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Analysis of Mode Characteristics for Deformed
Square Resonators by FDTD Technique

Qin Chen, Yong-Zhen Huang, Senior Member, IEEE, and Li-Juan Yu

Abstract—The mode frequencies and quality factors (Q-factors)
in two-dimensional (2-D) deformed square resonators are analyzed
by finite-difference time-domain (FDTD) technique. The results
show that the deformed square cavities with circular and cut cor-
ners have larger QQ-factors than the perfect ones at certain condi-
tions. For a square cavity with side length of 2 ©m and refractive
index of 3.2, the mode @Q-factor can increase 13 times as the per-
fect corners are replaced by a quarter of circle with radius of 0.3
pm. Furthermore the blue shift with the increasing deformations
is found as a result of the reduction in effective resonator area. In
square cavities with periodic roughness at sidewalls which main-
tains the symmetry of the square, the Q-factors of the whisperin
gallery (WG)-like modes are still one order of magnitude larger
that those of non-WG-like modes. However, the QQ-factors of these
two types of modes are of the same order in the square cavity with
random roughness. We also find that the rectangular and rhombic
deformation largely reduce the QQ -factors with the increasing offset
and cause the splitting of the doubly degenerate modes due to the
breaking of certain symmetry properties.

Index Terms—Finite-difference time-domain (FDTD) methods,
optical resonators, modeling.

1. INTRODUCTION

ECENTLY, square optical microcavities have attracted

great attention due to their potential application for mi-
crolasers and high finesse add—drop filters [1]-[12]. Manolatou
first discussed the whispering gallery (WG)-like modes in a
square cavity and the operation principle of resonant channel
add—drop filters based on these modes. Poon et al. observed
the multimode resonance in the elastic scattering of 200-um
square-shaped (-cavities in fused silica and simulated the mode
coupling in planar waveguide-coupled perfect and corner-cut
square microcavities [2], [4], [5]. Lohmeyer used the mode
expansion method to investigate the rectangular microres-
onators add—drop filters and concluded that the cavity should be
slightly elongated along the waveguides to compensate for the
loss raised by the breaking of Cy symmetry due to the presence
of bus waveguide [3]. Moon et al. achieved the WG mode
lasing in a gain-coated square microcavity with round corners
and observed single spatial mode selection in a layered square
microcavity laser [6], [7]. Boriskina et al. analyzed the mode
characteristics in square cavities with imperfect boundary,
which maintains the symmetry properties of the square cavity
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[8], [9]. Some theoretical analysis based on group theory and
numerical simulation by finite-difference time-domain (FDTD)
of the mode characteristics for microsquare resonators were
proposed by Huang er al. [10]-[13], which concluded that
the WG-like modes in perfect microsquare cavity have high
Q@-factor and twice free spectral range (FSR) as that of the
microdisk with the same size. However, the fabrication of a
perfect square-shape cavity in micrometer scale is very diffi-
cult. We do not know whether the double FSR still exists in
the deformed square cavity or not. So the modes characteristic
in the deformed square cavities is required to be investigated
in detail. In this paper, the variations of mode frequencies and
mode )-factors in square cavities with the imperfection include
circular and cut corners, periodic and random roughness at
sidewalls, rhombic and rectangular deformation are discussed.
The results show that the deformed square cavities with circular
and cut corners have one order of magnitude larger Q-factors
than those of the perfect ones at certain conditions. Further-
more, the blue shift with the increasing deformation is observed
as a result of the reduction in effective resonator area. In square
cavities with periodic roughness at sidewalls, the @Q-factors
exponentially decrease with the increasing perturbation am-
plitude and the variations of the mode wavelengths are linear.
Furthermore, the QQ-factors of the WG-like modes are still one
order of magnitude larger that those of non-WG-like modes.
In the square cavity with random roughness, which breaks the
symmetry properties of the perfect square cavity, the Q-factors
of these two types of modes are of the same order. We also
find that the rhombic and rectangular deformations reduce
the @-factors largely with the increasing offset and cause the
splitting of the doubly degenerate modes.

The outline of the paper is as follows. In Section II, we ana-
lyze the deformed cavity with circular and cut corners and show
the variations of mode ()-factors and frequencies with the offset
of the deformation. In Section III, we simulate the square cavity
with harmonic and random fluctuation at the sidewalls and show
the effect of perturbation amplitude to the modes character-
istics. In Section IV we investigate two deformations include
rhombus and rectangle, which break certain symmetry proper-
ties of the perfect square cavities. The conclusion is given in the
Section V.

II. DEFORMED SQUARE CAVITY WITH CIRCULAR
AND CUT CORNERS

We choose a two-dimensional (2-D) square cavity with a =
2 pmand n = 3.2 as the perfect cavity, where a is the side length
and n is the effective refractive index of the square cavity [9].
Then we add various deformations to the perfect cavity. Only
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Fig. 1. Intensity spectra obtained by 2-D FDTD simulation and the Padé

approximation under both symmetric conditions relative to the x and y axes.
The solid line, dashed line, and dotted line are according to perfect square
cavity, circular corner cavity (R = 0.3 pm) and cut corner cavity (cut length
= 0.19 pm), respectively. The mode numbers is also indicated at each peak
in the spectra. The schematic diagram of a 2-D square cavity is shown in the
inset, which is plotted by the dashed lines. A quarter of square is plotted by
solid line is chosen as the calculating window in FDTD.

the TE modes are analyzed here. The details in the numerical
simulation can be obtained from [13].

In this section, we calculate the mode frequencies and
Q-factors of the WG-like modes TE?; 5) and TE{,¢) in the
deformed square cavity with circular and cut corners, respec-
tively, where “0” represents odd states relative to the diagonal
mirror planes of the square cavity. The accidentally degenerate
modes of the WG-like modes are not considered, whose field
distributions are symmetric and have one order of magnitude
smaller Q-factors [11]. The non-WG like mode TE, 5 is also
calculated for comparison, whose mode frequency is located in
the midst of the frequencies of TE(3 5) and TE(4 6)» but one
order of magnitude smaller (Q-factors. The radius of circular
corners I? is set to be 0.1-0.7 pm and the cut length of the side
at corners is 0.1-0.3 pm, respectively. The space step in FDTD
simulating is set to be 0.01 pm.

The schematic diagram of a 2-D square cavity is shown in the
inset of Fig. 1, which is plotted by the dashed lines. A quarter
of the square resonator drawn by solid lines is used for 2-D
FDTD simulation under different symmetric conditions [13]. In
Fig. 1 we plot the intensity spectra of the perfect square cavity
(solid line), circular corner (dash line) and cut corner cavity (dot
line), which is calculated under both antisymmetry boundary
to magnetic field component H, in the 2-D FDTD simulation.
The mode numbers (p, q) of each peak are identified by com-
paring with 2-D analytical results [11]. We can see that the two
deformations cause frequencies shift and the variations of the
Q-factors.

In Fig. 2, we show the frequencies and (Q-factors versus the
radius in circular corner square cavity, where the circles, squares
and triangles are according to TE?; 5, TE(, 6), and TE4 5, and
solid and open shapes are for mode frequencies and )-factors,
respectively. From the variation of )-factors with the radius,
we find the deformation even increases the (Q-factors at certain
region of radius. The largest ()-factors of TEE’& 5) and TE‘(’4,6)
at R = 0.3 pm are over 13 times and four times as larger as
those of the perfect square cavity, respectively. The ()-factor of
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Fig. 2. Mode frequencies and (Q-factors versus the radius in circular corner
square cavity, where the circles, squares and triangles are according to
TE? (2,5) TE(4 6)> and TE, 5, and solid and open shapes are for mode
trequencws and (Q-factors, respectively. The schematic diagram of circular
corner square cavity with R = 0.3 pm is shown in the inset.
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Fig. 3. Mode frequencies and ()-factors versus the cut-length at sides in cut
corner square cavity. The sign is the same as Fig. 2. The schematic diagram of
cut corner square cavity with cut length 0.19 g¢m is shown in the inset.

TE4 5 at R = 0.4 pm increase four times, which is also one
order of magnitude smaller than those of the WG-like mode. We
also can see the blue shift of the three modes with the increasing
radius of circular corners. This relation can be explained as that
the effective resonator area of circular corner square cavity with
larger radius is smaller, which results in the reduction of mode
wavelengths. At R = 0.7 pum, the mode frequencies shift is
3 THz for TE(, 5) and 4 THz for TEP, ¢), respectively. For the
case of cut corner square cavity shown in Fig. 3, we also ob-
serve the similar variation of mode frequencies and ()-factors.
The largest Q-factors of TE(; ;) and TE(y 5) with 0.19-pm cut
length at side are over ten times and six times as larger as those
of the perfect square cavity, respectively.

We think the enhanced confinement of the resonant modes in
circular and cut corner square cavities at certain conditions is
the result of the compressed radiation at the corners due to the
deformation. We show the normalized field pattern of the mag-
netic field component H. for TE(; ;) modes in Fig. 4, which
is obtained by 2-D FDTD simulation. Fig. 4(a)—(c) is according
to the perfect square, circular corner cavity (R = 0.3 pm) and
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)

Fig. 4. Field pattern of the magnetic field component H. for TEf, ;) modes
in (a) perfect square, (b) circular corner cavity, and (c) cut corner cavity obtained
by 2-D FDTD simulation.

1.6x10° v Y . T - T

1.2x10°

8.0x10°

v
-

S e ta e e,

o
4.0x10° Hi ;) ¢

i

)

Normalized power loss

e St

00 A) : A.\
0.0 05 1.0 1.5 2.0
¢ ()
Fig. 5. Power angular spectra of the TE; ;y modes in the perfect square

cavity (dot line, the intensity was reduced by five times), circular corner cavity
(solid line) and cut corner cavity (dashed line).

cut corner cavity (cut length= 0.19 pm), respectively. We can
see the deformation of cavity do not modify the field pattern
largely. Only very small difference at the corner is observed. In
Fig. 5, we show the power angular spectra of the TE‘(’& 5) in the
three structures based on far field emission [10]. Dotted line,
solid line and dashed line are according to the perfect square,
circular corner cavity (R = 0.3 pm) and cut corner cavity (cut
length = 0.19 pm), respectively. The intensity of the perfect
square shown in the figure is reduced by five times. We can see
the escape power in the three structures are all zero at the an-
gles of ® = 7/4,37/4,57/4, and 7w /4, i.e., in the direction
of the square diagonals. It is because that the field distributions
of WG-like modes are antisymmetric according to the diago-
nals. The power escaped from perfect cavity is the largest and
that from circular corner cavity is the smallest. We conclude
that the two deformations do not break the characteristics of
the WG-like modes and even reduce the radiation intensity at
certain conditions. In the micrometer scale fabrication of semi-
conductor microcavity, the sharp angle at the corners of square
cavity is difficult to maintain in the process such as photolithog-
raphy and etching. Now the enhanced confinement of the de-
formed square cavity with optimized parameters can release the
fabrication difficulty to achieve high Q-factors resonant modes
lasing and not degrade the double FSR formed by the high-Q
WG-like modes.

III. DEFORMED SQUARE CAVITY WITH
ROUGHNESS AT THE SIDEWALLS

In this section, we investigate the mode characteristics in a
square cavity with periodic and random fluctuation at the side-
walls with different perturbation amplitudes. In the FDTD sim-
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Fig. 6. Mode frequencies and (2-factors versus the perturbation amplitude in
deformed square cavity with period roughness at sidewalls and period number
v = 10. The sign is the same as Fig. 2. The inset is a square cavity with period
roughness (6 = 0.03 pm and v = 10) at sidewalls.

ulation, the fluctuated boundary of the square cavity is described
as P(z) = yo + F(z), where yq is the smooth sidewall posi-
tion,  is the position in the sidewall, and F'(x) is the fluctua-
tion. For the cosinoidal fluctuation, we assume the fluctuation
to be F(z) = écos(2mvx/a), where § is the perturbation am-
plitude, a is the side length of square cavity and v is the pe-
riod number (The larger v means the faster variation at the side-
walls). For the random fluctuation, we assume F'(z) to be of
the form of Gaussian statistics with a zero mean value and a
correlation, (F(z)F(z')) = o2 exp|—(x — 2')?/1?], where o is
the root-mean-square (rms) height and [ is the correlation length
along the z-direction. The Monte Carlo method is used to con-
struct F'(x) [14]. We can see the symmetry properties of the
perfect square cavity are maintained in the periodic deformed
cavity, so a quarter cavities are used in the FDTD simulation as
that in Section II. However, the symmetry properites are broken
in the deformed cavity with random roughness at the sidewalls,
the whole cavity is used in simulation.

In Fig. 6, we show the mode frequencies and (Q)-factors of
TE(3 5), TE(4,6), and TEy4 5 versus the perturbation amplitude
0, where v = 10. We can see the exponentially decreasing of
the (Q-factors and the linearly increasing of mode frequencies
with the increasing perturbation amplitude, which is in agree-
ment with the results in [8]. The larger perturbation causes the
stronger scattering, which reduced the -factors exponentially
with the increasing perturbation amplitude. So a key issue to
achieve a high quality microsquare resonator is to compress the
roughness at the sidewalls, which forms in the photolithography
and etching process. Except the roughness region, the effective
resonator area of square cavity with larger perturbation ampli-
tude is smaller, which results in the blue shift like the circular
corner and cut corner cases. We observe that the Q-factor of the
non-WG-like mode TE, 5 is one order of magnitude smaller
than those of WG-like modes and the twice FSR as that deter-
mined by cavity length is maintained.

In Fig. 7, we show the mode frequencies and (Q)-factors of
TEs 5, TE4 6, and TEy 5 versus the rms height o, where | =
0.1 pm. We can see that the obvious difference in Fig. 7 from the
Fig. 6, where the Q-factors of original high-Q) WG-like modes
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Fig. 7. Mode frequencies and (Q-factors versus the rms height in deformed

square cavity with random roughness at sidewalls, where the correlation length
! = 0.1 pm. The sign is the same as Fig. 2. The schematic diagram of a square
cavity with 0 = 0.02 gm and I = 0.1 gm is shown in the inset.

TE3 5 and TE4 ¢ decrease to the values of the same order of that
of TE4 5. We consider that it is because the random roughness
breaks the symmetry along the diagonals, which is the base of
the high-@QQ WG-like modes in the perfect square cavity.

IV. DEFORMED SQUARE CAVITY WITH RHOMBUS AND
RECTANGLE SHAPE

In the above discussions, all the deformations maintain the
symmetry properties of the perfect square cavity except the de-
formed square cavity with random roughness at the sidewalls. In
this section, we investigate two other deformations of rhombic
and rectangular shape, which break the symmetry at the perpen-
dicular bisector of the sides and symmetry along the diagonals,
respectively. Furthermore, the C; symmetry is broken in both
cases. The two deformations are easily happened in wet etching
because of the anisotropy of the acid solution.

For the rhombic cavity, the symmetry properties along the
perpendicular bisector of the sides are broken. So we can not
use a quarter cavities shown by solid line in the inset of Fig. 1 as
the calculating window. We use another quarter cavities formed
by one side and two diagonals as the calculating window, which
is shown by the shadow region in the inset of Fig. 1. We ex-
ploit antisymmetric properties to the magnetic field vectors at
the diagonals to excite only the odd states (WG-like modes).
In Fig. 8, we show the mode frequencies and @)-factors of the
WG-like modes TE(; 5) and TE? ¢ versus the acute angle in
rhombic cavity, where the abscissa represents the value of the
acute angle of rhombus. We can see the )-factors drop down
quickly with the increasing rhombic deformation. It can be un-
derstood as that the reflective angle at one side of the rhombus
may be less than the totally reflective angle after several reflec-
tions, not as the case of the square cavity, where the reflective
angle is maintained at 45°. So the confinement of electromag-
netic wave is not as well as that in square cavity.

In the rectangular cavity, the symmetry properties to the per-
pendicular bisector of the sides are maintained, we simulate
the structure by using a quarter cavities as that described in
Section II. However, the symmetry properties to the diagonals
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Fig. 9. Mode frequencies and (Q-factors versus the difference ¢ of side
lengths in a rectangle, where the squares, circles and stars are according to
TE4,6, TEg,4, and TE4 5, and solid and open shape is for mode frequencies
and (Q-factors, respectively. The field distribution of H. of the three modes in
rectangle cavity with 6 = 0.1 gm is shown in the inset, respectively.

are broken. The WG-like modes with antisymmetric magnetic
field distribution and their accidentally degenerate modes do not
exist. Only the modes like TE, ¢ and TEg 4 are supported in this
structure. In Fig. 9, we show the mode frequencies and )-fac-
tors of TEy ¢, TE¢ 4, and TE, 5 versus the difference 6 of side
lengths in a rectangle. The field distributions of H, of the three
modes in a rectangle cavity with § = 0.1 pm are shown in
the inset. We can see TE4 ¢ and TEg 4 are degenerate in per-
fect square cavity and split with the increasing difference of the
side lengths (The odd states of the combination of TE,4 ¢ and
TE6 4 modes in perfect square cavity are just the WG-like mode

( 4,6) [11]). Furthermore the Q-factors drop from 4000 to 200
when 0 increases from zero to 0.04 pm. It is because that the
deformation breaks the symmetry properties to the diagonals,
which are the base of the high-QQ WG-like modes with antisym-
metric field distribution according to diagonals in square cavity.
When 6 is larger than 0.04 pm, the Q-factors tend to stability
around 200. For TEy 5, the variation of the Q-factors is much
smaller. The value is basically around 150. So we can see the
modes with even sum of mode numbers (WG-like modes belong
to) in the rectangular cavity have ()-factors with the same order
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of magnitude as those modes with odd sum. We think the defor-
mations such as rectangular deformation and random roughness
discussed above are the reason that the mode intervals in the ex-
periment results of Poon agree with the ray optics theory which
is decided by cavity length [2].

V. CONCLUSION

We analyzed the mode characteristics in 2-D deformed square
resonators by FDTD technique. We find the anomalous increase
of the mode )-factor in circular corner and cut corner square
cavity. The results show that the Q-factor of TE3 5 mode in
circular corner square cavities (R = 0.3 um) with side length
a = 2 pm and refractive index n = 3.2 increases 13 times
as that of the perfect cavity. In the case of cut corner square
cavity, the largest enhancement attains ten times with cut length
= 0.19 pm. Furthermore the blue shift with the increasing de-
formations is observed as a result of the reduction in the effec-
tive resonator area. In square cavities with periodic roughness at
sidewalls, the ()-factors of the WG-like modes are still one order
of magnitude larger that those of non-WG-like modes. However,
the ()-factors of these two types of modes are of the same order
in the square cavity with random roughness. At last the rectan-
gular and rhombic deformations are found to be the severe prob-
lems in the fabrication of square cavity, which largely reduce
the ()-factors with the increasing offset. Furthermore the rectan-
gular deformation splits the degenerate modes and reduces the
mode interval to a half of that in perfect square cavity, which is
decided by high-QQ WG-like modes. We conclude that the twice
FSR as that determined by cavity length maintains only in the
deformed cavity that maintains the symmetry properties to the
diagonals of the perfect square.
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