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Abstract
A trilayer asymmetric superlattice, Si/Si1−xGex /Si1−yGey , is proposed, in
which the broken inversion symmetry makes the microstructure optically bi-
axial; in particular, inequivalent interfaces in this heterostructure may cause a
polarization ratio as large as about 2.5% in the absence of an external field. The
electronic structure and absorption spectra for two types of trilayer superlattice
with different parameters are calculated by use of the tight-binding model; the
findings indicate the importance of the carrier confinement for the anisotropy
value. The effect of external electric field on the optical anisotropy for such
structures has also been discussed, and a Pockels coefficient of 10−9 cm V−1

estimated.

Silicon is the most important material for information technology. Owing to very advanced
and sophisticated LSI technology, the use of Si-based structures in all-optical or electro-optical
device applications has naturally attracted a lot of research interest, though bulk Si is not
considered a promising candidate for light-emitting materials because of its indirect-band-gap
nature, nor as a nonlinear-optical material because of the Oh point-group symmetry.

The development of heterostructures paves the way for using silicon in light emission
applications. The quantum confinement effect in silicon-based structures breaks the quasi-
momenta conservation law and hybridizes many bulk band states; this led to the observation
of photoluminescence in Si/SixGe1−x strained quantum wells and superlattices, which has
been subsequently intensively studied [1, 2]. On the other hand, since they have inversion
symmetry, bulk silicon and Si superlattices have found little application in second-order non-
linear optics.

Inversion asymmetry governs a variety of properties in semiconductors, such as the lifted
twofold degeneracy of the band dispersion, the spin-orientation phenomena, and the second-
order optical nonlinearities including optical rectification and field-induced birefringence (the
Pockels effect), which is important for modulation, switching in optoelectronic circuits, and
phase matching in nonlinear optics [3]. Recently, giant quantum-confined Pockels effects
have been experimentally detected in a variety of quantum wells including the type-I quantum
wells where the well and barrier share a common atom [4], the type-I quantum wells with no
common atom [5], and type-II quantum wells [6], which has given rise to a lot of research
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interest in this topic [7–11]. However, since all such research is concentrated on III–V or II–VI
group semiconductor systems, such as the GaAs/AlAs, GaAs/InP, and ZnSe/BeTe systems,
a question has arisen: can the silicon-based structure be useful in birefringence and linear
electro-optics?

Usually, inversion asymmetry originates from the bulk intrinsic nature, an applied external
potential, and the inequivalent interfaces in heterostructures. For Si-based systems, the non-
zero second-order nonlinearity comes only from the inequivalent interfaces. The [001]-
oriented Si/GeSi quantum wells and superlattices are of point-group symmetry D2d, which
is uniaxially isotropic for normal incidence. Like for quantum wells with no common atom, if
a special Si-based structure with the point-group symmetry C2v can be created by introducing
inequivalent interfaces, the silicon-based superlattice may be biaxial, and its second-order
nonlinear susceptibility could no longer be equal to zero. Thus, combined with well-developed
silicon technology, it is expected to have potential application in future optoelectronic devices.

In this letter, we intend to propose a silicon-based asymmetric superlattice, namely
Si/Si1−xGex /Si1−yGey (x = 0.25, y = 0.5), in which lack of inversion and rotoinversion
centres in the microstructure leads to an in-plane anisotropy in the absorption spectra. We
shall evaluate the absorption spectra on the basis of the band structure by using the empirical
tight-binding method. In addition to the anisotropic optical spectra in the absence of applied
field, we will also estimate the anisotropic optical response to an external DC field and the
magnitude of the Pockels coefficient for this novel structure.

The conventional envelope function theory, which is successful in interpreting a lot of
optical and electric properties in quantum well systems, has failed to explain the in-plane
optical anisotropy in quantum wells with inequivalent interfaces, because the envelope function
takes no account of the real bond orientation and structure in the vicinity of superlattice
interfaces [12]. In view of the fact that tight-binding theory gives a full description for the
local symmetry of a real superlattice [13], yet is still simple, in this letter we shall adopt
the empirical tight-binding model to calculate the electronic structure and optical absorption
spectra of the Si/Si1−xGex /Si1−yGey superlattice. Here we assume that the trilayer structure
repeats itself to form a superlattice on a Si substrate, with the z-axis as the growth direction.
The superlattice state associated with band index n and wavevector �k can be expressed as

|n, �k〉 =
∑

α,I

Cn,α,I
∑

�R
ei�k· �R|α, I, �R〉 (1)

where α, I , and �R denote the orbital type, the basis atom, and the atom position in a superlattice
cell, respectively, and the Cn,α,I are the expansion coefficients of the Bloch sum associated
with α and I . The sp3s∗ atomic orbitals, with the nearest-neighbour coupling model [14] and
spin–orbit coupling [15], are used in the present calculation. Thus, for each atom there are ten
orbitals with the spin index included.

The bond lengths and tight-binding parameters for bulk Si and Ge are taken from
reference [14], while those for SiGe alloys are obtained by interpolating the values for bulk
Si and Ge [16]. The interatomic matrix elements connecting the Si atom and GeSi alloy
atom across the interfaces are taken from the arithmetic mean values of their corresponding
bulk parameters. The strain effect is accounted for in a rather simple way [17]—namely, the
interatomic matrix elements Hα,β for the strained structure are deduced from the strain-free
ones, H 0

α,β , through

Hα,β = H 0
α,β(d0/d)

2

where d and d0 are the bond lengths with and without strain, respectively. The valence
band offset for Si1−xGex grown on a Si substrate is taken as 740x meV [18]. Following the
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approximation used in reference [19], the matrix elements for the interband optical transition
can readily be worked out as

�pc,v(�k) = m0

h̄

∑

α,β,I,J

C∗
c,α,I (

�k)Cv,β,J (�k)
∑

�R
ei�k· �R �RHα,β,I,J ( �R) (2)

where Hα,β,I,J comes from the tight-binding parameters, and Cc,α,I (�k) and Cv,β,J are the
envelope functions of the conduction and valence subbands respectively. The optical absorption
is then written as

αε̂ = A

ω

∑

c,v,�k
|ε̂ · �pc,v(�k)|2δ{ω − [Ec(�k)− Ev(�k)]} (3)

where A is a constant and ε̂ is a unit vector denoting the polarization direction of the incident
light with energy ω. The summation runs over the whole Brillouin zone. A Lorentzian
γ /(γ 2 + ω2) is used to approximate the delta function δ(ω). In our calculation, 72 points in
one quarter of the Brillouin zone are used, and the parameter γ is equal to 20 meV.

When the incidence is along [001], the difference in absorption spectra between [110] and
[1̄10] polarization is expected not to be zero because of the C2v symmetry of the system. We
scale this in-plane anisotropy by defining the polarization ratio (PR) as

PR = α[110] − α[1̄10]

α[110] + α[1̄10]
. (4)

When a DC electric field is applied to the structure along the superlattice growth direction,
a term, eF �z, is added to the Hamiltonian. Suppose that the barriers are so thick that we can
safely ignore the coupling of two neighbouring quantum wells by the field. Then the effect of
the applied field on the system Hamiltonian can be approximated as an added diagonal term
only [7, 20, 21]; the result reads

〈α, I, �R|eF �z|β, J, �R′〉 ≈ 〈α, I, �R|eF �z|α, I, �R〉δα,βδI,J δ �R, �R′

= [〈α, I, �R|eF (�z− Z)|α, I, �R〉 + eFZ]δα,βδI,J δ �R, �R′

= [eFZ]δα,βδI,J δ �R, �R′ (5)

in which Z is the [001] component of the atomic position vector. The first term in the second
line of the formula above vanishes for symmetry reasons.

The band structures of two trilayer superlattices with two different layer thicknesses,
(Si)80/(Si0.75Ge0.25)20/(Si0.5Ge0.5)8 (SL1) and (Si)32/(Si0.75Ge0.25)8/(Si0.5Ge0.5)72 (SL2),
have been calculated. Figure 1 shows the dispersion relations of the two structures in the
absence of the field. For several of the lowest subbands, the Si layers are the wells for electrons
and the Si0.5Ge0.5 layers play the role of the wells for holes. Thus the type-II superlattice has
lower transitions to some extent; the asymmetry is thus enhanced further. For higher subbands,
a zone-folding effect is evident, as shown in figure 1. The envelope functions of the first valence
subband (VB1) at the Brillouin zone centre for the two superlattices are presented in figure 2.
Clearly, in both superlattices the holes are mainly confined to the Si0.5Ge0.5 layers. The well
width plays a very important role in determining the distribution of the confined holes. For
SL1 with thin Si0.5Ge0.5 wells, the higher quantization energy causes a significant penetration
into the barrier region for the envelope function of VB1, which is highly asymmetric because
of the significant difference between the barrier heights in the Si0.75Ge0.25 and in Si layers. The
envelope function of VB1 in SL2 has a small amplitude at the interfaces and is nearly symmetric
with respect to the well centre because of the lower confined energy in the thicker wells.

The absorption spectra along the [110] and [1̄10] directions are calculated, with over 100
valence subbands and 200 conduction subbands involved, and the corresponding polarization
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Figure 1. Subband dispersion relations for the Si1−xGex /Si/Si1−yGey superlattices. The inset
displays the irreducible part of the Brillouin zone.

ratios for the two structures are displayed in figure 3. As shown in the figure, the polarization
ratio in SL1 is significant over the incident light energy range from 2.6 eV to 3.0 eV, below the
direct absorption edge. The peak value of PR is as large as about 2.5%, which is remarkable
in view of the vanishing value of PR in bulk silicon or germanium. On the other hand,
PR for SL2 is a little less than 1%. This value of PR stems from the asymmetry of the
structure and in particular from the inequivalent interface regions, because of the type-II
confinement character. The difference between the values of PR for the two samples comes
from the quantum confinement of carriers as mentioned above, though only the effect of
confinement of VB1 on PR has been discussed. For the sake of comparison, we have also
analysed the respective contribution to PR from several other valence subbands, verifying that
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Figure 2. Envelope functions for the first valence subband at the ! point. Top: SL1; bottom: SL2.

the contribution exclusively comes from VB1, as the effect of confinement on VB1 is the
strongest. We thus believe that the in-plane anisotropy in the proposed structures derives from
the interface asymmetry, and the magnitude of the anisotropy is sensitive to the electronic
structure of the systems.

When a DC electric field is applied along the [001] direction, the external potential will
affect the carrier distribution; consequently the linear electro-optical effect is induced. Together
with the effects due to the inequivalent interfaces and the quantum confinement of carriers, the
applied field affects the in-plane anisotropy in the proposed structures in a subtle way.

The external DC field will make the subband edge shift and the carrier distribution polarize.
Being of opposite charge, electrons and holes are driven by the electric field in opposite
directions. According to perturbation theory, this effect is proportional to the well thickness.
As shown in figure 4, the variation of the hole distribution of VB1 caused by the field is small
in the thin well (SL1) but significant in the thick well (SL2). Thus the asymmetry of the VB1
envelope function as well as PR for SL1 remain almost unchanged versus the applied field,
while those for SL2 are changed obviously by a moderate field. The more (less) asymmetric
redistribution of the carrier induced by the field will favour (disfavour) optical anisotropy.
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Figure 3. Calculated polarization ratio spectra of SL1 and SL2 under incident [110] and [1̄10]
polarization.

Because the relative variation of PR versus the external field is small, the Pockels
coefficient for the proposed structures, which relates the optical anisotropy response to
the external field, is expected to be small compared to that for III–V superlattices. The
polarization ratios for several DC-field strengths in SL1 and SL2 are calculated. The results
are: PR(0) = 2.47%, PR(25 kV cm−1) = 2.50%, and PR(50 kV cm−1) = 2.54% for SL1;
while PR(0) = 0.823%, PR(25 kV cm−1) = 0.837%, and PR(50 kV cm−1) = 0.855% for
SL2. It has been found that the difference between the absorption spectra along [100] and [010]
equals zero for any electric field, indicating that [110] and [1̄10] are two principal directions
of the dielectric tensor.

We now estimate the Pockels coefficients for these structures. By using the Kramers–
Kronig relation, we can transform the absorption coefficient to the refractive index along two
principal directions—[110] and [1̄10]—of polarization in the presence of the field, n[110] and
n[1̄10], and then obtain the Pockels coefficients r13 and r63 through

n[110] = n1 − 1

2
n3

1(r13 + r63)F (6)

n[1̄10] = n2 − 1

2
n3

2(r13 − r63)F (7)

where n1 and n2 are the refractive indexes for [110] and [1̄10] polarization in the absence of
the field, respectively.

The Pockels coefficients r13 and r63 are shown in figure 5 as functions of photon energy.
Due to the strong absorption near or above the direct absorption edge, the Pockels coefficient is
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Figure 4. The envelope function of the first valence subband at the! point in the absence of electric
field (solid line) and in the presence of a DC field of 50 kV cm−1 (dashed line). Top panel: SL1;
bottom panel: SL2.

well defined only in a much lower energy range. For photon energy ω = 1 eV, the calculated
coefficient r13 is about 50 × 10−10 cm V−1 for SL1 and 8 × 10−10 cm V−1 for SL2, while r63

is 0.5 × 10−10 cm V−1 for SL1 and 1 × 10−10 cm V−1 for SL2. r63 scales the antisymmetric
part of the anisotropy to the electric field. In our calculation, r63 is much smaller than r13 for
both structures.

A novel Si/Si1−xGex /Si1−yGey superlattice has been proposed. The reduced C2v symmetry
of the proposed structures leads to a significant optical anisotropy without an electric field.
By using the empirical tight-binding model, we have calculated the subband structure and
optical anisotropy of two Si/Si1−xGex /Si1−yGey superlattices with different thicknesses with
and without an external electric field. The inequivalent interfaces in this system, the carrier-
density distribution determined by the quantum confinement, and the external field determine
the optical anisotropy in the trilayer Si/SiGe systems. Although the Pockels coefficient for our
Si/Si1−xGex /Si1−yGey structures is smaller than that for III–V group superlattices, it may be
one order of magnitude larger than that for bulk GaAs even for our non-optimum configuration,
which might have some application potential for the future.
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Figure 5. Calculated Pockels coefficients r13 and r63 as functions of photon energy for SL1 and
SL2.
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[9] Khurgin J B and Voisin P 1998 Phys. Rev. Lett. 81 3777

[10] Magri R and Ossicini S 1998 Phys. Rev. B 58 R1742
[11] Foreman B A 2000 Phys. Rev. Lett. 84 2505
[12] Krebs O, Voisin P, Rondi D, Gentner J L, Goldstein L and Harmand J C 1999 J. Physique IV 9 37
[13] Schulman J N and Chang Y C 1985 Phys. Rev. B 31 2056

Schulman J N and Chang Y C 1985 Phys. Rev. B 31 2069
[14] Vogl P, Hjalmarson H P and Dow J D 1983 J. Phys. Chem. Solids 44 365



Letter to the Editor L567

[15] Chadi D J 1977 Phys. Rev. B 16 790
[16] Newman K E and Dow J D 1984 Phys. Rev. B 30 1929
[17] Tserbak C, Polatoglou H M and Theodorou G 1993 Phys. Rev. B 47 7104
[18] Van de Walle C G and Martin R M 1985 J. Vac. Sci. Technol. B 3 1256
[19] Lew Yan Voon L C and Ram-Mohan L R 1993 Phys. Rev. B 47 15 500
[20] Xia J B and Huang K 1988 Acta Phys. Sinica 37 1
[21] Zhu B F 1988 Phys. Rev. B 38 13 316


