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ABSTRACT 

In murine and human brown adipose tissue (BAT), mitochondria are powerful 

generators of heat. Emerging evidence has suggested that the actions of mitochondria 

extend beyond this conventional biochemical role. In mouse BAT and cultured brown 

adipocytes, impaired mitochondrial respiratory capacity is accompanied by attenuated 

expression of Ucp1, a key thermogenic gene, implying a mitochondrial retrograde 

signaling. However, few have investigated this association in the context of 

mitochondria-nucleus communication.  

Using mice with adipose-specific ablation of LRPPRC, a regulator of respiratory 

capacity, we show that respiration-dependent retrograde signaling from mitochondria to 

nucleus contributes to transcriptional and metabolic reprogramming of BAT. Impaired 

respiratory capacity triggers down-regulation of thermogenic and oxidative genes, 

promoting a storage phenotype in BAT. This retrograde regulation functions by 

interfering with promoter-specific recruitment of PPAR. In addition, cytosolic calcium 

may mediate the retrograde signal from mitochondria to nucleus. These data are 

consistent with a model whereby BAT connects its respiratory capacity to thermogenic 

gene expression, which in turn contributes to determining its metabolic commitment.  

Additionally, we find that augmented respiratory capacity activates the 

thermogenic gene program in inguinal (subcutaneous) white adipose tissue (IWAT) from 

adipose-specific LRPPRC transgenic mice. When fed a high-fat diet at thermoneutrality, 

these mice exhibit metabolic improvements as shown by reduced fat mass and improved 

insulin sensitivity. Furthermore, there is increased recruitment of brown-like adipocytes 
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in IWAT and thus energy expenditure is significantly increased, providing a potential 

explanation for protection from obesity. These data suggest that augmented respiratory 

capacity promotes ‘browning’ of IWAT, which has beneficial effects on obesity and 

diabetes. 

 

  



viii 
 

TABLE OF CONTENTS 

 

Reviewer Page .................................................................................................................... ii 

Acknowledgements ............................................................................................................ iii 

Abstract .............................................................................................................................. vi 

Table of Contents ............................................................................................................. viii 

List of Tables ..................................................................................................................... xi 

List of Figures ................................................................................................................... xii 

List of Abbreviations .........................................................................................................xv 

Preface............................................................................................................................ xviii 

 

CHAPTER I: INTRODUCTION .........................................................................................1 

1.1. Brown adipose tissue (BAT) .................................................................................1 

1.2. Features of brown fat mitochondria .......................................................................6 

1.2.1. Morphological features ................................................................................7 

1.2.2. Biochemical features ...................................................................................9 

1.2.3. Proteomical features ..................................................................................10 

1.3. Mitochondria-nucleus communication in BAT ...................................................12 

1.3.1. Mitochondrial retrograde signaling ...........................................................13 

1.3.2. Genetic manipulation of respiratory capacity and its effect on thermogenic 

gene expression ...................................................................................................15 

1.3.2.1. COX7RP (cytochrome c oxidase subunit VIIa polypeptide 2 like) .17 

1.3.2.2. TFAM (transcription factor A, mitochondrial) ...............................17 

1.3.2.3. CRIF1 (CR6-interacting factor 1) ...................................................19 

1.3.2.4. LSD1 (Lysine-specific demethylase 1) ............................................20 

1.3.2.5. LRPPRC (Leucine-rich pentatricopeptide repeat containing motif; 

also called LRP130: leucine-rich protein 130kD) .......................................21 

1.4. Thesis overview ...................................................................................................23 

1.4.1. Specific Aim 1 ...........................................................................................23 



ix 
 

1.4.2. Specific Aim 2 ...........................................................................................25 

 

CHAPTER II: MITOCHONDRIAL RETROGRADE SIGNALING CONNECTS 

RESPIRATORY CAPACITY TO THERMOGENIC GENE EXPRESSION ..................26 

Summary .....................................................................................................................26 

Introduction .................................................................................................................28 

Materials and Methods ...............................................................................................31 

Results.........................................................................................................................39 

LRPPRC fat-specific knockout (FKO) mice exhibit impaired respiratory 

capacity in BAT ...................................................................................................39 

Impaired respiratory capacity attenuates thermogenic gene expression .............42 

Impaired respiratory capacity interferes with the recruitment of PPAR to 

thermogenic gene promoters ...............................................................................47 

Cytosolic calcium may mediate retrograde signals from mitochondria to nucleus 

 .............................................................................................................................49 

Augmented respiratory capacity induces the thermogenic gene program in 

subcutaneous adipose tissue ................................................................................54 

The browning of subcutaneous adipose tissue protects against diet-induced 

obesity in LRPPRC FTg mice .............................................................................56 

Discussion ...................................................................................................................61 

 

CHAPTER III: PERSPECTIVES AND FUTURE DIRECTIONS ...................................69 

3.1. Brown fat-specific mitochondrial retrograde signaling .......................................69 

3.2. Mitochondrial respiration and calcium ................................................................70 

3.3. Other potential mediators of mitochondrial retrograde signaling in brown fat  ..72 

3.4. Mitochondrial respiration-independent effects of LRPPRC ablation and 

Antimycin A (AA) treatment ......................................................................................75 

3.5. Quantitative determination of the contribution of PPARto the attenuation of 

thermogenic gene expression ......................................................................................76 



x 
 

 

3.6. How is the recruitment of PPAR to the thermogenic enhancers/promoters 

reduced? ......................................................................................................................77 

3.7. What is the potential link between cytosolic Ca
2+

 and PPAR? ..........................78 

3.8. Therapeutic implications .....................................................................................79 

3.9. Is augmented respiratory capacity a universal mechanism to trigger browning of 

adipose tissue? ............................................................................................................82 

3.10. Bidirectional communication between thermogenic capacity and respiratory 

capacity in brown fat ..................................................................................................83 

 

APPENDIX: NUTRIENT SENSING BY THE MITOCHONDRIAL TRANSCRIPTION 

MACHINERY DICTATES OXIDATIVE PHOSPHORYLATION  ...............................84 

Author contribution ....................................................................................................85 

Summary .....................................................................................................................86 

Introduction .................................................................................................................87 

Materials and Methods ...............................................................................................90 

Results.......................................................................................................................106 

Discussion .................................................................................................................131 

 

BIBLIOGRAPHY ............................................................................................................158 

 

 

 

 

 

 

 

 

 



xi 
 

LIST OF TABLES 

 

Table 1.1: Effects of manipulating the mitochondrial biogenesis pathway on the brown 

fat gene program ................................................................................................................16 

Table 1.2: Effects of manipulating mitochondrial respiratory capacity on the brown fat 

gene program .....................................................................................................................18 

Table 2.1: Mouse primers used for RT-qPCR ...................................................................67 

Table 2.2: Mouse primers used for ChIP assays ................................................................68 

Table A.S1: Mass spectrometry intensities for lysines in murine LRP130 sensitive to 

deacetylation by SIRT3....................................................................................................153 

Table A.S2: Mouse primers used for RT-qPCR ..............................................................156 

Table A.S3: Human primers used for RT-qPCR .............................................................157 

 

 

 

 

 

  



xii 
 

LIST OF FIGURES 

 

Figure 1.1: Brown fat-mediated thermogenesis ...................................................................3 

Figure 1.2: Electron microscopic image showing ultrastructure of brown fat mitochondria

..............................................................................................................................................8 

Figure 1.3: Diverse mitochondrial insults and their outcomes ..........................................14 

Figure 1.4: Mitochondrial-encoded respiratory subunits ...................................................22 

Figure 1.5: The central hypothesis .....................................................................................24 

Figure 2.1: Respiratory capacity is impaired in BAT from LRPPRC fat-specific knockout 

(FKO) mice ........................................................................................................................40 

Figure 2.2: Impaired respiratory capacity attenuates thermogenic and oxidative gene 

expression in BAT from LRPPRC FKO mice living at 22 °C ..........................................43 

Figure 2.3: Impaired respiratory capacity attenuates thermogenic and oxidative gene 

expression in BAT from LRPPRC FKO mice living at 30 °C ..........................................45 

Figure 2.4: -adrenergic signaling is intact in BAT from LRPPRC FKO mice ................46 

Figure 2.5: Impaired respiratory capacity influences the recruitment of PPARin a 

promoter-specific manner ..................................................................................................48 

Figure 2.6: Pharmacological inhibition of respiratory complex mimics LRPPRC ablation 

in cultured brown adipocytes .............................................................................................50 

Figure 2.7: Cytosolic Ca
2+

 serve as a signaling mediator between BAT mitochondria and 

nucleus ...............................................................................................................................52 

Figure 2.8: Lrpprc and mitochondrially encoded genes are induced in IWAT of LRPPRC 

fat-specific transgenic (FTg) mice .....................................................................................55 

Figure 2.9: Mice with the LRPPRC transgene are metabolically similar to WT littermates 

upon HFD feeding..............................................................................................................57 

Figure 2.10: LRPPRC FTg mice exhibit improved metabolic phenotypes in diet-induced 

obesity ................................................................................................................................59 

Figure 3.1: Mitochondrial Ca
2+

 uptake ..............................................................................71 



xiii 
 

Figure A.1: Fasting coordinately induces mitochondrially encoded transcripts and 

OXPHOS in liver .............................................................................................................107 

Figure A.2: Glucagon induces mitochondrially encoded genes and proteins ..................109 

Figure A.3: Glucagon-mediated induction of mitochondrially encoded genes requires 

SIRT3 ...............................................................................................................................111 

Figure A.4: In liver, SIRT3 is necessary and sufficient for fasting-mediated induction of 

mitochondrial encoded transcripts and OXPHOS ...........................................................115 

Figure A.5: SIRT3 induces mitochondrially encoded genes by stimulating mitochondrial 

transcription .....................................................................................................................118 

Figure A.6: SIRT3-mediated induction of mitochondrial transcription requires LRP130

..........................................................................................................................................120 

Figure A.7: During the fasted response, SIRT3 deacetylates LRP130 in liver 

mitochondria ....................................................................................................................124 

Figure A.8: LRP130-7KR stimulates mitochondrial transcription and promotes OXPHOS 

..........................................................................................................................................127 

Figure A.9: In fasted liver, the transcription machinery of mitochondria sense nutrient 

deprivation via SIRT3, culminating in enhanced energy metabolism .............................130 

Figure A.S1. cAMP signaling mediates induction of mitochondrially encoded genes, Pgc-

1α is not required for induction of mitochondrially encoded gene expression but NAD
+
-

dependent pathways are required .....................................................................................136 

Figure A.S2. Fasting induces mitochondrially encoded genes in 129S mice ..................138 

Figure A.S3. Effect of fasting in Sirtuin 3 knockout mouse liver (S3KO) on a 129S mice 

background .......................................................................................................................139 

Figure A.S4. In liver, knockdown of Sirt3 in C57BL6 mouse liver impairs fasting-

mediated induction of mitochondrially encoded genes and OXPHOS ............................140 

Figure A.S5. Ectopic expression of SIRT3 in mouse liver and primary hepatocytes 

induces mitochondrially encoded transcripts ...................................................................142 

Figure A.S6. Respiration and mitochondrial content in H2.35 hepatoma cells with ectopic 

expression of Sirt3 ...........................................................................................................144 



xiv 
 

Figure A.S7. Effect of LRP130 protein level on the basal transcription machinery and a 

schematic of the LRP130 floxed allele ............................................................................146 

Figure A.S8: Effect of ectopic expression of SIRT3 in LRP130 deficient cells .............147 

Figure A.S9. Comparison of acetylated lysines in LRP130 (LRPPRC) across various 

studies ..............................................................................................................................148 

Figure A.S10. Mapping of the interaction between POLRMT and LRP130 ...................149 

Figure A.S11. Knock-down of human LRP130 in 293T cells and reconstitution with 

mouse wild-type LRP130 or the LRP130 7KR mutant ...................................................150 

Figure A.S12. Knock-down of human LRP130 in 293T cells and reconstitution with 

mouse wild-type LRP130 or the LRP130 7KQ mutant ...................................................151 

 

 

 

  



xv 
 

LIST OF ABBREVIATIONS 

 

ADP    adenosine diphosphate 

ATP    adenosine triphosphate 

BAT    brown adipose tissue 

cAMP    cyclic adenosine monophosphate 

CD36    cluster of differentiation 36  

(also known as fatty acid translocase) 

C/EBP    CCAAT-enhancer-binding protein 

ChIP chromatin immunoprecipitation 

CIDEA cell death-inducing DFFA-like effector A 

CPT1B   carnitine palmitoyltransferase 1B 

CRIF1    CR6-interacting factor 1 

CS    citrate synthase 

CtBP    C-terminal binding protein 

DIO2    iodothyronine deiodinase 2 

DNA    deoxyribonucleic acid 

EBF2    early B cell factor 2 

ELOVL3   elongation of very long chain fatty acid elongase 3 

ERR    estrogen-related receptor alpha 

ETC     electron transport chain 

EWAT    epididymal white adipose tissue (visceral depot) 

FAD    flavin adenine dinucleotide 

FAO    fatty acid oxidation 

FFA    free fatty acid 

18
F-FDG   2-deoxy-2-[fluorine-18]fluoro- D-glucose 

FKO    fat-specific knockout 

FTg    fat-specific transgenic 

GDP                                        guanosine diphosphate  



xvi 
 

GTP    guanosine triphosphate 

HFD    high fat diet 

IMM    inner mitochondrial membrane 

IWAT    inguinal white adipose tissue (subcutaneous depot) 

LCFA    long chain fatty acid 

LPL    lipoprotein lipase 

LRPPRC   leucine rich pentatricopeptide repeat containing protein 

LSD1    lysine-specific demethylase 1 

mtDNA   mitochondrial DNA 

Myf5    myogenic factor 5 

mRNA    messenger ribonucleic acid 

NAD    nicotinamide adenine dinucleotide  

(NADH: the reduced NAD)  

NRF-1    nuclear respiratory factor 1 

OMM    outer mitochondrial membrane 

OXPHOS   oxidative phosphorylation 

PARP    poly ADP ribose polymerase 

PDC    pyruvate dehydrogenase complex 

PDK    pyruvate dehydrogenase kinase 

PDP    pyruvate dehydrogenase phosphatase 

PET/CT   positron emission tomography–computed tomography 

PGC-1 peroxisome proliferator-activated receptor gamma 

coactivator 

PKA    protein kinase A 

POLRMT   RNA polymerase, mitochondrial  

PPAR   peroxisome proliferator-activated receptor gamma 

RNAi    RNA interference 

PRDM16   PR domain containing 16 

SCS    succinyl-CoA synthetase 



xvii 
 

shRNA   short hairpin RNA 

SIRT1    sirtuin 1 

SIRT3    sirtuin 3 

SRC-1/3   steroid receptor coactivator 1 and 3 

TCA    tricarboxylic acid 

TFAM    transcription factor A, mitochondrial 

TFB2M   transcription factor B2, mitochondrial 

UCP1     uncoupling protein 1 

UPR    unfolded protein response 

VDAC    voltage-dependent anion channel   



xviii 
 

PREFACE 

Portions of this dissertation have appeared in: 

Nam M. and Cooper, M.P. Role of Energy Metabolism in the Brown Fat Gene Program. 

Front Endocrinol (Lausanne). 6:104. (2015). 

 

Nam, M., Akie, T.E., Sanosaka, M., Craige, S.M., Kant, S, Keaney, J.F. Jr., and Cooper, 

M.P. Mitochondrial Retrograde Signaling Connects Respiratory Capacity to Thermogenic 

Gene Expression. Sci. Rep. Under revision. (2016) 

 

 

 



1 
 

CHAPTER I 

INTRODUCTION 

 

1.1. Brown adipose tissue (BAT) 

Brown fat is mainly composed of thermogenic adipocytes that convert chemical 

energy to heat. Found in homeothermic animals such as mammals, brown fat protects 

against cold stress. In neonates and hibernating mammals, brown fat plays a critical role 

in thermoregulation. The first description of brown fat was made by Swiss researcher 

Gessner who wrote a report regarding the anatomy of the Alpine marmot (Marmota 

marmot) in 1551. In this report, he described interscapular brown fat as being ‘neither fat 

nor flesh’ (nec pinguitudo, nec caro) (1). In the early 1900s, although brown fat was 

commonly termed as ‘hibernating gland’ due to its presence in nearly all hibernating 

mammals and resemblance of its appearance to a gland, researchers believed that it was a 

type of adipose tissue (2). It was mid-1900s that the mysterious gland-like adipose tissue 

was found to function as a heat-producing (thermogenic) organ (3).  

There are two types of thermogenic adipocytes: classical brown adipocytes and 

beige/brite adipocytes. Classical brown adipocytes exhibit constitutive thermogenic 

capacity with large numbers of mitochondria. Developmentally programmed brown fat 

such as the rodent interscapular depot consists of these cells. Another type of 

thermogenic adipocytes is found in white fat, especially in the rodent subcutaneous depot.  

These cells are recruited by thermogenic stimuli and in turn display comparable 
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thermogenic capacity to classical brown adipocytes (4-7). Due to these properties, they 

have been named beige/brite (brown-in-white) adipocytes (8, 9). Although these two 

forms of adipocytes share thermogenic function, they are distinguished from each other 

in some ways. This distinction is clearly exemplified in their gene signatures. Zic1, Eva1 

and Epsti1 are highly expressed in classical brown adipocytes whereas Tbx1, Cd137 and 

Tmem26 are enriched in beige adipocytes (10-12). Given different patterns of gene 

expression in various depots of adipose tissue (13), this is not surprising and likely 

reflects different regulatory pathways and distinct developmental origins. Indeed, 

although exceptions exist, classical brown adipocytes are shown to largely originate from 

Myf5
+
 precursor cells that are shared with skeletal muscle whereas beige adipocytes are 

differentiated from Myf5
-
 precursor cells (14).  

The heat-generating process mediated by brown fat is often termed non-shivering 

thermogenesis that involves dissipation of chemical energy as heat (Figure 1.1). The 

thermogenic capacity of brown fat is attributed to abundant mitochondria in which heat is 

generated via uncoupled respiration (9). For this purpose, brown fat uniquely expresses 

protonophoric protein, uncoupling protein 1 (UCP1). Localized to the inner membrane of 

mitochondria, activated UCP1 provides an alternative route for proton to flow back into 

the matrix, a process that uncouples respiration from ATP synthesis, resulting in 

conversion of energy stored in proton gradient to heat in stimulated brown fat. High 

sympathetic innervation of brown fat ensures swift activation of the tissue and cold 

defense (15, 16). Brown fat is also intensively vascularized to support blood warming and 

prompt delivery of warmed blood to the periphery as well as to meet high demands for  
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Figure 1.1. Brown fat-mediated thermogenesis. Brown fat mitochondria are generators 

of heat. In the normal state, they produce ATPs as mitochondria in other tissues do. ATP 

inhibits UCP1 to block futile proton cycle, which ensures coupled respiration. When 

exposed to cold, BAT-connected sympathetic nerve system releases catecholamines such 

as norepinephrine. Norepinephrine in turn activates G protein-coupled 3-adrenergic 

receptor signaling through cAMP-PKA pathway. This pathway promotes lipolysis and 

released free fatty acids are oxidized in mitochondria to create proton gradient via 

electron transport chain (ETC). Glucose and free fatty acids from extracellular sources 

are also taken up via their transporters and utilized. In addition to their role as fuel, fatty 

acids are required to overcome ATP-mediated inhibition of UCP1. Activated UCP1 then 

uncouples respiration from ATP synthesis, which dissipates the energy stored in proton 

gradient as heat. BAT contains a large number of these heat-producing mitochondria to 

provide defense against cold. 
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oxygen supply during uncoupled respiration (17). Calculations have suggested that fully 

activated brown fat dissipates about 300-400 W/kg of energy as heat compared to 1 W/kg 

in other tissues (18-20). This high thermogenic capability necessitates robust fuel 

oxidation. Two major carbon sources—glucose and fatty acids—are used by brown fat 

for uncoupled respiration. During cold exposure, the uptake of glucose and free fatty 

acids (FFAs) and lipolysis are greatly increased (21-23). The uptake rate of each substrate 

is greater than that of skeletal muscle (22, 23), which potentially makes brown fat an 

important metabolic sink. With its energy-burning property and ability to clear excess 

nutrients, brown fat thus holds promise as a target to treat various metabolic diseases 

such as obesity, diabetes and hyperlipidemia (22, 24-26).  

Over the last few decades, the transcriptional network that drives adipocyte 

differentiation (adipogenesis) has been revealed. Using a white adipogenic cell line, 3T3-

L1 preadipocytes, researchers have identified key transcription factors of adipogenesis 

including CCAAT/enhancer binding protein (C/EBP) alpha, beta and delta and 

peroxisome proliferator-activated receptor (PPAR) gamma (27-30). Importantly, C/EBP 

and PPAR coordinately acts to induce adipocyte-specific genes, resulting in terminally 

differentiated adipocytes (28, 31, 32). Brown adipocytes also share these major regulators 

for their development. However, for their thermogenic profile, several additional factors 

must be involved. A well-known example is PPAR coactivator 1 (PGC-1) family. PGC-

1 was first identified as a cold-inducible interacting partner of PPAR, which was 

responsible for cold-induced expression of UCP1 (33). PGC-1 is also well established 

as a major driver of mitochondrial biogenesis (34). Another family member PGC-1 was 
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later identified (35), and both family members are required to activate thermogenic and 

oxidative gene program in brown adipocytes (36). A continuing search for transcriptional 

regulators that control brown fat-specific gene program identified PR Domain-containing 

protein 16 (PRDM16). PRDM16 is a nuclear protein containing zinc-finger domains (37). 

Despite its potential DNA-binding ability, PRDM16 turned out to control brown fat-

selective genes by interacting with and co-activating transcription factors C/EBP and 

PPAR . Additionally, PRDM16 plays a role in maintaining brown fat identity by 

repressing white fat-specific genes. This is achieved by forming a transcriptional 

repressor complex with CtBP1 and CtBP2 (39).  Early B-Cell Factor 2 (EBF2) is an 

example of playing a dual role in brown fat development. Enriched in brown 

preadipocytes, EBF2 recruits PPAR to brown fat-specific genes to induce brown fat 

phenotype during differentiation (40). Furthermore, EBF2 has a central role in brown 

preadipocyte commitment by regulating genes enriched in brown preadipose cells (41). 

These combinatorial transcriptional pathways allow for unique gene signatures that 

support thermogenic function. UCP1, a key thermogenic protein, is exclusively expressed 

in brown fat. Cell death-inducing DFFA-like effector a (CIDEA), a modulator of UCP1, 

and Type II iodothyronine deiodinase (DIO2), an enzyme that converts T4 to active T3 

within the tissue locally, are among major thermogenic genes (42-44). Fatty acid 

oxidation (FAO) genes and electron transport chain (ETC) subunit genes are also 

enriched (45, 46).  

Humans have brown fat as well. In humans, brown fat can be found in the 

interscapular region in infants, and interscapular, supraclavicular, axillary, neck and 
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suprarenal regions in children and adolescents (47, 48). In adults, however, brown fat has 

long been thought to regress with exceptions of those who live in extreme cold and 

patients with pheochromocytoma characterized by hypersecretion of catecholamines (49-

52). Although non-shivering thermogenesis (brown fat-mediated) is critical in infants due 

to their limited shivering capacity and rapid heat loss caused by larger surface-to-volume 

ratio, human lifestyles (clothing, shelter, etc), smaller surface-to-volume ratio and 

enhanced ability to shiver  may direct disappearance of brown fat with age. However, 

with the advent of 18
F-FDG PET/CT imaging in oncology, researchers coincidentally 

detected high glucose uptake around supraclavicular region (53-56). Tissue biopsy 

confirmed multilocular and UCP1
+
 cells, indicating the existence of functional brown fat 

in healthy human adults. Several follow-up studies show that the types of thermogenic 

adipocytes vary depending on anatomical sites. Two reports suggest that supraclavicular 

human brown fat has molecular features identical to brite/beige fat (10, 57). Another 

group reported molecular signatures of deep neck fat are virtually identical to ‘classical’ 

brown fat of mice while beige-like cells exist in more superficial neck depot (58). Still 

another group reported molecular signatures intermediate between brown and beige fat 

(59). The discovery of active brown fat in adults has opened a new era of brown fat 

research and rekindled an old interest in brown fat as a potential target to treat metabolic 

diseases. 

 

1.2. Features of brown fat mitochondria 
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In murine and human brown fat, mitochondria are powerful generators of heat 

that safely metabolize fat, a feature that has great promise in the fight against obesity and 

diabetes. Brown fat mitochondria fulfill their duty as cellular powerhouses in the non-

stimulated state. In sympathetically stimulated brown fat, UCP1 is rapidly activated and 

uncouples electron transit and ATP production. Instead, the chemical energy stored in the 

proton gradient is dissipated as heat. To conduct this specialized task, brown fat 

mitochondria possess numerous distinct features. The sections below discuss the current 

knowledge of brown fat mitochondria. 

 

1.2.1. Morphological features 

Brown fat mitochondria are dynamic organelles that meet the thermogenic needs 

of the organism by regulating their number and networking as well as their biochemical 

and ultrastructural profile. Acute cold exposure (or activation with norepinephrine) 

immediately promotes mitochondrial fission, an event that precedes and augments 

thermogenesis (60). Brown fat mitochondria exhibit unique morphological features 

(Figure 1.2). Notably, brown fat mitochondria are enlarged and densely packed with 

respiratory units, resulting in dense cristae (61). The morphological features of brown fat 

also differ across gender with females having larger mitochondria and denser cristae (62). 

The density of brown fat mitochondria is among the highest of any tissue (63). Even so, 

chronic cold exposure increases mitochondrial mass even further. This is mediated by 

catecholamines via -adrenergic signaling, which increases PGC-1, a transcriptional 

coactivator that induces ERR and NRF-1, culminating in increased mitochondrial mass  
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Figure 1.2. Electron microscopic image showing ultrastructure of brown fat 

mitochondria. Shown are tightly packed lamellar cristae where high density of the 

electron transport chain resides. Magnification, 43,000x. Scale bar, 200m. 
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(33, 34, 64).  

 

1.2.2. Biochemical features 

 Early biochemical and functional studies on brown fat mitochondria in rodents 

revealed high cellular respiration but low ATP synthase activity (65). This implied that 

pathway involving proton leakage must underlie the basis of thermogenesis. Biochemical 

studies identified that UCP1 constitutes the molecular basis for enhanced proton leak (66). 

Interestingly, in larger mammals such as lambs the abundance of ATP synthase is higher 

(67), presumably because larger animals are less dependent on non-shivering 

thermogenesis due to their smaller surface-to-volume ratio and due to their increased 

capacity for shivering. 

Long chain free fatty acids (LCFAs) activate UCP1, while purine nucleotides 

inhibit UCP1 (68, 69). Intuitively, mobilization of free fatty acids via -adrenergic 

activation is coupled to UCP1 activation and heat production. Fedorenko et al reported 

that UCP1 does not exhibit constitutive proton transport activity (70). Instead, there is 

obligatory binding of LCFAs to UCP1, a process that transfers protons associated with 

LCFA into the matrix via a conformational change of UCP1. LCFAs can also overcome 

inhibition by purine nucleotides. This is important because in the basal state there is no 

robust lipolysis and inhibition of UCP1 by purine nucleotides will promote coupled ATP-

generating respiration.  

In theory, uncoupling should de-energize brown fat mitochondria, culminating in 

an ATP crisis. ATP, however, is required for activation of fatty acids during uncoupling. 

Lipid droplet 
Cytoplasm 
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Brown fat mitochondria circumvent this by increasing glycolysis as well as the TCA 

cycle. Arsenite, an inhibitor of pyruvate dehydrogenase complex (PDC) and -

ketoglutarate dehydrogenase, depleted ATP in norepinephrine-stimulated brown 

adipocytes, implying that the TCA cycle is critical for maintaining ATP during 

thermogenesis (71). Although succinyl-CoA synthetase primarily generates GTP, this 

TCA enzyme complex can also generate ATP, a process which may explain how the 

TCA cycle is critical for maintaining ATP in brown fat (discussed further in 1.2.3). 

Glycolysis is an important source of ATP as well. Notably, hexokinase activity increases 

4-fold in cold acclimated rats, achieving glycolytic activity similar to liver (72). 

 

1.2.3. Proteomical features 

Mass spectrometric analysis of mitochondria in mouse brown fat has revealed 

striking proteomic difference compared with white fat mitochondria (45). In fact, the 

proteomic profile of brown fat mitochondria was most similar to that of skeletal muscle. 

Compared with white fat mitochondria, there was an enrichment of catabolic pathways 

including electron transport chain, TCA cycle and fatty acid metabolism in brown fat 

mitochondria. Complexes I-IV are present at higher levels, whereas complex V is present 

at lower levels, a pattern favorable for thermogenesis. There is robust expression of 

enzymes involved in the TCA cycle—ADP-forming succinyl-CoA synthetase subunit 

(A-SCS-, pyruvate dehydrogenase kinase 4 (PDK4) and pyruvate dehydrogenase 

phosphatase regulatory subunit (PDPr). SCS converts succinyl-CoA to succinate. This 

reaction is coupled to the formation of ATP or GTP, which is determined by two different 
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 subunits, ADP-forming and GDP-forming. In mouse, rat, and human, metabolically 

active tissues such as brain and heart express high levels of ADP-forming subunits 

compared with GDP-forming subunits (73). Likewise, brown fat mitochondria may 

preferentially use A-SCS- to supply ATP, a feature that matches a role of substrate-level 

phosphorylation in stimulated brown adipocytes. During cold exposure, lipid uptake and 

lipogenesis replenish fat stores that have been oxidized (74). Control of lipogenesis 

during cold exposure is complex and partly regulated by pyruvate metabolism (74, 75). 

Pyruvate can be targeted for complete oxidation by converting it into acetyl-CoA via the 

enzymatic action of PDC (76). Alternatively, inhibition of PDC by PDK4 diverts 

pyruvate into glycerol, which is the backbone for FFA esterification (76). An enzymatic 

complex consisting of PDPr counteracts the action of PDK4, and thus, targets pyruvate 

for complete oxidation (77, 78). In summary, opposing regulation by PDK4 and PDP 

may play a critical role in whether or not the brown adipocyte uses pyruvate for 

lipogenesis (PDK4-mediated) or complete oxidation (PDPr-mediated).  

Fatty acids serve as major substrates for thermogenesis and they activate UCP1 

(79). In brown fat, there is high expression of enzymes involved in fatty acid oxidation, 

including short-, medium-, long-chain acyl-CoA dehydrogenases and 3-ketoacyl-CoA 

thiolase (45). Long-chain fatty acids require a carnitine palmitoyltransferase 1B 

(CPT1B)-mediated carnitine shuttle for oxidation in mitochondria. Supporting a role for 

robust oxidative capacity in brown fat, CPT1B is 50-fold higher in brown fat compared 

with white fat (45). Brown fat may also exhibit metabolic flexibility in fuel utilization. 

Highly expressed in brown fat, acetyl-CoA synthetase 2-like (ACSS1) permits oxidation 
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of ketone bodies during starvation (45, 80, 81). Indeed, activity of ketone body oxidizing 

enzymes in brown fat parallels that of the heart (82). 

A comparative proteomic analysis of human neck brown fat vs. neighboring 

subcutaneous white fat reveals a similar enrichment of mitochondrial oxidative 

metabolism pathway to mouse brown fat (83). An interesting finding is that 

mitochondrial creatine kinases are abundantly expressed in neck brown fat compared 

with subcutaneous white fat (83). This enzyme converts creatine to phospho-creatine at 

the expense of ATP, thus yielding ADP. The mitochondrial creatine kinases also plays a 

central role in forming the ‘mitochondrial interactosome’ by connecting voltage-

dependent anion channel (VDAC) in the outer mitochondrial membrane with adenine 

nucleotide translocase, phosphate transporter, phosphate transporter and ATP synthase 

(Complex V) in the inner mitochondrial membrane (84). The role of this energy unit is to 

ensure a high efficiency of ATP synthesis by concentrating molecules necessary for the 

process. Indeed, the components of this coupled respiration machinery are highly 

expressed as well in human neck brown fat, which runs contrary to mouse brown fat (83). 

Although it remains elusive, abundance of this ATP-generating supercomplex in human 

brown fat may be in parallel with the dependence of mouse beige adipocytes on a 

creatine-driven substrate cycle for energy expenditure and thermogenesis (85).  

 

1.3. Mitochondria-nucleus communication in BAT  

The endosymbiotic theory suggests that eukaryotic mitochondria are derived from 

prokaryotes engulfed in others about 1.5 billion years ago. Since then, mitochondria have 
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evolved to serve as energy-producing organelle with components encoded in their own 

DNA and nuclear DNA (86, 87). Many metabolic intermediates that are formed from 

biochemical reactions such as the tricarboxylic acid (TCA) cycle inside mitochondria 

also play fundamental roles in building essential biological molecules (88). From a 

signaling perspective, mitochondria are important units participating in several cellular 

responses. Notably, mitochondrial apoptosis pathway is initiated by release of 

cytochrome c and other pro-apoptotic molecules from the organelle in the presence of its 

respective stress (89). Additionally, mitochondrial dysfunction can evoke adaptive 

cellular responses, many of which are mediated by transcriptional responses in nucleus, 

suggesting communication between mitochondria and nucleus (90, 91). In the following 

sections, the mitochondria-nucleus communication will be discussed with particular 

emphasis on its potential link to thermogenic gene expression in brown fat. 

 

1.3.1. Mitochondrial retrograde signaling 

The mitochondria-nucleus crosstalk is a pathway of interorganelle communication, 

which is generally termed as mitochondrial retrograde signaling. As suggested by the 

term, information flows from mitochondria to the nucleus, which is contrary to the 

typical anterograde regulation involving transmission of signals from nucleus to 

mitochondria. This retrograde signaling represents diverse adaptive cellular responses 

elicited by various mitochondrial stresses (Figure 1.3). Initially, the retrograde signaling 

was described in the mitochondrial DNA-depleted strain of Saccharomyces cerevisiae (° 

petites). The most prominent in these respiration-defective ° cells is metabolic  
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Figure 1.3. Diverse mitochondrial insults and their outcomes. (Adapted and modified 

from Yun and Finkel, Cell Metab. 2014;19(5):757-66) 

 

remodeling to ensure proper supply of glutamate (92). This is important because the TCA 

cycle cannot operate as a full cycle in a respiration-deficient state and this eventually 

results in depletion of -ketoglutarate, a precursor of glutamate. To overcome the 

metabolically detrimental state, respiration-deficient cells engages peroxisomal 

biogenesis that leads to increases in fatty acid oxidation and glyoxylate cycle activity, 

which can supply TCA cycle intermediates acetyl-CoA and citrate, respectively (92). 

This metabolic reprogramming was also accompanied by supportive transcriptional 

changes; genes encoding transporters for transfer of key metabolites into mitochondria, 

genes encoding TCA cycle enzymes responsible for production of -ketoglutarate and 

genes encoding peroxisomal proteins were up-regulated (92, 93). To withstand an ATP 
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crisis, glycolytic genes are also up-regulated (94). Similarly, in mammalian cells, 

disruption of oxidative phosphorylation activates PGC-1-driven mitochondrial 

biogenesis to resolve a crisis in cellular energetics (95).  

In addition to mitochondrial respiratory defects, a distinct form of mitochondrial 

stress can induce a corresponding adaptive response. When misfolded proteins are 

accumulated in mitochondria, an ER stress response-like pathway is activated, which is 

also known as the mitochondrial unfolded protein response (UPR
mt

) (96-99). This 

pathway promotes the expression of a set of mitochondrial chaperones and proteases to 

reestablish protein quality control. Well characterized in Caenorhabditis elegans, 

activating transcription factor associated with stress-1 (ATFS-1) plays a crucial role in 

upregulating the respective genes (98, 99). Although paradoxical, this mitochondrial 

stress response appears to yield a beneficial effect. Several lines of evidence suggest that 

activation of the UPR
mt

 is required for an increased lifespan in certain experimental 

conditions in worms (100, 101). In contrast, the mitochondria-driven signal is also known 

to play a critical role in various pathological conditions including cancer, 

neurodegeneration and cardiovascular diseases (102-104), reinforcing the idea that 

mitochondrial retrograde signaling elicits context-dependent and tissue-specific responses.  

 

1.3.2. Genetic manipulation of respiratory capacity and its effect on thermogenic 

gene expression  

Intuitively, it makes sense that in brown fat, a highly specialized tissue for 

thermogenesis, such mitochondria-nucleus communication may be crucial in matching 
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functional and metabolic capacity to genetic programs that influence them. Since 

respiratory capacity is directly correlated with the number of mitochondria, manipulating 

factors controlling mitochondrial biogenesis may be feasible to explore the role of 

mitochondria in the regulation of brown fat-specific thermogenic genes. As summarized 

in Table 1.1, however, deletion of well-characterized drivers of mitochondrial biogenesis 

did not necessarily abrogate the mitochondrial mass in brown fat, implying the existence 

of redundant pathways and/or complementary roles of each regulator (105-111). 

Furthermore, in some models, targeting the same factor did not produce similar effects on 

thermogenic genes, making it challenging to delineate a direct relationship between 

respiratory capacity and the thermogenic gene program per se.  
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The sections below review approaches to directly manipulate mitochondrial 

respiratory capacity and the attendant effects on the thermogenic genes which are 

summarized in Table 1.2. 

 

1.3.2.1. COX7RP (cytochrome c oxidase subunit VIIa polypeptide 2 like)  

Recent work using COX7RP knockout mice provides direct evidence for the role 

of respiratory capacity in the brown fat gene program (112). In this study, COX7RP was 

identified as a novel assembly factor for respiratory chain supercomplexes in 

mitochondria. ETC complexes are known to form supercomplexes, consisting mainly of 

complex I, III and IV (so-called respirasome), which enhances respiratory activity (113). 

With reduced oxygen consumption at a whole-body level, COX7RP KO mice revealed 

hypertrophic and pale brown fat, generally indicative of defective brown fat. More 

importantly, Ucp1 was severely reduced in this dysmorphic brown fat. Microarray 

analysis also showed a downregulation of several brown fat-enriched genes including 

Dio2 and Elovl3. Expression of PGC-1 coactivators was decreased but their downstream 

targets such as Erra, Nrf1, and Tfam were unaltered, implying no significant impact on 

the PGC-1 coactivator network.  All together, this study strongly suggests that respiratory 

capacity dictates a retrograde signaling from mitochondria to the nucleus regulating the 

thermogenic gene program. 

 

1.3.2.2. TFAM (transcription factor A, mitochondrial)
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One approach to genetically manipulate respiratory capacity is to target 

components of the basal transcriptional machinery of mitochondrial DNA (mtDNA). 

Among them is TFAM, a key player in mtDNA transcription and maintenance (114). 

Fabp4-Cre-driven loss of TFAM led to diminished respiratory activity and a drop in 

mtDNA copy number in brown and white fat (115). Paradoxically, in those mice, brown 

fat showed enhanced respiratory capacity as evidenced by increased oxygen consumption, 

fatty acid oxidation, and citrate synthase activity. Although reduced in weight, this brown 

fat had normal expression of brown fat genes. Similarly, brown fat markers were intact in 

brown fat with Adipoq-Cre-driven loss of TFAM, which was accompanied by increased 

citrate synthase activity (116). Therefore, it is likely that the unaltered brown fat gene 

program in TFAM deficient fat is ascribed to a compensatory increase in respiratory 

capacity. Although not decisive, observations from adipose-specific TFAM knockout 

mice imply that whole-cell respiratory capacity is monitored by an innate sensor to 

dictate the thermogenic gene program.    

 

1.3.2.3. CRIF1 (CR6-interacting factor 1) 

CRIF1 is a mitochondrial protein that controls the translation and insertion of 

mitochondrially encoded respiratory subunits into the inner membrane (117). The 

activities of Complexes I, III and IV are abrogated by CRIF1 deficiency in mouse 

embryonic fibroblasts (117).  The severity of impaired respiratory capacity by ablation of 

CRIF1 is evident in brain-specific and cardiac muscle-specific knockout mice in which 

severe neurodegeneration and premature death develop, respectively (117, 118). Adipose-
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specific CRIF1 knockout mice (driven by Fabp4-Cre) show a developmental defect in 

white fat, reduced body weight and post-natal death at week 3 (119). Brown fat in these 

mice is smaller in size, however, histology is unremarkable and UCP1 expression is 

normal. Because mice die by 3 weeks of age, it was not possible to assess the chronic 

effect of respiratory defects in brown fat. Although mice with Adipoq-Cre-driven 

deletion of CRIF1 were viable, data regarding the brown fat genes were not shown (119). 

Even so, these data could suggest that impaired mitochondrial function does not influence 

brown adipocyte development. Future studies will be necessary to address if 

mitochondrial function is critical for the maintenance of the brown fat program. Finally, 

similar to TFAM, the method by which cellular respiration is disrupted may have 

differential effects on mitochondrial signaling and subsequent transcriptional events in 

the nucleus. 

 

1.3.2.4. LSD1 (Lysine-specific demethylase 1) 

LSD1 demethylates mono- and di-methylated lysines (particularly lysine 4 and 9 

of histone H3) via the cofactor flavin adenosine dinucleotide (FAD) (120). Ubiquitously 

expressed, LSD1 is essential for embryogenesis and tissue-specific differentiation (121). 

In the study by Duteil et al, LSD1 was newly identified as a cold-, and 3-adrenergic 

signaling-inducible protein in mouse white fat (122). Ectopic expression of LSD1 further 

revealed that it was sufficient to induce respiratory capacity through nuclear respiratory 

factor 1(NRF1) in white adipose cell lines. In addition, there was an activation of the 

brown fat gene program including Prdm16, Ppargc1a, and Ucp1 in LSD1-overexpressing 
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white adipocytes. LSD1 transgenic mice confirmed these in vitro findings. Interestingly, 

this browning effect was more robust in subcutaneous white fat where beige adipocytes 

reside. However, in brown fat of LSD1 transgenic mice, respiratory activity was 

modestly increased and there were no significant changes in the brown fat markers. These 

data suggest that augmented respiratory capacity may promote browning by stimulating 

beige adipocytes. 

 

1.3.2.5. LRPPRC (Leucine-rich pentatricopeptide repeat containing motif; also 

called LRP130: leucine-rich protein 130kD) 

A potential role of mitochondrial respiratory capacity in the brown fat gene 

program was reported in a study using LRPPRC-deficient brown adipocytes (123). 

LRPPRC was originally identified as a causal protein in a rare neurological and 

metabolic disorder called Leigh Syndrome French Canadian variant (124). Initial studies 

using human fibroblasts identified defects in cytochrome c oxidase deficiency; however, 

later studies using mouse models revealed that LRPPRC affected the expression of all 

mitochondrially encoded subunits of the ETC (13 subunits) (Figure 1.4), which has 

differential effects on respiratory complex activity related to cell type (125-128). 

Especially, our lab has demonstrated that LRPPRC is a strong coactivator for basal 

mitochondrial transcription machinery consisting of POLRMT and TFB2M (126, 129). 

LRPPRC directly regulates respiratory capacity by controlling the availability of 

mitochondrial-encoded ETC subunits, which further affects oxidative metabolism such as 

fatty acid oxidation (126). Since manipulating LRPPRC has no significant impact on  
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Figure 1.4. Mitochondrial-encoded respiratory subunits. The subunits encoded in 

mitochondrial genome are shown below each respiratory complex. 

 

mitochondrial biogenesis (126), specific alteration of mitochondrial respiratory capacity 

in the desired tissue could be achieved by targeting LRPPRC in a tissue-specific manner, 

which makes it a useful tool to study the effects of mitochondrial respiration on diverse 

cellular processes. 

Brown adipocytes with shRNA-driven depletion of LRPPRC were notable for 

impaired oxygen consumption but intact mitochondrial density and PGC-1 coactivators, 

indicating a specific impairment of respiratory capacity without altering mitochondrial 

biogenesis (123). LRPPRC-deficient brown adipocytes had a marked reduction in brown 

fat-selective genes, including Ucp1 and Cidea, suggesting a link between respiratory 

capacity and a basal expression of certain brown fat genes (123).  

While LRRPRC is weakly expressed in the nucleus, recent data show that the 

majority of LRPPRC is localized to mitochondria and regulates mtDNA-encoded 
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transcripts across various species, suggesting that a nuclear role of LRPPRC in the 

regulation of brown fat genes may be modest and that the predominant effect is mediated 

by impaired cellular respiration (126, 130-132). In addition, cAMP-mediated induction of 

Ucp1 was unaffected in LRPPRC-deficient brown adipocytes (123). Given that PGC-1 

is responsible for this cAMP effect, it is less likely that LRPPRC is an essential part of 

PGC-1 coactivator complexes necessary for Ucp1 expression. Furthermore, in human 

fibroblasts, deficiency of LRPPRC did not affect expression of PGC-1 target genes 

(133), implying that signals are generated by impaired cellular respiration rather than 

reduced nuclear expression of LRPPRC. 

 

1.4. Thesis overview   

The goal of my thesis research is to understand the role of mitochondrial 

respiratory capacity in the regulation of thermogenic gene expression in brown fat. Based 

on the previous studies by our lab and others, I have formulated the central hypothesis 

that the status of mitochondrial respiratory capacity dictates the thermogenic gene 

program, which in turn critically determines the metabolic commitment of the tissue 

(Figure 1.5). To test this hypothesis, I investigated two specific aims using LRPPRC as a 

model system. 

 

1.4.1. Specific Aim 1: Characterize the effect of impaired respiratory capacity on the 

thermogenic gene program and determine how the mitochondria signal dictates 

thermogenic gene expression 
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Figure 1.5. The central hypothesis.  Thermogenesis relies on mitochondrial respiration; 

thus brown fat with normal respiratory capacity are ready for thermogenesis and 

thermogenic genes are normally expressed, both of which support thermogenic function 

of brown fat. On the other hand, impaired respiratory capacity, which is an unfavorable 

condition for thermogenesis, activates a retrograde signaling pathway to attenuate 

thermogenic gene expression. Reduced mitochondrial respiration and reduced 

thermogenic gene expression eventually directs brown fat to an energy-storing mode. In 

other words, brown fat coordinates its respiratory capacity with thermogenic gene 

expression. This contributes to determining which metabolic state brown fat adopts. 
 

Recent studies suggest that the actions of mitochondria extend beyond their 

conventional role as generators of heat. There is mounting evidence that impaired 

mitochondrial respiratory capacity is accompanied by attenuated expression of Ucp1. 

This implies a mitochondrial retrograde signaling that negatively influences the 

thermogenic gene program, culminating in a storage phenotype. In this aim, I used 
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genetic (LRPPRC fat-specific knockout) and pharmacological (respiratory inhibitor) 

approaches to model impaired respiratory capacity in mouse brown fat and cultured 

brown adipocytes, respectively. I observed the attenuation of a group of thermogenic and 

oxidative genes. I also identified PPARas the key transcription factor that are 

influenced by the respiratory defect and calcium as the signal that mitochondrial 

respiration uses to control nuclear transcription.   

 

1.4.2. Specific Aim 2: Evaluate if augmented respiratory capacity induces the 

thermogenic gene program in adipose tissue and protects against obesity 

This aim tested a therapeutic aspect of manipulating adipose respiratory capacity 

in the setting of diet-induced obesity. I generated LRPPRC fat-specific transgenic mice 

and observed an induction of the thermogenic genes in inguinal (subcutaneous) white fat. 

In addition, I discovered that such induction was beneficial for fighting obesity and 

diabetes largely through increased whole-body energy expenditure. 
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CHAPTER II 

MITOCHONDRIAL RETROGRADE SIGNALING CONNECTS 

RESPIRATORY CAPACITY TO THERMOGENIC GENE 

EXPRESSION 

 

Summary 

Mitochondrial respiration plays a crucial role in determining the metabolic state 

of brown adipose tissue (BAT), due to its direct roles in thermogenesis, as well as 

through additional mechanisms. Here, we show that respiration-dependent retrograde 

signaling from mitochondria to nucleus contributes to genetic and metabolic 

reprogramming of BAT. In mouse BAT, ablation of LRPPRC (LRP130), a potent 

regulator of mitochondrial transcription and respiratory capacity, triggers down-

regulation of thermogenic genes, promoting a storage phenotype in BAT. This retrograde 

regulation functions by inhibiting the recruitment of PPAR to the regulatory elements of 

thermogenic genes. Chelating cytosolic Ca
2+

 reverses the attenuation of thermogenic 

genes in brown adipocytes with impaired respiratory capacity, while induction of 

cytosolic Ca
2+

 phenocopies the attenuation program, indicating that cytosolic Ca
2+ 

mediates mitochondria-nucleus crosstalk. Our findings suggest that respiratory capacity 

governs thermogenic gene expression and BAT function via mitochondria-nucleus 

communication, which in turn leads to either a thermogenic or storage mode.  

Conversely, augmented respiratory capacity induces thermogenic gene expression 
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in subcutaneous white adipose tissue. Consequently, mice are protected against diet-

induced obesity through increased energy expenditure. These data suggest that 

augmenting respiratory capacity in adipose tissue provides new avenue for fighting 

obesity and diabetes. 
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Introduction 

Brown adipose tissue (BAT) generates heat to combat cold stress (11). When 

activated by cold or -agonists, BAT oxidizes glucose and lipids (in the form of fatty 

acids) to fuel uncoupling protein 1 (UCP1)-mediated uncoupled respiration, which drives 

non-shivering thermogenesis (79). Due to this unique energy-burning property, BAT has 

the potential to mitigate obesity (134, 135). Since functional BAT exists in adult human 

subjects (11) and likewise has the potential to mitigate obesity, there is great interest in 

understanding the molecular and cellular pathways that dictate its development, 

recruitment and maintenance.  

Thermogenesis from BAT relies on abundant mitochondria in the tissue (79). This 

makes BAT capable of higher levels of respiration than any other tissues (136). It is thus 

readily anticipated that the metabolic state of BAT is influenced by mitochondrial 

respiration. Any circumstance where respiratory activity is low leads to reduced substrate 

oxidation, and will drive lipid accumulation in brown adipocytes like white adipocytes 

specialized for storing excess energy as lipids. On the other hand, high respiratory 

activity entails elevated substrate oxidation, thereby resulting in an energy-burning state 

in which stored lipids as well as uptaken glucose and lipids are oxidized. These two 

metabolic fates of BAT are also supported by two distinct gene programs. Lipogenic 

genes are enriched in both white and brown adipocytes, controlling fatty acid synthesis 

and esterification of glycerol with fatty acids. Thermogenic genes are uniquely expressed 

in BAT and oxidative genes are also highly present to enable high rates of fuel oxidation 

and respiration required for thermogenesis.  
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Previous studies have suggested that BAT senses its respiratory capacity and 

coordinates the expression of thermogenic genes to determine which metabolic states 

BAT adopts. Mice deficient for COX7RP, a factor that ensures proper function of 

mitochondrial respiratory complexes, exhibit increased lipid deposition in BAT (112). 

Interestingly, expression of several thermogenic genes including Ucp1, Dio2 and Elovl3 

is concurrently decreased. This suggests that mitochondria with impaired respiratory 

capacity communicate with the nucleus to attenuate expression of certain thermogenic 

genes. A similar mitochondria-nucleus communication has been described in brown 

adipocytes deficient for LRPPRC (123). Lrpprc is the causative gene of the French-

Canadian type of Leigh Syndrome, a rare metabolic and neurological disorder (124). 

LRPPRC is a mitochondrial protein and has been shown to regulate mitochondrial-

encoded electron transport chain (ETC) subunits and thus respiratory capacity by our 

laboratory and others (126, 132, 133, 137). LRPPRC knockdown causes a reduction in 

mitochondrial respiratory capacity and decreased expression of thermogenic genes 

including Ucp1 and Cidea (123). However, gene expression profiling in BAT with 

impaired respiratory capacity is incomplete and the molecular mechanism by which 

mitochondria exert transcriptional control over those nuclear genes remains to be 

addressed.  

In the present study, we explored the role of respiratory capacity in thermogenic 

gene expression by manipulating LRPPRC in an adipose-specific manner and by treating 

brown adipocytes with an inhibitor of mitochondrial respiration. We find that impaired 

respiratory capacity triggers a retrograde signaling pathway that represses thermogenic 
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and oxidative genes, favoring decreased fuel oxidation and energy storage. Furthermore, 

we provide evidence that this information is transmitted via Ca
2+

-mediated mitochondrial 

retrograde signaling, which ultimately controls whether BAT participates in 

thermogenesis or energy storage. Additionally, we tested whether augmenting respiratory 

capacity by force expressing LRPPRC promotes thermogenic gene expression in adipose 

tissue. We show that augmented respiratory capacity activates the thermogenic gene 

program in inguinal (subcutaneous) white adipose tissue (IWAT), which protects mice 

from diet-induced obesity through increased energy expenditure. 
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Materials and Methods 

Animals 

Lrpprc
flox/flox

 mice were generated as previously described (129). To ablate Lrpprc 

in a fat-specific manner, Lrpprc
flox/flox

 mice were crossed to Adipoq-Cre mice. The 

resultant Lrpprc
flox/+

;Adipoq-cre/0 mice were then crossed to Lrp130
flox/flox

 mice to 

produce Lrpprc
flox/flox

;Adipoq-cre/0 mice (termed LRPPRC FKO). Our final breeding 

strategy was to cross Lrpprc
flox/flox

 mice to LRPPRC FKO mice, resulting in 

Lrpprc
flox/flox

:LRPPRC FKO=1:1. Because there was no metabolic or genetic differences 

between WT, flox/flox mice or Adipoq-Cre/0 mice, comparisons between control 

(flox/flox) and Lrpprc
flox/flox

;Adipoq-cre/0 mice were use for this study. Lrpprc
flox/flox

 mice 

and Adipoq-Cre mice are on a C57BL6/J background. 

Mice with ectopic transgenic expression of LRPPRC were generated by 

constructing an inducible floxed LRPPRC cassette. Mouse Lrpprc with Myc and His 

fused at its C-terminus was inserted into the Cre-activable pCAG-CAT-EGFP construct 

(a gift from Dr. Junichi Miyazaki at Osaka University) in place of EGFP cDNA. 

Microinjection into C57BL/6J eggs was performed by UMMS Transgenic animal core 

facility using the linearized construct. Transgenic founders were identified by a 

quantitative PCR and bred to produce offsprings. Mice hemizygous for the transgene 

(Lrpprc
Tg/0

) were crossed to Adipoq-Cre mice to yield WT: Lrpprc
Tg/0

:Adipoq-cre/0: 

Lrpprc
Tg/0

;Adipoq-cre/0 (termed LRPPRC FTg)= 1:1:1:1. For high-fat diet feeding, mice 

were fed a 55% kcal from fat diet (Harlan Teklad TD-93075) for 16 weeks before 

metabolic phenotyping. Mice were maintained in 12-hour light/12-hour dark cycle. In all 
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experiments, LRPPRC FKO and FTg mice had appropriate littermate control mice with 

the same age. All animal experiments were performed in accordance with protocols 

approved by UMMS IACUC (Docket number 2085).  

 

Cold exposure 

Mice were acclimatized at 30 °C for 4 weeks. The mice were then housed 

individually and acutely exposed to cold (4 °C). Rectal temperature was measured hourly 

using a digital thermometer (MicroTherma 2T, Thermoworks) and a rectal probe (RET-3, 

Physitemp) for up to 8 hours. The end point was a 10 °C drop in core temperature 

(approximately 27 °C) and mice were immediately euthanized.  

 

Histology  

For hematoxylin and eosin (H&E) staining, brown adipose tissue was collected, 

washed in ice-cold PBS and fixed in 4% paraformaldehyde with gentle shaking at 4°C 

overnight. Subsequent procedures were performed by UMMS morphology core facility. 

 

Transmission electron microscopy (TEM) 

BAT was dissected and chopped finely in PBS, followed by overnight fixation in 0.1M 

cacodylate buffer (pH 7.2) containing 2.5 M glutaraldehyde. Sample preparation and 

image acquisition were performed by UMMS core electron microscopy facility using FEI 

Tecnai Spirit 12 TEM. 

 



33 
 

Metabolic phenotyping 

Composition of fat and lean mass was measured using 1H-MRS (Echo Medical 

System) and analysis of food/water intake, physical activity and energy expenditure was 

performed by the UMMS Mouse Metabolic Phenotyping Core using metabolic cages 

(TSE Systems). 

 

Glucose and Insulin Tolerance Testing (GTT/ITT) 

Glucose and insulin tolerance testing was performed at 14 weeks of HFD feeding 

as previously described (138). 

 

Reverse transcription-quantitative PCR (RT-qPCR) 

Total RNA was isolated from cell culture using Trizol according to the 

manufacturer instructions (Invitrogen). For mouse adipose tissue, the aqueous phase 

prepared from Trizol extraction was subject to acidic phenol extraction (pH 4.4) to 

remove residual lipid, followed by purification using RNeasy (Qiagen) or GeneJET RNA 

columns (Thermo Scientific). cDNA was synthesized from 0.5-1 μg RNA, using 

MultiScribe reverse transcriptase (Applied Biosystems). Quantitative PCR was 

performed using Fast SYBR Green Master Mix (Applied Biosystems) on a 7500 FAST 

Real-Time PCR system (Applied Biosystems). For a normalization purpose, several 

widely used internal control genes were tested in all experimental groups and the most 

stable one was selected. Relative gene expression was calculated by the comparative CT 
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method. Coefficient of variation for the reference genes was less than 1% across samples. 

Primers are listed in Table. 2.1. 

 

Quantification of mitochondrial DNA (mtDNA) content  

Approximately 5-10 mg of frozen brown fat were lysed in 300 μL tissue lysis 

buffer (50 mM Tris-Cl pH 7.5, 50 mM EDTA pH 8.0, 100 mM NaCl, 1% Triton X-100, 

5 mM DTT and 100 mg/ml proteinase K) at 56 °C for 6 hours. DNA isolation and 

quantitative PCR were performed as previously described (129). 

 

Immunoblotting  

Approximately 10 mg of frozen brown fat or 50 mg of frozen inguinal white fat 

were placed in ice-cold RIPA buffer supplemented with protease inhibitor cocktail 

(Sigma), phosphatase inhibitor cocktail (Sigma) and sodium -glycerophosphate. The 

tissue was then homogenized using a bead mill homogenizer (Qiagen TissueLyzer). The 

lysates were vortexed vigorously for 5 seconds, incubated on ice for 10 minutes and 

cleared by centrifuging at 13200 rpm for 15 minutes at 4 °C. Preparation of lysates from 

cell culture was performed as above without using TissueLyser. Protein concentration 

was determined using a BCA kit (Pierce). Indicated amounts of proteins were separated 

on a polyacrylamide gel and blotted onto a PVDF membrane. The membrane was 

blocked in 5% non-fat milk in TBS-tween, followed by incubation with primary 

antibodies directed against proteins of interest and HRP-conjugated secondary antibodies. 

The protein signals were visualized with Amersham ECL kit (GE Healthcare) or 
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WestPico ECL kit (Thermo Scientific) and digitally recorded using Amersham Imager 

600 (GE Healthcare). The antibodies used are as follows: LRPPRC (produced in-house 

using mice); UCP1 (U6382, Sigma); PPAR (sc-7273, Santa Cruz); COXI (ab14705, 

Abcam); COXVa (ab110262, Abcam); NDUFS3 (ab110246, Abcam); Citrate Synthase 

(GTX110624, GeneTex); VDAC (4866, Cell Signaling); ATP2A2 (sc-8095, Santa Cruz); 

ATP2A3 (sc-81759, Santa Cruz); GAPDH (sc-25778, Santa Cruz). 

 

Lactate measurement  

Lactate levels were measured in homogenates prepared from approximately 5-10 

mg of BAT using Lactate Assay kit II (Biovision). For AA-treated cells, lactate secretion 

was measured in culture medium using the same kit.  

 

Complex activity and citrate synthase activity  

Complex activity and citrate synthase activity were measured in BAT 

homogenates as previously described (129, 139).  

 

Chromatin immunoprecipitation (ChIP)  

Interscapular brown fat was collected, washed with ice-cold PBS and finely 

minced.  Minced tissue was cross-linked in 10 volume of PBS containing 1% 

paraformaldehyde for 10 minutes at room temperature on a rotator. Cross-linking was 

quenched by adding a final concentration of 125 mM glycine. The samples were then 

dounced on ice 10 times, washed twice with ice-cold PBS. Disaggregated tissue was 
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placed in 1ml of RSB buffer (3 mM MgCl2, 10 mM NaCl, 10 mM Tris-Cl pH 7.4, 0.1% 

NP-40 and protease inhibitor cocktail [Sigma]), dounced on ice 30 times, incubated on 

ice 5 minutes and filtered through 100 M cell strainer.  The homogenate was centrifuged 

and the pellet was resuspended in nuclei lysis buffer (1% SDS, 10mM EDTA, 50 mM 

Tris-Cl pH 8.1 and protease inhibitor cocktail). The chromatin was subject to three 

sonication cycles (a cycle of 10 minutes with a duty of 30 seconds on / 30 seconds off) 

using Diagenode Bioruptor. The samples were cleared by centrifugation, diluted in ChIP 

dilution buffer (1 % Triton-X100, 2 mM EDTA, 150 mM NaCl, 20mM Tric-Cl pH 8.0 

and protease inhibitor cocktail) and incubated overnight at 4 °C with 2 g of anti-PPAR 

antibody (sc-7196, Santa Cruz). Immunocomplexes were recovered with protein A/G 

beads (Pierce) and eluted DNA was further purified using the QIAquick gel extraction kit 

(Qiagen). Quantitative real-time PCR was performed using specific primers for the 

indicated gene promoters. The primers are designed based on the previously identified 

PPREs (Ucp1 (140); Cpt1b (141); Pank1 and Pdk4 (142); Fabp4 (143); Lpl (144); Cd36 

(145); Plin1 (146)) and listed in Table. 2.2. 

 

Cell culture  

Primary stromal vascular fraction containing preadipocytes was isolated from 

interscapular depot of P0-P2 newborn swiss webster mice (Taconic Biosciences) as 

previously described (123). Primary brown adipocytes were grown to >90% confluence 

in DMEM (Corning) containing 20% FBS, 20 mM HEPES and 1 mM sodium pyruvate.  

Immortalized brown preadipocytes were grown in the same condition except 10% FBS. 
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For adipocyte differentiation, confluent cells were exposed to DMEM containing  0.5 M 

dexamethasone, 125 M indomethacin, 0.5 mM isobutylmethylxanthine, 20 nM insulin, 

1 nM T3 and 10% FBS for 2 days, after which medium was switched to DMEM 

containing 20 nM insulin, 1 nM T3 and 10% FBS, and replenished every 2 days. On day 

6 post differentiation, cells were treated as indicated. At least three independent 

experiments were performed. 

 

Lentiviral transduction 

ATP2A2 shRNA oligomers were annealed and cloned into pLKO.1-hygro 

lentiviral vector as described in the protocol available from Addgene. 21 bp sense 

sequences for shATP2A2 are as follows: shATP2A2 #1: 5’-

GGCGAGAGTTTGATGAATTAA-3’; shATP2A2 #2: 5’-TGACTCTGCTTTGGATTATAA-3’; 

shScr (negative control, Addgene #1864). To produce lentiviruses, HEK-293T cells were 

transfected with the pLKO.1-hygro construct, psPAX2 and pMD2.G using lipofectamine 

2000 (Invitrogen) according to the manufacturer instructions. Medium was replaced after 

16-20 hours of incubation with the DNA:lipofectamine mixture. At 48 hours post 

transfection, medium was harvested and passed through 0.45 m filter (Thermo 

Scientific). The medium was diluted 2-fold in fresh medium and added to subconfluent 

immortalized brown preadipocytes plated in 12-well plate with 4 g/ml polybrene. After 

overnight incubation, cells were replenished with fresh medium and incubated for 

additional 24-30 hours. Cells were then trypsinized and seeded in 100 mm dish in the 
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presence of 400 g/ml hygromycin, after which medium was replaced every 48 hours. At 

day 5-6 post selection, hygromycin was removed and cells were used for differentiation.     

 

Calcium measurement 

Preadipocytes were plated and differentiated in a 96-well clear bottom black plate 

(Costar). Fully differentiated cells (day 6) were washed with 150 ul HBSS (Gibco 14175-

095) supplemented with 1.8 mM CaCl2, 0.8 mM MgSO4, 1 nM T3 and 20 nM insulin. 

Cells were then loaded with 4 M Fluo 4-AM (Invitrogen) in 100 ul HBSS for 1 hour at 

37 °C (30 °C for ATP2A2-deficient cells), followed by two washes with 150 ul HBSS. 

Fluorescence was measured at 485/520 nm in 100 ul HBSS using a microplate reader 

(POLARstar Omega, BMG LABTECH). Three independent experiments were performed 

and each experiment included biological duplicates. 

 

Statistics  

Statistical analyses were performed using GraphPad Prism 6 (ver. 6.07). The 

statistical tests used were specified in the figure legends. Statistical significance was 

defined as P <0.05. The cutoff for a not-significant (ns) P-value to show the exact 

number is 0.07. 
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Results 

LRPPRC fat-specific knockout (FKO) mice exhibit impaired respiratory capacity in 

BAT 

To examine whether respiratory capacity controls BAT gene expression in vivo, 

we generated fat-specific LRPPRC knockout mice (hereafter, FKO mice) by crossing 

LRPPRC floxed mice with Adiponectin-Cre mice. mRNA and protein levels of LRPPRC 

was reduced by >90% in BAT from FKO mice (Figure 2.1A and C). Compared to WT 

mice (LRPPRC fl/fl), expression of mitochondrial-encoded ETC genes were globally 

reduced and COXI protein levels were also decreased (Figure 2.1B and C). Interestingly, 

several nuclear-encoded subunits were also reduced at both mRNA and protein level 

(Figure 2.1C and D). Abrogated expression of the ETC subunits resulted in impaired 

activities of respiratory complexes (Figure 2.1E). Electron microscopy and image 

analysis revealed that WT mitochondria exhibited tightly packed lamellar cristae whereas 

FKO mitochondria displayed dysmorphic cristae architecture alongside reduced number 

of cristae (Figure 2.1F and G). This is in agreement with the previous observation that 

heart-specific loss of LRPPRC leads to disorganized cristae (128). Deficits in respiratory 

capacity were unlikely due to large changes in mitochondrial biogenesis, since markers of 

mitochondrial mass (VDAC, citrate synthase and mtDNA) were unchanged (Figure 2.1C, 

E and H). Furthermore, lactate levels were increased 1.8-fold in FKO mice (Figure 2.1I), 

consistent with previous studies demonstrating that pharmacological inhibition of the 

ETC causes increased lactate production due to increased glycolysis (147). 
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Figure 2.1. Respiratory capacity is impaired in BAT from LRPPRC fat-specific 

knockout (FKO) mice. (A-B) mRNA levels of Lrpprc (A) and mitochondrial-encoded 

ETC genes (B) in BAT from WT mice (fl/fl) and FKO mice. (C) Immunoblot of 

LRPPRC, COXI, NDUFS3, COXVa, VDAC, citrate synthase (CS) and GAPDH (loading 

control) in BAT. (D) mRNA levels of nuclear-encoded ETC genes in BAT. (E) Complex 

activity in BAT. (F) Transmission electron microscopy (TEM) images of mitochondria in 

BAT (16,500X). (G) Number of cristae per m
2
 of mitochondrion. 6-10 fields per mouse 

were analyzed (n=3; total 174 mitochondria for fl/fl and 120 for FKO). (H) mitochondrial 

DNA (mtDNA) content in BAT. (I) Lactate levels in BAT. (A-E, H): 11-12 week-old 

male, n=3-5. (F,G): 14 week-old male, n=3. Data are mean ± SEM. *P < 0.05, **P < 

0.01, ***P < 0.001, one-tailed (I) and two-tailed unpaired Student’s t-test (A-B, D-E, G-

H). 
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Impaired respiratory capacity attenuates thermogenic gene expression 

Having established a model of deficient respiratory capacity in BAT, we assessed 

BAT function and gene expression. On gross examination, BAT from FKO mice housed 

at room temperature (22 °C at our facility) was pale and enlarged (Figure 2.2A, upper 

panel). Increased lipid deposition with unilocular droplets was apparent in histological 

sections, an appearance associated with reduced respiratory activity (Figure 2.2A, lower 

panel). Although Ucp1 mRNA levels were decreased, we observed that UCP1 protein 

was stabilized in FKO mice housed at room temperature (Figure 2.2B and C). 22 °C is a 

mild cold stressor to mice and such stabilization of UCP1 protein in cooler environments 

has been reported (148). Upon acute cold exposure, these mice were not cold sensitive in 

spite of impaired respiratory capacity (Figure 2.2D). Although not formally assessed, 

augmented shivering thermogenesis due to housing under mild cold stress may 

compensate for UCP1-mediated non-shivering thermogenesis, enabling effective defense 

against cold. Cold also stimulates -adrenergic signaling (134). Since -adrenergic 

signaling is a key regulator of both thermogenic and respiratory programs (149, 150), we 

sought to determine whether impaired respiratory capacity per se affects BAT function 

and gene expression under circumstances devoid of -adrenergic stimulation. To do so, 

mice were acclimated at thermoneutrality (30 °C) for 4 weeks, a timeframe that is 

sufficient to offset the impacts of thermal stress. Even at thermoneutrality, FKO mice 

maintained larger lipid droplets in BAT (Figure 2.3A). Like FKO mice housed at room 

temperature, thermoneutral-acclimated FKO mice displayed robust depletion of LRPPRC 

and severe reduction in levels of COXI and nuclear-encoded respiratory subunits 
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Figure 2.2. Impaired respiratory capacity attenuates thermogenic and oxidative 

gene expression in BAT from LRPPRC FKO mice living at 22 °C. (A) Representative 

images (upper) and H&E staining (lower) of BAT. (B) mRNA levels of thermogenic 

genes in BAT. (C) Immunoblot of PPAR, UCP1 and GAPDH (loading control) in BAT. 

(D) Core temperature of control and LRPPRC FKO mice during acute cold exposure at 

4 °C. (E-G) mRNA levels of FAO genes (E), adipogenic/lipogenic gene (F), and 

mitochondrial biogenesis genes (G) in BAT. (A-D): 9 week-old male mice, n=3-5. Data 

are mean ± SEM. *P<0.05, **P<0.01, ***P<0.001, two-tailed unpaired Student’s t-test 

(B,E-G). 
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while VDAC was unchanged and CS was slightly reduced (Figure 2.3B). In these mice, 

expression of thermogenic genes was severely decreased (Figure 2.3C). Notably, both 

Ucp1 mRNA and protein levels were severely reduced (Figure 2.3C and D), and mice 

were exquisitely sensitive to cold stress (Figure 2.3E).  

We next assessed expression of genes that regulate fatty acid oxidation (FAO), 

adipogenesis, lipogenesis and mitochondrial biogenesis. Interestingly, FAO genes were 

globally reduced (Figure 2.3F). Alongside decreased nuclear-encoded ETC genes, down-

regulation of the FAO genes may favor transitioning of BAT into an energy-storing mode. 

In contrast, Pparg, a master regulator of adipogenesis, and its target lipogenic genes were 

unaltered or upregulated (Figure 2.3G). Ppargc1b and Erra (Esrra) mRNA levels were 

reduced but not Ppargc1a mRNA (Figure 2.3H). Although these genes are involved in 

mitochondrial biogenesis, as stated earlier, markers of mitochondrial mass were 

unchanged, suggesting alterations in various gene programs were not simply the result of 

reduced mitochondrial biogenesis. Mice housed at room temperature showed almost 

identical expression patterns of the aforementioned genes (Figure 2.2B and E-G), 

suggesting that mitochondrial retrograde signaling acts independent of -adrenergic 

signaling. Furthermore, in support of normal -adrenergic signaling in FKO mice living 

at thermoneutrality, the relative fold change for induction of Ppargc1a and Ucp1 was 

comparable to control mice, following a cold stress (Figure 2.4A and B). If some brown 

adipocytes still contained residual LRPPRC, possibly due to inefficient recombination, 

one would predict a normal fold change of gene induction, following cold exposure. To 

exclude this possibility, we measured phosphorylated PKA, which is activated by 
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Figure 2.3. Impaired respiratory capacity attenuates thermogenic and oxidative 

gene expression in BAT from LRPPRC FKO mice living at 30 °C. (A) H&E staining 

of BAT. (B) Immunoblot of LRPPRC, COXI, NDUFS3, COXVa, CS and VDAC in 

BAT. (C) mRNA levels of thermogenic genes in BAT. (D) Immunoblot of UCP1 and 

GAPDH (loading control) in BAT. (E) Core temperature of control and LRPPRC FKO 

mice during acute cold exposure at 4 °C. (F-H) mRNA levels of FAO genes (F), 

adipogenic/lipogenic genes (G) and mitochondrial biogenesis genes (H) in BAT. 12-14 

week-old male were used, n=3-4. Data are mean ± SEM. *P < 0.05, **P < 0.01, ***P < 

0.001, two-tailed unpaired Student’s t-test (C, E-H). 
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Figure 2.4. -adrenergic signaling is intact in BAT from LRPPRC FKO mice. (A) 

mRNA levels of cold-responsive genes in BAT of thermoneutral-acclimated (30 °C) or 

cold-exposed (4 °C) mice. (B) Table showing fold change for 30 °C vs. 4 °C for the 

genes from (A). (C) Immunoblot of phosphorylated PKA (pPKA Thr197), total PKA and 

GAPDH (loading control). (D) Quantification of pPKA and total PKA relative to 

GAPDH. (a): 12-14 week-old male, n=3-5. (C-D): 12 week-old male mice, n=3-5. Data 

are mean ± SEM. *P<0.05, **P<0.01, ***P<0.001, two-tailed unpaired Student’s t-test 

(A,D). 
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-adrenergic signaling. In BAT, pPKA was unchanged in FKO mice living at room 

temperature (Figure 2.4C and D), further supporting that the -adrenergic signaling 

pathway was not altered.  

In summary, these data indicate that impaired respiratory capacity triggers a 

retrograde signaling pathway that represses thermogenic and oxidative genes, favoring 

decreased fuel oxidation and thus energy storage. This may explain why lipid 

accumulation was increased in LRPPRC-deficient BAT.   

 

Impaired respiratory capacity interferes with the recruitment of PPAR to 

thermogenic gene promoters 

We were interested in the transcriptional basis by which deficits in respiratory 

capacity affects thermogenic gene expression. PPAR governs many aspects of brown fat 

development and maintenance (151, 152). Protein levels of PPAR and coactivators 

including SRC1 and PGC-1, however, were unchanged in LRPPRC FKO mice (Figure 

2.5A). Even so, PPAR has been shown to exhibit promoter specificity under certain 

metabolic conditions (153). We, therefore, queried whether or not the recruitment of 

PPAR to various transcriptional regulatory units was altered using ChIP assays (Figure 

2.5B). As shown in Figure 2.5C, the recruitment of PPAR to the enhancer region of 

Ucp1 and the promoters of other thermogenic genes was reduced. Because PPAR is 

required for the expression of these genes (142, 154), reduced recruitment to these 

regulatory regions might explain their reduced transcription. Interestingly, recruitment of  
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Figure 2.5. Impaired respiratory capacity influences the recruitment of PPAR in a 

promoter-specific manner. (A) Immunoblot of PPAR, SRC1, PGC-1 and GAPDH 

(loading control) in BAT. (B) Schematic diagram depicting the positions of primers used 

for ChIP and the positions/sequences of PPREs of the genes assessed by ChIP assays. 

Filled bar: previously identified PPRE; Open bar: putative PPRE. The arrows indicate the 

positions of primers. (C-D) PPARChIP assay of thermogenic and oxidative gene 

enhancer/promoters (C) and lipogenic gene promoters (D) in BAT. 12-14 week-old male 

at 30 °C. (C-D): n=4-5. Data are mean ± SEM. *P < 0.05, **P < 0.01, two-tailed 

unpaired Student’s t-test (C,D).  
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PPAR to the promoters of lipogenic genes was unchanged with some minimally affected 

(Figure 2.5D), a finding consistent with intact lipogenic gene expression in LRPPRC 

FKO mice (Figure 2.3G). These data suggest that mitochondrial retrograde signaling 

influences promoter specific recruitment of PPAR, a metabolic switch that governs 

whether or not BAT adopts a thermogenic or storage phenotype. 

 

Cytosolic calcium may mediate retrograde signals from mitochondria to nucleus 

Next, we tested whether pharmacological inhibition of respiratory complex can 

recapitulate the findings from genetic model of impaired respiratory capacity (LRPPRC 

FKO mice). Since electrons entered from complexes I and II converge at complex III, 

inhibiting complex III will block the entire electron transit, which impairs respiratory 

capacity. Thus we treated primary cultured brown adipocytes with antimycin A (AA), an 

inhibitor of complex III. As in BAT from LRPPRC FKO mice, lactate levels were 

increased in AA-treated brown adipocytes (Figure 2.6A). Notably, AA treatment resulted 

in the reduced expression of several thermogenic genes such as Ucp1 and Cidea and 

minimally affected adipogenic and lipogenic genes (Figure 2.6.B and C). UCP1 protein 

was also reduced whereas PPAR and its coactivators SRC1 and PGC-1 were unaltered 

(Figure 2.6D). Overall, inhibiting ETC in cell culture recapitulates the findings from 

LRPPRC FKO mice, providing an in vitro model to study downstream signaling pathway. 

These data also suggest that the effects of impaired respiratory capacity on thermogenic 

gene expression are cell autonomous. 

Several studies have shown that ETC dysfunction leads to increased cytosolic  
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Figure 2.6. Pharmacological inhibition of respiratory complex mimics LRPPRC 

ablation in cultured brown adipocytes. (A) Representative image of acidic media 

(upper) and lactate production (lower) in primary brown adipocytes treated with 10 nM 

AA for 18 hr. (B-C) Thermogenic gene expression (B) and adipogenic/lipogenic gene 

expression (C) in cells from (A). (D) Immunoblot of UCP1, PPAR, SRC1, PGC-1 and 

GAPDH (loading control). Data are mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001, 

two-tailed unpaired Student’s t-test (A-C). 
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Ca
2+

 levels (155-157). These studies demonstrated that Cathepsin L (Ctsl) was induced in 

a Ca
2+

-dependent manner. First, as an indirect measure of altered cytosolic Ca
2+

 levels, 

we quantified Ctsl mRNA in BAT from LRPPRC FKO mice and AA-treated brown 

adipocytes. Ctsl gene expression was induced in FKO mice housed at 22 °C and 30 °C 

and AA-treated cells, indicating elevated levels of cytosolic Ca
2+

 (Figure 2.7A and B). 

Next, we quantified steady-state levels of cytosolic Ca
2+

, and observed a 20% increase in 

AA-treated brown adipocytes (Figure 2.7C). We then examined if reduction of free 

cytosolic Ca
2+

 levels can rescue AA-mediated repression of thermogenic genes using 

BAPTA-AM, a cell-permeable Ca
2+

 chelator. BAPTA partially rescued AA-mediated 

decreases in thermogenic genes but had no effect on lipogenic genes (Figure 2.7D and E). 

BAPTA was also able to reverse AA-dependent induction of Ctsl (Figure 2.7D), 

indicating that BAPTA effectively blocked Ca
2+

-dependent alterations in gene expression. 

In summary, these data support a model in which Ca
2+

 serves as a signaling mediator for 

the attenuation of thermogenic genes under impaired respiratory capacity.   

Finally, we tested whether increasing cytosolic Ca
2+

 mimics the effects of 

impaired respiratory capacity by silencing sarco/endoplasmic reticulum (SR/ER) Ca
2+

-

ATPase (SERCA) in brown adipocytes. Since SERCA transports Ca
2+

 from cytosol into 

SR/ER at the expense of ATP, cytosolic Ca
2+

 is expected to be increased in SERCA-

deficient cells. Although three paralogous genes encode SERCA (Atp2a1, Atp2a2 and 

Atp2a3), mouse brown adipocytes only express Atp2a2 and Atp2a3 with the latter being 

induced upon differentiation (data not shown). Immunoblot analysis confirmed protein 

expression of ATP2A2 (SERCA2) in cultured brown adipocytes but ATP2A3 (SERCA3)  
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Figure 2.7. Cytosolic Ca
2+

 serves as a signaling mediator between BAT 

mitochondria and nucleus. (A-B) mRNA levels of Ctsl in BAT (A) and primary brown 

adipocytes (B). (C) Measurement of cytosolic Ca
2+ 

in immortalized primary brown 

adipocytes using a Ca
2+

-specific fluorescent indicator, Fluo4-AM. (D-E) mRNA levels of 

thermogenic genes (D) and adipogenic/lipogenic genes (E) in immortalized primary 

brown adipocytes co-treated with AA and BAPTA. 40 M BAPTA-AM was loaded into 

cells for 1 hr, followed by treatment with 20 nM AA for 18 hr. (F) Immunoblot of 

ATP2A2, ATP2A3, UCP1 and GAPDH (loading control). Short: short exposure; Long: 

long exposure; Lg: large. Heart was used as a positive control for ATP2A2 and ATP2A3. 

Lg. intestine was used as a positive control for ATP2A3. (G) Oil red O staining of 

immortalized primary brown adipocytes stably transduced with ATP2A2 shRNA and 

immunoblot of ATP2A2, UCP1, PPAR and GAPDH (loading control). (H) 

Measurement of cytosolic Ca
2+

 in immortalized primary brown adipocytes stably 

expressing shATP2A2. (I-L) mRNA levels of thermogenic genes (I), 

adipogenic/lipogenic genes (J), mitochondrial biogenesis genes (K) and mitochondrial-

encoded ETC genes (L). (A): n=3-5.  Data are mean ± SEM. *P < 0.05, **P < 0.01, ***P 

< 0.001, two-tailed unpaired Student’s t-test (A-E, H-L). 
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was undetectable with our immunoblotting methods in the same cells (Figure 2.7F). Even 

though low levels of ATP2A3 protein are expressed, ATP2A3 has unusually low Ca
2+

 

affinity, rendering it essentially inactive at normal intracellular Ca
2+

 concentration 

(≤0.1M) (158). Therefore, we chose to silence a single isoform: ATP2A2. Two different 

sequences of ATP2A2 shRNA yielded moderate to severe silencing (Figure 2.7G). Oil 

red O staining and unaltered PPAR protein indicated no apparent effect of ATP2A2 

knockdown on differentiation (Figure 2.7G). Cytosolic Ca
2+

 was increased in cells with 

severe knockdown but not with modest knockdown (Figure 2.7H); we speculate that any 

change that may be caused by moderate knockdown of ATP2A2 appears to be outside the 

detection range of the method. Nonetheless, Ucp1 mRNA and protein were reduced in 

proportion to the extent of ATP2A2 knockdown (Figure 2.7G and I). Other thermogenic 

genes were also similarly repressed (Figure 2.7I) whereas lipogenic genes were 

unaffected with some slightly induced (Figure 2.7J) and genes regulating mitochondrial 

biogenesis exhibited minimal changes (Figure 2.7K). Finally, Lrpprc and mitochondrial-

encoded respiratory genes were unaltered, indicating that SERCA knockdown affects 

Ca
2+

 trafficking through a distinct mechanism (Figure 2.7K and L). Together, these data 

support that cytosolic Ca
2+

 may be a second messenger for the mitochondrial retrograde 

signaling in brown adipocytes. 

 

Augmented respiratory capacity induces the thermogenic gene program in 

subcutaneous adipose tissue 

Data from FKO mice motivated the hypothesis that augmented respiratory  
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Figure 2.8. Lrpprc and mitochondrially encoded genes are induced in IWAT of 

LRPPRC fat-specific transgenic (FTg) mice. (A) Schematic diagram of a construct 

allowing fat-specific expression of LRPPRC. (B) KpnI/PmeI-digested 8.1kb transgene 

construct used for microinjection. (C) Immunoblot of LRPPRC, Myc-tag and -actin 

(loading control) in HEK293T cells transfected with the construct and Cre recombinase 

(Cre)-carrying plasmid. (D) mRNA levels of Lrpprc in inguinal white adipose tissue 

(IWAT) from LRPPRC FTg mice. (E) mRNA levels of mitochondrial-encoded ETC 

genes in IWAT. (E) Immunoblot of LRPPRC, Myc-tag and UCP1 in IWAT. (F) Gene 

expression in IWAT. 12-14 week-old male mice at 22 °C, n=3-4. Data are mean ± SEM. 

*P<0.05, **P<0.01, two-tailed unpaired Student’s t test (D,E,G). CAG: chicken -actin 

promoter; CAT: chloramphenicol acetyltransferase; mLRPPRC: mouse LRPPRC. 
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capacity activates the thermogenic gene program in adipose tissue. To test this hypothesis, 

we generated mice with ectopic expression of Myc-tagged LRPPRC in adipose tissue 

(LRPPRC FTg) (Figure 2.8A and B). The transgene encoding LRPPRC was activated 

only in the presence of Cre recombinase (Figure 2.8C). In BAT, the transgene was not 

sufficient to influence total endogenous Lrpprc gene expression presumably because 

LRPPRC levels are very high. In IWAT, however, ectopic expression of LRPPRC 

increased LRPPRC protein and mRNA as wells as its target genes (Figure 2.8D-F). We 

suspect that the modest expression of LRPPRC may be due to dilutional effects of the 

presence of non-adipocytic cells. Ucp1 mRNA and protein were induced and the levels of 

several BAT-specific genes including Cidea and Dio2 were also increased (Figures 2.8F 

and G). Overall, the collective data suggest augmenting respiratory capacity is sufficient 

for ‘browning’ of subcutaneous white adipose tissue. 

 

The browning of subcutaneous adipose tissue protects against diet-induced obesity 

in LRPPRC FTg mice  

Browning of IWAT enhances energy expenditure, leading to metabolic improvements in 

mice fed a high fat diet (HFD) (122, 159). We tested whether LRPPRC FTg mice could 

benefit from browning of IWAT under metabolic stress. To avoid any confounding 

effects of thermal stress on the whole body metabolism at 22 °C, animals were 

acclimated to thermoneutral conditions for 4 weeks upon weaning, followed by 16 weeks 

of HFD feeding. We first assessed mice carrying the transgene (Flox/0) alone after HFD 

feeding to rule out any unintended impacts from insertion of the transgene. Flox/0  
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Figure 2.9. Mice with the LRPPRC transgene are metabolically similar to WT 

littermates upon HFD feeding. (A) Body weight, (B) Body composition, (C) Food and 

water intake, (D) Whole body oxygen consumption (VO2), (E) Area under curve of (D), 

(F) Physical activity, and (G) Glucose and (H) Insulin tolerance test (GTT/ITT) in 

wildtype (WT) littermates and transgene-carrying mice (Flox/0) fed a HFD. (A-H): n=5-7. 

Data are mean ± SEM. Multiple t tests using the Bonferroni correction (A); Two-tailed 

unpaired (B,C,E,F) Student’s t test; two-way ANOVA (D,G,H). 
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mice were similar to WT littermates in terms of their body weight, fat/lean mass and food 

intake (Figure 2.9A-C). In addition, oxygen consumption and physical activity did not 

differ significantly between WT and Flox/0 mice (Figure 2.9D-F). Finally, Flox/0 mice 

were only slightly more insulin-resistant than WT mice (Figure 2.9G and H). Overall, we 

concluded that the LRPPRC transgene per se had minimal effect on whole body 

metabolism. We next measured the same metabolic parameters in HFD-fed LRPPRC FTg 

mice. FTg mice gained less weight (~15%) than their littermate controls (Adipo-cre/0) 

(Figure 2.10A), consistent with a reduction in fat mass observed in these animals (Figure 

2.10B). Given no significant difference in food intake (Figure 2.10C), it is likely that 

alterations in energy expenditure explain the lower fat accumulation in FTg mice. Indeed, 

we observed that oxygen consumption was increased in these mice (Figure 2.10D and E). 

Although diurnal physical activity was similar, FTg mice showed a tendency for 

increased nocturnal physical activity, which may be due to their lower body weight and 

may contribute to higher energy expenditure during the night cycle (Figure 2.10F). In 

addition, as reported by others, reduced body weight and increased energy expenditure 

was associated with improved whole-body insulin sensitivity in FTg mice (Figure 2.10G 

and H). Notably, these mice exhibited brown-like adipocytes bearing multilocular lipid 

droplets in IWAT, while similar cells were rarely seen in IWAT from control mice 

(Figure 2.10I). Collectively, these data demonstrate that browning by augmented 

respiratory capacity in adipose tissue promotes resistance to diet-induced obesity 

primarily via increased energy expenditure. 
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Figure 2.10. LRPPRC FTg mice exhibit improved metabolic phenotypes in diet-

induced obesity. (A) Body weight,  (B) Body composition, (C) Food and water intake, 

(D) Whole body oxygen consumption (VO2), (E) Area under curve (AUC) of (D), (F) 

Physical activity, (G) Glucose and (H) Insulin tolerance test (GTT/ITT), and (I) 

Representative H&E staining images of IWAT in Adipo-cre/0 (control) and LRPPRC 

FTg mice fed a high-fat diet (HFD). Scale bar: 100m (100x); 50m (400x). (A-I): n=5-6. 

Data are mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001, multiple t tests using the 

Bonferroni correction (A); one-tailed unpaired (E) and two-tailed unpaired (B,C,F) 

Student’s t test; two-way ANOVA (D,G,H). 
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Discussion 

In this study, we tested whether reducing respiratory capacity in mouse BAT 

affects thermogenic gene expression and BAT function. We modeled impaired 

respiratory capacity by ablating LRPPRC in an adipose-specific manner. Impaired 

respiratory capacity activated retrograde signaling pathway to attenuate thermogenic and 

oxidative gene expression. The transcriptional basis for this repression was the reduced 

recruitment of PPAR to the promoters of those genes. Using an inhibitor of respiratory 

complex and shRNAs against SERCA pump in cultured brown adipocytes, and 

conversely the chelation of Ca
2+

 under respiration-impaired conditions, we also showed 

that Ca
2+

 mediates the crosstalk between mitochondria and nucleus. Conversely, 

augmenting respiratory capacity in mouse IWAT was sufficient to increase thermogenic 

gene expression. Overall, our work illustrates an adaptive coordination of respiratory 

capacity with the expression of thermogenic genes. 

Mitochondrial retrograde signaling is triggered by various mitochondrial stresses 

(90, 91, 103). This signaling pathway affects nuclear gene expression, resulting in a 

multitude of cellular adaptive responses (90, 91, 103). Our data highlight an adaptive 

response of brown adipocytes to impaired respiratory capacity, which is an unfavorable 

condition for thermogenesis. In contrast, adipose-specific loss of TFAM, an activator of 

mitochondrial transcription and positive regulator of mtDNA replication, had no such 

defects in BAT(115, 116). Despite the reduced expression of mitochondrial-encoded ETC 

genes, however, oxygen consumption, FAO, and citrate synthase activity were 

paradoxically increased in TFAM-deficient BAT(115, 116), which confounds 
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interpretation. Importantly, the phenotypic similarities between LRPPRC ablation and 

pharmacological inhibition of respiratory complex exclude pleiotropic effects of 

LRPPRC loss. Moreover, impaired respiratory capacity was associated with remodeling 

of oxidative program in BAT. In LRPPRC FKO mice, gene programs involved in 

mitochondrial respiration (nuclear-encoded) and fatty acid oxidation were impaired. 

Some of the changes might be explained by reduced expression of Ppargc1b and Erra 

(Esrra), both of which govern mitochondrial biogenesis and fatty acid oxidation and 

(150). It is noteworthy that LRPPRC depletion in hepatocytes had no overt effect on the 

oxidative gene program (160). This differential gene regulation suggests tissue specificity 

of mitochondrial retrograde signaling. Attenuated expression of genes involved in fatty 

acid oxidation was not simply due to decreased mitochondrial content. Interestingly, 

impaired respiratory capacity in BAT was not associated with a compensatory increase in 

mitochondrial content. This is in contrast to inhibition of oxidative phosphorylation 

(OXPHOS) in skeletal muscle where induction of PGC-1 coactivators promotes 

mitochondrial biogenesis to presumably compensate for OXPHOS deficits (95). This 

dichotomy is interesting as it indicates the status of respiratory capacity in BAT globally 

determines adipocyte function: storage versus heat dissipation. With normal respiratory 

capacity, BAT is committed to function as a thermogenic organ and thermogenic and 

oxidative gene expression is maintained. However, upon impaired respiratory capacity, a 

condition unfavorable for thermogenesis, thermogenic and oxidative gene expression is 

suppressed. Concurrently, glycolysis is increased, which can supplement ATP and 

enhance de novo lipogenesis (161). These mechanisms converge to reprogram BAT into 
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a storage mode.  

While we have shown that reduced recruitment of PPAR to the promoters of 

thermogenic genes may be responsible for their attenuated expression, precisely how 

PPAR is dislodged from those promoters remains unknown. A coactivator complex 

consisting of PGC-1, SRC-1/3 and other general coactivators is necessary for PPAR-

dependent thermogenic gene expression but is dispensable for expression of lipogenic 

genes (36, 162). Based on our findings of attenuated (coactivator-dependent) thermogenic 

gene expression but intact (coactivator-independent) lipogenic gene expression, disrupted 

coactivator complex may be a potential mechanism. More importantly, SRC-1 and SRC-

3 are jointly required for recruitment of PPAR to a PPRE site on the Ucp1 enhancer in 

BAT but not to lipogenic gene promoters (162). One possibility is that impaired 

respiratory capacity interferes with the function of SRC family as a PPAR coactivator, 

leading to diminished docking of PPAR on the thermogenic promoters. In addition, 

given a model in which binding of PGC-1 to PPAR promotes recruitment of SRC-1 

and CBP/p300 (163), abrogation of physical interaction between PPAR and PGC-1 

could indirectly hinder PPAR docking by sequestering SRC-1 and possibly SRC-3 from 

PPAR coactivator complexes. 

We provide evidence of cytosolic Ca
2+

 as a signal that may mediate mitochondria-

nucleus crosstalk triggered by impaired respiratory capacity in BAT. It has been reported 

that cytosolic Ca
2+

 was increased by certain mitochondrial stresses including depletion of 

mtDNA and inhibition of the respiratory chain in various cell types, which ultimately 
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affected nuclear gene expression (102, 155, 157, 164). In brown adipocytes treated with 

an inhibitor of respiratory complex, increased cytosolic Ca
2+

 was responsible for 

repressed thermogenic genes. To our knowledge, this is a first report describing Ca
2+

-

mediated mitochondrial retrograde signaling in BAT. In contrast, Ca
2+

 is also known to 

positively regulate BAT thermogenesis. 3-adrenergic stimulation of brown adipocytes 

led to a rise in intracellular Ca
2+

 evoked from mitochondria, ER and entry across plasma 

membrane (165). It has been suggested that Ca
2+

 influx mediated by TRPV2, a Ca
2+

-

permeable non-selective cation channel, was required for isoproterenol-induced 

expression of Ppargc1a and Ucp1 in brown adipocytes (166). Moreover, activation of 

TRPM8, a cold-sensing non-selective cation channel, induced UCP1 expression through 

Ca
2+

-mediated PKA phosphorylation in brown adipocytes (167). This discrepancy 

suggests that mitochondrial retrograde signaling involves a Ca
2+

 signaling pathway that is 

distinct from the one in stimulated brown adipocytes. Although unclear at present, 

investigating how Ca
2+

 influences PPAR and possibly its coactivator complex may help 

elucidate the distinct mechanism, which could prove of therapeutic utility. Defective 

respiratory chain function is associated with deranged mitochondrial Ca
2+

 handling (168, 

169). We speculate that impaired respiratory capacity may impair Ca
2+

 buffering by 

mitochondria, leading to increased cytosolic Ca
2+

. 

Interestingly, our gain-of-function model (LRPPRC FTg) suggests that 

augmented respiratory capacity serves as a transcriptional trigger to promote a BAT-like 

gene signature in certain WAT.  The trigger is functional in IWAT, the only depot in 

which LRPPRC was overexpressed. This may be due to limitations in our transgenic 
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approach that involves random insertion. Indeed, it has been shown that retrovirally 

expressed human LRPPRC successfully increased thermogenic genes including Ucp1, 

Cidea and Dio2 in classic white adipose cell line 3T3-F442A (123). We also do not 

exclude the occurrence of brown-like cells in other white adipose depots such as 

mesenteric depot in LRPPRC FTg mice. It would be interesting to determine whether 

increasing respiratory capacity is a universal mechanism to activate the thermogenic gene 

program in WAT. Under thermoneutral conditions, these FTg mice displayed resistance 

to diet-induced obesity and improved insulin sensitivity as whole-body energy 

expenditure was significantly increased. As stated in the above, we do not exclude a 

possibility that other depots such as mesenteric depot can undergo browning and 

contribute to the metabolic improvements in FTg mice. The limited weight gain could 

potentially affect energy expenditure by altering physical activity. Further analyses are 

needed to determine what portions of increased energy expenditure in FTg mice derive 

from the browning of IWAT. Supporting our data, it has been documented that browning 

of IWAT resulted in similar metabolic improvements in HFD-fed mice via increased 

energy expenditure (122, 159). Importantly, unlike these studies, our work was 

performed at thermoneutrality. Several lines of evidence have demonstrated that housing 

temperature may have confounding impacts on modeling of metabolic diseases in rodents 

(134, 170). Given that humans live predominantly under thermoneutral conditions, our 

work indicate that ‘browning’ of white adipose tissue may be a physiologically plausible 

strategy to fight obesity and diabetes in humans. 

In summary, our study demonstrates that BAT coordinates its respiratory status 
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with the expression of thermogenic and oxidative genes through retrograde signaling to 

determine its metabolic commitment. When respiratory capacity is impaired, BAT adopts 

a storage phenotype by turning off thermogenic genes and down-regulating genes 

involved in fuel oxidation. Furthermore, functioning as a transcriptional trigger, 

augmented respiratory capacity induces thermogenic gene expression in IWAT, which 

increases energy expenditure and protects mice from diet-induced obesity. Our work may 

provide the important framework for future research on mitochondrial control of 

thermogenic gene pathway and energy dissipation. 
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Table 2.1. Mouse primers used for RT-qPCR 
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Table 2.2. Mouse primers used for ChIP assays 
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CHAPTER III 

PERSPECTIVES AND FUTURE DIRECTIONS 

 

3.1. Brown fat-specific mitochondrial retrograde signaling  

Each cell type is designed to perform a highly specialized function that is 

primarily governed by their unique transcriptomes. This cell-type or tissue specificity is 

also reflected in mitochondrial retrograde signaling as manifested by different 

transcriptomic changes and various outcomes in distinct cell types (102, 103, 156). The 

differential effects of LRPPRC deficiency on oxidative genes in hepatocytes and brown 

adipocytes could be explained by the cell type differences. Furthermore, given the 

complex nature of mitochondrial retrograde signaling, responses elicited by 

mitochondrial respiratory defect could be differential depending on the approaches used. 

Although we have seen almost identical changes in key thermogenic genes such as Ucp1 

in brown fat lacking LRPPRC or COX7RP and AA-treated brown adipocytes, it is 

possible that each method differently alters gene expression. Importantly, in order to 

obtain a better understanding of brown fat-specific mitochondrial retrograde signaling, 

whole-transcriptome analysis is critical. Microarray or RNA-seq will be a starting point 

toward this goal. By comparing the data from three models including LRPPRC, COX7RP 

and AA, commonly altered genes can be identified. Then, bioinformatical approaches 

may be able to reveal what functional classes of genes are affected, providing a clue to 

the nature of brown fat-specific mitochondrial retrograde signaling.  
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Mitochondrial retrograde signaling can affect the activities and abundance of 

numerous transcription factors and co-regulators (171). DNA motif analysis may be 

useful to determine a list of candidate transcriptional factors that mediate transcriptomic 

changes provoked by mitochondrial retrograde signaling. Aligning the regulatory 

elements of the genes identified from the comparative transcriptome analysis will allow 

us to profile transcription factor binding sites shared by the genes within each functional 

group. The high-scoring DNA motifs would indicate their relevant transcription factor as 

strong candidates.  

 

3.2. Mitochondrial respiration and calcium 

Mitochondria are important buffers of intracellular Ca
2+ 

(172). To be accumulated 

into mitochondria, Ca
2+

 should pass through their outer and inner membranes. Cations 

such as Ca
2+

 can freely diffuse across the outer mitochondrial membrane (OMM) but not 

the inner mitochondrial membrane (IMM) (172). The fact that Ca
2+

 can be accumulated 

into the mitochondrial matrix (173, 174) motivated a search for transporters responsible 

for mitochondrial Ca
2+

 uptake, and mitochondrial calcium uniporter (MCU) was 

identified (175-178). MCU is highly Ca
2+

-specific but has low Ca
2+

 affinity (179). 

Moreover, Ca
2+

 efflux pathways across the IMM can act against MCU (172). Due to 

these drawbacks, additional components are obligatory for effective and rapid 

accumulation of Ca
2+

 into the mitochondrial matrix. VDAC promotes Ca
2+

 transfer across 

the OMM, resulting in locally high concentrations of Ca
2+

 in the intermembrane space 

(172). Electrochemical proton gradient also plays a pivotal role. This gradient is created 
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by the ETC across the IMM and its predominant part electrical potential serves as a large 

driving force for Ca
2+

 uptake into the matrix (172).  

Figure 3.1. Mitochondrial Ca
2+

 uptake. Ca
2+

 accumulation into mitochondria is 

mediated by MCU, which requires two additional components, VDAC and ETC. Despite 

Ca2+ efflux through Na
+
/Ca

2+
 exchanger (NCX) and H

+
/Ca

2+
 exchanger (HCX), the 

combinatorial actions of MCU, VDAC and ETC allow for effective and rapid Ca
2+

 

uptake by mitochondria. Note that this is an over-simplified cartoon with a focus on 

mitochondrial components of the process. 

 

In brown fat, LRPPRC ablation abrogated the expression of mitochondrial-

encoded ETC subunits and thus complex activities, which collapses the proton gradient, 

and thereby electrical potential is reduced. Due to insufficient driving force, mitochondria 

in brown fat lacking LRPPRC have a decreased ability to accumulate Ca
2+

, leading to 

increased cytosolic Ca
2+

. In IWAT of LRPPRC FTg mice, despite the augmented 

respiratory capacity, paradoxically cytosolic Ca
2+

 could be increased, which argues 

against the induction of thermogenic genes such as Ucp1. This seemingly inconsistent 

situation arises due to UCP1 function. Since UCP1 lowers the proton gradient and thus 

weakens driving force for Ca2+ accumulation, increased UCP1 in IWAT of LRPPRC 
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FTg mice can results in increased cytosolic Ca
2+

. However, this is less likely based on the 

following reasoning. At standard temperature for mouse housing, UCP1 protein must be 

modestly active, and thereby its impact on the proton gradient could be also moderate. 

Under this condition, electrical potential is likely to be sufficient to support normal 

calcium buffering by mitochondria. Nonetheless, future study is required to explore the 

effect of augmented respiratory capacity on cytosolic Ca
2+

 and the potential role of 

cytosolic Ca
2+

 on thermogenic gene expression in IWAT of LRPPRC FTg mice. 

 

3.3. Other potential mediators of mitochondrial retrograde signaling in brown fat  

While we identified Ca
2+

 as a signal between brown fat mitochondria and the 

nucleus, the partial rescue by Ca
2+

 chelation and relatively modest effects of SERCA2 

knockdown would suggest that other mediators are perhaps involved. Mitochondrial 

respiratory defects are often associated with increased mitochondrial reactive oxygen 

species (ROS), which serves as a downstream signaling molecule (90, 171, 180, 181). 

Although we did not formally assess mitochondrial ROS production in brown fat lacking 

LRPPRC and AA-treated brown adipocytes, mitochondrial superoxide production was 

increased in LRPPRC-deficient HepG2 cells, a human hepatoma cell line (unpublished 

data). Even though it is assumed that mitochondrial ROS levels are elevated by AA 

treatment, our preliminary data show that ROS scavengers including N-Acetylcysteine 

(NAC) and MnTMPyP fail to rescue the effects of AA on thermogenic genes in cultured 

brown adipocytes, excluding ROS as a signaling mediator. Even so, mitochondrial ROS 

would be worth further investigation in LRPPRC FKO mice. Additionally, given that 



73 
 

cold exposure increases mitochondrial ROS, an induction that is necessary for 

thermogenic energy expenditure and UCP1 function (182), brown fat may use ROS as an 

effector under a defined circumstance. If this is true, it would be quite interesting to 

identify how brown fat distinguishes the two different ROS-producing contexts.  

Mitochondrial respiration directly contributes to the pools of cellular NAD
+ 

 by 

oxidizing a reducing equivalent NADH to NAD
+
 via ETC. NAD+ is recycled in the TCA 

cycle to generate NADH. In addition, NAD
+
 serves as an obligate cofactor of sirtuins and 

PARPs. In mice with loss of PARP-1, a major cellular NAD
+
 consumer (183), NAD

+
 

levels in brown fat was increased and thus sirtuin 1 (SIRT1) activity was induced (184). 

Activated SIRT1 deacetylated PGC-1, which was sufficient to induce many oxidative 

genes and several thermogenic genes including Ucp1 and Dio2 in brown fat (184). 

However, SIRT1 KO mice showed no significant difference in UCP1 protein expression 

in brown fat compared to WT mice (185). This would argue against an essential role of 

SIRT1 in maintaining the key thermogenic program. Similarly, although forced 

expression of sirtuin 3 (SIRT3), a mitochondrial NAD
+
-dependent deacetylase, was 

sufficient to increase expression of Ucp1, Ppargc1a and several respiratory genes in 

brown adipocytes (186), SIRT3 KO mice exhibited normal expression of thermogenic 

and oxidative genes in brown fat (NCBI Accession number GSE27309, (187)). The role 

of other NAD
+
-dependent surtuins in the thermogenic gene program remain elusive.  

Respiratory defects through mtDNA depletion or complex III inhibitors have been 

shown to inhibit pyrimidine (uridine, cytidine) biosynthesis (188, 189). In particular, 

protein levels of p53 were elevated in response to complex III inhibitors, which was 
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rescued not by ROS scavengers but by uridine supplementation. This finding suggests 

that a certain type of mitochondrial retrograde signal is transmitted via depletion of the 

pyrimidine pools. It would be interesting to see if supplying exogenous uridine to 

LRPPRC-deficient cells and AA-treated cells can reverse the decreases in thermogenic 

gene expression.  

A previous study on mice with ectopic expression of glycerol 3-phosphate 

dehydrogenase (GPDH, encoded by Gdc-1) raises a potential connection between 

accumulation of lipids and certain thermogenic genes such as Ucp1 in brown fat. GPDH 

is a cytosolic enzyme that is responsible for conversion of a glycolytic intermediate 

dihydroxyacetone phosphate to glycerol 3-phosphate, a backbone for triglyceride 

synthesis. The GPDH transgenic mice exhibited increased lipid deposition in brown fat 

and liver whereas the lipid contents of subcutaneous and visceral white fat were 

decreased (190). This discordant lipid metabolism and the observation that GPDH-null 

mice had normal lipid content (191) suggest that GPDH overexpression promotes lipid 

redistribution between metabolic tissues but does not enhance lipogenesis. The most 

interesting finding is a severe reduction in Ucp1 mRNA levels in brown fat from the 

transgenic mice. Decreased adrenergic tone is unlikely because Ucp1 was almost equally 

induced in WT and the transgenic mice upon cold exposure (190). Based on these data, 

the following model could arise: As seen in COX7RP KO mice and LRPPRC FKO mice, 

impaired mitochondrial respiratory capacity promotes lipid accumulation presumably via 

decreased fatty acid oxidation. The accumulated lipids may in turn activate a pathway 

that negatively influences the thermogenic genes.     
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3.4. Mitochondrial respiration-independent effects of LRPPRC ablation and 

Antimycin A (AA) treatment 

We used LRPPRC ablation and AA treatment for genetic and pharmacological 

impairment of respiratory capacity, respectively. In this section, the potential pitfalls of 

these approaches and possible solutions will be discussed.  

Although controversial, a few studies have suggested that LRPPRC is a dual-

targeted protein that can be located in nuclei as well as mitochondria (192, 193). 

However, as discussed in the introduction (see Chapter 1.3.2.5), it is unlikely that 

depletion of nuclear LRPPRC underlies the attenuation of thermogenic gene expression 

in brown fat lacking LRPPRC. Even so, this issue could be addressed by using LRPPRC 

with mutated nuclear localization signal (NLS). LRPPRC has a weak NLS that is thought 

to support its nuclear localization (193). When LRPPRC with mutated NLS is introduced 

into LRPPRC-deficient brown fat, the mutant protein will only localized to mitochondria 

and this experiment will tell us whether nuclear LRPPRC plays a role in regulating 

thermogenic gene expression.  

Another possibility is that LRPPRC deletion per se may have pleiotropic effects 

that are not mediated by suppressed mitochondrial transcription and impaired 

mitochondrial respiratory capacity. To exclude this possibility, recovering mitochondrial 

transcription in a LRPPRC-independent way can be considered. Hypothetically, 

hyperactive POLRMT mutant could increase the rate of basal mitochondrial transcription 

in the absence of LRPPRC. Practically, mitochondrial topoisomerase 1 (TOP1MT), a 

negative regulator of mitochondrial transcription (194), can be a solution. Compared to 
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LRPPRC single-knockout, double knockout of LRPPRC/TOP1MT will increase the 

availability of mitochondrial transcripts and thus respiratory capacity to some extent, and 

this should at least in part rescue attenuated thermogenic gene expression in brown fat. 

Like other chemical modulators, AA may exert non-specific effects. Any system 

that disables AA action on its primary target (complex III) will be useful addressing this 

issue. Let us assume that there is a mutant subunit of complex III that AA is unable to 

bind and this mutant does not interfere with the enzyme activity. Deleting WT subunit 

and introducing the mutant subunit will ensure that AA is no longer able to inhibit 

complex III. If the effects of AA that we observed are through inhibition of complex III 

and the resultant impairment of respiratory capacity, mutant complex III should block 

AA action on thermogenic genes in brown adipocytes. Alternatively, AA-insensitive 

complex III ortholog from other species will be equally effective. In case of complex I, 

rotenone (complex I inhibitor)-insensitive NADH–quinone oxidoreductase was identified 

in yeasts (195). To the best of our knowledge, it is unknown that AA-insensitive enzyme 

with the same function as complex III exists in other species. 

 

3.5. Quantitative determination of the contribution of PPARto the attenuation of 

thermogenic gene expression  

We examined a subset of genes among a broad array of brown fat-selective genes 

that are known to be regulated by PPAR To quantitatively determine to what 

extent the attenuated thermogenic gene expression is explained by PPAR, further 

investigation is required using a systematic approach.  
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Using the data sets obtained from whole-transcriptome analysis outlined in 

Chapter 3.1, expression profiles of the previously identified brown fat-specific PPAR 

target genes can be collected. These data will reveal the number of the PPAR target 

genes that are down-regulated in LRPPRC-deficient brown fat. Another quantitative and 

comparative analysis of PPAR target gene expression can be performed using PPAR-

deficient brown fat as a reference. Since PPAR ablation causes embryonic lethality (196) 

and even adipose-specific loss leads to abnormal development of brown fat (152, 197), 

PPAR deletion in mature brown fat using an inducible system such as Cre-ER
T2

 is 

necessary and this model is available (151). Then, gene expression profiles from 

LRPPRC-deficient and PPAR-deficient brown fat can be compared for the brown fat-

specific PPAR target genes. From this comparison, differences in fold changes of each 

gene between the two conditions can be assessed, leading to estimation of PPAR effect 

on the observed changes in LRPPRC-deficient brown fat. 

 

3.6. How is the recruitment of PPAR to the thermogenic enhancers/promoters 

reduced?  

The specific reduction in occupancy of the thermogenic enhancers/promoters by 

PPAR implies that specific factor(s) and/or specific modifications of PPAR or its 

coactivators are likely involved. Besides the roles of PPAR coactivators in its 

recruitment to thermogenic enhancers/promoters, it has been recently shown that EBF2 is 

necessary for the binding of PPAR to those regulatory elements (40), making it a strong 
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candidate. While our preliminary data shows unaltered mRNA levels of Ebf2 in brown fat 

from LRPPRC FKO mice, it is possible that EBF2 proteins are reduced or EBF2 docking 

on its binding sites near PPAR binding sites within the thermogenic 

enhancers/promoters is decreased. Another scenario could be that a post-translational 

modification of the coactivators interferes with binding to PPARa process that may 

dislodge PPAR from the enhancers/promoters. In fact, PGC-1 is known to undergo this 

type of modification, which separates gluconeogenic and mitochondrial functions (198). 

Lastly, a study shows that CDK5-mediated phosphorylation of PPARat serine 273 only 

affects a subset of its target genes (153). While this study showed that the binding of 

phosphorylated PPAR to those gene promoters was unaltered, a novel posttranslational 

modification of PPAR could possibly regulate its thermogenic gene-specific docking.  

 

3.7. What is the potential link between cytosolic Ca
2+

 and PPAR? 

The answer to this question will be most speculative in this chapter because little 

is known about the Ca
2+

 regulation of PPAR. As outlined earlier, the key PPAR 

coactivators including PGC-1, SRC-1/3 are required for PPAR regulation of 

thermogenic genes but not for adipogenic and lipogenic genes (162, 163). Interestingly, 

intracellular calcium is known to regulate abundance or activity of certain coactivators. In 

skeletal muscle, exercise or caffeine treatment, both of which are known to increase 

cytosolic Ca
2
 via ryanodine receptor (RyR)-mediated Ca

2+ 
release from the sarcoplasmic 

reticulum (SR), promote nuclear translocation and expression of PGC-1, resulting in 

increased mitochondrial biogenesis (199, 200). The expression of RyRs are largely 
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restricted to skeletal and cardiac muscle, and Ca
2+ 

outflow from the receptors generates 

so-called ‘calcium spark’ that is a localized rise in cytosolic Ca
2+ 

concentration and 

underlies excitation-contraction coupling in muscle (201). It may be that the 

spatiotemporal patterns of cytosolic Ca
2+

 increase are different between contracting 

muscle and brown fat with impaired respiratory capacity. This may lead to divergence 

from each other in the regulation of PGC-1possibly via different calcium signaling 

pathways. It would be worthwhile to see if the nuclear translocation of PGC-1 family 

members is decreased in brown fat from LRPPRC FKO mice and SERCA-deficient 

brown adipocytes. 

Ca
2+ 

is also known to control gene expression through Ca
2+

-activated effectors. A 

well-characterized example is nuclear factor of activated T-cells (NFAT). Increased 

cytosolic Ca
2+

 activates the serine/threonine phosphatase calcineurin through a Ca
2+

-

sensing protein calmodulin. Activated calcineurin dephosphorylates NFAT, allowing for 

the nuclear translocation of NFAT to promote target gene expression (202). A similar but 

converse concept could be applied to PPAR. With an assumption that PPAR is 

phosphorylated at unknown residue(s) and the phospho-PPAR has a reduced ability to 

dock on the thermogenic enhancer/promoters, Ca
2+

-regulated kinases such as protein 

kinase C (PKC), Ca
2+

/calmodulin-dependent protein kinases (CaMKs) may serve as a 

link between cytosolic Ca
2+

 and PPAR by phosphorylating PPARat the residue(s). 

 

3.8. Therapeutic implications 

While leveraging uncoupled respiration in brown fat seems a tempting strategy to 
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fight obesity-related diseases, brown fat is scarce or the activity under cold exposure is 

low in morbidly obese humans (53, 54, 203-205). As for the former case, transplantation 

of brown/beige fat derived from patient’s own progenitor cells may be promising as 

immune-deficient mice implanted with capillary-derived human beige adipocytes show 

metabolic improvements when fed a high-fat diet (HFD) (206). With regards to impaired 

brown fat function in obesity and diabetes, a similar association has been reported for 

various animal models including ob/ob mice, db/db mice, SHR/N-cp rats and HFD 

(containing normal amount of sucrose or high sucrose)-fed mice (207-212). In these 

murine models of obesity and diabetes, there is ‘de-browning’ of brown fat, characterized 

by concomitant reduction in UCP1 protein and respiratory complex activities. Similar to 

classical brown adipocytes, beige adipocytes exhibit this type of de-browning in mice fed 

a HFD, implying a shared mechanism for both types of thermogenic adipocytes (213). 

However, we and others here at UMass Medical School have observed that a well-studied 

obesity-prone mouse strain C57BL6/J did not show a decrease in UCP1 expression upon 

HFD feeding. It is probable that the composition of HFD used may have caused this 

discrepancy in HFD response. Notably, a study describing reduced levels of Ucp1 mRNA 

in brown fat of C57BL6/J mice used a HFD supplemented with high sucrose, the 

western-style diet (208) whereas our lab and others used a HFD with regular amount of 

sucrose. It has also known that dietary polyunsaturated fatty acids (PUFAs) promote 

UCP1 expression in mice and rats (214-216); thus combined actions of different nutrients 

may lead to different responses. Alternatively, strain backgrounds could be an important 

variable. Two unrelated mouse strains, namely CD-1 (outbred) and AKR/J (inbred) 
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display the similar de-browning of brown fat in diet-induced obesity (212, 217).  

As detailed earlier, several models and systems from us and others have 

established a causal relationship between mitochondrial respiratory capacity and 

transcription of genes involved in thermogenesis. Impaired respiration in certain models 

of obesity and diabetes may explain impaired transcription of the thermogenic genes. An 

interesting question would be whether the similar crosstalk is present in human obesity. If 

so, altering respiratory capacity may prove promising in restoring brown fat function in 

certain forms of obesity and diabetes. Even if there are no effects on transcriptional 

programs involved in thermogenesis, augmenting respiratory capacity could still 

effectively protect against obesity and diabetes by way of increased respiratory capacity 

and/or by promoting browning of certain fat tissues as shown in LRPPRC FTg mice, 

which in turn would increase thermogenic capacity.  

In humans and rodents, cold exposure and -adrenergic agonists activate brown 

fat to promote energy expenditure (218-224). Many adrenergic receptor (AR) agonists, 

including pan-adrenergic (ephedrine) and 3-adrenergic (CL-316,243, etc.) agonists, 

have been unsuccessful in humans due to either undesirable cardiovascular effects, poor 

oral availability, or in the case of CL-316,243, weak agonism for the human 3-AR (225). 

Recently, a clinical study has shown that a new class of 3-AR agonist increases energy 

expenditure via brown fat-meditated thermogenesis with no significant effect on 

cardiovascular system (226). Based on my dissertation and other work, a mitochondrial 

retrograde signaling interdicts transcription of thermogenic and oxidative genes, 
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contributing to transition to an energy-storing mode. The status of mitochondrial 

respiratory capacity might reveal unanticipated limitations of 3-agonist therapies being 

considered for humans, limitations predicted to manifest wherever there is a respiratory 

defect of brown fat, and altering respiratory capacity may need to be considered as 

adjunctive therapies to either restore or enhance the thermogenic gene program.  

 

3.9. Is augmented respiratory capacity a universal mechanism to trigger browning 

of adipose tissue? 

An EGFP transgene whose configuration is identical to the LRPPRC transgene 

successfully induced EGFP in whole body of a mouse that expresses ubiquitous Cre 

recombinase (Cre) (227). Likewise, LRPPRC in the transgene construct should be 

expressed to a similar extent in any tissue upon excision of LoxP-flanked 

chloramphenicol acetyltransferase (CAT) gene by tissue-specific Cre. However, our 

initial characterization of the LRPPRC conditional transgenic mice through crossing with 

mice expressing a CMV promoter-driven Cre showed that there was differential 

expression of ectopic LRPPRC in various tissues. Others also reported that their 

cyclooxygenase-2 (COX-2) transgene with the equal configuration as the EGFP and 

LRPPRC transgenes was differentially expressed across tissues (228). It is possible that 

the transgenes may be landed on a tissue-dependent silent region of chromatin via 

random insertion. Given the mixed origins of adipose tissue, each depot may have 

different profiles of silent chromatin.  One solution would be to design a targeting vector 

bearing the transgene so that the construct can be inserted into the ubiquitously expressed 
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locus such as ROSA26 (R26), which would allow us to avoid the silent chromatin issue. 

Once these mice are successfully generated, we should be able to determine whether or 

not augmented respiratory capacity is a universal mechanism to trigger browning of 

adipose tissue.  

 

3.10. Bidirectional communication between thermogenic capacity and respiratory 

capacity in brown fat 

This dissertation and other work describe a one-way regulation that the status of 

mitochondrial respiratory capacity dictates thermogenic gene expression.  Interestingly, it 

has been shown that the thermogenic capacity afforded by UCP1 expression also 

communicate with its partner respiratory capacity in brown fat. In UCP1 KO mice, the 

expression of respiratory subunits that consist of complexes I and IV is severely reduced, 

thereby leading to abrogated complex activities (229). Along with these functional 

defects, brown fat mitochondria from UCP1 KO mice have disorganized and less dense 

cristae. This is specific to brown fat because there is no such defect in heart. Overall, this 

intriguing observation indicates that brown fat monitors the status of the mutually 

connected components of thermogenesis to accordingly modulate its function.  
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APPENDIX 

 

NUTRIENT SENSING BY THE MITOCHONDRIAL 

TRANSCRIPTION MACHINERY DICTATES OXIDATIVE 

PHOSPHORYLATION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The work in this section has appeared in publication in the Journal of Clinical 

Investigation: 

 

Liu L, Nam M, Fan W, Akie TE, Hoaglin DC, Gao G, Keaney JF Jr, Cooper MP.  

J Clin Invest. 2014 Feb;124(2):768-84. 
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Summary 

Sirtuin 3 (SIRT3), an important regulator of energy metabolism and lipid 

oxidation, is induced in fasted liver mitochondria and implicated in metabolic syndrome. 

In fasted liver, SIRT3-mediated increases in substrate flux depend on oxidative 

phosphorylation (OXPHOS), but precisely how OXPHOS meets the challenge of 

increased substrate oxidation in fasted liver remains unclear. Here, we show that liver 

mitochondria in fasting mice adapt to the demand of increased substrate oxidation by 

increasing their OXPHOS efficiency. In response to cAMP signaling, SIRT3 deacetylated 

and activated leucine-rich protein 130 (LRP130; official symbol, LRPPRC), promoting a 

mitochondrial transcriptional program that enhanced hepatic OXPHOS. Using mass 

spectrometry, we identified SIRT3-regulated lysine residues in LRP130 that generated a 

lysine-to-arginine (KR) mutant of LRP130 that mimics deacetylated protein. Compared 

with wild-type LRP130 protein, expression of the KR mutant increased mitochondrial 

transcription and OXPHOS in vitro. Indeed, even when SIRT3 activity was abolished, 

activation of mitochondrial transcription and OXPHOS by the KR mutant remained 

robust, further highlighting the contribution of LRP130 deacetylation to increased 

OXPHOS in fasted liver. These data establish a link between nutrient sensing and 

mitochondrial transcription that regulates OXPHOS in fasted liver and may explain how 

fasted liver adapts to increased substrate oxidation.  
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Introduction 

In normal fasted liver, an increase in ATP-dependent processes (such as 

gluconeogenesis and ureagenesis) and ketogenesis requires substrate oxidation, 

specifically β-oxidation of fatty acids. Presumably, oxidative phosphorylation 

(OXPHOS) must match this increased need for ATP during fasting. Precisely how 

coordination of this kind occurs in vivo remains an open question. Addressing this 

question is important, as several studies imply that a mismatch between substrate 

oxidation and OXPHOS may sustain or exacerbate metabolic disease (230-232). In 

principle, an increase in mitochondrial content (biogenesis) and/or OXPHOS efficiency 

(OXPHOS activity per mitochondrion) could accommodate increased ATP requirements 

in fasted liver. In terms of regulatory control, sirtuin 3 (SIRT3), a mitochondrial sensor of 

nutrients, is an attractive candidate, since SIRT3 influences both substrate oxidation and 

OXPHOS.  

SIRT3 is a mitochondrial NAD
+
-dependent deacetylase that senses nutrient 

deprivation (233). Upon fasting, SIRT3 protein is induced in liver, where it activates 

enzyme systems involved in fatty acid oxidation and ketogenesis (234, 235). Both long-

chain acyl-CoA dehydrogenase (ACADL; also known as LCAD) and 3-hydroxy-3-

methylglutaryl-CoA synthase 2 (HMGCS2) are deacetylated by SIRT3, culminating in 

enhanced β-oxidation of fatty acids and ketogenesis, respectively (234, 235). In cell 

culture, SIRT3 influences energy metabolism; however, different mechanisms have been 

proposed for various cell types (236-239). Nevertheless, whether and how SIRT3 

influences energy metabolism in vivo, and under what biological conditions, remains an 
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open question. Given that SIRT3 is implicated in metabolic syndrome (239, 240), 

resolving this question might explain how defective mitochondria emerge in metabolic 

disease.  

Mitochondrial transcription potently influences energy metabolism (126). The 

basal transcription machinery of mitochondria consists of mitochondrial transcription 

factor B2 (TFB2M) and mitochondrial RNA polymerase (POLRMT) (241-243). The 

basal machinery is activated by mitochondrial transcription factor A (TFAM), which also 

participates in mitochondrial DNA (mtDNA) packaging and replication (244-249). 

Recently, leucine-rich protein 130 (LRP130; official symbol, LRPPRC [leucine-rich PPR 

motif–containing]), a protein implicated in Leigh syndrome (124, 250), was found to 

stimulate transcription of the core mitochondrial machinery and induce mitochondrially 

encoded transcripts (126), including 13 polypeptides that encode core subunits of the 

electron transport chain (86, 251). Independent of mitochondrial biogenesis, LRP130 

induced mitochondrially encoded gene expression, culminating in increased OXPHOS 

efficiency (i.e., greater OXPHOS per mitochondrion). Additionally, cells and liver replete 

with LRP130 had greater β-oxidation of fatty acid (126), which implies that increased 

OXPHOS facilitates greater substrate oxidation. If the transcription machinery of 

mitochondria is activated by nutrient deprivation to enhance energy metabolism, this 

might explain how fasted liver increases its substrate oxidation, a process critical for 

ATP-dependent pathways, such as gluconeogenesis and ureagenesis, as well as for 

ketogenesis.  
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Here, we investigated coordination between nutrient deprivation and OXPHOS 

activity, considering mitochondrial biogenesis and/or OXPHOS efficiency as potential 

mechanisms. We found that normal fasted liver used mitochondria with greater OXPHOS 

efficiency, rather than increasing mitochondrial mass. Greater OXPHOS efficiency was 

achieved by increasing mitochondrial transcription, regulatory control that was dependent 

on SIRT3 and LRP130. In fasted liver, SIRT3 deacetylated and activated LRP130, which 

stimulated mitochondrial transcription to promote OXPHOS. This process was triggered 

by glucagon/cAMP signaling. We propose that the transcription machinery of 

mitochondria senses nutrients via SIRT3, permitting augmentation of OXPHOS. 

 

 

 

 

 

 

 

 

 

 

 

 

 



90 
 

Materials and Methods 

Cell culture and animal experiments  

Stable transduction of H2.35 cells with SIRT3 or LacZ was achieved using 

pQCXIP vectors (Clontech), as previously described (126). H2.35 cells stably expressing 

SIRT3 or LacZ were treated with 500 μM NAD
+
 16 hours prior to harvest. Knockdown 

of murine Lrp130 was performed as previously described (123, 160). The shRNA 

sequence targeted against human LRP130 was 5′-ATGTGAGTCACTATAATGCT-3′. 

Primary hepatocytes were isolated from mice as previously described (105). Briefly, 

approximately 400,000 hepatocytes were seeded per well of a 6-well plate and infected 

with adenovirus encoding the gene of interest. Virus sufficient to produce a multiplicity 

of infection of 400 in AD-293 cells (Stratagene, catalog no. 240085) was used to infect 

400,000 hepatocytes. After 16 hours, virus was removed and replaced with fresh medium. 

Hepatocytes were further incubated for 20 hours, after which cells were harvested. For 

transduction of liver, 8 × 10
9
 live adenoviral particles were tail vein injected into 

C57BL/6 mice on day 0 in 100 μl PBS. On day 5, liver tissue was harvested. Mice were 

maintained in 12-hour light/12-hour dark cycle.  

Lrp130
flox/flox

 mice, which harbor loxP sites flanking exons 3 and 4 of Lrp130, 

were generated by the University of Massachusetts Medical School Transgenic Animal 

Modeling Core from KOMP ES cell clone CSD33081. Prior to experimentation, mice 

were backcrossed for at least 8 generations onto the C57BL/6 background. Lrp130
flox/flox

 

mice and wild-type controls aged 8–12 weeks were infected with AAV-Cre at 1.0 × 10
11

 

GC/mouse in 100 μl PBS. The vector for liver-specific cre recombinase driven by the 
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human thyroxine-binding globulin promoter was packaged in adeno-associated virus by 

the Viral Vector Core of the University of Massachusetts Medical School as previously 

described (252). 3 weeks after injection, mice were singly housed beginning at 10 AM for 

exactly 24 hours in a fed or fasted state, after which they were euthanized for protein and 

genetic studies. Pgc1a
flox/flox

 mice (The Jackson Laboratory, stock no. 009666) were 

injected with AAV-Cre as described above. 3 weeks after infection, primary hepatocytes 

were isolated for experimentation. All animal experiments were approved by the IACUC 

of University of Massachusetts Medical School. 

Assessment of mitochondrial mass using MitoTracker Green FM 

Mitochondrial mass was evaluated by flow cytometric analysis of cells stained 

with MitoTracker Green FM (Invitrogen). Briefly, cells were stained with Mitotracker 

Green FM at 100 nM for 30 minutes at 37°C. Cells were rinsed with PBS, trypsinized, 

and centrifuged at 130 g for 4 minutes. Cell pellets were resuspended in PBS containing 

1% FBS for FACS. To quantify mitochondrial mass, 20,000 live cell counts were gated. 

Since MitoTracker Green FM is excited at 490 nm and emits at 516 nm, the FITC 

channel (excitation at 494 nm, emission at 520 nm) was used to detect signal.  

 

Quantification of transcription and RNA degradation in whole cells 

4sU was used to quantify transcription and RNA degradation as previously 

described (253), with some modifications. For transcription assays, 1.77 × 10
6
 H2.35 

cells stably expressing LacZ or SIRT3 were plated in 10-cm dishes and allowed to attach 

overnight. Cells were treated with 500 μM NAD
+
 for 16 hours and labeled with 2 mM 
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4sU (Sigma-Aldrich, catalog no. T4509) for 15 minutes at 37°C. RNA was isolated from 

cells using Trizol and Qiagen’s RNeasy mini kit. 50 μg RNA was labeled with EZ-link 

Biotin-HPDP for 1.5 hours at room temperature. Unbound Biotin-HPDP was removed by 

chloroform/isoamylalcohol (24:1) extraction at 16,000 g for 5 minutes. A 1:10 volume of 

5 M NaCl and an equal volume of isopropanol were added. Precipitated RNA was 

pelleted at 16,100 g for 20 minutes at 4°C. The pellet was washed with 75% ethanol and 

again pelleted at 16,100 g for 5 minutes at 4°C. The pellet was resuspended in 100 μl TE 

buffer (10 mM Tris-Cl pH 8.0, 1 mM EDTA). RNA samples were denatured at 65°C for 

10 minutes, then rapidly cooled on ice for 5 minutes. Subsequently, denatured 

biotinylated RNA was captured using Dynabeads M-270 streptavidin (Invitrogen) with 

rotation at room temperature for 15 minutes. Beads were washed 3 times with 55°C wash 

buffer (100 mM Tris pH 7.5, 10 mM EDTA, 1 M NaCl, 0.1% Tween-20), followed by 3 

washes at room temperature. Biotin-labeled RNA was eluted with 100 mM DTT by 

rotating at room temperature for 10 minutes. De novo transcripts were cleaned up using 

Qiagen’s RNeasy mini kit. Recovered transcripts were quantified using Ribogreen 

(Invitrogen). Approximately 120 ng RNA was used for reverse transcription and 

subsequent qPCR (RT-qPCR). To assess specificity, a reaction containing no 4sU label 

was performed in parallel. In general, 4sU transcripts were enriched more than 60-fold.  

For RNA degradation studies, on day 0 at 9 AM, H2.35 cells stably expressing 

LacZ or SIRT3 were plated at a density of 2.8 × 10
5
 cells/well of a 6-well plate. On day 1 

at 9 AM, cells were labeled with 0.1 mM 4sU, labeling that continued for 24 hours. On 

day 1 at 5 PM, labeling medium was supplemented with 500 μM NAD
+
. The 0-hour time 
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point was defined as 9 AM on day 2. At the 1- and 2-hour time points, cells were washed 

with PBS, after which medium containing 20 mM uridine (Sigma-Aldrich, catalog no. 

U3003) was used to chase the 4sU label. RNA harvesting and processing proceeded as 

described above.  

 

Immunopurification of acetylated proteins and detection of acetylated LRP130 

protein 

Acetylated proteins were immunopurified as previously described (254). Briefly, 

crude mitochondria were extracted from approximately 400 mg of mouse liver, then 

frozen on liquid nitrogen. The frozen mitochondrial pellet, about 100 μl volume, was 

lysed in 500 μl FLAG lysis buffer (50 mM Tris-Cl pH 7.8, 137 mM NaCl, 10 mM NaF, 1 

mM EDTA, 1% Triton X-100, 0.2% sarkosyl, 10% glycerol) supplemented with 10 μM 

TSA and 5 mM nicotinamide. The typical lysate yielded a protein concentration of about 

5 mg/ml. 2–10 mg mitochondrial lysate was incubated with 30 μl anti–acetylated lysine 

antibody–conjugated beads (Immunechem, catalog no. ICP0388) at 4°C overnight. The 

beads were washed with FLAG lysis buffer 4 times, 1 minute per wash, at room 

temperature. Acetylated protein was eluted with 49 μl freshly prepared glycine (0.1 M, 

pH 2.5) for 5–10 minutes at room temperature. 1 elution usually proved sufficient, 

yielding the highest protein concentration. 1 μl saturated Tris, prepared by dissolving Tris 

base in ddH2O until saturated, was added to the eluate to achieve a pH of 7.0. To detect 

acetylated LRP130 protein, immunoenriched acetylated fractions were immunoblotted 

for LRP130 using anti-LRP130 rabbit polyclonal sera, as previously reported (126).  
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qPCR of mtDNA content and RT-qPCR 

To isolate total DNA, approximately 20 mg frozen liver was lysed in 200 μl tissue 

lysis buffer (50 mM Tris-Cl pH 7.5, 50 mM EDTA pH 8.0, 100 mM NaCl, 1% Triton X-

100, 5 mM DTT, 100 mg/ml proteinase K) at 56°C overnight. The lysate was extracted 

once with phenol/chloroform, after which the aqueous phase was precipitated with 0.1 

volumes of 3 M sodium acetate (pH 5.2) and 2.5 volumes of 100% ethanol. Total DNA 

was quantified using Quant-iT Picogreen dsDNA assay kit (Invitrogen). In a qPCR 

reaction volume of 15 μl, 400 pg total DNA was used to quantify mtDNA content. 

Showing strong agreement, 4 mtDNA genes — ND1, ND6, ATP6, and COX1 — were 

used to quantify mtDNA content. 18S and 28S rRNA served as nuclear reference genes 

(unless otherwise indicated). In addition, Tbp served as a reference gene (unless 

otherwise indicated); however, 10 ng total DNA in a reaction volume of 15 μl was used. 

For RT-qPCR, total RNA was isolated and processed as previously described (126). See 

Tables A.S2 and A.S3 for primers.  

 

Citrate synthase activity in whole liver homogenate 

Citrate synthase assay was performed as previously described (255), with slight 

modifications. 30 mg frozen liver was placed in 300 μl RIPA buffer (50 mM Tris-Cl pH 

7.4, 150 mM NaCl, 5 mM EDTA pH 8.0, 0.1% SDS, 1% sodium deoxycholate, 1% 

NP40) supplemented with PMSF and protease inhibitor cocktail (Sigma-Aldrich), 

followed by homogenization using a bead-mill homogenizer (Qiagen GmbH) at 25 Hz for 
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120 seconds. The liver homogenate was incubated on ice for 30 minutes, then centrifuged 

at 16,100 g for 10 minutes at 4°C. The protein concentration of the cleared homogenate 

was determined using a BCA kit (Thermo Scientific). 10 μg protein was loaded in citrate 

synthase assay buffer (100 mM Tris-Cl pH 8.0, 0.1 mM DTNB, 0.1 mM acetyl-CoA). 

The reaction was started by adding 0.25 mM freshly prepared oxaloacetate. A blank 

sample contained all reagents except liver homogenate. The increase in absorbance due to 

the formation of 5-thio-2-nitrobenzene anion at 412 nm was measured every 30 seconds 

for 15 minutes at room temperature. The activity of citrate synthase was expressed as the 

blank-corrected slope of the absorbance versus time plot within the linear range. Activity 

was presented as absorbance units per second per milligram protein (AU/s•mg protein), 

obtained by multiplying AU/s•10 μg protein by 1,000 μg/mg protein.  

 

Cloning and construction of LRP130-7KR 

Lysine-to-arginine (KR) mutations were made using a Quick Change II XL site-

directed mutagenesis kit (Stratagene, catalog no. 200521). First, a 5KR mutant (K1036R, 

K1059R, K1250R, K1348R, and K1355R) was generated by serially mutating a C-

terminal fragment of LRP130 (1,011–1,392 aa) contained in the pET30a vector. After 

PCR amplification, the mutated fragment was digested with BlpI/PacI and ligated into the 

BlpI/PacI site of a pQCXIP vector encoding full-length murine LRP130. Second, a 2KR 

mutant (K225R and K452R) was generated by serially mutating an N-terminal fragment 

of LRP130 (60–1,010 aa) contained in the pET30a vector. After PCR amplification, the 

fragment was digested with BspE1 and ligated into the BspE1 site of LRP130-
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5KR/pQCXIP, yielding LRP130-7KR (K225R, K452R, K1036R, K1059R, K1250R, 

K1348R, and K1355R). Confirmation of mutations was assessed using Sanger method 

sequencing. 

 

Cloning and construction of LRP130-7KQ 

Lysine-to-glutamine (KQ) mutations were made using a Quick Change II XL site-

directed mutagenesis kit (Stratagene, catalog no. 200521). First, a 2KQ mutant (K1036Q 

and K1250Q) was generated by serially mutating a C-terminal fragment of LRP130 

(1,011–1,392 aa) contained in the pET30a vector. After PCR amplification, the mutated 

fragment was digested with BlpI/PacI and ligated into the BlpI/PacI site of a pQCXIP 

vector encoding full-length murine LRP130. Second, we removed a segment of the above 

LRP130-2KQ/pQCXIP plasmid by digestion with SnaBI, yielding the 7.6-kb truncation 

product LRP130-2KQ/ΔpQCXIP. Then, 3 additional C-terminal KQ mutations (K1059Q, 

K1348Q, and K1355Q) were generated by serially mutating the LRP130-2KQ/ΔpQCXIP 

vector. This mutated fragment was digested with XhoI/PacI and reinserted into a 

similarly digested, full-length LRP130/pQCXIP vector, producing a 5KQ mutant of 

LRP130. A third 2KQ mutant (K225Q and K452Q) was generated by serially mutating 

an N-terminal fragment of LRP130 (60–1,010 aa) contained in the pET30a vector. After 

PCR amplification, the fragment was digested with BspE1 and ligated into the BspE1 site 

of LRP130-5KQ/pQCXIP, yielding LRP130-7KQ (K225Q, K452Q, K1036Q, K1059Q, 

K1250Q, K1348Q, and K1355Q). Confirmation of mutations was assessed using Sanger 

sequencing. 
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Purification of recombinant proteins 

For purification of LRP130 fragments contained in pET30a, a single colony was 

cultured in 6 ml kanamycin LB media at 37°C overnight. 5 ml of overnight culture was 

transferred into 100 ml of LB media and shaken at 37°C for 3 hours until OD600 was 

about 0.4. The culture was then induced with 1 mM IPTG for 5 hours at 37°C. Bacteria 

were harvested by centrifugation at 1,500 g for 15 minutes, and the pellet was frozen at –

80°C until further processing. After thawing, the pellet was resuspended in 10 ml lysis 

buffer (50 mM NaH2PO4, 300 mM NaCl, 10 mM imidazole, 0.5 mM PMSF, pH 8.0). 1 

mg/ml lysozyme and 100 μl of 10% Triton X-100 was added into the lysis buffer and 

incubated at 37°C for 10 minutes. Bacterial DNA was sheared by sonicating (Sonic 

Dismemberator 60, Fisher, maximum output) twice for 10 seconds. Cell debris was 

pelleted at 9,300 g for 20 minutes at 4°C. 100 μl Ni-NTA beads were added to the 

supernatant and incubated at 4°C overnight. The beads were washed 3–4 times with 1 ml 

wash buffer (50 mM NaH2PO4, 300 mM NaCl, 20 mM imidazole, pH 8.0), 1 minute 

each, at room temperature. His-tagged LRP130 protein was eluted 2 hours at 4°C with 

elution buffer (50 mM NaH2PO4, 300 mM NaCl, 250 mM imidazole). The buffer was 

exchanged to BC100 (100 mM NaCl, 20% glycerol, 20 mM Tris-Cl pH 7.9, 0.1% NP-40) 

using a NucAway spin column (Invitrogen).  

 

For purification of CBP-GST fusion protein, E. coli Rosetta (DE3) cells were 

transformed with plasmid encoding CBP-HAT-GST (pGEX-4T1-CBP-HAT). Bacteria 
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were cultured in 6 ml LB medium containing carbencillin (100 μg/ml). After overnight 

culture at 37°C with vigorous shaking, 1,000 ml fresh LB medium was inoculated, and 

bacteria were allowed to grow for 3–5 hours, until OD600 reached 0.4–0.6. Expression of 

GST-CBP fusion protein was induced with overnight at room temperature using 0.5 mM 

IPTG. Bacteria were harvested by centrifugation at 1,500 g for 15 minutes. The pellet 

was resuspended in 10–15 ml ice-cold PBS and an equal volume of BC100 buffer. 

Following sonication, Triton X-100 was added until reaching a final concentration of 1%. 

Lysates were clarified at 13,300 g for 30 minutes. The supernatant was transferred to a 

new tube. 100 μl glutathione agarose beads (Pierce, catalog no. 16110) was added to the 

supernatant and incubated at 4°C overnight. The beads were washed 3 times with 20 ml 

BC500 (500 mM NaCl, 20% glycerol, 20 mM Tris-Cl pH 7.9, 0.1% NP-40) and 2 times 

with 20 ml BC100. GST-tagged CBP protein was eluted for 2 hours at 4°C with 20 mM 

reduced glutathione (Thermo Scientific, catalog no. 78259).  

 

In vitro acetylation and deacetylation assays 

Acetylation reactions of 10 μl volume contained 50 mM HEPES (pH 8.0), 10% 

glycerol, 1 mM DTT, 1 mM PMSF, 10 mM sodium butyrate, 100 μM acetyl-CoA, 2 μg 

LRP130 purified protein, and 100 ng CBP-HAT domain protein (1,319–1,710 aa). The 

reaction mixture was incubated at 30°C for 1.5 hours. Subsequently, an equal volume of 

2× LDS loading buffer was added, and the reactions were analyzed by immunoblotting 

overnight at 4°C with anti–acetylated lysine antibody (Cell Signaling, catalog no. 9441). 

For in vitro deacetylation assay, acetylated LRP130 protein was recovered by binding to 
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Ni-NTA beads (Qiagen, catalog no. 30410) and washed 3–4 times with 1 ml wash buffer 

(50 mM NaH2PO4, 300 mM NaCl, 20 mM imidazole, pH 8.0), 1 minute per wash, at 

room temperature. Acetylated LRP130 protein was eluted with 50 μl of 250 mM 

imidazole at 4°C for 2 hours. The elution buffer was changed to BC100 using a 

NucAway spin column (Invitrogen). Deacetylation was performed in a 20-μl reaction 

containing approximately 1 μg acetylated LRP130 protein, 2 μl purified SIRT3 (Cyclex 

kit, catalog no. CY-1153), and 500 μM NAD
+
. The reactions were incubated at 30°C for 

1.5 hours in a buffer containing 50 mM Tris-HCl (pH 9.0), 50 mM NaCl, 4 mM MgCl2, 

0.5 mM DTT, 0.2 mM PMSF, 0.02% NP-40, and 5% glycerol. Subsequently, the reaction 

was stopped by adding 4× LDS loading buffer, and the reactions were analyzed by 

immunoblotting overnight at 4°C using anti–acetylated lysine antibody (Cell Signaling, 

catalog no. 9441).  

 

Identification of peptides using tandem mass spectrometry 

Mass spectrometry studies were performed at the Proteomics and Mass 

Spectrometry Facility of University of Massachusetts Medical School, as previously 

reported (256). In brief, silver stained gel bands were rinsed in water and briefly 

incubated with ammonium bicarbonate (100 mM). Gel bands were next destained with a 

1:1 ratio of potassium ferricyanide (30 mM) and sodium thiosulfate (100 mM), and 

transferred to new tubes containing 1 ml water for 1 hour. After removal of the water, gel 

slices were subjected to addition of 50 μl of 250 mM ammonium bicarbonate, reduced 

with 5 μl of 45 mM DTT for 30 minutes at 50°C, and then alkylated with 5 μl of 100 mM 
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iodoacetamide for 30 minutes at room temperature. The slices were then washed twice 

with 1 ml water, incubated in a 1:1 solution of 50 mM ammonium 

bicarbonate/acetonitrile at room temperature for 1 hour, soaked in 200 μl acetonitrile, 

removed, and dried in a SpeedVac. Samples were then digested with 50 μl of 2 ng/μl 

trypsin (Sigma-Aldrich) in 0.01% ProteaseMAX Surfactant (Promega) in 50 mM 

ammonium bicarbonate at 37°C for 21 hours. The supernatant of each sample was then 

removed and placed in a separate 0.5-ml tube, and each slice was further extracted with 

100 μl acetonitrile/1% (v/v) formic acid (4:1), combined with respective supernatants of 

each sample, taken to dryness in a SpeedVac, and reconstituted in 20 μl of 0.1% TFA. 

LC-MS/MS analysis was done on a LTQ Orbitrap Velos mass spectrometer (Thermo 

Scientific) as previously reported (256), with the exception of using a 90-minute gradient 

for peptide elution. Raw data files were processed with either Mascot Distiller (Matrix 

Science) or Extract_MSN (Thermo Scientific), searched against the SwissProt database 

using the Mascot Search engine (Matrix Science). In brief, parent mass tolerances were 

set to 10 ppm, while fragment mass tolerances were set to 0.5 Da. Full tryptic specificity 

with 2 missed cleavages was used, and variable modifications of acetylation (protein N-

term, lysine), pyro-glutamination (N-term glutamine), oxidation (methionine), and 

carbamidomethylation (cysteine) were considered. Further peptide annotation was 

achieved using Scaffold (Proteome Software), while relative quantification of acetylated 

peptides was performed using ProteoIQ (Nusep Inc.). Spectra of acetylated peptides were 

manually inspected to further validate assignments.  
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Metabolic labeling of mitochondrial proteins 

Mouse primary hepatocytes were isolated as previously described (160). Cells 

were seeded in 6-well plates at 4.5 × 10
5
 cells/well. After 16 hours, cells were treated 

with vehicle or 20 nM glucagon (Bachem) for 24 hours in starvation media (DMEM, 

0.2% BSA, 2 mM sodium pyruvate). Cells were pretreated with 100 μg/ml 

cycloheximide (Sigma-Aldrich) and/or 100 μg/ml chloramphenicol (Sigma-Aldrich) as 

indicated for 10 minutes in methionine and cysteine-free starvation media containing 

vehicle or glucagon. Cells were then labeled with [
35

S]-methionine and [
35

S]-cysteine (50 

μCi/ml, PerkinElmer) for 60 minutes and chased for 10 minutes in regular DMEM. Cells 

were washed with PBS twice and lysed in RIPA buffer supplemented with protease 

inhibitor cocktail (Sigma-Aldrich), followed by 3 freeze-thaw cycles. Lysates were 

cleared by centrifugation at 16,100 g for 10 minutes at 4°C. Protein concentration was 

determined by BCA assay (Thermo Scientific). 80 μg of protein (20 μg for total 

translation) were separated on a 15% polyacrylamide gel at 50 mA. The gel was fixed 

and stained using colloidal blue staining kit (Invitrogen) to confirm equal protein loading. 

The gel was then dried at 70°C for 3 hours and exposed to a Biomax MR film 

(Carestream Health). Radioactivity in 5 μl of lysates was quantified using a liquid 

scintillation counter (Beckman Coulter) and normalized to protein concentration.  

 

Palmitate oxidation assay 

Palmitate oxidation was performed as previously described (126). Briefly, H2.35 

mouse hepatoma cells were incubated in starvation medium (1% BSA, 25 mM HEPES, 1 
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mM sodium pyruvate in DMEM) in the presence of 0.5 mM NAD
+
 for 16 hours. Cells 

were then incubated for 2 hours in preincubation medium (1% BSA, 25 mM HEPES, 

0.25 mM sodium palmitate, 0.5 mM carnitine in DMEM), and subsequently, 0.5 μCi/well 

of 14C-palmitate was added for 90 minutes. The plate was frozen in liquid nitrogen, and 

250 μl perchloric acid was added to each well. Filter paper moistened with 3N NaOH was 

immediately placed over each well and released CO2.  

 

Comparison of acetylated LRP130 sites across studies 

To estimate the probability that, by chance, 2 studies (Study A and Study B) 

would identify a given number of acetylated residues in common, we used the 

hypergeometric distribution. If, of a total N acetylated LRP130 peptides, Study A 

identified a peptides and Study B identified b peptides, the probability that the sets of 

peptides identified by the 2 studies would have exactly c peptides in common, 0 ≤ c ≤ 

min(230), is as follows.  

 

(Equation 1) 

Derivation. Conditioning on the peptides identified in Study A induces a separation of the 

peptides in Study B into 2 groups: the a peptides identified in Study A and the N – a 

peptides not identified in Study A. If the 2 studies identify exactly c peptides in common, 

http://www.jci.org/articles/view/69413/graphic/1
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Study B must identify c peptides among the a peptides and its remaining b – c peptides 

among the N – a peptides. The number of ways in which this can occur is the product of 

the binomial coefficients in the numerator. The total number of ways in which Study B 

can identify b peptides among the N is equal to the binomial coefficient in the 

denominator. This conditional probability applies to each of the possible sets of a 

peptides that Study A could identify. Because those sets are equally likely, the 

conditional probability is also the unconditional probability. 

Assumptions. The application of the probabilities assumes there are 102 potentially 

acetylatable lysine residues in LRP130 and that, if acetylated, each residue would have 

equal probability of detection by mass spectrometry. It also assumes that mass 

spectrometry of LRP130 protein approaches 100% for each study. Because these 

conditions may not hold for every study, the probabilities are approximations. 

 

Domain mapping and in vitro binding assay 

Truncated mouse POLRMT clones expressing aas 1–340, 1–500, 1–650, and 1–

710 were each generated by PCR. The products of these reactions were digested with 

BamHI and XbaI, then ligated in frame into pcDNA3.1 myc His B plasmid. Clones 

containing full-length and truncated POLRMT were subjected to in vitro 

transcription/translation using a TnT kit (Promega, catalog no. L4610). Full-length mouse 

LRP130 fused with an S-tag was immobilized on S-protein agarose (Novagen, catalog 

no. 69704), then washed with 25 mM HEPES and 0.125% Tween20 containing protease 

inhibitors. The translated products were subsequently treated with DNaseI and RNase for 
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10 minutes at room temperature and centrifuged for 10 minutes at 15,700 g at 4°C. The 

supernatants were incubated with immobilized S-tag LRP130 agarose. After incubation 

for 2 hours at 4°C, complexes were extensively washed with 25 mM HEPES, 0.125% 

Tween-20, and 0.125 M KCl, and c-myc was detected by immunoblotting.  

 

Cellular respiration, complex activity, and isolation of mitochondria 

Cellular respiration (123, 126), isolation of mitochondria (123, 126, 160), 

complex activity (126), and fractionation of mitochondria by alkaline treatment (257) 

were performed as previously described.  

 

Statistics 

2-tailed Student’s t tests were used to analyze complex activity, mitochondrial 

content (using measures of mtDNA or fluorescence), protein quantification, and cellular 

respiration data. P values less than 0.05 were considered significant. 2-way ANOVA was 

used to assess differences in gene expression. Because mitochondrially encoded genes are 

transcribed as long polycistronic transcripts and thus tightly coordinated as a “gene set,” 

we evaluated the entire set using a 2-way ANOVA, reporting a P value comparing 

differences among various groups (or treatments). P values less than 0.05 were 

considered significant. In contrast, nuclear-encoded genes were subjected to post-hoc 

analyses (as indicated in the figure legends), since they are not polycistronic genes that 

do not necessarily fit into a specific gene set. For these studies, Bonferroni-corrected 
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post-tests were implemented using a multiple comparison–adjusted α. All analyses were 

conducted using GraphPad Prism version 6.00.  
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Results 

In liver, fasting coordinately induces mitochondrially encoded transcripts and 

OXPHOS capacity  

Fasted liver is notable for ATP-consuming processes, and is thus dependent on 

OXPHOS. Given that induction of mitochondrially encoded transcripts stimulates 

OXPHOS, we wondered whether mitochondrially encoded transcripts and OXPHOS are 

coordinately induced in fasted liver of C57BL/6 mice. After fasting for 24 hours, mouse 

liver showed modestly increased mitochondrially encoded transcripts and OXPHOS 

capacity (Figure A.1A and C). Indicative of a normal fasted response, mRNA of Pepck 

and G6p, enzymes involved in gluconeogenesis, was induced, whereas that of Scd1 and 

Fasn, enzymes involved in lipogenesis, was attenuated (Figure A.1B). Interestingly, the 

increase in complex IV activity that we observed (Figure A.1C) paralleled that reported 

by another group; however, alterations in mitochondrial content were not explored in the 

previous report (258).  

Conceivably, changes in mitochondrially encoded transcripts and OXPHOS might 

be explained by increased mitochondrial content. We therefore quantified mitochondrial 

biogenesis using complementary genetic, biochemical, and protein assessments. While 

mRNA for Pgc1a, a potent regulator of mitochondrial biogenesis, was induced, there was 

no induction of Tfam, Polrmt, and Tfb2m, which comprise the basal transcription 

machinery of mitochondria, or of Lrp130, which stimulates the core machinery (Figure 

A.1B).  Because genes comprising the basal transcription machinery are induced during 

http://www.jci.org/articles/view/69413#F1
http://www.jci.org/articles/view/69413#F1
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Figure A.1. Fasting coordinately induces mitochondrially encoded transcripts and 

OXPHOS in liver. (A) Hepatic gene expression of mitochondrially encoded transcripts 

in 24-hour fasted or fed C57BL/6 mice (n=3). (B) Expression of genes that regulate 

mitochondrial biogenesis, mitochondrial transcription, lipogenesis, and gluconeogenesis 

(n=3). (C) Complex activity of mitochondria isolated from liver of 24-hour fasted or fed 

C57BL/6 mice (n=3). CI–CV, complexes I–V; CS, citrate synthase. (D) Biochemical 

assessment of mitochondrial content using citrate synthase activity in whole liver 

homogenate (n=3). (E) Genetic assessment of mitochondrial content using mtDNA 

content (n=3). (F) Assessment of mitochondrial content by immunoblotting citrate 

synthase protein in whole liver homogenate (n=3–4). Data are mean ± SEM. *P < 0.05, 

**P < 0.01, ***P < 0.001, 2-way ANOVA, with (B and C) or without (A) Bonferroni 

post-test, or 2-tailed unpaired Student’s t test (D and E).   
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mitochondrial biogenesis, their lack of induction was indicative of stable mitochondrial 

content. mtDNA content was unchanged (Figure A.1D), in support of unaltered 

mitochondrial mass. Because the activity of citrate synthase proved indistinguishable in 

isolated mitochondria (Figure A.1E), its activity in whole-liver homogenate permitted 

biochemical assessment of mitochondrial content. In agreement with genetic data, the 

activity and protein level for citrate synthase were unchanged (Figure A.1E and F), 

indicative of stable mitochondrial content regardless of feeding status. Hence, induction 

of Pgc1a was not associated with altered mitochondrial content in fasted liver. As 

previously reported in other systems (259, 260), these data imply that a certain threshold 

effect of PGC-1α coactivator activity is necessary to induce mitochondrial biogenesis.  

Next, we sought to understand which nutrient signaling pathway influences 

mitochondrially encoded gene expression. Broadly, the fasting response is notable for a 

decline in insulin and an increase in glucagon, the latter of which activates intracellular 

cAMP signaling. Using cultured primary hepatocytes, we evaluated these possibilities. 

Withdrawal of insulin had no effect on the fasting-responsive genes Pepck and G6p or on 

mitochondrially encoded genes (Figure A.2A and C). As reported by others, glucagon 

induced both Pepck and G6p (Figure A.2C). Interestingly, mitochondrially encoded 

genes were also induced, while many nuclear encoded ETC genes were unaffected 

(Figure A.2A and B). Forskolin, which increases intracellular cAMP levels, induced 

mitochondrially encoded genes as well (Figure A.S1A and B), which indicates that the 

cAMP pathway governed by glucagon is likely responsible. Even in Pgc1a null primary 

hepatocytes, glucagon was still sufficient to induce mitochondrially  

http://www.jci.org/articles/view/69413#F1
http://www.jci.org/articles/view/69413#F1
http://www.jci.org/articles/view/69413#F1
http://www.jci.org/articles/view/69413#F2
http://www.jci.org/articles/view/69413#F2
http://www.jci.org/articles/view/69413#F2
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Figure A.2. Glucagon induces mitochondrially encoded genes and proteins. (A) 

Neither insulin/dexamethasone (Insulin+Dex) nor their withdrawal (Vehicle) had an 

effect on mitochondrially encoded gene expression; however, glucagon induced 

mitochondrially encoded gene expression. (B) Effect of glucagon on several nuclear 

encoded ETC subunits. (C) Effect of glucagon on fasting-responsive genes and regulators 

of mitochondrial content and function. (D) [
35

S]-methionine labeling of cytoplasmic 

proteins (left 2 lanes) and mitochondrially encoded translation products, which were 

evident after inhibition of cytoplasmic translation with cycloheximide (CHX) (middle 6 

lanes). Consistent with mitochondrial translation products, chloramphenicol (CAP) 

blocked their translation (right 2 lanes). GCG, glucagon. (E) Coomassie brilliant blue 

staining of the [
35

S]-labeled gel, showing equal protein loading. (F) Quantification of 

mitochondrially encoded [
35

S]-labeled proteins by scintillation courting (n = 3). Data are 

mean ± SEM. **P < 0.01, ***P < 0.001, 2-way ANOVA, with (B and C) or without (A) 

Bonferroni post-test, or 2-tailed unpaired Student’s t test (F).  
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encoded genes, although the response was modestly blunted (Figure A.S1C and D). 

These data further support the observation that de novo biogenesis is not required. 

Induction of mitochondrially encoded genes was accompanied by an increase in 

mitochondrially encoded proteins (Figure A.2D–F). Even so, in both primary mouse 

hepatocytes and mouse liver, gene expression was largely unchanged for several nuclear 

encoded ETC subunits (Figure A.2B and Figure A.3A). Several nuclear encoded ETC 

proteins, however, were increased in fasting liver mitochondria (Figure A.3B and C), 

which indicates that they were modestly stabilized (or more efficiently translated) in the 

fasted state. Overall, these data are suggestive of a coordinated response that facilitates 

enhanced OXPHOS. Importantly, mitochondrially encoded proteins, which are central to 

the process, are regulated at the level of gene expression.  

Finally, we used a different mouse strain to test the generality of the response. 

Similar to C57BL/6 mice, mitochondrially encoded genes were increased in 129S mice 

(Figure A.S2), although the induction of Pepck, G6p and other genes was less robust. 

Similar to C57BL/6 mice, induction of mitochondrially encoded genes in 129S mice was 

not attributable to alterations in mitochondrial content (Figure A.S2). These observations 

indicated that the fasting response is accompanied by increases in mitochondrially 

encoded transcripts and OXPHOS, independent of de novo mitochondrial biogenesis. 

Given that increased mitochondrially encoded gene expression enhances OXPHOS (126), 

these data might imply that induction of mitochondrially encoded genes in cooperation 

with nuclear encoded subunits increases the capacity for OXPHOS in fasted liver.  

 

http://www.jci.org/articles/view/69413#F2
http://www.jci.org/articles/view/69413#F2
http://www.jci.org/articles/view/69413#F3
http://www.jci.org/articles/view/69413#F3
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Figure A.3. Glucagon-mediated induction of mitochondrially encoded genes 

requires SIRT3. (A) Fasted mouse liver showed no change in gene expression for 

several nuclear encoded ETC genes (n=3–4). (B) Representative immunoblot of several 

nuclear encoded ETC subunits. Freshly isolated mitochondria were alkaline extracted 

with carbonate buffer, permitting assessment of the membrane fraction (Pellet) or soluble 

fraction. (C) Quantification of the several nuclear encoded ETC subunits (n=3–4). (D–H) 

In Sirt3 knockout primary hepatocytes, glucagon-mediated induction of fasting-

responsive genes was unaltered (D); however, induction of mitochondrially encoded gene 

expression was completely abrogated (E; n=3) and no longer accompanied by increased 

mitochondrially encoded translation products (F and H). (G) Coomassie brilliant blue 

staining of [
35

S]-labeled gel, showing equal protein loading. Similar results were obtained 
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using nicotinamide (Figure A.S1E and F). Data are mean ± SEM, except in C (mean ± 

SD). *P < 0.05, **P < 0.01, ***P < 0.001, 2-way ANOVA with Bonferroni post-test (A, 

D, and E) or 2-tailed unpaired Student’s t test (C and H).  
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SIRT3 is necessary and sufficient for fasting-mediated induction of mitochondrially 

encoded transcripts and OXPHOS 

By sensing the level of cellular NAD
+
, sirtuins are important sensors of nutrient 

deprivation. To globally assess this, we treated primary hepatocytes with nicotinamide, 

which inhibits NAD
+
-dependent sirtuin activity, and evaluated the response to glucagon. 

Nicotinamide had no effect on the fasting-responsive genes Pepck and G6p (Figure 

A.S1E). In contrast, nicotinamide abrogated induction of mitochondrially encoded genes 

(Figure A.S1F), which suggests that a NAD
+
-dependent pathway is necessary for their 

induction. These data indicate that a NAD
+
-dependent pathway, possibly via a sirtuin, 

mediates induction of mitochondrially encoded genes in the fasted response. SIRT3 

protein is a sensor of nutrient deprivation that is induced in fasted liver mitochondria 

(234, 261). Moreover, prior studies in cell lines indicate that it influences cellular 

respiration (236-238); thus, SIRT3 might coordinate changes in energy metabolism with 

the fasted response. For these reasons, SIRT3 protein was an attractive candidate in the 

control of mitochondrially encoded gene expression and concomitant OXPHOS in fasted 

liver. We therefore challenged Sirt3 KO primary hepatocytes with glucagon. Similar to 

nicotinamide-treated primary hepatocytes, glucagon stimulated several fasting-responsive 

genes in the Sirt3 KO primary hepatocytes, but failed to induce mitochondrially encoded 

gene expression or mitochondrially encoded translation products (Figure A.3D–H).  

Given that SIRT3 is implicated in energy metabolism in cell lines and is induced 

in fasted liver, we evaluated the fasting response in Sirt3 KO mouse liver. Neither 

mitochondrially encoded transcripts nor OXPHOS were induced in fasted Sirt3 KO liver, 

http://www.jci.org/articles/view/69413#F3
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despite a slight increase in mitochondrial content (Figure A.4A–F). Again, there was no 

change in nuclear encoded ETC subunits (Figure A.S3). Additionally, we depleted SIRT3 

in C57BL/6 mouse liver using shRNA targeting Sirt3 (Figure A.S4A). Again, both 

mitochondrially encoded gene expression and induction of OXPHOS were impaired, 

independent of mitochondrial content (Figure A.S4). Moreover, SIRT3 knockdown did 

not influence the general fasting response, as these mice proved indistinguishable from 

wild-type C57BL/6 mice (compare Figure A.1B and Figure A.S4D). These findings in 2 

mouse models of SIRT3 deficiency argue that SIRT3 is required for induction of 

mitochondrially encoded transcripts and OXPHOS in fasted liver.  

Next, we evaluated whether SIRT3 is sufficient to induce mitochondrially 

encoded gene expression. SIRT3 was ectopically expressed in mouse liver using 

adenovirus encoding Sirt3 (Figure A.S5A–E). To minimize hormonal influences and 

genetic variations due to feeding status, food was briefly removed for 3 hours to clear the 

gastrointestinal tract of residual food. Brief food deprivation did not alter mitochondrially 

encoded transcripts or SIRT3 protein (data not shown), the latter of which is induced only 

after a longer fast (234). Even in the absence of potent fasting cues, ectopic expression of 

SIRT3 modestly induced mitochondrially encoded gene expression.  

Induction of mitochondrially encoded genes was not associated with alterations in 

mitochondrial content (Figure A.S5D and E). This action proved cell autonomous, as 

mitochondrially encoded gene expression was also induced in H2.35 murine hepatoma 

cells stably expressing SIRT3 as well as in primary hepatocytes transduced for 36 hours 

with Sirt3 adenovirus (Figure A.4G–L, and Figure A.S5F and G). Unlike primary  

http://www.jci.org/articles/view/69413#F4
http://www.jci.org/articles/view/69413#F1
http://www.jci.org/articles/view/69413#F4
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Figure A.4. In liver, SIRT3 is necessary and sufficient for fasting-mediated 

induction of mitochondrial encoded transcripts and OXPHOS. (A) Hepatic gene 

expression of mitochondrially encoded transcripts in 24-hour fasted Sirt3 KO mice (129S 

background) (n=3). (B) Expression of genes that regulate mitochondrial biogenesis, 

mitochondrial transcription, lipogenesis, and gluconeogenesis in Sirt3 KO liver (n=3). 

(C) Complex activity from liver of 24-hour fasted or fed Sirt3 KO mice (n=3). (D) 

Genetic assessment of mitochondrial content using mtDNA content (n=3). (E) 
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Biochemical assessment of mitochondrial content using citrate synthase activity in whole 

liver homogenate (n = 3). (F) Assessment of mitochondrial content by immunoblotting 

citrate synthase protein in whole liver homogenate (n=3). (G and H) Expression of (G) 

mitochondrially encoded transcripts and (H) genes that regulate mitochondrial biogenesis 

and mitochondrial transcription in H2.35 hepatoma cells stably expressing LacZ or 

SIRT3 (n=3). (I) Immunoblot showing expression of ectopically expressed myc-tagged 

SIRT3 protein. (J) Using a Clark-type oxygen electrode, cellular respiration — basal, 

proton leak, and maximal respiration (FCCP) — was assessed in H2.35 hepatoma cells 

stably expressing LacZ or SIRT3. (n=4). See Figure A.S6 for representative oxygen 

consumption curves. (K) Fluorescent assessment of mitochondrial content using 

MitoTracker Green FM (n=3). (L) Genetic assessment of mitochondrial content using 

mtDNA content (n=3). Data are mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001, 2-

way ANOVA, with (A and G) or without (B and H) Bonferroni post-test, or 2-tailed 

unpaired Student’s t test (C–E and J–L).  
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hepatocytes, H2.35 hepatoma cells stably transduced with SIRT3 required 

supplementation with 500 μM NAD
+
, a cofactor for SIRT3. Even though mechanisms 

involving NAD
+
 uptake by mitochondria remain controversial, extracellular NAD

+
 does 

increase the concentration of NAD
+
 within mitochondria (262, 263). To make fair 

comparisons, LacZ H2.35 control cells were treated likewise.  

Next, we evaluated OXPHOS in H2.35 cells stably expressing SIRT3. In cells 

replete with SIRT3, maximal cellular respiration was modestly induced about 12%, while 

basal respiration and proton leak were unchanged (Figure A.4J). Increased respiratory 

capacity was independent of de novo mitochondrial biogenesis (Figure A.4K and L). 

Using galactose, a fuel in which very little ATP is derived from glycolysis, maximal 

cellular respiration was increased about 37% (Figure A.S6). These data imply that, after a 

bout of fasting, induction of SIRT3 is both necessary and sufficient for the induction of 

mitochondrially encoded transcripts and OXPHOS.  

 

SIRT3 activates mitochondrial transcription and promotes OXPHOS via LRP130 

Induction of mitochondrially encoded transcripts stimulates OXPHOS (12). 

Mitochondrially encoded gene expression is the summation of transcription and 

degradation. Presumably, SIRT3 influenced one or both of these pathways. Transcription 

and RNA degradation can be assessed by metabolic labeling, using pulse and pulse-chase 

experiments, respectively (Figure A.5A). To assess mitochondrial transcription, we 

pulse-labeled cells with 4-thiouridine (4sU), a naturally occurring analog of UTP. After 

isolating RNA, 4sU-labeled transcripts were biotinylated, recovered on streptavidin  

http://www.jci.org/articles/view/69413#F4
http://www.jci.org/articles/view/69413#F4
http://www.jci.org/articles/view/69413#B12
http://www.jci.org/articles/view/69413#F5


118 
 

 

 

 

 

 

 

 

 

Figure A.5. SIRT3 induces mitochondrially encoded genes by stimulating 

mitochondrial transcription. (A) Metabolic labeling with 4sU. This method quantifies 

de novo transcripts, permitting assessment of mitochondrial transcription in whole cells. 

It can also be used to monitor transcript degradation. (B) Transcription of Sirt3, driven by 

the viral CMV promoter, was induced in cells replete with SIRT3, whereas transcription 

of several housekeeping genes was unchanged (n=3). (C) Cells stably expressing SIRT3 

exhibited increased mitochondrial transcription (n=3). (D) Uridine was used to chase the 

4sU label and assess transcript half-life. Half-lives of mitochondrial transcripts in H2.35 

hepatoma cells stably expressing SIRT3 were unchanged. Data are mean ± SEM. ****P 

< 0.0001, 2-way ANOVA, with (B) or without (C) Bonferroni post-test. 
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beads, and quantified by quantitative PCR (qPCR). Because labeling is brief and much 

shorter than the half-life of most mitochondrially encoded transcripts, this method allows 

for quantitative assessment of transcription (253, 264, 265). Driven by a powerful CMV 

promoter, Sirt3 mRNA served as a positive control for transcription (Figure A.5B). 

Several housekeeping genes were unchanged (Figure A.5B), indicative of specific 

transcription. Ectopic expression of SIRT3 induced mitochondrial transcription, but 

failed to influence transcript degradation (Figure A.5C and D). Akin to transcription in 

the nucleus, these data support the general observation that changes in gene expression 

are largely driven by transcription (264). Overall, these data indicate that SIRT3 induces 

mitochondrially encoded gene expression by stimulating mitochondrial transcription. 

Given that mitochondrial mass and mtDNA content were stable (Figure A.4 and Figure 

A.S5), induction by SIRT3 signified increased transcription per mitochondrial genome.  

Next, we explored the mechanism by which SIRT3 influences mitochondrial 

transcription and OXPHOS. Independent of de novo mitochondrial biogenesis, it was 

previously reported that LRP130 interacts with POLRMT, culminating in enhanced 

mitochondrial transcription and attendant OXPHOS (126). We therefore wondered 

whether SIRT3 activates mitochondrial transcription and OXPHOS via LRP130. To test 

this, we ectopically expressed SIRT3 in cells deficient for LRP130. Using a previously 

validated RNAi (123, 126, 160), LRP130 knockdown in H2.35 cells was greater than 

85% at the mRNA and protein levels (Figure A.6A and B). As previously reported (123, 

126, 160), mitochondrially encoded transcripts were globally attenuated in LRP130-

deficient cells, whereas genes involved in mitochondrial biogenesis and mitochondrial  

http://www.jci.org/articles/view/69413#F5
http://www.jci.org/articles/view/69413#F5
http://www.jci.org/articles/view/69413#F5
http://www.jci.org/articles/view/69413#F4
http://www.jci.org/articles/view/69413#F6
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Figure A.6. SIRT3-mediated induction of mitochondrial transcription requires 

LRP130. (A–D) Gene expression of Lrp130 and Sirt3 (A), representative immunoblot of 

LRP130 and SIRT3 (B), gene expression of mitochondrially encoded transcripts (C), and 

expression of genes that regulate mitochondrial biogenesis and mitochondrial 
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transcription (D) in H2.35 hepatoma cells replete with LacZ or SIRT3, superimposed 

with control (shCtrl) or Lrp130 knockdown (shLRP130) (n=3). (E–G) H2.35 hepatoma 

cells replete with SIRT3 or LacZ, but deficient for LRP130, were used. (E) SIRT3 was no 

longer sufficient to influence maximal respiration, using a Clark-type oxygen electrode (n 

= 6). However, control shRNA SIRT3 cells retained increased respiratory capacity (see 

Figure A.S6). Assessment of mitochondrial content was unchanged, as assessed by (F) 

MitoTracker Green FM or (G) mtDNA content (n=3). (H–K) LRP130 liver-specific 

knockout (LRP130 LKO) mice were used. Hepatic gene (H) and protein (I) expression 

(n=4). (J) Effect of fasting on mitochondrially encoded genes in liver. (K) Effect of 

fasting on fasting-responsive genes in liver. Data are mean ± SEM. *P < 0.05, **P < 

0.01, ***P < 0.001, 2-way ANOVA, with (A, D, H, and K) or without (C and J) 

Bonferroni post-test, or 2-tailed unpaired Student’s t test (E–G).  
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transcription were unchanged (Figure A.6C and D). In cells deficient for LRP130, 

ectopically expressed SIRT3 failed to induce either mitochondrially encoded transcripts 

or OXPHOS (Figure A.6C and E). In contrast, OXPHOS was increased in control shRNA 

LacZ cells replete with SIRT3 protein (Figure A.S6), an induction similar to that shown 

in Figure A.4J. Effects on mitochondrial transcription and energy metabolism were not 

caused by altered mitochondrial content, as genetic and fluorescent markers of 

mitochondrial content were unperturbed (Figure A.6F and G). Finally, effects on 

mitochondrial transcription and energy metabolism were not caused by perturbation of 

TFB2M or POLRMT, which collectively comprise the basal transcription machinery. 

Specifically, cells deficient or replete with LRP130 protein did not alter POLRMT or 

TFB2M protein levels (Figure A.S7A and B).  

Next, we fasted mice in which Lrp130 was ablated in liver. To achieve liver-

specific deletion of Lrp130 in adult mice, animals harboring floxed Lrp130 alleles were 

injected via tail vein with adeno-associated virus containing a vector coding for liver-

specific cre recombinase (AAV-Cre), yielding liver-specific LRP130 KO mice (referred 

to herein as LRP130 LKO mice; Figure A.6H and I). After a 24-hour fast, 

mitochondrially encoded genes were induced in wild-type mice, but not LRP130 LKO 

mice (Figure A.6J), which indicates that LRP130 is required for induction of 

mitochondrially encoded genes in fasted liver. As previously reported, mitochondrially 

encoded gene expression was globally decreased in LRP130 LKO liver (Figure A.6J). 

Details of the Lrp130
flox/flox

 allele are shown in Figure A.S7C. We additionally ectopically 

expressed SIRT3 in Lrp130 KO primary hepatocytes. The ability of SIRT3 to induce 

http://www.jci.org/articles/view/69413#F6
http://www.jci.org/articles/view/69413#F6
http://www.jci.org/articles/view/69413#F4
http://www.jci.org/articles/view/69413#F6
http://www.jci.org/articles/view/69413#F6
http://www.jci.org/articles/view/69413#F6
http://www.jci.org/articles/view/69413#F6
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mitochondrially encoded genes was abrogated in Lrp130 KO hepatocytes (Figure A.S8). 

Finally, we evaluated fatty acid in H2.35 cells stably expressing SIRT3 but deficient for 

LRP130, since fatty acid oxidation depends on OXPHOS. Antimycin A (which inhibits 

electron transfer and, hence, OXPHOS) served as a positive control. In the absence of 

LRP130, fatty acid oxidation was significantly impaired (Figure A.S8), which suggests 

that LRP130 is required for fatty acid oxidation. In summary, SIRT3 activated 

mitochondrial transcription and increased OXPHOS. This action was dependent on 

LRP130, a regulator of mitochondrial transcription and OXPHOS.  

 

SIRT3 deacetylates LRP130 in fasted liver and increases its transcriptional activity 

Given that nutrient deprivation induces mitochondrial SIRT3, we evaluated 

whether SIRT3 influences acetylation of LRP130 protein in fasted liver mitochondria. 

Compared with fed liver, LRP130 was deacetylated in fasted liver mitochondria, a state 

in which SIRT3 activity (and protein) was increased (Figure A.7A). Supporting 

regulation by SIRT3, LRP130 was hyperacetylated in SIRT3-deficient mouse liver 

(Figure A.7B). In accordance with cell-autonomous control, NAD
+
 promoted 

deacetylation of LRP130 in H2.35 cells replete with SIRT3 (Figure A.7C). Buttressing 

these data, LRP130 coimmunoprecipitated with SIRT3 (Figure A.7D), but failed to 

immunoprecipitate with SIRT5 (data not shown), another — albeit less potent — 

deacetylase localized to mitochondria. To assess a functional interaction, we evaluated 

whether SIRT3 deacetylates purified LRP130 protein. Since mitochondrial acetylases 

have not been characterized, we used CREB-binding protein (CBP) to acetylate purified  

http://www.jci.org/articles/view/69413#F7
http://www.jci.org/articles/view/69413#F7
http://www.jci.org/articles/view/69413#F7
http://www.jci.org/articles/view/69413#F7


124 
 

 

 

 

 

 

 

Figure A.7. During the fasted response, SIRT3 deacetylates LRP130 in liver 

mitochondria. (A) Representative immunoblot and protein quantification showing 

reduced acetylation of LRP130 (Ac-LRP130) in mitochondria isolated from fasted mouse 

liver (n=3 experiments). (B) Immunoblot and protein quantification showing 

hyperacetylation of LRP130 in mitochondria isolated from liver deficient for SIRT3 (n = 

4). (C) Immunoblot showing deacetylation of LRP130 in H2.35 cells stably expressing 

SIRT3 upon treatment with 500 μM NAD
+
. (D) SIRT3 and LRP130 

coimmunoprecipitated, using ectopically expressed SIRT3-FLAG protein and 

endogenous LRP130. (E) Using purified proteins, SIRT3 robustly deacetylated the C 

terminus of LRP130. Deacetylation of LRP130 was inhibited by 12.5 mM nicotinamide 

(NAM). Shown is 1 representative of 4 independent experiments. Similar, but less robust, 

deacetylation was obtained for the N terminus of LRP130 (not shown). (F) Acetylated 

LRP130 fragments were incubated with control buffer or purified SIRT3 protein, then 

subjected to mass spectrometry. Lysines showing greater than 50% deacetylation by 

SIRT3 are graphed (gray and black bars). Percent deacetylation was calculated as 1 – 

(SIRT3 signal/control signal). 7 lysines were mutated to arginines (gray bars), generating 

LRP130-7KR, which mimics deacetylated protein. Data are mean ± SEM. *P < 0.05, **P 

< 0.01, ***P < 0.001, 2-tailed unpaired Student’s t test (A and B).   



125 
 

LRP130 protein, an approach that is standard in the field (266, 267). In the presence of 

purified SIRT3 protein, acetylated LRP130 C-terminal protein was robustly deacetylated 

by SIRT3 (Figure A.7E). Similar, but less robust, results were obtained using N-terminal 

fragments of LRP130 (data not shown). Collectively, these data argue that SIRT3 

deacetylates LRP130 in fasted liver. Finally, the conclusion that LRP130 is a bona fide 

target of SIRT3 was buttressed by a review of proteomic analyses (268-270), in which 

SIRT3 was found to be deficient in either cells or mouse liver (Figure A.S9).  

Next, we used mass spectrometry to map 17 lysine residues of LRP130 sensitive 

to deacetylation by SIRT3 (Figure A.7F and Table A.S1). Sites with greater than 2-fold 

change were deemed positive. The mass spectrometry signal from the control reaction 

containing acetylated LRP130 protein was divided into the signal from the SIRT3 

reaction. This ratio was subtracted from 1, yielding the arbitrary metric of percent 

deacetylation.  

To evaluate the genetic and functional implications of LRP130 protein 

acetylation, we mutated 7 of 17 acetylated lysines to arginine (referred to herein as 

LRP130-7KR; Figure A.7F and Table A.S1). By mutating a lysine to an arginine, a 

mutated site retains its positive charge and functionally mimics deacetylated protein. 

Similarly, we generated a 7KQ mutant of LRP130 (LRP130-7KQ). Mutating a lysine to 

glutamine retains a neutral charge at the site and often mimics acetylated protein. 2 

groups previously reported that LRP130 stimulates mitochondrial transcription (126, 

271). In cell lysates, LRP130 interacted with both TFB2M and POLRMT (126), both of 

which comprise the basal transcription machinery of mitochondria (243). We therefore 

http://www.jci.org/articles/view/69413#F7
http://www.jci.org/articles/view/69413#F7
http://www.jci.org/articles/view/69413#F7


126 
 

reasoned that the acetylation status of LRP130 might influence its interaction with 

TFB2M and/or POLRMT. Because POLRMT and LRP130 migrate at similar molecular 

weights, we refined the level of interaction to aas 340–710 of POLRMT (Figure A.S10). 

This enabled us to use a 1–710 aa fragment of POLRMT, which is easily distinguished 

from LRP130. We evaluated whether LRP130-7KR (which mimics deacetylated protein) 

differentially interacts with either TFB2M or the 1–710 aa fragment of POLRMT. 

Compared with murine LRP130-WT, LRP130-7KR preferentially interacted with 

POLRMT, whereas differential binding of TFB2M was less apparent (Figure A.8A and 

B).  

Next, we evaluated whether LRP130-7KR and LRP130-7KQ exhibited 

differential activity. We transiently expressed LRP130-WT or the murine LRP130 

mutants in 293T cells deficient for endogenous human LRP130. We used this strategy to 

mitigate competition with endogenous LRP130 and to evaluate activity using 

physiologically relevant levels of LRP130 protein. Although human and mouse LRP130 

share more than 75% homology at the protein level, the shRNA targeting human LRP130 

mRNA does not target mouse Lrp130 mRNA. Knockdown of human LRP130 in 293T 

cells and reconstitution with murine LRP130 is shown in Figures A.S11 and A.S12. 

Endogenous SIRT3 activity was inhibited using 10 mM nicotinamide, a dose previously 

shown to impair NAD
+
-dependent sirtuin activity in 293T cells. Compared with LRP130-

WT, LRP130-7KR exhibited greater activity, as assessed by mitochondrial gene 

expression, mitochondrial transcription, and oxygen consumption (Figure A.8C, D, and 

F). The level of ectopically expressed LRP130 protein was comparable (Figure A.8E).  

http://www.jci.org/articles/view/69413#F8
http://www.jci.org/articles/view/69413#F8
http://www.jci.org/articles/view/69413#F8
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Figure A.8. LRP130-7KR stimulates mitochondrial transcription and promotes 

OXPHOS. (A) LRP130-7KR, which mimics deacetylated protein, showed increased 

affinity for aas 1–710 of POLRMT, a fragment that contains the catalytic domain. See 

Figure A.S10 for more detailed mapping. (B) In contrast, compared with LRP130-WT, 

LRP130-7KR showed no differential affinity for TFB2M. (C, D, and F) Using 293T 

cells, endogenous human LRP130 was knocked down >95%, then reconstituted with 

murine LRP130-WT or LRP130-7KR (see Figure A.S11). The shRNA targeting human 

LRP130 does not target mouse Lrp130 (not shown). Endogenous NAD
+
-dependent 

sirtuin activity was inhibited with 10 mM nicotinamide for 16 hours. LRP130-7KR had 

greater (C) mitochondrially encoded gene expression (n=3), (D) mitochondrial 

transcription (n=3), and (F) maximal respiration (n=5) versus LRP130-WT. (E) 
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Immunoblot showing similar levels of ectopically expressed LRP130-WT and LRP130-

7KR. See Figure A.S11 for total LRP130 protein. Data are mean ± SEM. *P < 0.05, ***P 

< 0.001, 2-way ANOVA (C and D) or 2-tailed unpaired Student’s t test (F).  
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Interestingly, the effect on transcription was much greater than that on respiration, 

indicative of either a saturation effect or limitations of our experimental system. In 

contrast, LRP130-7KQ did not increase mitochondrially encoded gene expression (Figure 

A.S12), which suggests that deacetylation of LRP130 (as reflected by LRP130-7KR) 

increases its activity. Since SIRT3-dependent pathways were inhibited by nicotinamide, 

in terms of mitochondrial transcription and OXPHOS, these data indicate that LRP130 is 

a crucial mediator of SIRT3 action. Taken together, our results imply that deacetylation 

of LRP130 by SIRT3 enhances the activity of LRP130, which in turn stimulates 

mitochondrial transcription and OXPHOS.  

In summary, we have identified a mechanism whereby nutrient sensing by SIRT3 

induces mitochondrial transcription and enhances OXPHOS via LRP130 (Figure A.9). 

Moreover, our present findings indicate that SIRT3 coordinates activation of enzyme 

systems involved in fatty acid oxidation as well as OXPHOS. In fasted liver, our data 

support a model whereby activation of mitochondrial transcription increases OXPHOS 

capacity, and this enhanced bioenergetic efficiency would be predicted to support 

increased substrate oxidation.  
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Figure A.9. In fasted liver, the transcription machinery of mitochondria sense 

nutrient deprivation via SIRT3, culminating in enhanced energy metabolism. In 

liver, SIRT3 is induced by nutrient deprivation. Specifically, glucagon, which activates 

cAMP signaling, increases SIRT3 activity, perhaps by indirectly increasing 

mitochondrial NAD
+
 levels. LRP130 is then deacetylated and activated by SIRT3, which 

strengthens the LRP130-POLRMT interaction. This culminates in increased 

mitochondrial transcription and attendant OXPHOS. Presumably, processes dependent on 

OXPHOS — fatty acid oxidation, gluconeogenesis, ketogenesis, and ureagenesis — are 

augmented by increased respiratory capacity. To simplify the model, deacetylation of 

enzymes involved in fatty acid oxidation and ketogenesis, as well as SIRT3 action on 

individual OXPHOS subunits, are not illustrated.  
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Discussion 

Here, we identified an unanticipated link between nutrient sensing and 

mitochondrial transcription that was critical for fasting-mediated induction of OXPHOS. 

In fasted liver, ATP synthesis is accompanied by a 20% increase in oxygen consumption 

(272, 273), enabling ATP-dependent processes such as gluconeogenesis and ureagenesis. 

While increases in nutrient flux and oxidation are essential, OXPHOS capacity is critical 

factor as well. We showed here that SIRT3 deacetylated LRP130 during the fasted 

response. Once deacetylated, LRP130 stimulated mitochondrial transcription to increase 

mitochondrially encoded gene expression and OPXHOS, independent of de novo 

mitochondrial biogenesis. In fasted liver, SIRT3 protein has previously been shown to 

plateau at 18–24 hours and activate enzyme systems involved in fatty acid oxidation, 

culminating in greater β-oxidation of fatty acids (234). At 24 hours, we observed SIRT3-

mediated deacetylation of LRP130. We therefore propose that SIRT3 couples enhanced 

β-oxidation of fatty acids to increase OXPHOS capacity via LRP130. Presumably, this 

strategy permits metabolic matching between 2 enzyme systems that are linked by 

coenzyme cycling: shuttling of NAD
+
 and NADH between fatty oxidative pathways and 

OXPHOS.  

Governed by SIRT3 and LRP130, nutrient control of OXPHOS via mitochondrial 

transcription is a simple, yet elegant, model. Regarding control of OXPHOS, prior studies 

on SIRT3 implicated modifications of various subunits of the electron transport chain or 

alterations in mitochondrial content. In SIRT3-deficient cell lines, respiration is impaired 

and there is hyperacetylation of several respiratory complexes, including complex I (236, 
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239), succinate dehydrogenase (238), and complexes III and V (239). The stabilization of 

several nuclear encoded subunits may be related to their acetylation status, which might 

explain the differential regulation of complex activity previously reported by others 

(236). One limitation to interpreting these studies is that mutant subunits that mimic 

acetylated or deacetylated protein were not evaluated. It is therefore difficult to discern 

the functional relevance of these modifications.  

In liver, the salutary actions of SIRT3 on OXPHOS do not require an increase in 

mitochondrial content. This is in contrast to immortalized, brown fat–like HIB1B cells, in 

which ectopic expression of SIRT3 was associated with increased Pgc1a, mitochondrial 

biogenesis, and concomitant OXPHOS (186). Using mouse models and cell culture, we 

did not observe changes in mitochondrial mass due to SIRT3, which suggests that the 

effect of SIRT3 on mitochondrial mass is restricted to certain cellular contexts. Notably, 

our results indicate a prominent role for SIRT3 in mitochondrial transcription, which 

promotes OXPHOS. Ectopic expression of SIRT3 in cells deficient for LRP130 protein 

failed to induce OXPHOS or mitochondrially encoded genes. Similarly, in liver deficient 

for LRP130, fasting failed to induce mitochondrially encoded gene expression. These 

data suggest that mechanisms independent of LRP130 are either trivial or operate 

downstream of mitochondrial transcription. For instance, in LRP130-deficient cells, 

reduction of mitochondrially encoded genes is associated with reduced OXPHOS 

subunits (123, 126, 133, 160), attenuation that might offset deacetylation of individual 

OXPHOS subunits. If normal mitochondrially encoded gene expression is a prerequisite 

for SIRT3-mediated activation of individual OXPHOS subunits, then ablation of LRP130 
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would abrogate any downstream effect. Additionally, LRP130 might influence factors 

involved in mitochondrial transcription. In our studies, neither POLRMT nor TFB2M, 

which comprise the initiation complex, were unchanged. Even so, we cannot exclude the 

possibility that other factors involved in transcription are not secondarily perturbed. 

Nevertheless, LRP130-deficient cells still retained some OXPHOS complexes, albeit less 

than those of wild-type cells. If activation of individual OXPHOS subunits were a 

predominant action of SIRT3, one would anticipate some enhancement of OXPHOS even 

in the absence of LRP130, a finding we failed to observe. Additionally, SIRT3 regulates 

several hundred mitochondrial proteins. Indeed, in other cellular systems, variegated 

actions of SIRT3 are not readily intuitive (274); hence, without further investigation, our 

findings predominantly relate to the fasted response. Nonetheless, even when NAD
+
-

dependent sirtuins were pharmacologically inhibited, LRP130-7KR had greater activity 

in terms of transcription and OXPHOS capacity. This indicates that isolated deacetylation 

of LRP130 is sufficient to stimulate mitochondrial transcription and OXPHOS. Although 

we cannot exclude direct effects of acetylation on OXPHOS complexes per se, our data 

highlight a significant pathway involving mitochondrial transcription and attendant 

OXPHOS mediated by SIRT3 and LRP130.  

Our results indicate that SIRT3 influences mitochondrial transcription via 

LRP130. In concert with prior reports by us and others (126, 271), these data further 

support a role for LRP130 in the control of mitochondrial transcription. Some studies 

have reported that LRP130 stabilizes mitochondrial transcripts; however, such a role for 

LRP130 in SIRT3-mediated control of mitochondrial gene expression was not supported 
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here. As stated earlier, the LRP130-7KR mutant increased mitochondrially encoded 

transcripts, even when endogenous SIRT3 was inhibited. This suggests that deacetylation 

of basal mitochondrial transcription is not strictly required. Thus far, no differential 

acetylation has been reported for POLRMT or TFB2M, which collectively constitute the 

initiation complex. While our results suggest that deacetylation of LRP130 is sufficient to 

stimulate mitochondrial transcription and attendant OXPHOS, we cannot definitely 

exclude parallel deacetylation and activation of the basal transcription machinery. TFAM, 

a regulator of both mitochondrial transcription and replication, is acetylated in cells and 

mouse liver (269, 275), which is dependent on SIRT3 (269). After caloric restriction, 

there is a slight decrease in acetylation of TFAM; however, the functional and biological 

significance of this slight change is unknown, as an acetylation mutant was not evaluated 

(269). Although interesting and important, evaluating the basal transcription machinery in 

the context of biology will prove challenging, since ablation of its components 

completely interdicts OXPHOS, while in our study, ectopic expression of either TFB2M 

or POLRMT paradoxically attenuated mitochondrially encoded gene expression. This 

implies a finely tuned balance, limiting the tools and approaches available to decipher 

mechanisms. In terms of mitochondrially encoded gene expression, ablation of LRP130 

still permitted some basal transcription, while its ectopic expression induced 

transcription. We therefore believe LRP130 is uniquely poised to specifically evaluate 

mitochondrial transcription and OXPHOS.  

What are the broader questions pertinent to integrative physiology and disease? 

An increasing number of reports suggest that a mismatch between nutrient flux and 
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oxidative capacity promotes and/or exacerbates insulin resistance (230-232). In human 

and mouse studies, increased fatty acid flux in the setting of impaired tricarboxylic acid 

and/or OXPHOS activity is associated with insulin resistance (230, 232, 276, 277). 

SIRT3 activity is impaired in mice fed a high-fat diet for 16–24 weeks that develop 

insulin resistance (278). Additionally, ablation of SIRT3 leads to metabolic syndrome 

(239, 240), suggestive of a causal role. Although the notion is speculative, a decline in 

SIRT3 activity might lead to impaired OXPHOS in liver and exacerbate insulin 

resistance. One additional question to consider is whether pathways involved in 

OXPHOS and fatty acid oxidation exhibit differential sensitivity to SIRT3 activity, which 

might produce a mismatch between fatty acid oxidation and OXPHOS.  

In conclusion, induction of SIRT3 by fasting induced OXPHOS by increasing 

mitochondrial gene expression. Upon deacetylation by SIRT3, LRP130 induced 

mitochondrial transcription, culminating in greater OXPHOS capacity. We hypothesize 

that greater OXPHOS capacity improves mitochondrial bioenergetic efficiency, thereby 

supporting parallel and downstream biochemical pathways. 
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Figure A.S1. cAMP signaling mediates induction of mitochondrially encoded genes, 

Pgc-1α is not required for induction of mitochondrially encoded gene expression but 

NAD
+
-dependent pathways are required. A) Following an 18 hour treatment with 

forskolin, which increases intra-cellular cAMP levels, Pepck and G6p, both of which are 

fasting responsive genes, were induced in primary hepatocytes. B) Treatment of primary 

hepatocytes with forskolin also induced mitochondrially encoded gene expression. C) In 

Pgc-1α null hepatocytes, glucagon induces fasting responsive genes similar to wild-type 

A B 

C D 

E F 
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cells. D) In Pgc-1α null hepatocytes, glucagon still induces mitochondrially encoded gene 

expression; but, the induction is modestly blunted. Note: induction of mitochondrially 

encoded gene expression by forskolin was normal in primary hepatocytes in which Pgc-

1α was knocked down more than 75% (data not shown). E) Nicotinamide (NAM; an 

inhibitor of NAD
+
)-dependent pathways did not alter glucagon mediated induction of 

fasting responsive genes; however, F) induction of mitochondrially encoded gene 

expression was completely abrogated (n=3). 2-way ANOVA for all studies. For nuclear 

encoded genes, a Bonferroni post test was also performed. *p<0.05, **p<0.01, 

***p<0.001 (n=3). 
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Figure A.S2. Fasting induces mitochondrially encoded genes in 129S mice. (A) 

Hepatic gene expression of mitochondrially encoded transcripts in 129S mice fasted for 

24 hours (n=5). (B) Expression of genes that regulate mitochondrial biogenesis, 

mitochondrial transcription, lipogenesis and gluconeogenesis (n=5). (C) Expression of 

several nuclear encoded ETC genes. (D) Genetic assessment of mitochondrial content 

using mitochondrial DNA content (n=5). (E) Biochemical assessment of mitochondrial 

content using citrate synthase (CS) activity in whole liver homogenate (n=5). (F) 

Assessment of mitochondrial content using citrate synthase (CS) protein in whole liver 

homogenate (n=5). For gene expression, 2-way ANOVA with Bonferroni post test where 

indicated. (mean+s.e.m, *p<0.05, **p<0.01, ***p<0.001). 
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Figure A.S3. Effect of fasting in Sirtuin 3 knockout mouse liver (S3KO) on a 129S 

mice background. Gene expression of several nuclear encoded mitochondrially encoded 

genes in sirtuin 3 knockout mouse liver (S3KO) in the fed or fasted state (n=3). For gene 

expression, 2-way ANOVA with Bonferroni post test (p=ns for all comparisons). Error 

bars represent mean±s.e.m. 
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Figure A.S4. In liver, knockdown of Sirt3 in C57BL6 mouse liver impairs fasting-

mediated induction of mitochondrially encoded genes and OXPHOS. (A) Protein 

expression in Sirt3 deficient mouse liver. Sirt3 knockdown was achieved by tail vein 

injecting adenovirus encoding shSirt3. Knockdown of SIRT3 protein in liver was 

confirmed by comparison with a control shRNA (shCtrl) (n=4). (B) Gene expression of 

Sirt3 following its knockdown in mouse liver (n=3). (C) Hepatic gene expression of 

mitochondrially encoded transcripts in liver deficient for SIRT3. Mice were either in the 

fed state or fasted for 24 hours (n=3). (D) Expression of genes that regulate mitochondrial 

biogenesis, mitochondrial transcription, lipogenesis and gluconeogenesis in liver 

deficient for SIRT3 (n=3). (E) Complex activity of mitochondria isolated from shSirt3 

mouse liver either in the fed state or after fasting for 24 hours (n=3). CI through CV 

denotes activities for complexes I through V. CS denotes citrate synthase . (F) 

Biochemical assessment of mitochondrial content using citrate synthase activity in whole 

liver homogenate (n=3). (G) Genetic assessment of mitochondrial content using 

mitochondrial DNA content (n=3). (H) Citrate synthase (CS) immunoblot. (I) Gene 

expression of several nuclear encoded electron transport chain subunits (n=3). For gene 

expression, 2-way ANOVA with Bonferroni post test where indicated. For complex 

activity and mitochondrial content, 2-tailed unpaired Student’s t test. (mean+s.e.m, 

*p<0.05, **p<0.01, ***p<0.001) 
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Figure A.S5. Ectopic expression of SIRT3 in mouse liver and primary hepatocytes 

induces mitochondrially encoded transcripts. (A) Hepatic gene expression of 

mitochondrially encoded transcripts in mouse liver transduced with adenovirus encoding 

either GFP or Sirt3 (n=4). (B) Expression of genes that influence mitochondrial 

biogenesis and mitochondrial transcription (n=4). (C) Immunoblot showing expression of 

ectopically expressed myc-tagged SIRT3 protein, following transduction of C57BL6 

mouse liver with adenovirus. Note, ectopically expressed SIRT3 is myc-tagged, and thus, 

migrates at a slightly higher molecular weight. (D) Biochemical assessment of 

mitochondrial content using citrate synthase activity of whole liver homogenate (n=4). (E) 

Genetic assessment of mitochondrial content using mitochondrial DNA content (n=3). (F) 

Gene expression of mitochondrially encoded transcripts in primary hepatocytes 

transduced with adenovirus encoding either GFP or Sirt3 (n=3). (G) Expression of genes 

that influence mitochondrial biogenesis and mitochondrial transcription in primary 

hepatocytes (n=3). (H) Immunoblot showing expression of ectopically expressed myc-

tagged SIRT3 protein in primary hepatocytes. For gene expression, 2-way ANOVA with 

Bonferroni post test where indicated. For mitochondrial content, 2-tailed unpaired 

Student’s t test. (mean+s.e.m, ***p<0.001). 
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Figure A.S6. Respiration and mitochondrial content in H2.35 hepatoma cells with 

ectopic expression of Sirt3. (A) Cellular respiration in shControl H2.35 hepatoma cells 

replete with sirtuin 3 (Sirt3). 2-tailed unpaired Student’s t test. (n=3-4, mean±std, *p < 

0.05). (B) MitoTracker Green, a measure of mitochondrial biogenesis, was assessed in 

H2.35 hepatoma cells replete with sirtuin 3 (Sirt3) that co-express shControl RNA 

(shCtrl). (n=3, mean±s.e.m.). (C) Mitochondrial DNA content, a measure of 

mitochondrial content, was quantified in H2.35 hepatoma cells replete with sirtuin 3 

(Sirt3) that co-express shControl RNA (shCtrl). 2-tailed unpaired Student’s t test. 

(mean±s.e.m, *p<0.05). Representative oxygen consumption curves for (D) H2.35 

heptoma cells expressing LacZ or Sirt3 as shown in Figure 3J and (E) those that co-

express shControl RNA (shCtrl) as shown here in Fig. S6A. (F) Cellular respiration using 

galactose in H2.35 hepatoma cells that ectopically express LacZ or sirtuin 3 (Sirt3). 2-

tailed unpaired Student’s t test. (n=3-4, mean±std, *p < 0.05). Two hours prior to cell 

collection, medium was changed to galactose containing medium. Respiration was 

performed as described in materials and methods but galactose was used in in lieu of 

glucose. (G) Representative oxygen consumption curves for galactose respiration studies. 
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Figure A.S7. Effect of LRP130 protein level on the basal transcription machinery 

and a schematic of the LRP130 floxed allele. (A) Immunoblot of mitochondria isolated 

from H2.35 hepatoma cells, showing that deficiency of LRP130 does not alter the level of 

POLRMT or TFB2M protein. (B) Immunoblot of mitochondria isolated from H2.35 

hepatoma cells, showing that ectopic expression of LRP130 does not alter the level of 

POLRMT or TFB2M protein. (C) Schematic of the floxed allele in LRP130 flox/flox 

(F/F) mice. To generate LRP130 liver-specific KO mice (LRP130 LKO), liver specific 

adeno-associated virus that expresses Cre recombinase (AAV-Cre) was tail vein injected 

into adult male LRP130 flox/flox mice of 8-12 weeks of age. Littermate control male 

wild-type mice were also injected with AAV-Cre.1 x 10(11) GC viral particles were tail 

vein injected per mouse. After 3 weeks, liver was harvested in either the fed or fasted 

state (Fig. 5H-K). 
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Figure A.S8: Effect of ectopic expression of SIRT3 in LRP130 deficient cells. (A) 

Immunoblot showing expression of ectopically expressed myc-tagged SIRT3 protein in 

LRP130 KO hepatocytes. (B) Gene expression of mitochondrially encoded transcripts in 

LRP130 KO hepatocytes transduced with adenovirus encoding either GFP or Sirt3 (n=4). 

Note, in LRP130 KO hepatocytes, SIRT3 is no longer sufficient to induce 

mitochondrially encoded genes. (C) Expression of genes that influence mitochondrial 

biogenesis and mitochondrial transcription (n=4). D, Fatty acid oxidation of radiolabeled 

14C-palmitate to CO2 in H2.35 cells stably expressing sirtuin 3 and treated with NAD
+
 

as describe in the methods section. Deficiency of LRP130 was associated with reduced 

fatty acid oxidation. Antimycin A, which inhibits the electron transport chain at complex 

III, serves as a positive control, showing nearly complete inhibition of fatty acid 

oxidation (n=3). In cells treated with nicotinamide there was no longer a difference 

between shControl (shCtrl) and shLRP130 cells (data not shown), suggesting strong 

interplay between sirtuin 3 and LRP130. 2-way ANOVA with Bonferroni post test where 

indicated. (mean±s.e.m, *p<0.05). 
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Figure A.S9. Comparison of acetylated lysines in LRP130 (LRPPRC) across various 

studies. (A) Pair wise overlap of acetylated lysine sites in this study (Liu L) compared 

with other studies that ablated sirtuin 3 in cells or mouse liver. Gray indicates the number 

of unique acetylated lysine peptides of LRP130 (LRPPRC) identified in a particular 

study. Blue represents the number of peptides common between two studies. *Indicates a 

unique site identified across three separate studies. †indicates another unique site shared 

across three separate studies. Using a hypergeometric distribution, the probability that 

shared acetylated sites between two or more studies arose from a non-random (biological) 

process was greater than 80% across all studies (see materials and methods for 

mathematical formula and derivation used). (B) Acetylated lysine residues shared across 

studies shown in panel A. For simplicity, mouse residues are reported for all studies, 

irrespective of whether or not the study was performed using mouse or human samples. 

(C) Average IOD (integrated optical density) binding scores established by Smith BC et 

al 2011 (ACS Chem. Biol.) was compared across studies. A high score indicates greater 

affinity for SIRT3. 

A 

B 

C 
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Figure A.S10. Mapping of the interaction between POLRMT and LRP130. (A) 

Immunoblot showing the interaction between in vitro translated POLRMT bearing a C-

terminal myc tag and purified LRP130 protein containing an S-Tag. (B) Immunoblot of 

various fragments of POLRMT and their level of interaction with S-tagged full length 

purified LRP130 protein. (C) Schematic summarizing the interactions shown in (B). 
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Figure A.S11. Knock-down of human LRP130 in 293T cells and reconstitution with 

mouse wild-type LRP130 or the LRP130 7KR mutant. (A) Using retrovirus, human 

LRP130 was stably knocked-down in 293T cells. The shRNA construct targeting human 

LRP130 does not affect murine LRP130 (data not shown). (B) Immunoblot confirming 

greater than 95% knock down of human LRP130. (C) As expected, 293T cells deficient 

for LRP130 have reduced expression of mitochondrially encoded genes. (D) Transient 

transfection of LacZ, murine wild-type LRP130 or the 7KR into 293T cells lacking 

human LRP130. A long exposure permitted comparison of the level of ectopically 

expressed murine LRP130 compared with the remaining endogenous human LRP130. 

Based on the knock-down of human LRP130, reconstitution with murine LRP130 is 

within a physiological range. (E) Fluorescent assessment of mitochondrial content using 

MitoTracker Green FM (n=3). (F) Genetic assessment of mitochondrial content using 

mitochondrial DNA content (n=3). For gene expression, Two-way ANOVA. For 

mitochondrial content, two-tailed unpaired Student’s t test. (mean+s.e.m, ***p<0.001). 
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Figure A.S12. Knock-down of human LRP130 in 293T cells and reconstitution with 

mouse wild-type LRP130 or the LRP130 7KQ mutant. (A) Using transient 

transfection of a plasmid bearing a shRNA construct targeted to human LRP130, human 

LRP130 was knocked down in 293T cells. The shRNA construct targeting human 

LRP130 does not affect murine Lrp130 (data not shown). (B) Immunoblot confirming 
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knock-down of human LRP130. (C) As expected, 293T cells deficient for LRP130 have 

reduced expression of mitochondrially encoded genes (n=3). (D) Gene expression 

following transient transfection of LacZ, murine wild-type LRP130, 7KR mutant and the 

7KQ mutant into 293T cells deficient for human LRP130 (n=3). (E) A long exposure 

immunoblot permitted comparison of the level of ectopically expressed murine LRP130 

compared with remaining endogenous human LRP130. 
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Table A.S1. Mass spectrometry intensities for lysines in murine LRP130 sensitive to 

deacetylation by SIRT3 
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Shown in columns 2 and 3 are mass spectrometry intensities for lysines in murine 

LRP130 sensitive to deacetylation by SIRT3, that is, those sites showing less than 50% 
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acetylation when treated with SIRT3 and NAD
+
. ‘Rel Ac’ denotes relative acetylation, 

derived by dividing the intensity of the SIRT3 sample by the acetylated control sample 

(Ac-Ctrl). Bolded lysine positions in column 1 were mutated in this study, generating a 

7KR LRP130 mutant. Highlighted in light gray are lysine residues in mouse and various 

other species. In some species, lysine residues were replaced with arginine residues, 

which mimic deacetylation and are highlighted in dark gray. 
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Table A.S2. Mouse primers used for RT-qPCR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Where indicated official gene symbols are shown in brackets. 
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Table A.S3. Human primers used for RT-qPCR 
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