by digesting otherwise indigestible polysaccharides and carbohydrates. 

Interestingly, GF mice showed reduced adiposity and displayed an altered metabolism (i.e., 

reduced energy extraction from food) therefore a higher calorie intake is necessary to achieve a 

similar weight as control animals (Backhed et al., 2004). In addition, to the modulatory role of 

gut microbiota in the periphery, an impact of the intestinal microbiota on the central nervous 

system (CNS) is increasingly being recognized.  

1.3.2 Effect on brain development, function and behavior 

Over the last few years, studies have shown that the actions of gut microbiota have much wider 

effects on host physiology than originally believed, including the modulation of brain 

development and function (Diaz Heijtz et al., 2011, Cryan and Dinan, 2012). In 2004, the pioneer 
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study of Sudo and collaborators showed that the gut microbiota can modulate the hypothalamic-

pituitary-adrenal (HPA) axis stress response in mice. They exposed GF and control (with a 

“normal” gut microbiota; specific-pathogen free, SPF) mice to mild restraint stress and evaluated 

the HPA reaction to this stressor. GF animals displayed elevated adrenocorticotropic hormone 

(ACTH) and corticosterone levels in response to the stressor compared to controls. Interestingly, 

the exaggerated stress response of GF mice could be normalized by exposing GF mice to a 

specific bacteria strain (Bifidobacterium infantis) and was partly reversed with inoculation of 

SPF feces during early, but not later developmental stages (Sudo et al., 2004). Thus, providing 

the first experimental evidence for the existence of a developmental time window in which the 

intestinal microbiota may influence brain development. Surprisingly, it took almost seven years 

until neuroscientists started to explore the role of the microbiota on brain development, 

function and behavior. 

In 2011, Diaz Heijtz and collaborators showed that adult male GF mice exhibited elevated motor 

activity and decreased anxiety-like behavior compared to SPF mice. Importantly, 

conventionalization (microbial colonization) in early life normalized their behavioral phenotype, 

whereas colonization of adult GF mice had no effect (Diaz Heijtz et al., 2011). These findings 

also supported the notion that a sensitive time window of development exists during which the 

intestinal microbiota may impact early brain development and consequently, brain function and 

behavior later in life. Around the same time, the laboratory of Jane Foster (Canada) demonstrated 

that adult GF females displayed decreased anxiety-like behavior. However, GF female mice did 

not display alterations in motor activity as observed in male GF mice, indicating sex-specific 

effects (Neufeld et al., 2011b). The same authors also observed that microbial colonization of 

adult GF females with SPF feces did not alter their anxiety-like behavior (Neufeld et al., 2011a). 

In addition, another independent study by the laboratory of John Cryan confirmed that adult GF 

male mice displayed decreased anxiety-like behavior, and they demonstrated that microbial 

colonization from weaning onwards normalized anxiety-like behavior to SPF levels (Clarke et 

al., 2013). Gareau and collaborators observed impaired object recognition and working memory 

in female GF mice. In contrast to previous mentioned studies, female GF animals did not show 

alterations in anxiety-like behavior (Gareau et al., 2011). Bercik and colleagues showed that fecal 

microbiota transplantation between two behaviorally different mouse strains successfully altered 

their behavioral phenotype; colonization of the highly anxious GF BALB/c mouse with NIH 

Swiss microbiota increased their exploratory behavior, while colonization of the less anxious GF 

NIH Swiss with BALB/c microbiota decreased their exploratory behavior (Bercik et al., 2011a). 

Recent studies also have shown an influence of the gut microbiota on social behavior in GF 

rodents (Crumeyrolle-Arias et al., 2014, Desbonnet et al., 2014, Buffington et al., 2016). 

Desbonnet and collaborators observed decreased social behavior and social cognition in adult GF 

male, but not female mice. GF male mice also exhibited increased levels of self-grooming, an 

indication for repetitive behaviors. Some of the behavioral impairments were rescued by 

microbial colonizing of GF mice, social behavior, but not social cognition was normalized after 

colonization (Desbonnet et al., 2014). Similar to these findings, Buffington and colleagues 
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reported reduced social behavior in GF mice (Buffington et al., 2016). Together, these studies 

highlight the importance of the gut microbiota in brain development and behavior. However, it 

is important to point out that some of the reported behavior phenotypes in GF mice may differ 

between mouse strains.     

In addition to their distinct behavioral phenotype, GF mice also exhibit abnormalities in 

neurochemistry and in the expression of genes involved in synaptic plasticity and myelination. 

Several authors reported that GF male mice exhibit decreased brain-derived neurotrophic factor 

(BDNF) expression levels in the cortex, hippocampus and amygdala (Sudo et al., 2004, Diaz 

Heijtz et al., 2011, Clarke et al., 2013). BDNF plays many roles in neurodevelopmental processes 

including neurogenesis, synaptic growth, synaptic plasticity and transmission (Vicario-Abejon et 

al., 2002, Benarroch, 2015). Abnormalities in BDNF signaling have been linked to several 

neurodevelopmental and psychiatric disorders that often co-occur with GI problems (Adachi et 

al., 2014, Castren, 2014). Moreover, synaptic related proteins synaptophysin and postsynaptic 

density protein-95 (PSD-95) were found to be significantly increased in the striatum of GF mice 

(Diaz Heijtz et al., 2011). GF animals also showed increased neurogenesis in the hippocampus 

(Ogbonnaya et al., 2015), a process which has been linked to cognitive and emotional responses 

(Burokas et al., 2015). The same research group showed increased expression levels of 

myelination related genes specifically in the prefrontal cortex of GF male mice. Upregulation of 

myelin-related genes led to increased myelin sheath thickness, indicating that the intestinal 

microbes may play a role in myelination (Hoban et al., 2016b). Additionally, a study by Erny and 

colleagues demonstrated that the gut microbiota is required for microglia maturation and 

function. Microglia from GF mice display altered cell proportions and an immature phenotype. 

Following exposure to a bacterial or viral immune challenge, microglia of GF mice displayed 

inactive morphology and blunted immune response. Interestingly, conventionalization of GF 

mice restored microglia morphology and function, indicating that the microbiota plays an 

important homeostatic role in the CNS immune system (Erny et al., 2015). Braniste and 

colleagues showed another possible role of the gut microbiota. They reported that GF mice 

displayed a more permeable blood-brain barrier (BBB) from prenatal life until adulthood, which 

was associated with decreased expression levels of tight junction proteins. Conventionalization 

reduced permeability and restored protein expression levels (Braniste et al., 2014). These studies 

identified that commensal gut microbiota may play an important role in neurogenesis, 

synaptogenesis and myelination. 

A number of studies also described differences in dopaminergic, serotoninergic and 

glutamatergic signaling in GF mice. In the striatum, GF male mice displayed elevated 

noradrenaline (NA), dopamine (DA) and serotonin (5-HT) turnover compared to SPF mice (Diaz 

Heijtz et al., 2011). N-methyl-D-aspartate (NMDA) receptor subunits NR1 and NR2A were also 

decreased in the hippocampus and cortex of male GF mice (Sudo et al., 2004). On the other hand, 

in female GF mice only NMDA receptor subunit NR2B was found to be reduced in the amygdala 

(Neufeld et al., 2011b), suggesting a potential sex-dependent effect in the expression of NMDA 
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receptor subunits. One key finding was the discovery that the microbiota regulates the 

hippocampal serotonergic system in a sex-dependent manner. In the hippocampus, increased 5-

HT and its main metabolite (5-HIAA) were observed in male, but not female GF mice (Clarke et 

al., 2013). Interestingly, microbial colonization from weaning onwards normalized tryptophan 

levels in the periphery, but not 5-HT and 5-HIAA within the hippocampus (Clarke et al., 2013). 

These findings suggest that the time-window during which the gut microbiota can modulate the 

central serotonergic system may be during the perinatal period.    

Antibiotic-treated animals. Another way to perturb the gut microbiota is by the administration 

of antibiotics. Bercik and colleagues showed that exposure to antibiotic for 7 days perturbed the 

intestinal microbiota in adult mice. These antibiotic-treated mice displayed increased exploratory 

behavior and exhibited alteration in the expression of BDNF in hippocampus and amygdala 

(Bercik et al., 2011a). It has been also demonstrated that antibiotic-induced perturbations of the 

intestinal microbiota in adult rodents impaired object recognition memory (Frohlich et al., 2016), 

decreased spatial memory (Hoban et al., 2016a), and reduced neurogenesis and cognitive 

function in the hippocampus (Mohle et al., 2016). Another study found that antibiotic treatment 

from weaning onwards decreased anxiety-like behavior, produced cognitive deficits, and reduced 

BDNF, oxytocin and vasopressin expression in adulthood (Desbonnet et al., 2015a), whereas 

antibiotic treatment during pregnancy affected anxiety-like behavior and spatial memory of the 

offspring during adulthood (Zhang et al., 2016).  

Probiotics. Studies have also explored potential beneficial effects of probiotics on brain 

neurochemistry and behavior by bacteria. For example, treatment with Lactobacillus (Bravo et 

al., 2011) or two strains of Bifidobacteria (Savignac et al., 2014) reduced anxiety-like behavior 

in an intrinsic anxious mouse strain (BALB/c). Moreover, long-term administration of 

Bidfidobacteria improved learning and memory in BALB/c mice (Savignac et al., 2015). Hsiao 

and colleagues showed beneficial behavioral effects with Bacteroides fragilis treatment. They 

used the maternal immune activation (MIA) mouse model that show some autism spectrum 

disorder (ASD) relevant features (e.g., gut permeability, stereotypic and anxiety-like behavior). 

Oral treatment of MIA-offspring with Bacteroides fragilis rescued most behavioral 

abnormalities. Moreover, a bacteria-derived metabolite (4-ethylphenyl sulfate) was found to 

exert the same effects as treatment with the bacterium (Hsiao et al., 2013). Other authors showed 

that maternal high fat diet during pregnancy decreased social behavior and increased anxiety and 

repetitive behavior in the offspring. Social, but not anxiety-like behavior and repetitive behavior 

were normalized by co-housing offspring of high fat diet dams with dams on a normal diet. The 

authors identified that a probiotic, L. reuteri, was also able to normalize social behavior, but not 

anxiety and repetitive behaviors in offspring of high fat diet dams (Buffington et al., 2016). These 

studies suggest that some probiotic bacteria may have a beneficial effect on brain function and 

behavior. 
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Taken together, the above results provide critical evidence supporting the notion that the gut 

microbiota can influence brain development, function and behavior. However, the interactions 

between the gut microbiota and developing brain are not straightforward. Numerous other factors 

play a role including time-window of development, diet, species, strain, age, sex, and genetic 

factors. The next challenge is to bring this large body of experimental information to the clinics 

and provide new treatment opportunities for human brain disorders in which an altered gut 

microbiota has been implicated.   

1.4 Potential mechanisms mediating the gut microbiota-brain interactions 

The brain can influence processes in the gut such as GI tract functioning (e.g., motility, secretion, 

epithelial functioning and mucin production (Mayer, 2011)) and gut immune function (e.g., the 

modulation of cytokine production in mucosal cells (Tracey, 2009)). In turn, the gut microbiota 

can affect brain development, function and behavior including stress responsiveness, anxiety-

like behavior, depression-like behavior, nociceptive responses, mood, social behaviors, feeding 

behavior, and taste preference, among others (Mayer et al., 2015, Sampson and Mazmanian, 

2015, Sharon et al., 2016, Luczynski et al., 2016). The precise mechanisms mediating 

interactions between the gut microbes and the developing brain remain largely unknown, 

but likely involve multiple direct and indirect signaling pathways. Multiple mechanisms have 

been proposed to mediate the influence of the gut microbiota on brain development and behavior 

including neural, hormonal, immunological signaling, and bacterial metabolites and products 

(Fig. 2). 

Neuronal pathways. The neuronal signaling pathways mediating communication between 

the gut and the CNS include the central, autonomic (the sympathetic and parasympathetic 

nervous system) and enteric nervous system (ENS) (Collins et al., 2012). The sympathetic 

nervous system is primarily involved in the regulation of motility, secretion and bowel transit 

time, barrier function, and immune system activation (Cervi et al., 2014). Neural circuits facilitate 

the ENS-CNS communication in which the ENS receives input from the brain and vice versa. 

Interestingly, the ENS can function autonomously from the CNS, and therefore it is often referred 

to as the ‘second brain’ (Collins et al., 2012). The vagus nerve is the main component of the 

parasympathetic nervous system and sends information from numerous peripheral organs such 

as heart, intestines, pancreas and stomach to the brainstem via sensory fibers (Zhou and Foster, 

2015, Forsythe et al., 2014). Several studies indicate that some of the beneficial probiotic effects 

depend upon an intact vagus nerve. For example, Bravo and colleagues showed that the 

treatment with probiotic Lactobacillus rhamnosus affected neurochemistry (altered 

GABA receptor expression in the brain) and emotional behavior (e.g., anxiety- and 

depression-like behavior) in healthy animals. Using vagotomized mice the authors 

showed that the behavioral and neurochemical effects of this probiotic required an intact 

vagus nerve (Bravo et al., 2011). Another study demonstrated that vagal integrity was 

required for the anxiety reducing effects of probiotic Bifidobacterium longum (Bercik et 

al., 2011b). On the other hand, the same authors found that antibiotic-induced 
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perturbations of the gut microbiota led to vagus-independent alterations in brain 

chemistry and behavior (Bercik et al., 2011a), indicating that non-neuronal signaling 

mechanisms may also play a role in the gut microbiota-brain crosstalk. 

Endocrine system. The endocrine signaling pathways involve the release of gut peptides, such 

as galanin, orexin, ghrelin, leptin and gastrin by enteroendocrine cells, which can directly affect 

the brain (Forsythe and Kunze, 2013, Wren and Bloom, 2007, Cameron and Doucet, 2007). Gut 

bacteria can initiate peptide release of enteroendocrine cells. Intriguingly, a recent study showed 

that proteins released by commensal gut microbiota can directly communicate with the brain, 

thereby affecting appetite. The authors showed that after food intake a growing population of E. 

coli bacteria can produce proteins that directly act on anorexigenic signaling pathways in the 

brain (Breton et al., 2016). The gut microbiota has the capacity to produce neurotransmitters such 

as GABA, noradrenaline and 5-HT. Certain bacteria can play a regulatory role in the availability 

Figure 2. Pathways involved in the bi-directional communication between the gut microbiota and brain. Multiple 
pathways have been proposed to be involved in the gut-microbiota-brain axis including neuronal, hormonal and 
immunological pathways, and more recently bacteria-derived molecules that may modulate brain and behavior. 
Abbreviations: dendritic cell (DC); Serotonin (5-HT). Modified from (Collins et al., 2012). 
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of neurotransmitters in the periphery. For example, Yano and collaborators demonstrated that the 

gut microbiota is an important regulator of 5-HT homeostasis in colon and blood. They showed 

that certain spore-forming bacteria can produce metabolites that increase 5-HT production, which 

in turn affected host physiology (i.e., gut motility and homeostasis). Moreover, exposing GF mice 

to these microbial metabolite was sufficient to increase 5-HT levels in their colon and blood 

(Yano et al., 2015). Given that GF mice have impaired BBB integrity it will be interesting to 

investigate whether these microbial metabolites can impact 5-HT levels in the GF brain.   

The immune system. In a recent publication, a role for Ly6Chi monocytes in the communication 

between the gut microbiota and the brain was proposed. It was found that antibiotic treatment 

decreased neurogenesis and spatial learning and memory in adult mice. Treatment with probiotics 

or voluntary exercise restored neurogenesis and cognitive functioning. They also observed that 

antibiotic treatment reduced the number of Ly6Chi monocytes in the periphery and brain. When 

bone marrow derived Ly6Chi monocytes were transplanted into antibiotic treated animals, 

neurogenesis was restored to control levels and brain monocyte levels increased, thus suggesting 

a potential role of Ly6Chi monocytes in the gut microbiota-brain crosstalk (Mohle et al., 2016). 

Also, it has been shown that perturbations of the gut microbiota alter the homeostasis between 

the microbiota and the mucosal immune system which can result in the activation of immune 

responses such as the production of cytokines. These cytokines may in turn affect brain function 

and behavior (Honda and Takeda, 2009).  

Microbial metabolites. Short chain fatty acids (SCFAs) are produced when gut bacteria ferment 

dietary fibers in the colon. SCFAs such as acetate, propionate and butyrate have multiple effects 

on the host physiology including energy metabolism in the colon and periphery, food intake, 

modulation of immune cells functioning, and activation of epithelial cell signaling pathways 

(Pomare et al., 1985, Mayer et al., 2015). It has been suggested that these bacterial metabolites 

can exert a direct effect on brain development and behavior (MacFabe et al., 2007, MacFabe et 

al., 2011). Over the last years several studies reported beneficial effects of SCFA in the context 

of brain development and function. For instance, GF mice have a more permeable BBB compared 

to SPF mice. These BBB abnormalities are mostly normalized after microbial colonization of GF 

mice. Interestingly, the introduction of a single bacteria strain that produces SCFAs, such as 

Clostridium tyrobutyricum which produces butyrate or Bacteroides thetaiotaomicron that 

produces acetate and propionate, into GF mice partly restored BBB integrity. Moreover, 

treatment with sodium butyrate alone was enough to improve BBB integrity in GF mice (Braniste 

et al., 2014). SCFAs also seem to play an important role in microglia homeostasis. Erny and 

collaborators showed that treatment of GF mice with SCFA restored microglia maturation and 

function. In addition, SCFA receptor knockout mice (i.e., FFAR2) showed similar microglia 

deficits as observed in untreated GF mice (Erny et al., 2015), suggesting that SCFA play a role 

in microglia maturation. In a transgenic mouse model of Parkinson’s disease, it was demonstrated 

that the presence of a normal gut microbiota produced Parkinson’s-like deficits (motor problems 

and Parkinson’s related brain pathology) by activating disease-competent microglia. GF 
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conditions or treatment with antibiotics significantly reduced Parkinson’s related deficits which 

was associated with the absence of disease-competent microglia. Treatment with SCFAs 

produced a similar disease phenotype in GF mice as observed in mice with a normal gut 

microbiota, indicating that SCFAs were required for the maturation of disease-related microglia 

(Sampson et al., 2016). These findings indicate a potential pathway by which the gut microbiota 

may contribute to the pathophysiology of neurodegenerative disorders. 

Bacterial-derived products. One possibility that has not been fully explored is the direct actions 

of bacteria-derived products that are recognized by pattern recognition receptors (PRRs) of the 

innate immune system. PRRs are typically expressed in immune cells and can detect 

conserved microbe-associated molecular patterns (MAMPs). MAMPs such as 

lipopolysaccharide (LPS), bacterial lipoprotein, flagellin, CpG DNA, and peptidoglycan are 

common among microbes. MAMPs are universally conserved, generally invariant, and essential 

in all microorganisms. Importantly, these “motifs” are not restricted to pathogens and are 

abundantly produced by the commensal gut microbiota (Chu and Mazmanian, 2013). Moreover, 

emerging evidence suggest that MAMPs from commensal gut microbiota signal through PRRs 

to promote host development, homeostasis, and protection against pathogens (Clarke et al., 

2010). PRRs of the innate immune system include different receptor families, including the Toll-

like receptors (TLRs), cytosolic NOD-like receptors (NLRs), and peptidoglycan recognition 

proteins (PGRPs or PGLYRPSs).  

1.5 Toll-like receptors of the innate immune system 

TLRs were first discovered in Drosophila melanogaster where they play immune and 

developmental roles. In mammals, TLRs mediate immune responses such as the immediate 

immune response via nuclear factor-κB (NF-κB) activation resulting in cytokine and chemokine 

production, and facilitating the adaptive immunity by activation of antigen-presenting cells. 

These receptors (TLR1-11 in mice) are typically expressed in immune system-related cells 

including B-cells, natural killer cells, mast cells and macrophages. Interestingly, TLRs were also 

found to be expressed by astrocytes, microglia and neurons (Okun et al., 2011), suggesting that 

mammalian TLRs may play developmental roles beyond the classical immune functions. In the 

CNS, TLRs are important mediators for the initiation of immune responses. However, some 

TLRs are highly expressed during mouse brain development and are able to modulate key 

neurodevelopmental processes including neurogenesis, synaptogenesis, and synaptic plasticity. 

Studies have shown neurodevelopmental roles for Tlr2 in neuronal differentiation, Tlr3 in neurite 

outgrowth, Tlr4 in cell proliferation and Tlr8 in neuronal death (Okun et al., 2010b, Lathia et al., 

2008, Shechter et al., 2008, Ma et al., 2006). Other studies suggest that TLRs may impact motor, 

anxiety and cognitive functions. Okun and collaborators showed that Tlr3 has a developmental 

role in memory retention, whereas Tlr4 plays a role in learning and memory (Okun et al., 2010a, 

Okun et al., 2012). Another study reported a developmental role for Tlr2 in anxiety and cognitive 

functioning (Park et al., 2015). These studies indicate that TLRs play multiple roles in the 
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immune system, neurodevelopment and the programming of brain circuits linked to motor 

control, memory and cognition.  

1.6 Bacterial peptidoglycan and its sensing molecules 

Clarke and colleagues demonstrated that the microbiota is a source of peptidoglycan (PGN), 

which is translocated from the gut into the circulation under normal conditions without any 

indications of infection. This microbial product was found to influence the function of bone 

marrow-derived neutrophils, which are cells residing outside the gut. The authors showed that 

low levels of PGN were required for optimal neutrophil immune function. Moreover, neutrophils 

obtained from mice with a perturbed gut microbiota (induced by broad-spectrum antibiotics or 

raised under GF conditions) showed reduced immune function compared to controls. The PGN 

sensor, nucleotide-binding oligomerization domain-containing protein-1 (Nod1) was identified 

as the homeostatic regulator mediating the systemic effects of PGN (Clarke et al., 2010). These 

novel findings raise the possibility that a similar mechanism may be operating within the brain.  

PGN is a polymer consisting of amino acids and sugars, which is a fundamental component of 

the bacterial cell wall. The PGN structure is built from β-(1→4)-linked N-acetylglucosamine 

(GlcNAc) and N-acetylmuramic acid (MurNAc). A small peptide chain of three to five amino 

acids is attached to the MurNAc. These short chains can cross-link (via the L- and D- amino 

acids) with other peptide chains to form a 3D mesh-like layer. Some of the amino acids in the 

peptide stem differ between Gram-positive and Gram-negative bacteria; the first two amino acids 

are normally L-alanine and D-glutamine or isoglutamine, the third residue is Lysine in Gram-

positive bacteria and in Gram-negative bacteria meso-diaminopimelate (meso-DAP), the last two 

residues are generally D-alanine (Schleifer and Kandler, 1972). The PGN layer is much thicker 

in Gram-positive bacteria compared to Gram-negative bacteria. Approximately 90% of the dry 

weight of Gram-positive bacteria is PGN, in contrast, in Gram-negative bacteria PGN only makes 

up for around 10% of its dry weight. When bacteria divide, PGN is partly degraded and released 

into the surrounding milieu. These small molecules are perfect markers for the immune system 

to detect bacterial activity. Several PRRs are able to detect PGN, including Tlr2 a member of the 

TLR-family, cytosolic Nod1 and Nod2 of the NLR-family, as well as all four mammalian PGN 

recognition proteins (PGRP1–4) (Dziarski, 2003). These PGN sensing molecules can detect 

different “PGN motifs”, for instance, Nod1 specifically detects tripeptides containing meso-DAP, 

which are predominantly found in Gram-negative bacteria and some Gram-positive bacteria. 

Nod2 detects muramyl dipeptides present in both Gram-negative and Gram-positive bacteria and 

some muramyl tripeptides found in Gram-positive bacteria (Wheeler et al., 2014). PGRPs 

typically detect muramyl tripeptides (Dziarski and Gupta, 2010). A few decades ago, systemic 

PGN molecules were observed in urine and cerebral spinal fluid of patients with sleep disorders 

and in murine brain, liver, and kidney (Sen and Karnovsky, 1984, Martin et al., 1984, Krueger et 

al., 1984). However, the detection methods have been criticized and it has been controversial 

whether bacterial-derived PGN molecules can reside in host tissue in the absence of infections 

or inflammation. (Wheeler et al., 2014). Using a different experimental approach, PGN fragments 
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have also been observed in antigen presenting cells in brain tissue of multiple sclerosis patients 

(Schrijver et al., 2001). Moreover, the presence of PGN was correlated with demyelination in 

multiple sclerosis patients (Branton et al., 2016). In 2010, Clarke and colleagues showed that 

bioactive meso-DAP PGN can cross the intestinal epithelium and was detectable in sera and bone 

marrow (Clarke et al., 2010), indicating that PGN fragments can affect immune system 

development and host physiology. 

1.6.1 NOD-like receptors. 

The NLR-family are cytosolic innate immune proteins. Nod1 and Nod2 are NLR members that 

recognize specific PGN molecules were Nod1 detects meso-DAP containing PGN and Nod2 

detects muramyl di- and tri-peptides. Receptor activation initiates NF-κB-dependent and 

mitogen-activated protein kinase (MAPK)-dependent pro-inflammatory gene transcription. 

NOD1 and NOD2 proteins can sense PGN motifs via Leucine-rich-domains (LRRs). Upon 

ligand binding, the caspase recruitment domain (CARD) recruits downstream adaptor proteins 

such as receptor-interacting serine/threonine-protein kinase 2 (RIPK2) to initiate downstream 

signaling (Philpott et al., 2014). Activation of Nod1 and Nod2 depends on binding with PGN in 

the cytosol, the mechanisms by which PGN molecules are transported into the cell are not well 

established. Several uptake mechanisms have been reported, including phagocytosis, endocytosis 

and uptake of outer membrane vesicles via neighboring cells through tight junctions and GAP 

junctions. Active uptake via proton-coupled oligopeptide transporters (SLC15), specialized in 

the cellular uptake of di/tripeptides has also been proposed (Caruso et al., 2014, Philpott et al., 

2014, Irving et al., 2014). Mainly Slc15a1 (PepT1) and Slc15a4 have been shown to transport 

PGN into the cytosol, thereby facilitating Nod receptor activation (Smith et al., 2013). Overall, 

several uptake mechanisms seem to be involved in delivering extracellular ligands to intracellular 

Nod1 and Nod2 receptors.  

Nod signaling plays key roles in maintaining the integrity of the epithelial barrier and regulating 

the immune homeostasis in the gut. Nod1 is widely expressed by both immune and non-immune 

cells, for example Nod1 is abundantly expressed by epithelial cells in the intestinal tract. Nod2 

expression is mostly limited to immune cells including T-cells, neutrophils, macrophages and 

dendritic cells. In the intestine, Nod2 is expressed in Paneth cells (Caruso et al., 2014, Kaparakis-

Liaskos, 2015). Both Nod1 and Nod2 receptors have been detected in the adult brain. For 

instance, functional Nod2 receptors have been found in both microglia and astrocytes (Chauhan 

et al., 2009, Sterka and Marriott, 2006). Another study showed that Nod1 and Nod2 were 

expressed in the adult rat brain and Nod2 expression increased in response to a Gram-positive 

bacterial infection (Liu et al., 2014). Consistent with their roles in immunity, Nod1 and Nod2 

knockout mice showed increased susceptibility for pathogen infections. Studies with Nod2-

deficient mice have shown that Nod2 has a protective role in the development of intestinal 

inflammation (Petnicki-Ocwieja et al., 2009). Moreover, Nod2 models uncovered that Nod2 

regulates the expression and secretion of antimicrobial peptides, important to sustain the delicate 

microbiota-host balance (Philpott et al., 2014). Disrupted Nod2 signaling has been associated 
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with an increased risk for Crohn’s disease (Inohara et al., 2003). A zebrafish study suggested that 

NLRs may be required for normal microglial development (Shiau et al., 2013). Thus far, direct 

neurodevelopmental roles for Nod1 and Nod2 receptors have not been discovered. 

1.6.2 Peptidoglycan recognition proteins 

The peptidoglycan recognition proteins (PGRPs) are highly conserved in vertebrates and 

invertebrates. They were first discovered in the silkworm (Bombyx mori) as immune proteins that 

detect bacteria-derived PGN. Insect PGRPs initiate an antibacterial defense mechanism, called 

melanization, when they bind PGN. Insects have many different PGRPs with a wide range of 

functions. For example, the fruit fly has 13 PGRP genes that are transcribed into 19 different 

PGRPs, mammals on the other hand, have only four specialized PGRPs: PGLYRP1 (S), 

PGLYRP2 (L), PGLYRP3 (Iα), and PGLYRP4 (Iβ) (Liu et al., 2001, Royet et al., 2011). All 

mammalian PGRPs have at least one PGRP domain and the relatively low number of PGRPs in 

mammals is explainable by the large number of other PRRs active in the mammalian innate 

immune system. The general structure of the four mammalian PGRPs is similar; a specialized 

PGN-binding grove typically binds muramyl peptide fragments, and can distinguish between 

different amino acids in the peptide (Dziarski and Gupta, 2010, Royet et al., 2011). However, 

PGLYRP2 is the only mammalian PGRP with amidase activity that hydrolyzes the lactyl bonds 

in bacterial PGN (see Fig. 3) (Dziarski and Gupta, 2006). PGRPs are capable of binding to both 

Gram-positive and Gram-negative bacteria. Crystallographic analysis of the PGN binding groves 

revealed some of the ligand-PGRP binding characteristics, for example, PGLYRP1 and 

PGLYRP3 detect specifically muramyl-tripeptides (Guan et al., 2004a, Guan et al., 2004b, Guan 

et al., 2005).  

 
Figure 3. The structure of mammalian PGRPs. Modified from (Royet et al., 2011). 

The mechanisms by which the PGRPs exert their antimicrobial function are still poorly 

understood. Recent studies suggested that the bacteria killing may depend on a synergistic effect 

of reactive oxygen species (ROS), thiol, and metal stress (Kashyap et al., 2014). Another 

potential mechanism involves that PGRPs bind to the bacterial cell wall and over-activate the 

bacteria stress response system to kill the bacteria for example via the CssR–CssS system in 

Gram-positive bacteria and CpxA–CpxR system in Gram-negative bacteria) (Dziarski et al., 

2012, Royet et al., 2011).  
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PGRPs are widely expressed throughout the body, typically in areas that come into close contact 

with microbes (Royet et al., 2011). High expression of PGLYRP1 was observed in the bone 

marrow in leukocytes, in the lactating mammary glands (Kappeler et al., 2004), in epithelial cells, 

and fibroblasts. PGLYRP2 has been detected in the liver, blood, spleen, epithelial cells and 

fibroblasts. PGLYRP3 and PGLYRP4 were detected in skins epidermis, hair follicles, sweat 

glands, corneal epithelial, oral epithelial cells and in specific cells in the stomach and intestinal 

tract (Dziarski and Gupta, 2010). Rehman and colleagues have previously reported the 

expression of PGLYRP1 in various brain regions such as the hippocampus, hypothalamus and 

brain stem in adult rats (Rehman et al., 2001). The mechanisms by which the expression of 

PGRPs in mammals is regulated are poorly understood, however, a mouse study showed that 

PGLYRP1 expression may depend on NF-κB signaling (Lang et al., 2008). 

A genetic association study showed that genetic variants in PGRP genes were associated with 

risk for inflammatory bowel disease (Zulfiqar et al., 2013), suggesting that PGRPs are important 

in the protection and maintenance of a beneficial homeostasis in the colon. Saha and colleagues 

showed that PGRP1–4 knockout mice had increased sensitivity to an inflammatory agent, 

dextran sulfate sodium (DSS) (Saha et al., 2010). Another study showed that double knockout 

PGRP3-Nod2 mice were more sensitive to DSS induced colitis compared to single gene 

knockout mice (Jing et al., 2014). Recently, a novel non-immune related role for PGRPs was 

described. Harris and colleagues showed that in the Drosophila brain, PGRP-LC was required 

for presynaptic homeostatic plasticity (Harris et al., 2015). In humans, a genetic association study 

found several single-nucleotide polymorphisms (SNPs) in PGRP genes to be associated with 

increased risk for Parkinson’s disease (Goldman et al., 2014). Interestingly, the Mazmanian 

group recently reported that the gut microbiota play a crucial role in motor deficits and brain 

pathology related Parkinson’s diseases (Sampson et al., 2016). Mounting evidence revealed that 

the gut microbiota exert an effect on the development of brain circuits involved in motor control, 

emotion and cognition. One of the current challenges is to understand the precise mechanisms 

mediating the interactions between the gut microbiota and the developing brain. This knowledge 

will provide new insights into how behavior and personality traits are shaped, and perhaps offer 

novel biological mechanisms involved in neurodevelopmental and psychiatric disorders. 

1.7 The gut microbiota in neurodevelopmental disorders 

Neurodevelopmental disorders (NDDs) are a group of conditions characterized by an early onset, 

typically in childhood, and include ASD, attention deficit hyperactivity disorder (ADHD), 

dyslexia, language disorders, intellectual disability, cerebral palsy, developmental coordination 

disorder, and Tourette’s syndrome among others. The range of developmental deficits varies 

between different NDDs and may affect learning ability, self-control, emotions, social skills, 

intelligence and memory, which in turn can impair personal, social, academic, or occupational 

functioning (5th edition of the Diagnostic and Statistical Manual of Mental Disorders). ASD is 

one NDD that has been particularly linked to disturbances of the commensal gut microbiota is 

ASD. ASD is characterized by two key symptoms, impaired social communication/interaction 
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and restrictive/repetitive behavior or interest. In Europe, ASD is estimated to affect 1,3% of 

children and adolescents (www.autismeurope.org) and is more prevalent in boys than girls. 

Although ASD has a high heritability, a causal relationship between genomic alterations and 

ASD has been difficult to explain in many cases. This suggests a contribution of environmental 

factors as well, which has in recent years been increasingly recognized (Hallmayer et al., 2011). 

Genetic factors that contribute to ASD include SNPs, copy number variants (CNVs) and 

syndromic forms of ASD (Rett-syndrome, fragile-X and Tuberous sclerosis complex). 

Environmental risk factors that have been associated with ASD are, for instance, microbial 

pathogen infections (Atladottir et al., 2012, Zerbo et al., 2013, Bilbo et al., 2005) and prenatal 

stress (Beydoun and Saftlas, 2008, Boersma et al., 2014). Also, the gut microbiota has gained 

interest as a potential environmental factor that may play a role in ASD, since many affected 

individuals with ASD suffer from GI problems such as constipation, increased intestinal 

permeability (Coury et al., 2012). Intriguingly, studies have indeed reported a positive association 

of ASD severity with GI dysfunction (Adams et al., 2011, Wang et al., 2011). ASD patients often 

exhibit an atypical bacterial composition (Finegold et al., 2010, Williams et al., 2011) and 

excessive use of antibiotics during early-life has been implicated as a contributor to the 

unbalanced gut microbiota in ASD individuals. Probiotics, on the other hand, may have a 

beneficial effect on ASD outcome by restoring the atypical microbiota (Critchfield et al., 2011). 

In trying to link both genetic and environmental factors, the proto-oncogene C-MET, a receptor 

tyrosine kinase, is of particular interest given its strong link to ASD individuals with co-occurring 

GI problems (Campbell et al., 2009). The ligand for the MET receptor is Hepatocyte growth 

factor (HGF). MET is important in various biological processes such as cell proliferation, 

intestinal epithelial development, immune function, angiogenesis and brain development which 

involves neuronal growth, morphology, and synapse maturation (Peng et al., 2013, Qiu et al., 

2014, Hsiao, 2014). Disrupted MET signaling has been linked to morphological and functional 

alterations in neurons in brain regions linked to ASD (Peng et al., 2013). In line with this finding, 

HGF levels were decreased in serum of autistic children suffering from severe GI problems 

(Russo et al., 2009). A postmortem study showed decreased MET protein levels in the temporal 

cortex of ASD individuals (Campbell et al., 2007). A common SNP in the MET promoter region 

(rs1858830) known to increase the risk for ASD is specifically associated with ASD in patients 

with comorbid GI problems (Campbell et al., 2009). Functional magnetic resonance imaging 

(fMRI) studies showed that individuals with this risk allele show reduced connectivity in 

response to social stimuli (Rudie et al., 2012), and showed reduced gray matter growth in 

typically developing children with the risk allele (Hedrick et al., 2012). White matter tract and 

functional connectivity abnormalities were also observed in ASD subjects (Berg and Geschwind, 

2012). These studies led to a growing appreciation that the gut microbiota may contribute to the 

etiology and pathophysiology of ASD. 
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2 AIMS OF THE THESIS 
 

The overarching aim of this thesis is to improve our understanding of the mechanisms by which 

the gut microbiota modulates brain development, function and behavior. The specific aims of the 

thesis are: 

 To assess the impact of the host microbiota on social behavior by using the germ-free 

mouse model.  

 

 To study whether antibiotic-induced perturbations of the maternal gut microbiota during 

pregnancny impact the neurobehavioral outcomes of the offspring.  

 

 To determine whether bacterial PGN fragments can be translocated into the developing 

brain and detected by PGN sensing molecules. Additionally, to explore the possible roles 

of PGN sensing molecules on brain function and behavior in early and later life. 
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3 METHODS 

3.1 Animals 

The following animals were used throughout the four studies included in this thesis:  

 In paper I, we used adult Swiss-Webster germ-free (GF) and specific pathogen-free 

(SPF) male mice (Taconic Farms Inc., Germantown, NY, USA). 

 In paper II, we obtained adult C57BL/6N male and female mice from Charles River 

Laboratories (Sulzfeld, Germany). 

 In paper III, we obtained C57BL/6N male and female mice from Charles River 

Laboratories (Sulzfeld, Germany), C57BL/6 GF and SPF male and female mice from 

the Core Facility for Germ Free Research (Karolinska, Institutet, Sweden) and the 

hetrozygous Pglyrp2-breeding pairs from the Jackson Laboratory (Bar Harbor, ME, 

USA).   

 In paper IV, heterozygous Pglyrp2-breeding pairs were obtained from the Jackson 

laboratory (Bar Harbor, ME, USA).  

Upon arrival, all animals were housed in same-sex groups in standard plastic cages (Makrolon® 

Type III, Tecniplast, Buguggiate, Italy) under controlled temperature, humidity, and light 

(12:12 h light–dark cycle) conditions. Food and water were available ad libitum. Pregnant 

C57BL/6N female mice were housed individually under the same conditions as above. We 

defined the day of birth as postnatal day (P) 0. All offspring was weaned from their mothers on 

P21. All experiments were conducted according to a protocol approved by the Ethics 

Committee on Animal Research, Stockholm North and in accordance with the European 

Communities Council Directive of 24 November 1986 (86/609/EEC). 

3.1.1 Prenatal and perinatal antibiotic treatment 

Prenatal antibiotic treatment. One week after arrival in the animal facility, mice were mated 

(one male with two females). Females with a vaginal plug were individually caged and exposed 

to ampicillin (cat no. A8351, 0.6 mg/ml; Sigma-Aldrich, St. Louis, MO, USA; freshly made 

every day) in their drinking water throughout the entire pregnancy. Antibiotic treatment was 

discontinued on the day of delivery. The control group received fresh water on daily basis. 

Offspring of antibiotic-treated dams and controls were housed in same-sex and -treatment 

groups.  

Perinatal antibiotic treatment. Pregnant females were exposed to ampicillin (0.6 mg/ml; cat 

no. A8351, Sigma-Aldrich, St. Louis, MO, USA; freshly made every day) starting 5 days 

before delivery until P3. Importantly, both prenatal and perinatal antibiotic treatment did not 

affect the body weight of the dams or their offspring.  
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3.1.2 Germ-Free animals  

In paper I, we used three-month old adult Swiss-Webster GF and SPF male mice. Both GF and 

SPF animals arrived at the animal facility in guaranteed Taconic GF shippers with free access 

to food and water. GF and SPF male mice were transferred to sterile isolators and allowed to 

acclimatize for one week before testing took place. In the isolators, animals had free access to 

autoclaved water and food and were housed under similar temperature, humidity and light 

conditions as previously described in section (3.1). 

C57BL/6 GF and SPF male and 

female mice (paper III) were 

obtained from our own Core 

Facility for Germ Free Research at 

Karolinska Institutet. Animals 

were transported to our animal 

facility in special GF shippers. 

Immediately after arrival, brain 

tissues of GF and SPF mice were 

collected. Figure 4 shows GF 

isolators used for breeding GF 

colonies and long-term GF 

housing (GF facility, Karolinska 

Institutet). 

3.1.3 Pglyrp2 knockout mouse model 

Pglyrp2 knockout and wildtype mice were obtained from multiple heterozygous Pglyrp2-

breeding pairs. Heterozygous Pglyrp2 male and female mice were bred and housed in our 

animal facility in standard plastic cages and under controlled conditions (see section 3.1).  

3.2 Behavioral Tests 

3.2.1 Behavioral studies 

All behavioral testing took place between 0900 and 1600 hours under low illumination to 

reduce stress. Prior to any behavioral procedure, animals were brought in their home cages to 

the experimental testing room and allowed to habituate for at least 1 h before testing sessions 

were started in order to reduce stress caused by environmental changes. All animals were naïve 

to the behavioral experiment. The experimenter was blind to the genotype of Pglyrp2 animals 

during testing. Test chambers were cleaned first with disinfectant and then with 70 % ethanol 

and water after each animal.  

3.2.2 Open-Field test 

The open-field box is normally used to measure the general locomotor activity, exploration and 

anxiety-like behaviors in rodents (Fig. 5). Mice exposed to a novel open-field box typically 

Figure 4. Germ-Free isolators in the GF-core facility at Karolinska 

Institutet. GF and SPF animals are bred and raised in GF isolators. 
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show high levels of locomotion and exploratory behavior during the novelty period (i.e., the 

first 15-min of exposure to the novel open-field box). Prolonged exposure to the open-field 

results in a progressive reduction in exploratory behaviors as the novel environment becomes 

more familiar (i.e., the habituation phase). All animals were exposed to the open-field test for 

90 minutes. The open-field test was performed by placing animals individually in the center of 

the Acti-Mot detection system (48 cm × 48 cm; TSE, Bad Homburg, Germany). This system 

is able to automatically track and record movements of the animal using infrared photobeams. 

For spontaneous locomotor activity two parameters were analyzed: the distance traveled (in 

meters) and rearing activity, measured by the number of rears (the animal standing on its hind 

legs). The following parameters were analyzed: time spent and distance traveled in the center 

and periphery of the open-field box during the first 5-min of testing, as an index of anxiety-like 

behavior. 

 

3.2.3 Elevated Plus Maze test 

The Elevated Plus Maze (EPM; Fig. 6A) test is a well-established behavioral paradigm 

commonly used to investigate anxiety-like behaviors in rodents. This test takes advantage from 

the fact that mice are afraid of light and open areas, and prefer dark and closed (well protected) 

areas. Typically, mice subjected to the EPM test will spent more time in the closed arms than 

in the open arms. The total time spent in the open and closed arms of the EPM are an indication 

for anxiety-like behavior. Typically, an anxious mouse will spent significantly more time in 

the closed arms than in the open arms compared to a less anxious animal. The EPM test was 

performed by individually placing the test animal in the center (intersection) of the EPM 

apparatus (Kinder Scientific, California, USA), facing an open arm. Mice were allowed to 

explore the different areas of the EPM for 5 minutes. The following parameters were analyzed: 

the time (in seconds) spent in, and entries into, the open and closed arms, and total distance 

traveled (in meters) in the different compartments of the apparatus. The EPM system uses 

infrared photobeams to automatically track movements of the animal. Motor Monitor™ 

software was used to analyze the data (Kinder Scientific, California, USA). 

Figure 5. The Open-Field box system. (A) A mouse in the open-field box. (B) The Acti-Mot detection setup. The first 

pair of photobeam bars (1) is able to detect the animal’s movement in a horizontal way, whereas the second pair of beams 

(2) detect the vertical activity (rearing activity). The open-field box is 48 x 48 cm. 
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3.2.4 Light-Dark box test 

The Light-Dark box (LD; Fig. 6B) is another test to evaluate anxiety-like behaviors in rodents. 

When investigating anxiety-like behavior in mice, we always subjected test animals to both the 

EPM and LD-test since these two closely related tasks are complementary. The size of the LD 

test box is similar to that of the Open-Field box (48 x 48 cm). The apparatus is divided into a 

dark and light zone of equal seize with a rectangular door in the middle wall connecting the 

light and dark compartments. The light zone was lit by a light-bar consisting of 8 LED lights. 

The LD-test was performed by placing the test animal into the dark compartment of the LD-

box and allowing it to freely explore the apparatus for 5 minutes. The following parameters 

were analyzed: the time (in seconds) spent, distance traveled (in meters) and numbers of rears 

in the dark and light compartments. These parameters were automatically recorded by the Acti-

Mot detection system (TSE, Bad Homburg, Germany) using photocells.  

3.2.5 Three-chambered sociability and social cognition test 

Sociability and social cognition were evaluated in a three-chambered apparatus as described in 

paper II, III and IV. The apparatus consists of three equal sized chambers that were accessible 

via doors in the dividers. The sociability test consisted of two 10-min sessions in the three-

chambered apparatus, whereas the social cognition test required an additional 10-min session. 

To test for sociability, the time the test mouse spent interacting with the novel stimulus mouse 

and novel object was analyzed. To assess social cognition, the time the test mouse spent with 

the familiar and the unfamiliar stimulus mice was analyzed. Briefly, during the first 10-min 

session (i.e., exploration/habituation phase), the test mouse was allowed to freely explore all 

chambers. The test mouse was then briefly confined in the center chamber during which the 

experimenter placed the stimuli for the sociability session. For the 10-min sociability session, 

a novel stimulus mouse (i.e., same sex, age and strain) in a grid enclosure was positioned in 

one of the side-chambers and an identical grid enclosure without stimulus mouse was placed 

in the opposite chamber (see Fig. 7A). After a 10-min testing period, the test mouse was again 

briefly confined in the center chamber to allow the placement of the stimuli for the social 

cognition session. To test for social cognition, a novel stimulus mouse was place in the 

Figure 6. Two behavioral paradigms used to examine anxiety-like behaviors in mice (A) The elevated plus maze test, 

consisting of two open and two closed arms. (B) The light-dark box test, with a light and dark compartment of equal size.  
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previously empty grid enclosure (Fig. 7B) after which the test animal was again allowed to 

freely explore the three-chambered apparatus for 10-min. Time spent in each chamber and time 

spent around the enclosures was recorded and analyzed using an automated tracking system 

(EthoVision XT version 7 and 11, Noldus, Wageningen, The Netherlands). Detailed analysis 

of the time the test mouse spent interacting with the stimulus mouse was manually scored from 

recorded videos.  

3.2.6 Social interaction test 

Social interaction and approach were evaluated in the social interaction test (Fig. 8) as 

previously described (Sato et al., 2013). Stimulus mice of the same age, weight and sex as the 

test mouse were tail-marked 24h before testing. Test animals were transferred to the testing 

room and individually caged in new standard plastic cages (Makrolon® Type III, Tecniplast, 

Buguggiate, Italy) for at least 2 hours prior to testing. During the 2h habitation period, animals 

had access to water and food, which was removed just before the start of the experiment. The 

behavioral task started with the introduction of an unfamiliar stimulus mouse into the cage of 

the test animal.  Social interactions were video recorded for 10 min. The time the test mouse 

spent interacting with the stimulus mouse was manually scored. Active interaction was defined 

as sniffing, close following and allo-grooming. All sessions were recorded from the front of 

the cage using a Samsung (Seoul, South Korea) HMX-H100P high-definition camcorder. 

Figure 8. The social interaction test. Test mice were habituated for 2h prior testing in standard plastic cages. An 

unfamiliar stimulus mouse (same sex, age and strain) was introduced and social interactions were video recorded for a 10-

min time period. Interaction time (i.e., sniffing, close following and allo-grooming) was manually scored.  

Figure 7. The three-chambered social approach task. (A) During the 10-min sociability phase, the test mouse can freely 

explore all three chambers and choose to interact with the unfamiliar stimulus mouse in the grid enclosure or with the 

empty grid enclosure (i.e., object). (B) In 10-min social cognition phase, the test mouse can freely explore the apparatus 

and choose to interact with the familiar stimulus mouse or the novel stimulus mouse.  

A B
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3.2.7 Rotarod 

Motor coordination and balance were evaluated in the accelerating rotarod apparatus (Ugo 

Basile, Varese, Italy). The apparatus consisted of a rotating rod (3 cm in diameter) divided into 

5 running lanes allowing up to 5 mice to be tested simultaneously (Fig. 9). One day before 

testing, animals were habituated to the rotarod apparatus by placing them on the rotating rod at 

a fixed speed of 4 rotations per minute (r.p.m.) for two 90-second periods, 2 hours apart. On 

the day of testing, animals were placed on the 

rotating cylinder, and the time each animal 

was able to maintain its balance was 

recorded. The rotarod was set to accelerate in 

a linear manner from 4 to 40 r.p.m. over a 5-

min time period. Latency to fall was 

measured in seconds after a mouse fell off the 

rod, clung to the rod for two consecutive 

rotations or rotated three times within 10 

seconds. The maximum latency time of 300 s 

was assigned when a mouse did not fall from 

the rod or did not perform the above rotation 

mistakes. Mice performed 5 trials over 1 day, 

with a 5 min inter-trial interval. 

3.2.8 Treadmill 

Motor coordination of mice was examined in great detail by using the automated treadmill 

apparatus (Exer Gait XL, Columbus Instruments, USA; Fig. 10A) as previously described 

(Bonito-Oliva et al., 2014). In short, the test animal was place on the motorized transparent 

treadmill belt and the ventral view of its motions was recorded using a high-speed digital video 

camera (100 frames per second; Fig. 10B). Prior to testing, each mouse was allowed to 

habituate on a still treadmill belt for 1 min, followed by a phase of 1 min during which the 

speed of the treadmill belt was increased from 0 to 17 cm/s (i.e., 10 meter/min). Once the belt 

reached the testing speed (i.e., 17cm/s), gait was recorded during 3 trials of 20s each, with a 1 

Figure 9. The rotarod apparatus. Up to 5 mice can 

simultaneously perform the 5-min motor coordination task. 

Figure 10. The automated treadmill apparatus. (A) The automated treadmill with the high-speed camera mounted to 

record the ventral view of the transparent treadmill belt as reflected by an angled mirror below. (B) A test mouse walking 

on the transparent automated treadmill belt from the camera’s point of view. 
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min inter-trial interval. Motor coordination and movement on the treadmill was examined by 

measurement of individual paws and the whole body. Recordings were analyzed using the 

TreadScan software (Treadscan 4.0, Clever Sys, Inc., Reston, VA, USA) and all measurements 

were averaged across the 3 trails. Numerous parameters were measured including stance time, 

swing time, stride time, body length, and body width.  

3.3 Molecular Techniques 

3.3.1 Quantitative real-time polymerase chain reaction 

Quantitative real-time polymerase chain reaction (qRT-PCR) is a widely used molecular 

biology technique based on the PCR principal to quantify the expression of a target gene. In 

contrast to conventional PCR, qRT-PCR can detect and quantify amplification products in real-

time as they are formed in the reaction, and not only at the end of the reaction as in PCR. 

Detection of the PCR product can be accomplished using either non-specific DNA binding 

dyes (e.g., SYBR® Green) or sequence-specific DNA probes (e.g., TaqMan, PrimePCR). In 

this thesis, we mostly used SYBR® Green, a fluorescent dye that binds to double-stranded 

DNA. Upon binding, a high fluorescent emission can be detected, allowing measurement of 

the total amount of double-stranded DNA products in the reaction after each cycle (see Fig. 

11A). The main advantages of the SYBR® Green methods are the relatively low costs, ease of 

use and a simplified primer design compared to probe-based detection methods. Probe-base 

detection is more sensitive than non-specific DNA binding dyes because the probe is sequence 

specific. Therefore, SYBR® Green detection requires the use of melt curves after amplification 

to ensure specificity of the amplified products (Fig. 11B and C). To confirm gene expression 

data (for the primers used in paper III) we used Bio-Rad PrimePCR Probe assays (FAM- and 

HEX- labeled, Biorad, Sweden), which are fluorescent-labeled sequence-specific probes. The 

target-specific primers used in this thesis were designed using the Primer-BLAST web-based 

software (https://www.ncbi.nlm.nih.gov/tools/primer-blast/). The primers were designed using 

Figure 11. qRT-PCR principal and melt curve analysis. (A) During the qPCR cycles, the fluorescent signal emitted by 

SYBR® Green bound to the double-stranded DNA can be measured in real-time after each amplification cycle. The number 

of cycles required to reach the threshold level of detection is defined as the quantification cycle (Cq). A low Cq value 

represents a high concentration of the target gene, and a high Cq value a low concentration of the target. (B–C) Melt curve 

analysis. (B) shows a single melt peak, which is an indication for a specific amplification. In contrast, panel (C), shows 

two clearly distinct melt peaks suggesting a non-specific amplification. Thus, the primer pair of panel (C) cannot be used 

for qPCR. Figure (A) is modified from Sigma Aldrich “Primers and Fluorescent Probes” and Figure (B and C) are modified 

from Caister “PCR-troubleshooting”. 
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the following parameters: PCR product seize: 90–150 nucleotides, Primer melting temperature: 

min 58 opt 60 max 62, Primer size: min 20 opt 22 max 25, Primer GC content (%): min 40 max 

60. At least 2 primer pairs per target gene were ordered (25 nMole, desalted, and in dry format) 

from Invitrogen/Thermo Fisher Scientific. Upon arrival, the dry oligoes were reconstituted in 

nuclease-free water. The stock concentration of all primers was 125 pmol/ul and the working 

solution a ten-fold dilution of the stock solution (i.e., 12.5 pmol/ul). First, a gradient PCR was 

run to determine the optimal primer annealing temperature (usually between 55–60 °C), 

followed by an efficiency PCR with melt curve to determine primer efficiency (we aimed to 

have an efficiency between 95–105%). Finally, to confirm primer specificity, a conventional 

PCR was performed followed by the sequencing of the amplification product (KIGene, 

Stockholm, Sweden), and a BLAST search in the NCBI-BLAST website to confirm that the 

sequence of the amplified product is target gene specific. All primer sequences, annealing 

temperatures, and gene accession numbers of primers used in this thesis are listed in tables in 

paper I–IV. 

Briefly, total RNA from various brain tissue samples was extracted using the RNeasy® Mini 

Kit (Qiagen AB, Sollentuna, Sweden) according to the manufacturer’s instructions. RNA 

quality and quantity were determined spectrophotometrically using a NanoDrop® ND-2000 

Spectrophotometer (NanoDrop® Technologies, Wilmington, DE, USA). We only included 

RNA samples with a 260/280 nm ratio of 2.0 and higher in our studies, since this is generally 

accepted as “pure” RNA. The 260/230 nm ratio was used as a secondary measurement of 

nucleic acid purity, 260/230 ratio between 2.0 and 2.2 were considered “pure”. If ratios are 

appreciably lower than 2 it indicates the presence of protein, phenol or other contaminants that 

strongly absorb near 280 or 230 nm (NanoDrop Technical Bulletin 260/280 and 260/230 

ratios). If a RNA sample did not pass quality check a clean-up step was performed to improve 

its purity (according to the RNeasy® Mini Kit instructions). Next, 1µg of each RNA sample 

was reverse transcribed into cDNA using the iScript cDNA synthesis kit (Bio-Rad, 

Sundbyberg, Sweden) and stored in –20°C until used for qRT-PCR. Expression levels of genes 

of interest were quantified using the CFX384 Touch Real-Time PCR Detection System (Bio-

Rad, Sundbyberg, Sweden) as described in paper I. Bio-Rad CFX manager 3.1 software was 

used to analyze qPCR data and the fold changes were calculated by using the 2-ΔΔCt method 

(Livak and Schmittgen, 2001).  

3.3.2 Western blotting 

Western immunoblotting is a commonly used laboratory technique for protein detection and 

analysis. The first step in this technique is to separate the macromolecules by size using gel 

electrophoresis. After separation, proteins are transferred onto a polyvinylidene difluoride 

(PVDF) membrane. Next, the membrane is blocked to prevent non-specific binding of the 

antibody to the membrane. After blocking, the membrane is first incubated in a solution 

containing the target protein specific antibody (i.e., primary antibody) and then in a solution 

with an enzyme-labeled secondary antibody. Finally, the membrane is incubated with a 

chemiluminescent substrate that will emit light which can be detected using a CCD camera. 
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Briefly, various brain regions were dissected out on an ice-cold surface, immediately frozen on 

dry ice, and stored at –80°C until used. Sample were homogenized in 600 μl of 1% SDS, and 

boiled for 10 min as previously described (Qian et al., 2015). Protein concentrations were 

determined using the Bradford Protein Assay kit (Bio-Rad, Sundbyberg, Sweden). Next, 

protein samples (5 μg) were loaded into polyacrylamide gels (10–15% depending on the 

molecular weight of the target protein). Proteins were separated by SDS-PAGE and transferred 

to Immobilon® PVDF membranes (Millipore, Solna, Sweden). The membranes were then 

immunoblotted using polyclonal antibodies against Pglyrp2 (cat no. sc-50471, 1:5000; Santa 

Cruz Biotechnology, Santa Cruz, CA, USA), and Pglyrp3 (cat no. MBS852923, 1:5000; 

MyBioSource, San Diego, CA, USA). Rabbit polyclonal antibody against Heat Shock Protein 

90 (Hsp90; cat no. 4874, 1:10 000; Cell Signaling Technology, Beverly, MA, USA) was used 

as loading control. After incubation with primary antibodies, membranes were then incubated 

with horseradish peroxidase-conjugated secondary antibodies (Bio-Rad, Sundbyberg, Sweden) 

in combination with the chemiluminescent substrate (Clarity™ western ECL substrate, Bio-

Rad, Sundbyberg, Sweden). Protein bands were detected using the ChemiDoc™ XRS+ System 

with Image Lab™ Software (Bio-Rad, Sundbyberg, Sweden) and quantitated using NIH Image 

J version 1.29 (National Institutes of Health). To verify equal loading of proteins, nitrocellulose 

membranes were stained with Coomassie Blue (Bio-Rad, Sundbyberg, Sweden). 

3.3.3 BDNF ELISA assay 

To quantify Brain-derived neurotrophic factor (BDNF) protein levels in the brain (see paper 

II), we used the ChemiKine™ BDNF sandwich enzyme immunoassay. BDNF ELISA principal: 

The microplate of this assay is coated with a rabbit polyclonal capture antibody. Samples are 

incubated in the plate and BDNF antigens are bound by the capture antibody. Next, a biotin 

labeled mouse BDNF monoclonal antibody (detection antibody) is added that can bind to the 

BDNF antigens. Then, a streptavidin-HRP conjugate solution is added which binds to the biotin 

labeled detection antibody. Finally, a substrate is applied resulting into a colorimetric reaction, 

which can be read in a spectrophotometer (Fig. 12). By generating a standard curve BDNF 

concentrations can be calculated. Briefly, brain tissues were homogenized in ice cold 

homogenization buffer, centrifuged and supernatants together with standards incubated in the 

ELISA plate. Next, the detection antibody was added, then the streptavidin-HRP conjugate, 

followed by the tetramethylbenzidine substrate and the Stop Solution, after which the plate was 

read immediately at 450 nm using a Bio-Rad xMark Microplate Absorbance Reader (Fig. 12B). 

A standard curve was generated and BDNF protein concentrations were calculated using 

Microplate Manager® 6.  
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3.3.4 Peptidoglycan detection assay 

To detect peptidoglycan (PGN) fragments (in paper III), we used the commercially available 

silkworm larvae plasma (SLP) detection kit (Wako Pure Chemical Industries, Osaka, Japan) 

according to the manufacturer’s instructions. In short, the SLP detection kit is based on the 

following principal: SLP from the Bombyx mori contains an important innate self-defense 

mechanism, melanization. This process is controlled by the enzyme phenoloxidase (PO). The 

cleavage of the inactive proPO to the activate PO form is triggered by the recognition of 

bacterial-derived molecules such as PGN, by PGN-recognition proteins. Active PO, in turn, 

results in the production of melanin which serves as a measurement for PGN concentration. In 

short, we assayed 50μl of brain homogenate or serum in the detection plate together with a 

serial dilution of the PGN standard. After incubation, the plate was immediately read at 650 

nm using a Bio-Rad xMark Microplate Absorbance Reader (Fig. 12B). A standard curve was 

generated and PGN concentrations were calculated using Microplate Manager® 6.3. Brain 

samples were wet weight normalized.  

3.4 Statistical Analysis 

Statistical analyses were performed using STATVIEW version 5.1 software. Data from 

behavioral studies were analyzed using either repeated-measures analysis of variance 

(ANOVA) or factorial ANOVA when appropriate. Post hoc comparisons were made using a 

Bonferroni/Dunn test when significant ANOVA effects were found. Data from gene and 

protein expression studies, as well as PGN studies were analyzed using one-way ANOVA. Post 

hoc comparisons were made using Fisher’s Least Significant Difference (LSD) test when 

significant ANOVA effects were found. The threshold for statistical significance was set as P 

≤ 0.05. All data are presented as the mean ± SEM. 

 

 

  

Figure 12. ELISA plate and spectrophotometer. (A) The colorimetric reaction in the ELISA plate after addition of the 

conjugate, just before the plate is read in the Bio-Rad xMark Microplate Absorbance Reader (B).  
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4 RESULTS & DISCUSSION 

4.1 Host microbiota modulates development of social preference in mice 

In paper I, the influence of the gut microbiota on motor and social behavior was assessed. For 

this purpose, three-month old Swiss-Webster GF and specific pathogen-free (SPF) male mice 

were subjected to an open-field test and the three-chambered sociability test. In the 90-min 

open field test GF mice traveled significantly greater distances during both the novelty period 

(i.e., the first 15-min of exposure) and habituation period compared to SPF mice (Fig. 13A). 

They also spent more time in the center of the open-field arena during the novelty period (Fig. 

13A inset) and exhibited increased rearing activity throughout the 90-min task (Fig. 13B). 

These findings are in line with observations in adult NMRI GF mice that also displayed 

increased spontaneous locomotor activity (Diaz Heijtz et al., 2011). Another study reported 

increased home-cage activity counts in C57BL/6J GF male mice (Backhed et al., 2007). 

Neufeld and colleagues reported that female Swiss-Webster GF mice did not show alterations 

in locomotor activity during a 30-min open-field test (Neufeld et al., 2011b). This contrast with 

male GF mice can either be explained by the experimental setup (30- vs 90-min testing period) 

or sex-dependent differences. Next, social preference of Swiss-Webster GF male mice in the 

three-chambered sociability test was examined. GF animals spent significantly more time in 

the chamber containing the unfamiliar stimulus mouse, and less time in the chamber containing 

the object, compared to SPF mice (Fig. 14A). Further analysis revealed that GF mice displayed 

higher levels of social interaction with the stimulus mouse compared to controls (Fig. 14B), 

this observation was confirmed by calculating the sociability index (GF vs SPF: 81% vs 60%). 

To date, several studies in GF mice have shown an influence of the gut microbiota on social 

behavior (Crumeyrolle-Arias et al., 2014, Desbonnet et al., 2014, Buffington et al., 2016). In 

contrast to our findings, Desbonnet and colleagues found decreased social behavior in young 

adult Swiss-Webster GF male, but not female mice (Desbonnet et al., 2014). 

Figure 13. GF mice display increased locomotor activity. (A) Average distance traveled (meters) by GF male mice and 

controls in a 90-min open-field test. (Inset) The time the test animal spent in the center of the open-field arena during the 

novelty period (i.e., first 15-min of testing). (B) Rearing activity during a 90-min open-field box session. All data (A−B) 

are presented as means (± S.E.M; n = 10 per group). *P < 0.05, **P < 0.01 compared with SPF mice. Modified from 

(Arentsen et al., 2015). 
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The authors also reported increased self-grooming in GF male mice, in contrast no alterations 

in grooming behavior were observed in our study. The discrepancy between the two studies 

could be in part due to a different experimental design. An addition experiment with three-

month old C57BL/6 GF and SPF male mice, obtained from the GF-core facility at Karolinska 

Institutet, was conducted with the inclusion of C57BL/6 controls from Charles River to ensure 

in-house SPF controls are similar to normal C57BL/6 inbred mice. It showed that GF mice 

displayed increased social behavior compared to SPF and C57BL6 controls (Fig. 15). In 

contrast to these findings, Buffington reported a decrease in social behavior and interaction in 

7−12-week-old C57BL/6 GF male mice (Buffington et al., 2016). Both studies used C57BL/6 

SPF stimulus mice and the experimental setup seems similar. Although inconsistencies in the 

direction of changes on social behavior observed in GF animals are evident in these studies, 

together, they all highlight that the absence of a gut microbiota can impact development of 

social behavior in rodents.  

Figure 14. GF mice show increased social behavior. (A) Bars represent time spent (seconds) in the three chambers 

during a 10-min sociability session by GF and SPF male mice. (B) The time the test animals spent interacting with the 

unfamiliar stimulus mouse or the novel object. All data (A−B) are presented as means (± S.E.M; n = 10 per group). *P < 

0.05, **P < 0.01 compared with SPF mice. Modified from (Arentsen et al., 2015). 

Figure 15. C57BL/6 GF mice show increased social behavior. (A) Bars represent time spent (seconds) in the different 

chambers during the sociability session by C57BL/6 GF and SPF mice from the KI GF-facility and for comparisons, 

C57BL/6 male mice obtained from Charles River Laboratories (Sulzfeld, Germany). (B) Bars show time spent interacting 

with the unfamiliar stimulus mouse or the novel object. All data (A−B) are presented as means (± S.E.M; n = 20 per group). 

**P < 0.01, ***P < 0.001 compared with SPF mice and #P < 0.05, ##P < 0.01, ###P < 0.001 compared with C57BL/6 mice.  
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To better understand potential molecular mechanisms underlying the observed behavioral 

alterations, the expression of brain-derived neurotropic factor (BDNF) in amygdala was 

investigated. The amygdala is important in the processing of social stimuli and BDNF is an 

important regulator of brain development, and involved in synaptic transmission and plasticity 

(Vicario-Abejon et al., 2002, Benarroch, 2015). In the amygdala of GF mice, mRNA 

expression levels of total BDNF were significantly reduced compared to SPF mice (Fig. 16). 

Moreover, four of the nine BDNF exon transcript variants (i.e., I, IV, VI and IX) were found 

to be significantly less expressed in GF mice compared to controls (Fig. 16). This data is in 

agreement with several studies in GF animals demonstrating that the BDNF expression is 

extremely sensitive to perturbation of the gut microbiota in the hippocampus, prefrontal cortex 

and amygdala (Sudo et al., 2004, Diaz Heijtz et al., 2011, Gareau et al., 2011, Neufeld et al., 

2011b, Clarke et al., 2013). Similar to previous findings (Diaz Heijtz et al., 2011), expression 

levels of immediate-early gene NGFI-A were significantly reduced in GF mice (Fig. 16). In 

addition, several BDNF exon transcript variants were found to be significantly reduced in the 

amygdala of GF mice. The roles of these specific BDNF transcript variants are still poorly 

understood. Thus far, one study described an alteration in the expression of BDNF transcript 

variant (IV) in GF mice (Stilling et al., 2015). BDNF exon transcript IV is a direct target of 

transcription factor cyclic adenosine monophosphate (cAMP) response element binding 

protein (CREB). CREB binding to cAMP/Ca2+-response element will result in the upregulation 

of BDNF exon transcript IV in the brain. Stilling and colleagues observed increased CREB 

signaling and upregulated levels of BDNF exon transcript IV (Stilling et al., 2015). Taken 

together, these data indicate that alterations in the expression of specific BDNF exon transcripts 

within the amygdala may contribute to the abnormal development of social behavior in GF 

mice.   

  

Figure 16. GF mice show decreased BDNF and NGFI-A expression levels. qRT-PCR was used to examine expression 

levels of the total BDNF, its exon transcript variants, and NGFI-A in the amygdala of GF and SPF mice. Expression levels 

were normalized to heat shock protein 90 (Hsp90) levels and expressed relative to the SPF group. Data are presented as 

means (± SEM; n = 5−6 per group). *P < 0.05 and ***P < 0.001 compared with SPF mice. Modified from (Arentsen et 

al., 2015). 
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4.2 Perturbation of maternal gut microbiota during pregnancy influences offspring 
brain development and behavior 

The GF model has several limitations and lacks the clinical relevance since GF conditions are 

not translatable to humans. An alternative approach to study perturbations of the gut microbiota 

on health outcomes is through the use of antibiotics. Epidemiological studies have shown that 

antibiotic-induced perturbations of the gut microbiota during pregnancy and/or early postnatal 

life can have adverse outcomes in later life (Cox and Blaser, 2015b, Mueller et al., 2015b, 

Slykerman et al., 2017). Therefore, in paper II, we investigated whether perturbation of the 

maternal gut microbiota during pregnancy, induced by exposure to a broad-spectrum antibiotic, 

influences brain development and behavior in the offspring. For this purpose, C57BL/6 

pregnant females were exposed to a clinically relevant dose of ampicillin in their drinking water 

throughout the entire pregnancy. To ensure the antibiotics were not having a major detrimental 

effect on overall health of the dams, their body weight and the body weight of their offspring 

was measured, and neither was different from controls. 

Next, the impact of antibiotic treatment during pregnancy on the maternal gut microbiota was 

determined. Analysis of fecal samples of antibiotic-treated dams and controls revealed specific 

differences in the composition of the bacterial community within each group (alpha-diversity, 

see paper II). We also assessed the effect of antibiotic treatment on the relative abundances 

between groups (beta-diversity) and it was found that antibiotic treatment during pregnancy 

affected microbial diversity in the dams and their offspring, as shown in the unweighted 

UniFrac PCoA plots (Fig. 17A and B, respectively). Analysis of the relative abundances at the 

phylum level of fecal samples from antibiotic-treated dams and controls revealed a significant 

decrease in abundance of Bacteriodetes (antibiotic treatment vs control: 0.8% vs 46.8%; Fig. 

17C), consistent with other report on the effect of antibiotic treatment on bacterial composition 

(Bercik et al., 2011a, Desbonnet et al., 2015b, Hoban et al., 2016a). Analysis of fecal samples 

from juvenile male and female offspring at the level of the phylum (Fig. 17D) revealed that the 

abundance of Deferribacteres was significantly altered compared to controls (paper II). Close 

examination at the family level revealed that several families belonging to the Bacteroidetes 

phylum (e.g., Bacteroidaceae, Prevotellaceae and Porphyromonadaceae) were in particularly 

affected by antibiotic treatment during pregnancy (paper II). These findings are consistent 

with previous reports using different antibiotics, time-windows of exposure and treatment 

duration (Bercik et al., 2011a, Desbonnet et al., 2015b, Hoban et al., 2016a, Frohlich et al., 

2016, Tochitani et al., 2016), thus suggesting that specific microbes (e.g., members of the 

Bacteroidetes phylum) are highly sensitive to antibiotic exposure.  

The impact of antibiotic treatment during pregnancy on the development of motor, emotional 

and cognitive functions in the offspring was examined next. For this purpose, juvenile offspring 

were subjected to a battery of tests for locomotor activity, anxiety-like and social behaviors. 
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In the first set of experiments, juvenile male and female offspring from antibiotic-treated dams 

and their respective controls, were placed in a novel open-field activity arena for analysis of 

their exploratory and habituation profiles. Both male and female offspring of antibiotic-treated 

dams displayed increased locomotor activity. Juvenile males displayed increased locomotor 

and rearing activity during the initial and early habituation phase (Fig. 18A and C), whereas 

females traveled a greater distance only during the habituation phase (Fig. 18B and D). These 

results are in line with previous literature (Diaz Heijtz et al., 2011, Bercik et al., 2011a) and our 

findings in paper I. Opposite to our results, a recent study using a high dose antibiotic cocktail 

during E9–E16 reported decreased locomotor activity in juvenile, but not adult offspring 

(Tochitani et al., 2016). Importantly, the antibiotic cocktail used in this study produced 

significant changes in the body weight of dams and their offspring, suggesting potential growth 

restriction in the offspring and subsequent detrimental effects. In contrast, we used a clinically 

relevant dose of ampicillin, which did not affect the body weight of dams, or their offspring.  

 

Figure 17. Antibiotic treatment during pregnancy altered fecal microbiota composition in antibiotic-treated dams 

and their offspring. (A) Unweighted UniFrac Principal Component Analysis (PCoA) of gut microbiota of antibiotic-

treated dams and controls. (B) PCoA of gut microbiota of offspring from antibiotic-treated dams and controls. (C) 

Taxonomic distribution at the phylum level of fecal samples from the antibiotic-treated dams and controls. (C) Taxonomic 

distribution at the phylum level of fecal samples from male (left) and female (right) offspring of antibiotic-treated dams 

and controls. (A and C) n = 5 per group, (B and D) n = 7–8 per group. Modified from paper II. 
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Previous studies have shown that mice devoid of a gut microbiota show decreased anxiety-like 

behavior (Diaz Heijtz et al., 2011, Neufeld et al., 2011b, Clarke et al., 2013). In the present 

study, no differences in anxiety-like behavior were observed between the offspring of 

antibiotic-treated dams and controls. Interestingly, studies in mice investigating the impact of 

antibiotic exposure during adulthood (Bercik et al., 2011a) or from weaning onwards 

(Desbonnet et al., 2015b) observed reduced anxiety-like behavior, similar to GF mice. Thus 

suggesting that the time-window of antibiotic exposure is particularly important for potential 

neurobehavioral outcomes.  

Given that recent studies in GF mice have shown an influence of the gut microbiota on social 

behavior (paper I, (Desbonnet et al., 2014, Buffington et al., 2016)), an additional cohort was 

used to assess whether antibiotic treatment throughout pregnancy could affect social preference 

and social cognition of the offspring. For this purpose, juvenile male and female offspring of 

antibiotic-treated dams and controls were exposed to the three-chambered social approach task 

(see material and methods).  

Figure 18. Juvenile offspring from antibiotic-treated dams show increased spontaneous motor activity. (A and B) 

Average distance traveled (meters) by juvenile male and female offspring of antibiotic-treated dams and controls in across 

a 90-min session in an open- field box. (C, D) Rearing activity of male and female offspring from antibiotic-treated dams 

and controls measured across a 90-min session in an open- field box. All data (A−D) are presented as means (± S.E.M; n 

= 10−12 per group). *P < 0.05, **P < 0.01, ***P < 0.001 compared with control mice. Modified from paper II. 
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Figure 19. Perturbation of the maternal gut microbiota during pregnancy affect social behavior and cognition in a 

sex-dependent manner. (A, B) Bars show time (seconds) spent in the different chambers during the sociability session 

by juvenile male and female offspring of antibiotic-treated dams and controls. (C, D) Bars represent time spent interacting 

with the unfamiliar stimulus mouse or the novel object by juvenile offspring. (E, F) Bars show time spent in the different 

chambers during the social cognition session by juvenile male and female offspring of antibiotic-treated dams and controls. 

(G, H) Bars represent time spent interacting with the novel or familiar stimulus mouse by juvenile offspring. All data 

(A−H) are presented as means (± S.E.M; n = 8 per group). *P < 0.05, **P < 0.01 compared with controls. Modified from 

paper II. 
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We found that male, but not female offspring of antibiotic-treated dams displayed increased 

social behavior (Fig. 19A–D). These results were supported by the finding in the social 

interaction test, in which only male offspring of antibiotic-treated dams showed higher levels 

of social interaction. In the social cognition test, only male offspring of antibiotic-treated dams 

showed enhanced social memory (Fig. 19E–H), these results are in line with previous sex-

specific findings in social behavior (Desbonnet et al., 2014). In contrast to our observations, 

Tochitani and colleagues did not observe an effect on social behavior in the offspring of dams 

treated with an antibiotic cocktail during pregnancy (E9−E16) (Tochitani et al., 2016). Using 

the GF-mouse model, Desbonnet and colleagues reported that adult males, but not females 

displayed altered social behavior and social cognition (Desbonnet et al., 2015b). This sex-

dependent effect suggests that development of social brain circuits of males are more sensitive 

to perturbations of the gut microbiota. A recent study in humans found a moderate association 

between antibiotic treatment in the first year of life and poorer cognitive, behavioral and 

emotional outcomes during childhood (Slykerman et al., 2017). Although these findings 

require further validation, this study supports the notion that a sensitive period exists, early in 

life, in which antibiotic-induced perturbations of the gut bacteria may influence human brain 

development and cognitive function later in life. 

Given the fact that BDNF plays a critical role in brain development and is also highly sensitive 

to perturbations of the gut microbiota (as shown in paper I and by others), BDNF expression 

levels were investigated in brain regions involved in the processing of social stimuli (e.g., 

prefrontal cortex and amygdala). We found that BDNF mRNA and protein levels were 

significantly reduced in the amygdala of juvenile male offspring of antibiotic-treated dams 

(Fig. 20A and B). These results are supported by the findings in paper I using the GF model 

which showed reduced BDNF mRNA expression in the amygdala of male GF mice. 

Interestingly, we found a negative correlation between BDNF protein expression levels in the 

amygdala and time spent interacting with the unfamiliar stimulus mouse (Fig. 20C). Several 

studies have suggested a relationship between BDNF and the functioning of brain circuits 

involved in social behavior (Branchi et al., 2006, Berry et al., 2015, Yeom et al., 2016). In 

addition, BDNF has been linked to several neurodevelopmental disorders including ASD 

(Adachi et al., 2014, Castren, 2014). A recent meta-analysis study found that children with 

ASD have increased serum BDNF levels compared with typically developing children (Qin et 

al., 2016), thus, supporting the notion that the BDNF signaling pathway is of importance in the 

development of social brain networks. Taken together, our results indicate that antibiotic-

induced perturbations of the maternal gut microbiota during pregnancy may have long lasting 

effects on brain development and behavior in the offspring. 



 

 37 

 

 
  

Figure 20. BDNF expression in the amygdala and the correlation between BDNF protein levels and social behavior. 

(A) Bars show mRNA expression levels in the prefrontal cortex, striatum, hippocampus and amygdala of naïve male 

offspring from antibiotic-treated dams and controls by means of qRT-PCR. Expression levels were normalized to heat 

shock protein 90 (Hsp90) levels and expressed relative to the control group (n = 5–6 per group). (B) An ELISA assay was 

used to examine BDNF protein levels in the prefrontal cortex and amygdala of behaviorally assessed juvenile male 

offspring (n = 7 per group). *P < 0.05, ***P < 0.001 when compared with control mice. (C) Simple regression analysis 

indicating a significant negative correlation between time spent interacting with an unfamiliar stimulus mouse and BDNF 

protein levels in the amygdala. (D) Correlation analysis of time spent interacting with a novel object and BDNF protein 

levels in the amygdala. (C and D) Filled circles represent values of individual mice. Modified from paper II. 
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4.3 The bacterial peptidoglycan-sensing molecule pglyrp2 modulates brain 
development and behavior 

In paper III we first explored whether bacterial derived products were able to cross the BBB 

into the brain under normal conditions and sensed by specific pattern recognition receptors 

(PRRs). Using the silkworm larvae plasma (SLP) assay, we were able to determine that PGN 

can cross the BBB under normal conditions (Fig. 21A). It was also found that PGN levels 

increase in an age dependent manner, paralleling the microbial colonization process of the gut 

(Fig. 21B). Previous studies have shown that PGN can be detected in the brain and cerebral 

spinal fluid under compromised conditions (Schrijver et al., 2001, Krueger et al., 1984, Martin 

et al., 1984). The observation that PGN can cross the BBB under normal physiological 

conditions supports the notion that PGN might be of importance in the communication between 

the gut microbiota and the brain.  

Next, it was assessed whether PGN sensing molecules were present in the developing brain 

using qRT-PCR. We found that members of three innate immune molecule families, the PGN 

recognition proteins (PGLYRPs), NOD-like receptors (NLRs) and Toll-like receptors (TLRs), 

were expressed in the developing brain during specific temporal windows (Fig. 22A–C). 

Pglyrp2–4, PGN transporter (PepT1) and Tlr2 were expressed at signficanlty higher levels 

during the first days of postnatal life, whereas, Pglyrp1, Nod1 and Nod2 were higher expressed 

later in life in the striatum, prefrontal cortex and cerebellum, (Fig. 22A, B, C, respectively). In 

addition, we also observed brain region- and sex-dependent differeces in the mRNA expression 

levels of PGN sensing molecules such as Pglyrp2 (Fig. 22D–F). These results suggest that the 

temporal expression of PGN sensing molecules during key neurodevelopmental stages, that 

co-occur with the bacterial colonization process of the gut, may play a role in brain 

development.  

Figure 21. Bacterial peptidoglycan is present in the developing brain. (A) The silkworm larvae plasma assay was used 

to determine peptidoglycan (PGN) levels in the cerebellum of juvenile specific pathogen free (SPF) and germ-free (GF) 

male mice (n = 8 per group; **P < 0.01 when compared to SPF group). (B) PGN levels in developing cerebellum at postnatal 

(P) day 1, 3, 7, 14, 21 and 60 (n = 6 per group; ***P < 0.001 when compared with the P60 group). Modified from (Arentsen 

et al., 2017). 



 

 39 

 

 

 

 

 

Figure 22. Expression of peptidoglycan-sensing molecules in the developing mouse brain. (A–C) Graphical 

visualization of mRNA expression levels of Pglyrp1–4, Nod1, Nod2, Tlr2, and PepT1 in the striatum (A), prefrontal cortex 

(B), and cerebellum (C) during postnatal brain development. (D–F) mRNA expression levels of Pglyrp2 in the striatum 

(D), prefrontal cortex (E) and cerebellum (F) of male and female C57BL/6 mice during postnatal development. The 

expression level of each gene examined was normalized to Hsp90ab1 levels and expressed relative to postnatal (P) day 60 

male levels. Data of (D–F) are presented as means (± S.E.M; n = 4–6 per group). *P < 0.05, **P < 0.01, and ***P < 0.001 

when compared with the P60 male group. Differences between male and female mice are indicated as follows: §P < 0.05, 

§§P < 0.01. Modified from (Arentsen et al., 2017). 
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To begin to address the potential role of PGN sensing molecules on brain development, the 

cellular distribution of some of these molecules was investigated, using immunohistochemical 

techniques. Similar to the mRNA expression data, the Pglyrp2 and Nod1 (Arentsen et al., 2017) 

proteins were detected in various brain regions including the prefrontal cortex, hippocampus 

and cerebellum (Fig. 23). Importantly, Pglyrp2 was highly expressed in neurons, indicating 

that PGN may affect neuronal development and function. In a recent study, Harris and 

colleagues described a novel role for PGRPs in the brain. Using the Drosophila model (Royet 

et al., 2011), the authors demonstrated that a member of the PGRP family (i.e., PGRP-LC) 

known to be the primary receptor that initiates an immune response against pathogens, is 

required for presynaptic homeostatic plasticity (Harris et al., 2015). In addition, other innate 

immune molecules have been linked to neuronal development including the C1q component 

of the complement cascade and several members of the TLR family. For example, it has been 

shown that C1q is required for synapse elimination (Stevens et al., 2007), Tlr3 and Tlr8 have 

been implicated in neurite outgrowth and neuronal cell death (Lathia et al., 2008, Ma et al., 

2006), whereas neuronal differentiation and cell proliferation can be regulated by Tlr2 and Tlr4 

(Okun et al., 2010b, Shechter et al., 2008). These findings suggest that PGRPs in the brain have 

roles beyond the “classical” innate immune system functions.  

Figure 23. Representative images illustrating the cellular distribution of Pglyrp2 in the developing prefrontal cortex. 

(A–C) Double immunofluorescence staining shows Pglyrp2 (green) combined with NeuN (a neuronal marker; red), Iba1 

(a microglial marker; red) or GFAP (an astrocyte marker; red) in prefrontal cortex sections of three-day-old C57BL/6 male 

mice. Merged images display the localization of Pglyrp2 with neurons (A), and to a lesser extent with microglia (B) and 

astrocytes (C). Arrows indicate Pglyrp2-positive microglia (B) and Pglyrp2-positive astrocytes (C). The white scale bars 

represent 50µm. Modified from (Arentsen et al., 2017). 
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We then explored whether the expression of PGN sensing molecules in the brain would be 

sensitive to perturbations of the gut microbiota using two experimental models, i.e., the 

C57BL/6 GF mouse model and the perinatal antibiotic treatment model (see material and 

methods). A signficant decrease was found in the expression of Pglyrp2–4, Tlr2, and PepT1 

in the striatum of three-day-old male and female mice (Pglyrp2 and Tlr2 are shown in Fig 24A 

and B). These results suggest that PGN sensing molecules are senstive to disruptions of the gut 

microbiota. Next, the effect of gut microbiota perturbation on the expression of BDNF and 

ASD risk gene c-Met was examined in GF and perinatal antibiotic-treated male and female 

mice. Consistent with observations in paper I and II, perturbations of the indigenous 

microbiota led to decreased BDNF expression levels in the striatum of three-day-old mice (Fig. 

24C). This suggests that a disbalance in the gut microbiota early in life may affect BDNF levels 

during early-postnatal time windows when key neurodevelopmental processes occur. In 

addition to BDNF, proto-oncogene c-MET is a gene of particular interest given its strong link 

to ASD individuals with co-occurring GI problems, and the significant role it plays in brain 

development through involvement in the formation of synapses (Peng et al., 2013, Qiu et al., 

2014). A decrease in c-Met expression levels in the striatum of male and female GF and 

perinatal antibiotic-treated mice was observed (Fig. 24D). Indicating that perturbations of the 

gut microbiota early in life can impact brain development and may subsequently increase the 

risk for neurodevelopmental disorders. 

Figure 24. Perturbations of the gut microbiota alters the expression of PGN sensing molecules, BDNF and c-MET 

in neonatal striatum. Gene expression levels of Pglyrp2 (A), Tlr2 (B), Bdnf (C) and c-MET (D) in the striatum of three-

day-old GF and perinatal antibiotic-treated male and female mice. All data (A–D) are presented as means (± S.E.M; n = 

4–6 per group). *P < 0.05, **P < 0.01, and ***P < 0.001 their respective control groups. The labels are as follows: germ-

free (GF); specific-pathogen free (SPF). Modified from (Arentsen et al., 2017). 
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In a new set of experiments, the potential role of PGN sensing molecules on brain development 

and behavior was further investigated. For this purpose, we took advantage of a transgenic 

mouse model lacking Pglyrp2. Pglyrp2 is the only mammalian PGRP with amidase activity 

(i.e., it can hydrolyze PGN) and it is one of the PGN sensing molecules that are highly 

expressed early in development. Juvenile (i.e., P22–24) Pglyrp2 knockout (KO) and wildtype 

(WT) mice were subjected to a battery of tests similar to those used in paper II (i.e., open-

field, elevated plus maze, light-dark box and sociability tests). Juvenile male and female 

Pglyrp2 KO did not display alterations in locomotor activity and anxiety-like behavior 

compared to their respective WT controls. In the three-chambered sociability test, however, 

male Pglyrp2 KO mice exhibited increased social behavior (Fig. 25A and C), whereas, Pglyrp2 

KO females spent similar amounts of time interacting with the stimulus mouse compared to 

WT controls (Fig. 25D). Interestingly, the observed sex-specific increase in social behavior is 

in line with our findings in the prenatal antibiotic treatment mouse model, as presesented in 

paper II (a schematic overview comparing the different animal models used in this thesis is 

shown in Fig. 26). Next, the expression of BDNF and c-MET in several brain regions of three-

day-old Pglyrp2 KO and WT mice was examined. BDNF was found to be signficantly reduced 

in the striatum of neonate male mice (Arentsen et al., 2017). c-MET was less expressed in the 

striatum of neonatal female Pglyrp2 KO mice (Fig. 25E), in contrast, higher c-MET expression 

levels were observed in the prefrontal cortex of three-day-old male and female Pglyrp2 KO 

mice (Fig. 25E), and in the striatum of the juvenile male Pglyrp2 KO mice (Fig. 25F). Thus, 

the absence of Pglyrp2 led to a sex-specific increase in social behavior and to alterations in the 

expression of genes (i.e., BDNF and c-Met) involved in the formation and modulation of brain 

circuits, indicating that Pglyrp2 might play a role in neurodevelopment and behavior. This 

notion is supported by a recent study demonstrating that PGRP-LC is required for presynaptic 

homeostatic plasticity (Harris et al., 2015). Furthermore, studies investigating the role of TLRs 

on brain development and behavior have shown that TLRs may impact motor, anxiety and 

cognitive behaviors. Recently, Humann and colleagues showed that PGN was able to cross the 

placenta, activate Tlr2, induce transcription factor FoxG1, which led to increased 

neurproliferation in the fetal brain. In utero PGN exposure impaired memory and cognitive 

function in adulthood. Interestinly, the fetal brain was only senstive to incoming PGN-signals 

during a specific time window of brain development (i.e., E10) (Humann et al., 2016). Okun 

and collaborators showed that Tlr3 has a developmental role in memory retention, while Tlr4 

is involved in shaping spatial reference memory and fear learning (Okun et al., 2010a, Okun et 

al., 2012). Other studies have also shown developmental roles for Tlr2 in anxiety and cognitive 

functioning (Park et al., 2015), Tlr7 in depressive-like behaviors (Kubo et al., 2013) and Tlr9 

in sensory and motor behavior (Khariv et al., 2013). Given that PRRs seem to play multiple 

roles in immunity, in neuronal development, and in brain function, we propose that specific 

PRRs activitated by bacterial PGN, may be one of the signaling pathways mediating the 

communication between the gut microbiota and the developing brain.  
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Figure 25. Mice lacking Pglyrp2 display increased social behavior in a sex-dependent manner and altered 

expression of c-Met. (A, B) Bars show time (seconds) spent in the different chambers during the sociability session by 

juvenile male and female Pglyrp2 KO and WT mice. (C, D) Bars represent time spent interacting with the unfamiliar 

stimulus mouse or the novel object by juvenile Pglyrp2 KO and WT mice (n = 8 per group). (E) c-Met mRNA expression 

levels in the prefrontal cortex and striatum of 3-day-old Pglyrp2 KO and WT mice (n = 5–6 per group). (F) mRNA 

expression levels of c-Met in the prefrontal cortex and striatum of behaviorally assessed juvenile Pglyrp2 KO and WT 

male and female mice (n = 6–8 per group). Data are presented as means (± S.E.M.). *P < 0.05 and ** P < 0.01 when 

compared with their respective WT group. The labels are as follows: knockout (KO) and wildtype (WT). Modified from 

(Arentsen et al., 2017). 
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4.4 Sex-dependent alterations in motor and anxiety-like behavior of aged bacterial 
peptidoglycan sensing molecule 2 knockout mice 

Recent genetic association studies found that several SNPs in PGRP genes were associated 

with increased risk for inflammatory bowel disease (Zulfiqar et al., 2013) and Parkinson’s 

disease (Goldman et al., 2014). In a new study it was suggested that the gut microbiota may 

play a role in the progression of Parkinson’s disease (Sampson et al., 2016). Parkinson’s disease 

is characterized by motor deficits such as tremors, muscle rigidity and impaired gait, and 

frequently with co-occurring depression and anxiety as well as GI problems. Hence, in paper 

IV we investigated whether Pglyrp2 may play a role in motor control, anxiety-like behaviors 

and brain function later in life. For this purpose, 15-month-old Pglyrp2 KO and WT male and 

female mice were subjected to a battery of tests for spontaneous locomotor activity, motor 

coordination, anxiety-like behavior and social behavior. In the first set of experiments, Pglyrp2 

male and female mice were exposed to the open-field test. The distance traveled by Pglyrp2 

animals during the 90-min open-field test did not differ between groups. Analysis of the 

number of rears revealed that Pglyrp2 KO females, but not males exhibited reduced levels of 

rearing activity compared to WT controls (Fig. 27A and B).  

Figure 26. Schematic overview of the different animal models and their performance in various behavioral tests.  
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It has been previously proposed that rearing activity may reflect non-selective attention to novel 

environmental stimuli (Aspide et al., 1998), thus indicating that attention may be negatively 

affected in Pglyrp2 deficient female mice. Next, the motor coordination and balance of Pglyrp2 

KO and WT mice was assessed in an accelerating rotarod apparatus. Pglyrp2 KO male mice 

performed similar to WT controls (Fig. 27C) and pglyrp2 KO females showed a better 

performance in the rotarod-test compared to controls (Fig. 27D), indicating better balance and 

coordination. Together, these data suggest a sex-dependent role for Pglyrp2 in the motor 

system.  

Animals were next subjected to three different tests for anxiety-like behaviors; the elevated 

plus maze (EPM), light-dark (LD)-box test and open-field test. Pglyrp2 KO males displayed 

reduced anxiety-like behavior in the EPM and open-field test compared to controls (Fig. 28A 

and E). Pglyrp2 KO females showed the opposite pattern, increased anxiety-like behavior in 

the EPM, LD-box test, and open-field test (Fig. 28B, D and F, respectively). Interestingly, in 

paper III we did not observe any alterations in locomotor activity or anxiety-like behavior in 

juvenile (P22–P24) Pglyrp2 KO male and female mice compared to WT controls (for 

comparisons see Fig. 26). This suggests that the modulatory effects of PGN and its sensing 

Figure 27. Pglyrp2 knockout females display decreased rearing activity and increased performance in the rotarod. 

(A, B) Rearing activity of Pglyrp2 KO and WT male and female mice measured in 15-min time bins across a 90-min open-

field test. (C, D) Performance of Pglyrp2 KO and WT male and female mice on the rotarod apparatus, measured by the 

latency (in seconds) to fall during a 300s task. All data (A−D) are presented as means (± S.E.M; n = 8−12 per group). *P 

< 0.05, **P < 0.01 compared with their respective WT group. Modified from paper IV. 
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molecule (i.e., Pglyrp2) on brain circuits implicated in motor control and anxiety-like behaviors 

may change throughout life. The fronto-amygdala circuitry implicated in emotional regulation 

undergoes substantial developmental refinement from childhood through adulthood; 

highlighting that the developmental age of the animal can be an important factor in behavior 

outcomes. 

Figure 28. Pglyrp2 KO male and female mice display altered anxiety-like behaviors. (A, B) Bars show time (seconds) 

in each area of the elevated plus maze by Pglyrp2 KO and WT male and female mice during a 5-min test session. (C, D) 

Time spent in the light and dark compartment of the LD-box test by Pglyrp2 KO and WT mice. (E, F) Bars show time 

(seconds) spent in the center and periphery by Pglyrp2 KO and WT male and female mice during the first 5-min of an 

open-field test. All data (A−F) are presented as means (± S.E.M; n = 8−12 per group). #P < 0.058, *P < 0.05, **P < 0.01 

compared with WT mice. Modified from paper IV. 
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In paper III, we observed that juvenile Pglyrp2 KO male mice displayed increased social 

behavior. In the present study, aged Pglyrp2 KO male mice tended to spend more time 

interacting with the stimulus mouse compared to WT controls, suggesting that social behavior 

may also change with age. This notion is supported by a study investigating the effects of strain 

and age (prepubertal to adulthood) on the development of social behavior (Fairless et al., 2012). 

To begin addressing potential effect of Pglyrp2 deficiency on brain function, the expression 

levels of synaptic-plasticity related genes in key brain areas involved in motor function and 

associated with anxiety were examined (i.e., prefrontal cortex and amygdala). A significant 

decrease in the expression levels of Synaptophysin (Syp), a presynaptic vesicle protein 

abundantly expressed in neurons, was observed in the prefrontal cortex of male Pglyrp2 KO 

mice compared to controls (Fig. 29A). Gephyrin (Gphn), a key postsynaptic scaffold protein 

of inhibitory synapses – involved in the maintenance of the excitatory-inhibitory balance 

(Sheng and Kim, 2011, Tyagarajan and Fritschy, 2014) – showed a similar expression pattern 

as Syp (Fig. 29B). This indicates that male, but not female Pglyrp2 KO mice have a potential 

excitatory-inhibitory (E-I) imbalance in the prefrontal cortex. Syp and Gphn mRNA expression 

levels were decreased in the amygdala of female, but not male Pglyrp2 KO mice (Fig. 29A and 

B). The same tendency was observed in the expression of postsynaptic density protein-95 (Psd-

95), a postsynaptic scaffold protein of excitatory synapses (Fig. 29C), which may indicate a 

Figure 29. Pglyrp2 KO mice show alterations in the expression of synaptic-plasticity related genes. mRNA expression 

levels of Syp (A), Gphn (B), Psd-95 (C), and Bdnf (D) in the prefrontal cortex and amygdala of aged Pglyrp2 KO and WT 

male and female mice. Expression levels were normalized to Peptidylprolyl isomerase A (Ppia) levels. Data are presented 

as means (± SEM; n = 4−6 per group. #P < 0.01, *P < 0.05 when compared with their respective WT control group. 
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general reduction of synapses in the amygdala of female, but not male, Pglyrp2 KO mice. 

Further studies are required to investigate this possibility. Together, these results suggest a 

novel role for Pglyrp2 as a regulator of anxiety-like behavior and transcriptional control of 

synaptic-related genes.   
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5 CONCLUSIONS 

There is a growing appreciation for the evidence showing that the gut-microbiota can modulate 

brain development, function and behavior. Sudo and collaborators provided evidence for the 

existence of an interaction between indigenous microbes and the central nervous system (Sudo 

et al., 2004). Since this hallmark study, the field of the gut microbiota-brain axis has moved 

forward and significantly expanded. This thesis focused on the impact of gut microbiota 

perturbations on brain development and behavior using the well-established GF mouse model 

in paper I, and a more clinically-relevant approach (i.e., prenatal antibiotic treatment model) 

in paper II. In papers III and IV, some light was shed on a potential novel signaling pathway 

involved in the communication between the gut microbiota and the brain. 

A key finding in paper I was that male mice devoid of gut microbiota displayed altered social 

behavior and showed decreased BDNF expression levels in the amygdala, an important 

component of the social brain network. These results provide further evidence that the gut 

microbiota is of importance for normal brain development and social behavior. In paper II, it 

was shown that antibiotic-induced perturbations of the maternal gut microbiota during 

pregnancy altered the offsprings’ motor and social behavior in a sex-specific manner. In 

parallel, reduced BDNF expression levels were measured in the amygdala which were 

negatively correlated with social interaction time. These observations indicate that a clinically-

relevant dose of antibiotics during key stages of neurodevelopment can have adverse outcomes 

for offspring brain development and might involve alterations in the BDNF signaling pathway. 

In paper III, we showed that peptidoglycan (PGN) – a crucial component of the bacterial cell 

wall – was able to translocate into the healthy brain and sensed by specific pattern recognition 

receptors (PRRs), such as PGN recognition protein 2 (Pglyrp2). PRRs were found to be highly 

expressed in the developing brain at specific stages, and their expression was sensitive to 

perturbations of the gut microbiota. Importantly, Pglyrp2 was expressed by neurons. Juvenile 

Pglyrp2 knockout (KO) mice were used to investigate the potential influence of Pglyrp2 on 

brain development and behavior; specifically there was a sex-specific increase in social 

behavior, without changes in anxiety-like behavior and motor control. These results suggest 

that activation of PRRs by bacterial PGN, may be one of the signaling pathways mediating the 

communication between the gut microbiota and the developing brain. Paper IV demonstrated 

that aged Pglyrp2 KO mice displayed sex-dependent alterations in anxiety-like behavior, motor 

coordination and balance, without changes in social behavior. In addition, aged Pglyrp2 KO 

male and female mice showed reduced mRNA expression of synaptophysin and gephyrin. 

These findings reveal a potential role for Pglyrp2 in the regulation of anxiety-like behavior and 

the expression of synaptic-related genes.   

Taken together, the results presented in this thesis further support and expand our 

understanding of how the gut microbiota may influence brain development, function and 

behavior. 
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6 FUTURE PERSPECTIVES 

In this thesis, the impact of the gut microbiota was studied mainly within the context of brain 

development and behavior. Here, a novel signaling pathway was proposed for a bacterial-

derived cell wall product, peptidoglycan (PGN) that can cross the blood-brain-barrier into the 

brain, activate PRRs of the innate immune system, and impact brain function. Different PGN-

sensing molecules can be activated by specific PGN fragments, and the assay used to detect 

PGN molecules in the current work cannot discriminate between different types of PGN 

molecules, such as muramyl dipeptides or mesoDAP PGN. Therefore, future studies 

investigating the precise types of PGN molecules that can translocate into the brain are 

warranted. Recently, several studies have challenged the idea of a sterile intrauterine 

environment by detecting bacterial DNA in placenta, umbilical cord blood and amniotic fluid 

from healthy pregnancies in the absence of infections or inflammation (Prince et al., 2015, 

Aagaard et al., 2014, Jimenez et al., 2005, Bearfield et al., 2002). Hence, it will be interesting 

to investigate whether PGN from maternal commensal microbiota crosses the placental barrier. 

Several sophisticated techniques such as liquid chromatography-mass spectrometry, ligand 

specific assays and PGN specific antibodies can be used for these purposes. This is a step 

towards elucidating the precise molecular mechanisms that mediate the bi-directional 

communication between the gut-microbiota and the developing brain. As the work moves 

forward and translates to the clinic, future work should address levels of PGN in cerebral spinal 

fluid across different developmental stages in humans.  

Further, the effects of PGN molecules on the development, maturation, and homeostasis of 

brain cells including neurons, microglia, and astrocytes, are poorly understood. In vitro cell 

culture studies may clarify potential effects of different PGN motifs on cell development, 

morphology, and the CNS immune response via microglia. Moreover, cell culture experiments 

using siRNAs to knockdown or overexpress PRRs may provide a useful tool to further study 

potential roles of PRR signaling pathways in the context of brain development and function.  

In vivo, it has been shown that PGN fragments derived from the commensal gut microbiota can 

prime peripheral immune cells (Clarke et al., 2010). Similarly, injections or treatment with 

specific PGN fragments during key stages of development can provide new insights on the 

effects of PGN on brain development and function. In this thesis, a total Pglyrp2 knockout 

model was used. The cre-loxP system can be used to generate tissue specific or inducible 

knockouts to further investigate developmental roles of PRRs in a brain region or cell specific 

manner.  

It has been shown that the gut microbiota can affect the expression of genes involved in brain 

development and function such as BDNF and c-MET. Both genes have been implicated in 

neurodevelopmental disorders and c-MET is specifically associated with co-occurring GI 

problems in ASD individuals. These observations warrant further studies investigating the 

influence of the gut microbiota on the expression of crucial genes during key stages of 

development. Furthermore, the role of the gut microbiota in the etiology and/or 
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pathophysiology of clinical conditions that include neurodevelopmental and psychiatric 

disorders, warrants further investigation. Herein, clinical studies are extremely important to fill 

in the gaps in our knowledge, while different experimental models such as GF mice, antibiotic 

treatment, prenatal stress models, dietary models, and transgenic models, among others, can 

also contribute by allowing the investigation of the mechanisms mediating the communication 

between the gut microbiota and the developing brain. Such a coordinated effort may lead to the 

development of novel therapeutic intervention for the treatment of neurological and 

neuropsychiatric diseases. 
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