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Abstract 

Dopamine transporters (DAT) facilitate high-affinity presynaptic dopamine (DA) 

reuptake in the central nervous system, and are required to constrain 

extracellular DA levels and maintain presynaptic DAergic tone. DAT is the 

primary target for addictive and therapeutic psychostimulants, which require DAT 

binding to elicit reward. DAT availability at presynaptic terminals ensures its 

proper function, and is dynamically regulated by endocytic trafficking. My thesis 

research focused on two fundamental questions: 1) What are the molecular 

mechanisms that control DAT endocytosis? and 2) what are the mechanism(s) 

that govern DAT’s post-endocytic fate? Using pharmacological and genetic 

approaches, I discovered that a non-receptor tyrosine kinase, activated by cdc42 

kinase 1 (Ack1), stabilizes DAT plasma membrane expression by negatively 

regulating DAT endocytosis. I found that stimulated DAT endocytosis absolutely 

requires Ack1 inactivation. Moreover, I was able to restore normal DAT 

endocytosis to a trafficking dysregulated DAT coding variant identified in an 

Attention Deficit Hyperactivity Disorder (ADHD) patient via constitutively 

activating Ack1. To address what mechanisms govern DAT’s post-endocytic fate, 

I took advantage of a small molecule labeling approach to directly couple 

fluorophore to the DAT surface population, and subsequently tracked DAT’s 

temporal-spatial post-endocytic itinerary in immortalized mesencephalic cells. 

Using this approach, I discovered that the retromer complex mediates DAT 

recycling and is required to maintain DAT surface levels via a DAT C-terminal 
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PDZ-binding motif. Taken together, these findings shed considerable new light 

on DAT trafficking mechanisms, and pave the way for future studies examining 

the role of regulated DAT trafficking in neuropsychiatric disorders. 
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CHAPTER I  

INTRODUCTION 

I.A Dopamine System in the CNS and Related diseases 

Over sixty years ago, Arvid Carlsson discovered dopamine (DA) as a 

neurotransmitter. Since then, research on DA neurotransmission and signaling 

mechanisms have greatly impacted the development of neuropharmacology and 

psychiatry. Some of the medicines that are most widely prescribed in modern 

neurology and psychiatry, including L-DOPA, Ritalin and antipsychotic drugs, act 

on the brain DA system. In this section of the introduction, I will give an overview 

of the DA system in the central nervous system (CNS) then focus on the two 

major dopaminergic projections, the nigrostriatal pathway and the 

mesocorticolimbic pathway, and their implications in neuropsychiatric disorders. 

OVERVIEW OF THE DOPAMINE SYSTEM IN THE CNS 

Anatomical studies have greatly helped us to understand the contribution of 

dopaminergic pathways to behavior. Before the era of immunohistochemistry, 

sensitive visualization of neurotransmitter in a neuron was achieved by the Falck 

–Hillarp method developed in the early 1960s. By exposure of freeze-dried tissue 

to formaldehyde vapor, Falck showed that DA and norepinephrine could be 

transformed into fluorophores that emitted yellow-green fluorescence (Falck and 

Torp, 1962). Later modification of this technique with improved sensitivity and 



2 
 

precision enabled visualization of DA axon terminals in great details (Lindvall and 

Bjorklund, 1974).  

Anterograde and retrograde tracing are also one of the most widely used 

methods to map neuronal circuitry. Based on intra-axonal transport, tract-tracing 

methods utilized the uptake and transport of horseradish peroxidase (HRP) to 

trace neuronal projections (LaVail and LaVail, 1972). More recently, a series of 

trans-synaptic tracers have been developed that allow identification of 

synaptically connected cells (Zou et al., 2001; Braz et al., 2002). Among them, 

Wickersham and colleagues constructed a viral tracer that crossed only one 

synaptic step to neurons directly connected to the starting population 

(Wickersham et al., 2007). Based on rabies virus, this technology enables a more 

detailed understanding of neuronal connectivity. 

Using those techniques, DA neurons were identified and mapped in the brain. 

The major dopaminergic projection, the nigrostriatal pathway, consists of 

dopaminergic neurons in the substantia nigra pars compacta (SNpc) of the 

midbrain that project to the dorsal striatum (caudate nucleus and putamen). The 

nigrostriatal pathway is responsible for voluntary movement. In addition, 

dopaminergic neurons in the ventral tegmental area (VTA) projection to the 

ventral striatum (nucleus accumbens, NAc) and prefrontal cortex (PFC) form the 

mesocorticolimbic pathway, which is associated with reward-related behavior  

(Moore and Bloom, 1978). The tuberoinfundibular pathway, which transmits DA 
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from hypothalamus to the pituitary gland (Bjorklund et al., 1970; Jonsson et al., 

1972), controls secretion of certain hormones like prolactin (Takahara et al., 

1974). Other than the three major dopaminergic projections, DA neurons also 

exist in retina and the olfactory bulb for vision and odor processing (Hokfelt et al., 

1975; Bauer et al., 1980). These different dopaminergic pathways are illustrated 

in a simplified diagram in Figure I-1. 
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Figure I-1. DAergic pathways in the rodents brain. Cell bodies of DA 

neurons localize primarily in the midbrain substantial nigra and ventral 

tegmental area and they project to brain regions including dorsal striatum, 

median prefrontal cortex (mPFC), nucleus accumbens (NAc), hippocampus 

(Hipp) as well as amygdala (Amy). There are also DA neurons in 

hypothalamus (HTH) that project to pituitary gland (PIT). Two main DAergic 

pathways: nigrostriatal pathway and mesocorticolimbic pathway are illustrated 

in green.  



5 
 

THE NIGROSTRIATAL PATHWAY AND PARKINSON’S DISEASE (PD) 

The nigrostriatal projection from the SNpc to the dorsal striatum was discovered 

by Hornykiewcz and colleagues, who correlated the drastic reduction of DA 

content in the dorsal striatum of PD patients with the degeneration of SNpc 

(Hornykiewicz, 1966). With the help of the Falck –Hillarp method, this projection 

was rapidly confirmed (Anden et al., 1966). The terminals of the nigrostriatal 

projection locate to the dorsal striatum which consists of the caudate and 

putamen. As the axons enter the dorsal striatum, they collateralize into branches 

that contain numerous small varicosities, 0.5-0.7 µm in diameter (Anden et al., 

1966).   

The use of the chemical neural toxin, 6-hydroxydopamine (6-OHDA), greatly 

helped to understand the physiological function of nigrostriatal DA neurons on 

their target cells in the striatum (Bloom, 1975; Ungerstedt, 1976). 6-OHDA is a 

hydroxylated analog of DA and selectively destroys DA and norepinephrine 

neurons by inducing oxidative stress and mitochondria defects in those neurons 

(Blum et al., 2001). When injected into the DA bundle or SN in rat, firing rates of 

striatal neurons increased ipsilateral to the lesion, suggesting the inhibitory 

nature of the nigrostriatal DA system (Arbuthnott, 1974). We now know that the 

nigrostriatal projection releases DA that activates dopamine receptors on the 

medium spiny neurons in the dorsal striatum. 6-OHDA lesions of the nigrostriatal 

pathway is also widely used as a behavior model that demonstrates the 
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importance of the nigrostriatal pathway in movement initiation and balance 

maintenance (Alexander et al., 1990).  

Severe damage to SNpc was not generally accepted as one of the hallmarks of 

PD pathology until neuropathological studies of Hassler, Greenfield and 

Bosanquet (Greenfield and Bosanquet, 1953). It is now known that neuron loss in 

SNpc starts about six years before the first motor symptom is clinically detectable, 

at which point around 75% of the SNpc DA neurons have died (Lees, 2007). Loss 

of DA in the dorsal striatum alters the downstream neurotransmission and leads 

to symptoms like tremor, bradykinesia and muscle rigidity (Dauer and 

Przedborski, 2003).   

In summary, the DA nigrostriatal pathway regulates motor behavior, and aberrant 

DAergic neurotransmission in this pathway leads to the pathological conditions 

that contribute to PD. 

THE MESOCORTICOLIMBIC PATHWAY AND DRUG OF ABUSE 

The nucleus accumbens, also called ventral striatum, arises developmentally 

with the dorsal striatum, has neurons similar to the dorsal striatum, and receives 

a DA innervation from VTA DA neurons (Heimer et al., 1997). In 1954, Olds and 

Milner carried out pioneering experiments revealing that rats repeatedly press 

levers to stimulate certain brain regions including NAc and septum (Olds and 

Milner, 1954). Later studies using direct brain stimulation mapped brain regions 

containing reward-relevant neurons. Those studies mainly focused on the 
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diencephalic medial forebrain bundle where we now know as part of the 

mesolimbic pathway (Wise and Rompre, 1989). 

Our knowledge of the neurochemical subtypes of reward-relevant neurons 

primarily derived from pharmacological studies, especially studies using drugs of 

abuse. Abusive drugs, like psychostimulants, opiates and nicotine, act through 

distinct molecular mechanisms to modulate DA levels within certain brain regions 

(Heikkila et al., 1975a; Heikkila et al., 1975b; Marks et al., 1986). 

Mesocorticolimbic DA pathways, which project mainly from VTA to the NAc and 

PFC, were soon identified as the reward-seeking pathways for psychostimulants 

cocaine and amphetamine. Lesions in the NAc blocked cocaine- and 

amphetamine- induced reward behavior (Lyness et al., 1979; Roberts et al., 

1980). Rats could learn to self-administer amphetamine into the NAc (Hoebel et 

al., 1983) as well as lever-press for cocaine into mPFC (Goeders and Smith, 

1983). These results demonstrate that DAerigc neurotransmission in the 

mesocorticolimbic pathway is a key regulator for reward, and recently studies 

have shown that repeated exposure to drugs of abuse alters brain reward 

pathways and often leads to drug addiction (Hyman et al., 2006). 

In summary, the two major DA pathways, the nigrostriatal pathway and the 

mesocorticolimbic pathway, are essential for key brain functions such as 

locomotion, reward and cognition. Dysregulation of DAergic neurotransmission in 
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these pathways contribute to neurological disorders such as PD, schizophrenia 

and drug addiction. 

I.B Presynaptic Dopaminergic Neurotransmission 

Dopaminergic neurotransmission is characterized by dopamine release from the 

presynaptic terminal, binding of DA to multiple pre- and post-synaptic receptors 

and reuptake of DA by the presynaptic dopamine transporter (DAT). DA and 

other monoamine neurotransmitters activate G-protein coupled receptors 

(GPCR), but not ligand-gated ion channels, to achieve their modulatory effects at 

the order of subseconds to minutes. This slow-acting nature of DA requires a 

more complicated sequence of biochemical steps including secondary 

messengers, protein kinases and phosphatases (Greengard, 2001). DA neurons 

carry two distinct firing patterns, tonic firing, in which DA neurons fire in a single 

spiking mode, and burst firing, consisting of consecutive spikes with decreasing 

amplitude and increasing duration (Grace and Bunney, 1984b, a). In this section, 

I will mainly focus on presynaptic DA neurotransmission with an emphasis on 

reuptake of neurotransmitters as a primary mechanism to terminate 

dopaminergic neurotransmission. 

DA SYNTHESIS AND METABOLISM 

The biosynthesis of DA has been established for over fifty years (Molinoff and 

Axelrod, 1971). The DA precursor, L-tyrosine, is converted to L-DOPA by the 

enzyme tyrosine hydroxylase (TH). Then, aromatic L-amino acid decarboxylase 
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(AADC) transforms L-DOPA to DA. The metabolism of DA involves primarily two 

enzymes: monoamine oxidase (MAO) and catechol-O-methyltransferase (COMT). 

In the 1950s, it was already known that MAO deaminated all catecholamines 

including DA, norepinephrine and epinephrine. However, even after the 

administration of MAO inhibitor, increase in the blood pressure induced by 

norepinephrine to cats was still rapidly reverted, which prompted researchers at 

that time to search for another unknown enzyme that metabolized and 

inactivated norepinephrine (Axelrod, 2003). Axelrod and colleagues soon purified 

COMT and demonstrated that it O-methylated catechols in vitro and in vivo 

(Axelrod and Tomchick, 1958; Axelrod and Laroche, 1959). The main metabolite 

for DA is homovanillic acid (HVA), which could be easily detected in urine. 

DISCOVERY OF DA UPTAKE 

The discoveries of enzymes like MAO, COMT and acetylcholinesterase (AchE) 

convinced researchers that termination of neurotransmission was mediated by 

enzymatic inactivation of neurotransmitters. This is true for acetylcholine (Ach) 

since Ach is rapidly degraded into choline and acetyl CoA by AchE.  However, 

similar to MAO inhibition, inhibition of COMT activity also failed to block the blood 

pressure-elevating action of norepinephrine, suggesting other mechanisms are 

responsible for terminating norepinephrine action. It was not until the late 1950s, 

when tritium labelled catecholamines became available, that the neurotransmitter 

uptake mechanism was discovered. Axelrod’s group first found that radioactive 
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norepinephrine was accumulated by sympathetic nerve terminals after 

intravenous injection in mice and cats (Hertting and Axelrod, 1961). Removing 

those sympathetic nerves strikingly reduced 3[H]-norepinephrine and epinephrine 

in those chronically denervated structures (Hertting et al., 1961). Based on these 

observations, they proposed that the reuptake of norepinephrine by the same 

nerve that released it was a novel mechanism that terminated neurotransmission. 

Soon, DA and serotonin were also found to be inactivated by uptake into their 

respective presynaptic terminals (Snyder and Coyle, 1969; Iversen, 1971).  

MEASURING DA UPTAKE IN VIVO 

Studying DA uptake using in vitro systems, like brain homogenates and 

synaptosome preparations (Snyder and Coyle, 1969; Bonanno and Raiteri, 1987), 

gave important information in terms of substrate and drug affinity on the transport 

system, but it cannot tell how DA release and reuptake are regulated 

physiologically. To address this question, multiple approaches have been 

developed over years to measure DA release and reuptake in vivo. These 

approaches provide the temporal-spatial resolution of DA release in brain regions 

of interest, and measure the amount of DA that is released during neuronal 

stimulation.  

Starting in the early 1980s, fast scan cyclic voltammetry (FSCV), in which a 

carbon fiber electrode implanted in the brain detects surrounding DA by 

oxidization, has been used to measure electrically evoked DA release and 
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reuptake (Marsden et al., 1988). With the subsecond temporal resolution and 

micrometer-dimension spatial resolution, FSCV allows acute kinetic 

characterization of DA release and reuptake (Nicholson, 1995). Estimates for the 

Km of DA uptake ranges from 0.2 to 2 µM, depending on the brain region 

(McElvain and Schenk, 1992; Wu et al., 2001). Vmax, which indicates maximum 

rate of release, can also be calculated from DA voltammetric recordings. DA 

uptake in the ventral striatum was reported to be less efficient than in the dorsal 

striatum (Stamford et al., 1988; Cass et al., 1992), whereas in the amygdala and 

mPFC, DA uptake appeared to be very low (Garris and Wightman, 1994; Jones 

et al., 1995). It was suggested that in regions with low dopamine transporter 

(DAT) expression and activity, the norepinephrine transporter (NET) may take 

over DAT’s role to facilitate DA uptake (Yamamoto and Novotney, 1998; Moron 

et al., 2002). Enzymatic inactivation of DA by COMT is also involved in these 

brain regions (Wayment et al., 2001; Matsumoto et al., 2003). Moreover, FSCV 

can be achieved in a freely moving awake animal that allows studies correlating 

the time-course of behavior and DA signals (Robinson et al., 2003).  

Another common method to monitor extracellular DA levels in vivo is 

microdialysis, in which a semi-permeable membrane containing probe is 

surgically implanted into the brain region of interest and perfused with fluid 

(Bourne, 2003). Dialysate is collected over time and analyzed using high-

performance liquid-chromatography (HPLC) to quantify DA concentration 

changes as a function of time. This method has slow temporal resolution 
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(minutes to hours) and a larger dialysis probe leads to more tissue damage. 

However, it can also be achieved in a freely moving awake animal that allows 

studies correlating the time-course of behavior and events in neurochemistry.  

Neither of the invasive methods mentioned above can be used in human brain. 

However, the development of positron emission tomography (PET) imaging and 

a series of radiotracers that labels dopamine receptors, DAT or precursors of DA 

enables direct measurement of components of the DA system in the living human 

brain (Volkow et al., 1996). 

Taken together, the strength of presynaptic DA neurotransmission is controlled 

by molecular mechanisms regulating DA synthesis, release as well as reuptake. 

Presynaptic DA reuptake is the primary mechanism to temporally and spatially 

restrain DA neurotransmission. Techniques such as FSCV and microdialysis help 

us to elucidate mechanisms controlling DA release and reuptake in vivo. 

I.C Dopamine Transporter: Pharmacology, Structure and Function 

The discovery of a neurotransmitter reuptake mechanism by Axelrod started an 

area of research investigating the pharmacological properties of the reuptake 

sites in the brain. However, genes that encode proteins that are required for high-

affinity neurotransmitter reuptake were not identified until the early 1990s, with 

the help of molecular biology. Using expression cloning techniques, Amara and 

colleagues first isolated a single cDNA clone that encoded the human 

norepinephrine transporter (NET) (Pacholczyk et al., 1991). The amino acid 
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sequence of NET shared significant amino-acid identity with the previously 

published rat γ-aminobutyric acid transporter (GAT) (Guastella et al., 1990). 

These observations led to the identification of a new gene family for 

neurotransmitter transporters, the SLC6 (solute carrier 6) gene family. Using 

conserved sequences in NET and GAT, genes that encode DAT and the 

serotonin transporter (SERT) were soon discovered through homology screening 

in mammalian cDNA libraries, starting the era of structure, function and genetic 

studies of the neurotransmitter transporters (Blakely et al., 1991; Kilty et al., 1991; 

Shimada et al., 1991; Usdin et al., 1991). The human DAT gene (SLC6A3) maps 

to chromosome 5p15.3. It spans over 64 kilo base pairs, consisting of 15 exons 

separated by 14 introns (Kawarai et al., 1997). Hydrophobicity analysis revealed 

that DAT protein, as well as other neurotransmitter transporters in the same gene 

family, contained twelve putative transmembrane domains (TMDs), one large 

glycosylated loop between TMD3 and TMD4, and cytoplasmic amino and 

carboxyl termini. In this section, I will discuss the pharmacological properties of 

DAT, especially how psychostimulants cocaine and amphetamine interact with 

DAT and alter transporter function. Then I will focus on the structure/function 

analysis of DAT with an emphasis on DA transport mechanism.  

PHARMACOLOGY 

DAT is a well-established molecular target for many pharmacological agents that 

affect brain function including psychostimulants, antidepressants and neurotoxins 
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(Amara and Sonders, 1998). The pharmacology of DAT is mainly examined in 

brain synaptosome preparations or heterologous expression systems expressing 

DAT cDNAs. Generally, the results from the two systems agree with each other. 

Ritz and colleagues first related the effect of cocaine with DAT inhibition (Ritz et 

al., 1987). Cocaine is a non-selective, competitive inhibitor for all three 

monoamine transporters including DAT, SERT and NET. Tricyclic antidepressant, 

methylphenidate (Ritalin), nomifensine and bupropion are selective inhibitors for 

DAT and NET while GBR12909 and WIN35,426 have been developed as 

selective DAT inhibitors (Kristensen et al., 2011). Some of these compounds are 

currently used in the treatment of neuropsychiatric disorders such as depression 

and attention deficit hyperactivity disorder (ADHD). 

Amphetamines, on the other hand, are substrates for DAT. These drugs are 

weak bases that can reverse the direction of neurotransmitter transport through 

monoamine transporters and release vesicular monoamines into the cytoplasm 

(Sulzer et al., 1995; Jones et al., 1998a). Amphetamines’ effect on blocking 

uptake of catecholamine into different brain regions was known long before the 

identification of the transporter proteins (Ferris et al., 1972). At that time, it was 

experimentally difficult to discriminate between release and uptake inhibition by 

simply measuring [3H]-DA uptake since a drug that causes release and blocks 

uptake could release part of the previously taken up [3H]-DA, making it appears 

as though there is uptake inhibition. Superfusion technique was first developed to 
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address this problem. It is based on the presumption that if the rate of perfusion 

is rapid enough, DAT uptake could be ignored and any change from the baseline 

is considered as additional release (Raiteri et al., 1974). Using this technique, it 

was demonstrated that amphetamine caused DA release and this release could 

be blocked by uptake inhibitors like cocaine (Parker and Cubeddu, 1986).  In vivo 

microdialysis experiments confirmed these results and further showed that 

amphetamine-induced release is independent of neuron firing (Nomikos et al., 

1990).  

After the cloning of DAT, [3H]-1-methyl-4-phenylpridinium ion (MPP+), which 

could be taken up by DAT, was discovered and used to measure amphetamine-

induced release or efflux. Neurotoxin MPP+ is a major metabolite of neurotoxin 1-

methyl-4-phenyl-1,2,3,6-tetrahydropridine (MPTP) that can cause permanent 

symptoms of  PD in human and mammals. Amphetamine and its derivatives 

inhibited uptake of substrate [3H]-MPP+ and stimulated transporter-mediated 

efflux of the preloaded [3H]-MPP+ in cell lines that stably express DAT (Wall et al., 

1995). The effect of cocaine and amphetamines on DAT is illustrated in Figure I-

2.  
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Figure I-2. DAT is a direct molecular target for psychostimulants cocaine 

and amphetamines. A. Normally, released DA is removed from synapses 

through DAT-mediated high affinity reuptake. B. Cocaine is a competitive 

inhibitor for DAT. It directly binds to DAT and inhibits DAT reuptake function 

that results in elevated synaptic DA levels and prolonged effect on target 

neurons. C. Amphetamines are DAT substrates that are transported into the 

presynapse by DAT and cause DAT-mediated DA efflux. The dual effects of 

uptake inhibition and DA efflux result in enhanced synaptic DA levels and 

prolonged stimulation on pre- and post-synaptic receptors. 
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STRUCTURE/FUNCTION OF NEURONAL DAT 

The first insight into a DA transport mechanism came from the observation that 

extracellular sodium was required for substrate translocation (Wheeler et al., 

1993). It is well-established that DAT requires sequential binding of two sodium 

ions and cotransport of one chloride ion to translocate DA across the plasma 

membrane. The driving force for DAT-mediated reuptake is the sodium 

concentration gradient across the plasma membrane generated by Na+/K+ 

ATPase. Extensive biochemical and mutagenesis studies in heterologous 

expression systems have been performed aiming to elucidate the secondary 

structure of DAT. The substituted cysteine accessibility method (SCAM) was 

used to determine residue accessibility and define the role of individual residues 

for binding of substrates or inhibitors. The Cysteine 342 at the third intracellular 

loop of DAT were more reactive to the thiol-modifying agents during uptake, 

suggesting this residue may be located on part of DAT associated with 

cytoplasmic gating (Chen et al., 2000). Using site-directed mutagenesis, Loland 

et al. showed that mutation of intracellular tyrosine to alanine (Y335A) completely 

abolished DA uptake, further supporting the third intracellular loop’s role in the 

substrate translocation (Loland et al., 2002). In search for the DA binding site, 

studies were conducted by mutating aromatic and acidic amino acids in 

transmembrane domains (TMDs). Replacement of aspartate and serine residues 

in TMD1 and TMD7, respectively drastically reduced DA uptake (Kitayama et al., 

1992) and mutating phenylalanine155 in TMD3 to alanine also abolished DA 
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affinity, suggesting these residues are required for substrate recognition (Lin et 

al., 1999).  

A major breakthrough to determine the tertiary structure of DAT came from the 

high resolution crystal structure of bacterial Leucine transporter (LeuT) with 

sequence homology and functional similarities to the SLC6 transporters 

(Yamashita et al., 2005). It was reported from the LeuT crystal structure that 

TMD1, TMD3, TMD6 and TMD8 formed the central substrate binding pocket to 

accommodate the substrate (Leucine) and two sodium ions. Three states of 

transport mechanisms were proposed: outward-facing, occluded and inward-

facing. Substrate and sodium binding happened in an occluded state devoid of 

water. 

However, the LeuT model has limitations in terms of answering questions like 

some parts of the structures of SLC6 transporters that share minimum similarity 

to LeuT, as well as substrate selectivity and transport inhibition by addictive 

compounds. In 2013, a 3.0 Å x-ray crystal structure of the Drosophila 

melanogaster dopamine transporter (dDAT) in complex with TCA nortriptyline 

was reported (Penmatsa et al., 2013). It captured dDAT in an inhibitor-bound, 

outward facing conformation and showed TCA nortriptyline targeted the substrate 

binding site and stabilized the open conformation. Two sodium and one chloride 

ions were located adjacent to the nortriptyline binding pocket, indicating direct 

coupling of ions and inhibitor binding. Intriguingly, this crystal structure also 
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revealed a cholesterol binding site and a C-terminal latch that interacted with the 

cytoplasmic face of the transporter, presumably for modulation of transport 

function. More recently, the same group published another dDAT crystal 

structure in complex with its substrate DA, as well as psychostimulants cocaine 

and amphetamine (Wang et al., 2015).  The DAT central binding pocket was 

further divided into three subsites and the subsites were responsible for defining 

ligand specificity. Substrates including DA, DA analogue 3,4-

dichlorophenethylamine (DCP) and amphetamine were bound to DAT prior to full 

closure of the extracellular gate, rather than the occluded state shown in LeuT. In 

contrast, inhibitors like cocaine were bound to the outward-facing DAT, acting 

like a wedge to block DAT in an outward-open conformation. Altogether, the 

structural information of DAT provides a molecular basis for designing more 

selective monoamine transporter inhibitors. 

Other than the classic transport mechanism, DAT also exhibits channel-like 

activity. In human DAT-expressing Xenopus laevis oocytes, two-electrode 

voltage-clamp recording revealed a constitutive leak current that was different 

from transport-associated current in terms of ion and voltage dependence 

(Sonders et al., 1997). The physiological consequences of both transport-

associated current and constitutive leak current was shown to modulate DA 

neuron excitability, as DAT substrates DA and amphetamine increased the firing 

rate of cultured rat DA neurons (Ingram et al., 2002; Carvelli et al., 2004).  
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In summary, DAT belongs to the SLC6 gene family of sodium and chloride-

dependent symporters. It is a direct molecular target for psychostimulants 

cocaine and amphetamines. Cocaine acts as a competitive inhibitor that binds 

DAT at its outward facing state, whereas amphetamines are DAT substrates that 

could be transported through DAT and subsequently lead to DA efflux. ADHD 

therapeutic agents Ritalin (methylphenidate) and Adderall 

(amphetamine/dextroamphetamine) also directly act on DAT, making DAT an 

important molecular target for treating certain types of neuropsychiatric disorders. 

I.D Dopamine Transporter: Role In Neuropsychiatry Disorders 

The physiologic role of DAT in an intact animal was first studied in DAT knock-

out (KO) mice generated by in vivo homologous recombination technique (Giros 

et al., 1996). These mice exhibited spontaneous hyperlocomotion. Biochemical 

changes in striatal DA neurotransmission assessed by FSCV showed drastically 

increased extracellular DA clearance time in KO animals, which could explain the 

marked increase in the spontaneous locomotor activity. Intriguingly, KO mice 

also displayed significant reduction in evoked DA release, suggesting that the 

tissue content of DA or the releasable pool of DA were decreased. Direct 

measurement of DA content by HPLC revealed that DA levels were reduced by 

95% in the dorsal striatum of KO mice compared with wild-type (wt) mice(Jones 

et al., 1998b). These results demonstrated that DAT is a key regulator of 

maintaining presynaptic DA homeostasis and when inactivated, profound 
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neuronal plasticity occurs. In this section, I will discuss DAT’s role in drug 

addiction as well as recent human genetic studies that link DAT to multiple 

neuropsychiatric disorders. 

DOPAMINE TRANSPORTER IN DRUG ADDICTION 

As discussed previously, psychostimulants cocaine and amphetamine inhibit 

DAT function through different mechanisms. The net effect is a marked increase 

of synaptic DA levels that leads to prolonged stimulation of dopaminoceptive 

neurons. This event is considered as the basis for the rewarding effect of cocaine 

and amphetamine.  

Early attempts to understand DAT’s role in drug addiction came mainly from 

studies in DAT-KO mice. In homozygous mice, psychostimulants cocaine and 

amphetamine failed to further increase locomotor activity, suggesting DAT plays 

a vital role of locomotor effects of psychostimulants (Giros et al., 1996). 

Paradoxically, the rewarding property of cocaine remained. DAT KO mice still 

self-administrated cocaine (Rocha et al., 1998) and cocaine conditioned a place 

preference in these animals (Sora et al., 1998). Even though analysis of released 

DA by microdialysis in DAT KO mice clearly showed cocaine and amphetamine 

failed to increase DA levels in dorsal striatum, they still elevated DA levels in NAc 

(Carboni et al., 2001), probably through indirect regulation on the DA neurons in 

VTA (Budygin et al., 2002). Mapping of the sites of cocaine binding and neuronal 

activation suggested serotonergic brain regions might be involved in this 
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response (Rocha et al., 1998). Further studies reported that DAT and SERT 

double KO mice eliminated cocaine-induced CPP, indicating both dopaminergic 

and serotonergic mechanisms are required for the rewarding effect of cocaine 

(Sora et al., 2001).  

Using DAT-KO mice as a model to study DAT’s role in addiction raised some 

concerns. Most of all, complete deletion of DAT caused tremendous adaptive 

changes in DA neurotransmission in terms of DA synthesis, storage and receptor 

expression and function (Jones et al., 1999). These adaptive changes may 

significantly alter the normal reward pathway. Thus, Chen at al. proposed 

another way to test the DA hypothesis of cocaine reward by generating a knock-

in (KI) mouse line expressing a mutant DAT (L104V/F105C/A109V) that could 

still transport DA but had substantially reduced affinity for cocaine (Chen et al., 

2006). Therefore, doses of cocaine that normally inhibit wild-type DAT would not 

have an effect on this mutant DAT. The cocaine-insensitive DAT KI mice 

completely abolished cocaine-induced CPP while maintaining amphetamine’s 

effect. Cocaine also failed to stimulate locomotor activity in these mice. 

Biochemically, in the NAc, there was no significant increase in extracellular DA 

levels following cocaine but not amphetamine treatment in the KI mice, 

consistent with the behavior results. These data demonstrated that blockade of 

DAT is required for cocaine reward in mice with a functional DAT, and further 

confirmed the idea that cocaine-induced increase in extracellular DA in the NAc 

is critical in mediating cocaine reward. 
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Amphetamine’s action on DA neurotransmission is more complicated than 

cocaine. Amphetamine acts both on vesicular storage of DA and directly on DAT. 

Using the DAT KO mice, Jones et al determined that the vesicle-depleting action 

was the rate limiting factor in amphetamine’s biochemical effect (Jones et al., 

1998a). Since vesicular monoamine transporter (VMAT) functions to concentrate 

cytoplasmic DA into synaptic vesicles (Eiden et al., 2004), studies have focused 

on VMAT’s role in amphetamine’s locomotor and rewarding properties. 

Heterozygous VMAT2 KO mice, which expressed ~50% of VMAT2 compared to 

wt littermates, displayed enhanced amphetamine-induced locomotion but 

diminished reward behavior as measured by CPP (Takahashi et al., 1997). More 

recently, a selective VMAT2 inhibitor, (+)-CYY477, blocked both locomotor and 

self-administration behaviors stimulated by amphetamines without affecting those 

induced by cocaine (Freyberg et al., 2016). These results indicate that VMAT2, 

but not DAT, plays a critical role in the acute actions of amphetamines but not 

those of cocaine. 

DOPAMINE TRANSPORTER IN NEUROPSYCHIATRIC DISORDERS 

The fact that DAT is an important target site for some therapeutic agents makes 

it a candidate gene for neuropsychiatric disorders. In vivo brain imaging 

techniques, such as PET, using selective DAT ligands, have been wildly used to 

measure monoamine transporter levels in neuropsychiatric disorders (Laakso 

and Hietala, 2000). These studies reported reduced DAT densities in patients 
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with ADHD, PD and major depression (Kim et al., 1997; Dougherty et al., 1999; 

Laasonen-Balk et al., 1999). Based on this evidence, studies have been focused 

on the identification of polymorphic variants in the coding and non-coding regions 

of DAT. The first discovery that linked a DAT polymorphism to ADHD was the 

association between ADHD and the 10-repeat allele variable number tandem 

repeat (VNTR) in the 3ʹ-untranslated region (3ʹ-UTR) of human DAT (Cook et al., 

1995; Curran et al., 2001). Studies examining the functional variants in hDAT 

coding sequence might help clarify relationships between DAT activity and the 

risk for neuropsychiatric disorders. Using temperature gradient capillary 

electrophoresis, Mazei-Robison and colleagues screened 112 subjects that were 

diagnosed with ADHD and identified one nonsynonymous single nucleotide 

polymorphism (SNP) A559V in two male siblings (Mazei-Robison et al., 2005). 

Biochemical and function analysis in heterologous expression system showed 

that this A559V DAT coding variant had normal DA uptake and surface 

expression but exhibited anomalous DA efflux (Mazei-Robison et al., 2008). 

Remarkably, the two most common ADHD medications, amphetamine and 

methylphenidate, both blocked A559V DAT-mediated DA efflux, whereas these 

drugs had opposite actions at wt-DAT. To pursue the significance of this finding 

in vivo, the same group generated an A559V DAT KI mouse line and observed 

elevated extracellular DA levels, lack of amphetamine-stimulated DA efflux and 

disruptions in basal and psychostimulant-evoked locomotor behavior in these 

animals compared with wild-type littermates (Mergy et al., 2014). Additional DAT 
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coding variants have been identified that are associated with ADHD, autism 

spectrum disorder (ASD) and adult Parkinsonism (Sakrikar et al., 2012; Hamilton 

et al., 2013; Hansen et al., 2014).  

Other than polymorphism studies, human molecular genetic studies have 

recently discovered an autosomal recessive disorder that is directly caused by 

missense DAT mutations. To understand molecular basis of infantile 

parkinsonism-dystonia (IPD), Kurian and colleagues identified two DAT 

homozygous missense mutations (L368Q and P395L) in two relating families 

using autozygosity mapping techniques (Kurian et al., 2009). As a severe 

neurological syndrome that usually involves complex movement disorder with 

dystonia, axial hypotonia and limb hypertonicity, IPD is rare but is often 

misdiagnosed since the clinical symptoms can mimic certain types of cerebral 

palsy (Assmann et al., 2004). Functional analysis of mutant DAT proteins 

showed that both mutants were devoid of uptake activity and failed to express at 

the plasma membrane. This disorder was named dopamine transporter 

deficiency syndrome and the same group later identified eleven more children 

with this disorder (Kurian et al., 2011). These findings further demonstrate the 

importance of DAT in DA homeostasis in humans. 

Together, the findings described above demonstrate that inhibition of DAT 

function in NAc is a prerequisite for the rewarding property of cocaine but not 

amphetamine. Loss-of-function DAT mutations cause dopamine transporter 
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deficiency syndrome in humans and multiple DAT coding variants are associated 

with neuropsychiatric disorders such as ADHD, ASD and adult parkinsonism. 

I.E Dopamine Transporter: Regulation 

Shortly after the cloning of the gene encoding DAT, much effort has been 

directed towards understanding the molecular and cellular mechanisms for 

regulating DAT activity and membrane availability at the presynaptic membrane. 

These studies have resulted in identification of kinases, receptors, lipids and 

scaffolding proteins that modulate DAT biosynthesis, targeting to the plasma 

membrane and endocytic trafficking. Key domains and residues have also been 

found in the DAT amino acid sequence that allows regulation of transporter 

function through direct protein-protein interactions. In this section, I will discuss 

DAT regulatory mechanisms at three different stages: synthesis and targeting to 

the plasma membrane, endocytosis, as well as post-endocytic sorting. Finally, I 

will review known DAT interacting proteins and how they regulate DAT activity. 

SYNTHESIS AND TARGETING DAT TO THE PLASMA MEMBRANE 

Biosynthesis and assembly of DAT, as well as other plasma membrane proteins, 

occurs at the endoplasmic reticulum (ER) and Golgi apparatus inside the cell. 

Compelling evidence suggests that DAT exists as oligomeric complexes inside 

the cell and oligomerization is required for successful export of transporters from 

the ER. The apparent molecular weight of DAT increased from approximately 

85kDa to approximately 195kDa determined with nonreducing SDS-PAGE after 
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cross-linking with either copper phenanthroline or bis-(2-

methanethiosulfonatoethyl) amine hydrochloride, indicating the transporters 

formed a homodimer (Hastrup et al., 2001). Cysteine 306 (Cys306) at the 

extracellular end of TMD6 was then identified to function at the dimerization 

interface. This result was confirmed later using co-immunoprecipitation (Co-IP) of 

DAT with different tags as well as Fluorescent Resonance Energy Transfer 

(FRET) on live cells (Sorkina et al., 2003; Torres et al., 2003b). FRET data 

suggested that DAT oligomerized both at the plasma membrane and ER and that 

co-expression of an ER-retained DAT blocked ER exit of wt-DAT, suggesting a 

role for oligomerization in efficient ER export (Sorkina et al., 2003). DAT 

sequence that is responsible for efficient ER export was examined using 

systematic deletions and alanine substitutions in the DAT C-terminus and 

subsequently looking at cellular localization with live cell fluorescent microscopy 

and cell surface biotinylation (Miranda et al., 2004). The C-terminal glycine 585, 

lysine 590 and glutamine 600 were identified and, when mutated into alanine, 

these three DAT mutants failed to traffic to the dendrites or axon processes in 

cultured primary rat midbrain neurons. 

Anterograde transport of cargos from ER to Golgi is mediated by specific coat 

protein complexes (COP). Sec24 is one of the components and is involved in 

cargo recognition and recruitment at the ER (Lord et al., 2013). It was shown that 

DAT and NET, but not SERT, used Sec24D for ER export (Sucic et al., 2011). 

Knocking down Sec24D, but not Sec24C in Hela cells decreased DA uptake. 
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Moreover, the DAT C-terminal lysine leucine (KL) sequence was proposed to 

interact with the COPII machinery. 

At the Golgi, transporters undergo post-translational modifications. N-linked 

glycosylation sites in the second extracellular loop were found in all monoamine 

transporters. Different glycosylation patterns of DAT were identified in different 

species, different brain regions and during development (Lew et al., 1991; Patel 

et al., 1993; Patel et al., 1994). Functional importance of N-linked glycosylation 

was examined using transporter mutants that abolished these sites. These 

mutants displayed reduced expression at the plasma membrane but retained 

ligand binding and substrate transport properties, suggesting N-linked 

glycosylation is essential for transporter membrane targeting (Tate and Blakely, 

1994; Melikian et al., 1996; Li et al., 2004)  

Following the synthesis and export from ER and the Golgi apparatus, DAT is 

targeted to the plasma membrane. Electron microscopy studies using 

immunogold labeling showed that DAT was localized at the plasma membrane of 

both perisynaptic region of presynaptic membrane as well as somatodendritic 

compartments (Hersch et al., 1997; Nirenberg et al., 1997b). Yet, the molecular 

mechanisms that are responsible for targeting DAT to these different subcellular 

locations are not clear.  

Using DAT C-terminus as bait in a yeast two-hybrid screening, PICK1, a PDZ 

domain protein interacting with C-kinase 1, was identified as a DAT interacting 
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protein (Torres et al., 2001). The PDZ binding site in DAT was mapped to the last 

three residues at the C-terminus (LKV). Coexpression of DAT and PICK1 in 

HEK293 cells promoted DAT surface levels. Deletion of the PDZ-binding site of 

DAT abolished the PICK1 association and failed to target DAT to the axons. 

These results suggested that the PDZ-mediated DAT-PICK1 interaction might be 

involved in the presynaptic targeting of DAT. However, subsequent investigation 

of DAT C-terminus function revealed that disruption of the PDZ-binding domain 

either through addition of an alanine to the hDAT C terminus (+Ala), or alanine 

substitutions of LKV (AAA_618-620) affected neither plasma membrane targeting 

nor targeting into sprouting neurites of differentiated N2A cells (Bjerggaard et al., 

2004). Instead, alanine substitutions of RHW (615-617) caused transporter ER 

retention while preserving its ability to bind PICK1. Thus, although residues in the 

hDAT C-terminus are indispensable for proper targeting, PDZ domain 

interactions are not required. In order to understand the functional significance of 

the PDZ-binding domain in DAT in vivo, Rickhag et al. generated two different 

DAT KI mice with disrupted PDZ-binding motif (DAT-AAA and DAT+Ala) 

(Rickhag et al., 2013). Surprisingly, both mice lines exhibited drastic loss of DAT 

expression in striatum that led to hyperlocomotion and attenuated response to 

amphetamine. These phenotypes were not dependent on PICK1 since PICK KO 

mice displayed normal DAT immunoreactivity both in the DA neuron cell body 

and terminals. These findings suggest that PDZ-domain interactions are critical 

for synaptic distribution of dopamine transporter in vivo, but DAT-PICK1 
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interaction may not be required. How the DAT PDZ-domain modulates its plasma 

membrane targeting is still not clear. I will address this question in Chapter III. 

Taken together, these studies demonstrate that DAT oligomerization is required 

for transporter ER export and the DAT C-terminal sequence contain residues 

important for ER export and subsequent plasma membrane targeting. 

DAT ENDOCYTOSIS 

Plasma membrane DAT undergoes constitutive and regulated endocytic 

trafficking between plasma membrane and endosomal compartments. 

Elucidation of DAT primary sequence revealed potential phosphorylation sites for 

protein kinases such as protein kinase A and C (PKA and PKC) and calmodulin-

dependent kinase II (CaMKII), indicating that phosphorylation may regulate DAT 

function (Gorentla et al., 2009). In COS cells transiently expressing DAT, 

Kitayama et al. first observed that activation of PKC using phorbol 12-myristate 

13-acetate (PMA) decreased ligand binding and uptake velocity (Kitayama et al., 

1994). This downregulation of DAT activity was also reported in other 

heterologous cell lines as well as synaptosome preparations (Copeland et al., 

1996; Vaughan et al., 1997; Zhu et al., 1997). Kinetic studies of [3H]-DA uptake 

showed that the PMA-induced reduction of DAT activity was due to a decrease in 

maximum uptake velocity (Vmax) with no change in substrate affinity (Km), 

suggesting PKC regulated DAT activity by decreasing DAT surface levels 

(Copeland et al., 1996). In addition, electron microscopy studies revealed a 
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significant intracellular/endosomal DAT pool in DA neurons, further supporting 

that DAT may undergo regulated endocytosis (Nirenberg et al., 1997b). Direct 

examination of DAT endocytosis using either biochemical tools or 

immunofluorescence demonstrated that PKC activation reduced steady-state 

DAT surface levels (Daniels and Amara, 1999; Melikian and Buckley, 1999). The 

mechanisms facilitating this sequestration were first demonstrated by Loder and 

Melikian. They showed that DAT robustly internalized at basal state and PKC 

activation accelerated DAT endocytosis and that these two processes were 

mediated by distinct mechanisms (Loder and Melikian, 2003).  

Given that PKC activation increased DAT phosphorylation (Huff et al., 1997; 

Vaughan et al., 1997), it was hypothesized that the functional effect of PKC 

activation on DAT was directly coupled to phosphorylation. Using peptide 

mapping and epitope-specific immunoprecipitation, Foster et al. identified a 

group of six serines clustered at the distal end of the cytoplasmic N terminus that 

were responsible for most of the basal and PKC-stimulated DAT phosphorylation 

(Foster et al., 2002). However, truncation of the first 22 amino acids at the N-

terminus containing these serines abolished detectable phosphorylation without 

affecting the PMA-induced reduction in transport capacity and endocytosis. In 

this background truncation construct, systematic mutation of all the 

phosphorylation consensus serines and threonines (Thr) in hDAT, alone and in 

various combinations, also did not alter the PMA effect in either HEK293 or N2A 

cells (Granas et al., 2003). These results indicate that PKC-stimulated DAT 



33 
 

endocytosis is not directly mediated by phosphorylation. The underlying 

mechanism and role of phosphorylation is not entirely clear. Thr53 was reported 

to be strongly phosphorylated by PMA in rodent striatal tissue and heterologous 

expression system and mutation of this residue reduced DAT Vmax and abolished 

amphetamine-induced substrate efflux, suggesting Thr53 is required for transport 

mechanism (Foster et al., 2012).  Ser6 was also reported to modulate transporter 

kinetics (Moritz et al., 2015). 

Most of the studies mentioned above used phorbol esters such as PMA to 

activate PKC, which mimics diacylglycerols (DAG). There are two classes of PKC 

that require DAG to be activated, the conventional PKC isoforms that requires 

both DAG and Ca2+, as well as the novel PKC isoforms that do not require Ca2+ 

for activation (Dempsey et al., 2000). What is the isoform specificity for PKC 

regulation of DAT? Different PKC isoform-specific inhibitors were used to identify 

specific PKC isoforms that could block PMA’s effect on DAT-associated transport 

current (Doolen and Zahniser, 2002). Selective inhibitors of conventional PKC, 

novel PKC isoform PKCδ and Ca2+ chelator EGTA significantly reversed PMA’s 

effects while novel PKC isoform, PKCε had no effect. Thus the primary PKC 

isoforms that regulate DAT activity and function are the conventional PKC 

isoforms. Further work exploring PKC isoform specificity revealed a more 

complicated mechanism of these kinases.  Conventional PKC isoform PKCβ KO 

mice had reduced striatal surface DAT, [3H]-DA uptake and amphetamine-

induced DA efflux yet exhibited higher novelty-induced locomotor activity, 
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supporting the role of PKCβ in DAT regulation (Chen et al., 2009). Moreover, 

PKCβ specific inhibitor LY279196 blocked the D2 agonist quinpirole-induced 

increase in DAT surface levels and activity, indicating that PKCβ functioned to 

elevate DAT surface levels, opposite to phorbol ester stimulation (Chen et al., 

2013).  

In addition to basal and PKC-stimulated endocytosis (Loder and Melikian, 2003; 

Sorkina et al., 2005), substrates and inhibitors also dynamically regulate DAT 

surface levels. Substrates such as DA and amphetamine promoted DAT 

endocytosis (Saunders et al., 2000; Chi and Reith, 2003; Johnson et al., 2005; 

Furman et al., 2009b), whereas cocaine exposure was reported to increase DAT 

surface levels (Daws et al., 2002; Little et al., 2002). Since endocytic trafficking 

acutely regulates plasma membrane protein availability, providing means of 

enhancing or diminishing DA neurotransmission, much effort has been directed 

towards understanding the molecular mechanisms of basal and regulated DAT 

endocytic trafficking. Specifically, studies have focused on two fundamental 

questions: 1) what are the endocytic signals that target DAT for basal and 

regulated endocytosis? And 2) what are the endocytic machineries that mediate 

basal and regulated DAT endocytosis?  

By overexpressing a dominant negative dynamin-1 mutant (K44A), Daniels and 

Amara showed that PKC-stimulated DAT endocytosis was abolished and thus 

concluded that PKC-stimulated DAT endocytosis is clathrin-mediated (Daniels 
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and Amara, 1999). However, some forms of clathrin independent endocytosis 

pathways also require dynamin (Sauvonnet et al., 2005; Fattakhova et al., 2006). 

In clathrin-mediated endocytosis (CME), cargo protein is recruited by clathrin 

adaptor proteins into clathrin-coated pits (CCP). The membrane then invaginates 

and pinches off the plasma membrane via GTPase dynamin, giving rise to 

clathrin-coated vesicles (CCV). The clathrin coat eventually disassociates from 

the vesicle and matures into early endosomes (Saheki and De Camilli, 2012). For 

cargo proteins that internalize through the clathrin-dependent pathway, they 

usually contain two classes of endocytic signals, the dileucine and tyrosine-

containing motifs, that allow clathrin adaptor proteins to recognize and recruit to 

CCP (Bonifacino and Traub, 2003). In searching for the DAT endocytic signals, 

Holton et al. tested candidate dileucine-type endocytic motifs in DAT (Holton et 

al., 2005). Surprisingly, after alanine-scanning mutagenesis of all the potential 

dileucine-type endocytic motifs, DAT still underwent basal and PKC-stimulated 

endocytosis tested through cell surface biotinylation, suggesting the DAT 

endocytic signal may not confine to the classically defined motifs. Instead, they 

conducted a gain-of-function screen by fusing the DAT N- and C- termini to the 

endocytic-defective membrane proteins and looked for robust internalization. 

Their results revealed that the DAT C-terminal FREKLAYAIA sequence is a novel 

endocytic signal for both basal and PKC-stimulated DAT endocytosis. To further 

define residues that governed basal and PKC-stimulated DAT endocytosis, the 

same group performed systematic alanine scanning mutagenesis within the 
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FREKLAYAIA motif and showed that alanine substituting DAT residues FREK 

(587-590) abolished PKC-stimulated DAT endocytosis, and markedly accelerated 

basal DAT internalization, comparable to that of wt-DAT during PKC activation 

(Boudanova et al., 2008b). Based on these results, the PKC-sensitive DAT 

endocytic brake model was proposed where PKC activation releases the DAT 

endocytic brake and the brake requires DAT FREK (587-590) residues. 

Consistent with the endocytic braking mechanism, DAT N-terminus was shown to 

negatively regulated DAT endocytosis and when deleted, DAT internalized more 

rapidly (Sorkina et al., 2009). These studies strongly suggested that both the 

intracellular DAT N- and C- termini are required for the DAT endocytic brake. 

Nevertheless, cellular factors that control this endocytic brake is unknown. I will 

address this question in Chapter II. 

The fact that DAT does not contain classic endocytic signals for clathrin-

mediated endocytosis raises questions about whether DAT internalizes through 

clathrin-dependent or independent pathways as well as whether DAT uses 

different endocytic machineries for basal vs. regulated endocytosis. Other than 

the dominant negative dynamin I mutant (K44A) (Daniels and Amara, 1999; 

Eriksen et al., 2009), knocking down endogenous clathrin heavy chain and 

dynamin II in cells lines with small interference RNA (siRNA) abolished basal and 

PKC-stimulated DAT endocytosis (Sorkina et al., 2005). Nonetheless, clathrin 

depletion over days could potentially affect other membrane trafficking processes 
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that also require clathrin. Thus, control experiments are necessary to test 

whether clathrin-independent endocytic mechanisms are intact.  

On the other hand, studies that examined DAT plasma membrane distribution 

and microdomain association revealed that DAT at least partially resided within 

the membrane lipid raft microdomains in neuronal derived cell line and 

synaptosomes (Adkins et al., 2007; Foster et al., 2008; Navaroli et al., 2011). 

Given that clathrin-independent endocytosis usually occurs at the lipid raft 

microdomains (Doherty and McMahon, 2009), Cremona et al. sought to 

understand the functional importance of DAT microdomain association and 

identified a lipid raft associated protein, flotillin-1 (Flot-1) as a mediator for PKC-

stimulated DAT endocytosis (Cremona et al., 2011). Either knocking down Flot-1 

with siRNAs or alanine substitution of a Flot1 palmitoylation site (C34A) 

abolished PKC-stimulated DAT endocytosis. Nonetheless, this result was 

challenged by a follow-up study done by Sorkina et al. They also used siRNAs to 

knockdown endogenous Flot1 and saw no inhibition of PKC-stimulated DAT 

endocytosis measured by a fluorescent antibody feeding assay (Sorkina et al., 

2013).  

The controversial results from the early studies may arise from the fact that 

dominant-negative protein overexpression and siRNA knockdown experiments 

require multiple days of treatments that could potentially affect normal cell 

function and protein trafficking in general. Development of specific inhibitors to 
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acutely block clathrin-mediated endocytosis provided a better way to answer 

these questions (Hill et al., 2009; Dutta et al., 2012). In fact, using ex vivo mouse 

striatal slice biotinylation, Gabriel et al. showed that acute dynamin inhibition with 

specific inhibitor, dynole, blocked PKC-stimulated DAT endocytosis but basal 

DAT endocytosis was unaffected (Gabriel et al., 2013). Although this study 

demonstrated a differential dependence upon dynamin for basal vs. PKC-

stimulated DAT endocytosis, it still did not address whether clathrin was required, 

since there are dynamin-dependent mechanisms that are independent of clathrin 

(Sauvonnet et al., 2005; Fattakhova et al., 2006). I will address this question in 

studies in Chapter II.  

Additional kinase pathways have been reported to modulate DAT endocytosis. 

Acute inhibition of phosphatidylinositol (PI) 3-kinase (PI3K), a component of the 

insulin pathway, triggered DAT endocytosis in synaptosomes and HEK cells 

(Carvelli et al., 2002). Further investigation of the downstream signaling of the 

insulin pathway revealed that Akt/PKB, a protein kinase effector immediately 

downstream of PI3K, also negatively regulated DAT endocytosis (Garcia et al., 

2005). Moreover, expression of a constitutively active Akt mutant reduced the 

ability of AMPH to decrease hDAT cell-surface expression, suggesting that Akt 

not only regulated basal DAT endocytosis but also modulate amphetamine-

stimulated DAT endocytosis. These results were confirmed in vivo using 

hypoinsulinemia rats that were depleted of insulin through the diabetogenic agent 

streptozotocin (STZ) (Williams et al., 2007). STZ treated rats exhibited reduced 
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striatal Akt function, decreased DAT surface levels and impaired amphetamine-

induced DA efflux and self-administration, suggesting that the insulin signaling 

pathway dynamically regulates DAT function and DA neurotransmission. There is 

also evidence that mitogen-activated protein kinase (MAPK) and tyrosine kinases 

negatively regulated DAT function and surface levels, reported in both 

heterologous expression systems and synaptosomes (Doolen and Zahniser, 

2001; Moron et al., 2003; Hoover et al., 2007).  

DAT POST-ENDOCYTIC SORTING 

After endocytosis, cargo proteins can be sorted for degradation or export to other 

cellular membrane compartments like the trans-Golgi network (TGN) (retrograde) 

or the plasma membrane (recycling). Different endocytic trafficking pathways are 

illustrated in Figure I-3. Many studies have investigated DAT’s post-endocytic 

itinerary, each with its own strengths and weaknesses. Studies have aimed to 

answer two fundamental questions: 1) how does DAT interact with the sorting 

machineries? And 2) what are the DAT post-endocytic itineraries under basal 

and regulated conditions? 
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Figure I-3. Overview of endocytic trafficking pathways. Internalized cargo 

proteins are either sorted for degradation through the late 

endosome/lysosome pathway or exported to other organelles for reuse. 

Recycling pathways reinsert cargo protein back to the plasma membrane 

while retrograde pathways transport cargos to the trans-Golgi network.  
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Melikian et al. first showed that after subcellular fractionation, the internalized 

DAT was enriched in transferrin receptor (TfR)-positive endosomal recycling 

compartments in PC12 cells (Melikian and Buckley, 1999). Using a biotinylation 

assay, Loder and Melikian reported that DAT constitutively recycles and PKC 

activation decreased DAT recycling rate, suggesting that DAT recycles back to 

the plasma membrane under basal and PKC-stimulated conditions (Loder and 

Melikian, 2003). Consistent with this result, Lee et al. reported that DAT 

interacted with the DA D2 receptor and this interaction promoted DAT reinsertion 

into the plasma membrane (Lee et al., 2007). This process was modulated by 

PKCβ activity (Chen et al., 2013). More recently, Richardson et al. showed that 

membrane potential changes alone rapidly drive DAT internalization from and 

reinsertion to the plasma membrane (Richardson et al., 2016). These function 

studies strongly suggest that DAT recycles back to the plasma membrane after 

endocytosis. 

Conversely, Miranda et al. showed that DAT was constitutively ubiquitinated and 

PKC activation drastically increased DAT ubiquitination that led to rapid 

transporter degradation (Miranda et al., 2005). Ubiquitination is a form of post-

translational modification that is associated with the cell’s major degradation 

pathways including lysosomes, proteasomes and autophago-lysosomes (Clague 

et al., 2012). Later, the same group identified an E3 ubiquitin ligase, Nedd4-2 

(neural precursor cell expressed, developmentally downregulated 4-2), in a RNA 

interference screen, that was required for PKC-mediated DAT ubiquitination and 
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endocytosis (Sorkina et al., 2006). These results indicate that DAT is sorted for 

degradation through ubiquitin-dependent pathways. 

Another set of studies aimed to understand DAT post-endocytic sorting via 

dynamic imaging experiments to track labeled DAT. Using a green fluorescent 

protein-tagged DAT (GFP-DAT), Daniels et al. reported that in an epithelia cell 

line, the internalized transporters were targeted to the lysosomal pathway and 

were completely degraded within 2 hrs of PKC activation (Daniels and Amara, 

1999).  

More recently, Eriksen et al. developed a fluorescent cocaine analog, JHC1-64, 

that enabled selective labeling of plasma membrane DAT. Using this compound, 

they reported that constitutively internalized DAT was primarily colocalized with 

late endosome marker rab7, less with short-loop recycling endosome marker 

rab4 and little with long-loop recycling endosome marker rab11 in AN27 cells as 

well as in primary cultured midbrain neurons (Eriksen et al., 2010b). Nonetheless, 

given the fact that cocaine itself increases DAT surface levels (Daws et al., 2002; 

Little et al., 2002), inhibitor analog could potentially mistarget DAT post-

endocytosis. A complimentary approach was used where one transmembrane 

protein, Tac, was fused to the DAT N-terminus (Tac-DAT), followed by an 

antibody-feeding assay to track the Tac-DAT post-endocytic route (Eriksen et al., 

2010b). Functional characterization revealed that the Tac-DAT fusion protein had 

drastically reduced uptake activity and increased apparent affinity for cocaine, 
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questioning the viability of this approach. Nonetheless, the same colocalization 

pattern was observed with Tac-DAT compared with the JHC1-64 compound. 

Based on these results, they concluded that constitutively internalized DAT was 

sorted to late endosomes/lysosomes and in part to a Rab4-mediated short loop 

recycling pathway.  

Studying DAT post-endocytic itinerary in heterologous expression systems may 

not reflect what really happens in native DA neurons. To address this question, 

Rao et al. generated a KI mouse line  expressing a hemagglutinin (HA)-tagged 

DAT (HA-EL2-DAT) (Rao et al., 2012). The HA epitope was inserted into the 

second extracellular loop (EL2) of DAT to allow selective labeling of plasma 

membrane DAT and subsequently tracking the transporter regional and 

subcellular distribution using an antibody feeding assay (Sorkina et al., 2006). 

Immunofluorescence and electron microscopy data revealed that in midbrain 

somatodendritic regions, a small fraction of HA-EL2-DAT was present in early 

and recycling endosomes and little in late endosomes and lysosomes (Block et 

al., 2015). In the dorsal striatum, little intracellular DAT was observed. However, 

it is unknown whether internalized DAT bound to a bulky antibody would 

accurately reflect native DAT endocytic targeting, particularly in light of recent 

studies demonstrating that proteins which undergo endocytic recycling target to 

degradation if they internalize bound to antibody (St Pierre et al., 2011). 
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Given the caveats in all of these studies, and limitations of the approaches they 

used, there is still an open question as to how DAT traffics in the absence of 

bound inhibitor analog or bulky antibodies. These questions will be addressed in 

the studies described in Chapter III. 

REGULATION OF DAT THROUGH PROTEIN-PROTEIN INTERACTIONS 

The discovery of regulated DAT trafficking indicated the involvement of transport-

interacting proteins. In addition, DAT expression at the presynaptic sites of DA 

neurons presumably involves interactions with other intracellular proteins in DA 

neurons. 

To test potential direct protein–protein interactions between α-synuclein and  

DAT, Lee et al. incorporated different domains of hDAT into the DNA binding 

domain of a yeast two hybrid system and examined their abilities to interact with 

the DNA-activating domains expressing full-length α-synuclein (Lee et al., 2001). 

Their results showed that DAT C-terminus directly bound to α-synuclein. The 

functional consequences of this interaction are unclear. In mouse fibroblast LtK(-) 

(leukocyte tyrosine kinase) cells, α-synuclein was reported to negatively 

modulate DAT activity (Wersinger and Sidhu, 2003), whereas a study in human 

neuronal cells revealed a 50% reduction of DAT activity upon siRNA knockdown 

of α-synuclein, suggesting endogenous α-synuclein promotes DAT activity 

(Fountaine and Wade-Martins, 2007). Nonetheless, α-synuclein KO mice did not 
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show any changes in DAT function (Dauer et al., 2002), questioning the 

importance of DAT-α-synuclein interaction in vivo. 

Since then, yeast two hybrid screenings were widely used in search of DAT 

interacting proteins. Using hDAT C-terminus as a bait against human brain cDNA 

library, CaMKII was identified and shown to direct interacted with the DAT C-

terminus last 11 amino acids and colocalize with DAT in cultured DA neurons 

(Fog et al., 2006). The DAT/CaMKII interaction promoted amphetamine-induced 

DA efflux. In addition, CaMKII phosphorylated serines in DAT distal N termini in 

vitro, and mutation of these serines abolished the stimulatory effects of CaMKII 

on amphetamine-induced DA efflux. These data suggest that CaMKII binding to 

the DAT C-terminus facilitates phosphorylation of the DAT N terminus and 

mediates amphetamine-induced DA efflux. Interestingly, mice that lack αCaMKII 

or express a permanently self-inhibited αCaMKII exhibited significantly reduced 

amphetamine-induced MPP+ efflux (Steinkellner et al., 2012). Consistent with 

these findings, coexpression of a CaMKII inhibitory peptide and hDAT in DA 

neurons of dDAT KO larvae blunted amphetamine-induced hyperlocomotion, 

demonstrating the importance of DAT/CaMKII interaction in amphetamine-

induced reward behavior (Pizzo et al., 2014). 

Syntaxin1A was also one of the proteins that was identified through a yeast two 

hybrid screening and was shown to interact with the DAT N-terminus (Lee et al., 

2004). Amphetamine was reported to increase the syntaxin1A/DAT association in 
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a cell line and in striatal synaptosomes, probably through a CaMKII-dependent 

mechanism (Binda et al., 2008).  

Using the hDAT C-terminal novel endocytic signal sequence FREKALAYAIA as a 

bait to probe a human substantial nigra cDNA library, Ras-like GTPase, Rin (for 

Ras-like in neurons; Rit2), was identified as a protein that interacted with DAT C-

terminal endocytic signal (Navaroli et al., 2011). Disruption of Rin function with 

GTPase mutants and shRNA-mediated Rin knockdown revealed that Rin was 

critical for PKC-mediated DAT internalization and functional downregulation.  

Since DAT and the DA D2 receptor both localize at the presynaptic membrane of 

DA neurons, Lee et al. sought to test whether there was a interaction between 

the two. Co-IP and domain analysis revealed a interaction between the DAT N-

terminus and the third intracellular loop of D2 receptor (Lee et al., 2007). This 

physical coupling facilitated the reinsertion of intracellular DAT to the plasma 

membrane and led to enhanced DA reuptake. Injecting inhibitory peptides into 

mice that disrupt the DAT-D2 receptor interaction resulted in decreased 

synaptosome DA uptake and enhanced locomotor activity, suggesting this 

interaction affects DA neurotransmission in vivo. Supporting this idea, D2 

receptor KO mice displayed decreased DAT function (Dickinson et al., 1999).  

Other DAT interacting proteins include protein phosphatase 2A (PP2A) (Bauman 

et al., 2000), LIM domain-containing adaptor protein Hic-5 (Carneiro et al., 2002), 

E3 ubiquitin ligase Parkin (Moszczynska et al., 2007) and synaptic vesicle protein 



47 
 

synaptogyrin-3 (Egana et al., 2009). The functional importance of the interactions 

of these proteins with DAT, especially in vivo, remains to be carefully 

characterized. 

Although much progress has been made to understand how DAT surface 

availability and function are regulated, important questions regarding the 

molecular mechanisms of DAT endocytosis and post-endocytic itinerary under 

basal and regulated conditions remain to be elucidated. This thesis aims to 

address some of these questions and controversies in the field and provide 

insight into future studies on DAT endocytic trafficking.  
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CHAPTER II 

Ack1 Is A Dopamine Transporter Endocytic Brake That Rescues  

A Trafficking-Dysregulated ADHD Coding Variant 

II.A Summary 

DAT stringently controls brain dopamine levels. Several addictive 

psychostimulants, antidepressants and ADHD therapeutics inhibit DAT function 

and multiple DAT mutants have been reported in ADHD, ASD, and Infantile 

Parkinsonism. Given that aberrant DAT function underlies many pathological 

conditions, it is critical to understand intrinsic regulatory mechanisms that 

modulate DAT function. DAT availability at the cell surface is dynamically 

modulated, but the mechanisms controlling this process are not well understood. 

In the current study, we identified the penultimate mechanism that controls DAT 

stability at the cell surface. Moreover, by genetically manipulating this 

mechanism we successfully rescued an ADHD-associated DAT mutant with 

intrinsic membrane instability. Thus, targeting DAT regulatory mechanisms may 

be a viable approach for treating dysregulated DAT.  
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II.B Introduction 

Dopamine (DA) is a modulatory neurotransmitter critical for locomotion and 

reward (Hyman et al., 2006) and DAergic dysregulation is linked to multiple 

neuropsychiatric disorders, including Parkinson’s Disease, schizophrenia, 

attention deficit-hyperactivity disorder (ADHD) and autism spectrum disorder 

(ASD) (Snyder, 2002; Iversen and Iversen, 2007). Presynaptic recapture, 

facilitated by the high-affinity DA transporter (DAT) spatially and temporally 

restricts extracellular DA availability (Amara and Kuhar, 1993; Kristensen et al., 

2011; Broer and Gether, 2012). Addictive psychostimulants that target DAT and 

its monoamine transporter homologs for 5HT (SERT) and NE (NET) are either 

competitive ligands, such as cocaine, or competitive substrates, such as 

amphetamine (Torres et al., 2003b). Although these drugs interact with DAT, 

SERT and NET with equimolar affinity, their binding to DAT is requisite for 

reward (Chen et al., 2006; Thomsen et al., 2009). Transporter inhibitors with 

differential DAT, SERT and NET specificity are widely used to treat 

neuropsychiatric disorders (Gether et al., 2006; Iversen, 2006). However, their 

therapeutic efficacy differs significantly among patients, consistent with the model 

that monoamines may differentially contribute to the pathogenesis of these 

disorders (Tamminga et al., 2002; Iversen, 2006). Thus, regulatory mechanisms 

specific to DAT, SERT or NET may provide a novel route to develop transporter-

specific therapeutics.  
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DAT plasma membrane expression is requisite for efficacious extracellular DA 

removal and to replenish presynaptic DA stores (Jones et al., 1998b). Indeed, 

DAT allelic and coding variants have been identified in a variety of 

neuropsychiatric disorders, including ADHD, ASD, Infantile Parkinsonism and 

bipolar disorder (Mazei-Robison et al., 2008; Pinsonneault et al., 2011; Sakrikar 

et al., 2012; Hamilton et al., 2013; Bowton et al., 2014; Hansen et al., 2014; 

Mergy et al., 2014), underscoring that even subtle DAT functional changes exert 

impactful consequences on dopaminergic neurotransmission. DAT is acutely 

regulated by membrane trafficking, and either protein kinase C (PKC) activation 

or AMPH exposure rapidly depletes DAT surface expression (Torres et al., 2003b; 

Melikian, 2004; Kristensen et al., 2011; Rudnick et al., 2014). Intriguingly, a DAT 

coding variant, R615C, identified in an ADHD proband, exhibits profound 

membrane instability, due to highly accelerated basal endocytosis (Sakrikar et al., 

2012), suggesting that dysregulated DAT membrane trafficking may contribute to 

the etiology of DA-related disorders. 

Studies from our lab (Boudanova et al., 2008b) and others (Sorkina et al., 2009) 

indicate that a unique negative regulatory mechanism, or “endocytic brake”, 

stabilizes DAT surface expression. PKC activation releases the endocytic brake, 

accelerates DAT internalization, and thereby reduces DAT surface levels and 

function. The cellular mechanisms facilitating this negative regulatory mechanism 

are completely undefined. Moreover, it is unknown whether the endocytic brake 

exists in DAergic terminals and whether it is specific to DAT.  
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Activated by cdc42 kinase 1 (Ack1) is a non-receptor tyrosine kinase that is a 

major cdc42 effector activated via EGF, PDGF and m3 muscarinic receptor 

stimulation (Linseman et al., 2001; Galisteo et al., 2006). Ack1 binds directly to 

clathrin heavy chain (Teo et al., 2001; Yang et al., 2001) and is enriched in 

presynaptic terminals (Urena et al., 2005). Importantly, Ack1 is inactivated by 

PKC (Linseman et al., 2001) and a recent study demonstrated that Ack1 

overexpression suppresses endocytosis (Shen et al., 2011). Given these 

attributes, we asked whether Ack1 activity is the penultimate step engaging the 

DAT endocytic brake. 

II.C Material And Methods 

Materials:  Full length human Ack1 (hAck1) wild-type, K158A cDNAs in pEF-

1α/pENTRA vector were kindly provided by Dr. Ingvar Ferby (Ludwig Institute for 

Cancer Research, Uppsala UP, Sweden) and were subcloned into pcDNA3.1(+) 

at BamH1/EcoR1 sites. hAck1 S445P pcDNA3.1(+) cDNA was generated from 

wildtype hAck1 by Quikchange mutagenesis (Agilent Technologies). Human DAT 

(hDAT) cDNA cloned into pcDNA3.1(+) was previously described (Gabriel et al., 

2013), and hSERT and hDAT(R615C) cDNAs were the generous gift of Dr. 

Randy Blakely (Vanderbilt University). Rat anti-DAT (MAB369) and rabbit anti-

phospho-Ack1 (pY284) were from EMD Millipore. Mouse anti-Ack1 (clone A11) 

and mouse anti-actin were from Santa Cruz Biotechnology. Horseradish 

peroxidase (HRP)-conjugated secondary antibodies were from EMD Millipore 
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(anti-rat), Santa Cruz (anti-rabbit) and Pierce (anti-mouse). [3H]DA 

(dihydroxyphenylethylamine 3,4-[ring-2,5,6-3H]) and L-[3H]alanine were from 

Perkin Elmer Life and Analytical Sciences. Sulfo-NHS-SS-biotin, Tris(2-

carboxyethyl)phosphine hydrochloride (TECP), and streptavidin agarose were 

from Thermo Fisher Scientific. AIM-100, phorbol 12-myristate 13-acetate (PMA), 

casin and GBR12909 (1-[2-[Bis-(4-fluorophenyl)methoxy]ethyl]-4-(3-

phenylpropyl)piperazine dihydrochloride) were from Tocris Bioscience. Pirl1 (8-

cyclopentyl-2,3,3a,4,5,6-hexahydro-1H-pyrazino[3,2,1-jk]carbazole 

methanesulfonate) was from ChemBridge Corporation and pitstop2 was from 

Abcam. All other chemicals and reagents were from Sigma-Aldrich or Thermo 

Fisher Scientific and were of highest grade possible. 

Cell Culture and Transfections: SK-N-MC cells were from American Type Culture 

Collection (ATCC) and were maintained in MEM (Sigma-Aldrich M2279) 

supplemented with 10% fetal bovine serum (Invitrogen), 2mM L-glutamine, 102 

U/ml penicillin/streptomycin, 37°C, 5% CO2. Clonal #12 and pooled stable SK-N-

MC cell lines expressing either hDAT or hSERT, respectively, were generated by 

transfecting 1×106 cells/well in 6-well culture plate with 3µg plasmid DNA using 

Lipofectamine 2000, at lipid:DNA ratio of 2:1 (w/w). Stably transfected cells were 

selected with 0.5 mg/ml G418 (Invitrogen) and resistant cells were either pooled 

or selected by single colonies and maintained under selective pressure in 0.2 

mg/ml G418. For DAT/Ack1 transient co-transfection studies, 4x105 cells were 
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transfected with a total of 1.5µg plasmid DNA at a DAT:Ack1 (or vector) ratio of 

1:4 and were assayed 48 hours post-transfection. 

[3H]DA and [3H]alanine Uptake Assays in Cell lines: DAT-SK-N-MC cells were 

seeded in 96-well tissue culture plates at a density of 7.5×104 cells/well one day 

before performing assays. Cells were washed twice with Krebs-Ringer-HEPES 

(KRH) buffer (120mM NaCl, 4.7mM KCl, 2.2mM CaCl2, 1.2mM MgSO4, 1.2mM 

KH2PO4, 10mM HEPES, pH 7.4) and incubated in KRH supplemented with 0.18% 

glucose (KRH/g), 37°C for the indicated times with indicated drugs. DA transport 

was initiated by adding either 1µM [3H]DA or 0.5mM [3H]alanine in KRH/g 

supplemented with 10µM each pargyline and sodium L-ascorbate and proceeded 

for 10 min, 37°C. Transport was terminated by rapidly washing cells with ice-cold 

KRH buffer, cells were solubilized in scintillation fluid, and accumulated 

radioactivity was measured by liquid scintillation counting in a Wallac MicroBeta 

scintillation plate counter (Perkin Elmer). 100nM desipramine was included in all 

samples to block uptake contributed by endogenously expressed NET. Non-

specific DA uptake was defined with 10µM GBR12909 and Na+-dependent 

alanine transport was defined by substituting NaCl with 120 mM choline chloride. 

Lentiviral production and transduction:  Short hairpin RNA (shRNA) targeting 

hAck1 from Open Biosystems were purchased from University of Massachusetts 

Medical School RNAi Core. All shRNAs were cloned into the pGIPZ vector which 

co-expresses turbo GFP (tGFP). shRNA sequences were as follows: 
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Non-silencing (Luciferase 693): 

TGCTGTTGACAGTGAGCGCTCTAAGAACGTTGTATTTATATAGTGAAGCCAC

AGATGTATATAAATACAACGTTCTTAGATTGCCTACTGCCTCGGA 

Ack sh#10: 

TGCTGTTGACAGTGAGCGATACCTGCTTCTTCCAGAGAAATAGTGAAGCCA

CAGATGTATTTCTCTGGAAGAAGCAGGTACTGCCTACTGCCTCGGA 

Ack sh#12: 

TGCTGTTGACAGTGAGCGAAAGGTGTTCAGTGGAAAGCGATAGTGAAGCCA

CAGATGTATCGCTTTCCACTGAACACCTTATGCCTACTGCCTCGGA 

For lentivirus production: Replication incompetent lentiviral particles were 

produced according to the Addgene 2nd generation pLKO.1 protocol 

(https://www.addgene.org/tools/protocols/plko/). Briefly, 4.4x106 HEK293T 

cells/dish were seeded in 150mm dishes one day prior to transfection and were 

co-transfected with 6.25µg shRNA (or control) plasmid, 4.7µg psPAX2 packaging 

plasmid, 1.56µg pMD2.G envelope plasmid, combined in Opti-MEM reduced 

serum media (Invitrogen) with 37.5µl Fugene 6 (Promega). Transfection mixtures 

were added dropwise to cells, incubated at 37°C, 5% CO2, and were removed 

and replaced with fresh growth medium 12-16 hours post-transfection. Viral 

supernatants were collected 48 and 72 hours post-transfection, aliquoted and 

stored at -80°C. Titers were determined by transduction into HEK293T cells and 

counting GFP-positive cells 48 hours post-transduction. Experiments were 

performed using a minimum of three independent viral preparations. 
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For Lentiviral Transduction:  5x106 DAT-SK-N-MC cells/dish were seeded into 

100mm dishes one day prior to viral transduction and were infected with 50ml of 

the indicated crude lentivirus supplemented with 8µg/ml polybrene. Virus was 

removed 24 hours post-infection and transduced cells were enriched by selecting 

with 1µg/ml puromycin for 48 hours. Cells were replated into 6 well dishes 48 

hours post-infection and were assayed 72 hours post-infection.  

Cell Surface Biotinylation: DAT surface levels in SK-N-MC cells were determined 

by steady state biotinylation as previously described (Navaroli et al., 2011; 

Gabriel et al., 2013). Briefly, cells were treated with the indicated drugs for the 

indicated times in PBS2+/g/BSA (phosphate-buffered saline, pH 7.4, 

supplemented with 1mM MgCl2 and 0.1mM CaCl2, 0.18% glucose, 0.1% IgG-

/protease-free BSA), and were rapidly cooled by repeated washing in ice-cold 

PBS2+. Cells were labeled twice, 15 min, 4°C with 1.0 mg/ml sulfo-NHS-SS-biotin 

in PBS2+ and excess biotinylation reagent was quenched twice, 15 min, 4°C with 

PBS2+/100mM glycine. Excess glycine was removed by washing three times in 

ice-cold PBS2+ and cells were lysed in RIPA buffer (10mM Tris, pH 7.4, 150mM 

NaCl, 1mM EDTA, 0.1%SDS, 1%Triton-X-100, 1% sodium deoxycholate) 

containing protease inhibitors. Lysates were cleared by centrifugation and protein 

concentrations were determined by BCA protein assay kit (Pierce). Lysate 

aliquots were stored in denaturing SDS-PAGE sample buffer at -20°C until 

analysis. Biotinylated proteins from equivalent amount of cellular protein were 

recovered by batch streptavidin affinity chromatography (overnight, 4°C) and 
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bound proteins were eluted in denaturing SDS-PAGE sample buffer, 30 min, 

room temperature with rotation. Samples were analyzed by SDS-PAGE and 

indicated proteins were detected by immunoblotting. Immunoreactive bands were 

detected with SuperSignal West Dura (Pierce) and were captured using the 

VersaDoc Imaging station (Biorad). Non-saturating bands were quantified using 

Quantity One software (Biorad). 

Mouse Striatal Slice Assays: All animals were handled in accordance with 

University of Massachusetts Medical School IACUC protocol A-1506 (H.E.M.). 

P21-P38 male C57BL/6 mice were sacrificed by cervical dislocation and 

decapitation and mouse brains were rapidly removed and immediately chilled in 

ice cold sucrose- and kynurenic acid (1mM)- supplemented artificial CSF 

(SACSF) (2.5mM KCl, 1.2mM NaH2PO4, 1.2mM MgCl2, 2.4mM CaCl2, 26mM 

NaHCO3, 11mM glucose, 250mM sucrose) saturated with 95% O2/5% CO2. 

Brains were mounted on Leica VT1200S Vibratome and 300µm coronal sections 

were prepared. Striatal sections corresponding to the range between Bregma 

1.54–0.34 (using corpus callosum as a landmark) were harvested, hemisected 

along the midline, and recovered 40min, 31°C in 95%O2/5%CO2-saturated ACSF 

(125mM NaCl, 2.5mM KCl, 1.2mM NaH2PO4, 1.2mM MgCl2, 2.4mM CaCl2, 

26mM NaHCO3, 11mM glucose) containing 1mM kynurenic acid. Hemi-slices 

were treated with the indicated drugs for the indicated times and temperatures in 

oxygenated ASCF, using the contralateral hemi-slice as the control.  
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For pAck1 and total Ack1 assessment: Slices were lysed in RIPA buffer 

containing protease inhibitors and Phosphatase Inhibitor Cocktail V (EMD 

Millipore) by triturating through a 200µl pipet tip and rotating 30min, 4°C. Protein 

concentrations were determined using the BCA protein assay and equivalent 

amounts of lysate were resolved by SDS-PAGE and underwent immunoblot with 

the indicated antibodies.  pAck1 levels were normalized to total Ack1 levels, 

developed in parallel. 

For striatal slice biotinylation: Surface proteins were covalently labeled with 

1.0mg/ml sulfo-NHS-SS biotin in ice-cold ACSF, 45min, 4°C. Residual reactive 

biotin was quenched by incubating twice with ice-cold ACSF supplemented with 

glycine, 20min, 4°C. Slices were then washed with ice-cold ACSF and lysed in 

RIPA buffer containing protease inhibitors by triturating through a 200µl pipet tip 

and rotating 30min, 4°C. Protein concentrations were determined using the BCA 

protein assay and biotinylated proteins were isolated as described for cell lines, 

above, using a striatal lysate:streptavidin agarose bead ratio of 20µg lysate:30µl 

streptavidin agarose in order to quantitatively recover all biotinylated DAT in the 

linear range of recovery. 

Striatal Slice [3H]DA uptake: DA uptake was determined in 300µm striatal hemi-

slices from P21-P24 male C57BL/6 mice, prepared as described above. 

Following recovery, hemi-slices were pretreated ±20μM AIM-100, 1 hr, 37°C in 

oxygenated ASCF, using the contralateral hemi-slice as the vehicle control. DA 
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transport was initiated by adding 1μM [3H]DA in ACSF supplemented with 10μM 

each pargyline and sodium L-ascorbate and proceeded for 10min, 37°C. 100nM 

desipramine was included in all pretreatments to block uptake contribution from 

the norepinephrine transporter. Uptake was terminated by rapidly washing slices 

with ice-cold ACSF, followed by three 5 min incubations in ice-cold ACSF with 

gentle shaking. Slices were lysed in RIPA buffer containing protease inhibitors, 

30 min, 4°C, and insoluble material was removed by centrifugation at 18,000 x g, 

10 min, 4°C. Protein concentrations were determined using the BCA protein 

assay (Pierce) and accumulated [3H]DA was quantified, in triplicate, from each 

hemi-slice lysate (150 µg total tissue lysate per replicate) by liquid scintillation 

counting.  Given that DAT expression is highly variable along the rostral-caudal 

axis, relative DAT levels for each hemi-slice were determined in parallel by 

immunoblotting, using actin as a loading control. Hemi-slice uptake values were 

subsequently normalized to their respective relative DAT expression levels so 

that bona fide differences in uptake across slices could be accurately determined. 

Non-specific [3H]DA accumulation was defined in the presence of 10μM 

GBR12909, averaged from two independent hemi-slices per mouse.  

Internalization Assays: Cells were plated onto 6-well tissue culture plates at a 

density of 1x106 cell/well one day prior to assays. Cells were biotinylated twice, 

15min, 4°C with 2.5 mg/ml sulfo-NHS-SS-biotin. After glycine quenching, zero 

time points and strip controls remained at 4°C, and internalized samples were 

warmed to 37°C by multiple rapid washes in prewarmed PBS2+, 0.18% glucose, 
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0.1% IgG/protease-free BSA with the indicated drugs. Internalization proceeded 

in the same solutions for 10 min, 37°C, was stopped by washing repeatedly with 

ice-cold NT buffer(150mM NaCl, 20mM Tris, pH 8.6, 1mM EDTA, 0.2% IgG-

/protease-free BSA), and residual surface biotin on experimental and strip control 

samples was cleaved by reducing twice for 25min, 4°C in 100mM TCEP in NT 

buffer. Cells were washed thrice in PBS2+, lysed in RIPA buffer with protease 

inhibitors and biotinylated proteins were isolated and analyzed by immunoblot as 

described for steady state biotinylation, above. Stripping efficiencies were 

calculated for each sample and were >95% of total surface protein labeled at t=0. 

Internalization rates were calculated as the percentage DAT internalized over 

10min as compared to total surface DAT labeled at t = 0.  

TIRF microscopy studies: SK-N-MC cells stably expressing either TagRFP-T-

DAT and eGFP-clathrin, or eGFP-clathrin alone, were plate on glass coverslips 

one day prior to imaging and media was replaced with KRH/0.18% glucose/0.1% 

BSA, 37°C for live imaging. To label transferrin receptors in eGFP-clathrin SK-N-

MC cells, 1µg/ml human transferrin-Alexa594 (Life Technologies) was added in 

the imaging solution. TIRF images in red and green channels were captured 

using TESM microscope (Biomedical Imaging Group, University of 

Massachusetts Medical School) (Navaroli et al., 2012). Briefly, images of 

through-the-lens TIRF were generated using 491nm (for eGFP-clathrin) and 

561nm (for TagRFP-T-DAT or transferrin-Alexa594) laser illumination together 

with an Olympus TIRF 60 X objective (N.A. = 1.49) at an angel set to visualize 
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around 200nM from the glass coverslip. Focus stabilization was controlled by an 

in-house made software called pgFocus (Biomedical Imaging Group, 

http://big.umassmed.edu/wiki/index.php/PgFocus). PgFocus is an open source 

and open hardware focus stabilization device that autonomously adjusts a piezo-

positioned objective in response to the positional change of a reflected 808nm 

laser beam.  PgFocus is able to modify and pass on piezo-positon control signals 

from other devices, which allows pgFocus to identify the expected focus position 

and adjust accordingly. PgFocus operates at 30Hz with ±3nm accuracy and 

integrates with MicroManager. Time-lapse image data were acquired at 1Hz 

using MicroManager open source microscopy software (https://www.micro-

manager.org/). Images were then exported as tiff files and analyzed in ImageJ. 

II.D Results 

Ack1 negatively regulates DAT, but not SERT endocytosis. 

Ack1 and its active, autophosphorylated form, pY284-Ack1 (pAck1) (Yokoyama 

and Miller, 2003; Galisteo et al., 2006), were readily detected in both the 

dopaminergic cell line SK-N-MC and mouse striatum (Figs. II-1A, II-1B). PKC 

activation significantly decreased pAck1 in both SK-N-MC cells (46.5±3.0% 

control levels, Fig. II-1A) and mouse striatum (78.3±5.2% control levels, Fig. II-

1B). Likewise, the highly specific Ack1 inhibitor AIM-100 (Mahajan et al., 2010) 

dose-dependently decreased pAck1 in SK-N-MC cells (Fig. II-1C), and 

dramatically decreased mouse striatal pAck1 to 13.2±2.2% control levels (Fig. II-

http://big.umassmed.edu/wiki/index.php/PgFocus
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1D). Thus, Ack1 is expressed in dopaminergic cell lines and striatum, and either 

PKC activation or AIM-100 inactivate Ack1 in both these model systems.  

We predicted that if Ack1 imposes the DAT endocytic brake, then Ack1 

inactivation would release the brake and decrease both DAT function and 

surface expression. Indeed, AIM-100 significantly decreased [3H]DA uptake in 

SK-N-MC cells (IC50 = 50.2 ±9.9 μM) and striatal slices (Fig. II-2A, 2B), and 

significantly reduced DAT surface levels to 72.5±6.4% control levels in mouse 

striatum (Fig. II-2C). DAT surface loss in response to AIM-100 was due to a 

significant increase in the DAT internalization rate, to 192.9±28.6% control levels 

(Fig. II-2D), demonstrating that Ack1 negatively regulates DAT endocytosis. AIM-

100 effects were specific to DAT, and had no effect on the SERT endocytic rate 

measured in SERT-SK-N-MC cells (Fig. II-2D, p=0.89). Interestingly, high AIM-

100 concentrations (>20µM) inhibited DAT function to a much larger degree than 

what could be attributed to membrane trafficking. This was not due to 

transmembrane Na+ gradient disruption, as AIM-100 had no effect on Na+-

dependent alanine uptake (Fig. II-3A). To our surprise, AIM-100 also dose-

dependently inhibited SERT function (Fig. II-3B), despite exerting no effect on 

SERT trafficking (Fig. II-2D). We noted that AIM-100 bears DAT and SERT 

pharmacophore properties similar to piperazine derivatives, such as GBR12909 

(Fig. II-3C). We therefore hypothesized that, in addition to its known function as a 

high affinity Ack1 inhibitor, AIM-100 may also be a low affinity, competitive DAT 

and SERT inhibitor.  Whole cell binding studies revealed that AIM-100 
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competitively inhibited DAT and SERT binding to [3H]WIN 35428 and 

[3H]imipramine, respectively, (Fig. II-3D), supporting the premise that AIM-100 is 

a DAT and SERT inhibitor. However, GBR12909 had no effect on pAck1 levels 

(Fig. II-3E), indicating that DAT ligand binding does not globally inactivate Ack1.  

Moreover, a ten-fold lower AIM-100 concentration that efficaciously decreased 

p284-Ack1 levels (2µM, Fig. II-1C), also significantly increased DAT 

internalization rates (Fig. II-3F). Thus, distinct endocytic mechanisms regulate 

DAT and SERT, and Ack1 activity is required to impose the DAT endocytic brake. 

Moreover, AIM-100 is, coincidentally, a low affinity, competitive DAT and SERT 

inhibitor. 

Constitutive and regulated DAT endocytosis are differentially dependent on 

clathrin 

Ack1 is recruited to clathrin-coated-pits via clathrin heavy chain interactions (Teo 

et al., 2001; Yang et al., 2001). Thus, we hypothesized that clathrin is required to 

release the Ack1-imposed brake. To test this, we acutely inhibited clathrin with 

pitstop2 and measured DAT internalization ±AIM-100 and ±PMA. Pitstop2 

pretreatment significantly attenuated both AIM-100- and PKC-stimulated DAT 

internalization, but had no effect on basal DAT endocytosis (Figs. II-4A, 4B) 

suggesting that stimulated DAT endocytosis is clathrin-dependent whereas 

constitutive DAT endocytosis is clathrin-independent. We further used TIRFM to 

examine clathrin and surface DAT under basal conditions, compared to 
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transferrin receptor (TfR), a protein known to undergo robust clathrin-mediated 

endocytosis. Alexa594-Tf co-localized markedly with eGFP-clathrin across the 

plasma membrane, and distinct Tf/clathrin puncta moved away from the TIRF 

field during imaging; consistent with clathrin-mediated endocytosis (Fig. II-4C). In 

contrast, TagRFP-T-DAT was diffusely distributed across the plasma membrane 

and was enriched in cellular microspikes, with little apparent clathrin co-

localization (Fig. II-4C). Taken together with the pitstop2 data, these data support 

that constitutive DAT endocytosis is clathrin-independent, whereas stimulated 

DAT endocytosis requires clathrin. 

Cdc42 negatively regulates DAT, but not SERT, endocytosis. 

Ack1 is a major cdc42 effector, suggesting that cdc42 may contribute to the DAT 

endocytic brake, upstream of Ack1. To test this possibility we measured DAT 

surface levels in DAT SK-N-MC cells and striatal dopaminergic terminals 

following acute treatment with two structurally distinct cdc42 inhibitors, casin and 

pirl1. Both casin and pirl1 significantly reduced DAT surface levels in SK-N-MC 

cells (Fig. II-5A, 5B) and casin significantly decreased surface DAT in mouse 

striatum (Fig. II-5C). DAT surface loss was due to profound DAT endocytic 

acceleration (238.0±15.5% control levels, Fig. II-5D). In contrast, pirl1 did not 

significantly affect SERT internalization (Fig. II-5E). We further tested whether 

PKC and cdc42 impact DAT surface stability in independent or convergent 

manners. Pretreatment ±casin (Fig. II-5A) or ±pirl1 (Fig. II-5B) significantly 
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attenuated PKC-stimulated DAT endocytosis. Moreover, pirl1 and PMA co-

application had no additive effect on DAT internalization (Fig. II-5D). Taken 

together, these results demonstrate that cdc42 activity is required to impose the 

DAT endocytic brake, likely via the same pathway as PKC and potentially 

upstream of Ack1. Moreover, these results further support that distinct endocytic 

mechanisms govern DAT and SERT surface stability. 

Ack1 inactivation is required to release the DAT endocytic brake, 

downstream of PKC or cdc42. 

We next used two efficacious hAck1-targeted shRNAs, #10 and #12 (Fig. II-6A), 

to test whether Ack1 is required to 1) engage the DAT endocytic brake, and 2) 

stimulate DAT endocytosis by PKC activation or cdc42 inhibition. The most 

efficacious hAck1 shRNA, #10, significantly increased basal DAT endocytosis to 

138.7±12.3% control levels (Fig. II-6C), consistent with Ack1’s requisite role as 

the DAT endocytic brake. Moreover, Ack1 depletion with either shRNA #10 or 

#12 significantly attenuated stimulated DAT endocytosis, either via PKC 

stimulation (Fig. II-6D) or cdc42 inhibition (Fig. II-6E). In sum, these results 

support that Ack1 is required to engage the DAT endocytic brake. 

Although perturbing Ack1 enhanced DAT endocytosis, we next asked whether 

there is a direct causal link between Ack1 inactivation and either cdc42 inhibition 

or PKC activation in order to release the DAT endocytic brake. To test this, we 

co-expressed DAT with either wildtype, constitutively active (S445P) or kinase 
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dead (K158A) Ack1 isoforms (Lin et al., 2012) (See Fig II-7A,7B,7C, for Ack1 

mutant overexpression profiles). We predicted that if Ack1 inactivation were 

required to release the DAT endocytic brake, then S445P-Ack1 would block 

accelerated DAT internalization in response to either PKC activation or cdc42 

inhibition. Wildtype Ack1 overexpression had no effect on basal or accelerated 

DAT endocytosis in response to PKC activation or cdc42 inhibition (Fig. II-7E, 7F, 

7G). In contrast, S445P-Ack1 significantly attenuated both PKC-stimulated (Fig. 

II-7F) and pirl1-stimulated (Fig. II-7G) DAT internalization. K158A-Ack1 had no 

significant effect either basal (p=0.30) or pirl1-stimulated (p=0.30) DAT 

internalization (Fig. II-7E, II-7G), but significantly inhibited PKC-stimulated DAT 

endocytosis (100.1±5.2% control level, Fig. II-7F). Although the K158A mutant 

lacks kinase activity (Mahajan et al., 2005), it was unknown, a priori, whether this 

mutant would exert a dominant negative effect. Ack1 activation is required for 

targeting to clathrin-coated pits (Shen et al., 2011). Thus, it is not surprising the 

kinase dead mutant failed to exert a dominant effect on DAT internalization. 

Taken together, these results provide a causal link between upstream PKC, or 

cdc42, stimuli and Ack1 inactivation as requisite steps in releasing the DAT 

endocytic brake. 

Ack1 activity restores normal trafficking to a DAT coding variant expressed 

in an ADHD proband 
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A recent study reported that a DAT coding variant, R615C, identified in an ADHD 

proband, lacks endocytic braking, resulting in enhanced basal endocytosis and 

inability to undergo PKC- and AMPH-stimulated endocytosis (Sakrikar et al., 

2012). We asked whether constitutive Ack1 activation could restore the endocytic 

brake and thereby rescue the DAT(R615C) gain-of-function endocytic phenotype. 

DAT(R615C) expressed in SK-N-MC cells internalized significantly faster than 

wildtype DAT (Fig. II-10E, 10F) and was defective in PKC-stimulated endocytosis 

(Fig. II-7B), consistent with the previous report (Sakrikar et al., 2012). 

Remarkably, S445P-Ack1 significantly decreased DAT(R615C) basal 

endocytosis to wildtype DAT levels (Fig. II-8B), but did not restore PKC-

stimulated endocytosis (Fig. II-8C).  

II.E Discussion 

Reuptake inhibitors are used to treat a variety of neuropsychiatric disorders, 

including depression, obsessive-compulsive disorder and ADHD (Iversen, 2000, 

2006). These agents are differential selective for SERT, NET and DAT, and their 

clinical efficacy varies considerably across the population (Tamminga et al., 2002; 

Iversen, 2006). Transporter-specific cellular regulation has the potential to lead to 

novel and selective therapeutic approaches that manipulate transporters 

intrinsically, rather than extrinsically. In the current study, we identified an 

endocytic regulatory mechanism that is selective for DAT, but not SERT. We 

previously reported that PKC-stimulated DAT internalization is also selectively 
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dependent upon binding to the neuronal GTPase, Rin, whereas neither SERT 

nor the GABA transporter binds Rin (Navaroli et al., 2011). Taken together with 

our current findings, this is consistent with a model wherein distinct mechanisms 

differentially regulate DAT and SERT surface stability. 

Conflicting reports regarding whether constitutive and regulated DAT 

internalization are clathrin-dependent. Gene silencing studies suggest that both 

constitutive and PKC-stimulated DAT internalization in non-neuronal cell lines are 

clathrin-dependent (Sorkina et al., 2005); although whether chronic clathrin 

depletion artifactually skews these studies is uncertain. A recent study examining 

DAT trafficking in a knock-in mouse encoding a DAT extracellular epitope tag 

observed only modest DAT endocytosis and little/no clathrin co-localization under 

basal conditions (Block et al., 2015). However, it is unclear whether antibody-

bound DAT traffics similar to native DAT, as we investigate here.  Multiple studies 

also demonstrate that DAT partitions into cholesterol-rich membrane 

microdomains (Adkins et al., 2007; Foster et al., 2008; Cremona et al., 2011; 

Navaroli et al., 2011; Jones et al., 2012; Gabriel et al., 2013; Kovtun et al., 2015), 

and that the membrane raft protein flotillin-1 is required for PKC- and AMPH-

mediated DAT internalization (Cremona et al., 2011), consistent with a clathrin-

independent endocytic mechanism. However, a separate study reported that 

flotillin-1 contributes to DAT membrane mobility rather than PKC-stimulated DAT 

internalization (Sorkina et al., 2013). Our findings suggest that basal DAT 

internalization is clathrin-independent, whereas stimulated DAT internalization is 
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clathrin-dependent. Consistent with these data, we previously reported that basal 

and PKC-stimulated DAT internalization are mediated by independent 

mechanisms (Loder and Melikian, 2003; Holton et al., 2005), and that constitutive 

and PKC-stimulated DAT internalization are dynamin-independent and –

dependent, respectively (Gabriel et al., 2013). 

Cdc42 directly activates Ack1 and cdc42 inhibition released the DAT endocytic 

brake in a manner that required Ack1 inactivation (Fig. II-7G). Several forms of 

clathrin-independent endocytosis require cdc42 (Massol et al., 1998; 

Sabharanjak et al., 2002; Gauthier et al., 2005). In contrast, we found that cdc42 

negatively regulates DAT endocytosis via Ack1 activation (Fig. II-5), and that 

stimulated DAT endocytosis in response to Ack1 inactivation is clathrin-

dependent (Fig. II-4). Thus, it appears that cdc42 impacts DAT internalization in 

a unique fashion, in contrast to its more commonly known function in promoting 

endocytosis.  

Given our current findings, and in light of previous reports, we propose the 

following model of basal and PKC-regulated DAT endocytosis (Fig. II-9). Under 

basal conditions, an Ack1-mediated endocytic brake stabilizes DAT at the 

plasma membrane, and cdc42 promotes the braking mechanism via Ack1 

activation. Basal internalization that occurs while the endocytic brake is engaged 

is clathrin-and dynamin-independent. PKC activation decreases Ack1 activity, 

which releases the endocytic brake and accelerates DAT internalization via a 
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clathrin- and dynamin-dependent mechanism, resulting in intracellular DAT 

sequestration.  

What are the molecular players orchestrating the Ack1-imposed DAT endocytic 

brake and PKC-mediated Ack1 inactivation?  PIP2 depletion inactivates Ack1 

(Shen et al., 2011) and both DAT (Hamilton et al., 2014) and SERT (Buchmayer 

et al., 2013) bind to PIP2. However, DAT mutants lacking PIP2 binding exhibited 

plasma membrane instability in HEK cells, whereas disrupting SERT/PIP2 

interactions did not affect SERT membrane trafficking. This raises the possibility 

that PIP2 effects on Ack1 activity may specifically influence DAT surface stability. 

PKC activation also increases DAT ubiquitination via a Nedd4-2-mediated 

mechanism that is required for enhanced DAT endocytosis (Vina-Vilaseca and 

Sorkin, 2010). Nedd4-2 also interacts with Ack1 and is recruited to clathrin-rich 

vesicles (Chan et al., 2009), and Nedd4-2/Ack1 interactions drive Ack1 

degradation in an Ack1 activity-dependent fashion. Thus, it is possible that 

Nedd4-2 serves as a dual function player in the DAT endocytic brake by 

controlling Ack1 protein turnover as well as DAT ubiquitination.  

Multiple DAT coding variants and missense mutants have been reported in 

ADHD, ASD and Infantile Parkinsonism patients, implicating DAT dysfunction as 

a common risk factor for several DA-related disorders (Mazei-Robison et al., 

2008; Sakrikar et al., 2012; Hamilton et al., 2013; Hansen et al., 2014). Many 

DAT coding variants exhibit basal anomalous dopamine efflux and loss of AMPH-
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induced DA efflux. The ADHD-associated DAT(R615C) variant, however, lacks 

plasma membrane stability due to rapid basal endocytosis, and is unable to 

sequester in response to PKC activation or AMPH exposure. We were able to 

capitalize on the Ack1-mediated DAT endocytic brake to restore wildtype surface 

stability to DAT(R615C) (Fig. II-8B). Not unexpectedly, S445P- Ack1 also 

prevented DAT(R615C) from responding to PKC stimulation (Fig. II-8C), similar 

to its effect on wildtype DAT (Fig. II-7F). Nevertheless, our ability to rescue 

DAT(R615C) endocytic dysfunction raises the tantalizing possibility that 

genetically targeting DAT trafficking may hold promise for DAT coding variants 

with inherent membrane trafficking dysregulation. 
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Figure II-1. Ack1 is expressed in dopaminergic SK-N-MC cells and mouse 

striatum, and is inactivated by PKC and the Ack1-specific inhibitor AIM-

100. pY284-Ack1 quantification. Samples were treated as described and 

pY284-Ack1 protein levels were measured by immunoblotting A., B. DAT SK-

N-MC cells (A) and mouse striatal slices (B) were treated ±1μM PMA, 30min, 

37°C. Top: Representative pY284-Ack1 and total Ack1 blots. Bottom: Average 

pY284-Ack1 levels expressed as %vehicle-treated ±S.E.M. **p<0.01, *p<0.02, 

Student’s t test, n=7 (A), n=9 (B). C. AIM-100 dose response curves. DAT SK-

N-MC cells were treated with the indicated AIM-100 concentrations, 30min, 

37°C. Top: Representative pY284-Ack1 and total Ack1 blots. Bottom: Average 

pY284-Ack1 levels, normalized to total Ack1. Data are expressed as %vehicle-

treated ±S.E.M. n=3-4. AIM-100 decreased pY284-Ack1 levels with an IC50 = 

220.5±42.5nM D. Mouse striatal slices were treated with ±20μM AIM-100, 

30min, 37°C. Top: Representative pY284-Ack1 and Ack1 blots. Bottom: 

Average pYAck1 levels expressed as %vehicle-treated ±S.E.M. *p<0.02, 

Student’s t test, n=3. 
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Figure II-2. Ack1 activity stabilizes DAT at the plasma membrane. A. 

[3H]DA uptake: DAT SK-N-MC cells were treated with the indicated AIM-100 

concentrations, 30min, 37°C and [3H]DA uptake was measured as described 

in Methods. Data are expressed as %specific DA uptake ±S.E.M. (n=12). B. 

Ex vivo slice uptake. Striatal slices were treated ±20μM AIM-100, 60min, 37°C 

and [3H]DA uptake was assessed as described in Methods. *p<0.05, Student’s 

t test, n=6 hemislices obtained from 2 independent mice. C. Ex vivo slice 

biotinylation. Striatal slices were treated ±20μM AIM-100, 30min, 37°C and 

surface proteins were isolated by biotinylation. Top: Representative 

immunoblots. Bottom: Average DAT surface levels expressed as %vehicle-

treated levels ±S.E.M. **p<0.01, Student’s t test, n=3. D. Internalization 

assays: DAT and SERT internalization rates were measured in SK-N-MC cells 

±20μM AIM-100 as described in Methods. Top: Representative immunoblots 

showing the total DAT and SERT surface pools at t=0 (T), strip control (S), 

and internalized protein during either vehicle (V) or AIM-100 (A) treatments. 

Bottom: Average internalization rates expressed as %vehicle-treated ±S.E.M. 

*p<0.02, Student’s t test, n=5 (DAT), n=3 (SERT).  
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Figure II-3. AIM-100 is a low affinity, competitive monoamine transporter 

inhibitor. A. Effect of AIM-100 on Na+-dependent alanine uptake and DA 

uptake in DAT-SK-N-MC cells. Cells were treated with the indicated 

concentrations of AIM-100, 30 min, 37°C and [3H]alanine or [3H]DA uptake 

were measured in parallel. Data are expressed as %non-treated controls 

±S.E.M. *indicates a significance from control within each transporter type, 

#indicates a significant difference in uptake between DA and alanine uptake at 

the same AIM-100 dose, two-way ANOVA with Dunnett’s multiple 

comparisons and Bonferroni’s multiple comparison, n=4 . B. Effect of AIM-100 

on [3H]DA and [3H]5-HT uptake in DAT-SK-N-MC and SERT-SK-N-MC cells, 

respectively. Specific uptake is expressed as %non-treated controls ±S.E.M. 

*indicates significantly different DA uptake compared with lowest dose, 

#indicates significantly different 5-HT uptake compared with lowest dose, two-

way ANOVA with Dunnett’s multiple comparisons, n=4. C. Chemical structures 

of AIM-100 and GBR12909. D. Whole Cell Binding Assays. DAT-SK-N-MC 

and SERT-SK-N-MC cells incubated with 1nM [3H]WIN 35428 and 1nM 

[3H]imipramine, respectively, 2 hrs, 4°C, in the presence of the indicated AIM-

100 concentrations. Data are expressed as %bound compared to non-treated 

controls ±S.E.M. AIM-100 dose-dependently inhibited ligand binding with Ki 

values of 27.3±4.9 µM and 33.1±14.2 µM, respectively. E. pY284-Ack1 

quantification. DAT-SK-N-MC cells were treated with either 20µM AIM-100 or 

10µM GBR 12909, 30 min, 37°C and pY284-Ack1 levels were measured by 

immunoblotting as described in Methods. Top: Representative pAck1, total 

Ack1 and actin immunoblots; Bottom: Average pAck1 levels following the 

indicated drug treatments, expressed as %vehicle pAck1 levels ±S.E.M. 

****Significantly different than vehicle control, one-way ANOVA with Dunnett’s 

multiple comparison test, p<0.001, n=4-7. F. Internalization Assay. DAT 

internalization rates were measured as described in Methods, ±2µM AIM-100. 

Top: Representative DAT immunoblot showing total DAT surface pool at t=0 

(T), strip control (S), and internalized DAT during either vehicle (V) or AIM-100 

(A) treatments. Bottom: Average DAT internalization rate expressed 

as %vehicle-treated DAT internalization rate ±S.E.M. **Significantly different 

than vehicle control, Student’s t test, p<0.01, n=4. 
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Figure II-4. Stimulated DAT endocytosis is clathrin-dependent, whereas 

constitutive DAT endocytosis is clathrin-independent. A., B. DAT 

internalization assay. DAT SK-N-MC cells were pretreated ±25μM pitstop2, 

10min, 37°C, rapidly chilled, and DAT internalization rates were measured as 

described in Methods ±20μM AIM-100 (A) or ±1μM PMA (B). Top: 

Representative immunoblots showing total surface DAT at t=0 (T), strip control 

(S), and internalized DAT during vehicle (V), AIM-100 (A) or PMA (P) 

treatments. Bottom: Average DAT internalization rates expressed 

as %vehicle-treated ±S.E.M. Asterisks indicate a significant difference from 

vehicle, *p<0.03, ***p<0.005, one-way ANOVA with Bonferroni’s multiple 

comparison test, n=7 (A), n=4-6 (B). C. TIRF microscopy: Time-lapse TIRF 

images were captured as described in Methods. Top: SK-N-MC cells stably 

expressing eGFP-clathrin labeled with Tf-Alexa594. White arrows indicate 

Tf/clathrin co-localized puncta that move away from the TIRF field during 

image capture. Bottom: SK-N-MC cells stably co-transfected with TagRFP-T-

DAT and eGFP-clathrin.  
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Figure II-5. Cdc42 stabilizes DAT surface expression. A., B. Cell surface 

biotinylation: DAT SK-N-MC cells were pretreated ±10μM casin (A) or ±20μM 

pirl1 (B), 30min, 37°C, followed by treatment ±1μM PMA, 30min, 37°C. 

Relative DAT surface levels were measured by biotinylation as described in 

Methods. Representative immunoblots are shown in the top of each panel. 

Average DAT surface levels expressed as %vehicle levels ±S.E.M. Asterisks 

indicate a significant difference from vehicle control, *p<0.05, **p<0.01, one-

way ANOVA with Bonferroni’s multiple comparison test, n=5-6 (A), n=3 (B). C. 

Ex vivo striatal slice biotinylation: Mouse striatal slices were treated ±10μM 

casin, 30min, 37°C and relative DAT surface levels were measured by 

biotinylation as described in Methods. Top: Representative immunoblot. 

Bottom: Average DAT surface levels expressed as %vehicle-treated ±S.E.M. 

*p<0.05, Student’s t test, n=10. D. Internalization assay: DAT internalization 

rates were measured ±1μM PMA, ±20µM pirl1 or with PMA/pirl1 co-

application, 10min, 37°C. Top: Representative immunoblots showing total 

surface DAT at t=0 (T), strip control (S), and internalized DAT during vehicle 

(V), PMA (P) or pirl1 (PR) treatments. Bottom: Average DAT internalization 

rates expressed as %vehicle rate ±S.E.M. Asterisks indicate a significant 

difference from vehicle control, **p<0.01, ***p<0.005, one-way ANOVA with 

Bonferroni’s multiple comparison test, n=9-13. E. Cdc42 inhibition does not 

affect SERT internalization. Internalization assay: SERT internalization rates 

were measured as described ±20 μM pirl1. Top: Representative SERT 

immunoblot showing total SERT surface pool at t = 0 (T), strip control (S), and 

internalized SERT during either vehicle (V) or pirl1 (P) treatment. Bottom: 

Average SERT internalization rates expressed as percent vehicle-treated rate 

± SEM p = 0.68, Student’s t test, n = 5. 
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Figure II-6. ShRNA-mediated Ack1 depletion increases basal DAT 

internalization and abolishes stimulated DAT endocytosis in response to 

PKC activation or cdc42 inhibition. A. Lentiviral-mediated hAck1 

knockdown in SK-N-MC cells: DAT SK-N-MC cells were transduced with the 

indicated lentiviral particles and hAck1 protein expression was measured 72 h 

posttransduction. Top:  Representative immunoblots showing endogenous 

Ack1 levels in lysates from cells transduced with lentiviral particles expressing 

either pGIPZ vector (vec), nonsilencing shRNA (NS), hAck1 10 (10), or hAck1 

12 (12). Bottom: Average hAck1 protein levels expressed as percent vector-

transduced hAck1 levels ± SEM (normalized to actin loading control). ****P < 

0.001 compared with vector-transduced cells, one way ANOVA with Dunnett’s 

multiple comparison test, n = 4–7. B-D. DAT internalization assays: DAT SK-

N-MC cells were transduced with lentiviral particles expressing either pGIPZ 

vector (vec), non-silencing (NS), hAck1#10 (#10) or hAck1#12 (#12) shRNAs 

and DAT internalization rates were measured ±1μM PMA (D) or ±20μM pirl1 

(E) as described. B. Representative immunoblots for each transduction 

condition showing total surface DAT at t=0 (T), strip control (S), and 

internalized DAT during vehicle (V), PMA (P) or pirl1 (PR) treatments. C. 

Basal DAT internalization rates expressed as %vector-transduced rates 

±S.E.M. *p<0.04, Student’s t test, n=6. D. PKC-stimulated DAT internalization 

rates expressed as %vehicle rate ±S.E.M. for each transduction condition. 

Asterisks indicate a significant difference from vector-transduced control, 

*p<0.03, **p<0.01, one-way ANOVA with Dunnett’s multiple comparison test, 

n=4-7. E. Pirl1-induced DAT internalization rates expressed as %vehicle rate 

±S.E.M. for each transduction condition. Asterisks indicate a significant 

difference from vector-transduced control, *p<0.02, **p<0.01, one-way 

ANOVA with Dunnett’s multiple comparison test, n=4-7. 
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Figure II-7. Ack1 inactivation is required for stimulated DAT endocytosis. 

A. Representative immunoblots showing pY284-Ack1, total Ack1, and actin 

levels in lysates from cells cotransfected with DAT and either vector, wt-Ack1, 

K158A-Ack1, or S445P-Ack1. B. Average total Ack1 levels expressed as 

percent vector-transfected levels ± SEM (normalized to actin loading control). 

Asterisks indicate a significant difference from vector-transfected control, one 

way ANOVA with Dunnett’s multiple comparisons test, **P < 0.01, ***P < 

0.005, ****P < 0.0001, n = 6. C. Average pY284-Ack1 levels expressed as 

percent vector-transfected levels ± SEM (normalized to total Ack1 levels). **P 

< 0.01 compared with vector-transfected control, one-way ANOVA with 

Bonferroni’s multiple comparisons test, n = 6. D-G Internalization assays: SK-

N-MC cells were co-transfected with the indicated DAT and Ack1 isoforms and 

DAT internalization rates were measured during treatment ±1µM PMA or 

20µM pirl1 as described in Methods. A-D. Wildtype DAT co-transfected with 

the indicated Ack1 cDNAs. D. Representative immunoblots showing total 

surface DAT at t=0 (T), strip control (S), and internalized DAT during vehicle 

(V), 1µM PMA (P) or 20µM pirl1 (PR) treatments. E. Average basal DAT 

internalization rate expressed as %vector co-transfected rate ±S.E.M., one-

way ANOVA, p=0.10, n=8-9. F. Average PKC-stimulated DAT internalization 

rate expressed as %vector co-transfected rate ±S.E.M. **Significantly different 

from vector control, p<0.01, one-way ANOVA with Dunnett’s multiple 

comparison test, n=8-9. G. Average pirl1-stimulated DAT internalization rates 

expressed as %vector co-transfected rate ±S.E.M. *Significantly different from 

vector, p<0.02, one-way ANOVA with Dunnett’s multiple comparison test, n=8-

9.  
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Figure II-8. Constitutive Ack1 activation rescues ADHD DAT coding 
variant R615C endocytic dysfunction. DAT vs. DAT(R615) internalization 
rates ±S445P-Ack1. A. Representative immunoblots. B. Average DAT 
internalization rates, expressed as %wildtype DAT control rate ±S.E.M., 
**Significantly different from indicated sample, p<0.01, one-way ANOVA with 
Bonferroni’s multiple comparison test, n=8-11. C. Constitutively Ack1 
activation does not rescue PKC-stimulated DAT(R615C) internalization. 
Internalization assay: DAT(R615C) was coexpressed in SK-N-MC cells with 
either vector or S445P-Ack1 and internalization rates were measured ±1 μM 
PMA (see Fig.I-10 for representative immunoblot). Average PMA-stimulated 
DAT(R615C) internalization rates expressed as percent vehicle-treated ± 
SEM, P = 0.33, Student’s t test, n = 5–7. 
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Figure II-9. Model for a PKC-sensitive, Ack1-mediated DAT endocytic 

brake. Under basal conditions, the cdc42-activated Ack1 pool imposes an 

endocytic brake upon the plasma membrane DAT population, permitting slow, 

clathrin- and dynamin-independent DAT endocytosis. PKC activation 

inactivates Ack1 and releases the DAT endocytic brake, facilitating rapid, 

clathrin- and dynamin-dependent, DAT internalization and intracellular 

sequestration. 

 



88 
 

PREFACE TO CHAPTER III 

This chapter is unpublished and in preparation for submission 

Author contributions: 

Wu S and Melikian HE designed research. 

Wu S performed research. 

Lifshitz LM and Fogarty KE contributed analytic tools. 

Uttamapinant C and Ting AY contributed new reagents 

Wu S and Melikian HE analyzed data. 

Wu S and Melikian HE wrote the paper. 

  



89 
 

CHAPTER III 

 The Dopamine Transporter Recycles Via A Retromer-Dependent Post-Endocytic 

Mechanism: Tracking Studies Using A Novel Fluorophore-Coupling Approach 

 

III.A Introduction 

Dopamine (DA) neurotransmission is responsible for vital functions in the central 

nervous system such as locomotion, reward and sleep/arousal (Iversen and 

Iversen, 2007). Dysregulation of DA neurotransmission is coupled to multiple 

neurological and psychiatric disorders such as Parkinson’s disease, 

schizophrenia, ADHD and bipolar disorder (Snyder, 2002; Chen et al., 2004; 

Sulzer, 2007; Sharma and Couture, 2014). The presynaptic dopamine 

transporter (DAT) expresses exclusively in DA neurons and mediates high-

affinity reuptake of synaptically released DA, thus temporally and spatially 

restraining DA neurotransmission (Gether et al., 2006). DAT is the primary target 

for widely abused psychostimulants, cocaine and amphetamine, as well as 

therapeutic agents such as methylphenidate (Ritalin) (Torres and Amara, 2007; 

Kristensen et al., 2011). Loss-of-function DAT coding variants cause dopamine 

transporter deficiency syndrome, which is a Parkinsonism/dystonia subtype 

(Kurian et al., 2009; Kurian et al., 2011). Altered DAT function has also been 

associated with attention deficit hyperactivity disorder (ADHD), autism spectrum 

disorders (ASD) and adult Parkinsonism (Mazei-Robison et al., 2008; Sakrikar et 

al., 2012; Hamilton et al., 2013; Hansen et al., 2014). Thus, regulatory 
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mechanisms that control DAT function may exert impactful consequences on DA 

neurotransmission and DA homeostasis. 

Numerous studies demonstrate that DAT function is acutely regulated by 

membrane trafficking, which provides a potential means to acutely enhance or 

diminish DA signaling (Melikian, 2004; Eriksen et al., 2010a; Bermingham and 

Blakely, 2016). DAT constitutively internalizes and acute stimuli such as PKC 

activation and amphetamine exposure accelerate DAT endocytosis, resulting in 

decreased DAT surface expression and function (Huff et al., 1997; Daniels and 

Amara, 1999; Melikian and Buckley, 1999; Torres et al., 2003a; Eriksen et al., 

2009). Considerable effort has been directed towards understanding DAT’s post-

endocytic fate. Function studies in heterologous expression systems have 

demonstrated that DAT recycles back to the plasma membrane under basal and 

regulated conditions (Loder and Melikian, 2003; Sorkina et al., 2005; Boudanova 

et al., 2008a; Chen et al., 2013; Richardson et al., 2016). Paradoxically, DAT 

post-endocytic tracking studies in heterologous cells and primary neuronal 

cultures using either antibody feeding or fluorescent cocaine analogs, reported 

that DAT targets to pre-lysosomal and lysosomal pathways, but not to classical 

recycling compartments (Eriksen et al., 2010b), while results from an antibody 

feeding assay showed that DAT recycled back to the plasma membrane in 

heterologous cells and primary culture (Rao et al., 2011; Hong and Amara, 2013). 

Moreover, a recent antibody feeding study performed in acute mouse brain slices 

reported little surface DAT internalization, in either DAergic terminals or 
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somatodendritic areas of DA neurons (Block et al., 2015). These discrepancies 

prompted us to 1) interrogate the DAT post-endocytic itinerary in absence of 

inhibitor analog or bound antibodies; 2) identify the molecular mechanisms that 

mediate DAT post-endocytic sorting.  

The retromer complex mediates cargo export from endosomes to either 

the trans-Golgi network (TGN; retrograde transport) or back to the plasma 

membrane (recycling) (Seaman, 2012; Burd and Cullen, 2014). Multiple neuronal 

proteins, such as β2-adrenergic receptor, AMPA-type glutamate receptor, 

wntless and Alzheimer-associated sortilin-related receptor 1 recycle back to the 

plasma membrane mediated in a retromer-dependent manner (Rogaeva et al., 

2007; Zhang et al., 2012; Choy et al., 2014; Loo et al., 2014; Varandas et al., 

2016). Moreover, retromer disruption is closely linked to multiple neurological 

disorders, including Alzheimer’s and Parkinson’s diseases (Tsika et al., 2014; 

Dhungel et al., 2015; Small and Petsko, 2015).  

In the current study, we took advantage of Protein Incorporation Mediated by 

Enzyme (PRIME) labeling to directly couple a small (~700 dalton) fluorophore to 

the DAT surface population, and subsequently tracked DAT’s temporal-spatial 

post-endocytic itinerary in immortalized mesencephalic cells. Taken together, our 

data demonstrate that internalized DAT targets to a retromer-positive endocytic 

compartment, and that retromer is required to maintain DAT surface levels. 

Moreover, our results demonstrate that DAT recycling via retromer requires a C-

terminal PDZ-binding motif.  
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III.B Materials and methods 

Materials: Picolyl azide (pAz) and Bis[(tertbutyltriazoyl)methyl]-[(2-

carboxymethyltriazoyl)methyl]-amine were synthesized as previously reported 

(Uttamapinant et al., 2010; Uttamapinant et al., 2012). Rat anti-DAT antibody 

(MAB369) was from EMD Millipore and mouse anti-actin antibody (sc-56459) 

was from Santa Cruz Biotechnology. Mouse anti-EEA1 (610456) and mouse anti-

rab11 (610656) antibodies were from BD Transduction. Rabbit anti-rab7 antibody 

(D95F2) was from Cell Signaling Technology and goat anti-Vps35 antibody 

(NB100-1397) was from Novus Biologicals. Horseradish peroxidase-conjugated 

secondary antibodies were from EMD Millipore (goat anti-rat), Jackson 

ImmunoReseach (donkey anti-goat, minimal cross-reaction to mouse serum 

proteins) and Pierce (goat anti-mouse). Alexa488-conjugated secondary 

antibodies were from Invitrogen (goat anti-mouse, goat anti-rabbit, goat anti-rat 

and donkey anti-goat (minimal cross-reaction to mouse serum proteins) Alexa 

Fluor488) and donkey anti-rat Alexa Fluor594 (minimal cross-reaction to mouse 

serum proteins) was from Jackson ImmunoResearch. Alkyne-conjugated Alexa 

Fluor594 was from Invitrogen. [3H]DA (dihydroxyphenylethylamine 3,4-[ring-

2,5,6-3H]) was from Perkin Elmer. Sulfo-NHS-SS-biotin, Tris(2-

carboxyethyl)phosphine hydrochloride (TECP), and streptavidin agarose were 

purchased from Thermo Fisher Scientific. Phorbol 12-myristate 13-acetate (PMA), 

AIM-100 and GBR12909 were from Tocris Bioscience. All other chemicals and 
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reagents were from Thermo Fisher Scientific or Sigma-Aldrich and were of 

highest grade possible. 

cDNA Constructs and Mutagenesis: To generate LAP-hDAT-pcDNA3.1(+), hDAT 

was subcloned into pBS-SKII- as a shuttle vector, and degenerate mutations 

were introduced into hDAT codons corresponding to amino acids 193 and 204, 

adding BsaBI and HpaI sites (Quickchange mutagenesis kit, Agilent 

Technologies). Sense and anti-sense oligonucleotides encoding the LAP-peptide 

sequence, flanked by linkers (GSSGSSGGFEIDKVWHDFPAGSSGSSG; LAP 

peptide sequence is underlined), were annealed and ligated into the blunt 

BsaBI/HpaI site, and the final LAP-DAT cDNA was subcloned into pcDNA3.1(+) 

at HindIII/XbaI sites. LAP-DAT-AAA-pcDNA3.1(+) was generated by mutating the 

last three amino acids of hDAT into alanines (LKV to AAA) using a Quickchange 

mutagenesis kit (Agilent Technologies). All DNA sequences were determined by 

the dideoxy chain termination (Genewiz, New Jersey).  

Cell Culture and Transfections:  The rat mesencephalic cell line 1Rb3AN27 was 

a kind gift from Dr. Alexander Sorkin (University of Pittsburgh, Pittsburgh, PA) 

and was maintained in RPMI1640 supplemented with 10% fetal bovine serum, 

2mM glutamine and 100 units/ml penicillin/streptomycin, 37°C, 5% CO2. Pooled 

stable AN27 cell lines expressing either wild-type hDAT, LAP-hDAT or LAP-

hDAT-AAA, respectively, were generated by transfecting 2×105 cells/well in 6-

well culture plate with 1µg plasmid DNA using Lipofectamine 2000, at lipid:DNA 

ratio of 2:1 (w/w). Stably transfected cells were selected with 200 µg/ml G418 
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(Invitrogen) and resistant cells were pooled and maintained under selective 

pressure in 80 µg/ml G418. SK-N-MC cells were from American Type Culture 

Collection (ATCC) and were maintained in MEM (Sigma-Aldrich M2279) 

supplemented with 10% fetal bovine serum (Invitrogen), 2mM L-glutamine, 102 

U/ml penicillin/streptomycin, 37°C, 5% CO2. Pooled #14 stable SK-N-MC cell 

lines expressing hDAT was generated by transfecting 1×106 cells/well in 6-well 

culture plate with 3 µg plasmid DNA using Lipofectamine 2000, at lipid:DNA ratio 

of 2:1 (w/w). Stably transfected cells were selected in 500 µg/ml G418 (Invitrogen) 

and resistant cells were pooled and maintained under selective pressure in 200 

µg/ml G418. 

[3H]DA Uptake Assay: DAT-AN27 and LAP-DAT-AN27 cells were seeded onto 

24-well plates at 8x104 cells per well one day before performing assays. Cells 

were washed twice with KRH buffer (120mM NaCl, 4.7 mM KCl, 2.2 mM CaCl2, 

1.2 mM MgSO4, 1.2 mM KH2PO4,10mM HEPES, pH 7.4) and preincubated in 

KRH buffer supplemented with 0.18% glucose, 0.1% BSA at 37°C for 30min in 

the presence of either vehicle or the indicated drugs. Uptake was initiated by 

adding 1 µM [3H]DA containing 10-5 M pargyline and 10-5 M ascorbic acid and 

proceeded for 10 min, 37°C. Assays were terminated by rapidly washing cells 

thrice with ice-cold KRH buffer. Cells were solubilized in scintillation fluid, and 

accumulated radioactivity was measured by liquid scintillation counting in a 

Wallac Microbeta plate counter. Non-specific uptake was defined in the presence 

of 10 µM GBR12909. 
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Endocytic Rate Measurements by Reversible Biotinylation: Stable DAT-AN27 

and LAP-DAT-AN27 cells were plated at 3x105 cells per well in 6-well plate 24 

hours prior to conducting experiments. Cells were washed three times with ice-

cold PBS2+ (phosphate-buffered saline, pH 7.4, supplemented with 1mM MgCl2 

and 0.1mM CaCl2), surface proteins were biotinylated twice, 15 min, 4°C, with 

2.5 mg/mL sulfo-NHS-SS-biotin, and were quenched twice, 15 min, 4°C with 100 

mM glycine/PBS2+. Internalization was initiated by washing cells rapidly with 

three times with pre-warmed (37°C) PBS2+/0.18% glucose/0.1% BSA 

(IgG/protease free) containing either  vehicle or the indicated drugs, and 

incubating 10 min, 37°C. Zero timepoint and strip controls were kept at 4°C in 

parallel. Endocytosis was arrested by rapidly washing cells with ice-cold NT 

buffer (150 mM NaCl, 20mM Tris, pH 8.6, 1.0mM EDTA, pH 8.0, 0.2% protease 

free/IgG free BSA). Residual surface biotin was stripped by reducing twice with 

50 mM TCEP/NT buffer, 25 min, 4°C, followed by three washes with PBS2+. Cells 

were lysed in RIPA containing protease inhibitors and protein concentrations 

were determined by BCA protein assay (Thermo) comparing BSA standards. 

Biotinylated proteins were isolated from equivalent amounts of total cellular 

protein by streptavidin-agarose affinity chromatography. Samples were analyzed 

by SDS-PAGE and DAT was detected using a monoclonal rat anti-DAT antibody 

(MAB369; EMD Millipore). Non-saturating DAT bands were detected using a 

VersaDoc gel documentation system and were quantified using Quantity One 
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software (Bio-Rad). Internalization rates were calculated as %biotinylated DAT 

recovered as compared to DAT surface levels at t= 0. 

W37VLplA expression and purification: Expression and purification of His6-tagged 

W37VLplA was described in detail at (Uttamapinant et al., 2013). Briefly, pYFJ16-

His6-
W37VLplA plasmid was transformed into BL21 E. Coli and bacteria were 

incubated at 37°C, with shaking until they attained log phase growth. Protein 

expression was induced by adding 100 μg/ml isopropyl-β-D-

thiogalactopyranoside (IPTG) and proceeded for 8 hrs at room temperature. 

Bacteria were lysed and His6-
W37VLplA was purified by nickel-affinity 

chromatography. Eluted protein was dialyzed for 8 hours, twice, against 20 mM 

Tris base, 1 mM DTT, 10% (v/v) glycerol, pH 7.5, at 4 ºC, and protein 

concentrations were determined by A280 absorbance using NanoDrop (Thermo 

Scientific) using an extinction coefficient of 46250 M-1cm-1. Ligase aliquots were 

stored at -80ºC. 

Probe Incorporation Mediated by Enzymes (PRIME) Labeling and Post-Endocytic 

Tracking Studies: Live AN27 cells stably expressing the indicated LAP-DAT 

constructs were covalently labeled with alkyne-Alexa as described previously 

(Uttamapinant et al., 2013). Briefly, cells were seeded onto glass coverslips in 

24-well plates at a density of 8x104 cell/well, one day prior to assaying. A picolyl 

azide (PAz) ligation mixture was prepared, containing 10 μM W37VLplA, 200 μM 

pAz, 1 mM ATP and 5 mM MgCl2 in PBS/3%BSA and cells incubated with Paz 

ligation mixture, 20min, room temperature, followed by three washes with PBS2+. 
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A low Cu2+ click labeling solution containing 10 mM CuSO4, 50 mM BTTAA and 

100 mM sodium ascorbate and was prepared and incubated with cells at room 

temperature,10min in a closed tube. The labeling solution was diluted 200X with 

PBS2+, alkyne-Alexa594 was added to a final concentration of 20 µM and 

incubated with cells for 10 min, room temperature. Cells were washed three 

times with room temperature PBS2+ and internalization was initiated by rapidly 

washing cells and incubating in pre-warmed (37°C) PBS2+/g/BSA (PBS2+, 0.18% 

glucose, 0.1% IgG/protease-free BSA) containing the indicated drugs. Cells were 

fixed at the indicated post-endocytic timepoints in 4% paraformaldehyde for 10 

min, room temperature and were subsequently blocked, permeabilized and 

stained with indicated primary antibodies and Alexa488-conjugated secondary 

antibodies as previously described (Navaroli et al., 2011). Note that all of the 

antibodies directed against endosomal markers were carefully vetted for 

specificity: 1. By their ability to recognize native and GFP-tagged proteins via 

immunoblot, and 2) by their ability to co-stain GFP-tagged markers in situ. Dried 

coverslips were mounted in ProLong Gold with DAPI to stain and were dried prior 

to performing imaging. 

Wide Field Microscopy and Image Analysis: Cells were visualized with a Zeiss 

Axiovert 200M microscope using a 63X, 1.4 N.A. oil immersion objective and 0.2 

µm optical sections were captured through the z-axis with a Retiga-1300R cooled 

CCD camera (Qimaging). For image presentation, 3-D z-stack images were 

deconvolved with a constrained iterative algorithm using measured point spread 
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functions for each fluorescent channel using Slidebook 5.0 software (Intelligent 

Imaging Innovations). All representative images shown are single 0.2 µm planes 

through the center of each cell. To quantify the percentage of LAP-DAT that co-

localized with different endosomal markers (by volume, i.e. counting voxel), the 

DAT image was used to identify 1) an extracellular background region-of-interest 

(ROI) for background fluorescence estimation, and 2) the range of contiguous 

optical sections (z-axis planes) having infocus DAT information (i.e. the cell). The 

sample fields imaged were chosen to contain at least one extracellular region of 

at least 5 µm across. This background region was automatically determined by 

first taking the maximum intensity projection (in Z) of the DAT stack.  Then the 

(x,y) position of the 2-D region (x±radius, y±radius) having the lowest average 

intensity within this projection was saved.  The radius used was nominally 20 

pixels (±2 µm).  For each of the color image stacks, at each z plane the average 

intensity of this 2-D region was subtracted from all pixels of the plane, leaving as 

positive signal the fluorescence greater than the extracellular background.  The 

outline of the box containing this background region was superimposed on the 

DAT maximum projection image, as well as the maximum projections of the other 

color stacks, for visual inspection and verification before proceeding with the 

analysis. The infocus DAT data planes were also automatically determined, by 

first calculating the normalized total energy Ê of each Z plane, defined as  

 E(z) = (ΣΣI([x,y],z)2 – n(z)·Ī(z)2) / n(z)·I(z)2  
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And Ê(z) = (E(z)-Emin)/(Emax-Emin),  where I([x,y],z) is a pixel intensity at position 

[x,y] in plane z, Ī(z) is the average intensity of plane z, and n(z) is the total 

number of pixels in plane z. Starting from the bottom of the stack (1st z plane) 

and moving up, the first infocus plane zbot was defined as the z plane where Ê(z) 

exceeds ÊT=0.5.  Similarly, starting from the top (last z plane) and moving down, 

the last infocus plane ztop is where Ê(z) exceeds the threshold ÊT. This was 

generally a conservative threshold, keeping a few out-of-focus planes at the top 

and the bottom. The planes zbot to ztop are extracted from the background-

corrected multi-color stacks for deconvolution.  The point spread function of the 

microscope system was determined from images of slides of 4 color, 175 nm 

diameter beads (PS-Speck Microscope Point Source Kit, Thermo Fisher 

Scientific Inc.)  All images were subjected to regularized, constrained, iterative 

deconvolution with the same smoothness parameter (a=5·10-5) and iterated until 

the algorithm reached convergence (0.001 level).  

Image segmentation (i.e., identification of signal) was performed on each 

restored image (each wavelength separately) via a manually set threshold. Each 

3-D restored image was projected (via maximum intensity projection) to 2-D and 

then displayed using a false color scale manually adjusted for each displayed 

image to maximize contrast between signal and background. Three different 

thresholds were then chosen for each image: the lower threshold allowed some 

diffused background fluorescence, the middle threshold removed all the diffused 

background and the higher threshold eliminated edges of the labeled structures.  
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Pixels above threshold were kept while those below threshold were set to 0.  

Colocalization of DAT with a second protein was calculated by counting the 

number of positive (>0) pixels in the 3-D DAT image which were also positive in 

the corresponding position of the second protein image, and dividing by the 

number of positive DAT pixels. The low and high thresholds were used to 

evaluate whether conclusions drawn from the colocalization results for the best 

(middle) thresholds were dependent on the threshold chosen and the best 

threshold was used for the data presentation and analysis. All image processing 

and analysis was performed using custom software. 

Initial time points of EEA1 and Vps35 data as well as Rab7 data was fit to a 

linear regression equation 𝑌 = 𝑘𝑥 + 𝑎 , where Y = % DAT colocalized with 

endosomal markers, x is the time (min), k is slope and a is %DAT with 

endosomal markers at time zero. 

Brain Slice Immunohistochemistry and Confocal Microscopy: All animals were 

handled according to University of Massachusetts Medical School IACUC 

protocol A1506 (H.E.M.). Adult C57/B6 mice were transcardially perfused with 4% 

paraformaldehyde and brains were removed and post-fixed for one day at 4°C, 

followed by dehydration in PBS/30% sucrose, 4°C, 2-3 days. 25 μm coronal 

sections were taken through the striatum and midbrain using a sliding microtome 

(Leica) and slices were blocked in PBS with 0.2% TritonX-100, 5% normal 

donkey serum and 1% H2O2. For DAT and Vps35 immunofluorescence, sections 

were co-incubated overnight with rat anti-DAT (1:2000) and goat anti-Vps35 



101 
 

(1:500) in PBS with 0.2% TritonX-100, 5% normal donkey serum and 1% H2O2. 

Slices were rinsed in PBS, and incubated with donkey anti-goat and donkey anti-

mouse Alexa Fluor (1:2000 each) for 1hr at room temperature. Unbound 

secondary antibodies were washed in PBS and slices were mounted onto glass 

slides, dried and coverslipped in Prolong Gold mounting medium containing 

DAPI (Invitrogen). Images were acquired with a Leica TCS SP5 II laser scanning 

confocal microscope (Cell and Developmental Biology Core, University of 

Massachusetts Medical School) with either a 20X, 0.7 N.A. objective (HCX PL 

APO CS 20.0x0.70 IMM, Leica) or a 63X, 1.4 N.A. oil immersion objective (HCX 

PL APO CS 63.0x1.40 OIL, Leica). 0.4 µm optical sections were captured 

through the z-axis and 3-D z-stack images were imported into ImageJ using Bio-

Format Importer plugin. All images shown are single representative 0.4 µm 

planes. 

shRNA, Lentiviral Production and Transduction:  Human Vps35-targeted short 

hairpin RNA (shRNA), cloned into the pGIPZ lentiviral vector, were from GE 

Healthcare Dharmacon, and were purchased from University of Massachusetts 

Medical School RNAi Core.  

Full length hairpin sequences were as follows: 

Non-silencing (Luciferase 693): 

TGCTGTTGACAGTGAGCGCTCTAAGAACGTTGTATTTATATAGTGAAGCCAC

AGATGTATATAAATACAACGTTCTTAGATTGCCTACTGCCTCGGA 

hVps35 sh#32:  
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TGCTGTTGACAGTGAGCGACTGACAGATGAGTTTGCTAAATAGTGAAGCCA

CAGATGTATTTAGCAAACTCATCTGTCAGGTGCCTACTGCCTCGGA 

Initial shRNA efficacies were determined by immunoblotting cell lysates obtained 

from HEK293T cells transiently transfected (Lipofectamine 2000) with the 

indicated pGIPZ-shRNA vs. control vectors. Replication incompetent lentiviral 

particles were produced as previously described by our laboratory (Wu et al., 

2015) and titers were determined 48 hrs post-transfection by counting GFP-

positive cells in transduced HEK293T cells.  

For Lentiviral Transduction:  5x105 DAT SK-N-MC cells/well were seeded into 6-

well plate one day prior to viral transduction and were infected with 5ml of the 

indicated crude lentivirus supplemented with 8µg/ml polybrene. Virus was 

removed 24 hours post-infection and transduced cells were enriched by selecting 

with 1µg/ml puromycin. Cells were assayed 96 hours post-infection.  

Cell Surface Biotinylation: DAT surface levels in SK-N-MC cells were determined 

by steady state biotinylation as previously described (Navaroli et al., 2011; 

Gabriel et al., 2013; Wu et al., 2015). Briefly, cells were labeled twice, 15 min, 

4°C with 1.0 mg/ml sulfo-NHS-SS-biotin in PBS2+ and excess biotinylation 

reagent was quenched twice, 15 min, 4°C with PBS2+/100mM glycine. Excess 

glycine was removed by washing three times in ice-cold PBS2+ and cells were 

lysed in RIPA buffer (10mM Tris, pH 7.4, 150mM NaCl, 1mM EDTA, 0.1%SDS, 

1%Triton-X-100, 1% sodium deoxycholate) containing protease inhibitors. 

Lysates were cleared by centrifugation and protein concentrations were 
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determined by BCA protein assay kit (Pierce). Biotinylated proteins from 

equivalent amount of cellular protein were recovered by batch streptavidin affinity 

chromatography (overnight, 4°C) and bound proteins were eluted in denaturing 

SDS-PAGE sample buffer, 30 min, room temperature with rotation. Samples 

were analyzed by SDS-PAGE and indicated proteins were detected by 

immunoblotting with the indicated antibodies. Immunoreactive bands were 

detected with SuperSignal West Dura (Pierce) and were captured using the 

VersaDoc Imaging station (Biorad). Non-saturating bands were quantified using 

Quantity One software (Biorad). 

Statistical Analysis: Data were presented as means of results from each 

experimental condition, as indicated in figure legends. For experiments in which 

two conditions were compared, data were analyzed using an unpaired, two-tailed 

Student’s t test. For experiments in which three or more conditions were 

evaluated, statistical significance was calculated using either a one-way or two-

day ANOVA followed by either Tukey’s or Bonferroni’s multiple comparison test 

as indicated in the figure legends. All time course data sets passed normality test. 

Statistical analyses were performed using GraphPad Prism 6.0 software.  

 

III.C Results 

DAT expression, function and trafficking tolerate LAP peptide 

incorporation into extracellular loop 2  
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Previous studies investigating DAT post-endocytic trafficking have relied primarily 

on either antibody feeding or fluorescent competitive DAT inhibitors, both of 

which could potentially target DAT to a physiologically irrelevant post-endocytic 

pathway. Therefore, we aimed to track DAT’s post-endocytic itinerary by 

covalently labeling the DAT cell surface population with small fluorophores, 

thereby creating a “fluorescent DAT”. To accomplish this, we took advantage of 

the recently reported  Protein Incorporation Mediated by Enzyme (PRIME) 

labeling approach (Uttamapinant et al., 2013). This method covalently couples 

fluorophore to cell surface proteins that encode an extracellular ligase acceptor 

peptide (LAP), which is a substrate for bacterial lipoic acid ligase. The PRIME 

strategy for labeling cell surface DAT is illustrated in Figure III-1A. We replaced 

hDAT residues 193-204 in the 2nd extracellular loop (EL2) with a twenty-seven 

amino acid peptide sequence containing LAP, flanked by linker sequence. We 

first tested the specificity of this labeling approach by stably expressing LAP-DAT 

in the rat mesencephalic cell line, 1Rb3AN27, and subsequently performing 

PRIME labeling followed by immunocytochemistry on fixed, permeabilized cells 

using an anti-DAT antibody, to detect total LAP-DAT expression. Alkyne-

Alexa594 coupled specifically to the surface of cells expressing LAP-DAT, 

whereas nearby LAP-DAT-negative cells (identified using DAPI staining) were 

not labeled (Fig.III-1B). Moreover, the alkyne-Alexa594 signal overlapped with 

the anti-DAT antibody signal at the cell surface. These results demonstrate that 

PRIME labeling is both highly efficacious and specific for LAP-DAT. We also 
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performed PRIME labeling on cells expressing wild-type DAT (wt-DAT), and 

observed no labeling (data not shown). Of note, we observed that the 

requirement of a linker between the DAT polypeptide backbone and the LAP 

peptide was absolutely required in order to achieve high efficiency labeling, and 

earlier attempts at labeling LAP-DAT constructs, either without linkers or with 

shorter linkers, failed to efficiently label cells (data not shown). 

We next asked whether LAP-DAT expressed, functioned and downregulated 

comparable to wt-DAT. Immunoblot analysis revealed that LAP-DAT expressed 

at levels comparable to wt-DAT, with a similar ratio of mature (~75kDa) to 

immature (~55kDa) biosynthetic species (Fig.III-1C). LAP-DAT was also 

subjected to PKC-induced function downregulation. PKC activator PMA 

significantly decreased wt-DAT and LAP-DAT function to 68.70 ± 3.42% and 

58.15 ± 7.49% control levels, respectively (Fig.III-1C). To test whether LAP-DAT 

undergoes regulated endocytosis, we stimulated DAT internalization by inhibiting 

Ack1 with 20µM AIM-100, as previously reported (Wu et al., 2015). Basal LAP-

DAT internalization rates were not significantly different from wt-DAT (p=0.2) and 

AIM-100 treatment similarly increased both LAP-DAT (134.48 ± 5.33% of control 

levels) and wt-DAT (162.57 ± 16.8% control levels) internalization rates (Fig.III-

1D). Thus, appending DAT with the LAP peptide did not deleteriously impact 

DAT biosynthesis, function or endocytic trafficking. 
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Tracking DAT temporal-spatial post-endocytic trafficking via PRIME 

labeling 

We next used LAP-DAT to temporally track DAT’s post-endocytic fate by 

fluorescently labeling the surface DAT population at room temperature (18°C - 

22°C; conditions of minimal endocytosis), stimulating internalization by shifting 

cells to 37°C, and fixing/staining cells at various post-endocytic time points to 

measuring DAT co-localization with several endosomal markers (see schematic, 

Fig.III-2A). As a proof of principle, we first characterized DAT trafficking from the 

plasma membrane to early endosomes, given multiple reports that DAT co-

localizes to EEA1/rab5-positive vesicles shortly following internalization (Daniels 

and Amara, 1999; Melikian and Buckley, 1999; Eriksen et al., 2009). At time zero, 

4.01 ± 0.21% of the LAP-DAT signal co-localized with EEA1 (Fig.III-2C). This 

low-level co-localization was observed between DAT and all endocytic markers 

investigated throughout the study, and we attributed this to low-level basal DAT 

internalization that occurred during the room temperature labeling procedure. 

Under basal conditions, DAT/EEA1 co-localization rapidly and significantly 

increased over the first 10 minutes of internalization and peaked at 21.29 ±1.37%, 

which translates to a 430.9% enhancement over baseline. DAT/EEA1 co-

localization plateaued at subsequent time points, although there was a trend for 

decreased DAT/EEA1 colocalization at the 60 minute time point as compared to 

the 10 minute peak (Fig.III-2C; p=0.08) Treatment with AIM-100 to stimulate DAT 

internalization also significantly increased DAT/EEA1 colocalization over time, 
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although the initial rate of entry into EEA1-positives was significantly slower as 

compared to vehicle conditions (slope = veh: 1.73±0.41 vs. AIM-100: 0.87±0.11, 

p<.03, Student’s t test, n=30), with co-localization peaking at 20 minutes post-

endocytosis. We likewise observed no significant decrease in DAT/EEA1 co-

localization after the 20 minute peak. These results demonstrate that the PRIME 

labeling strategy is effective for tracking DAT from the cell surface to endosomal 

destinations. Note that in the interest of space, we have only presented DAT 

internalization images under control conditions, as any AIM-100-induced 

differences are not markedly different by visual inspection.  

Following internalization and localization to early endosomes, proteins are 

targeted to either degradative, recycling, or retrograde (i.e. TGN) pathways. 

Given that DAT recycling and rapid delivery to the plasma membrane has been 

reported by our laboratory and others (Loder and Melikian, 2003; Lee et al., 2007; 

Gabriel et al., 2013; Richardson et al., 2016), we next asked whether DAT is 

targeted to the conventional rab11 recycling endosome (Welz et al., 2014). 

Under basal conditions, we observed no significant DAT/rab11 co-localization 

over baseline at either 5 or 10 minute time points, and a small, but significant 

amount of DAT/rab11 co-localization (7.36 ± 0.42% co-localization; Fig.III-3B) 

that translated to 46.3% over baseline at 20 minutes post-endocytosis, and 

plateaued across all subsequent time points. During AIM-100 treatment, there 

was no significant co-localization with rab11 at early time points, but DAT 

significantly co-localized with rab11 at 45 min and 60 min, as compared to 
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baseline and early time points (Fig.III-3B). Moreover, at 60 min post-endocytosis, 

there was significantly more DAT co-localized with rab11 under AIM-100 

treatment as compared to vehicle treatment. These results indicate although the 

majority of DAT does not go through conventional recycling pathway, a small but 

significant DAT population enters rab11-positive endosomes, and this is 

increased when DAT endocytosis is stimulated by acute Ack1 inhibition. 

Given that the majority of internalized DAT did not co-localize with a rab11-

positive endosome, we next asked whether DAT sorted to degradation by 

staining late endosomes, using rab7 as a marker. Under basal conditions, DAT 

exhibited a slow, significant, linear (r2=0.95) increase in rab7 co-localization over 

time, with 22.11 ± 0.97% DAT/rab7 co-localization observed at the 45 minute 

timepoint, which translated to a 295.5% elevation over baseline (Fig.III-3D). AIM-

100 treatment had no effect on the rate of DAT/rab7 co-localization (slope = 

vehicle: 0.34 ±0.04 vs. AIM-100: 0.31 ±0.04, p=0.62, Student’s t test, n=30). 

These results suggest that a fraction of DAT moves into rab7-positive 

endosomes following internalization, with no difference between the kinetics of 

basal vs. stimulated DAT endocytosis. 

DAT targets to retromer-positive endosomes 

Given that DAT expression is quite stable, we questioned whether DAT post-

endocytic sorting to a rab7-positive compartment was indicative of immediate 

post-endocytic targeting to the degradative pathway. Recent studies indicate that 

rab7 is also part of the cargo-selective trimer (Vps35-Vps29-Vps26) that recruits 
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proteins to the retromer complex from the endosomal membrane (Rojas et al., 

2008; Seaman et al., 2009). Therefore, we hypothesized that DAT may recycle to 

the plasma membrane via a retromer-mediated mechanism. To test this 

hypothesis, we asked whether internalized DAT entered a retromer-positive 

endosome, as indicated by co-localization with Vps35, a retromer core protein for 

cargo recognition (Seaman, 2012; Burd and Cullen, 2014). Under basal 

conditions, DAT/Vps35 co-localization rapidly and significantly increased over 

time, peaking at 24.01 ±0.88% co-localization at 15 minutes post-endocytosis, 

which translates to 413.0% enhanced co-localization over baseline (Fig.III-4B). 

Moreover, DAT/Vps35 co-localization was significantly reduced by 45min 

compared with 15min, likely reflecting DAT exiting from Vps35-positive 

endosomes over time. During AIM-100 stimulation, DAT/Vps35 co-localization 

likewise increased significantly over time (Fig.III-4B). However, the rate of 

DAT/Vps35 increased co-localization was significantly lower in AIM-100 vs. 

vehicle-treated cells (slope = veh: 1.24±0.28 vs. AIM-100: 0.63±0.14, p<.04, one-

tailed Student’s t test, n=24-30). However, in contrast to vehicle-treated cells, 

DAT/Vps35 co-localization continued to increase at later time points (Fig.III-4B). 

These results suggested that DAT is targeted to the retromer complex following 

either basal or stimulated endocytosis.  

We further asked whether native DAT co-localized with Vps35 in situ in bona fide 

DAergic neurons. Immunocytochemistry performed on coronal mouse brain 

slices revealed DAT/Vps35 co-localization in perinuclear regions of substantia 
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nigra DAergic neurons (Fig. 4C). We also observed discrete DAT/Vps35-positive 

puncta in a subset of DAergic terminals in the dorsal striatum (Fig. 4D), 

consistent with DAT targeting to retromer complex. Taken together with our 

cellular LAP-DAT studies, these results indicate that DAT co-localizes with 

retromer in both AN27 cells and intact DA neurons, raising the possibility that 

internalized DAT is sorted and recycled via a retromer-dependent mechanism. 

Retromer complex is required to maintain DAT surface levels  

We next tested whether intact retromer activity was required to recycle DAT back 

to the plasma membrane following internalization. We reasoned that if retromer 

were required for DAT recycling, retromer disruption would decrease DAT 

surface levels, and potentially target DAT to degradation if it were unable to 

recycle back to the plasma membrane. To test this hypothesis, we used shRNA 

to knock down Vps35, an approach previously reported to perturb retromer 

function (Choy et al., 2014; Varandas et al., 2016). We screened several human 

Vps35-targeted shRNA constructs and found that shRNA#32 significantly 

reduced Vps35 expression to 35.17 ± 4.82% of control levels (Fig.III-5A). In DAT-

SK-N-MC cells, Vps35 loss resulted in a significant decrease in DAT surface 

levels (54.90 ±6.43% of control; Fig.III-5B), consistent with a role of retromer in 

maintaining DAT surface expression. Moreover, total DAT levels were also 

reduced to 54.40 ±4.72% control levels following Vps35 knockdown (Fig.III-5C), 

suggesting that compromised retromer activity drives DAT to degradation. Taken 
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together, these results demonstrate that retromer is required to maintain DAT 

surface levels, and implicates retromer as the DAT recycling mechanism. 

DAT exit from retromer is dependent of its C-terminal PDZ-binding motif 

We next asked whether a specific domain targeted to and/or recruited DAT from 

retromer. Many proteins target to retromer via PDZ binding motifs (Lauffer et al., 

2010; Clairfeuille et al., 2016; McGarvey et al., 2016). Interestingly, DAT encodes 

a C-terminal PDZ-binding motif (-LKV), and multiple reports indicate that DAT 

surface stability is dependent upon this motif (Torres et al., 2001; Bjerggaard et 

al., 2004; Rickhag et al., 2013). To test whether the DAT C-terminal PDZ-binding 

motif was required for targeting to the retromer complex, we mutagenized the 

DAT C-terminus within the LAP-DAT background (LAP-DAT-AAA) and tested 

whether DAT retromer targeting was maintained. As seen in Figure III-6B, both 

wildtype LAP-DAT and LAP-DAT-AAA were robustly targeted to Vps35 

compartment. However, there was a significant difference between WT-DAT and 

DAT-AAA co-localization with Vps35 at the 45 minute time point, suggesting that 

the DAT –LKV sequence is necessary to exit retromer-associated endosomes.  

 

III.D Discussion 

Neurons utilize energy-demanding mechanisms to organize and maintain 

functional and plastic presynaptic terminals. DAT is expressed in midbrain 

dopaminergic cell bodies, and is biosynthetically trafficked to distant presynaptic 

boutons in the dorsal and ventral striata, respectively, where it is properly 
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organized adjacent to active release sites. Given the large energy expenditure 

required to construct DAergic terminals, it is evolutionarily advantageous to 

maintain these complex structures as efficiently as possible. Endocytic recycling 

rapidly modulates the synapse, bypassing the requirement for either biosynthesis 

or degradative burden. Evidence from multiple laboratories supports that DAT is 

subject to constitutive and regulated internalization (Melikian, 2004; Bermingham 

and Blakely, 2016). However, DAT's post-endocytic fate has long been debated, 

with numerous reports demonstrating measurable DAT recycling (Loder and 

Melikian, 2003; Boudanova et al., 2008a; Chen et al., 2013; Richardson et al., 

2016). In contrast, several tracking studies found that DAT targets to degradative 

vesicles (Miranda et al., 2005; Eriksen et al., 2010b). These seemingly disparate 

findings may have arisen from the broad variety of approaches used to 

interrogate the DAT trafficking itinerary, including antibody tracking (Hong and 

Amara, 2013; Block et al., 2015), fluorescent high-affinity DAT ligands (Eriksen et 

al., 2009) and DAT-reporter fusion proteins (Eriksen et al., 2010b). Moreover, 

previous studies reported steady-state findings following extended labeling times, 

which might unintentionally overlook early post-endocytic trafficking events. It is 

worth noting that although our studies were highly feasible in the cell line utilized, 

LAP-DAT expression was compromised in both SK-N-MC and SH-SY5Y cell 

lines, possibly due to cleavage of LAP peptide by endogenous transmembrane 

proteases.  
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Consistent with previous results, we observed robust, rapid DAT entry into EEA1- 

positive endosomes within 5-10 minutes post-endocytosis. Surprisingly, when we 

stimulated DAT endocytosis by acutely inhibiting Ack1, we did not observe more 

rapid or enhanced DAT entry into EEA1-positive endosomes. Rather, we 

observed significantly less DAT/EEA1 colocalization at 5min and 10min, 

compared to vehicle controls (Fig.III-2C). Basal DAT internalization is both 

clathrin- and dynamin-independent (Gabriel et al., 2013; Wu et al., 2015), 

whereas PKC- and AIM-100 stimulated DAT internalization are both clathrin and 

dynamin-dependent (Gabriel et al., 2013; Wu et al., 2015). Thus, a DAT 

subpopulation may target to an EEA1-negative (Hayakawa et al., 2006; 

Lakadamyali et al., 2006; Kalaidzidis et al., 2015) early endosomes following 

stimulated endocytosis. Alternatively, enhanced DAT internalization may saturate 

the early endosomal machinery, and thereby stall entry kinetics into EEA1-

positive early endosomes. 

Although DAT recycling and rab11-dependent DAT delivery to the plasma 

membrane have been reported (Loder and Melikian, 2003; Furman et al., 2009a; 

Sakrikar et al., 2012; Richardson et al., 2016), previous DAT tracking studies 

have not observed robust DAT entry into classic rab11-positive recycling 

endosomes (Eriksen et al., 2010b; Hong and Amara, 2013). We observed a 

small, but significant, enhancement in DAT/rab11 co-localization under basal 

conditions, that increased in response to stimulated DAT endocytosis (Fig.III-3A, 

4B). However, DAT/rab11 co-localization over baseline was relatively modest 
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over time (~46%), did not account for the robust DAT population that entered 

early endosomes (~500% enhanced co-localization over baseline). In contrast, 

we observed robust and significant DAT co-localization in Vps35-positive 

vesicles, that peaked between 15-20 minutes post internalization (Fig.III-4A, 4B), 

with an enhancement of 513% over baseline, comparable to what we observed 

for DAT entry into early endosomes. These data suggest that the majority of 

internalized DAT targets to the retromer complex. Retromer and rab11-

dependence are not necessarily mutually exclusive, as several reports suggest 

that rab11 may function in consort with retromer to facilitate recycling (van 

Weering et al., 2012; Hsiao et al., 2015). Likewise, several reports suggest that 

rab7 is required for retromer recruitment, both in yeast and mammalian cells, and 

acts in consort with rab5 (Rojas et al., 2008; Seaman et al., 2009). Thus, both 

our results, and those from other groups, indicating significant DAT post-

endocytic trafficking through a rab7-positive compartment may also be indicative 

the retromer-mediated recycling mechanism. We cannot, however, rule out the 

possibility that a fraction of DAT is sorted to late endosomes for degradation. 

Indeed, we observed a decrease in total and surface DAT in response to 

retromer disruption, consistent with targeted degradation. However, dissimilar to 

previous reports (Miranda et al., 2005; Hong and Amara, 2013), we did not 

observe any enhanced targeting to rab7-positive endosomes in response to 

stimulated DAT internalization (Fig.III-3C, 3D).  
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Steady state DAT/Vps35 co-localization was detected in perinuclear regions of 

DAergic soma (Fig.III-4C). This could indicate potential DAT recycling in 

somatodendritic compartments via the perinuclear recycling compartment. 

Alternatively, given that retromer is responsible for retrograde transport from the 

plasma membrane to the TGN, DAT/Vps35 co-localization may simply reflect 

close opposition between DAT biosynthesis and retrogradely targeted proteins in 

the TGN. Although DAT expression is strikingly robust in DAergic terminal 

regions, we only detected DAT/Vps35 co-localization in a small subset of DAT 

puncta (Fig.III-4D). Thus, DAT recycling may only occur in the small subset of 

actively releasing terminals. Consistent with this premise, we observe only 

modest, but significant, losses in DAT surface expression following PKC 

activation in ex vivo mouse striatal slices (Gabriel et al., 2013), which could 

reflect larger losses in individual active boutons averaged with a static DAT 

population in the inactive DA terminal population.  Future studies should better 

illuminate this possibility.  

Retromer complex was originally identified as mediating cargo recruitment for 

retrograde trafficking from plasma membrane to the TGN (Seaman et al., 1997; 

Seaman et al., 1998). However, recent studies have revealed that retromer plays 

an equally important role in recruiting membrane protein cargo from endosomes 

for recycling (Seaman, 2012; Choy et al., 2014). Importantly, retromer disruption 

via shRNA-mediated Vps35 knockdown resulted in marked DAT depletion from 

the plasma membrane (Fig.III-5C), consistent with a requirement of retromer to 
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recycle constitutively internalizing DAT and maintain DAT surface expression. 

However, retromer disruption did not completely deplete DAT surface expression 

over a 96 hour knockdown window. Given that we only achieved a partial Vps35 

knockdown, there was likely still some active retromer complex available. 

Moreover, given that some DAT targets to rab11-positive endosomes, there 

could have remained some additional recycling via this endosomal route. 

Retromer-mediated cargo recruitment from the endosomal membrane frequently 

requires interaction of sorting nexin 27 (SNX27) with a PDZ-binding motif on 

cargo proteins (Lauffer et al., 2010). DAT encodes a distal C-terminal PDZ 

binding motif (-LKV), and previous studies implicate this motif in stabilizing 

mature DAT in DAergic terminals (Torres et al., 2001; Bjerggaard et al., 2004; 

Rickhag et al., 2013). We found that DAT required the –LKV signal in order to 

efficiently exit from Vps35-positive endosomes (Fig.III-6B), consistent with 

retromer-mediated DAT recruitment from endosomes for recycling. Retromer 

endosome fission away is promoted by Vps1, a dynamin-related protein in yeast 

(Chi et al., 2014; Arlt et al., 2015), which is consistent with our previous finding 

that DAT endocytic recycling relies on a dynamin-dependent mechanism (Gabriel 

et al., 2013). While we do not currently known whether other SLC6 transporters 

rely upon retromer, a recent proteomic screen identified multiple potential 

members of the retromer interactome (McMillan et al., 2016),  including the DAT 

SLC6 homolog, GLYT2 (SLC6A9). GLYT2 also encodes a C-terminal PDZ 

binding site, which is required for stable plasma membrane expression (Armsen 
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et al., 2007). In contrast, serotonin transporter expression and stability are 

insensitive to C-terminal perturbations (El-Kasaby et al., 2010). 

In summary, we used PRIME labeling to track DAT post-endocytic fate, both 

during constitutive and stimulated internalization. Our results provide compelling 

evidence that DAT surface stability relies upon retromer-mediated endocytic 

recycling. Moreover, these findings coalesce several seemingly disparate 

previous reports, all of which are consistent with a retromer-mediated mechanism 

governing DAT’s post-endocytic fate.  
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Figure III-1. DAT expression, function and trafficking tolerate LAP 
peptide incorporation into extracellular loop 2. A. PRIME strategy for 
labeling surface DAT. A ligase acceptor peptide (LAP) was engineered into the 
DAT 2nd extracellular loop. Picolyl azide (PAz) is coupled to surface DAT 
encoding LAP peptide (LAP-DAT), followed by alkyne-Alexa594 conjugation, 
resulting in fluorescent surface DAT. B. LAP-DAT labeling. Stable LAP-DAT 
AN27 cells were labeled with alkyne Alexa594 as described in Materials and 
Methods, followed by fixation and staining for DAT, in parallel. Two 
representative cells are shown, and all cells in the field are indicated by DAPI 
staining. C. LAP-DAT immunoblots and [3H]DA uptake assays. Top: 
Representative immunoblots showing expression of wt-DAT and LAP-DAT in 
AN27 cells. Bottom: [3H]-DA uptake assay. Stable wt-DAT AN27 or LAP-DAT 

AN27 cells were treated 1µM PMA, 30 min, 37°C and [3H]-DA uptake was 
measured as described in Material and Methods. Average data are presented, 
expressed as %vehicle-treated control uptake ±SEM. **p<0.01, Student’s t 
test, n=4. D. Internalization assay: wt-DAT and LAP-DAT internalization rates 

were measured in AN27 cells 20μM AIM-100, as described in Material and 
Methods. Top: Representative immunoblots showing the total surface protein 
at t=0 (T), strip controls (S), and internalized protein during either vehicle (V) 
or AIM-100 (A) treatments. Bottom: Average internalization rates expressed as 
percent vehicle-treated internalization ±SEM, *p<0.05, Student’s t test, n=6 
(wt-DAT) n=10 (LAP-DAT).  
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Figure III-2. LAP-DAT labeling is highly specific and facilitates DAT post-
endocytic tracking A. Strategy for tracking DAT post-endocytic routes using 
PRIME labeling. Live LAP-DAT AN27 cells were labeled at room temperature 
using the PRIME labeling approach, as described in Material and Methods. 
Internalization was induced by shifting cells to 37°C, ±20µM AIM-100 to induce 
internalization. Cells were then fixed, permeabilized and stained for 
endosomal markers using specific antibodies. B. Representative images 
showing LAP-DAT (red) and early endosome marker EEA1 (green) at the 
indicated time points (vehicle-treated). C. Average data expressed as %DAT 
signal co-localized with EEA1 signals ±SEM. * indicates significant difference, 
**p<0.005, ***p<0.001, two-way ANOVA with multiple comparison Tukey’s and 
Bonferroni’s test, n=19-49 cells, imaged across three independent 
experiments.  
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Figure III-3. A small DAT fraction targets to rab11- and rab-7 positive 
endosomes. A-D. PRIME labeling on live cells. Live LAP-DAT AN27 cells 
were labeled using PRIME labeling approach at room temperature, 
internalized for indicated time, fixed and stained for indicated markers as 
described in Material and Methods. A and C. Representative images showing 
LAP-DAT (red) with recycling endosome marker rab11 (green, A) or late 
endosome marker rab7 (green, C) at the indicated time points. B and D. 
Average data expressed as %DAT signal that co-localized with either rab11 
signal (B) or rab7 signal (D) ±SEM. * indicates significant difference *p<0.05, 
**p<0.005, ***p<0.001, two-way ANOVA with multiple comparison Tukey’s and 
Bonferroni’s test, n=28-30 cells (C), n=30 cells (D), imaged over three 
independent experiments. 
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Figure III-4. DAT is targeted to retromer positive endosomes. A-B. LAP-
DAT is sorted to retromer in AN27 cells. PRIME labeling on live cells. A. 
Representative images showing LAP-DAT (red) and retromer marker Vps35 
(green) at the indicated time points. B. Average data expressed as %DAT-
positive objects that co-localized with Vps35 signal ±SEM. All later time points 
were significant different from baseline; * indicates significant difference under 
basal condition, *p<0.05, **p<0.001, two-way ANOVA with multiple comparison 
Tukey’s and Bonferroni’s test, n=24-30 cells, imaged over three independent 
experiments. C-D. DAT/Vps35 co-localization in mouse DAergic neurons. 
Brains from perfused mice were fixed and stained for DAT and Vps35 as 
described in Material and Methods. C. Representative confocal images 
showing DAT (red) and Vps35 (green) expression in DA neuronal cell bodies 
in substantial nigra, scale bar, 50 μm (top) and 5 μm (bottom). D. 
Representative confocal images showing DAT (red) and Vps35 (green) 
expression in DA terminals in dorsal striatum. Scale bar: 5 μm. White 
arrowheads indicate DAT/Vps35 co-localized puncta. 
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Figure III-5.Retromer complex is required to maintain DAT surface levels. 
A. Lentiviral-mediated hVps35 knockdown in SK-N-MC cells. DAT SK-N-MC 
cells were transduced with the indicated lentiviral particles and hVps35 protein 
expression was measured 96 h posttransduction. Top: Representative 
immunoblots showing endogenous hVps35 levels in lysates from cell 
transduced with lentiviral particles expression either pGIPZ vector (vec), 
nonsilencing shRNA (NS), hVps35 #32 (#32). Bottom: Average hVps35 
protein levels expressed as %vector-transduced hVps35 levels ±SEM. 
****p<0.001, one-way ANOVA with post-hoc Dunnett’s test, n=7. B. Cell 
surface biotinylation. DAT SK-N-MC cells were transduced with indicated 
lentiviral particles and relative DAT surface levels were measured by 
biotinylation as described in Material and Methods. Top: Representative 
immunoblots. Bottom: Average DAT surface levels expressed as %vector 
levels ±SEM (normalized to actin levels). ***p<0.005, One-way ANOVA with 
post-hoc Bonferroni’s test, n=6. C. DAT SK-N-MC cells were transduced with 
indicated lentiviral particles and total DAT levels were quantified by 
immunoblotting normalized to actin loading controls. Top: Representative 
immunoblots. Bottom: Average total DAT levels expressed as %vector levels 
±SEM (normalized to actin levels). **p<0.01, One-way ANOVA with post-hoc 
Bonferroni’s test, n=5.  
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Figure III-6. DAT exit from retromer is dependent upon its C-terminal 
PDZ-binding motif. A. Representative images showing wt-LAP-DAT or LAP-
DAT-AAA (red) with retromer marker Vps35 (green) at indicated time points. 
C. Average data expressed as %DAT objects co-localized with Vps35 signals 
±SEM.* indicates significant difference, *p<0.05, **p<0.001, two-way ANOVA 
with multiple comparison Tukey’s and Bonferroni’s test, n= 29-30 cells,  
imaged over two independent experiments. 
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CHAPTER IV 

Investigating Dopamine Transporter Endocytic Trafficking In Ex Vivo Slice 

Preparations Using A Direct Fluorophore Coupling Approach 

IV.A Introduction 

DAT robustly traffics to and from the plasma membrane via the endocytic 

pathways. Numerous stimuli, including PKC activation and amphetamine 

exposure acutely decreased DAT plasma membrane availability in dopaminergic 

terminals by promoting DAT endocytosis. However, DAT’s post-endocytic fate is 

unclear and conflicting studies report that DAT targets to either recycling or 

degradative endocytic compartments, or that DAT may not traffic in bona fide 

DAergic neurons.  In the previous chapter, using PRIME labeling in a neuronal 

cell line, I generated a temporal-spatial profile of DAT movement along the 

endosomal pathways. To further expand these findings in bona fide DAergic 

neurons, I attempted to use the LAP-DAT construct to examine the DAT 

endocytic trafficking in ex vivo brain slices.  

IV.B Material And Methods 

Material: HA tag from HA-hDAT-pcDNA3.1(+) was cloned into LAP-hDAT-

pcDNA3.1(+) using HindIII and BamHI sites. The resulting construct, HA-LAP-

hDAT-pcDNA3.1(+) was put into pAAV-EF1α-DIO-WPRE vector using the 

BamHI cloning site, generating pAAV-EF1α-DIO-HA-LAP-hDAT-WPRE. Rat anti-
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HA was from Roche. Rat anti-rat (MAB369) and mouse anti-TH were from EMD 

Millipore. Horseradish peroxidase (HRP)-conjugated goat anti-rat was from EMD 

Millipore. Alexa fluorophore-conjugated secondary antibodies were from Jackson 

ImmunoResearch (cross absorbed goat anti-rat Alexa 594, cross absorbed goat 

anti-rat Alexa 488, goat anti-mouse Alexa 488, goat anti-mouse Dylight 405). pAz 

and BTTAA were kindly provided by Dr. Alice Ting (Stanford University, Stanford 

CA). Alkyne-conjugated Alexa Fluor594 was from Invitrogen. 

Viruses and Stereotaxic Intracranial Injection: Conditional expression of HA-LAP-

hDAT in Cre-containing neurons were achieved using recombinant adeno-

associated viruses 2 (AAV2s) encoding a double-floxed inverted open reading 

frame (DIO) of HA-LAP-hDAT. Plasmid DNA was packaged in the viral core of 

University of Massachusetts Medical School. All animals were handled according 

to University of Massachusetts Medical School IACUC protocol A-1506 (H.E.M.). 

P21-30 male C57/B6 mice were anesthetized with 100mg/kg ketamine 10mg/kg 

xylazine and placed in a digital stereotaxic frame (Stoelting). After puncturing the 

skull under aseptic conditions, AAV2 viral particles were injected (1μL total 

volume) unilaterally through a microliter syringe (Hamilton) at a rate of 0.2μL/min. 

Injection coordinates were -3.08mm anterior/posterior, 1.0mm medial/lateral and 

4.5mm dorsal/ventral for the Substantia Nigra Pars Compacta (SNpc). After 

surgical procedures, mice were returned to their home cage for >21 days to allow 

for maximal gene expression. 
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Immunohistochemistry for floating sections: Viral injected TH-Cre C57/B6 mice 

were transcardially perfused with 4% paraformaldehyde for fixation. Brains were 

post-fixed overnight at 4°C, followed by dehydration in PBS/30% sucrose, 2-3 

days prior to sectioning at 25 μm on a sliding microtome (Leica). Coronal 

sections at SNc or striatum were incubated overnight at 4°C with rat anti-HA 

(1:2000) and mouse anti-TH (1:1000) in PBS with 0.2% TritonX-100, 5% normal 

goat serum, 1%BSA (protease and IgG free) and 1% H2O2. Slices were rinsed in 

PBS, and incubated with goat anti-rat and goat anti-mouse Alexa Fluor (1:500 

each) for 1hr at room temperature. Excess secondary antibodies were washed in 

PBS and slices were mounted onto glass slides, dried and coverslipped in 

Prolong Gold mounting medium containing DAPI (Invitrogen).  

Ex vivo Mouse Striatal Slice PRIME labeling: Viral injected TH-cre C57BL/6 mice 

were sacrificed by cervical dislocation and decapitation. Mouse brains were 

rapidly removed and chilled in ice cold sucrose- and kynurenic acid (1mM)- 

supplemented artificial CSF (SACSF) (2.5mM KCl, 1.2mM NaH2PO4, 1.2mM 

MgCl2, 2.4mM CaCl2, 26mM NaHCO3, 11mM glucose, 250mM sucrose) 

saturated with 95% O2/5% CO2. Brains were mounted on Leica VT1200S 

Vibratome and 300µm coronal sections were obtained at both striatal regions and 

midbrain regions. Slices recovered for 40min, at 31°C in 95%O2/5%CO2-

saturated ACSF (125mM NaCl, 2.5mM KCl, 1.2mM NaH2PO4, 1.2mM MgCl2, 

2.4mM CaCl2, 26mM NaHCO3, 11mM glucose) containing 1mM kynurenic acid. 

Surface DAT was labeled using the PRIME method as described in Chapter III. 
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Briefly, a pAz ligation mix was prepared in ACSF with 10 μM W37VLplA, 200 μM 

pAz, 1 mM ATP and 5 mM MgCl2 and was incubated with slices, 20min, room 

temperature. Slices were rinsed three times with ACSF. A low Cu2+ click labeling 

solution containing 10 mM CuSO4, 50 mM BTTAA and 100 mM sodium 

ascorbate was prepared in ACSF and incubated at room temperature for 10min 

in a closed tube. Labeling solution was diluted 200X with ACSF and alkyne-

Alexa594 was added to a final concentration of 20 µM. The labeling solution was 

added to slices and incubated for 10 min, room temperature followed by three 

rinses with room temperature ACSF. 95% O2/5% CO2  was provided to slices at 

all labeling steps. Slices were then fixed in 4% paraformaldehyde overnight, 4°C, 

dehydrated in PBS/30%sucrose and further sectioned into 12 µm subslices. 

Subslices were blocked, permeabilized and stained with indicated antibodies and 

Alexa fluorophore-conjugated secondary antibodies. Floating slices were 

mounted onto glass slides, dried and coverslipped in Prolong Gold mounting 

medium containing DAPI (Invitrogen).  

Wide field microscopy: Brain slices were visualized with a Zeiss Axiovert 200M 

microscope using either a 20X, 0.75 N.A. objective or a 63X, 1.4 N.A. oil 

immersion objective and images were captured with a Retiga-1300R cooled CCD 

camera (Qimaging). For images captured with a 63X objective, 0.4 µm optical 

sections were obtained through the z-axis and 3D z-stack images were 

deconvolved with a constrained iterative algorithm using measured point spread 
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functions for each fluorescent channel using Slidebook 5.0 software (Intelligent 

Imaging Innovations). All images shown are single representative 0.4 µm planes. 

IV.C Results 

HA-LAP-DAT expresses as a mature protein and is targeted to DAergic 

terminals in the dorsal striatum 

We first asked whether the AAV2 virus containing HA-LAP-DAT conditionally 

expressed in DA neurons of TH-Cre mice. Western blots showed that DAT 

protein was expressed in the DAergic terminals in the dorsal striatum and less in 

the midbrain somatodendritic compartments (Fig. IV-1A). Note that only mature 

(~75 KDa) DAT protein was detected in the terminals whereas both mature 

(~75KDa) and immature (~55 KDa) DAT was expressed in the midbrain. The HA-

LAP-DAT construct was only detected in the injected hemisphere, but not in the 

control hemisphere and mature HA-LAP-DAT was robustly expressed in the 

DAergic terminals. Immunostaining further confirmed that viral expression was 

exclusively in DA neurons shown by colocalization between HA and TH staining 

and readily detected in both dorsal striatum and substantial nigra (Fig. IV-1B, IV-

1C). These results suggest that LAP-DAT expresses as a mature protein and is 

targeted to DAergic terminals in the dorsal striatum. 

HA-LAP-DAT cannot efficiently be labeled in ex vivo midbrain slices using 

the PRIME approach 
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We next asked whether surface expressed HA-LAP-DAT could be labelled using 

the PRIME approach in ex vivo midbrain slices. The PRIME strategy for labeling 

surface DAT on ex vivo slices and subsequent immunostainings is illustrated in 

Figure IV-2A. Acute 300 µm mouse midbrain slices were subjected to PRIME 

labeling and subsequent immunohistochemistry in parallel to identify DA neurons, 

as wells as expression of the HA-LAP-DAT construct. As shown in Figure IV-2B, 

HA-LAP-DAT was expressed in DA neuron cell bodies whereas alkyne-Alexa594 

failed to be coupled to the surface of DA neurons expressing HA-LAP-DAT. 

IV.D Discussion 

In this study, we generated AAV2 virus expressing DIO-HA-LAP-DAT that 

enables selective expression of this transgene in DA neurons in an intact animal. 

LAP-DAT expressed as a mature protein and was targeted to the DAergic 

terminals in the dorsal striatum (Fig. IV-1). Despite the fact that we successfully 

tracked DAT post-endocytic itinerary using the PRIME labeling in neuronal cell 

lines, we were unable to efficiently label LAP-DAT in ex vivo midbrain slices, 

making it not feasible to assess DAT post-endocytic targeting in bona fide DA 

neurons (Fig. IV-2). A possible reason for our negative result is that the 38kDa 

lipoic acid ligase may not be able to efficiently permeate a 300 µm brain slice. A 

recent comprehensive study from Sorkin and colleagues used antibody feeding 

to characterize DAT endocytic trafficking in a knock-in mouse expressing DAT 

with an extracellular HA epitope, and found little antibody localization with 
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endosomal markers in dopaminergic terminal regions (Block et al., 2015). It is 

possible that this result is due to challenges in permeating a relatively thick brain 

slice (1.0 mm) with a large, globular antibody, similar to what we encountered 

with LplA-mediated LAP-DAT labeling. Moreover, it is unclear whether 

internalized DAT bound to a large immunoglobulin would accurately reflect native 

DAT endocytic targeting, particularly in light of recent studies demonstrating that 

antibody binding targets membrane proteins to degradation, despite their 

endogenous endocytic route (St Pierre et al., 2011; Bien-Ly et al., 2014). 
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Figure IV-1. HA-LAP-hDAT expresses as a mature protein and is targeted to 

DAergic terminals in the dorsal striatum. A. Representative blots showing HA-

LAP-DAT expression in dorsal striatum (DS), midbrain (MB) and ventral striatum (VS) 

3 weeks after intracranial viral injection as described in Methods. Note no HA 

expression was detected in the non-injected hemisphere. B and C. Representative 

immunohistochemistry images showing HA-LAP-DAT expression exclusively in DA 

neurons in substantia nigra and dorsal striatum. B. Top: representative HA (red) and 

DA neuron marker TH (green) staining in substantia nigra under 20X objective, 

Middle and Bottom: representative HA (red) and TH (green) staining in dorsal striatum 

under 20X objective (middle) and 63X objective (bottom). C. Representative HA (red) 

and TH (green) stainings in dorsal striatum, an enlarged view. 
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Figure IV-2. HA-LAP-hDAT cannot efficiently be labeled in ex vivo midbrain 

slices using PRIME approach. A. Strategy for labeling surface DAT in ex vivo 

midbrain slices using the PRIME approach. Live acute 300 μm midbrain slices were 

labeled using PRIME approach at room temperature as described in Methods. Slices 

were fixed, dehydrated and subject to microtome sectioning into 12 μm subslices. 

Subslices were permeabilized and stained for TH to identify DA neurons. B. 

Representative images showing LAP-DAT (red), DA neuron marker TH (blue) and 

HA-LAP-DAT contruct expression (green). White arrow heads indicate expression of 

HA-LAP-DAT in TH positive DA neurons. Note no specific Alkyne Alexa conjugation 

to the surface DAT. 
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CHAPTER V 

CONCLUSION, DISCUSSION AND FUTURE DIRECTIONS 

 

DA neurotransmission modulates key brain functions such as voluntary 

movement, reward and desire (Iversen and Iversen, 2007). Dysregulation of DA 

neurotransmission leads to various neuropsychiatric disorders that affect millions 

of people worldwide (Snyder, 2002; Sulzer, 2007). DAT-mediated high-affinity 

reuptake of synaptic DA is the primary mechanism to modulate DA 

neurotransmission and maintain DA homeostasis in the CNS (Rudnick et al., 

2014; Bermingham and Blakely, 2016). DAT is the primary target for the wildly 

abused psychostimulants cocaine and amphetamine (Amara and Sonders, 1998). 

Loss-of-function DAT mutations cause dopamine transporter deficiency 

syndrome, a subtype of parkinsonism dystonia (Kurian et al., 2009). Multiple DAT 

coding variants are associated with ADHD, ASD, schizophrenia and adult 

parkinsonism (Mazei-Robison et al., 2008; Sakrikar et al., 2012; Hamilton et al., 

2013; Hansen et al., 2014). All three lines of evidence support that changes in 

DAT function could exert impactful consequences on DA neurotransmission and 

behavior. 

Numerous studies have worked on molecular mechanisms that regulate DAT 

function. Among them, molecular mechanisms of DAT endocytic trafficking are 

the primary interest of our lab. DAT plasma membrane expression is requisite for 

efficacious synaptic DA removal and replenishing of presynaptic DA. 
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Mechanisms that govern DAT membrane trafficking enable acute modulation of 

DAT plasma membrane availability, providing means of diminishing or enhancing 

DA neurotransmission.  

V.A DAT Endocytosis: Ack1 as an Endocytic Brake Molecule 

We and others have shown that DAT is subject to constitutive and regulated 

endocytosis (Daniels and Amara, 1999; Melikian and Buckley, 1999; Loder and 

Melikian, 2003; Sorkina et al., 2005). Stimuli such as PKC and amphetamine 

promote DAT endocytosis that results in a loss of DAT membrane availability and 

function. A negatively regulatory mechanism, or an “endocytic brake”, controls 

DAT plasma membrane availability. PKC activation releases the endocytic brake, 

stimulating DAT endocytosis. Both the intracellular N- and C-termini are required 

for this negative regulatory mechanism (Boudanova et al., 2008b; Sorkina et al., 

2009), however, cellular factors that control the DAT endocytic brake are 

completely undefined.  

In Chapter II, through a candidate gene approach, I discovered that a non-

receptor tyrosine kinase, Ack1, negatively controls DAT endocytosis (Fig. II-2). 

Tyrosine kinases caught interest in the field years ago when Zahniser’s group 

used a non-selective tyrosine kinase inhibitor, genistein, to acutely block tyrosine 

kinase activity in either Xenopus oocytes or rat synaptosomes and reported 

decrease of DAT function (Doolen and Zahniser, 2001; Hoover et al., 2007). Our 
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findings demonstrated that Ack1’s effect was specific to DAT and that SERT, a 

SLC6 DAT homolog, was not subject to Ack1 controlled endocytosis (Fig. II-2).  

Using pharmacological and genetic approaches, I further showed that Ack1 

inactivation was required to release the DAT endocytic brake, downstream of 

PKC and cdc42 (Fig. II-7). PKC activation decreased Ack1 activity in both SK-N-

MC cells and mouse striatum (Fig. II-1), but PKC does not directly phosphorylate 

Ack1 (Linseman et al., 2001). Thus, it is likely that another signaling molecule 

exists between PKC and Ack1, probably an Ack1-targeted protein tyrosine 

phosphatase that can be activated by PKC. How Ack1 stabilizes DAT at the 

plasma membrane also remains unclear. I showed that when Ack1 is inactivated, 

DAT internalizes through clathrin-mediated endocytosis (Fig. II-4). Since Ack1 

directly interacts with clathrin (Teo et al., 2001; Yang et al., 2001), it is possible 

that Ack1 controls the DAT endocytic brake through interaction with clathrin 

machinery. Another tentative hypothesis is that Ack1 interacts directly with DAT, 

so that when Ack1 is inactivated, its disassociation from DAT triggers DAT 

endocytosis. Our lab tested this hypothesis by co-IP and found no association 

between Ack1 and plasma membrane DAT (Sweeney and Melikian, unpublished 

result). We also did not observe any DAT/Ack1 co-localization using 

immunohistochemistry, arguing against a DAT/Ack1 complex (Marshall and 

Melikian, unpublished result). Future studies elucidating molecular mechanisms 

of how Ack1 stabilizes DAT on the plasma membrane will provide us more 

information on the Ack1-controlled DAT endocytic brake. 



145 
 

Another intriguing question is whether Ack1 inactivation is also required for 

amphetamine-stimulated DAT endocytosis. To test that, I overexpressed 

constitutively active form of Ack1 (S445P-Ack1) and measured DAT 

internalization rate in presence of 10 µM amphetamine. Preliminary results 

showed that overexpressing S445P-Ack1 mutants had a trend to revert the 

amphetamine-induced increase in DAT endocytosis (p=0.055, n=3), suggesting 

Ack1 may also negatively regulate amphetamine-stimulated DAT endocytosis. 

By identifying Ack1 as a DAT endocytic brake molecule, I was able to restore 

normal trafficking to a DAT coding variant (R615C) identified in an ADHD 

proband by constitutively activating Ack1 (Fig. II-10). These findings support the 

idea that targeting DAT regulatory mechanism may be a viable approach to treat 

trafficking dysregulated DAT. Other than the DAT-R615C mutant, the DAT-

A559V mutant, that is associated with ADHD and ASD, is insensitive to 

amphetamine-induced cell surface redistribution (Bowton et al., 2014). Given that 

Ack1 may also negatively regulate amphetamine-stimulated DAT endocytosis, 

Future studies should test whether inhibiting Ack1 activity or knocking down Ack1 

would rescue amphetamine’s effect on DAT-A559V. 

V.B DAT Endocytosis: Differential Dependence on Clathrin 

There have been conflicting results in the field about the requirement of clathrin 

in basal and regulated DAT endocytosis. Both clathrin-dependent and –

independent mechanisms have been implicated in heterologous cell lines as well 
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as primary cultured DA neurons (Daniels and Amara, 1999; Sorkina et al., 2005; 

Cremona et al., 2011). However, they either used non-selective clathrin inhibitors 

or shRNAs to chronically deplete clathrin over days, which could globally disrupt 

both clathrin-dependent and –independent endocytic mechanisms. Using a 

selective dynamin inhibitor, our laboratory recently demonstrated in intact mouse 

DA neuron terminals that PKC-stimulated DAT endocytosis was dynamin-

dependent while basal DAT endocytosis did not require dynamin (Gabriel et al., 

2013). These results suggested that constitutive and PKC-stimulated DAT 

internalization might also be differentially dependent on clathrin.  In Chapter II, I 

used a selective clathrin inhibitor, Pitstop2, to test this hypothesis, and found that 

PKC-stimulated DAT endocytosis was clathrin-dependent, whereas basal DAT 

endocytosis was clathrin-independent (Fig. II-5). Furthermore, when directly 

visualizing DAT surface dynamics using TIRF microscopy, l observed little/no co-

localization between DAT and clathrin, supporting that basal DAT endocytosis 

does not require clathrin (Fig. II-5). However, mechanisms mediating basal DAT 

endocytosis remain unclear.  

A number of endocytic pathways internalize cargos independent of clathrin. 

Understandings of these pathways mainly came from morphology studies using 

electron microscopy, pharmacology studies examining sensitivity to 

pharmacological agents or biochemical and cell biology studies determining their 

dependence on certain kinases and GTPases. Key proteins have been identified 

to mediate clathrin-independent endocytosis. Lipid raft residing integral 
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transmembrane proteins caveolin and flotillin mediate caveolin- and flotillin-

dependent endocytosis, respectively (Parton, 2003; Glebov et al., 2006). DAT 

has been shown to distribute in both lipid raft and non-raft microdomains within 

the plasma membrane and is associated with flotillin-1 (Adkins et al., 2007; 

Foster et al., 2008; Cremona et al., 2011; Navaroli et al., 2011). Lipid raft 

microdomains were reported to constrain DAT lateral mobility (Adkins et al., 2007; 

Sorkina et al., 2013) and influence DAT conformation (Hong and Amara, 2010). 

Moreover, an ADHD-linked DAT coding variant, R615C, displayed reduced 

flotillin-1 association and lipid raft localization (Sakrikar et al., 2012). Given that 

this DAT mutant has enhanced endocytic trafficking rates, lipid raft localization 

probably stabilizes DAT at the plasma membrane. Consistent with this, using 

TIRF to measure DAT plasma membrane distribution, our lab showed that PKC 

activation significantly decreased raft localized DAT, suggesting that PKC-

stimulated DAT endocytosis occurs in the non-raft microdomain (Gabriel et al., 

2013). Whether basal DAT endocytosis preferentially occurs in the lipid raft 

microdomains and the molecular mechanisms behind it remains to be elucidated. 

There are also phagocytosis and macropinocytosis that involve uptake of larger 

membrane areas than clathrin- or caveolin-dependent pathways (Chimini and 

Chavrier, 2000; Dharmawardhane et al., 2000; Shao et al., 2002). Fundamental 

questions such as how membrane invagination is formed and how endocytic pits 

are pinched off the plasma membrane are unclear for some of these clathrin-

independent pathways. The BIN/amphiphysin/Rvs (BAR) domain-containing 
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protein endophilin has recently been shown to control a fast-acting 

tubulovesicular endocytic pathway that is independent of clathrin and its 

accessary protein AP2 (Boucrot et al., 2015; Renard et al., 2015). Multiple G-

protein coupled receptors such as β1-adrenergic, dopamine D3 and D4 receptors, 

muscarinic acetylcholine receptor 4, the receptor tyrosine kinases EGFR, 

PDGFR as well as interleukin-2 receptor all require endophilin for their ligand-

induced internalization. Thus, future studies investigating these different clathrin-

independent endocytosis pathways would shed light on basal DAT endocytosis 

mechanisms. 

V.C DAT post-endocytic sorting: retromer-mediated recycling 

Multiple investigators aiming to elucidate DAT’s endocytic fate generated 

disparate results. Functional studies demonstrated that the DA D2 receptor 

activation promoted surface expression of DAT, supporting the idea of an 

endocytic DAT pool that is readily inserted into the plasma membrane (Bolan et 

al., 2007; Lee et al., 2007). Our lab has shown that globally blocking endocytic 

recycling using either lower temperature (18ºC) or vacuolar H+ ATPase inhibitor 

monensin decreased DAT surface levels, suggesting a constitutive recycling 

process (Loder and Melikian, 2003; Gabriel et al., 2013). More recently, 

Richardson et al. reported that changes in membrane potential alone can rapidly 

drive DAT endocytosis and reinsertion into the plasma membrane. However, 

dynamic imaging studies visualizing which compartments DAT go through using 
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either inhibitor analog or bulky antibodies implicated both degradation and 

recycling pathways (Eriksen et al., 2010b; Hong and Amara, 2013; Block et al., 

2015). Multiple groups reported that PKC activation drove DAT to lysosomal 

degradation (Daniels and Amara, 1999; Miranda et al., 2005; Hong and Amara, 

2013). In Chapter III, I took advantage of a small molecule labeling technique 

called PRIME to directly couple fluorophore to DAT that minimally disturbs DAT 

expression and function (Fig. III-1). This labeling technique enables selective 

labeling of the cell surface population of DAT. Instead of tracking DAT with 

endosomal markers following steady state redistribution of labeled DAT, as 

previously described, I generated a temporal profile of DAT with distinct 

endosomal markers to track its movement along the endocytic pathways. 

Rather than observing entry and exit into the endocytic vesicles, I observed 

enhanced DAT colocalization with early endosome marker (i.e. EEA1-positive) 

that plateaued over time. This suggests that cell surface population of DAT did 

not internalize simultaneously but reached steady-state distribution over time (Fig. 

III-2). The majority of DAT does not recycle through the conventional (i.e. rab11-

positive) recycling endosomes, although I did observe a small, but significant, 

entry into rab11-positive vesicles (Fig. III-3). In contrast, DAT showed robust 

colocalization with retromer marker Vps35, suggesting DAT was targeted to 

retromer (Fig. III-4). Further Vps35 knockdown experiments in intact cells 

showed that impairing retromer function significantly reduced both cell surface 

DAT levels as well as total DAT levels (Fig. III-5), indicating retromer mediates 
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DAT recycling back to the plasma membrane. I also observed a slow, but linear 

increase, of DAT movement into Rab7-positive vesicles (Fig. III-3). Retromer and 

rab7-targeting are not mutually exclusive since Rab7 has also been reported to 

recruit retromer complex core proteins for cargo sorting (Rojas et al., 2008; 

Seaman et al., 2009). However, this study does not rule out the possibility that a 

fraction of DAT is sorted to late endosomes for degradation. The fact that 

impairing retromer function reduced total DAT levels indicating targeted 

degradation. Future experiments using lysosome marker such as lysoTracker are 

needed to test this possibility.  

Using the PDZ-binding domain mutant DAT (DAT-AAA), I showed that this 

mutant did not exit retromer as efficiently as wt-DAT, suggesting DAT PDZ-

binding motif in retromer-mediated DAT recycling. However, the molecular 

mechanisms mediating this process remain unknown. The first question that 

needs to be tested is whether DAT also direct binds SNX27 for retromer 

recruitment like β2-adrenergic receptors (Lauffer et al., 2010). Also, given that 

both degradation and recycling pathways have been indicated in this study, what 

are the signal sequences/motifs in DAT that determines the distinct post-

endocytic sorting destinations (recycling vs, degradation)? To answer these 

questions, high resolution microscopy and robust image quantification techniques 

are required to direct visualize DAT sorting at the endosomes and distinguish the 

retromer exit domain from the sorting endosomes. 
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Study in Chapter III tested DAT post-endocytic route under basal and Ack1-

controlled conditions and I observed similar targeting but distinct colocalzation 

kinetics for EEA1, Vps35 and rab11.  Hong et al. showed that DAT was targeted 

to different destinations under PKC- or amphetamine- regulated endocytosis 

(Hong and Amara, 2013).  Therefore, future studies using the PRIME labeling-

based single cell endocytosis assay will elucidate what happens in PKC- and 

amphetamine- stimulated DAT endocytosis and whether retromer still mediates 

DAT recycling under these conditions. 

Mutations in retromer core protein Vps35 have been identified in autosomal 

dominant, late-onset Parkinson’s disease (Vilarino-Guell et al., 2011; Zimprich et 

al., 2011).  Since retromer is important for the post-endocytic sorting of many 

proteins including DAT, DAT membrane trafficking may also be altered under 

pathological conditions such as Parkinson’s disease.  

 

V.D Studying DAT Endocytic Trafficking in vivo:  

Challenges and Future Directions 

Majority of studies on DAT membrane trafficking have been performed using 

non-neuronal heterologous expression systems rather than intact DA neurons. 

The reason is that it is notoriously difficult to obtain neuronal cultures that contain 

a high faction of DA neurons. In dissociated postnatal midbrain neuron culture, 

50% or less neurons were dopaminergic (Rayport et al., 1992) and even so, 
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these cultured DA neurons are not suitable for biochemical assays. The 

intracellularly located N- and C- termini make it technically challenging to 

introduce tags in the extracellular domain without perturbation of the transporter 

expression and function. Sorkin and colleagues first successfully incorporated a 

HA tag to DAT EL2 without altering DAT function (Sorkina et al., 2006). They 

further generated a KI mouse line that expressed HA-EL2-DAT to track DAT 

membrane trafficking in ex vivo  brain slices and reported a very low level of 

basal DAT endocytic trafficking in the striatum and no amphetamine-regulated 

DAT trafficking (Block et al., 2015). However, their experiments lack inherent 

controls for the overall healthiness of the acute sagittal brain slices during the 

labeling procedure. Our lab and others used biochemical analysis on acute 

coronal brain slices that are enriched in DAergic nerve terminals and reported 

significant DAT surface reduction in response to PKC and amphetamine 

(Cremona et al., 2011; Gabriel et al., 2013; Wu et al., 2015).  

To resolve these controversial results and gain insight of how DAT membrane 

trafficking is regulated in vivo, I proposed to express the LAP-DAT containing 

AAV2 virus selectively in the adult DA neurons in mouse brain and track the DAT 

endocytic itinerary in both somatodendritic and terminal parts of DA neurons. 

Althrough the LAP-DAT containing AAV2 virus expressed in adult DA neurons 

and was targeted to terminals, the PRIME labeling was not successful in acute 

brain slices, probably due to insufficient penetration of the lipoic acid ligase, the 

38kDa enzyme necessary for the first labeling step (Fig. IV1, IV2). These results 
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additionally raise the possibility that lack of robust labeling in the studies by Block 

et al. may be due to difficulty in achieving efficient antibody permeation of their 

thicker, 1 mm acute slices. Therefore, alternative approaches are needed to 

study DAT endocytic trafficking in vivo.  

Combining in vivo DAT approach with the latest microscopy techniques such as 

super-resolution microscopy would enable us to investigate some of the 

fundamental questions regarding DAT membrane trafficking at individual 

synapses. It is well established that receptor membrane trafficking at the 

postsynaptic membrane is a key mechanism underlying different forms of 

postsynaptic plasticity (Kennedy and Ehlers, 2006). An intriguing question, then, 

is whether there is a relationship between DAT endocytic trafficking and DA 

synaptic vesicle release/recycling.  It is already reported that changes in 

membrane potential alone rapidly altered DAT endocytic trafficking (Richardson 

et al., 2016), raising the possibility that DAT endocytic trafficking is acutely 

regulated during DA neurotransmission and this could be an essential 

mechanism to maintain presynaptic DA homeostasis.  

To address this question, the first step would be to test whether DAT membrane 

trafficking occurs in every DA synapses. A recent study using a Fluorescent 

False Neurotransmitters (FFN) that resolves individual DA synapses revealed 

that less than 20% of labeling DA synapses was able to release DA in response 

to stimulation, suggesting that the majority of DA synapses were silent synapses 
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(Pereira et al., 2016). Testing this question requires simultaneously measuring 

DAT membrane trafficking and DA vesicle release at the same synapse. 

Since synaptic vesicle recycling and regulated DAT endocytosis both utilize 

clathrin machineries, the next intriguing question is whether these two processes 

occur at the same presynaptic membrane domain. In other words, is the 

presynaptic membrane compartmentalized into active zone and endocytic zone? 

DAT has been shown to locate at the perisynaptic zone, adjacent to the active 

synaptic vesicle release zone (Nirenberg et al., 1997b; Nirenberg et al., 1997a), 

supporting the idea of presynaptic membrane compartmentalization. However, 

considering DAT is highly mobile on the membrane (Eriksen et al., 2009), it is 

also possible that a fraction of DAT transiently moves into the active zone though 

lateral diffusion. I attempted to investigate DAT surface dynamics using PRIME 

labeling and TIRF microscopy but could not obtain quantifiable images, mostly 

due to the diffuse DAT surface distribution. Considering that the individual DA 

synapse is extremely fine (~0.3 µm in diameter), super resolution microscopy 

techniques will be necessary to test these hypotheses in real time. 

Other than the DA nerve terminals, DAT is also expressed in somatodendritic 

compartments and it is not clear what DAT function is there and whether DAT 

regulatory mechanisms are the same compared with DAT in the terminals. The 

LAP-DAT expressing AAV2 virus had very little mature DAT expression in the 

midbrain, suggesting very little DAT would be inserted in the somatodendritic 
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plasma membrane (Fig. IV1). Our lab has begun to investigate brain region 

specific membrane trafficking of DAT. The first question is whether regulated 

DAT endocytic trafficking is different between dorsal striatum and ventral striatum 

(NAc). To test that, coronal striatal slices will be dissected into dorsal and ventral 

(NAc) subslices and PKC- or amphetamine-stimulated DAT endocytosis will be 

examined using steady-state biotinylation on acute coronal brain slices. Similarly, 

to test whether DAT undergoes regulated endocytosis in somatodentritic 

compartments, acute coronal brain slices containing substantial nigra or VTA will 

be treated with PKC activator PMA or amphetamine and DAT surface levels will 

be assessed using ex vivo slice biotinylation.  

Functional importance of DAT membrane trafficking in vivo is also poorly 

resolved. How does altered DAT membrane trafficking affect DA 

neurotransmission and behavior? What happens in psychostimulant addicted 

brain? Does DAT trafficking contribute to these pathological conditions?  It is 

recently reported that Vav2, a Rho family guanine nucleotide exchange factor 

protein, negatively regulated DAT surface levels and that Vav2 KO mice 

selectively increased DAT function in NAc and diminished cocaine-induced 

locomotor and reward behavior response, suggesting DAT endocytic regulatory 

mechanisms contribute to cocaine response in rodents (Zhu et al., 2015). Our lab 

has started to look into some of these questions by manipulating proteins 

required for stimulated DAT endocytosis such as Ack1 and Rin in intact mouse 

brain and correlating data of DAT surface level, DA release and DA-related 
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behavior. By doing so, we aim to get a comprehensive understanding of DAT 

endocytic trafficking mechanisms and their functional importance in vivo. 

  



157 
 

BIBLIOGRAPHY 

Adkins EM, Samuvel DJ, Fog JU, Eriksen J, Jayanthi LD, Vaegter CB, 
Ramamoorthy S, Gether U (2007) Membrane mobility and microdomain 
association of the dopamine transporter studied with fluorescence 
correlation spectroscopy and fluorescence recovery after photobleaching. 
Biochemistry 46:10484-10497. 

Alexander GE, Crutcher MD, DeLong MR (1990) Basal ganglia-thalamocortical 
circuits: parallel substrates for motor, oculomotor, "prefrontal" and "limbic" 
functions. Prog Brain Res 85:119-146. 

Amara SG, Kuhar MJ (1993) Neurotransmitter transporters: recent progress. 
Annu Rev Neurosci 16:73-93. 

Amara SG, Sonders MS (1998) Neurotransmitter transporters as molecular 
targets for addictive drugs. Drug Alcohol Depend 51:87-96. 

Anden NE, Hfuxe K, Hamberger B, Hokfelt T (1966) A quantitative study on the 
nigro-neostriatal dopamine neuron system in the rat. Acta Physiol Scand 
67:306-312. 

Arbuthnott GW (1974) Proceedings: Spontaneous activity of single units in the 
striatum after unilateral destruction of the dopamine input. J Physiol 
239:121P-122P. 

Arlt H, Reggiori F, Ungermann C (2015) Retromer and the dynamin Vps1 
cooperate in the retrieval of transmembrane proteins from vacuoles. J Cell 
Sci 128:645-655. 

Armsen W, Himmel B, Betz H, Eulenburg V (2007) The C-terminal PDZ-ligand 
motif of the neuronal glycine transporter GlyT2 is required for efficient 
synaptic localization. Mol Cell Neurosci 36:369-380. 

Assmann BE, Robinson RO, Surtees RA, Brautigam C, Heales SJ, Wevers RA, 
Zschocke J, Hyland K, Sharma R, Hoffmann GF (2004) Infantile 
Parkinsonism-dystonia and elevated dopamine metabolites in CSF. 
Neurology 62:1872-1874. 

Axelrod J (2003) Journey of a late blooming biochemical neuroscientist. J Biol 
Chem 278:1-13. 

Axelrod J, Tomchick R (1958) Enzymatic O-methylation of epinephrine and other 
catechols. J Biol Chem 233:702-705. 

Axelrod J, Laroche MJ (1959) Inhibitor of O-methylation of epinephrine and 
norepinephrine in vitro and in vivo. Science 130:800. 

Bauer B, Ehinger B, Aberg L (1980) [3H]-dopamine release from the rabbit retina. 
Albrecht Von Graefes Arch Klin Exp Ophthalmol 215:71-78. 

Bauman AL, Apparsundaram S, Ramamoorthy S, Wadzinski BE, Vaughan RA, 
Blakely RD (2000) Cocaine and antidepressant-sensitive biogenic amine 
transporters exist in regulated complexes with protein phosphatase 2A. J 
Neurosci 20:7571-7578. 



158 
 

Bermingham DP, Blakely RD (2016) Kinase-dependent Regulation of 
Monoamine Neurotransmitter Transporters. Pharmacol Rev 68:888-953. 

Bien-Ly N, Yu YJ, Bumbaca D, Elstrott J, Boswell CA, Zhang Y, Luk W, Lu Y, 
Dennis MS, Weimer RM, Chung I, Watts RJ (2014) Transferrin receptor 
(TfR) trafficking determines brain uptake of TfR antibody affinity variants. J 
Exp Med 211:233-244. 

Binda F, Dipace C, Bowton E, Robertson SD, Lute BJ, Fog JU, Zhang M, Sen N, 
Colbran RJ, Gnegy ME, Gether U, Javitch JA, Erreger K, Galli A (2008) 
Syntaxin 1A interaction with the dopamine transporter promotes 
amphetamine-induced dopamine efflux. Mol Pharmacol 74:1101-1108. 

Bjerggaard C, Fog JU, Hastrup H, Madsen K, Loland CJ, Javitch JA, Gether U 
(2004) Surface targeting of the dopamine transporter involves discrete 
epitopes in the distal C terminus but does not require canonical PDZ 
domain interactions. J Neurosci 24:7024-7036. 

Bjorklund A, Falck B, Hromek F, Owman C, West KA (1970) Identification and 
terminal distribution of the tubero-hypophyseal monoamine fibre systems 
in the rat by means of stereotaxic and microspectrofluorimetric techniques. 
Brain Res 17:1-23. 

Blakely RD, Berson HE, Fremeau RT, Jr., Caron MG, Peek MM, Prince HK, 
Bradley CC (1991) Cloning and expression of a functional serotonin 
transporter from rat brain. Nature 354:66-70. 

Block ER, Nuttle J, Balcita-Pedicino JJ, Caltagarone J, Watkins SC, Sesack SR, 
Sorkin A (2015) Brain Region-Specific Trafficking of the Dopamine 
Transporter. J Neurosci 35:12845-12858. 

Bloom FE (1975) Monoaminergic neurotoxins: are they selective? J Neural 
Transm 37:183-187. 

Blum D, Torch S, Lambeng N, Nissou M, Benabid AL, Sadoul R, Verna JM (2001) 
Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine 
and MPTP: contribution to the apoptotic theory in Parkinson's disease. 
Prog Neurobiol 65:135-172. 

Bolan EA, Kivell B, Jaligam V, Oz M, Jayanthi LD, Han Y, Sen N, Urizar E, 
Gomes I, Devi LA, Ramamoorthy S, Javitch JA, Zapata A, Shippenberg 
TS (2007) D2 receptors regulate dopamine transporter function via an 
extracellular signal-regulated kinases 1 and 2-dependent and 
phosphoinositide 3 kinase-independent mechanism. Mol Pharmacol 
71:1222-1232. 

Bonanno G, Raiteri M (1987) Coexistence of carriers for dopamine and GABA 
uptake on a same nerve terminal in the rat brain. Br J Pharmacol 91:237-
243. 

Bonifacino JS, Traub LM (2003) Signals for sorting of transmembrane proteins to 
endosomes and lysosomes. Annu Rev Biochem 72:395-447. 

Boucrot E, Ferreira AP, Almeida-Souza L, Debard S, Vallis Y, Howard G, Bertot 
L, Sauvonnet N, McMahon HT (2015) Endophilin marks and controls a 
clathrin-independent endocytic pathway. Nature 517:460-465. 



159 
 

Boudanova E, Navaroli DM, Melikian HE (2008a) Amphetamine-induced 
decreases in dopamine transporter surface expression are protein kinase 
C-independent. Neuropharmacology 54:605-612. 

Boudanova E, Navaroli DM, Stevens Z, Melikian HE (2008b) Dopamine 
transporter endocytic determinants: carboxy terminal residues critical for 
basal and PKC-stimulated internalization. Mol Cell Neurosci 39:211-217. 

Bourne JA (2003) Intracerebral microdialysis: 30 years as a tool for the 
neuroscientist. Clin Exp Pharmacol Physiol 30:16-24. 

Bowton E, Saunders C, Reddy IA, Campbell NG, Hamilton PJ, Henry LK, Coon H, 
Sakrikar D, Veenstra-VanderWeele JM, Blakely RD, Sutcliffe J, Matthies 
HJ, Erreger K, Galli A (2014) SLC6A3 coding variant Ala559Val found in 
two autism probands alters dopamine transporter function and trafficking. 
Transl Psychiatry 4:e464. 

Braz JM, Rico B, Basbaum AI (2002) Transneuronal tracing of diverse CNS 
circuits by Cre-mediated induction of wheat germ agglutinin in transgenic 
mice. Proc Natl Acad Sci U S A 99:15148-15153. 

Broer S, Gether U (2012) The solute carrier 6 family of transporters. Br J 
Pharmacol 167:256-278. 

Buchmayer F, Schicker K, Steinkellner T, Geier P, Stubiger G, Hamilton PJ, Jurik 
A, Stockner T, Yang JW, Montgomery T, Holy M, Hofmaier T, Kudlacek O, 
Matthies HJ, Ecker GF, Bochkov V, Galli A, Boehm S, Sitte HH (2013) 
Amphetamine actions at the serotonin transporter rely on the availability of 
phosphatidylinositol-4,5-bisphosphate. Proc Natl Acad Sci U S A 
110:11642-11647. 

Budygin EA, John CE, Mateo Y, Jones SR (2002) Lack of cocaine effect on 
dopamine clearance in the core and shell of the nucleus accumbens of 
dopamine transporter knock-out mice. J Neurosci 22:RC222. 

Burd C, Cullen PJ (2014) Retromer: a master conductor of endosome sorting. 
Cold Spring Harb Perspect Biol 6. 

Carboni E, Spielewoy C, Vacca C, Nosten-Bertrand M, Giros B, Di Chiara G 
(2001) Cocaine and amphetamine increase extracellular dopamine in the 
nucleus accumbens of mice lacking the dopamine transporter gene. J 
Neurosci 21:RC141: 141-144. 

Carneiro AM, Ingram SL, Beaulieu JM, Sweeney A, Amara SG, Thomas SM, 
Caron MG, Torres GE (2002) The multiple LIM domain-containing adaptor 
protein Hic-5 synaptically colocalizes and interacts with the dopamine 
transporter. J Neurosci 22:7045-7054. 

Carvelli L, McDonald PW, Blakely RD, DeFelice LJ (2004) Dopamine 
transporters depolarize neurons by a channel mechanism. Proc Natl Acad 
Sci U S A 101:16046-16051. 

Carvelli L, Moron JA, Kahlig KM, Ferrer JV, Sen N, Lechleiter JD, Leeb-Lundberg 
LM, Merrill G, Lafer EM, Ballou LM, Shippenberg TS, Javitch JA, Lin RZ, 
Galli A (2002) PI 3-kinase regulation of dopamine uptake. J Neurochem 
81:859-869. 



160 
 

Cass WA, Gerhardt GA, Mayfield RD, Curella P, Zahniser NR (1992) Differences 
in dopamine clearance and diffusion in rat striatum and nucleus 
accumbens following systemic cocaine administration. J Neurochem 
59:259-266. 

Chan W, Tian R, Lee YF, Sit ST, Lim L, Manser E (2009) Down-regulation of 
active ACK1 is mediated by association with the E3 ubiquitin ligase 
Nedd4-2. J Biol Chem 284:8185-8194. 

Chen N, Ferrer JV, Javitch JA, Justice JB, Jr. (2000) Transport-dependent 
accessibility of a cytoplasmic loop cysteine in the human dopamine 
transporter. J Biol Chem 275:1608-1614. 

Chen NH, Reith ME, Quick MW (2004) Synaptic uptake and beyond: the sodium- 
and chloride-dependent neurotransmitter transporter family SLC6. 
Pflugers Arch 447:519-531. 

Chen R, Furman CA, Zhang M, Kim MN, Gereau RWt, Leitges M, Gnegy ME 
(2009) Protein kinase Cbeta is a critical regulator of dopamine transporter 
trafficking and regulates the behavioral response to amphetamine in mice. 
J Pharmacol Exp Ther 328:912-920. 

Chen R, Daining CP, Sun H, Fraser R, Stokes SL, Leitges M, Gnegy ME (2013) 
Protein kinase Cbeta is a modulator of the dopamine D2 autoreceptor-
activated trafficking of the dopamine transporter. J Neurochem 125:663-
672. 

Chen R, Tilley MR, Wei H, Zhou F, Zhou FM, Ching S, Quan N, Stephens RL, 
Hill ER, Nottoli T, Han DD, Gu HH (2006) Abolished cocaine reward in 
mice with a cocaine-insensitive dopamine transporter. Proc Natl Acad Sci 
U S A 103:9333-9338. 

Chi L, Reith ME (2003) Substrate-induced trafficking of the dopamine transporter 
in heterologously expressing cells and in rat striatal synaptosomal 
preparations. J Pharmacol Exp Ther 307:729-736. 

Chi RJ, Liu J, West M, Wang J, Odorizzi G, Burd CG (2014) Fission of SNX-
BAR-coated endosomal retrograde transport carriers is promoted by the 
dynamin-related protein Vps1. J Cell Biol 204:793-806. 

Chimini G, Chavrier P (2000) Function of Rho family proteins in actin dynamics 
during phagocytosis and engulfment. Nat Cell Biol 2:E191-196. 

Choy RW, Park M, Temkin P, Herring BE, Marley A, Nicoll RA, von Zastrow M 
(2014) Retromer mediates a discrete route of local membrane delivery to 
dendrites. Neuron 82:55-62. 

Clague MJ, Liu H, Urbe S (2012) Governance of endocytic trafficking and 
signaling by reversible ubiquitylation. Dev Cell 23:457-467. 

Clairfeuille T, Mas C, Chan AS, Yang Z, Tello-Lafoz M, Chandra M, Widagdo J, 
Kerr MC, Paul B, Merida I, Teasdale RD, Pavlos NJ, Anggono V, Collins 
BM (2016) A molecular code for endosomal recycling of phosphorylated 
cargos by the SNX27-retromer complex. Nat Struct Mol Biol 23:921-932. 



161 
 

Cook EH, Jr., Stein MA, Krasowski MD, Cox NJ, Olkon DM, Kieffer JE, Leventhal 
BL (1995) Association of attention-deficit disorder and the dopamine 
transporter gene. Am J Hum Genet 56:993-998. 

Copeland BJ, Vogelsberg V, Neff NH, Hadjiconstantinou M (1996) Protein kinase 
C activators decrease dopamine uptake into striatal synaptosomes. J 
Pharmacol Exp Ther 277:1527-1532. 

Cremona ML, Matthies HJ, Pau K, Bowton E, Speed N, Lute BJ, Anderson M, 
Sen N, Robertson SD, Vaughan RA, Rothman JE, Galli A, Javitch JA, 
Yamamoto A (2011) Flotillin-1 is essential for PKC-triggered endocytosis 
and membrane microdomain localization of DAT. Nat Neurosci 14:469-
477. 

Curran S, Mill J, Tahir E, Kent L, Richards S, Gould A, Huckett L, Sharp J, Batten 
C, Fernando S, Ozbay F, Yazgan Y, Simonoff E, Thompson M, Taylor E, 
Asherson P (2001) Association study of a dopamine transporter 
polymorphism and attention deficit hyperactivity disorder in UK and 
Turkish samples. Mol Psychiatry 6:425-428. 

Daniels GM, Amara SG (1999) Regulated trafficking of the human dopamine 
transporter. Clathrin-mediated internalization and lysosomal degradation 
in response to phorbol esters. J Biol Chem 274:35794-35801. 

Dauer W, Przedborski S (2003) Parkinson's disease: mechanisms and models. 
Neuron 39:889-909. 

Dauer W, Kholodilov N, Vila M, Trillat AC, Goodchild R, Larsen KE, Staal R, Tieu 
K, Schmitz Y, Yuan CA, Rocha M, Jackson-Lewis V, Hersch S, Sulzer D, 
Przedborski S, Burke R, Hen R (2002) Resistance of alpha -synuclein null 
mice to the parkinsonian neurotoxin MPTP. Proc Natl Acad Sci U S A 
99:14524-14529. 

Daws LC, Callaghan PD, Moron JA, Kahlig KM, Shippenberg TS, Javitch JA, 
Galli A (2002) Cocaine increases dopamine uptake and cell surface 
expression of dopamine transporters. Biochem Biophys Res Commun 
290:1545-1550. 

Dempsey EC, Newton AC, Mochly-Rosen D, Fields AP, Reyland ME, Insel PA, 
Messing RO (2000) Protein kinase C isozymes and the regulation of 
diverse cell responses. Am J Physiol Lung Cell Mol Physiol 279:L429-438. 

Dharmawardhane S, Schurmann A, Sells MA, Chernoff J, Schmid SL, Bokoch 
GM (2000) Regulation of macropinocytosis by p21-activated kinase-1. Mol 
Biol Cell 11:3341-3352. 

Dhungel N, Eleuteri S, Li LB, Kramer NJ, Chartron JW, Spencer B, Kosberg K, 
Fields JA, Stafa K, Adame A, Lashuel H, Frydman J, Shen K, Masliah E, 
Gitler AD (2015) Parkinson's disease genes VPS35 and EIF4G1 interact 
genetically and converge on alpha-synuclein. Neuron 85:76-87. 

Dickinson SD, Sabeti J, Larson GA, Giardina K, Rubinstein M, Kelly MA, Grandy 
DK, Low MJ, Gerhardt GA, Zahniser NR (1999) Dopamine D2 receptor-
deficient mice exhibit decreased dopamine transporter function but no 
changes in dopamine release in dorsal striatum. J Neurochem 72:148-156. 



162 
 

Doherty GJ, McMahon HT (2009) Mechanisms of endocytosis. Annu Rev 
Biochem 78:857-902. 

Doolen S, Zahniser NR (2001) Protein tyrosine kinase inhibitors alter human 
dopamine transporter activity in Xenopus oocytes. J Pharmacol Exp Ther 
296:931-938. 

Doolen S, Zahniser NR (2002) Conventional protein kinase C isoforms regulate 
human dopamine transporter activity in Xenopus oocytes. FEBS Lett 
516:187-190. 

Dougherty DD, Bonab AA, Spencer TJ, Rauch SL, Madras BK, Fischman AJ 
(1999) Dopamine transporter density in patients with attention deficit 
hyperactivity disorder. Lancet 354:2132-2133. 

Dutta D, Williamson CD, Cole NB, Donaldson JG (2012) Pitstop 2 is a potent 
inhibitor of clathrin-independent endocytosis. PLoS One 7:e45799. 

Egana LA, Cuevas RA, Baust TB, Parra LA, Leak RK, Hochendoner S, Pena K, 
Quiroz M, Hong WC, Dorostkar MM, Janz R, Sitte HH, Torres GE (2009) 
Physical and functional interaction between the dopamine transporter and 
the synaptic vesicle protein synaptogyrin-3. J Neurosci 29:4592-4604. 

Eiden LE, Schafer MK, Weihe E, Schutz B (2004) The vesicular amine 
transporter family (SLC18): amine/proton antiporters required for vesicular 
accumulation and regulated exocytotic secretion of monoamines and 
acetylcholine. Pflugers Arch 447:636-640. 

El-Kasaby A, Just H, Malle E, Stolt-Bergner PC, Sitte HH, Freissmuth M, 
Kudlacek O (2010) Mutations in the carboxyl-terminal SEC24 binding motif 
of the serotonin transporter impair folding of the transporter. J Biol Chem 
285:39201-39210. 

Eriksen J, Jorgensen TN, Gether U (2010a) Regulation of dopamine transporter 
function by protein-protein interactions: new discoveries and 
methodological challenges. J Neurochem 113:27-41. 

Eriksen J, Bjorn-Yoshimoto WE, Jorgensen TN, Newman AH, Gether U (2010b) 
Postendocytic sorting of constitutively internalized dopamine transporter in 
cell lines and dopaminergic neurons. J Biol Chem 285:27289-27301. 

Eriksen J, Rasmussen SG, Rasmussen TN, Vaegter CB, Cha JH, Zou MF, 
Newman AH, Gether U (2009) Visualization of dopamine transporter 
trafficking in live neurons by use of fluorescent cocaine analogs. J 
Neurosci 29:6794-6808. 

Falck B, Torp A (1962) New evidence for the localization of noradrenalin in the 
adrenergic nerve terminals. Med Exp Int J Exp Med 6:169-172. 

Fattakhova G, Masilamani M, Borrego F, Gilfillan AM, Metcalfe DD, Coligan JE 
(2006) The high-affinity immunoglobulin-E receptor (FcepsilonRI) is 
endocytosed by an AP-2/clathrin-independent, dynamin-dependent 
mechanism. Traffic 7:673-685. 

Ferris RM, Tang FL, Maxwell RA (1972) A comparison of the capacities of 
isomers of amphetamine, deoxypipradrol and methylphenidate to inhibit 
the uptake of tritiated catecholamines into rat cerebral cortex slices, 



163 
 

synaptosomal preparations of rat cerebral cortex, hypothalamus and 
striatum and into adrenergic nerves of rabbit aorta. J Pharmacol Exp Ther 
181:407-416. 

Fog JU, Khoshbouei H, Holy M, Owens WA, Vaegter CB, Sen N, Nikandrova Y, 
Bowton E, McMahon DG, Colbran RJ, Daws LC, Sitte HH, Javitch JA, 
Galli A, Gether U (2006) Calmodulin kinase II interacts with the dopamine 
transporter C terminus to regulate amphetamine-induced reverse transport. 
Neuron 51:417-429. 

Foster JD, Pananusorn B, Vaughan RA (2002) Dopamine transporters are 
phosphorylated on N-terminal serines in rat striatum. J Biol Chem 
277:25178-25186. 

Foster JD, Adkins SD, Lever JR, Vaughan RA (2008) Phorbol ester induced 
trafficking-independent regulation and enhanced phosphorylation of the 
dopamine transporter associated with membrane rafts and cholesterol. J 
Neurochem 105:1683-1699. 

Foster JD, Yang JW, Moritz AE, Challasivakanaka S, Smith MA, Holy M, 
Wilebski K, Sitte HH, Vaughan RA (2012) Dopamine transporter 
phosphorylation site threonine 53 regulates substrate reuptake and 
amphetamine-stimulated efflux. J Biol Chem 287:29702-29712. 

Fountaine TM, Wade-Martins R (2007) RNA interference-mediated knockdown of 
alpha-synuclein protects human dopaminergic neuroblastoma cells from 
MPP(+) toxicity and reduces dopamine transport. J Neurosci Res 85:351-
363. 

Freyberg Z et al. (2016) Mechanisms of amphetamine action illuminated through 
optical monitoring of dopamine synaptic vesicles in Drosophila brain. Nat 
Commun 7:10652. 

Furman CA, Lo CB, Stokes S, Esteban JA, Gnegy ME (2009a) Rab 11 regulates 
constitutive dopamine transporter trafficking and function in N2A 
neuroblastoma cells. Neurosci Lett 463:78-81. 

Furman CA, Chen R, Guptaroy B, Zhang M, Holz RW, Gnegy M (2009b) 
Dopamine and amphetamine rapidly increase dopamine transporter 
trafficking to the surface: live-cell imaging using total internal reflection 
fluorescence microscopy. J Neurosci 29:3328-3336. 

Gabriel LR, Wu S, Kearney P, Bellve KD, Standley C, Fogarty KE, Melikian HE 
(2013) Dopamine transporter endocytic trafficking in striatal dopaminergic 
neurons: differential dependence on dynamin and the actin cytoskeleton. J 
Neurosci 33:17836-17846. 

Galisteo ML, Yang Y, Urena J, Schlessinger J (2006) Activation of the 
nonreceptor protein tyrosine kinase Ack by multiple extracellular stimuli. 
Proc Natl Acad Sci U S A 103:9796-9801. 

Garcia BG, Wei Y, Moron JA, Lin RZ, Javitch JA, Galli A (2005) Akt is essential 
for insulin modulation of amphetamine-induced human dopamine 
transporter cell-surface redistribution. Mol Pharmacol 68:102-109. 



164 
 

Garris PA, Wightman RM (1994) In vivo voltammetric measurement of evoked 
extracellular dopamine in the rat basolateral amygdaloid nucleus. J 
Physiol 478 ( Pt 2):239-249. 

Gauthier NC, Monzo P, Kaddai V, Doye A, Ricci V, Boquet P (2005) Helicobacter 
pylori VacA cytotoxin: a probe for a clathrin-independent and Cdc42-
dependent pinocytic pathway routed to late endosomes. Mol Biol Cell 
16:4852-4866. 

Gether U, Andersen PH, Larsson OM, Schousboe A (2006) Neurotransmitter 
transporters: molecular function of important drug targets. Trends 
Pharmacol Sci 27:375-383. 

Giros B, Jaber M, Jones SR, Wightman RM, Caron MG (1996) Hyperlocomotion 
and indifference to cocaine and amphetamine in mice lacking the 
dopamine transporter. Nature 379:606-612. 

Glebov OO, Bright NA, Nichols BJ (2006) Flotillin-1 defines a clathrin-
independent endocytic pathway in mammalian cells. Nat Cell Biol 8:46-54. 

Goeders NE, Smith JE (1983) Cortical dopaminergic involvement in cocaine 
reinforcement. Science 221:773-775. 

Gorentla BK, Moritz AE, Foster JD, Vaughan RA (2009) Proline-directed 
phosphorylation of the dopamine transporter N-terminal domain. 
Biochemistry 48:1067-1076. 

Grace AA, Bunney BS (1984a) The control of firing pattern in nigral dopamine 
neurons: burst firing. J Neurosci 4:2877-2890. 

Grace AA, Bunney BS (1984b) The control of firing pattern in nigral dopamine 
neurons: single spike firing. J Neurosci 4:2866-2876. 

Granas C, Ferrer J, Loland CJ, Javitch JA, Gether U (2003) N-terminal truncation 
of the dopamine transporter abolishes phorbol ester- and substance P 
receptor-stimulated phosphorylation without impairing transporter 
internalization. J Biol Chem 278:4990-5000. 

Greenfield JG, Bosanquet FD (1953) The brain-stem lesions in Parkinsonism. J 
Neurol Neurosurg Psychiatry 16:213-226. 

Greengard P (2001) The neurobiology of slow synaptic transmission. Science 
294:1024-1030. 

Guastella J, Nelson N, Nelson H, Czyzyk L, Keynan S, Miedel MC, Davidson N, 
Lester HA, Kanner BI (1990) Cloning and expression of a rat brain GABA 
transporter. Science 249:1303-1306. 

Hamilton PJ, Belovich AN, Khelashvili G, Saunders C, Erreger K, Javitch JA, 
Sitte HH, Weinstein H, Matthies HJ, Galli A (2014) PIP2 regulates 
psychostimulant behaviors through its interaction with a membrane protein. 
Nat Chem Biol 10:582-589. 

Hamilton PJ, Campbell NG, Sharma S, Erreger K, Herborg Hansen F, Saunders 
C, Belovich AN, Consortium NAAS, Sahai MA, Cook EH, Gether U, 
McHaourab HS, Matthies HJ, Sutcliffe JS, Galli A (2013) De novo 
mutation in the dopamine transporter gene associates dopamine 
dysfunction with autism spectrum disorder. Mol Psychiatry 18:1315-1323. 



165 
 

Hansen FH et al. (2014) Missense dopamine transporter mutations associate 
with adult parkinsonism and ADHD. J Clin Invest 124:3107-3120. 

Hastrup H, Karlin A, Javitch JA (2001) Symmetrical dimer of the human 
dopamine transporter revealed by cross-linking Cys-306 at the 
extracellular end of the sixth transmembrane segment. Proc Natl Acad Sci 
U S A 98:10055-10060. 

Hayakawa A, Leonard D, Murphy S, Hayes S, Soto M, Fogarty K, Standley C, 
Bellve K, Lambright D, Mello C, Corvera S (2006) The WD40 and FYVE 
domain containing protein 2 defines a class of early endosomes 
necessary for endocytosis. Proc Natl Acad Sci U S A 103:11928-11933. 

Heikkila RE, Orlansky H, Cohen G (1975a) Studies on the distinction between 
uptake inhibition and release of (3H)dopamine in rat brain tissue slices. 
Biochem Pharmacol 24:847-852. 

Heikkila RE, Orlansky H, Mytilineou C, Cohen G (1975b) Amphetamine: 
evaluation of d- and l-isomers as releasing agents and uptake inhibitors 
for 3H-dopamine and 3H-norepinephrine in slices of rat neostriatum and 
cerebral cortex. J Pharmacol Exp Ther 194:47-56. 

Heimer L, Alheid GF, de Olmos JS, Groenewegen HJ, Haber SN, Harlan RE, 
Zahm DS (1997) The accumbens: beyond the core-shell dichotomy. J 
Neuropsychiatry Clin Neurosci 9:354-381. 

Hersch SM, Yi H, Heilman CJ, Edwards RH, Levey AI (1997) Subcellular 
localization and molecular topology of the dopamine transporter in the 
striatum and substantia nigra. J Comp Neurol 388:211-227. 

Hertting G, Axelrod J (1961) Fate of tritiated noradrenaline at the sympathetic 
nerve-endings. Nature 192:172-173. 

Hertting G, Axelrod J, Kopin IJ, Whitby LG (1961) Lack of uptake of 
catecholamines after chronic denervation of sympathetic nerves. Nature 
189:66. 

Hill TA, Gordon CP, McGeachie AB, Venn-Brown B, Odell LR, Chau N, Quan A, 
Mariana A, Sakoff JA, Chircop M, Robinson PJ, McCluskey A (2009) 
Inhibition of dynamin mediated endocytosis by the dynoles--synthesis and 
functional activity of a family of indoles. J Med Chem 52:3762-3773. 

Hoebel BG, Monaco AP, Hernandez L, Aulisi EF, Stanley BG, Lenard L (1983) 
Self-injection of amphetamine directly into the brain. Psychopharmacology 
(Berl) 81:158-163. 

Hokfelt T, Halasz N, Ljungdahl A, Johansson O, Goldstein M, Park D (1975) 
Histochemical support for a dopaminergic mechanism in the dendrites of 
certain periglomerular cells in the rat olfactory bulb. Neurosci Lett 1:85-90. 

Holton KL, Loder MK, Melikian HE (2005) Nonclassical, distinct endocytic signals 
dictate constitutive and PKC-regulated neurotransmitter transporter 
internalization. Nat Neurosci 8:881-888. 

Hong WC, Amara SG (2010) Membrane cholesterol modulates the outward 
facing conformation of the dopamine transporter and alters cocaine 
binding. J Biol Chem 285:32616-32626. 



166 
 

Hong WC, Amara SG (2013) Differential targeting of the dopamine transporter to 
recycling or degradative pathways during amphetamine- or PKC-regulated 
endocytosis in dopamine neurons. FASEB J 27:2995-3007. 

Hoover BR, Everett CV, Sorkin A, Zahniser NR (2007) Rapid regulation of 
dopamine transporters by tyrosine kinases in rat neuronal preparations. J 
Neurochem 101:1258-1271. 

Hornykiewicz O (1966) Dopamine (3-hydroxytyramine) and brain function. 
Pharmacol Rev 18:925-964. 

Hsiao JC, Chu LW, Lo YT, Lee SP, Chen TJ, Huang CY, Ping YH, Chang W 
(2015) Intracellular Transport of Vaccinia Virus in HeLa Cells Requires 
WASH-VPEF/FAM21-Retromer Complexes and Recycling Molecules 
Rab11 and Rab22. J Virol 89:8365-8382. 

Huff RA, Vaughan RA, Kuhar MJ, Uhl GR (1997) Phorbol esters increase 
dopamine transporter phosphorylation and decrease transport Vmax. J 
Neurochem 68:225-232. 

Hyman SE, Malenka RC, Nestler EJ (2006) Neural mechanisms of addiction: the 
role of reward-related learning and memory. Annu Rev Neurosci 29:565-
598. 

Ingram SL, Prasad BM, Amara SG (2002) Dopamine transporter-mediated 
conductances increase excitability of midbrain dopamine neurons. Nat 
Neurosci 5:971-978. 

Iversen L (2000) Neurotransmitter transporters: fruitful targets for CNS drug 
discovery. Mol Psychiatry 5:357-362. 

Iversen L (2006) Neurotransmitter transporters and their impact on the 
development of psychopharmacology. Br J Pharmacol 147 Suppl 1:S82-
88. 

Iversen LL (1971) Role of transmitter uptake mechanisms in synaptic 
neurotransmission. Br J Pharmacol 41:571-591. 

Iversen SD, Iversen LL (2007) Dopamine: 50 years in perspective. Trends 
Neurosci 30:188-193. 

Johnson LA, Furman CA, Zhang M, Guptaroy B, Gnegy ME (2005) Rapid 
delivery of the dopamine transporter to the plasmalemmal membrane 
upon amphetamine stimulation. Neuropharmacology 49:750-758. 

Jones KT, Zhen J, Reith ME (2012) Importance of cholesterol in dopamine 
transporter function. J Neurochem 123:700-715. 

Jones SR, Garris PA, Kilts CD, Wightman RM (1995) Comparison of dopamine 
uptake in the basolateral amygdaloid nucleus, caudate-putamen, and 
nucleus accumbens of the rat. J Neurochem 64:2581-2589. 

Jones SR, Gainetdinov RR, Wightman RM, Caron MG (1998a) Mechanisms of 
amphetamine action revealed in mice lacking the dopamine transporter. J 
Neurosci 18:1979-1986. 

Jones SR, Gainetdinov RR, Jaber M, Giros B, Wightman RM, Caron MG (1998b) 
Profound neuronal plasticity in response to inactivation of the dopamine 
transporter. Proc Natl Acad Sci U S A 95:4029-4034. 



167 
 

Jones SR, Gainetdinov RR, Hu XT, Cooper DC, Wightman RM, White FJ, Caron 
MG (1999) Loss of autoreceptor functions in mice lacking the dopamine 
transporter. Nat Neurosci 2:649-655. 

Jonsson G, Fuxe K, Hokfelt T (1972) On the catecholamine innervation of the 
hypothalamus, with special reference to the median eminence. Brain Res 
40:271-281. 

Kalaidzidis I, Miaczynska M, Brewinska-Olchowik M, Hupalowska A, Ferguson C, 
Parton RG, Kalaidzidis Y, Zerial M (2015) APPL endosomes are not 
obligatory endocytic intermediates but act as stable cargo-sorting 
compartments. J Cell Biol 211:123-144. 

Kawarai T, Kawakami H, Yamamura Y, Nakamura S (1997) Structure and 
organization of the gene encoding human dopamine transporter. Gene 
195:11-18. 

Kennedy MJ, Ehlers MD (2006) Organelles and trafficking machinery for 
postsynaptic plasticity. Annu Rev Neurosci 29:325-362. 

Kilty JE, Lorang D, Amara SG (1991) Cloning and expression of a cocaine-
sensitive rat dopamine transporter. Science 254:578-579. 

Kim HJ, Im JH, Yang SO, Moon DH, Ryu JS, Bong JK, Nam KP, Cheon JH, Lee 
MC, Lee HK (1997) Imaging and quantitation of dopamine transporters 
with iodine-123-IPT in normal and Parkinson's disease subjects. J Nucl 
Med 38:1703-1711. 

Kitayama S, Dohi T, Uhl GR (1994) Phorbol esters alter functions of the 
expressed dopamine transporter. Eur J Pharmacol 268:115-119. 

Kitayama S, Shimada S, Xu H, Markham L, Donovan DM, Uhl GR (1992) 
Dopamine transporter site-directed mutations differentially alter substrate 
transport and cocaine binding. Proc Natl Acad Sci U S A 89:7782-7785. 

Kovtun O, Sakrikar D, Tomlinson ID, Chang JC, Arzeta-Ferrer X, Blakely RD, 
Rosenthal SJ (2015) Single-quantum-dot tracking reveals altered 
membrane dynamics of an attention-deficit/hyperactivity-disorder-derived 
dopamine transporter coding variant. ACS Chem Neurosci 6:526-534. 

Kristensen AS, Andersen J, Jorgensen TN, Sorensen L, Eriksen J, Loland CJ, 
Stromgaard K, Gether U (2011) SLC6 neurotransmitter transporters: 
structure, function, and regulation. Pharmacol Rev 63:585-640. 

Kurian MA, Zhen J, Cheng SY, Li Y, Mordekar SR, Jardine P, Morgan NV, Meyer 
E, Tee L, Pasha S, Wassmer E, Heales SJ, Gissen P, Reith ME, Maher 
ER (2009) Homozygous loss-of-function mutations in the gene encoding 
the dopamine transporter are associated with infantile parkinsonism-
dystonia. J Clin Invest 119:1595-1603. 

Kurian MA et al. (2011) Clinical and molecular characterisation of hereditary 
dopamine transporter deficiency syndrome: an observational cohort and 
experimental study. Lancet Neurol 10:54-62. 

Laakso A, Hietala J (2000) PET studies of brain monoamine transporters. Curr 
Pharm Des 6:1611-1623. 



168 
 

Laasonen-Balk T, Kuikka J, Viinamaki H, Husso-Saastamoinen M, Lehtonen J, 
Tiihonen J (1999) Striatal dopamine transporter density in major 
depression. Psychopharmacology (Berl) 144:282-285. 

Lakadamyali M, Rust MJ, Zhuang X (2006) Ligands for clathrin-mediated 
endocytosis are differentially sorted into distinct populations of early 
endosomes. Cell 124:997-1009. 

Lauffer BE, Melero C, Temkin P, Lei C, Hong W, Kortemme T, von Zastrow M 
(2010) SNX27 mediates PDZ-directed sorting from endosomes to the 
plasma membrane. J Cell Biol 190:565-574. 

LaVail JH, LaVail MM (1972) Retrograde axonal transport in the central nervous 
system. Science 176:1416-1417. 

Lee FJ, Liu F, Pristupa ZB, Niznik HB (2001) Direct binding and functional 
coupling of alpha-synuclein to the dopamine transporters accelerate 
dopamine-induced apoptosis. FASEB J 15:916-926. 

Lee FJ, Pei L, Moszczynska A, Vukusic B, Fletcher PJ, Liu F (2007) Dopamine 
transporter cell surface localization facilitated by a direct interaction with 
the dopamine D2 receptor. EMBO J 26:2127-2136. 

Lee KH, Kim MY, Kim DH, Lee YS (2004) Syntaxin 1A and receptor for activated 
C kinase interact with the N-terminal region of human dopamine 
transporter. Neurochem Res 29:1405-1409. 

Lees AJ (2007) Unresolved issues relating to the shaking palsy on the 
celebration of James Parkinson's 250th birthday. Mov Disord 22 Suppl 
17:S327-334. 

Lew R, Vaughan R, Simantov R, Wilson A, Kuhar MJ (1991) Dopamine 
transporters in the nucleus accumbens and the striatum have different 
apparent molecular weights. Synapse 8:152-153. 

Li LB, Chen N, Ramamoorthy S, Chi L, Cui XN, Wang LC, Reith ME (2004) The 
role of N-glycosylation in function and surface trafficking of the human 
dopamine transporter. J Biol Chem 279:21012-21020. 

Lin Q, Wang J, Childress C, Yang W (2012) The activation mechanism of ACK1 
(activated Cdc42-associated tyrosine kinase 1). Biochem J 445:255-264. 

Lin Z, Wang W, Kopajtic T, Revay RS, Uhl GR (1999) Dopamine transporter: 
transmembrane phenylalanine mutations can selectively influence 
dopamine uptake and cocaine analog recognition. Mol Pharmacol 56:434-
447. 

Lindvall O, Bjorklund A (1974) The glyoxylic acid fluorescence histochemical 
method: a detailed account of the methodology for the visualization of 
central catecholamine neurons. Histochemistry 39:97-127. 

Linseman DA, Heidenreich KA, Fisher SK (2001) Stimulation of M3 muscarinic 
receptors induces phosphorylation of the Cdc42 effector activated 
Cdc42Hs-associated kinase-1 via a Fyn tyrosine kinase signaling pathway. 
J Biol Chem 276:5622-5628. 



169 
 

Little KY, Elmer LW, Zhong H, Scheys JO, Zhang L (2002) Cocaine induction of 
dopamine transporter trafficking to the plasma membrane. Mol Pharmacol 
61:436-445. 

Loder MK, Melikian HE (2003) The dopamine transporter constitutively 
internalizes and recycles in a protein kinase C-regulated manner in stably 
transfected PC12 cell lines. J Biol Chem 278:22168-22174. 

Loland CJ, Norregaard L, Litman T, Gether U (2002) Generation of an activating 
Zn(2+) switch in the dopamine transporter: mutation of an intracellular 
tyrosine constitutively alters the conformational equilibrium of the transport 
cycle. Proc Natl Acad Sci U S A 99:1683-1688. 

Loo LS, Tang N, Al-Haddawi M, Dawe GS, Hong W (2014) A role for sorting 
nexin 27 in AMPA receptor trafficking. Nat Commun 5:3176. 

Lord C, Ferro-Novick S, Miller EA (2013) The highly conserved COPII coat 
complex sorts cargo from the endoplasmic reticulum and targets it to the 
golgi. Cold Spring Harb Perspect Biol 5. 

Lyness WH, Friedle NM, Moore KE (1979) Destruction of dopaminergic nerve 
terminals in nucleus accumbens: effect on d-amphetamine self-
administration. Pharmacol Biochem Behav 11:553-556. 

Mahajan K, Challa S, Coppola D, Lawrence H, Luo Y, Gevariya H, Zhu W, Chen 
YA, Lawrence NJ, Mahajan NP (2010) Effect of Ack1 tyrosine kinase 
inhibitor on ligand-independent androgen receptor activity. Prostate 
70:1274-1285. 

Mahajan NP, Whang YE, Mohler JL, Earp HS (2005) Activated tyrosine kinase 
Ack1 promotes prostate tumorigenesis: role of Ack1 in polyubiquitination 
of tumor suppressor Wwox. Cancer Res 65:10514-10523. 

Marks MJ, Stitzel JA, Romm E, Wehner JM, Collins AC (1986) Nicotinic binding 
sites in rat and mouse brain: comparison of acetylcholine, nicotine, and 
alpha-bungarotoxin. Mol Pharmacol 30:427-436. 

Marsden CA, Joseph MH, Kruk ZL, Maidment NT, O'Neill RD, Schenk JO, 
Stamford JA (1988) In vivo voltammetry--present electrodes and methods. 
Neuroscience 25:389-400. 

Massol P, Montcourrier P, Guillemot JC, Chavrier P (1998) Fc receptor-mediated 
phagocytosis requires CDC42 and Rac1. EMBO J 17:6219-6229. 

Matsumoto M, Weickert CS, Akil M, Lipska BK, Hyde TM, Herman MM, Kleinman 
JE, Weinberger DR (2003) Catechol O-methyltransferase mRNA 
expression in human and rat brain: evidence for a role in cortical neuronal 
function. Neuroscience 116:127-137. 

Mazei-Robison MS, Couch RS, Shelton RC, Stein MA, Blakely RD (2005) 
Sequence variation in the human dopamine transporter gene in children 
with attention deficit hyperactivity disorder. Neuropharmacology 49:724-
736. 

Mazei-Robison MS, Bowton E, Holy M, Schmudermaier M, Freissmuth M, Sitte 
HH, Galli A, Blakely RD (2008) Anomalous dopamine release associated 



170 
 

with a human dopamine transporter coding variant. J Neurosci 28:7040-
7046. 

McElvain JS, Schenk JO (1992) A multisubstrate mechanism of striatal dopamine 
uptake and its inhibition by cocaine. Biochem Pharmacol 43:2189-2199. 

McGarvey JC, Xiao K, Bowman SL, Mamonova T, Zhang Q, Bisello A, Sneddon 
WB, Ardura JA, Jean-Alphonse F, Vilardaga JP, Puthenveedu MA, 
Friedman PA (2016) Actin-Sorting Nexin 27 (SNX27)-Retromer Complex 
Mediates Rapid Parathyroid Hormone Receptor Recycling. J Biol Chem 
291:10986-11002. 

McMillan KJ, Gallon M, Jellett AP, Clairfeuille T, Tilley FC, McGough I, Danson 
CM, Heesom KJ, Wilkinson KA, Collins BM, Cullen PJ (2016) Atypical 
parkinsonism-associated retromer mutant alters endosomal sorting of 
specific cargo proteins. J Cell Biol 214:389-399. 

Melikian HE (2004) Neurotransmitter transporter trafficking: endocytosis, 
recycling, and regulation. Pharmacol Ther 104:17-27. 

Melikian HE, Buckley KM (1999) Membrane trafficking regulates the activity of 
the human dopamine transporter. J Neurosci 19:7699-7710. 

Melikian HE, Ramamoorthy S, Tate CG, Blakely RD (1996) Inability to N-
glycosylate the human norepinephrine transporter reduces protein stability, 
surface trafficking, and transport activity but not ligand recognition. Mol 
Pharmacol 50:266-276. 

Mergy MA, Gowrishankar R, Gresch PJ, Gantz SC, Williams J, Davis GL, 
Wheeler CA, Stanwood GD, Hahn MK, Blakely RD (2014) The rare DAT 
coding variant Val559 perturbs DA neuron function, changes behavior, 
and alters in vivo responses to psychostimulants. Proc Natl Acad Sci U S 
A 111:E4779-4788. 

Miranda M, Sorkina T, Grammatopoulos TN, Zawada WM, Sorkin A (2004) 
Multiple molecular determinants in the carboxyl terminus regulate 
dopamine transporter export from endoplasmic reticulum. J Biol Chem 
279:30760-30770. 

Miranda M, Wu CC, Sorkina T, Korstjens DR, Sorkin A (2005) Enhanced 
ubiquitylation and accelerated degradation of the dopamine transporter 
mediated by protein kinase C. J Biol Chem 280:35617-35624. 

Molinoff PB, Axelrod J (1971) Biochemistry of catecholamines. Annu Rev 
Biochem 40:465-500. 

Moore RY, Bloom FE (1978) Central catecholamine neuron systems: anatomy 
and physiology of the dopamine systems. Annu Rev Neurosci 1:129-169. 

Moritz AE, Rastedt DE, Stanislowski DJ, Shetty M, Smith MA, Vaughan RA, 
Foster JD (2015) Reciprocal Phosphorylation and Palmitoylation Control 
Dopamine Transporter Kinetics. J Biol Chem 290:29095-29105. 

Moron JA, Brockington A, Wise RA, Rocha BA, Hope BT (2002) Dopamine 
uptake through the norepinephrine transporter in brain regions with low 
levels of the dopamine transporter: evidence from knock-out mouse lines. 
J Neurosci 22:389-395. 



171 
 

Moron JA, Zakharova I, Ferrer JV, Merrill GA, Hope B, Lafer EM, Lin ZC, Wang 
JB, Javitch JA, Galli A, Shippenberg TS (2003) Mitogen-activated protein 
kinase regulates dopamine transporter surface expression and dopamine 
transport capacity. J Neurosci 23:8480-8488. 

Moszczynska A, Saleh J, Zhang H, Vukusic B, Lee FJ, Liu F (2007) Parkin 
disrupts the alpha-synuclein/dopamine transporter interaction: 
consequences toward dopamine-induced toxicity. J Mol Neurosci 32:217-
227. 

Navaroli DM, Stevens ZH, Uzelac Z, Gabriel L, King MJ, Lifshitz LM, Sitte HH, 
Melikian HE (2011) The plasma membrane-associated GTPase Rin 
interacts with the dopamine transporter and is required for protein kinase 
C-regulated dopamine transporter trafficking. J Neurosci 31:13758-13770. 

Navaroli DM, Bellve KD, Standley C, Lifshitz LM, Cardia J, Lambright D, Leonard 
D, Fogarty KE, Corvera S (2012) Rabenosyn-5 defines the fate of the 
transferrin receptor following clathrin-mediated endocytosis. Proc Natl 
Acad Sci U S A 109:E471-480. 

Nicholson C (1995) Interaction between diffusion and Michaelis-Menten uptake 
of dopamine after iontophoresis in striatum. Biophys J 68:1699-1715. 

Nirenberg MJ, Chan J, Vaughan RA, Uhl GR, Kuhar MJ, Pickel VM (1997a) 
Immunogold localization of the dopamine transporter: an ultrastructural 
study of the rat ventral tegmental area. J Neurosci 17:5255-5262. 

Nirenberg MJ, Chan J, Pohorille A, Vaughan RA, Uhl GR, Kuhar MJ, Pickel VM 
(1997b) The dopamine transporter: comparative ultrastructure of 
dopaminergic axons in limbic and motor compartments of the nucleus 
accumbens. J Neurosci 17:6899-6907. 

Nomikos GG, Damsma G, Wenkstern D, Fibiger HC (1990) In vivo 
characterization of locally applied dopamine uptake inhibitors by striatal 
microdialysis. Synapse 6:106-112. 

Olds J, Milner P (1954) Positive reinforcement produced by electrical stimulation 
of septal area and other regions of rat brain. J Comp Physiol Psychol 
47:419-427. 

Pacholczyk T, Blakely RD, Amara SG (1991) Expression cloning of a cocaine- 
and antidepressant-sensitive human noradrenaline transporter. Nature 
350:350-354. 

Parker EM, Cubeddu LX (1986) Effects of d-amphetamine and dopamine 
synthesis inhibitors on dopamine and acetylcholine neurotransmission in 
the striatum. II. Release in the presence of vesicular transmitter stores. J 
Pharmacol Exp Ther 237:193-203. 

Parton RG (2003) Caveolae--from ultrastructure to molecular mechanisms. Nat 
Rev Mol Cell Biol 4:162-167. 

Patel A, Uhl G, Kuhar MJ (1993) Species differences in dopamine transporters: 
postmortem changes and glycosylation differences. J Neurochem 61:496-
500. 



172 
 

Patel AP, Cerruti C, Vaughan RA, Kuhar MJ (1994) Developmentally regulated 
glycosylation of dopamine transporter. Brain Res Dev Brain Res 83:53-58. 

Penmatsa A, Wang KH, Gouaux E (2013) X-ray structure of dopamine 
transporter elucidates antidepressant mechanism. Nature 503:85-90. 

Pereira DB, Schmitz Y, Meszaros J, Merchant P, Hu G, Li S, Henke A, Lizardi-
Ortiz JE, Karpowicz RJ, Jr., Morgenstern TJ, Sonders MS, Kanter E, 
Rodriguez PC, Mosharov EV, Sames D, Sulzer D (2016) Fluorescent false 
neurotransmitter reveals functionally silent dopamine vesicle clusters in 
the striatum. Nat Neurosci 19:578-586. 

Pinsonneault JK, Han DD, Burdick KE, Kataki M, Bertolino A, Malhotra AK, Gu 
HH, Sadee W (2011) Dopamine transporter gene variant affecting 
expression in human brain is associated with bipolar disorder. 
Neuropsychopharmacology 36:1644-1655. 

Pizzo AB, Karam CS, Zhang Y, Ma CL, McCabe BD, Javitch JA (2014) 
Amphetamine-induced behavior requires CaMKII-dependent dopamine 
transporter phosphorylation. Mol Psychiatry 19:279-281. 

Raiteri M, Angelini F, Levi G (1974) A simple apparatus for studying the release 
of neurotransmitters from synaptosomes. Eur J Pharmacol 25:411-414. 

Rao A, Simmons D, Sorkin A (2011) Differential subcellular distribution of 
endosomal compartments and the dopamine transporter in dopaminergic 
neurons. Mol Cell Neurosci 46:148-158. 

Rao A, Richards TL, Simmons D, Zahniser NR, Sorkin A (2012) Epitope-tagged 
dopamine transporter knock-in mice reveal rapid endocytic trafficking and 
filopodia targeting of the transporter in dopaminergic axons. FASEB J 
26:1921-1933. 

Rayport S, Sulzer D, Shi WX, Sawasdikosol S, Monaco J, Batson D, Rajendran 
G (1992) Identified postnatal mesolimbic dopamine neurons in culture: 
morphology and electrophysiology. J Neurosci 12:4264-4280. 

Renard HF, Simunovic M, Lemiere J, Boucrot E, Garcia-Castillo MD, Arumugam 
S, Chambon V, Lamaze C, Wunder C, Kenworthy AK, Schmidt AA, 
McMahon HT, Sykes C, Bassereau P, Johannes L (2015) Endophilin-A2 
functions in membrane scission in clathrin-independent endocytosis. 
Nature 517:493-496. 

Richardson BD, Saha K, Krout D, Cabrera E, Felts B, Henry LK, Swant J, Zou 
MF, Newman AH, Khoshbouei H (2016) Membrane potential shapes 
regulation of dopamine transporter trafficking at the plasma membrane. 
Nat Commun 7:10423. 

Rickhag M, Hansen FH, Sorensen G, Strandfelt KN, Andresen B, Gotfryd K, 
Madsen KL, Vestergaard-Klewe I, Ammendrup-Johnsen I, Eriksen J, 
Newman AH, Fuchtbauer EM, Gomeza J, Woldbye DP, Wortwein G, 
Gether U (2013) A C-terminal PDZ domain-binding sequence is required 
for striatal distribution of the dopamine transporter. Nat Commun 4:1580. 



173 
 

Ritz MC, Lamb RJ, Goldberg SR, Kuhar MJ (1987) Cocaine receptors on 
dopamine transporters are related to self-administration of cocaine. 
Science 237:1219-1223. 

Roberts DC, Koob GF, Klonoff P, Fibiger HC (1980) Extinction and recovery of 
cocaine self-administration following 6-hydroxydopamine lesions of the 
nucleus accumbens. Pharmacol Biochem Behav 12:781-787. 

Robinson DL, Venton BJ, Heien ML, Wightman RM (2003) Detecting subsecond 
dopamine release with fast-scan cyclic voltammetry in vivo. Clin Chem 
49:1763-1773. 

Rocha BA, Fumagalli F, Gainetdinov RR, Jones SR, Ator R, Giros B, Miller GW, 
Caron MG (1998) Cocaine self-administration in dopamine-transporter 
knockout mice. Nat Neurosci 1:132-137. 

Rogaeva E et al. (2007) The neuronal sortilin-related receptor SORL1 is 
genetically associated with Alzheimer disease. Nat Genet 39:168-177. 

Rojas R, van Vlijmen T, Mardones GA, Prabhu Y, Rojas AL, Mohammed S, Heck 
AJ, Raposo G, van der Sluijs P, Bonifacino JS (2008) Regulation of 
retromer recruitment to endosomes by sequential action of Rab5 and 
Rab7. J Cell Biol 183:513-526. 

Rudnick G, Kramer R, Blakely RD, Murphy DL, Verrey F (2014) The SLC6 
transporters: perspectives on structure, functions, regulation, and models 
for transporter dysfunction. Pflugers Arch 466:25-42. 

Sabharanjak S, Sharma P, Parton RG, Mayor S (2002) GPI-anchored proteins 
are delivered to recycling endosomes via a distinct cdc42-regulated, 
clathrin-independent pinocytic pathway. Dev Cell 2:411-423. 

Saheki Y, De Camilli P (2012) Synaptic vesicle endocytosis. Cold Spring Harb 
Perspect Biol 4:a005645. 

Sakrikar D, Mazei-Robison MS, Mergy MA, Richtand NW, Han Q, Hamilton PJ, 
Bowton E, Galli A, Veenstra-Vanderweele J, Gill M, Blakely RD (2012) 
Attention deficit/hyperactivity disorder-derived coding variation in the 
dopamine transporter disrupts microdomain targeting and trafficking 
regulation. J Neurosci 32:5385-5397. 

Saunders C, Ferrer JV, Shi L, Chen J, Merrill G, Lamb ME, Leeb-Lundberg LM, 
Carvelli L, Javitch JA, Galli A (2000) Amphetamine-induced loss of human 
dopamine transporter activity: an internalization-dependent and cocaine-
sensitive mechanism. Proc Natl Acad Sci U S A 97:6850-6855. 

Sauvonnet N, Dujeancourt A, Dautry-Varsat A (2005) Cortactin and dynamin are 
required for the clathrin-independent endocytosis of gammac cytokine 
receptor. J Cell Biol 168:155-163. 

Seaman MN (2012) The retromer complex - endosomal protein recycling and 
beyond. J Cell Sci 125:4693-4702. 

Seaman MN, McCaffery JM, Emr SD (1998) A membrane coat complex essential 
for endosome-to-Golgi retrograde transport in yeast. J Cell Biol 142:665-
681. 



174 
 

Seaman MN, Marcusson EG, Cereghino JL, Emr SD (1997) Endosome to Golgi 
retrieval of the vacuolar protein sorting receptor, Vps10p, requires the 
function of the VPS29, VPS30, and VPS35 gene products. J Cell Biol 
137:79-92. 

Seaman MN, Harbour ME, Tattersall D, Read E, Bright N (2009) Membrane 
recruitment of the cargo-selective retromer subcomplex is catalysed by the 
small GTPase Rab7 and inhibited by the Rab-GAP TBC1D5. J Cell Sci 
122:2371-2382. 

Shao Y, Akmentin W, Toledo-Aral JJ, Rosenbaum J, Valdez G, Cabot JB, 
Hilbush BS, Halegoua S (2002) Pincher, a pinocytic chaperone for nerve 
growth factor/TrkA signaling endosomes. J Cell Biol 157:679-691. 

Sharma A, Couture J (2014) A review of the pathophysiology, etiology, and 
treatment of attention-deficit hyperactivity disorder (ADHD). Ann 
Pharmacother 48:209-225. 

Shen H, Ferguson SM, Dephoure N, Park R, Yang Y, Volpicelli-Daley L, Gygi S, 
Schlessinger J, De Camilli P (2011) Constitutive activated Cdc42-
associated kinase (Ack) phosphorylation at arrested endocytic clathrin-
coated pits of cells that lack dynamin. Mol Biol Cell 22:493-502. 

Shimada S, Kitayama S, Lin CL, Patel A, Nanthakumar E, Gregor P, Kuhar M, 
Uhl G (1991) Cloning and expression of a cocaine-sensitive dopamine 
transporter complementary DNA. Science 254:576-578. 

Small SA, Petsko GA (2015) Retromer in Alzheimer disease, Parkinson disease 
and other neurological disorders. Nat Rev Neurosci 16:126-132. 

Snyder SH (2002) Forty years of neurotransmitters: a personal account. Arch 
Gen Psychiatry 59:983-994. 

Snyder SH, Coyle JT (1969) Regional differences in H3-norepinephrine and H3-
dopamine uptake into rat brain homogenates. J Pharmacol Exp Ther 
165:78-86. 

Sonders MS, Zhu SJ, Zahniser NR, Kavanaugh MP, Amara SG (1997) Multiple 
ionic conductances of the human dopamine transporter: the actions of 
dopamine and psychostimulants. J Neurosci 17:960-974. 

Sora I, Wichems C, Takahashi N, Li XF, Zeng Z, Revay R, Lesch KP, Murphy DL, 
Uhl GR (1998) Cocaine reward models: conditioned place preference can 
be established in dopamine- and in serotonin-transporter knockout mice. 
Proc Natl Acad Sci U S A 95:7699-7704. 

Sora I, Hall FS, Andrews AM, Itokawa M, Li XF, Wei HB, Wichems C, Lesch KP, 
Murphy DL, Uhl GR (2001) Molecular mechanisms of cocaine reward: 
combined dopamine and serotonin transporter knockouts eliminate 
cocaine place preference. Proc Natl Acad Sci U S A 98:5300-5305. 

Sorkina T, Caltagarone J, Sorkin A (2013) Flotillins regulate membrane mobility 
of the dopamine transporter but are not required for its protein kinase C 
dependent endocytosis. Traffic 14:709-724. 



175 
 

Sorkina T, Hoover BR, Zahniser NR, Sorkin A (2005) Constitutive and protein 
kinase C-induced internalization of the dopamine transporter is mediated 
by a clathrin-dependent mechanism. Traffic 6:157-170. 

Sorkina T, Doolen S, Galperin E, Zahniser NR, Sorkin A (2003) Oligomerization 
of dopamine transporters visualized in living cells by fluorescence 
resonance energy transfer microscopy. J Biol Chem 278:28274-28283. 

Sorkina T, Richards TL, Rao A, Zahniser NR, Sorkin A (2009) Negative 
regulation of dopamine transporter endocytosis by membrane-proximal N-
terminal residues. J Neurosci 29:1361-1374. 

Sorkina T, Miranda M, Dionne KR, Hoover BR, Zahniser NR, Sorkin A (2006) 
RNA interference screen reveals an essential role of Nedd4-2 in dopamine 
transporter ubiquitination and endocytosis. J Neurosci 26:8195-8205. 

St Pierre CA, Leonard D, Corvera S, Kurt-Jones EA, Finberg RW (2011) 
Antibodies to cell surface proteins redirect intracellular trafficking 
pathways. Exp Mol Pathol 91:723-732. 

Stamford JA, Kruk ZL, Palij P, Millar J (1988) Diffusion and uptake of dopamine 
in rat caudate and nucleus accumbens compared using fast cyclic 
voltammetry. Brain Res 448:381-385. 

Steinkellner T, Yang JW, Montgomery TR, Chen WQ, Winkler MT, Sucic S, 
Lubec G, Freissmuth M, Elgersma Y, Sitte HH, Kudlacek O (2012) 
Ca(2+)/calmodulin-dependent protein kinase IIalpha (alphaCaMKII) 
controls the activity of the dopamine transporter: implications for 
Angelman syndrome. J Biol Chem 287:29627-29635. 

Sucic S, El-Kasaby A, Kudlacek O, Sarker S, Sitte HH, Marin P, Freissmuth M 
(2011) The serotonin transporter is an exclusive client of the coat protein 
complex II (COPII) component SEC24C. J Biol Chem 286:16482-16490. 

Sulzer D (2007) Multiple hit hypotheses for dopamine neuron loss in Parkinson's 
disease. Trends Neurosci 30:244-250. 

Sulzer D, Chen TK, Lau YY, Kristensen H, Rayport S, Ewing A (1995) 
Amphetamine redistributes dopamine from synaptic vesicles to the cytosol 
and promotes reverse transport. J Neurosci 15:4102-4108. 

Takahara J, Arimura A, Schally AV (1974) Effect of catecholamines on the TRH-
stimulated release of prolactin and growth hormone from sheep pituitaries 
in vitro. Endocrinology 95:1490-1494. 

Takahashi N, Miner LL, Sora I, Ujike H, Revay RS, Kostic V, Jackson-Lewis V, 
Przedborski S, Uhl GR (1997) VMAT2 knockout mice: heterozygotes 
display reduced amphetamine-conditioned reward, enhanced 
amphetamine locomotion, and enhanced MPTP toxicity. Proc Natl Acad 
Sci U S A 94:9938-9943. 

Tamminga CA et al. (2002) Developing novel treatments for mood disorders: 
accelerating discovery. Biol Psychiatry 52:589-609. 

Tate CG, Blakely RD (1994) The effect of N-linked glycosylation on activity of the 
Na(+)- and Cl(-)-dependent serotonin transporter expressed using 
recombinant baculovirus in insect cells. J Biol Chem 269:26303-26310. 



176 
 

Teo M, Tan L, Lim L, Manser E (2001) The tyrosine kinase ACK1 associates with 
clathrin-coated vesicles through a binding motif shared by arrestin and 
other adaptors. J Biol Chem 276:18392-18398. 

Thomsen M, Han DD, Gu HH, Caine SB (2009) Lack of cocaine self-
administration in mice expressing a cocaine-insensitive dopamine 
transporter. J Pharmacol Exp Ther 331:204-211. 

Torres GE, Amara SG (2007) Glutamate and monoamine transporters: new 
visions of form and function. Curr Opin Neurobiol 17:304-312. 

Torres GE, Gainetdinov RR, Caron MG (2003a) Plasma membrane monoamine 
transporters: structure, regulation and function. Nat Rev Neurosci 4:13-25. 

Torres GE, Carneiro A, Seamans K, Fiorentini C, Sweeney A, Yao WD, Caron 
MG (2003b) Oligomerization and trafficking of the human dopamine 
transporter. Mutational analysis identifies critical domains important for the 
functional expression of the transporter. J Biol Chem 278:2731-2739. 

Torres GE, Yao WD, Mohn AR, Quan H, Kim KM, Levey AI, Staudinger J, Caron 
MG (2001) Functional interaction between monoamine plasma membrane 
transporters and the synaptic PDZ domain-containing protein PICK1. 
Neuron 30:121-134. 

Tsika E, Glauser L, Moser R, Fiser A, Daniel G, Sheerin UM, Lees A, Troncoso 
JC, Lewis PA, Bandopadhyay R, Schneider BL, Moore DJ (2014) 
Parkinson's disease-linked mutations in VPS35 induce dopaminergic 
neurodegeneration. Hum Mol Genet 23:4621-4638. 

Ungerstedt U (1976) 6-hydroxydopamine-induced degeneration of the 
nigrostriatal dopamine pathway: the turning syndrome. Pharmacol Ther B 
2:37-40. 

Urena JM, La Torre A, Martinez A, Lowenstein E, Franco N, Winsky-Sommerer R, 
Fontana X, Casaroli-Marano R, Ibanez-Sabio MA, Pascual M, Del Rio JA, 
de Lecea L, Soriano E (2005) Expression, synaptic localization, and 
developmental regulation of Ack1/Pyk1, a cytoplasmic tyrosine kinase 
highly expressed in the developing and adult brain. J Comp Neurol 
490:119-132. 

Usdin TB, Mezey E, Chen C, Brownstein MJ, Hoffman BJ (1991) Cloning of the 
cocaine-sensitive bovine dopamine transporter. Proc Natl Acad Sci U S A 
88:11168-11171. 

Uttamapinant C, Sanchez MI, Liu DS, Yao JZ, Ting AY (2013) Site-specific 
protein labeling using PRIME and chelation-assisted click chemistry. Nat 
Protoc 8:1620-1634. 

Uttamapinant C, White KA, Baruah H, Thompson S, Fernandez-Suarez M, 
Puthenveetil S, Ting AY (2010) A fluorophore ligase for site-specific 
protein labeling inside living cells. Proc Natl Acad Sci U S A 107:10914-
10919. 

Uttamapinant C, Tangpeerachaikul A, Grecian S, Clarke S, Singh U, Slade P, 
Gee KR, Ting AY (2012) Fast, cell-compatible click chemistry with copper-



177 
 

chelating azides for biomolecular labeling. Angew Chem Int Ed Engl 
51:5852-5856. 

van Weering JR, Verkade P, Cullen PJ (2012) SNX-BAR-mediated endosome 
tubulation is co-ordinated with endosome maturation. Traffic 13:94-107. 

Varandas KC, Irannejad R, von Zastrow M (2016) Retromer Endosome Exit 
Domains Serve Multiple Trafficking Destinations and Regulate Local G 
Protein Activation by GPCRs. Curr Biol. 

Vaughan RA, Huff RA, Uhl GR, Kuhar MJ (1997) Protein kinase C-mediated 
phosphorylation and functional regulation of dopamine transporters in 
striatal synaptosomes. J Biol Chem 272:15541-15546. 

Vilarino-Guell C et al. (2011) VPS35 mutations in Parkinson disease. Am J Hum 
Genet 89:162-167. 

Vina-Vilaseca A, Sorkin A (2010) Lysine 63-linked polyubiquitination of the 
dopamine transporter requires WW3 and WW4 domains of Nedd4-2 and 
UBE2D ubiquitin-conjugating enzymes. J Biol Chem 285:7645-7656. 

Volkow ND, Fowler JS, Gatley SJ, Logan J, Wang GJ, Ding YS, Dewey S (1996) 
PET evaluation of the dopamine system of the human brain. J Nucl Med 
37:1242-1256. 

Wall SC, Gu H, Rudnick G (1995) Biogenic amine flux mediated by cloned 
transporters stably expressed in cultured cell lines: amphetamine 
specificity for inhibition and efflux. Mol Pharmacol 47:544-550. 

Wang KH, Penmatsa A, Gouaux E (2015) Neurotransmitter and psychostimulant 
recognition by the dopamine transporter. Nature 521:322-327. 

Wayment HK, Schenk JO, Sorg BA (2001) Characterization of extracellular 
dopamine clearance in the medial prefrontal cortex: role of monoamine 
uptake and monoamine oxidase inhibition. J Neurosci 21:35-44. 

Welz T, Wellbourne-Wood J, Kerkhoff E (2014) Orchestration of cell surface 
proteins by Rab11. Trends Cell Biol 24:407-415. 

Wersinger C, Sidhu A (2003) Attenuation of dopamine transporter activity by 
alpha-synuclein. Neurosci Lett 340:189-192. 

Wheeler DD, Edwards AM, Chapman BM, Ondo JG (1993) A model of the 
sodium dependence of dopamine uptake in rat striatal synaptosomes. 
Neurochem Res 18:927-936. 

Wickersham IR, Lyon DC, Barnard RJ, Mori T, Finke S, Conzelmann KK, Young 
JA, Callaway EM (2007) Monosynaptic restriction of transsynaptic tracing 
from single, genetically targeted neurons. Neuron 53:639-647. 

Williams JM, Owens WA, Turner GH, Saunders C, Dipace C, Blakely RD, France 
CP, Gore JC, Daws LC, Avison MJ, Galli A (2007) Hypoinsulinemia 
regulates amphetamine-induced reverse transport of dopamine. PLoS Biol 
5:e274. 

Wise RA, Rompre PP (1989) Brain dopamine and reward. Annu Rev Psychol 
40:191-225. 

Wu Q, Reith ME, Wightman RM, Kawagoe KT, Garris PA (2001) Determination 
of release and uptake parameters from electrically evoked dopamine 



178 
 

dynamics measured by real-time voltammetry. J Neurosci Methods 
112:119-133. 

Wu S, Bellve KD, Fogarty KE, Melikian HE (2015) Ack1 is a dopamine 
transporter endocytic brake that rescues a trafficking-dysregulated ADHD 
coding variant. Proc Natl Acad Sci U S A 112:15480-15485. 

Yamamoto BK, Novotney S (1998) Regulation of extracellular dopamine by the 
norepinephrine transporter. J Neurochem 71:274-280. 

Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E (2005) Crystal structure of a 
bacterial homologue of Na+/Cl--dependent neurotransmitter transporters. 
Nature 437:215-223. 

Yang W, Lo CG, Dispenza T, Cerione RA (2001) The Cdc42 target ACK2 directly 
interacts with clathrin and influences clathrin assembly. J Biol Chem 
276:17468-17473. 

Yokoyama N, Miller WT (2003) Biochemical properties of the Cdc42-associated 
tyrosine kinase ACK1. Substrate specificity, authphosphorylation, and 
interaction with Hck. J Biol Chem 278:47713-47723. 

Zhang D, Isack NR, Glodowski DR, Liu J, Chen CC, Xu XZ, Grant BD, Rongo C 
(2012) RAB-6.2 and the retromer regulate glutamate receptor recycling 
through a retrograde pathway. J Cell Biol 196:85-101. 

Zhu S, Zhao C, Wu Y, Yang Q, Shao A, Wang T, Wu J, Yin Y, Li Y, Hou J, Zhang 
X, Zhou G, Gu X, Wang X, Bustelo XR, Zhou J (2015) Identification of a 
Vav2-dependent mechanism for GDNF/Ret control of mesolimbic DAT 
trafficking. Nat Neurosci 18:1084-1093. 

Zhu SJ, Kavanaugh MP, Sonders MS, Amara SG, Zahniser NR (1997) Activation 
of protein kinase C inhibits uptake, currents and binding associated with 
the human dopamine transporter expressed in Xenopus oocytes. J 
Pharmacol Exp Ther 282:1358-1365. 

Zimprich A et al. (2011) A mutation in VPS35, encoding a subunit of the retromer 
complex, causes late-onset Parkinson disease. Am J Hum Genet 89:168-
175. 

Zou Z, Horowitz LF, Montmayeur JP, Snapper S, Buck LB (2001) Genetic tracing 
reveals a stereotyped sensory map in the olfactory cortex. Nature 
414:173-179. 

 


	Novel Mechanisms Regulating Dopamine Transporter Endocytic Trafficking: Ack1-Controlled Endocytosis And Retromer-Mediated Recycling
	Let us know how access to this document benefits you.
	Repository Citation

	tmp.1487799165.pdf.wcNJm

