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Abstract PURA is the leading candidategene responsible for thedevelopmental phenotype
in the5q31.3microdeletion syndrome.Denovomutations inPURAwere recently reported in
15 individuals with developmental features similar to the 5q31.3 microdeletion syndrome.
Here we describe six unrelated children who were identified by clinical whole-exome
sequencing (WES) to have novel de novo variants in PURA with a similar phenotype of
hypotonia and developmental delay and frequently associated with seizures. The protein
Purα (encoded by PURA) is involved in neuronal proliferation, dendrite maturation, and
the transport of mRNA to translation sites during neuronal development. Mutations in
PURA may alter normal brain development and impair neuronal function, leading to
developmental delay and the seizures observed in patients with mutations in PURA.

INTRODUCTION

Whole-exome sequencing (WES) provides a comprehensive strategy to identify pathogenic
genetic variants in patients with developmental abnormalities (Veltman and Brunner 2012;
Yang et al. 2013, 2014). The 5q31.3 microdeletion syndrome is associated with hypotonia,
feeding difficulties, severe developmental delay, and epilepsy. Genomic 5q31.3 deletions
range in size from 101 kb to 5 Mb and include the purine-rich element binding protein A
(PURA), a candidate gene for the developmental manifestations (Shimojima et al. 2011;
Hosoki et al. 2012; Brown et al. 2013). PURA is essential for normal brain development, syn-
apse formation and proliferation of neurons, oligodendrocytes, and astrocytes in the central
nervous system (Khalili et al. 2003; Johnson et al. 2006; Hokkanen et al. 2012). Mutations in
PURA have previously been associated with moderate to severe developmental delay, learn-
ing disability, hypotonia, neonatal respiratory issues, feeding difficulties, and seizures or
“seizure-like” movements in 15 patients (Hunt et al. 2014; Lalani et al. 2014). Here we
describe six unrelated patients with de novo mutations in PURA identified through WES as-
sociated with the consistent phenotype of hypotonia and developmental delay and fre-
quently associated with seizures.

Corresponding author: wkc15@
columbia.edu

© 2015 Tanaka et al. This article is
distributed under the terms of
the Creative Commons
Attribution-NonCommercial
License, which permits reuse and
redistribution, except for
commercial purposes, provided
that the original author and
source are credited.

Ontology terms: central
hypotonia, generalized clonic
seizures, generalized tonic
seizures, severe global
developmental delay

Published by Cold Spring Harbor
Laboratory Press

doi: 10.1101/mcs.a000356

| RESEARCH REPORT
C O L D S P R I N G H A R B O R

Molecular Case Studies

Cite this article as Tanaka et al. 2015 Cold Spring Harb Mol Case Stud 1: a000356 1 of 10

mailto:wkc15@columbia.edu
mailto:wkc15@columbia.edu
mailto:wkc15@columbia.edu
http://www.molecularcasestudies.cshlp.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


RESULTS

Clinical Presentation

Six unrelated patients all share similar clinical features of hypotonia and developmental delay
(Table 1). The children range in age from 6 mo to 15 yr, and none of the children are func-
tionally verbal. There is no history of regression in any of the children. Patient 1 had poor
suck, bradycardia, and apnea during the neonatal period. “Seizure-like” activity was ob-
served in two patients. One had “seizure-like” activity (twitching, stiffening, staring spells,
collapsing) with a normal EEG, and a second developedmyoclonic movements and possible
gelastic seizures at 3 yr of age. One child has a history of infantile spasms. Vision has been
variably and minimally impaired in five of the children. All have normal hearing. One child
also has mild osteopenia and a history of fractures. There is no evidence of other significant
medical problems or birth defects. Four of the children are dysmorphic with varying features
(Fig. 1). Two of the patients have onlyminor features such as epicanthal folds or highly arched
palate, while two other patients have more significant findings such as dolichocephaly,
hypertelorism, broad forehead, and persistent fetal pads. Height and weight are within
the normal range. Head circumferences ranged from less than the 10th to the 97th percen-
tile. Brain MRI demonstrates delayed myelination and nonspecific enlargement of the sub-
arachnoid spaces, cortical sulci, and ventricular system in one patient, periventricular
white matter changes reflective of a stroke in the second patient, periventricular leukomala-
cia in the third, andmild corpus callosum volume loss in the fourth. Three of the patients have
constipation and one also has gastroesophageal reflux disease. All children had clinical WES
as part of a trio analysis wherein the proband and both parents were sequenced. There was
no known history of consanguinity in any of the families.

Exome sequencing produced an average of ∼13 Gb of sequence per sample (Table 2).
The mean coverage of captured regions was ∼150× per sample with >98% covered with at
least 10× coverage, an average of 92% of base call quality of Q30 or greater, and an overall
average mean quality score of >Q36. Filtering of common SNPs (>10% frequency present in
1000 Genomes database) resulted in ∼4500 variants per proband sample. In total, 232
genes (257 unique sequence changes) of interest were identified across the six families
when considering all possible modes of inheritance. Evaluation of these 232 genes eliminat-
ed 231 genes lacking clinical overlap with the patients’ phenotype, leaving one gene.

Novel de novo heterozygous variants in PURA were detected by WES and confirmed
by Sanger sequencing in six affected children (Table 1 and Fig. 2). The PURA p.Ile188Thr
(c.563T>C) mutation in Patient 1 represents a nonconservative amino acid substitution of
a hydrophobic residue replaced by a polar residue. Amino acid isoleucine 188 is highly con-
served throughout evolution (Fig. 2B). The c.768dupC (p.Ile257Hisfs∗37) mutation in Patient
2 produces a frameshift starting with codon isoleucine 257 that changes this amino acid to a
histidine residue and creates a premature termination codon that deletes the last 66 amino
acids after the insertion of 36 novel amino acids. This mutation is predicted to cause a loss of
normal protein function through protein truncation. In Patient 3, the de novo c.1A>T (p.
Met1?) mutation alters the initiator methionine codon (Met1). It is not known whether the
loss of Met1 disrupts all protein translation from that allele or whether an abnormal protein
is produced using an alternate Met start codon. The c.697_699delTTC (p.Phe233del) muta-
tion in Patient 4 is an in-frame deletion, previously reported in a patient by Hunt et al. (2014).
The c.4_8delGCGGA (p.Ala2Profs∗197) mutation identified in Patient 5 causes a frameshift
starting with codon alanine 2, changes this amino acid to a proline residue and creates a pre-
mature termination codon and replaces the last 321 residues with 196 different ones. This
mutation is predicted to cause a loss of normal protein function through protein truncation.
Patient 6 has a c.302_310delCTCTCTCCA (p.Thr101_Ser103del) in-frame deletion of three

PURA mutations in six patients with hypotonia and developmental delay
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amino acids in the highly conserved Pur I domain. None of the de novo variants identified
in these six patients were detected in the Database of Single Nucleotide Polymor-
phisms (dbSNP; http://www.ncbi.nlm.nih.gov/SNP/), 1000 Genomes (1000G; http://www.
1000genomes.org/), Exome Aggregation Consortium (ExAc; http://exac.broadinstitute.
org), or Exome Variant Server (ESP; http://evs.gs.washington.edu/EVS/). All six mutations
are located in highly conserved regions and all except for the mutation of Patient 3 are pre-
dicted to be deleterious by SIFT (http://sift.jcvi.org/), CADD (http://cadd.gs.washington.
edu/), and MutationTaster (http://www.mutationtaster.org/). The de novo c.1A>T (p.Met1?)
mutation in Patient 3 is presumed deleterious by CADD and Mutation Taster.

DISCUSSION

Six unrelated patients ranging in age from 6 mo to 15 yr with common clinical features of hy-
potonia and developmental delay were all found to have heterozygous de novo predicted
deleterious rare or novel variants in PURA, identified through WES (Table 1). PURA is the
leading candidate gene responsible for the developmental phenotype in the 5q31.3 micro-
deletion syndrome (Brown et al. 2013; Hunt et al. 2014; Lalani et al. 2014). Two papers

Figure 1. Photographs of patients. (A,B) Patient 1. (C ) Patient 2. (D,E) Patient 3. (F ) Patient 4. (G,H) Patient
6. Patients 1 and 2 exhibit dolichocephaly and Patients 1–5 all have a broad forehead. Note hypertelorism
and highly arched palate in Patient 1 and epicanthal folds in Patient 4.

Table 2. Sequencing results

Patient

10×
cov.
(%)

Mean
cov.

Yield
(Gb) Q30 MeanQ

Filtered
vars

PURA
mean
CDS
cov.

Var.
total
fam.
cov. Samples

Mean
per-

sample
var. cov.

1 98.57 122 14.6 88 34 4973 105 491 3 164

2 98.79 166 12.5 94 36 4057 128 721 3 240

3 98.61 165 11.6 95 37 4475 143 63 3 21

4 98.71 201 14.6 88 35 4613 149 811 3 270

5 98.45 155 11.1 93 36 4504 125 41 3 14

6 97.22 122 12.3 91 36 5445 70 244 3 81

Mean 98.39 155 13 92 36 4678 120 395 3 132

cov., coverage; CDS, coding sequence; var., variance; fam, family.
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recently reported de novo mutations in PURA in 15 individuals with developmental features
equivalent to the 5q31.3microdeletion syndrome (Hunt et al. 2014; Lalani et al. 2014). A sep-
arate large-scale WES study implicated 12 novel genes enriched for damaging de novo mu-
tations with evidence for a role in developmental disorders (TheDecipheringDevelopmental
Disorders Study 2015). The analysis of the exomes of 1133 children with severe, undiag-
nosed developmental disorders and their parents identified PURA in three of the patients.
We report six additional unrelated patients with de novo mutations in PURA to provide fur-
ther evidence that PURA is largely, if not solely, responsible for the developmental delay,
hypotonia, and seizures observed in the 5q31.3 microdeletion syndrome. Our additional
patients expand the number and location of mutations in PURA and the associated pheno-
types. Four of our patients had variants in the PUR domains, which are highly conserved
throughout evolution (Fig. 2).

PURA is located on 5q31.2 and is encoded by a single exon that encodes a highly con-
served multifunctional protein, Purα. PURA is expressed ubiquitously, including the brain,
muscle, heart, and blood. Purα is a member of the Pur family of nucleic acid binding proteins
which consist of a glycine-rich flexible amino terminus, a central core region and a potential
carboxy-terminal protein binding region. All human Pur proteins have three highly con-
served sequence-specific repeats, Pur repeats I–III, of 64–80 amino acids that are the hall-
mark of the Pur proteins. Purα has helix-unwinding capability (Khalili et al. 2003) and has
been shown to bind specific sequences of ssDNA, dsRNA, and ssRNA with preference for
GGN-repeats (Gallia et al. 2000; Graebsch et al. 2009; Johnson et al. 2013) to regulate a va-
riety of cellular processes including DNA replication, gene transcription, RNA transport, and
mRNA translation (White et al. 2009; Johnson et al. 2013).

Studies on mice have shown that Purα is involved in neuronal proliferation, dendrite
maturation, and the transport of mRNA to translation sites in hippocampal neurons
(Khalili et al. 2003; Kanai et al. 2004; Johnson et al. 2006; Hokkanen et al. 2012). Two inde-
pendently generated knockout mouse models demonstrate that mice appear normal
at birth but develop neurologic features, including ataxic gait, hind limb weakness, and
continuous and increasingly severe tremors (Khalili et al. 2003; Hokkanen et al. 2012). The
PURA knockout mice eat and sleep normally but do not gain weight. Throughout postnatal

Figure 2. Mutations in PURA. (A) Diagram of Purαwithmutations identified in our patients in green. Previously
identified mutations are in orange (Hunt et al. 2014; Lalani et al. 2014). Missense and in-frame deletion muta-
tions are shown below the protein diagram and gene disrupting truncating mutations are shown above. (B)
Sequence alignment of Ile188 in PUR II region illustrating conservation of amino acids at amino acid 188.
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development, these mice exhibit mislamination of the cerebellum and cerebrum and low
numbers of Purkinje cells in the hippocampus and cerebellum associated with uncoordinat-
ed movements, tremors, and lethargy with death by 21–25 d. Heterozygous PURA+/− mice
appeared normal but exhibited neurologic and myeloid defects that were intermediate in
severity compared with PURA−/− mice. Both PURA−/− and PURA+/− mice had myeloid de-
fects with reduced splenic monocyte development; however, the effect on PURA+/− mice
was not as severe as the knockout mice due to PURA haploinsufficiency. Heterozygous
PURA+/− mice also had occasional spontaneous seizures upon handling (Khalili et al.
2003; Hokkanen et al. 2012).

In the central nervous system, Purα has been detected in large neuronal mRNA-contain-
ing complexes with the fragile X mental retardation protein (FMRP), encoded by FMR1,
an RNA-binding protein that is required for normal neural development. Johnson et al.
(2006, 2013) showed that Purα is specifically expressed in the dendrites of hippocampal neu-
rons in rats, and colocalizes with FMRP at dendritic junctional translation sites. Purα also
binds to CGG repeats in FMR1, which is silenced in individuals with fragile X syndrome
(FXS) and is overexpressed in patients with fragile X–associated tremor/ataxia syndrome
(FXTAS). It is possible that impaired binding of Purα to CGG repeats in FMR1 may play a
role in disease progression, resulting in defective neural and brain development in both
settings.

Purα is also known to regulate expression of the myelin proteolipid protein Plp1, which is
the predominant structural component of myelin sheaths in the central nervous system
(Dobretsova et al. 2008). This interaction may be related to the delayed and decreasedmye-
lination observed in the brain MRIs. Mutations in PLP1 are associated with Pelizaeus–
Merzbacher disease (PMD; MIM#312080) (Torii et al. 2014). We hypothesize that abnormal
or decreased binding of Purα to its targets may be responsible for defective brain develop-
ment and function and related to the seizures seen in patients with mutations in PURA.
Additional studies on patients with PURA mutations are necessary to better understand
the correlation between genotype and phenotype and further investigation of the molecular
mechanism of PURA during brain development and function.

METHODS

Whole-Exome Sequencing
Genomic DNA was extracted from whole blood from 1098 affected children with develop-
mental delay and their parents. Exome sequencing was performed on exon targets isolated
by capture using the Agilent SureSelect Human All Exon V4 (50-Mb) kit (Agilent
Technologies). One microgram of DNA from blood specimen was sheared into 350–400-
bp fragments, which were then repaired, ligated to adaptors, and purified for subsequent
PCR amplification. Amplified products were then captured by biotinylated RNA library baits
in solution following the manufacturer’s instructions. Bound DNA was isolated with strepta-
vidin-coated beads and reamplified. The final isolated products were sequenced using the
Illumina HiSeq 2000 or 2500 sequencing system with 100-bp paired-end reads (Illumina).
DNA sequence was mapped to the published human genome build UCSC hg19/GRCh37
reference sequence using BWA with the latest internally validated version at the time of se-
quencing, progressing from BWA v0.5.8 through BWA-Mem v0.7.8 (Li and Durbin 2009; Li
2012). Targeted coding exons and splice junctions of known protein-coding RefSeq genes
were assessed for average depth of coverage with a minimum depth of 10× required for in-
clusion in downstream analysis. Local realignment around insertion-deletion sites was per-
formed using the Genome Analysis Toolkit v1.6 (DePristo et al. 2011). Variant calls were
generated simultaneously on all sequenced family members using SAMtools v0.1.18 (Li
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et al. 2009). All coding exons and surrounding intron/exon boundaries were analyzed.
Automated filtering removed common sequence changes (defined as >10% frequency pre-
sent in 1000 Genomes database). The targeted coding exons and splice junctions of the
known protein-coding RefSeq genes were assessed for the average depth of coverage
and data quality threshold values. Whole-exome sequence data for all sequenced family
members were analyzed using GeneDx’s XomeAnalyzer (a variant annotation, filtering,
and viewing interface for WES data), which includes nucleotide and amino acid annotations,
population frequencies (NHLBI Exome Variant Server and 1000 Genomes databases), in sil-
ico prediction tools, amino acid conservation scores, and mutation references. Variants were
filtered based on inheritance patterns, gene lists of interest, phenotype and population fre-
quencies, as appropriate. Resources including the Human Gene Mutation Database
(HGMD), 1000 Genomes database, NHLBI Exome Variant Server, OMIM, PubMed, and
ClinVar were used to evaluate genes and detected sequence changes of interest (Table
3). Additional searches were performed using specific gene lists related to ID. Identified se-
quence changes of interest were confirmed in all members of the trio by conventional di-
deoxy DNA sequence analysis using an ABI3730 (Life Technologies) and standard protocols
with a new DNA preparation.

ADDITIONAL INFORMATION

Ethics Statement
The studywas approved by the Institutional Review Board of Columbia University andwritten
consent was obtained for collecting blood samples and sequencing from all study
participants.

Data Deposition and Access
Whole-exome sequencing data is not publicly available because patient consent could not
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