
University of Massachusetts Medical School University of Massachusetts Medical School 

eScholarship@UMMS eScholarship@UMMS 

Population and Quantitative Health Sciences 
Publications Population and Quantitative Health Sciences 

2008-4 

A Web-based interactive Student Advising system using Java A Web-based interactive Student Advising system using Java 

frameworks frameworks 

V. R. Naini 
University of Alabama - Birmingham 

Et al. 

Let us know how access to this document benefits you. 
Follow this and additional works at: https://escholarship.umassmed.edu/qhs_pp 

 Part of the Biostatistics Commons, Computer Engineering Commons, Epidemiology Commons, and 

the Health Services Research Commons 

Repository Citation Repository Citation 
Naini VR, Sadasivam RS, Tanik MM. (2008). A Web-based interactive Student Advising system using Java 
frameworks. Population and Quantitative Health Sciences Publications. https://doi.org/10.1109/
SECON.2008.4494281. Retrieved from https://escholarship.umassmed.edu/qhs_pp/864 

This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Population and 
Quantitative Health Sciences Publications by an authorized administrator of eScholarship@UMMS. For more 
information, please contact Lisa.Palmer@umassmed.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by eScholarship@UMMS

https://core.ac.uk/display/80502154?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://escholarship.umassmed.edu/
https://escholarship.umassmed.edu/qhs_pp
https://escholarship.umassmed.edu/qhs_pp
https://escholarship.umassmed.edu/qhs
https://arcsapps.umassmed.edu/redcap/surveys/?s=XWRHNF9EJE
https://escholarship.umassmed.edu/qhs_pp?utm_source=escholarship.umassmed.edu%2Fqhs_pp%2F864&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/210?utm_source=escholarship.umassmed.edu%2Fqhs_pp%2F864&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=escholarship.umassmed.edu%2Fqhs_pp%2F864&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/740?utm_source=escholarship.umassmed.edu%2Fqhs_pp%2F864&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/816?utm_source=escholarship.umassmed.edu%2Fqhs_pp%2F864&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/SECON.2008.4494281
https://doi.org/10.1109/SECON.2008.4494281
https://escholarship.umassmed.edu/qhs_pp/864?utm_source=escholarship.umassmed.edu%2Fqhs_pp%2F864&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:Lisa.Palmer@umassmed.edu


 

 

  A Web-based Interactive Student Advising System using Java Frameworks 

V. R. Naini, R. S. Sadasivam, and M. M. Tanik  

Electrical and Computer Engineering Department 

The University of Alabama at Birmingham 

 
 

 

Abstract 

 

The use of open source frameworks and tools has 

become popular in Java development. These frameworks 

and tools have core strengths and weaknesses and are 

selected accordingly for development. Consequently, one of 

the key issues that developers face is to integrate and 

configure these tools together. This paper demonstrates the 

use of popular Java frameworks and tools to develop a 

Web-based interactive Student Registration and Advising 

system.  

 

1. Introduction 

One of the problems in developing large scale 

applications with Java 2 Enterprise Edition (J2EE) is the 

complexity associated with it. Open source frameworks, 

such as Spring, and Java Server Faces (JSF), and object 

relational mapping tools, such as Hibernate, have been 

developed to reduce the complexity of developing large 

applications with J2EE. These open source frameworks and 

tools have core strengths and weaknesses. Therefore, one of 

the issues in developing large systems with these 

frameworks is to integrate and configure these frameworks 

and tools together to leverage their strengths. This paper 

demonstrates the use of Spring, JSF, and Hibernate together 

to develop a Web-based Interactive Student Registration 

and Advising System (WISRAS).  

The current registration process for graduate students in 

the Electrical and Computer Engineering Department is a 

paper-based process. The Masters of Science in Electrical 

Engineering (M.S.E.E) course plan is available as a 

downloadable Portable Document Format (PDF) and 

Microsoft Word document at the Electrical and Computer 

Engineering Web site. The graduate students have to fill 

this course plan document and send it to their advisor as an 

email attachment for the advisor’s approval. The advisor 

then approves and signs the course plan. To proceed further 

with the registration process, the student should submit the 

approved document to the department. This paper-based 

registration process is tedious and has several drawbacks, 

such as requiring the physical presence of the advisor to 

approve the course plan document and give it back to the 

student.  

The WISRAS simplifies the registration process of the 

graduate students by providing an electronic and interactive 

registration process. In the WISRAS process, the student 

fills the course plan page on the intranet site of the 

department and submits it online, which generates an email 

confirmation of the course plan submission to both the 

student and the advisor. The advisor then checks the course 

plan of the student on the intranet site and electronically 

approves it, generating an email confirmation of approval to 

the student and the department. 

The WISRAS is developed in Java and using open 

source frameworks. JSF is used for the front-end design to 

handle the presentation issues of the course plan page. 

Hibernate is used to handle the data retrieval from the 

database. Spring is used to handle the flow of execution that 

is integrating different parts of the application such as front-

end and back-end.  

2. Frameworks used for Development 

2.1 JavaServer Faces 

JavaServer Faces (JSF) simplifies development by 

providing a component-centric approach for developing 

Java Web user interfaces [1], [2]. JSF ensures that 

applications are well designed with greater maintainability 

by integrating the well established Model-View-Controller 

(MVC) design pattern into its architecture.  

2.2 Spring 

The Spring framework provides a full-featured MVC 

module for building Web applications [3]. Spring's 

pluggable MVC architecture provides the option of 

choosing between using the built-in Spring Web framework 

or a Web framework such as JSF.  

978-1-4244-1884-8/08/$25.00 ©2008 IEEE 172

Authorized licensed use limited to: University of Massachusetts Medical School. Downloaded on July 26,2010 at 13:02:08 UTC from IEEE Xplore.  Restrictions apply. 



 

 

2.3 Hibernate 

Hibernate provides a powerful object/relational 

persistence and query service for Java [4]. Hibernate allows 

development of persistent classes using object-oriented 

concepts, such as association, inheritance, and 

polymorphism. Hibernate handles the mapping from Java 

classes to database tables and also provides data query and 

retrieval facilities.  

3. Description of Student Advising System 

3.1 The WISRAS System 

The WISRAS has a common login page for students and 

advisors as shown in Fig. 1.  

 

 

Fig. 1.  Login Page 

 

After successful login, the student is directed to the 

student home page (Fig. 2) where there are three options to 

choose from: New plan, view plan, and edit plan. New plan 

option allows the student to create a new plan, view plan 

allows the student to view the registered plan, and edit plan 

allows the student to edit the course plan for future 

semesters. The student can also edit the courses of the 

current semester if the advisor does not approve a particular 

course in the course plan. 

 

 
Fig.  2. Student home page 

New plan option directs the student to the M.S.E.E 

course plan page as shown in Fig. 3(a) and Fig. 3(b). This 

course plan page consists of four main categories, which 

represent specialization courses, related courses, math 

courses, and a thesis/non-thesis selection section. The 

requirement for the masters program is satisfied with a 

thesis option selection and eight courses or a project option 

selection with ten courses. Thesis requirements equal to 

nine credit hours. A project equals three credit hours.  

 

 

 

Fig. 3(a).  M.S.E.E course plan page of the student 

 

 
 

   Fig.  3(b) M.S.E.E course plan page of student. Student can choose the   

                      course using the course code or course title 

 

 

The M.S.E.E course plan page of the WISRAS has a 

specialization section where the student can select four 

specialization courses, which address the major 

requirements for the specialization. The list contains 

software-computer, power, networks, and 

telecommunication courses as available specializations. 

When the student chooses a specialization, data is retrieved 

from the server using Spring and Hibernate, and the fields 

are populated with the pertaining courses using JSF. For 

example, when the student chooses software-computer as 

the specialization, the courses addressing the software-

173

Authorized licensed use limited to: University of Massachusetts Medical School. Downloaded on July 26,2010 at 13:02:08 UTC from IEEE Xplore.  Restrictions apply. 



 

 

computer specialization made available in the specialization 

course group.  

The WISRAS has a math courses section with options 

for selecting two math courses. Two math courses are 

compulsory for the master’s degree program. The related 

courses section requires the student to select two additional 

courses. The related courses include any of the available 

courses except those meeting the requirements for the math 

and the specialization courses.  

The thesis/non-thesis section has a radio button group 

showing thesis and non-thesis options. The thesis option is 

selected by default.  Normally, the thesis is considered as 

nine credit hours and carried over three semesters. If the 

student selects the non-thesis option, the section changes, 

reflecting a table with a project and two related courses.  

The project option is a text box where the project name can 

be entered. The two related courses can be selected through 

the drop-down menus.  

After completing the course plan, the student can save 

the plan by clicking the save button at the bottom of the 

course plan page.  Clicking the save button saves the plan 

while the student can view, edit, and submit it in the future.  

If the students choose the save and submit option, the plan 

is submitted and an email confirmation of the course plan 

submission is sent to both the student and the advisor. 

The student can now view the submitted course plan by 

clicking on the view plan link in the student homepage. 

Clicking on the view plan link directs the user to a page that 

shows the summary of submitted course plan as shown in 

Fig. 4.  Finally, edit plan directs the student to the M.S.E.E 

course plan and allows the student to edit the courses for the 

future semesters. The student can also edit the courses of 

the current semester if the advisor does not approve a 

particular course in the course plan. 
 

 

 

Fig. 4. View plan  page  

 

Advisors also have an interface to the WISRAS 

application. As mentioned earlier, the login page is the 

same for the students and advisors. The advisor can login 

into the application with the credentials provided by the 

administrator. 

 After the successful login into the application, the advisor 

is directed to the advisor’s homepage, where a list of 

students under the advisor is displayed (Fig. 5). 

   The advisor can click on a particular student link to get 

the course plan of that particular student (Fig. 5). The 

advisor can approve or reject the courses selected by the 

student by checking the approve check box of the courses. 

There is a comments section to provide comments about the 

reason for the rejection of a course as shown in Fig. 6. After 

the advisor’s approval of the course plan, the application 

automatically generates an email confirmation to the student 

and the department about the successful approval of the 

student’s course plan. This confirmation email triggers the 

department’s administration office to provide the 

registration code to the student through an email. 

 

Fig.  5. Advisor’s home page 

 

   

 

             Fig. 6. Advisor’s view of student’s course plan 

 

The sequence diagrams of the advisor and student 

interface are shown in Fig. 7 and Fig. 8, which represent the 

complete flow of the application. 

 

174

Authorized licensed use limited to: University of Massachusetts Medical School. Downloaded on July 26,2010 at 13:02:08 UTC from IEEE Xplore.  Restrictions apply. 



 

 

 

 
Fig. 7. Sequence diagram of advisor interface 

 

 

 
Fig. 8. Sequence diagram of the student interface 

 

3.2 Technical Aspects of the Application 

Login.jsp that is written in JSP and JSF is the user login 

page of the application. Once the user enters their 

credentials, the checkValidUser action verifies the user’s 

credentials and also whether the user is an advisor or a 

student. If the user is an advisor, then the checkValidUser 

action returns successAdvisor. If the user is a student it 

returns successStudent.  If the login fails, the user is 

redirected back to the Login.jsp page with an appropriate 

message. Faces-navigation.xml contains the navigation 

cases and navigation rules. The advisor is directed to the 

advisor’s home page and the student to the student’s home 

page. 

 
 
 <navigation-rule> 

   <from-view-id>/view/Login.jsp</from-

view-id> 

  <navigation-case> 

   <from-outcome>successStudent</from-

outcome> 

   <to-view-id>/view/Home.jsp</to-view-

id> 

  </navigation-case> 

  <navigation-case> 

   <from-outcome>successAdvisor</from-

outcome> 

   <to-view-id>/view/AdvisorHome.jsp</to-

view-id> 

  </navigation-case> 

  <navigation-case> 

   <from-outcome>fail</from-outcome> 

   <to-view-id>/view/Login.jsp</to-view-

id> 

  </navigation-case> 

 </navigation-rule> 

 

 

The student’s home page has three links: new plan, view 

plan, and edit plan. When the student clicks on new plan, 

the action plan is called, which returns the MSEEPlan.jsp 

page. If student clicks on view plan link, it will call the 

method getPlanDetails(), which returns the results of the 

action viewPlan. 
 

 
 <navigation-rule> 

  <from-view-id>/view/Home.jsp</from-view-

id> 

  <navigation-case> 

   <from-outcome>plan</from-outcome> 

   <to-view-id>/view/MSEEPlan.jsp</to-

view-id> 

  </navigation-case> 

  <navigation-case> 

   <from-outcome>viewplan</from-outcome> 

   <to-view-id>/view/ViewPlan.jsp</to-

view-id> 

  </navigation-case> 

 </navigation-rule> 

 

 

MSEEPlan.jsp page has the course plan details. The 

specialization details are populated while loading the page. 

The drop-down menu items for specialization selection are 

Software-computer, Power, Networks, and 

Telecommunications. On selecting a specialization item in 

the drop-down menu, the valueChangeListener is called and 

an onchange event is triggered and calls the function 

pulldownChanged(). 

175

Authorized licensed use limited to: University of Massachusetts Medical School. Downloaded on July 26,2010 at 13:02:08 UTC from IEEE Xplore.  Restrictions apply. 



 

 

<h:selectOneMenu id="specializationId" 

 value="#{MSEEPlanBean.specializationId}" 

valueChangeListener="#{MSEEPlanBean.getMenuC

hange}" 

 onchange="pulldownChanged()"> 

<f:selectItem itemLabel="Select 

Specialization"itemValue="0" /> 

<f:selectItems 

value="#{MSEEPlanBean.specializations}" /> 

</h:selectOneMenu> 

<h:commandButton id="myUpdateButton" 

value="Submit" action="specialization" 

style="visibility:hidden;" /> 
 

In the javascript function 

pulldownChanged(), a method used to get the 

button clicked is as follows 
 

function pulldownChanged(){ 

 document.getElementById("plan:myUpdateButt

on").click(); 

} 

 

The related courses and math course drop-downs are 

populated by retrieving the respective information by 

calling the methods getRelatedCourses(), 

getMathsCourses() through services using the Spring flow 

and Hibernate. Lastly, the student has to select the thesis or 

non thesis plan option. By default, the thesis option is 

selected (counts 9 credits) and the student has to enter the 

plan details. If the student has selected non- thesis option 

(project work), it will count as 3 credits and the student has 

to select two more related courses. Onchange event is 

triggered once the student has selected the non thesis or 

thesis option. The show() and hide() functions are used to 

display the course fields. 
 
function show(section) { 

  

(document.getElementById(section)).style.dis

play='block'; 

                        } 
 

function hide(section) { 

     

(document.getElementById(section)).style.dis

play='none'; 

                       } 

 

After selecting the courses, the plan can be saved by 

clicking the save button, which triggers the action method 

savePlan(). 
 
<h:commandButton value="Save Plan" 

action="#{MSEEPlanBean.savePlan}" 

immediate="true"> 

 

The savePlan() method retrieves the selected courses 

details and saves them in the database by using the bean 

savePlan() method in the CoursesDao bean.  

 
 

MSEEPlanBean.saveplan(): 

 

public String savePlan() { 

    try{ 

 this.getServiceLocator().getCoursesService

().savePlan(getInfo()); 

    }catch (Exception e) { 

   System.out.println("Exception:::::"+e); 

 } 

 return "success";  

} 

 

CourseDao.savePlan(): 

 

public int savePlan(BaseDAOBean bean) { 

  CoursePlan plan = (CoursePlan) bean; 

  try { 

   add(plan); 

  } catch (Exception e) { 

   e.printStackTrace(); 

  } 

  return plan.getId(); 

 } 

 

After the successful saving of the course plan, emails 

will be generated to both student and corresponding 

advisor, with the course details and the student name by 

calling the method sendMail() method in 

AutoGeneratedMailFactory class.  

After login, the advisor will be directed to the advisor’s 

home page. The advisor can see the list of students under 

his or her guidance. The students’ list gets displayed by 

using dataTable in JSF. Selecting a particular student name 

redirects the advisor to that student’s course plan. When the 

advisor clicks on a student’s name, the action studentPlan is 

called. 

 
<h:dataTable 

value="#{AdvisorHomeBean.studentInfo}" 

var="data"> 

  <h:column> 

    <h:commandLink action="studentPlan"> 

       <h:outputText 

value="#{data.studentFname}" />  

       <f:param value="#{data.studentId}" 

name="studentId"></f:param>   

    </h:commandLink> 

  </h:column> 

</h:dataTable> 

 

The studentPlan action redirects to the 

StudentPlanDetails.jsp pages.  

 
<navigation-rule> 

  <from-view-

id>/view/AdvisorHome.jsp</from-view-id> 

  <navigation-case> 

   <from-outcome>studentPlan</from-

outcome> 

   <to-view-

id>/view/StudentPlanDetails.jsp</to-view-id> 

  </navigation-case> 

</navigation-rule> 

176

Authorized licensed use limited to: University of Massachusetts Medical School. Downloaded on July 26,2010 at 13:02:08 UTC from IEEE Xplore.  Restrictions apply. 



 

 

In the StudentPlanDetails page, the advisor can accept 

or reject the student’s selected course by checking the 

appropriate check box. The advisor can also enter 

comments in the student’s course plan if there is any 

problem with the student’s selected courses. Once the 

advisor approves a course, the student cannot edit that 

particular course any further. When the advisor clicks on 

the save button, it will call the saveStudentPlan() action and 

the isAccepeted flag is set for the accepted courses in the 

database by using the update method in Hibernate. Emails 

will be sent to both the advisor and student about the 

changes of the advisor on the course plan by calling 

sendMail() method in AutoGeneratedMailFactory class. 

Based on that email, the student can login into the 

application and view the accepted courses. The student can 

also edit the rejected courses and re-submit the course plan 

which repeats the process for acceptance of the course plan 

by the advisor. 

4. Discussion and Conclusion 

The WISRAS was successfully developed using Spring, 

Hibernate, and JSF with all the main features.  

Presently, the student, advisor, and email interfaces of 

the WISRAS are completed. The next development phase 

of the WISRAS would result in an application where the 

students and advisors have secure access to the application. 

The extension of the project includes adding an interface to 

the course schedule for all semesters. An interface to the 

department’s administration office for sending the 

registration code to the student on successful approval of 

the student’s course plan is also planned.  

There were some issues in configuring the application to 

work in different browsers especially Internet Explorer (IE) 

and Mozilla. Each browser behaves differently for the same 

methods in JavaScript. Therefore, the debugging was very 

difficult using JavaScript. The JavaScript console in 

Mozilla was more helpful for debugging than debugging 

options in IE. We also plan to benefit from an early 

development we have implemented in expanding the 

functionality of the current system [8]. 

5. Acknowledgement 

We thank Dr. Gary J Grimes and Prof. David Green, 

Electrical and Computer Engineering Department at the 

University of Alabama at Birmingham, for their support and 

help during the course of the development of the project. 

6. References 

[1] B. Kurniawan, “JavaServer Faces Programming,” J. Peters, Ed.  New 

York: McGraw-Hill, 2003, ch. 14.  

[2] C. Schalk, “Introduction to JavaServer Faces,” 2005. [Online]. 

Available: 

http://www.oracle.com/technology/tech/java/newsletter/articles/intro

jsf/index.html.  [Accessed Nov. 20 2007]. 

[3] K. Donald, E. Vervaet, “Spring Framework and web Flow,” 2007. 

[Online]. Available: http://www.springframework.org/webflow 

[Accessed Nov. 20 2007]. 

[4] P. Peak, N. Heudecker “Hibernate Basics,” 2005. [Online]. 

Available: 

http://www.developer.com/open/article.php/10930_3559931_5. 

[Accessed Nov. 20 2007]. 

[5] R. Hightower, “Configuring Hibernate, Spring and JSF,” 2005. 

[Online]. Available: 

http://www.thearcmind.com/confluence/display/SpribernateSF/Confi

guring+Hibernate%2C+Spring%2C+OpenInSessionViewFilter+and

+MyFaces+JSF.  [Accessed Nov. 20 2007]. 

[6] C. Sagi, “An interactive Web application using AJAX,” 2005.  

[7] Exadel Training, “JavaServer Faces Tutorial,” 2007. [Online]. 

Available: http://www.exadel.com/tutorial/jsf/jsftutorial-

kickstart.html [Accessed Nov. 20 2007].  

[8] S. Lanka, M. M. Tanik, and D. Green, “Design of a Distance 

Education System,” IEEE Southeastcon, Lexington, Kentucky, 

March 25-28, 1999, 129-133. 

 

177

Authorized licensed use limited to: University of Massachusetts Medical School. Downloaded on July 26,2010 at 13:02:08 UTC from IEEE Xplore.  Restrictions apply. 


	A Web-based interactive Student Advising system using Java frameworks
	Let us know how access to this document benefits you.
	Repository Citation

	A Web-Based Interactive Student Advising System Using Java Frameworks

