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ABSTRACT 
The thesis focuses on the anatomical and cellular distribution of three EF-hand calcium 

binding proteins, secretagogin, neuronal calcium-binding protein 1 (NECAB1) and NECAB2 

in dorsal root ganglia (DRGs) and spinal cord of three species, mouse, rat and human, and 

their possible roles in pathophysiological pain.  

In Paper I and Paper IV, we report that the expression of secretagogin is limited to a small 

subpopulation of peptidergic neurons in mouse and human DRGs expressing calcitonin gene-

related peptide (CGRP). Secretagogin is present both in the cell bodies in the DRGs and in 

the central branches in lamina I of the dorsal horn and in peripheral branches together with 

CGRP; it thus centrifugally transported. The loss of secretagogin (a knockout mouse) does 

not affect the development of pain hypersensitivity after nerve injury or experimentally 

induced inflammation. 

In Paper II, we demonstrate a wide expression of NECAB1/2 in many cell bodies in mouse 

DRGs and in cell bodies/nerve terminals with a wide distribution in different laminae in the 

spinal cord. NECAB2 is expressed in excitatory neurons in the spinal cord, showing a 

punctate staining and often co-localization with vesicular glutamate transporter 2 (VGLUT2) 

and synaptophysin. NECAB2 in DRGs is distinctly down regulated, at both mRNA and 

protein levels, by peripheral nerve injury. 

In Paper III, we show a conserved excitatory property and laminar distribution of NECAB2 

in mouse, rat and human spinal cord, while NECAB1 exhibits species diversity with regards 

to neurochemical properties in mouse and rat spinal cord. NECAB1 is present in 

oligodendrocytes surrounding axons in the white matter of the human spinal cord. We also 

reveal a differential expression of NECAB2, calbindin-D28k and calretinin in ependymal 

cells surrounding/within (human) the spinal central canal when comparing rodents and 

human.  

In Paper IV, we characterize a NECAB2 population in mouse DRGs using a new NECAB2 

antibody validated with help of a Necab2 knockout mouse. These NECAB2 neurons cover 

previously defined the C-low threshold mechanoreceptors (LTMRs) and Aδ D-hair LTMRs. 

Genetically induced loss of NECAB2 attenuates inflammatory but not neuropathic pain. This 

may, tentatively, be mediated by modulation of brain-derived neurotrophic factor (BDNF) 

expressed in DRGs, and through the interaction with its receptor tyrosine receptor kinase B 

(TrkB) in the spinal cord to modulate spinal glutamatergic neurotransmission. 
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1 INTRODUCTION 

1.1 PERIPHERAL SOMATOSENSORY MODALITIES 
Organisms, from nematodes to vertebrates, have developed different sensory modalities to 

perceive and react to their environment. In mammals, eyes, ears, snouts, tongue and skin are 

sensory organs with specialized cellular structures and receptors for specific stimuli. 

Cutaneous skin, our largest sensory organ, not only transduces touch, pressure and 

temperature information into the central nervous system but also pain sensations, involving a 

wide variety of sensory neuron subtypes innervating skin (and internal organs) (Basbaum et 

al., 2009; Zimmerman et al., 2014).  

    Dorsal root ganglia (DRGs) are specialized structures composed of cell bodies of primary 

somatosensory neurons and surrounding satellite glia cells organized in two ‘columns’ along 

the spinal cord (Figure 1A) (Bunge et al., 1967; Ramón y Cajal and Azoulay, 1952; Ramón y 

Cajal et al., 1995). An adult sensory neuron is a pseudo-unipolar cell with a peripheral branch 

innervating the skin (or internal organs) and a central branch projecting to the spinal cord 

(Figure 1B,C). Such peripheral sensory neurons conduct impulses from peripheral nerve 

endings towards the cell bodies and then, via the dorsal roots, to the spinal cord. However, 

impulses also propagate directly from peripheral nerves to central roots and spinal cord, that 

is ‘bypassing’ the cell somata (Ramón y Cajal and Azoulay, 1952; Willis, 2007).  

 
Figure 1. Illustrations of dorsal root ganglia and spinal cord drawn by Ramón y Cajal. A) Cell bodies 

of DRG neurons are organized (only right side shown) of the spinal cord. The orientation of the spinal 

cord is ventral horn to the left and dorsal horn to the right. The spinal ganglia are bilateral structures 

dorso-lateral to the spinal dorsal horn. B,C) Pseudo-unipolar DRG neurons relay the sensory 

information from the periphery (skin) to the spinal cord. A sympathetic ganglion below spinal 

ganglion is also included in panel C. (modified from Ramón y Cajal’s drawings) 

    DRG neurons were originally classified into two main categories: large pale and small dark 

neurons, according to the size of their perikarya and their morphology based on the 

distribution of Nissl bodies (Lawson, 1979). Using immunohistochemistry, further categories 

have been identified. Thus, it could be shown that those light neurons (large pale) but not 



 

2 

small dark neurons were specifically labeled by a monoclonal antibody against the 

phosphorylated 200 kDa neurofilament subunit (NF200) (Dahl et al., 1988; Lawson et al., 

1984). The small dark neurons were further categorized on their transmitter substance, in 

particular neuropeptides, first substance P (SP, peptidergic neurons) (Hokfelt et al., 1975) and 

subsequently non-peptidergic neurons. DRG neurons could also be classified as Aα/β-fiber, 

Aδ-fiber or C-fiber neurons according to their conduction velocity (linear relationship 

between the conduction velocity and the diameter of nerve axons, Figure 2), which correlated 

to the staining with NF200 but not simply to their cell size (Lawson and Waddell, 1991; Lee 

et al., 1986). Aβ-fibers are heavily myelinated and have rapid conduction velocity (>30 m/s), 

Aδ-fibers are thinly myelinated and exhibiting intermediate (5-30 m/s) conduction velocity, 

whereas C-fibers are unmyelinated and have the slowest conduction velocity (0.2-2 m/s) 

(Figure 2) (Horch et al., 1977; Li et al., 2011; Perl, 2007). Conduction velocities can vary 

considerably across species. The rat DRG neuronal conduction velocities are: Aα-fiber, 30-55 

m/s; Aβ-fiber, 14-30 m/s; Aδ-fiber, 2.2-8 m/s and C-fiber, less than 1.4 m/s (Harper and 

Lawson, 1985). 

 
Figure 2. The compound action potential of a cat cutaneous nerve. The outer graph shows the 

compound action potential of the cat saphenous nerve including the Aα/β-, Aδ- and C-fibers. The inset 

shows the linear relationship between the velocities of conduction and the diameter of nerves. 

(modified from Gasser 1941 and Perl 2007) 

    From a functional perspective, DRG neurons are composed of different populations like 

nociceptors (pain); pruriceptors (itch); thermoreceptors (temperature); and low-threshold 

mechanoreceptors (LTMRs, non-painful mechanical stimuli/touch) (Zimmerman et al., 

2014). 

    Nociceptors Noxious stimuli (e.g. intense thermal, mechanical or chemical stimuli) are 

detected and delivered by a heterogeneous population of DRG neurons named nociceptors 
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(Basbaum et al., 2009), which represent a first line of defense against any potentially 

threatening or damaging inputs from the environment or internal organs (Woolf and Ma, 

2007). The term ‘nociceptor’ was coined by Charles Sherrington to define the neural 

apparatus responsible for detecting noxious stimuli at the dawn of the 20th century. He also 

defined the noxious stimulus as “one with an intensity and quality sufficient to trigger reflex 

withdrawal, autonomic responses, and pain” (Sherrington, 1906; Woolf and Ma, 2007). 

Nociceptors are heterogeneous, composed of medium-sized, thinly myelinated Aδ-fibers and 

small-sized unmyelinated C-fibers. The former mediate acute and fast pain, which is different 

from the large-sized myelinated Aβ-fibers responding to innocuous mechanical stimuli. The 

unmyelinated fibers convey slow pain (Basbaum et al., 2009). The Aδ nociceptors are further 

divided into two types based on electrophysiological analysis: high–threshold mechanical 

nociceptors with relatively high heat threshold (>50°C, type I) and nociceptors with much 

lower heat threshold (type II) (Basbaum et al., 2009). The unmyelinated C fibers are also 

heterogeneous, since they are polymodal, including the major population (about 45%) 

responding to both heat and mechanical stimuli (Basbaum et al., 2009; Perl, 2007; Schmidt et 

al., 1995). Another interesting population of unmyelinated C fibers (silent nociceptors) is 

sensitized to heat and/or mechanical stimuli after topical application of mustard oil or 

capsaicin (Schmidt et al., 1995). The heterogeneity of unmyelinated C fibers could further be 

divided into peptidergic and non-peptidergic nociceptors according to the expression of 

neuropeptides and different receptors for growth factors (Basbaum et al., 2009; Hokfelt et al., 

1980; Hökfelt et al., 2013; McMahon and Priestley, 2005). Peptidergic neurons express 

neuropeptides like SP, somatostatin, calcitonin-gene related peptide (CGRP) and tyrosine 

receptor kinase A (TrkA), whereas non-peptidergic neurons express neurotrophic receptor c-

Ret, Mass related G-protein coupled receptors (MRGPRs) family, purinergic receptor P2X 

ligand-gated ion channel 3 (P2X3) and also bind the isolectin B4 (IB4) (Lallemend and 

Ernfors, 2012; Ma, 2012; Marmigere and Ernfors, 2007). Most recently, molecular criteria 

are used to classify nociceptors and also other DRG neuron populations, showing consistency 

with prior knowledge of sensory neuron function and also broadening our knowledge of 

diversity and complexity of sensory types of neurons based on single cell RNA-sequencing 

(Chiu et al., 2014; Li et al., 2016; Usoskin et al., 2015). 

    Pruriceptors Itch, clinically known as pruritus, is an unpleasant sensation and emotional 

experience that produces a desire to scratch (Davidson and Giesler, 2010). Chronic itch is a 

complex sensation with many similarities to pain, which are also mediated by unmyelinated 

C-fibers (Ikoma et al., 2006; Sun and Chen, 2007). Instead of having a clear set of separate 

primary sensory neurons for itch and pain, most mediators have prominent roles in both in 
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general (Ikoma et al., 2006). Vesicular glutamate transporter type 2 (VGLUT2), one of three 

markers for glutamatergic neurons (Herzog et al., 2001; Herzog et al., 2004), which is 

expressed in the majority of Aδ- and C-fibers, is involved in the modulation of both itch and 

pain (Brumovsky et al., 2007; Lagerstrom et al., 2010; Liu et al., 2010; Scherrer et al., 2010). 

However, a recent study shows that Mass-related G-protein coupled receptor A3 (MrgprA3) 

defines a subpopulation of nociceptors specially linked to itch without altering pain-like 

behavior (Han et al., 2013).  

    Thermoreceptors Temperatures exceed normal range (>43°C or <15°C) not only evoke a 

thermal sensation, but also pain (LaMotte and Campbell, 1978; Tominaga and Caterina, 

2004). A subpopulation of nociceptors called C-fiber mechano-heat responsive nociceptors 

(CMH) evokes the subjective sensation of burning pain (LaMotte and Campbell, 1978). Here 

the discovery of the transient receptor potential (TRP) ion channel family has been of major 

importance (Julius, 2013). The receptor for capsaicin, transient receptor potential subfamily 5 

vanilloid 1 (a cation channel) TRPV1, is responsible for noxious heat (Caterina et al., 1997; 

Mishra et al., 2011), whereas TRPM8 is activated by cool temperature (McKemy et al., 2002; 

Peier et al., 2002). The extreme heat and cold is sensed by TRPV2 and TRPA1, respectively 

(Caterina et al., 1999; Story et al., 2003). 

    Low-threshold mechanoreceptors LTMRs are activated by innocuous mechanical stimulus 

although some of them can also be activated by thermal stimulus (Abraira and Ginty, 2013). 

LTMRs represent a diverse group of somatosensory neurons including Aβ-, Aδ-fibers and C-

LTMRs (tyrosine hydroxylase, TH population) based on conduction velocity (Brumovsky et 

al., 2006; Horch et al., 1977; Li et al., 2011). According to the rates of adaption to sustained 

mechanical stimulus, LTMRs are classified as slowly, intermediately, or rapidly adapting-

LTMRs (Johnson and Hsiao, 1992). They can also be distinguished by the cutaneous end 

organs that they innervate and their preferred stimuli. Recent studies support a model of 

mechanosensation, where the activities of Aβ-, Aδ- and C-LTMRs are integrated within 

LTMR columns in the dorsal horn and processed into outputs underlying the perception of 

touch sensation (Abraira and Ginty, 2013; Zimmerman et al., 2014). Furthermore, the deep 

dorsal horn (LTMR-recipient zone, the cellular and synaptic architecture) is implicated in 

processing LTMR information encoding tactile perception through interneurons with high 

degree of neuronal diversity (Abraira et al., 2017).  
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1.2 NEURONAL CIRCUITS IN SPINAL DORSAL HORN 

Spinal dorsal horn neurons, including interneurons and projection neurons, receive sensory 

inputs from peripheral nerve endings (of DRGs) innervating the skin and deeper tissues of the 

body, which respond to a wide range of stimuli (mechanical, heat and chemical) from the 

environment (Todd, 2006, 2010). The central projections of DRG neurons terminate in the 

dorsal horn with an organized distribution pattern, which is determined by the property 

sensory modality (touch, itch and pain) and the region that they innervate (Abraira et al., 

2017; Rexed, 1952; Sun and Chen, 2007; Todd, 2010). The incoming information integrated 

in DRG neurons is further processed by secondary neuronal circuits (first synapses) involving 

both excitatory and inhibitory interneurons, and is relayed to projection neurons ascending to 

different brain areas like brainstem, thalamus and sensory cortex (Todd et al., 2000). 

Descending projections from brainstem is also involved in the modulation of the spinal pain 

circuits (Basbaum and Fields, 1984). In addition, nociceptive information is conveyed 

directly and/or indirectly to motor neurons in the ventral horn, which contributes to 

nocifensive reflexes at spinal level (Arcourt et al., 2017; Steffens and Schomburg, 1993; 

Wiesenfeld-Hallin et al., 1988). Hence, three components including central projections of 

primary afferents (DRG neurons), neurons in the spinal dorsal horn (second-order neurons) 

and descending fibers from supraspinal level are involved in the organization of neural 

circuits in the spinal dorsal horn (Willis and Coggeshall, 2004).  

    The gray matter of spinal cord can be divided into 10 laminae (I-X) layers based on 

neuronal size and distribution density (cyto-architecture) (Rexed, 1952), which is similar in 

several species (Molander et al., 1984). Central projections from Aδ and C fibers (peptidergic 

and non-peptidergic) arborize mainly in the superficial layers (composed of laminae I and II) 

of the spinal cord, while Aβ fibers terminate in the deeper layers (laminae III–V) of the spinal 

cord. Peptidergic nociceptors (CGRP+) project mainly to lamina I and the outer layer of 

lamina II (IIo), whereas the non-peptidergic ones (IB4+) project to the central portion of 

lamina II (Sakamoto et al., 1999). Lamina II, characterized by a translucent appearance in 

unstained sections due to the lack of myelination, corresponds to the region previously named 

the substantia gelatinosa. 

    Projection neurons (glutamatergic), often expressing neurokinin 1 receptor (NK1r) 

(Mantyh et al., 1995), are densely distributed in lamina I and scattered through the deeper 

layers (III–VI) (Littlewood et al., 1995). Axons of these projection neurons cross the midline, 

ascend in the anterolateral tract (ALT) and target supraspinal areas including lateral 

parabrachial area, several medullary nuclei, periaqueductal grey matter (PAG) and thalamus 
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(Al-Khater and Todd, 2009; Gauriau and Bernard, 2004).  

    Interneurons are the great majority type of the neurons in laminae I–III of spinal cord, 

whose axons arborize locally. They can be divided into inhibitory (GABAergic/glycinergic) 

and excitatory (glutamatergic) interneurons. The inhibitory interneurons account for ~30% of 

all neuronal profiles in laminae I and II, and ~40% in lamina III (Polgar et al., 2013a). All 

these inhibitory interneurons are GABAergic, but glycine is used as a co-transmitter with 

GABA (Todd and Sullivan, 1990). Excitatory interneurons account for 60-70% of all 

neuronal profiles in laminae I-III, and they can be labeled with vesicular glutamate 

transporter 2 (VGLUT2) and some neurochemical markers like calcium-binding proteins 

(calbindin-D28k) and protein kinase C γ (PKC γ) (Antal et al., 1991; Polgar et al., 1999; 

Todd et al., 2003). 

1.3 PAIN AND CHRONIC PAIN 

Pain is defined as “An unpleasant sensory and emotional experience associated with actual or 

potential tissue damage, or described in terms of such damage” by the International 

Association for the Study of Pain (IASP). In the seventeenth century, Rene Descartes 

proposed the concept of a pain pathway, where the environmental stimulus could be 

delivered to the brain through a ‘thread’ which connecting the environment and the brain 

(Melzack and Wall, 1965). This is, even if highly simplified, similar to the modern view of 

the anatomical organization of the pain pathway, where the stimulus activates peripheral 

nerve endings in the skin, and then via the DRG are integrated in the spinal cord, and ascend 

to the brain stem, thalamus and finally cortex (Costigan et al., 2009). The application of 

modern neurobiological techniques to the pain field has rapidly increased our understanding 

of pain and its pathophysiology, which in turn may provide targets for the development of 

new therapies.   

    There are three main manifestations of pain, nociceptive pain, inflammatory pain and 

neuropathic pain (Basbaum and Woolf, 1999; Scholz and Woolf, 2002). Nociceptive pain is 

activated only by dangerous, noxious stimuli acting on specialized high-threshold sensory 

neurons (nociceptors) and continues only if noxious stimuli persist. Once the tissue has been 

injured or by infection, plasma extravasation and infiltration of immune cells occur, and then 

multiple chemical mediators are released from damaged and infiltrated inflammatory cells. 

Those released inflammatory mediators can sensitize (mutual communications between 

immune cells and nociceptors) the peripheral sensory nerves surrounding the injured part 

(with further central sensitization), which is characteristic for inflammatory pain. This will 
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minimize movement of, or contact with, the injured tissue until healing has occurred 

(Basbaum and Woolf, 1999; Costigan et al., 2009; Ji et al., 2002; McMahon, 1996). Pain is 

one of the cardinal features (together with redness, heat, swelling and loss of function) of 

inflammation. Acute inflammatory pain retains some resemblance to nociceptive pain, where 

the protective role can be readily appreciated (Woolf, 1989). However, chronic inflammation 

leading to a host of diseases like rheumatoid arthritis and fibromyalgia is often detrimental. It 

is still unclear whether chronic inflammation is essential for driving chronic pain as the acute 

inflammation does acute pain. The interaction between inflammation progress and pain 

processing are bidirectional. Non-neuronal cells from the immune system like monocytes, 

macrophages, T lymphocytes, keratinocytes and glia cells can communicate with nociceptive 

neurons in the peripheral and second-order neurons in the central nervous system by 

“listening and talking” to them (Ji et al., 2016). 

    Neuropathic pain is “caused by a lesion or disease of the somatosensory system” and will 

in several instances not resolve, thus seemingly lacking any beneficial functions. (Basbaum 

and Woolf, 1999; Jensen et al., 2011). Diabetes mellitus, infection, nerve compression, nerve 

trauma, channelopathies, autoimmune disease and bone cancer may cause neuropathic pain 

(Campbell and Meyer, 2006; Mantyh, 2014). The estimated population prevalence of 

neuropathic pain is between 6.9%-10% (van Hecke et al., 2014). This definitely affects the 

quality of patients’ life and causes economic burden not only for the individual but also the 

society. Non-steroidal anti-inflammatory drugs do not help patients suffering from 

neuropathic pain, other available drugs like tricyclic antidepressants, serotonin- and 

noradrenaline-uptake inhibitors, the anticonvulsants gabapentin and pregabalin, or opioids 

that all have limited efficacy and undesirable side effects (Finnerup et al., 2015). More than 

two-thirds of neuropathic patients suffer because of the insufficient pain relief. This poor 

response is possibly caused by the heterogeneous etiology, pathophysiology and clinical 

symptoms for individual patients (Jensen et al., 2011). An alternative approach, with the 

ultimate aim of obtaining a better treatment outcome, involves examining and classifying 

patients aiming for mechanism-based, individual therapy (Baron, 2006).  

    Major progress has been achieved in the past decades in understanding the underlying 

mechanisms of peripheral neuropathic pain (peripheral and central sensitization). But much 

less is understood with regards to central neuropathic pain (Campbell and Meyer, 2006; 

Costigan et al., 2009). Multiple sites along the neural axis for sensory sensation are altered 

after peripheral nerve injury. Peripheral sensitization manifests as spontaneous activity and 

ectopic sensitivity to mechanical, thermal or chemical stimuli originating from the injured 
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nociceptors and neighboring sensitized intact nociceptors (Campbell and Meyer, 2006; 

LaMotte et al., 1982). Central sensitization refers to the augmented response of central 

signaling neurons (Woolf, 1983). Synaptic facilitation contributes to dynamic tactile 

allodynia and secondary hypersensitivity. Disinhibition through inhibitory interneurons (like 

PV interneurons in laminae II/III) and descending modulatory pathways facilitate dorsal horn 

sensitization (Petitjean et al., 2015; Todd, 2010, 2015). Also the immune system, both 

peripherally and centrally, plays a critical role in neuropathic pain (Campbell and Meyer, 

2006; Costigan et al., 2009; McMahon et al., 2015). 

1.4 EF-HAND CALCIUM-BINDING PROTEINS AND PAIN  

The calcium ion (Ca2+) is an essential element for numerous biological functions (Chin and 

Means, 2000). In the nervous system, calcium-triggered phenomena, ranging from synaptic 

neurotransmitter release to modulation of gene expression, is reflected by the existence of a 

cohort of different calcium-binding proteins (CaBPs) many of which belong to the EF-hand 

super-family (Baimbridge et al., 1992; Burgoyne, 2007; Mikhaylova et al., 2011). EF-hand 

CaBPs can be divided into calcium buffer and calcium sensor proteins according to the 

affinity for Ca2+. The former have a very high affinity for Ca2+ and do not exhibit 

conformational changes upon the binding of Ca2+ (thought to chelate Ca2+), whereas calcium 

sensor proteins have a lower affinity for Ca2+ and show considerable conformational changes 

upon Ca2+-binding, which usually triggers a protein interaction and downstream signaling 

pathway (Burgoyne, 2007; Mikhaylova et al., 2011).  

    Calmodulin, an ancestral calcium sensor with four EF-hand calcium-binding motifs, is the 

best studied and ubiquitously expressed in all eukaryotic cells (Chin and Means, 2000). Some 

other EF-hand CaBPs related to calmodulin (like neuronal calcium sensor protein family, 

NCS) are only enriched and expressed in the nervous system, where they have distinct roles 

in the modulation of neuronal functions, including in the somatosensory system. Neuronal 

calcium sensor-1 (NCS-1), the most widely expressed NCS protein, is present in most DRG 

neurons and spinal dorsal horn (Averill et al., 2004). Ex vivo study shows that NCS-1 

participates in the regulation of neurite outgrowth and growth cone morphology of DRG 

neurons (Iketani et al., 2009). Calsenilin, another member of the NCS family, was discovered 

as the mediator for processing of amyloid precursor protein through the interaction with 

presenilin (Buxbaum et al., 1998; Leissring et al., 2000). Calsenilin is also named KChIP3 

(Kv channel-interacting protein 3), since it can modulate A-type potassium channels through 

interaction with the cytoplasmic amino terminus of Kv4 alpha-subunits, and DREAM 



 

 9 

(downstream regulatory element antagonist modulator). Here, it acts as a repressor of 

transcription for specific genes containing the downstream regulatory element (DRE) (An et 

al., 2000; Carrion et al., 1999). DREAM/Calsenilin/KChIP3 has been reported to modulate 

neuropathic and inflammatory pain as a transcriptional repressor of prodynorphin in the 

spinal dorsal horn (Cheng et al., 2002; Costigan and Woolf, 2002).  

    

 

Figure 3 PV interneurons mediate tactile allodynia after peripheral nerve injury. A) A VGLUT1+ 

myelinated Aβ fiber (highlighted in yellow) projects to a PKCγ (excitatory) and a PV (inhibitory) 

interneuron. Under normal conditions, touch sensation will not engage the PKCγ nociceptive circuit. 

After peripheral nerve injury, the dendrites of PV interneurons detach from PKCγ interneurons, where 

the touch signal will be delivered through the local circuits to projection neurons and produce pain. 

B,C) Glycinergic interneurons in lamina III of spinal cord have been shown to be involved in a feed-

forward inhibitory circuit that prevents the Aβ input from activating the PKCγ nociceptive pathway. 

Arrowhead indicates the presynaptic glycinergic interneuron, whereas the arrow indicates 

postsynaptic PKCγ interneuron in (B). Green labeled interneurons are PKCγ in (B). Both transient 

central (TC) and vertical interneurons in (C) are excitatory. (modified from Lu 2013 and Petitjean 

2015) 

    Parvalbumin (PV), the anatomical marker for GABAergic neurons in the brain (Celio, 

1986; Celio and Heizmann, 1981), is expressed in DRGs (proprioceptors) and spinal cord 

(Antal et al., 1990; Celio, 1990; Usoskin et al., 2015). In spinal dorsal horn, PV positive 
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neurons are mainly located in the inner layer of lamina II and lamina III, whereas the PV-

immunoreactive (IR) fibers sharply delineate the inner layer of lamina II (Antal et al., 1990; 

Celio, 1990). PV, together with galanin, neuropeptide Y and neuronal nitric oxide synthase, 

define populations of neurochemically non-overlapping inhibitory interneurons in rat spinal 

dorsal horn (Laing et al., 1994; Polgar et al., 2013b). PV interneurons in laminae II/III have 

been shown to be the gatekeepers of innocuous touch-induced mechanical hypersensitivity 

after peripheral nerve injury (Figure 3A,B) (Petitjean et al., 2015). Those PV interneurons 

normally prevent touch sensation inputs from engaging PKCγ-mediated nociceptive circuits 

through the direct innervation on PKCγ neurons (Neumann et al., 2008). PKCγ labels a 

specific population of excitatory interneurons in the inner layer of lamina II and has been 

shown to be involved in the development of neuropathic pain (Malmberg et al., 1997; Polgar 

et al., 1999). After nerve injury, the innervation of PV interneurons on PKCγ neurons is 

detached, which leads to activation of the touch stimulus of PKCγ interneurons, transient 

central neurons (excitatory), vertical neurons (excitatory) and finally to the projection 

neurons (glutamatergic) in lamina I to produce pain feeling of pain in the brain (Fig. 3A-D) 

(Lu et al., 2013; Petitjean et al., 2015). Here, PV is the anatomical marker for glycinergic 

interneurons (also GABAergic, as said, glycine is as co-transmitter with GABA in lamina I-

III) for the theory that a feed-forward glycinergic neural circuit gates mechanical allodynia 

(Lu et al., 2013; Petitjean et al., 2015; Todd, 2010). 

1.5 CANDIDATE EF-HAND CALCIUM-BINDING PROTEINS 

Although EF-hand CaBPs have been extensively studied over the past decades, analysis of 

select members of a >150- member protein superfamily inevitably fails to resolve the many 

essential cellular contributions of these proteins, often leading to a role as mere, but still very 

useful, “markers” of particular cell types (Girard et al., 2015; Schwaller, 2009). Significant 

caveats of our present understanding are due to the lack of “deorphanization” efforts to 

identify new CaBPs containing EF-hand, and their rigid classification into buffer and sensor 

categories. During our systematic analysis of the human proteome (Mulder et al., 2009a), we 

have established the distribution of ~60 CaBPs, including >15 with entirely unknown 

distribution or functions. By using predictive structure-function analysis, it was found that 

most of these proteins exhibit unconventional, dual buffer/sensor activities, suggesting that 

these proteins can modulate cellular fate decision and synaptic responsiveness, if they are 

integrated into specific interactome networks in particular cell types. Here, we are interested 

in several of those CaBPs including secretagogin and Neuronal calcium-binding protein 1/2 
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(NECAB1/2), whose anatomical distribution and possible roles in modulation of pain 

signaling at the spinal level up till now have been unknown. 

    Secretagogin was discovered as a CaBPs of the EF-hand family, cloned from human β 

cells of pancreatic island of Langerhans and endocrine cells of the gastrointestinal gland 

(Wagner et al., 2000). Human secretagogin, composed of six EF-hand motifs, contains 276 

amino acids, with a calculated molecular weight of 32 kDa (Alpar et al., 2012). Expression of 

secretagogin precedes many other CaBPs in post-mitotic, migratory neurons in the nervous 

system at embryonic stages (Alpar et al., 2012; Mulder et al., 2010; Mulder et al., 2009b). 

Secretagogin expression persists during neurogenesis in the adult brain, and also confined to 

subsets of differentiated neurons in the central and peripheral nervous system, as well as in 

the neuroendocrine systems (Mulder et al., 2010; Mulder et al., 2009b). Secretagogin has 

been involved in the control of neuronal turnover and differentiation, such as in neoplastic 

brain and endocrine tumors (Birkenkamp-Demtroder et al., 2005). Furthermore, secretagogin 

could bind to the SNARE protein complex, where it might function as a calcium sensor 

modulating release of neurotransmitters, neuropeptides and/or hormones (Bauer et al., 2011; 

Rogstam et al., 2007). Very recent results have demonstrated a novel role of secretagogin in a 

hierarchical hormonal cascade along the hypothalamic-pituitary-adrenal axis orchestrating 

bodily response to stress (Romanov et al., 2015).  

    NECAB1/2 are CaBPs with two N-terminal EF-hand motifs and a putative antibiotic 

biosynthesis monooxygenase (ABM) domain in the C-terminal, which are linked by a 

NECAB homogeneous region (Canela et al., 2007; Sugita et al., 2002). NECAB1 was 

discovered as an interacting target for the presynaptic calcium-sensor synaptotagmin I, 

whereas NECAB2 was found as a down-stream target of Pax6 participated in the mammalian 

retinal primordium development (Bernier et al., 2001; Sugita et al., 2002; Sugita and Sudhof, 

2000). NECAB1-like immunoreactivity (LI) is expressed in many mouse brain areas mainly 

restricted to the cerebral cortex, striatum, hippocampus, as well as a subset of thalamic, 

especially midline nuclei. Necab1 mRNA was also found in the temporal lobe of human 

brain (Wu et al., 2007). The recent in situ hybridization (and immunohistochemistry) study in 

mouse shows that Necab1 mRNA+ neurons are scattered the hippocampus, whereas the 

Necab2 mRNA is strongly expressed in pyramidal neurons of CA2 (Zimmermann et al., 

2013). Single-cell RNA sequencing has shown that both Necab1 and Necab2 transcripts are 

existed in mouse DRG neurons. Furthermore, Necab2 is identified as a marker for the 

subpopulation of thinly myelinated DRG neurons, that is the tyrosine receptor kinase B 

labeled population (Usoskin et al., 2015). Finally, in situ hybridization data for the two Necab 
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transcripts in mouse brain and spinal cord is available in the Allen Brain Atlas (Henry and 

Hohmann, 2012; Lein et al., 2007).  

    Against this background it appears a relevant and interesting task to map and characterize 

secretagogin and NECAB1/2 at the spinal level, that is in DRGs and spinal cord, and explore 

possible functions in spinal pain circuits. 
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2 AIMS OF THESIS 

The overall aim of this thesis was to characterize the anatomical distribution of secretagogin 
and NECAB1/2 in DRGs and spinal cord, and explore the potential functions involved in 
pain sensation under pathological conditions.  

1. To characterize the anatomical distribution pattern of secretagogin in DRGs and 

spinal cord from rodents and human, and study possible effects of loss of secretagogin 

on the development of pain hypersensitivity (Paper I and IV).  

2. To map and characterize the expression of NECAB1/2 in DRGs and spinal cord, and 

to study the effect of nerve injury on their expression and distribution (Paper II); and 

to compare NECAB1/2 expression in spinal cord between rodents and human (Paper 

III). 

3. To explore the functional role of NECAB2 in pain circuits with nerve injury and 

inflammation models using a Necab2 KO mouse (Paper IV). 
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3 MATERIALS AND METHODS 

3.1 ANIMALS AND HUMAN TISSUES  
WT male C57BL/6N mice (adult, ~16 wk of age), secretagogin KO mice, Necab2 KO mice, 

Hoxb8::Flp, Vglut2::EGFP, Vglut2::Cre, Gad67+/gfp mice and Arc::CreERT2/ZsGreen mice 

were included in this thesis work. A Necab2 floxed mouse was generated by the insertion of a 

trapping cassette composed of an FRT (flippase recognition target) flanked lacZ/neomycin 

sequence followed by a loxP site between exon 3 and exon 4, and an additional loxP site was 

inserted downstream of exon 6. The transcription of Necab2 was disturbed by the trapping 

cassette, and therefore we used this strain as Necab2 KO mice through the thesis. This also 

applied to secretagogin KO mice. The experiments were conducted in accordance with 

Swedish policy for the use of research animals and human samples, and were approved by a 

local ethical committee (Stockholms Norra djurförsöksetiska nämnd, N98/035, N71/09, 

N172/11, N134/12, N101/14 and N16/15). Efforts were made to minimize the number of 

mice used for the studies and their suffering throughout the thesis work. Human spinal cord, 

dorsal root ganglia and hippocampus tissues were also included in paper I and paper III. 

3.2 ANIMAL MODELS 

Complete transection of the sciatic nerve (axotomy) at mid-thigh level of the left hind leg was 

performed as previously described (Wall et al., 1979). Briefly, mice were anesthetized with 

1.5–1.8% (vol/vol) isoflurane (Baxter); the left sciatic nerve was tightly ligated and transected 

at the mid-thigh level, and a 5-mm portion of the distal part was removed to prevent 

regeneration, then the muscle and skin were closed with 5-0 silk sutures.  

    Spared nerve injury (SNI) surgical procedures were performed under anesthesia with 

isoflurane as previously described (Decosterd and Woolf, 2000; Pertin et al., 2012). Briefly, 

the skin of the mid-thigh from left lateral surface was incised, and a separation was made 

directly through the biceps femoris muscle exposing three terminal branches of the sciatic 

nerve: common peroneal, tibial and sural nerves. The common peroneal and tibial nerves 

were tightly ligated with 6-0 silk (Ethicon), transected together distally to the ligation and a 

piece of 1-2 mm of the nerve was removed from the distal stump avoiding any contact with 

or stretching of the intact sural nerve during the surgery process. Finally, muscle and skin 

were closed in two layers with 5-0 silk stitches.  
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    For carrageenan model, 20 µl 1% lambda carrageenan (Sigma) was injected into intra-

plantar of the hind paw with a 28-G needle and syringe (Morris, 2003; Ren and Dubner, 

1999).  

3.3 BEHAVIORAL ANALYSES 

Withdrawal threshold was tested in transparent plastic domes on a metal mesh floor and 

measured by a logarithmically incremental stiffness of 0.04, 0.07, 0.16, 0.40, 0.60, 1.0, and 

2.0 (g) von Frey Filament (Stoelting) combined with an up–down method to assess tactile 

allodynia (Bas et al., 2012; Chaplan et al., 1994; Decosterd and Woolf, 2000). For cutoff, 

the 2.0 hair was selected as the upper limit for testing. For mechanical hyperalgesia a safety 

pin was used, and the duration of paw withdrawal was recorded (Decosterd and Woolf, 

2000). Cold allodynia was tested with a drop of acetone, and the duration of the withdrawal 

response was recorded (Decosterd and Woolf, 2000).  

3.4 QUANTITATIVE REAL TIME-PCR (RT-QPCR) 
Total RNA was isolated from mouse lumbar (L4-6) DRGs and corresponding spinal cord 

segments using TRI Reagent (Sigma), and cDNA was generated from 500 ng RNA using 

High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems) according to the 

manufacturer’s instructions. RT-qPCR was performed using Maxima SYBR Green Master 

Mix with ROX (Thermo Scientific) on QuantStudio5 System (Applied Biosystems), and 

the specific primers used in this study were listed in Paper IV. The amplification conditions 

included an initial stage at 50 °C for 2 min and 95°C for 10 min, followed by 40 cycles of 

15 sec at 95°C and 1 min at 60°C. All assays were performed in duplicate, and the levels of 

transcripts were analyzed by comparative CT (2-ΔΔCT) method relative to Gapdh.  

3.5 WESTERN BLOTTING 

Total proteins were extracted from freshly dissected DRGs and spinal cord from different 

animal models using radioimmunoprecipitation assay lysis buffer [RIPA buffer, 50 mM 

Tris·HCl (pH 7.4), 1% Nonidet P-40, 0.25% sodium deoxycholate, 150 mM NaCl, and 1 mM 

EDTA] containing protease inhibitor mixture (P8340; Sigma). After sonication (on ice), 

protein lysates were centrifuged at 12,000 g for 22 min at 4°C. The supernatants were 

collected, and measured with Bradford Protein Assay for protein concentration (Bio-Rad 

Laboratories). Loading samples containing 20~30 µg of total protein lysate in Laemmli 

sample buffer (1×, final) were loaded and separated on 10% SDS/PAGE gels, transferred 

onto 0.45 µm PVDF membranes pretreated with methanol (Millipore), blocked with 5% 

nonfat dry milk in TBS containing 0.1% Tween-20 (TBST) for 1 h at room temperature (RT), 
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and incubated with primary antibody at 4°C for 2 ~ 3 days. The membranes were incubated 

with HRP-conjugated secondary antibodies for 1 ~ 2 h at RT (1:5,000 ~ 1:10,000; DAKO), 

washed in TBST buffer (20 min × 3), developed with ECL solution for 5 min (GE 

Healthcare), and scanned on a ChemiDOC+ Imaging system (Bio-Rad Laboratories). The 

PVDF membranes were stripped with low pH stripping buffer, blocked with 5% nonfat milk 

and re-probed with anti-GAPDH antibody (anti-mouse, 1:10,000 ~ 20,000 in TBST 

containing 5% BSA; Ambion), used as the loading control. Non-saturated images were 

quantified with Image Lab software (Bio-Rad Laboratories). 

Table 1. Antibodies used for the thesis studies 

Antibody Host Supplier/Catalog number Dilution 

BDNF Rabbit /polyclonal Amgen Inc 1:2,000 

calbindin-D28k Rabbit /polyclonal Swant /CB 38 1:400 (normal) 

calbindin-D28k Mouse /monoclonal Swant /CB 300 1:500 (normal) 

calretinin Rabbit /polyclonal Swant /7699/3H 1:400 (normal) 

c-Fos Rabbit /polyclonal Calbiochem /PC38 1:2,000 

CGRP Rabbit /polyclonal Terenius L. (Stockholm) and Christensson I. (Uppsala) 1:20,000 (normal) 

Cre Rabbit /polyclonal Schütz G. (Heidelberg, Germany) 1:4,000  

GAD67 Mouse /monoclonal Millipore /MAB406 1:500 (normal) 

GFP Chicken /polyclonal Abcam /ab13970 1:4,000 

Iba1 Rabbit /polyclonal WAKO /019-19741 1.4,000 

NECAB1 Rabbit /polyclonal Atlas Antibodies AB /HPA023629 1:1,000 

NECAB2 Rabbit /polyclonal Atlas Antibodies AB /HPA014144 1:1,000 

NECAB2 Rabbit /polyclonal Atlas Antibodies AB /HPA013998 1:10,000 

NF200 Mouse /monoclonal Sigma /N0142 1:500 (normal) 

parvalbumin Rabbit /polyclonal Swant /PV 25 1:400 (normal) 

PKCγ Rabbit /polyclonal Santa Cruz /sc-211 1:2,000 

PKCγ Mouse /monoclonal Luiten PG. (Groningen, The Netherlands) 1:100  

secretagogin Rabbit /polyclonal Atlas Antibodies AB /HPA006641 1:2,000 

SST2A Rabbit monoclonal Schulz S. (Magdeburg, Germany)/UMB-1 1:100 

synaptophysin Mouse /monoclonal Millipore /MAB5258 1:1,000 (normal) 

VGLUT1 Goat /polyclonal Watanabe M. (Sapporo, Japan) 1:300 (normal) 

VGLUT2 Guinea pig /polyclonal Watanabe M. (Sapporo, Japan) 1:500 (normal) 

TH Rabbit /polyclonal Goldstein M. (New York)  1:4,000 
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3.6 TISSUES AND IMMUNOHISTOCHEMISTRY 

Mice were anesthetized with sodium pentobarbital (50 mg/kg, i.p. administration; APL) and 

perfused with 4% paraformaldehyde (PFA) as previously described (Shi et al., 2012). The 

lumbar (L4 and L5) DRGs, lumbar spinal cord, sciatic nerve, and the hind leg paws were 

dissected out and postfixed in 4% PFA for 90 min on ice, and rinsed with 10% (wt/vol) 

sucrose in 0.10 M phosphate buffer containing 0.01% sodium azide (Merck) and 0.02% 

bacitracin (Sigma). Tissues were kept in 10% sucrose for 2 d at 4°C. Human DRGs and 

spinal cord tissues were immersion fixed with 4% PFA on ice for 2 h, followed by rinsing 

with 10% sucrose for 2 d as described above for animal tissue.  

    All trimmed tissues from different groups were arranged together and embedded with 

optimal cutting temperature compound (HistoLab AB), frozen with liquid carbon dioxide, 

and sectioned on a cryostat (Thermo) for DRGs (12 µm thick) and spinal cord (20 µm thick). 

The sections were mounted onto Superfrost Plus microscope slides (VWR International) with 

heating and stored at −20°C. DRG and spinal cord sections were dried at RT for 30 min and 

then incubated with different primary antibodies (listed in Table 1) diluted in PBS containing 

0.2% (wt/vol) BSA (Sigma) and 0.3% Triton X-100 (Sigma) in a humid chamber for 48 h in 

the cold room. Immunoreactivities were visualized using the TSA Plus kit (PerkinElmer) as 

previously described (Shi et al., 2012). For double labeling, slides were selected after TSA 

labeling, rinsed in PBS for 20 min and then incubated with primary antibodies for 48 ~ 72 h 

at 4°C. The slides were first washed in PBS for 30 min and then incubated with Cy3- (Cy5-) 

conjugated secondary antibody IgG (1:100 ~ 300; Jackson Immunoresearch Laboratories) at 

RT for 2 h; after rinsing, the sections were mounted with 1,4-Diazabicyclo[2.2.2]octane 

(DABCO, Sigma) medium. For quantification, the counterstaining with PI or DAPI (Sigma) 

was in some cases added before mounting the cover glass.  

    It should be noted that the immunostaining signals varied considerably with different 

antibodies depending on the degree of fixation. For example, the staining of spinal cord from 

two different animals with ATF3, Iba1 and BDNF 2 weeks after SNI injury varied 

considerably: mouse #1 was well perfused, mouse #2 less well. The difference between these 

two perfusions is probably due to a differential distribution of the fixative: in mouse #2 (bad 

fixation) we observed that the fixative via the lung circulation penetrated though the nostrils 

/mouth, that is less fixative reached the spinal cord than in mouse #1. Although ATF3 and 

BDNF antibodies produced a good staining in mouse #1, the best Iba1 staining was seen after 

‘bad’ fixation (mouse #2) (Figure 4A-F). Similarly, the NF200 antibody shows non-specific  
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Figure 4 Differential staining patterns of ATF3, BDNF and Iba1 in the spinal cord after 2 wk of SNI 

injury due to different qualities of fixation. In the well-perfused mouse (A,C,E,G), ATF3 induction in 

the nucleus of injured motor neurons can clearly be seen (A), and the accumulation of BDNF-LI in the 

spinal dorsal horn is also distinctly shown ipsilaterally (C). However, the expected activation of 
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microglia visualized with Iba1 antibody is not obvious (E). In the less well-perfused mouse (B,D,F) 

the reversed situation is encountered. Both ATF3 (B, cf. A) and BDNF (D, cf. C) antisera show a very 

weak signal. In contrast, Iba1 staining of microglia is strong in both dorsal and ventral horns (F, cf. E). 

The counterstaining with PI is also affected by fixation, whereby the less well-fixed spinal cord shows 

a stronger staining (H, cf. A). Scale bar: 200 µm in A-H. 

staining in the satellite glial cells and neuronal membranes in well-fixed DRGs, but gives 

apparently excellent results after less successful fixation. Therefore, it is important to 

individually analyze each antibody with regard to sensitivity to fixation. In this way more 

reliable results may be obtained when, for example, studying the experimental effects of 

peripheral nerve injury on the expression of a specific target like activation of Iba1 expression 

as shown in Figure 4E and F. 

3.7 IN SITU HYBRIDIZATION AND IMMUNOHISTOCHEMISTRY 

In situ hybridization for Necab1 and Necab2 in spinal cord with radioactive 35S-labeled 

probes was performed as described with minor modifications (Le Maitre et al., 2013). 

    For combined in situ hybridization and immunohistochemistry, spinal cord cryosections 

(20 µm) prepared as mentioned above for immunohistochemistry were processed, and 

hybridizations were performed as previously described with minor modifications (Peng et al., 

2012). Digoxigenin-labeled Necab2 RNA probe was used for in situ and combined with 

PKCγ immunohistochemistry (Zhang et al., 2016).  

3.8 MICROSCOPY, QUANTIFICATION AND IMAGE PROCESSING  
Representative confocal images were acquired on an LSM700 confocal laser-scanning 

microscope (Zeiss). Emission spectra for each dye were used as follows: DAPI (<480 nm), 

FITC/Alexa Fluro488/Cy2 (505–540 nm), Cy3/PI (560–610 nm), and Cy5 (>640 nm). For 

projection images, orthogonal z-stacks were acquired with a depth interval of 1 µm (water 

objective, 40×). Images were processed using ZEN2012 software (Zeiss). Multi-panel figures 

were assembled in Adobe Photoshop CS6 software (Adobe Systems).  

    For the quantification of neuron profiles (NPs) in DRGs, three to five sections were 

selected from different levels and stained for specific markers. Sections were tile-scanned 

with an LSM700 laser-scanning microscope equipped with a Plan-Apochromat M27 

objective (20× and N.A. of 0.80) and quantified by using Adobe Photoshop CS6 or ImageJ 

v.1.46 (National Institutes of Health) software. The cross-sectional area and intensity (mean 

gray value) were also collected using ImageJ. Size distribution was performed according to 
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the criteria: small (<300 µm2), medium (300-700 µm2) and large (>700 µm2) described by 

Scherrer et al.  (Scherrer et al., 2010). For the intensity analysis in spinal cord, sections were 

tile-scanned with an LSM700 laser-scanning microscope equipped with an EC Plan-Neofluar 

objective with a magnification of 10× and N.A. of 0.30. The intensity (mean gray value) from 

different spinal dorsal horn layers was collected with ImageJ.   

3.9 CLARITY VOLUME IMAGING 

This procedure was carried out in Prof. Deisseroth laboratory at Stanford University as 

described previously (Zhang et al., 2014).  

3.10 IDISCO+ VOLUME IMAGING 

iDISCO+ volume immunostaining and clearing process were performed as described earlier 

(Renier et al., 2016). Briefly, spinal cord blocks were washed in 0.01 M PBS 3 times in 5 ml 

Eppendorf tubes and then were dehydrated with methanol/water series 1 h each. The samples 

were bleached with 5% hydrogen peroxide in 100% methanol overnight at 4°C. Then, they 

were rehydrated, incubated in permeabilization solution for 2 d and kept in blocking solution 

for 2 d, both at 37°C (0.2% Triton-X100 / 20% DMSO / 0.3 M glycine in 0.01 M PBS + 

0.02% sodium azide, 0.2% Triton-X100 / 10% DMSO / 6% normal donkey serum in 0.01 M 

PBS + 0.02% sodium azide, respectively). The samples were then incubated with primary 

antibody [NECAB2, rabbit polyclonal (HPA014144), 1:200] solution for 4 d at 37°C 

(antibody diluent: 0.2% Tween-20 / 10 µg/ml heparin / 5% DMSO / 3% normal donkey 

serum in 0.01 M PBS + 0.02% sodium azide). After extensive washing, the blocks were 

incubated in secondary antibody (1:200; goat anti-rabbit, conjugated with Alexa Fluor 647; 

Molecular Probes) solution (0.2% Tween-20 / 10 µg/ml heparin / 3% normal donkey serum 

in 0.01 M PBS + 0.02% sodium azide). Then, the blocks were dehydrated in methanol/water 

series, incubated in 66% dichloromethane / 33% methanol for 3 h, in 100% dichloromethane 

for 2 × 15 min, and then the blocks were removed to tubes filled with 100% dibenzyl ether 

and stored in this solution for long term.  

    For imaging, a light sheet microscope (Ultramicroscope II, Lavision Biotec) was used with 

the following parameters. Laser power: 72%; exposure time: 100ms; light sheet N.A.: 0.056; 

magnification: 3.2×; step size: 2 µm; 25-step dynamic focus with ‘contrast filtered’ merging 

algorithm. Altogether, 5.2 mm and 2 mm length of samples (medulla-cervical spinal cord and 

lumbar spinal cord, respectively) were acquired. The serials of images then were converted to 

IMS file and the 3D vision of acquisitions was reconstructed in the ImarisTM 8.4.0 software. 
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Light brightness/contrast adjustment, gamma correction and background subtraction were 

applied to obtain the best quality of 3D image. 
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4 RESULTS AND DISCUSSION 

4.1 SECRETAGOGIN EXPRESSION IN DRGS AND SPINAL CORD FROM 
RODENTS AND HUMAN, AND ITS POTENTIAL FUNCTIONS IN PAIN 
SENSATION 

Secretagogin was expressed in a subpopulation of mouse DRG neurons (~7%), mainly small- 

to medium-sized ones, and was co-localized with CGRP (a marker for peptidergic 

nociceptors, Figure 5A) but not with IB4 (a marker for non-peptidergic nociceptors, Figure 

5D). In rat DRGs, secretagogin was expressed only in ~3% DRG neurons and only in small-

sized ones. They co-localized neither with CGRP nor IB4 (Figure 5B,E). However, the NP 

population expressing secretagogin in human DRGs was larger, ~10%, and also belonged to 

peptidergic group, and also co-expressed CGRP (Figure 5C,F). Therefore, this neurochemical 

property of secretagogin population observed in mouse was conserved in human DRGs, but 

not in rat. 

 

Figure 5 Co-localization of secretagogin with CGRP or IB4 in DRGs from mouse, rat and human. A-

C) Double labeling of secretagogin and CGRP in DRGs. D-F) Double labeling of secretagogin and 

IB4 in DRGs. Arrowheads indicate co-localization of secretagogin and CGRP in mouse and human 

DRGs. Scale bars: 20 µm in A,D and B,E, 50 µm in C,F (modified from Paper I) 

    Secretagogin, synthesized in mouse DRG neurons, was transported both peripherally and 

centrally, and co-localized with CGRP. In Paper I we observed, in the mouse spinal cord, a 

specific layer in the central lamina II composed of neuronal cell bodies and processes stained 

with the secretagogin antibody and overlapping with IB4. Secretagogin-LI was also found in 

fibers in lamina I, which overlapped with CGRP and had been anterogradely transported from 

the cell bodies in the DRG. The secretagogin-LI in lamina I disappeared after dorsal root 

rhizotomy, in parallel with CGRP. However, the dorsal root rhizotomy did not affect the 

secretagogin staining in lamina II. Seretagogin was also expressed in motor neurons in the 
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spinal ventral horn. Axotomy did apparently not affect the expression of secretagogin in 

DRGs or spinal cord. 

    More recently we received a secretagogin KO mouse strain that we had ordered from the 

UCDAVIS Knockout Mouse Project (KOMP) Repository. We thus now have had the 

opportunity to validate the secretagogin antibody specificity with KO tissues and to re-

examine the secretagogin staining at the spinal level. The results showed that secretagogin 

staining in WT DRGs, its central projections in lamina I and in motor neurons disappeared in 

KO tissue (Figure 6A-D), but that the secretagogin-LI in cell bodies and processes in the 

central part of lamina II remained, as indicated with arrowheads in Fig. 7. Therefore, the 

‘true’ expression of secretagogin is limited to a small subpopulation of peptidergic neurons in 

DRGs, which projects to lamina I of the lumbar spinal dorsal horn, and in motor neurons. 

 

Figure 6 Validation of secretagogin antibody in DRGs and spinal cord with secretagogin KO tissues. 

A,B) Secretagogin staining in DRGs from WT and KO mice, counterstained with PI. C,D) 

Secretagogin staining in the spinal dorsal horn from both WT and KO mice. Arrowheads indicate the 

non-specific labeling of secretagogin in lamina II. The dashed line in (C) separates the central 

projections of secretagogin from DRGs in lamina I and the non-specific labeling in lamina II. Scale 

bars: 100 µm in A,B and 100 µm in C,D (modified from Paper IV) 

    We have shown that secretagogin is co-localized with CGRP, a 37-amino acid peptide, 

which interacts with the co-localized and likely co-released neuropeptide substance P 

(Wiesenfeld-Hallin et al., 1984), and is modulated by peripheral nerve injury and 

inflammation (Kuraishi et al., 1989; Verge et al., 1995; Woolf and Wiesenfeld-Hallin, 1986; 
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Zhang et al., 2001).  The availablilty of secretagogin KO mouse also made it possible to 

explore a possible functional role of secretagogin in the DRG system (Paper IV). We thus 

tested such mice and wild types in the SNI model and after peripheral inflammation. The 

secretagogin KO mice developed tactile and cold allodynia as well as mechanical 

hypersensitivity in the SNI model (Figure 7A-C) and tactile allodynia for inflammatory pain 

after carrageenan (Figure 7D) to the same extent as seen in WT mice. Thus, this CaBP does 

likely not modulate carrageenan-induced inflammatory- or SNI-induced neuropathic pain-like 

behaviors.  

 

Figure 7 Pain-like behaviors comparing WT and secretagogin KO mice in the SNI and inflammation 

models. A-C) Pain-like behaviors developed similarly in WT and KO mice after SNI injury. Tactile 

allodynia was performed with von Frey filaments test, mechanical hypersensitivity was tested with 

pinprik and the cold allodynia was induced with acetone stimulus. D) Tactile allodynia was developed 

in both WT and KO mice after peripheral carrageenan stimulation. Black lines stand for WT mice, 

whereas red lines stand for KO mice. (modified from Paper IV) 

    CGRP plays an important role in neurogenic inflammation (Kilo et al., 1997) and 

facilitates central sensitization, possibly through the inhibition of SP degradation in the spinal 

dorsal horn (Le Greves et al., 1985; Safieh-Garabedian et al., 1995). Here we did not observe 

a difference of pain-like behaviors between WT and KO mice in the carrageenan model, 

which however does not have the neurogenic inflammation component (Louis et al., 1989). It 

would be interesting to study the effect of secretagogin in the complete Freund’s adjuvant-
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induced arthritis model in future work, a model where CGRP is up-regulated and which 

includes neurogenic inflammation (Kuraishi et al., 1989). 

    Our group has also analysed secretagogin in the hypothalamus, with special focus on 

neurons expressing corticotrophin-releasing hormone (CRH) in the paraventricular nucleus of 

hypothalamus projecting to the median eminence (Romanov et al., 2015). This is the final 

common pathway in the brain for the control of the hypothalamic-pituitary-adrenal gland 

(HPA axis), that is the stress axis (Aguilera, 1994; Vale et al., 1983). In Romanov et al. 

(2015) evidence was presented that secretagogin modulated CRH release in the median 

eminence in response to acute stress, possibly through controlling vesicular trafficking and 

the CRH releasing machinery (Romanov et al., 2015). This suggests that secretagogin may be 

of importance in stress, one of the central bodily functions. Since secretagogin in DRG 

neurons is colocalized with another neuropeptide, CGRP, it would be interesting to know if 

this CaBP has a similar role in CGRP release. 

4.2 EXPRESSION OF NEURONAL CALCIUM-BINDING PROTEINS 1/2 IN DRGS 
AND SPINAL CORD, AND EFFECTS OF NERVE INJURY 

 

Figure 8 Expression of NECAB1 and NECAB2 in mouse DRGs. A,B) NECAB1 and NECAB2 are 

abundant in DRG neurons. C-E) Double labeling of NECAB1 with the peptidergic marker CGRP, the 

non-peptidergic marker IB4 or NF200, a marker for myelinated fibers in DRGs. F-H) Double labeling 

of NECAB2 with peptidergic marker CGRP, non-peptidergic marker IB4 or NF200 marker for 

myelinated fibers in DRGs. Arrowheads indicate co-localization, with different intensity, of the 

respective markers. Scale bars: 100 µm in A,B, 50 µm in C-H (modified from Paper II) 

In Paper II, we reported that both NECAB1 and NECAB2 were abundant and expressed in 

~65% and ~73% of mouse DRGs, respectively (Figure 8A,B). And they showed a similar 

distribution pattern, mainly in small- and medium-sized neurons (both peptidergic and non-

peptidergic) but also in some large-sized neurons (Figure 8C-H). This contrasts to the 

distributions of the classic EF-hand CaBPs like parvalbumin (proprioceptor), calbindin-D28k, 
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calretinin in DRGs or secretagogin, which only labels a limited subpopulation of peptidergic 

neurons as described in Paper I (Arber et al., 2000; Carr et al., 1989; Celio, 1990; Ren et al., 

1993; Shi et al., 2012; Usoskin et al., 2015). But note that we in Paper IV ‘corrected’ this 

percentage of NECAB2 using a new, specific antibody validated by Necab2 KO tissue, which 

showed a much lower NPs of NECAB2 in DRGs. The staining of NECAB2 in spinal cord 

was correct as explained in detail in Paper IV. 

    In Paper II, we found a complementary distribution pattern in the spinal dorsal horn for 

NECAB1 and NECAB2, with only a narrow band of overlap in lamina IIi. NECAB1 was 

enriched in the superficial layers of the spinal cord, where the neuronal cell bodies and 

proximal dendrites were labeled (Figure 9A-D). NECAB1-IR neurons were in addition 

scattered throughout the deep layers, including the area surrounding the central canal and also 

motor neurons in the ventral horn were positive. A specific group of NECAB1-IR 

commissural interneurons in the medial spinal ventral horn (laminae VII/VIII) could be 

identified thanks to the use of CLARITY, a method that allows immunostaining of large 

samples, like the spinal cord, after making the tissue transparent (Chung et al., 2013).  

 

Figure 9 Expression of NECAB1 and NECAB2 in mouse spinal cord. A-D) Expression of NECAB1 

in the spinal cord showing an overview in (A), the dorsal horn in (B), a high magnification of the 

superficial layers in (C) and a longitudinal view in (D). E-H) Expression of NECAB2 in the spinal 

cord from the similar levels as shown for NECAB1, except (H), which is a high magnification in the 

longitudinal direction. Scale bars: 200 µm in A,E, 100 µm in B,F, 20 µm in C,G,H and 100 µm in D 

(modified from Paper II) 

    NECAB2-LI was widely distributed across the spinal cord, with the highest intensity in 

lamina IIi, extending to the deep layers (III and IV), with a much weaker staining in the 

ventral horn (Figure 9E). NECAB2 was characterized by a punctate staining, even the 
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neuronal cell body staining was often punctate, extending from the cytoplasm into the 

proximal dendrites (Figure 9F-H). The punctate staining of NECAB2 was often co-localized 

with VGLUT2 and synaptophysin (Figure 10). Although both NECAB1 and NECAB2 were 

mainly found in excitatory interneurons (VGLUT2 positive) in the dorsal horn, the NECAB2-

IR interneurons in lamina IIi overlapped with PKCγ excitatory interneurons, but this was not 

the case for NECAB1.  

 

Figure 10 Co-existence of NECAB2 with VLGUT1/VGLUT2 or synaptophysin in the dorsal horn. A) 

Triple labeling of NECAB2 with VGLUT1 and VGLUT2. B-D) Double labeling of NECAB2 and 

synaptophysin (Synp). Arrowheads indicate co-localization of NECAB2 with VGLUT2 but not 

VGLUT1 or synaptophysin, whereas the open arrowheads indicate the co-localization of NECAB2 

with VGLUT1 and VLGUT2. Scale bars: 50 µm in A, 10 µm in A1-A4 and 5 µm in B-D (modified 

from Paper II) 

    Peripheral never injury (axotomy) down-regulated NECAB2 expression in DRGs at both 

mRNA and protein levels, but for NECAB1 NPs only a very small drop was observed. We 

considered the modulation of the NECAB2 in DRGs after nerve injury to represent an 

adaptive action to reduce the glutamatergic signaling, shifting the balance towards inhibition 

in the spinal pain circuits. Other studies have shown that modulation of the balance between 

excitation and inhibition in the spinal circuits could attenuate neuropathic pain (Braz et al., 

2012; Foster et al., 2015). Potential effects of NECAB2 could potentially also have an effect 

on the glutamatergic neurotransmission by its expression in PKCγ excitatory interneurons, 

since this molecule has been shown to be involved in the development of neuropathic pain 

(Malmberg et al., 1997). 

4.3 THE EXCITATORY PROPERTY OF SPINAL NECAB2-IR INTERNEURONS IS 
CONSERVED IN RODENTS AND HUMAN 

In Paper III, we compared the distribution of NECAB1 and NECAB2 in spinal cord from 

mouse, rat and human at both mRNA and protein levels. For Necab1 mRNA, the distribution 

pattern was similar from superficial layers to the area surrounding central canal in mouse and 

rat, but expression in motor neurons was only found in mouse. This overlap was true also at 
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the protein level; even for the commissural interneurons demonstrated in mouse in the medial 

ventral spinal cord, which also showed up in rat. Compared to rodents, in human the Necab1 

RNA probe only gave a signal in a few neurons scattered in the deep layers of the spinal 

dorsal horn and in some neurons surrounding the central canal. The immunostaining of 

NECAB1 in the white matter of the human spinal cord was apparently surrounding axons, 

that is likely expressed in oligodendrocytes. Furthermore, mouse and rat show distinct 

differences with regard to the neurochemical heterogeneity of NECAB1+ neurons in the 

superficial dorsal horn. 

    The Necab2 mRNA was observed in neurons throughout the gray matter but not in motor 

neurons of mouse spinal cord, with most intense signal (and highest neuronal density) for 

interneurons in lamina IIi, and extending into lamina III. The distribution of Necab2 mRNA 

was more homogeneous in the rat. The human spinal cord showed a similar distribution of 

Necab2 mRNA in the dorsal horn, although the signal was much weaker compared to mouse. 

In the area around the central canal an interesting species difference was observed with 

regard to the ependymal cells: regular pseudostratified, ciliated epithelium was seen in 

rodents, whereas human ependymal cells were not well ‘organized’ and occupied the lumen. 

The protein expression of NECAB2 was similar, especially when comparing the high 

expression level in lamina IIi. The punctate staining character was conserved, although some 

differences appeared, such as the NECAB2-LI in the human spinal ventral horn and 

NECAB2-IR neurons in the ependymal cells of the central canal. The excitatory character of 

NECAB2-IR interneurons was conserved regarding the co-localization with PKCγ and the 

co-localization with VGLUT2 and synaptophysin.  

     Our results revealed that the association of NECAB2 to excitatory neuronal circuits in the 

spinal cord was evolutionarily conserved across the mammalian species investigated so far. In 

contrast, NECAB1 expression was more heterogeneous. Thus, our study suggests that the 

phenotypic segregation of NECAB1 and -2 to respective excitatory and inhibitory spinal 

systems can underpin functional modalities in determining the fidelity of synaptic 

neurotransmission and neuronal responsiveness, and might bear translational relevance to 

humans. 

4.4 A ROLE FOR NECAB2 IN INFLAMMATORY PAIN 

We early on initiated the generation of a Necab2 KO mouse, which recently has become 

available and now could be used in the experiments reported in Paper IV. The NECAB2 

antibody (HPA013998) used in our previous study (Paper II) (Zhang et al., 2014) still 
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showed staining in DRGs from Necab2 KO mice, however not in the spinal cord (Figure 

11A-D). The new NECAB2 antibody (HPA014144), recognizing the NECAB2 C-terminal 

and used throughout Paper IV, did not show any off target staining in DRGs or spinal cord 

(Figure 11E-H). However, both antibodies showed specific bands for NECAB2 with western 

blotting. The difference in staining in DRGs could be caused either by a truncated NECAB2 

in Necab2 KO mice encoded by its exons 1-3 (the lacZ cassette was inserted between exon 3 

and 4 of the Necab2 gene), or by cross-reactivity to NECAB1, in view of the high similarity 

between the human NECAB2 PrEST used for immunization and mouse NECAB1 (68%). We 

prefer the latter alternative, since the HPA013998 NECAB2 antibody did not show any 

NECAB2 staining in the spinal cord from Necab2 KO mice (Figure 11D). 

 

Figure 11 Validation of NECAB2 antibodies with tissues from Necab2 KO mice. A-D) Staining of 

NECAB2 antibody (HPA013998, against the N-terminal of NECAB2) in DRGs and spinal cord from 

both WT and KO mice. E-H) Staining of NECAB2 antibody (HPA014144, against of the C-terminal 

of NECAB2) in DRGs and spinal cord from both WT and KO mice. Scale bars: 100 µm in A,B,E and 

F, 200 µm in C,D,G and H (modified from Paper IV) 

    The decrease of NECAB2+ NPs in DRGs after peripheral nerve injury (axotomy) was also 

confirmed with the ‘new’ HPA014144 antibody (from 34% to 13%), which is in agreement 

with the decrease in NECAB2+ NPs seen after staining with HPA013998 antibody in our 

previous study (from 74% to 54%, Paper II) (Zhang et al., 2014). Taken together, it is our 

view that the ‘new’ NECAB2 antibody gives the correct staining in DRGs, as well as in the 

spinal cord. These results also show that an antibody may show correct staining in the spinal 

cord but not in DRGs of the same mouse (or vise versa with regard to the secretagogin 

antibody). These results underline the importance of testing antibody specificity for each 

tissue/organ/system analysed; and that KO animals represent an important tool for 

establishing antibody specificity (Uhlen et al., 2016). 



 

 31 

    The HPA014144 NECAB2 antibody defined a very specific population of sensory neurons 

in DRGs. It labeled ~30% of DRG neurons, mainly small- and medium-sized neurons, which 

were neither peptidergic nor nonpeptidergic (Figure 12A,B). Instead, the NECAB2-IR 

neurons covered both the C-low threshold mechanoreceptor (tyrosine hydroxylase (TH)+, the 

TH population; Figure 12C) and Aδ D-hair low threshold mechanoreceptors (tyrosine 

receptor kinase B, the TrkB population; Figure 12D). The small-sized NECAB2 DRG 

neurons were VGLUT2+, but the medium-sized ones were neither VGLUT2+ nor VGLUT1+ 

(Figure 12E). A direct comparison between the NECAB2 population (defined by 

immunohistochemistry) with the DRG single cell RNA-sequencing by Usoskin et al. 

(Usoskin et al., 2015), is summarized in Figure 12F and G, and shows a high degree of 

similarity.  

 

Figure 12 A,B) Co-localization of NECAB2 with the peptidergic marker CGRP (A) or the non-

peptidergic marker IB4 (B), both for nociceptors. C,D) Co-localization of NECAB2 with tyrosine 

hydroxylase (TH, C-Low threshold mechanoreceptor, C-LTMR, C) and tyrosine receptor kinase B 

(TrkB, Aδ D-hair LTMR, D). E) Co-localization of NECAB2 with VGLUT1 and VGLUT2 

(Vglut2::EGFP reporter mice). F) Summarized distribution and composition of the NECAB2 

population in DRGs. G) Data analysis of Necab2 population components in DRGs at mRNA level 

from single cell RNA-sequencing (Usoskin et al., 2015; open resource). Arrowheads indicate co-

localization, whereas the open arrowheads indicate lack of co-localization. Scale bar: 100 µm in A-E 

(Modified from Paper IV) 

    Acute pain sensation (noxious, mechanical stimulus) was intact in Necab2 KO mice with 

no sex difference. After SNI, the Necab2 KO mice developed tactile allodynia, mechanical 

hypersensitivity and cold allodynia to the same degree as the WT mice (Figure 13A-C). For λ 

carrageenan induced inflammation, there was no difference in the amount or time course of 

the edema, comparing Necab2 KO and WT mice (Figure 13D). Analysis of tactile allodynia 

showed that acute inflammatory pain had a similar time course in Necab2 KO and WT mice 

(Figure 13E). However, the inflammatory pain in Necab2 KO mice was attenuated already 
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after 24 h, reaching basal threshold at d 3, whereas the inflammatory pain (tactile allodynia) 

was maintained in WT mice until d 7, that is as long as recordings were made (Figure 13E-

G). 

    Increased expression of BDNF in DRGs is an accepted marker for peripheral inflammation 

(Cho et al., 1997). This growth factor is expressed in rat peptidergic nociceptors, stored in 

large dense core vesicles and released in spinal superficial layers (Michael et al., 1997). 

Peripheral inflammation (formalin and carrageenan) up-regulates BDNF expression in DRGs 

(both C- and A-fibers) and increases its release in the spinal cord, which leads to central 

sensitization by binding to TrkB receptors and subsequent NMDA receptor and c-Fos 

activation (Garraway et al., 2003; Salio et al., 2005; Thompson et al., 1999). Blocking BDNF 

in the spinal cord could attenuate tactile-induced progressive inflammatory pain 

hypersensitivity and heat hypersensitivity, but not acute tactile allodynia (Groth and 

Aanonsen, 2002; Kerr et al., 1999; Mannion et al., 1999).  

 

Figure 13 Involvement of NECAB2 in inflammatory but not neuropathic pain. A-C) The Necab2 KO 

mice developed tactile allodynia (von Frey filaments, innocuous stimulus), mechanical hyper-

sensitivity (noxious mechanical stimulus, pinprick) and cold allodynia (acetone stimulus) in SNI 

model as WT mice. D) Time course of paw edema, the typical symptom of inflammation, in 

the hind paw from WT and Necab2 KO mice after intra-plantar injection of λ carrageenan. E-G) 

Development of tactile allodynia in WT and KO mice after peripheral carrageenan stimulus. * 

p < 0.05, ** p < 0.01. (Modified from Paper IV) 

    In Paper IV, we showed an increase of BDNF+ NPs in WT DRGs after peripheral 

inflammation. This increase in percentage was not seen in Necab2 KO DRGs, but their was a 

significant increase in BDNF-LI intensity of individual cell bodies (small and medium-sized), 
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suggesting that also in KO mice there is increased signaling through BDNF. However, the 

analysis of adjacent segments (L2/3) in these mice shows no increase in BDNF-LI. This 

suggests that, in general, BDNF signaling at the spinal level is attenuated in KO mice, which 

could contribute to a more rapid recovery from inflammatory pain. Interestingly, peripheral 

noxious stimulation (heat) of foot also triggers c-Fos activation in the spinal cord beyond L4 

and L5, as shown both in transverse sections (Menetrey et al., 1989) and with the iDISCO 

volume imaging method (Renier et al., 2014). However, how the loss of NECAB2 leads to 

attenuated BDNF modulation after inflammation is still unclear. The TrkB population in 

DRGs could be a potential target, since ~11% BDNF-IR neurons are TrkB+ (which is covered 

by NECAB2) in mouse DRGs (Salio and Ferrini, 2016; Salio et al., 2005). 
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5 CONCLULDING REMARKS 
Great progress in the understanding of neuropathic and inflammatory pain, both at cellular 

and molecular levels, has been achieved since Melzack and Wall proposed the “Gate Control 

of Pain” theory in 1965. Much attention has been paid to molecule families like 

neuropeptides, receptors, ion channels, synaptic vesicle proteins and cytokines. However, the 

study of a possible role of EF-hand CaBPs (one of the largest protein families encoded by the 

genome) in the primary somatosensory system has been ‘ignored’. This thesis focused on 

three EF-hand CaBPs: secretagogin, NECAB1 and NECAB2 in DRGs and spinal cord in 

three species, mouse, rat and human, and possible roles in pathophysiological pain. 

    Secretagogin labeled a small subpopulation of peptidergic neurons in DRGs and was 

anterogradely transported, together with CGRP, both to the periphery and centrally to the 

spinal cord. Knockout of secretagogin did not affect the development of pain hypersensitivity 

in peripheral nerve injury or carrageenan induced inflammation models. However, we believe 

that a role of secretagogin should be explored; it could, for example, modulate the release of 

CGRP, since we have shown such a role in the control of release of another peptide: the stress 

hormone CRH in the hypothalamus. 

   NECAB1 was expressed in a large population of DRGs neurons, contrasting the classic 

CaBPs. NECAB2, the other family member, specifically labeled a population covering both 

the C-LTMRs and Aδ D-hair LTMRs. Knockout of Necab2 attenuated inflammatory pain, 

possibly through the modulation of BDNF in DRG neurons and interaction with its receptor 

TrkB to regulate spinal glutamatergic neurotransmission. 

    Taken together, our studies have initiated the exploration of three further members of the 

large family of CaBPs, and have defined, in three species, their cellular distribution at the 

spinal level and certain of their properties in some pain models. We believe/hope that this 

may be followed by further projects aiming a deeper understanding of the role of CaBPs in 

sensory signaling. 
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