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1 Introduction

1.1 Motivation

Methods of spatial statistics have been widely applied in fields like biometrics and geostatis-

tics after Whittle (1954) introduced the first spatial models. Spatial econometrics, however,

has only been studied for the past 40 years. Paelinck and Klaassen (1979) published the first

work which deals solely with this sub-discipline of econometrics. The characteristic property

of spatial data in contrast to non-spatial data is that it links attributes to a geographic lo-

cation (Fischer and Wang, 2011).1 In case of a space-time data set information about time

is included, too. Due to this additional information, it is possible to model dependencies

between different observations which rely on geographical proximity. A similar concept in

non-spatial modelling can only be found with regard to the time dimension. Hence, many

concepts of spatial models have been inspired by the time series literature. Unfortunately,

an essential property of time series does not hold in spatial modelling: Whereas time series

have a natural ordering along the time line – from the oldest to the most recent observa-

tion – spatial data form a network which does not have a defined starting and end point.

Concepts like predetermination, which often facilitates estimation in the time series context,

generally do not exist in spatial modelling. Tobler’s first law of geography summarizes this

circumstance nicely: “everything is related to everything else, but near things are more re-

lated than distant things” (Tobler, 1970, p. 236). It also highlights another key assumption

of spatial modelling: While it is anticipated that everything, for example every county or

census tract, is connected to the other units through the spatial process, it is also assumed

that this connection depends on the proximity of units, i.e. is diminishing with increasing

distance.

The use of spatial models can either be motivated from a theoretical or practical viewpoint.

In practice, data may show peculiar properties, e.g. spatial heterogeneity, that make the

use of a spatial model specification advisable. From a theoretical perspective, spatial mod-

els can help to formalize the relations between agents which interact in such a way that

aggregate patterns are observable (Anselin, 2002). Different reasons can be thought of why

a spatial autoregressive structure might exist in the data at hand and why it should be

modelled: First of all, one might originally be interested in modelling the interactions of

agents or their reactions on previous decisions of neighbors which depend on the proximity

(of geographic or other nature) to each other, e.g. trade flows. This can be accomplished

by using panel data (often called space-time data) but also cross-sectional data can contain

such dependencies. The observed state in a cross-section represents an equilibrium which

has been constituted by iterative actions and reactions of neighboring units. But even if

the actual research question does not suggest a spatial dependency in the data, it can be

introduced by missing covariates. For example, if the outcome of these missing covariates

is identical for several units, which are part of the same larger scale region, neglecting them

1This definition reflects the basic understanding of spatial data. In econometric modelling the geographic
information is sometimes replaced by a different proximity measure, e.g. by technological proximity of
industry sectors (Abdelmoula and Bresson, 2005, 2007).
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will impose a positive spatial dependency on the dependent variable for which the actually

included regressors do not account for. An empirical example for this is provided by Bhat

et al. (2014) who suppose that the unobserved overall perceptions regarding the profitability

of potential location decisions are similar for neighboring units, if they are defined on a small

scale, since the perceptions apply to a larger region. LeSage and Pace (2009, pp. 25) of-

fer a comprehensive discussion of these and other motivational aspects for spatial modelling.

Spatial econometrics as an own sub-discipline has borrowed much from spatial statistics,

but still it focusses on different aspects of spatial processes. Spatial statistics (which is em-

ployed in fields like Biostatistics, Ecology, or Geography) is mostly interested in visualizing

the spatial structure within the data (Kauermann et al., 2012). Therefore, formalized models

containing non-spatial covariates are rarely used and estimation methods are strongly driven

by their application. Spatial econometrics in contrast addresses two features of spatial data

– spatial dependence between observations and spatial heterogeneity, i.e. “place-to-place”

non-constant variance (Griffith and Paelinck, 2007). The focus often lies on estimating the

size of spillover effects (Kauermann et al., 2012) usually in combination with effects of ex-

planatory variables. This coincides with the scope of this thesis: The central purpose is to

develop original count data models for spatial data which excludes models with log trans-

formed counts or rates of counts as the dependent variable. These models need to estimate a

(global) spatial effect, which allows that changes in the observation of one geographical unit

potentially affect the outcomes of all other units. Additionally, the model must allow for

explanatory variables aside the spatial terms which is a standard in econometric modelling.

A large variety of techniques have evolved in spatial econometrics, most of them for the

modelling of continuous spatial data, but also other data types are considered. But still, the

modelling of spatial count data, i.e. data which consists of non-negative integers, is in its

infancy, with some propositions but few established methods. While spatial heterogeneity is

included into count data models on a regular basis, spatial autoregression of the dependent

variable is rarely addressed in count data applications so far. Seemingly, the only well estab-

lished modelling strategy, which has been transferred from spatial statistics, is the modelling

of a spatially correlated error term using a conditional autoregressive (CAR) scheme. There,

the errors conditional on their neighbors are assumed to be normally distributed. However,

this only induces a spatial structure in the error term, not in the observations, regarding it

as a nuisance. Aside from that, the special structure of count data models has hindered the

direct transfer of the model structure for continuous spatial data. Instead of spatially lagged

dependent variables, spatially lagged explanatory variables are more often included in count

data models. These are only able to represent local spatial effects and the explained part of

spatial dependency, which will further clarified in Chapter 1.2.

The interest of this thesis lies in explicitly modelling a spatial structure in discrete valued

count observations. More precisely, the aim is to estimate a global spatial autocorrelation

parameter in the framework of a count data regression model. For this purpose, count data

models are developed which incorporate spatial autocorrelation and are straightforwardly ap-
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plicable for practitioners who benefit from a computationally hassle-free estimation of such

a model. Previous proposals are often cumbersome to implement and ready-to-use packages

for statistical software are not available for spatial count data models yet. To achieve this

goal, cross-sectional and panel data models are presented and applied to a cross-sectional

start-up firm births data set from the U.S. and a panel data set about crime in Pittsburgh.

The thesis is organized as follows: In the remainder of this chapter, a short introduction to

spatial econometric modelling is given to explain the most important concepts of this sub-

discipline. The related literature on econometric modelling of spatial counts is discussed

in Chapter 2 with the focus on spatial autoregressive models. Chapter 3 contains an anal-

ysis of the Poisson spatial autoregressive model of Lambert et al. (2010), which serves as

a starting point for the development of further so-called observation-driven spatial models.

The cross-sectional spatial linear feedback model is introduced in Chapter 4 and applied to

a start-up firm births data set, followed by spatial panel models in Chapter 5 which are

employed to forecast crime counts for Chicago. Finally, Chapter 6 concludes.

If not stated otherwise in the respective chapter the computations are executed in MATLAB2

using code written by myself. For optimization the function fminunc with the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method is used.

2The MathWorks, Inc., Natick, Massachusetts, United States.
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1.2 Introduction to Spatial Econometric Modelling

Before starting with the investigation of spatial count data models, this section is intended

to give an introduction to the most important concepts of spatial econometrics. These con-

cepts are introduced for the standard case which are cross-sectional models for continuous

data. In the last decade, the theoretical basics of spatial econometrics have been well doc-

umented in a number of textbooks from which the following summary is compiled (Arbia,

2014; Elhorst, 2014; Fischer and Wang, 2011; LeSage and Pace, 2009; Ward and Gleditsch,

2008).

Spatial dependence or spatial autocorrelation “reflects a situation where values observed

at one location or region [. . . ] depend on the values of neighboring observations at nearby

locations” (LeSage and Pace, 2009, p. 2). This means that the observations either form

clusters of similar values, which conforms to positive spatial correlation or, at the opposite

extreme, a checkerboard pattern indicating negative spatial correlation, i.e. low values in

one region foster high values in its neighboring regions. Figure 1 displays the stylized pat-

terns of positive and negative spatial correlation.

 

(a) Positive spatial correlation

 

   

(b) Negative spatial correlation

Figure 1: Stylized patterns of spatial correlation. Adapted from Fischer and Wang (2011, p. 24).

As mentioned before spatial data assigns geographical information to some attribute infor-

mation. The space described by this information can be viewed as a continuous surface

(‘field view of space’) or as being filled with discrete objects (‘entity view of space’). In

the field view, data can (theoretically) be measured at any point of a given surface having

changing values across the surface. In the entity view, data is matched to one-dimensional

objects (e.g. rivers or roads) or two-dimensional ones (e.g. counties or grid cells). Looking

closer, four types of spatial data can be defined. First, geostatistical data conforms to the

field view of space and is inherently continuous, but measured at a set of predefined points.

A typical example is temperature which is measured at certain points but changes contin-

uously over the earth surface. Second, point pattern data also consists of a set of point

observations but those locations are not predefined. Instead, the points indicate the loca-

tions at which events of interest occur. Examples are locations of a certain tree species or of
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pedestrian casuality incidents. Third, area data consists of observations which are assigned

to a fixed set of units. These units can either form a regular lattice, like the rectangles of

an agricultural test field, or an irregular one, e.g. districts of a city. The unemployment

rate of counties is a typical example. Fourth, spatial interaction or origin-destination flow

data arises from measurements of interactions between two units, e.g. trade flows between

countries. The last two types are commonly found in spatial econometric modelling. This

thesis concentrates on area data, as does the rest of this section.

Before being able to model spatial effects using area data, the relationships between the

n units of the lattice, i.e. the neighbors of each unit, need to be summarized in an n × n
spatial weight matrix W . The elements of matrix W are positive if the corresponding units

are neighbors (wij > 0 if i ∼ j, i 6= j) and zero otherwise. The entries on the main diagonal

are zero by convention (wii = 0 ∀i). If the matrix is symmetric, it means that each unit

is a neighbor of its neighbors (wij = wji). Although this is a very intuitive concept of

neighborhood, we will see later that depending on how the neighbors of a unit are deter-

mined, asymmetric matrices are employed as well. Spatial weight matrices used in spatial

econometrics are usually transformed to be “row-stochastic” (also called “row-normalized”),

meaning that each row sums up to one (
∑n

j=1wij = 1 ∀i).

Broadly three types of spatial weight matrices can be distinguished according to the concept

of neighborhood employed. The entries of a contiguity matrix equal one if the respective

units share a common border (rook contiguity), a common vertex (bishop contiguity), or

either one of them (queen contiguity). This is a very intuitive way of defining neighbor-

hood leading to a symmetric matrix (before row-normalization). The reasoning behind it

is that there must be a point of contact between units to enable them to affect each other.

A k-nearest neighbor matrix follows a different idea and contains ones for the k closest

neighbors to each unit (usually measured at the centroid). Here, the units being denoted as

neighbors do not need to have a common border or vertex. On the one hand, depending on

the structure of the lattice, this can lead to neighbors which actually lie far away from each

other. On the other hand, this specification ensures that each unit has the same number of

neighbors. The resulting weight matrices are in general not symmetric. For the third class

of weight matrices the geographical or otherwise defined distance is used to compute the

weights. Typically, the inverse of the distance between two units, or a function of it, serves

as the weight. Giving higher weights to closer units and smaller weights to units further

away this complies with Tobler’s much cited first law of geography (Tobler, 1970, p. 236).

Again, for this concept of neighborhood it is irrelevant whether the units share boundary

points or not, but it leads to a symmetric weight matrix (before row-normalization). A full

inverse distance matrix defines relationships between all units on the lattice. This is not

plausible for all applications and may also result in computational difficulties for large data

sets. An alternative to the full inverse distance matrix is to set a distance threshold, up

to which units are considered neighbors. In the remainder of this thesis the spatial weight

matrix is assumed to be predetermined and not part of the unknown parameter set.
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There are different parts of a linear regression model where a spatial component can be

incorporated using the previously described weight matrices. If the spatial dependence in

the data is assumed to be a nuisance resulting in spatial correlation in the error terms, spatial

error models (SEM), also called spatial heterogeneity models, can be used to account for

this data property and to achieve more efficient estimation, especially in small samples. The

SEM in matrix notation is

y = Xβ + ε (1)

ε = ρWε+ u⇔ ε = (I − ρW )−1u (2)

where y is the vector of the dependent variables for the n units, the vector u contains i.i.d. er-

ror terms, W is exogenous and row-standardized, and X is a matrix of explanatory variables

with parameter vector β. To ensure the existence of the inverse, the spatial autoregressive

parameter must fulfil |ρ| < 1. The model equations can be reduced to

y = Xβ + (I − ρW )−1u. (3)

And the resulting covariance matrix is given by

E[uu′] = σ2
u(I − ρW )−1(I − ρW ′)−1 = σ2

uΣ (4)

Equation (3) visualizes that there is only a spatial structure in the unexplained part of the

dependent variable in a SEM, the explanatory variables are supposed to be spatially uncor-

related. Assuming that the error terms ui are i.i.d. normally distributed, the parameter

estimates can be obtained using maximum likelihood estimation. Alternatively, a feasible

generalized least squares procedure derived by Kelejian and Prucha (1998) can be employed.

The next two models explicitly model spatial effects in the explained part of the model. The

spatially lagged covariates (SLX) model incorporates the regressors of the neighbors into

the model equation:

y = Xβ +WX̄γ + ε (5)

where X̄ are the explanatory variables excluding the constant and γ is a parameter vector

instead of a scalar like ρ in the SEM. ε is a vector of i.i.d. error terms. If the spatial weight

matrix W is row-stochastic then WX̄k is a weighted average of the neighboring observations

of the kth explanatory variable with γk being the corresponding parameter. Because the

spatial effect is only introduced through spatially lagged regressors, neither endogeneity nor

heterogeneity are induced and estimation of the model need not to be adapted. In the

case of the classical linear regression model this means estimation can be conducted with

ordinary least squares.

Finally, the spatial autoregressive (SAR) model includes spatial effects of the dependent
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variable:

y = λWy +Xβ + ε⇔

y = (I − λW )−1Xβ + (I − λW )−1ε (6)

where λ is the parameter of spatial autocorrelation in the dependent variable and εi is i.i.d.

Equation (6) gives the reduced form of this model. The endogenous regressor Wy is usually

named spatially lagged dependent variable and, in the case of a row-stochastic weight ma-

trix, equals a weighted average of the neighboring observations of the dependent variable.

All other entries of W including the elements of the main diagonal are zero, meaning that

only observations of neighbors enter the average. The domain of the spatial autocorrelation

parameter λ depends on the minimum and maximum eigenvalues of W , /ωmin and /ωmax.

To ensure stationarity it should lie in the interval (1/ωmin, 1/ωmax). If W is row-stochastic,

−1 ≤ ω−1
min < 0 and ω−1

max = 1 hold and the spatial autocorrelation parameter ranges from

negative values to unity, making interpretation and comparison more comfortable. Like

the SEM this model can be estimated via maximum likelihood assuming normality for the

error terms. A two-step least squares procedure with [X,WX,W 2X,W 3X, . . . ,W pX] as

instruments has also been developed.

Whether the spatial dependence is supposed to be part of the error process and regarded

as a nuisance or if it is of explicit interest and modelled as spatial dependence of X or y

depends on the specific application and the interests of the researcher. The choice between

a SLX and a SAR model also entails whether a local or global spatial effect is modelled.

The SLX model contains the spatial term WX which causes a change in Xi. to potentially

affect all neighbors of i but not the rest of the units on the lattice. This is denoted as a

local spatial effect (Anselin, 2003, pp. 156). The reduced form of the SAR model contains

(I − λW )−1, called spatial multiplier or Leontief inverse, multiplied with the explanatory

variables X. Through this inverse, a change in a regressor of one of the units does not only

affect the direct neighbors of that unit but potentially all units on the lattice. To clarify

this, the infinite series expansion of the inverse is helpful:

(I − λW )−1 = I + λW + λ2W 2 + λ3W 3 . . . (7)

From this, it can be seen that this inverse does not only contain weights for the direct

neighbors, which are λW , but also for the neighbors of the neighbors, λ2W 2, and so on.

This is called a global spatial effect (Anselin, 2003, pp. 155) since a change in one unit

leads to changes in potentially all other units. Whether or not all units will be affected and

the strength of these effects depend on the position on the map of the changing unit, the

amount of connectivity between the units (specified in W ), and the size of λ and β.

To visualize the different effects of a change in regressor matrix X in a SAR model, Figure 2

displays a regular 7×7 square grid. The observed effect is split up into different unobservable

intermediate steps, of which three are explained here, denoted by yI , yII and yIII . Only

the final outcome of the dependent variable in an equilibrium state is observed. Figure 2(a)
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displays the initial change of yi caused by a change in xil:

yI = λWy + (X + ∆X)β + ε ∆xil 6= 0, ∆xik = 0 (8)

∀k, l = 1, . . . ,K, l 6= k

This is the effect of a change in xil, which would also be observed in a non-spatial linear

model, and equals βl if ∆xil = 1. Due to the spatial term Wy a change in yi affects the

outcomes of all neighbors of unit i, i.e. a spillover effect occurs (Figure 2(b)):

yII = λW (y + ∆yI) + (X + ∆X)β + ε ∆yIi 6= 0, ∆yIj = 0 (9)

∀i, j = 1, . . . , N, j 6= i

This part of the spillover effect is a local effect like it is obtained in SLX models because

only the immediate neighbors of unit i are affected. Looking at one particular neighbor of

unit i (Figure 2(c)), the change in the outcome variable of the neighbors now itself leads to

spillover effects to the neighbors’ neighbors (Figure 2(d)) which also leads to an additional

change in the outcome of unit i. The latter is called a feedback loop:

yIII = λW (y + ∆yI + ∆yII) + (X + ∆X)β + ε ∆yIIj 6= 0 (10)

if j ∼ i, 0 otherwise

These repeating spillover effects spread over the whole map and form a global spatial effect.

Also, feedback loops with longer paths, e.g. from observation i to j to k and back to i, are

part of the entire effect. It is important to note that the models introduced here assume

a simultaneous dependence system, i.e. simultaneity of all these effects. The resulting (ob-

served) value of the dependent variable can be seen as an equilibrium outcome or steady

state.

Finally, some remarks about the interpretation of the effect of covariates are necessary. Since

the SEM model does not allow for spillover effects of a change in X, the interpretation of

β is the one known from the classical linear model. Similarly, the parameters β of the SLX

model measure the direct effects, whereas the vector γ equals the size of the spillover effects

of a change in a neighbor unit. To evaluate the size of the effect of a change in X in the

SAR model, marginal effects, usually called spatial impacts in the spatial literature, have

to be calculated. They are obtained by deriving Equation (6). The direct marginal effect,

i.e. the effect of a change in xik on the outcome of the same unit, yi, is given by

∂yi
∂xik

= aiiβk (11)

where aii is the according element of the Leontief inverse A = (I−λW )−1. Correspondingly,

the indirect marginal effect of a change in the regressor xik on the outcome of a different

unit j, is

∂yj
∂xik

= ajiβk i 6= j (12)
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(a) Initial change (b) Spillover effects

(c) Choosing one neighbor (d) Spillover effects and feedback loop

Figure 2: Components of the spatial autoregressive effect.

LeSage and Pace (2009) introduced several impact measures based on marginal effects. To

obtain a measure comparable to the β in a classical linear regression model, averages of the

effects are taken. The “average direct impact” gives the average change in y if regressor xk

of the same unit changes.

M̄(k)direkt =
1

n

n∑
i=1

aiiβk (13)

The “average total impact” summarizes either the effects of a change in xik on the dependent

variables of all units (“impact from an observation”) or the effects of changes (of the same

size) in the regressors X.k of all units on yi (“impact to an observation”). Both averages are

numerically equal and only reflect two ways of interpreting the average total impact.

M̄(k)total =
1

n

n∑
j=1

( n∑
i=1

aijβk

)
=

1

n

n∑
i=1

( n∑
j=1

aijβk

)
(14)

Eventually, the “average indirect effect” is given as the difference of average total and average

direct impact.

M̄(k)indirekt = M̄(k)total − M̄(k)direkt (15)
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2 Literature on Spatial Econometric Models for Count Data

2.1 Introduction

Spatial models, at least for continuous dependent variables, have found broad application

in econometrics during the last 30 to 40 years (for a survey see e.g. Anselin (2010) or Lee

and Yu (2009)). With regard to count data analysis the most widely used approach is the

modelling of spatial heterogeneity. Spatial autocorrelation (SAR) models, in contrast, are

not studied extensively and the propositions of such a model did only seldom find application

by others than the authors themselves. The obvious reason for a lack of SAR models for

count data is that unlike in classical models for continuous data, there is no direct functional

relationship between the dependent variable y and the regressors X. To illustrate this, the

general specification of a count data model is given:

y|µ, θ ∼ D(µ, θ), µ = exp(Xβ) (16)

with X being a matrix of exogenous variables and β the corresponding parameter vector.

D stands for an arbitrary distribution suitable for count data with intensity µ and optional

further parameters θ. The most common special cases of this class are the Poisson regression

model with y|µ ∼ Po(µ) and the negative binomial regression model with y|µ, α ∼ NB(µ, α).

The negative binomial model deals with a restriction of the Poisson model namely its equidis-

persion.

From Equation (16) we see that instead of y the intensity parameter µ, which equals the

conditional expectation E[y|X], is a function of the regressors. Because of this peculiarity

of count data modelling, a direct transfer of the spatial model types for continuous data,

introduced in the previous section, is not possible. In the following of this chapter, several

ways to handle this are reported. Aside from spatial error models, spatially lagged covariate

models (SLX) can be used to consider spatial structures without dealing with the problems

created by including endogenous spatial terms into the functional form Equation (16). Nev-

ertheless, the focus of this literature review are approaches introducing a SAR-like structure

into count data models since the main focus of this thesis lies in modelling global spatial

effects.

Spatial count data is very common in other disciplines including ecological statistics, bio-

statistics, and epidemiology for example. Articles from these areas have also been considered

in the following if they meet the conditions set for a spatial econometric model. First, spatial

econometric data is usually given on a (irregular) lattice (see Figure 2 in Chapter 1.2 for an

example of a regular lattice and Figure 9 in Chapter 3.6.1 for an irregular one). Point pro-

cesses, which are for example common in ecological statistics (plant counts), are therefore

excluded from the survey. Second, spatial econometric models usually aim at estimating a

parameter of spatial autocorrelation from the data and identifying spatial spillover effects.

On the contrary, in spatial statistics the focus often lies on visualizing a spatial process

(Kauermann et al., 2012, p. 437), for example in disease mapping which is a very common
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application for spatial count data modelling (a survey can be found e.g. in Best et al. (2005)).

The examined SAR models therefore all include such a parameter. Third and last, econo-

metric modelling is almost always concerned with the effect of covariates on the dependent

variable. Because of this, the following models must allow the analysis of the influence of

non-spatial covariates as well. Having said that, a natural condition for all models in this

thesis is that they model original count data and do not use linear approximations like log

transformed counts or rates of counts.

The following shall give an overview of the literature on spatial modelling of count data and

the applications for which such models are employed. For SLX and spatial heterogeneity

(SEM) modelling only examples of models and applications are given. In contrast, the sur-

vey of spatial autoregressive models gives to my knowledge a full picture of the approaches

documented in the literature. Models are presented with a focus on the approach of intro-

ducing a spatial structure into the model. For all other information regarding more details

on model specification, distributional theory, and details on the pursued estimation strategy

the reader is referred to the cited articles.

2.2 Spatially Lagged Covariates Models

The easiest way of incorporating a spatial structure into a model is via its covariates. This

way, spatially lagged or otherwise spatial regressors can be computed before the actual re-

gression is performed and be treated the same way as the non-spatial ones. In the following,

two examples of the use of spatially lagged covariates in a count data setting are described

without going into detail regarding the actual models employed.

Buczkowska and de Lapparent (2014) use an SLX model for the location choices of new

establishments in the Paris metropolitan area. They investigate different industry sectors

and check several count data models. The results of a Poisson hurdle model with spatial

spillover effects are reported in the article. The spillover effects are calculated prior to the

estimation as a regressor (p. 76):

Xl,s = log(
L∑
j=1

e−dl,jzj,s) (17)

where j = 1, . . . , L are the spatial units in the data set, dl,j is the distance between the

centroid of unit l and j and zj,s is an attribute of unit j that applies to industry sector

s, e.g. the number of pre-existing establishments. The inclusion of Xl,s into the intensity

equation of the model therefore introduces a spatial effect. But due to its predetermined

nature, it does not have any consequences on the estimation of the model, which is still done

using conventional estimation strategies for non-spatial models.

A different approach of using spatially lagged regressors for counts is employed by Abdel-

moula and Bresson (2005, 2007). They use a panel linear feedback model for count data

(introduced by Blundell et al. (1995)) to model spillover effects of R&D expenditures on
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patent activity. In their linear model equation, which is estimated with quasi-differenced

generalized method of moments (GMM) (Blundell et al., 2002), the number of patents is a

function of the R&D expenditures of the other regions. The R&D expenditures of the other

regions are summarized into K geographical distance classes, each with its own elasticity

parameter λk. The resulting spatial term is

K∑
k=1

λk logRt−1,k (18)

where Rt−1,k denotes the R&D expenditure in period t− 1 and geographical distance class

k. In a second application they transfer this approach to classes of technological instead of

geographical proximity.

Other applications of spatially lagged covariates models for firm location and firm births,

respectively, can be found in Alañón Pardo et al. (2007), Arauzo-Carod and Manjón-Antoĺın

(2012), Arzaghi and Henderson (2008), Bonaccorsi et al. (2013), Buczkowska et al. (2014),

Martinez Ibañez et al. (2013), Liviano and Arauzo-Carod (2013), and Stuart and Sorenson

(2003). Patent data and SLX models are also used by Acosta et al. (2012) and Corsatea

and Jayet (2014). Other economic applications include U.S. crime data (Bhati (2005) and

Payton et al. (2015)), foreign direct investment (Castellani et al., 2016), terrorist attacks in

countries eligible for foreign aid (Savun and Hays, 2011), and traffic accidents (Chiou et al.

(2014), and Cai et al. (2016)).3

On the one hand, SLX models are very compelling because of the straightforward imple-

mentation especially in the context of count data, but on the other hand they only allow for

spatial dependence in the covariates, i.e. only local spillovers are obtained (Anselin, 2003, p.

161). Also, they do not consider any spatial structure in the unexplained part of the depen-

dent variable, which might not be plausible in applications, for which not all relevant factors

can be observed. The next spatial model class employs the opposite approach and accounts

solemnly for spatial correlation in the error terms, i.e. spatial heterogeneity. This solves the

limitations just outlined but also means that the spatial structure is a mere nuisance and

not of interest by itself.

2.3 Spatial Error Models

Spatial error or spatial heterogeneity models as introduced in Section 1.2 include spatial

correlation into the error term of a regression model. Other than in the SLX model, where

local spillover effects of a change in X are present, and in the SAR models, where global

spillover effects of a change in X are considered, the expectation of y in a SEM model

remains unchanged compared to the one in a non-spatial model. Besides the simultaneous

autoregressive scheme of the linear SEM described in Section 1.2 a widely used approach

3Different approaches, in which not the outcomes of the regressors vary depending on the neighbors
and the spatial location but the coefficients, are geographical weighted regressions, applied for example to
industrial investments in Indiana by Lambert et al. (2006) and car ownership in Florida by Nowrouzian and
Srinivasan (2014), or the smooth transition count model of Brown and Lambert (2014, 2016) applied to
location decisions in the U.S. natural gas industry.
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in count data modelling is the conditional autoregressive (CAR) scheme introduced by Be-

sag (1974). The standard CAR scheme assumes that the spatial errors in Equation (2)

conditional on the neighboring errors are independent and normally distributed i.e.

εi|ε(−i) ∼ N(ρ
n∑
j=1

wijεj , σ
2
i ) (19)

where ε(−i) denotes the errors of all neighbors of unit i, ρ the spatial correlation parameter

of the errors, and σ2
i their conditional variance. This leads to the joint distribution (see

Besag (1974), for a summary of the derivation see also Cressie and Chan (1989, pp. 396))

ε ∼ N(0, (In − ρW )−1Σ) (20)

with ε = [ε1, . . . , εn]′ and Σ = diag(σ2
1, σ

2
2, . . . , σ

2
n). This means the error terms follow an

auto-Gaussian process. An intrinsic variant (ICAR) has been introduced by Besag and

Kooperberg (1995) and an extension to the multivariate case (MCAR) can be found in e.g.

Carlin and Banerjee (2003) and Gelfand and Vounatsou (2003). Banerjee et al. (2004) and

more recently Czado et al. (2014) give an overview of the different CAR models.

Spatial errors following the CAR scheme are included in count data models which are typi-

cally estimated using Bayesian Markov chain Monte Carlo (MCMC) and applied to a wide

range of data, e.g. traffic crash data (Aguero-Valverde and Jovanis, 2006; Buddhavarapu

et al., 2016; Li et al., 2007; Miaou et al., 2003; Quddus, 2008; Truong et al., 2016), pedes-

trian casuality counts (Graham et al., 2013; Wang and Kockelman, 2013), crime counts

(Jones-Webb et al., 2008; Haining et al., 2009), emergency department visits (Neelon et al.,

2013), commuting patterns (Chakraborty et al., 2013), claim numbers on insurances (Czado

et al., 2014; Dimakos and Rattalma, 2002; Gschlößl and Czado, 2007, 2008), and firm births

(Liviano and Arauzo-Carod, 2014). The CAR approach for modelling spatial heterogeneity

is also very popular in biometrics, e.g. for cancer counts (Bernardinelli and Montomoli,

1992; Torabi, 2016; Waller et al., 1997; Xia et al., 1997; Xia and Carlin, 1998; Wakefield,

2007), diabetes mellitus cases (Bernardinelli and Clayton, 1995; Bernardinelli et al., 1997),

or Malaria counts (Briet, 2009; Villalta et al., 2012). Various other specifications of spatial

error models for count data are applied in the literature as well: LeSage et al. (2007) use

a simultaneous autoregressive scheme to model European patent data, Jiang et al. (2013)

multiply two different spatial random effects in their Poisson temporal-spatial random effect

model for traffic crashes in Florida, and Basile et al. (2013) employ a geoadditive negative

binomial model for greenfield investments in the European Union, which includes a bivariate

smooth term of latitude and longitude, to name a few.

As mentioned earlier, this way of dealing with spatial association in the data lays emphasis

on efficiency but not on explicitly modelling the spatial autocorrelation of the observations.

This is the concern of the approaches presented in the next section.
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2.4 Spatial Autocorrelation Models

For continuous data an intuitive approach to incorporate a spatial effect into a model is

to include the spatially lagged dependent variable, i.e. the weighted observations of the

neighbors. While there are plenty of econometric applications for linear spatial models with

spatially lagged dependent variables (a review can be found in Anselin (2010), for example),

only few authors use spatial models for count data which include a global spatial autocorre-

lation parameter. One reason for the lack of a widely applied SAR count model is that there

is no direct functional relationship between dependent variable y and regressors X in the

classical count data models (see for example Equation (16)). A direct transfer of the spatial

structure from continuous SAR models is therefore not possible. While the SAR model goes

back to Whittle (1954), its adaption to count data modelling took another 20 years until

Besag (1974) introduced his auto-Poisson models among others like the auto-Gaussian and

auto-binomial models (without giving an example of their estimation).

In the auto-Poisson model the spatially lagged dependent variable is included in the intensity

equation of a regression model in which the dependent variable conditional on its neighbors

follows a Poisson distribution: Y (i)|{Y (j)}, j ∈ N(i) ∼ Po(µ(i)) where N(i) is the set of all

neighbors of i and

µ(i) = exp

(
α(i) +

∑
j∈N(i)

βi,jy(j)

)
(21)

which introduces the spatial effect as a weighted sum of neighboring observations with

weights βi,j . Translated to the nowadays common notation, Besag’s weights can be divided

into a spatial autocorrelation parameter λ and the element of a spatial weights matrix wi,j ,

i.e. βi,j = λwi,j . The weights satisfy βj,i = 0 if i and j are not neighbors and βi,j = βj,i,

i.e. the relationships are symmetric and no row-standardization of the weight matrix takes

place. The remaining, non-spatial regressors are introduced through α(i) (Besag, 1974, p.

202). For estimation Besag (1974) proposes a coding technique for which the set of spatial

units is divided into mutually independent subsets. For each subset the model is estimated

conditional on the other subsets and the results are combined. In a later article Besag (1975)

also proposes a pseudo-likelihood estimation for the auto-models which uses the product of

the conditional probability functions instead of a full likelihood function.

Besag’s auto-Poisson model suffers from a severe limitation. The inclusion of neighboring

observations, whose range is infinite, into the exponential function might cause the process to

be explosive if βi,j > 0. This means that only negative spatial dependence can be modelled.

This restriction on the spatial correlation is derived from the necessity that the normalizing

constant of the joint probability function derived from the conditional model given above

is finite (Besag (1974, p. 202). For a summary of the derivation see also Cressie and Chan

(1989, pp. 396)).

Nevertheless, Mears and Bhati (2006) use specification (21) in their negative binomial model

of the relationship between homicides and resource deprivation in Chicago. The spatially
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lagged dependent variable is only considered as a control variable and maximum likelihood

estimation is carried out as usual. An auto-model specification is also chosen by Andersson

et al. (2009), who estimate, among various spatial and non-spatial specifications, the effect

of university decentralization on the number of patents by using a spatial panel Poisson and

a spatial panel negative binomial model, respectively, with intensity

µit = exp

(
λ
∑
i 6=j

wijyjt + βXit +

n∑
j=1

αjIj +

T∑
t=1

γtIt
)

(22)

where Xit is a set of regressors, αj , j = 1, . . . n, represent entity fixed effects, γt, t =

1, . . . T , time fixed effects and I dummy variables for entity and year. The model is estimated

using the not amplified Bayesian methods of “Geobugs”. Both papers do not consider any

restrictions to ensure the non-positiveness of the spatial autocorrelation parameter.

Several suggestions have been made on how to overcome the shortcomings of the auto-

Poisson model, but none of them have found broad, if any application in the empirical anal-

ysis of count data: Cressie and Chan (1989) use auto-Gaussian models as an approximation

for modelling transformed sudden infant death syndrome (SIDS) counts from North Carolina.

Griffith (2006, p. 163) and Kaiser and Cressie (1997, p. 423) point out that the auto-Poisson

model can be approximated with an auto-binomial model, which is able to capture positive

spatial autocorrelation, by choosing an artificially large n for the binomial distribution. Fer-

randiz et al. (1995) model cancer mortality data from Valencia, Spain, by restricting their

dependent variable to a finite range so that the auto-Poisson model can also model positive

spatial correlation and propose maximum pseudo-likelihood or Monte Carlo scoring for es-

timation. Kaiser and Cressie (1997) use Winsorization (Z = Y I(Y ≤ R) + R I(Y > R))

where the largest values are replaced by the truncation value R and therefore the range

of the dependent variable is no longer infinite. In their paper, Kaiser and Cressie provide

a simulated example with n = 6 which they estimate via maximum likelihood. Due to

the form of the normalizing constant of the joint winsorized distribution, the maximum

likelihood estimation of this model becomes infeasible for large n (Augustin et al., 2006).

Augustin et al. (2006) employ a truncated auto-Poisson model as a practical alternative to

the winsorized Poisson model to investigate the spatial correlation in leaf and seed counts,

respectively. They also run a small simulation study to compare the results from coding,

maximum pseudo-likelihood and Monte Carlo maximum likelihood finding that the maxi-

mum pseudo-likelihood estimation leads in their setting on average to the smallest bias in

parameter estimation but also to asymptotic standard errors that are too small (Augustin

et al., 2006, pp. 13).

Analogous to the time series literature for counts, the classification of Cox (1981) can be

adopted for spatial autoregressive models as well. It distinguishes between ‘parameter-driven’

models in which the (spatial) correlation stems from a random process and ‘observation-

driven’ models in which the correlation is driven by actual observations. Therefore, the

auto-models and their variants described above all count to the observation-driven models
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because the included observable spatially lagged dependent variable drives the spatial cor-

relation.

For the sake of completeness, the spatial autocorrelation filtering for count data is men-

tioned, even though this approach does not fulfill the requirements described in Section 2.1.

It has been proposed by Griffith (2002, 2003) as an alternative to the auto-Poisson model.

He runs a Poisson regression on eigenvectors of the matrix (I−11T /n)W (I−11T /n), where

I is the identity matrix, 1 denotes a vector of ones, and W is a spatial connectivity matrix.

Doing this, he obtains data without spatial autocorrelation which can then be analysed

with standard models. Empirical examples are given using several plant count data sets.

In an empirical comparison of the Winsorized auto-Poisson model and their spatial filter-

ing model using Irish drumlin counts, Griffith (2006) points out the higher flexibility of

his spatial modelling structure which allows for several spatial autocorrelation parameters

and gives a more detailed picture of the underlying spatial dependence than a model with

one spatial parameter. Other applications of spatial filtering can be found in Haining et al.

(2009) for offend counts in Sheffield, England, in Chun (2014) for vehicle burglary incidents

in Plano, Texas, and in Tevie et al. (2014) for human West Nile virus counts in California

and Colorado.

The auto-models and the mentioned variants thereof all try to model spatial dependence

by including the spatially lagged dependent variable in the intensity equation of a Poisson

regression or other standard count data distributions. This approach bears the problem

that a reduced form of that model cannot be obtained. Specifically, it is not possible to use

a Leontief inverse (I − λW )−1 to obtain a reduced form, like in the linear SAR model (see

Section 1.2), which can be estimated by full maximum likelihood. Accordingly, different

models have been proposed which promise a more comfortable handling than the previously

discussed approaches. Two new count data models which include a spatial autocorrelation

parameter have been introduced in recent years, the spatial autoregressive Poisson model

(P-SAR) of Lambert et al. (2010) and the spatial autoregressive lagged dependent variable

(SAL) Poisson model of Liesenfeld et al. (2016b). By introducing the spatially lagged condi-

tional expectation µ into the intensity equation – instead of the spatially lagged dependent

variable – the Leontief inverse can be used to obtain a reduced form. Also, these models

do not suffer from the limitation to negative spatial dependence which applies to the auto-

Poisson model.

The P-SAR model in its reduced form is given by

y|µ ∼ Po(µ) (23)

logµ = λW logµ+Xβ

⇔ logµ = (I − λW )−1Xβ (24)

where W is a (n × n) row-standardized spatial weight matrix and λ the spatial autocor-

relation parameter. y denotes the observed counts, X is a matrix of exogenous variables,
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and β denotes the corresponding parameter vector. The reduced form of the P-SAR model

makes it obvious that this way of introducing spatial dependence only allows for spatial

dependence in the regressors, not in the unexplained part of the observations, since only X

enters Equation (24). This is a severe limitation, as it implies that all spatial dependency in

the data must be covered by the observed covariates. Obviously, it would be preferable to

capture also the unexplained part of spatial correlation in many applications. However, this

model does not count to the SLX models in which only local spillover effects (i.e. a change

in unit i only affects the proximate neighbors of unit i) are modelled. Here, a change in the

regressors of one unit affects all other units via the Leontief inverse which relates all units

to each other (Anselin, 2003, p. 156). Therefore, the model entails global spatial effects.

For estimation Lambert et al. (2010) suggest a two-step limited information maximum like-

lihood approach which is described in detail in Section 3.2. A full information maximum

likelihood approach is also derived but reported to be numerically infeasible. Although the

spatial correlation is introduced by the spatially lagged intensity µ, the reduced form of the

P-SAR model clarifies that µ itself is a function of the observed explanatory variables X

and does not contain any other random processes. Hence, the model can be classified as

observation-driven.

An earlier approach to include spatial correlation by Bhati (2008) also belongs to the class

of observation-driven models. He uses the relationship in Equation (24) to obtain a spatial

generalized cross-entropy model by replacing the original independent variables in the model

with X̃ = (I − λW )−1X. By inserting the Leontief inverse into his model, Bhati allows for

global spillover effects as it is the case in the P-SAR model. This cross-sectional model has

been applied to homicide counts for Chicago.

In a working paper, Hays and Franzese (2009) introduce their observation-driven “S-Poisson”

model, which is similar to Lambert’s P-SAR model but assumes an additive structure:

y = µ+ u, with log(µ) = λW log(µ) +Xβ (25)

where µ is a vector of the conditional means of y = [y1, . . . , yn]′, and the errors ui, i = 1 . . . n

are independently and heteroskedastically distributed. For estimating this model they pro-

pose two estimators, a nonlinear least-squares and a generalized method-of-moments esti-

mator, and illustrate this with simulated data.

Two other implementations of an observation-driven spatial count data model have been pub-

lished: Beger (2012) uses a negative binomial regression model to estimate counts of civilian

deaths in the Bosnian war. To account for spatial dependence he includes the spatially

lagged dependent variable with an exponentiated coefficient into the intensity equation:

µi = (ys,i)
λ exp(xiβ)pi (26)

with ys,i being the average number of counts in the neighbor units of unit i, λ a parameter
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measuring the strength of the spatial diffusion, and pi the population of unit i used as an

offset variable. By including the parameter of the spatial lag as an exponent the author aims

at allowing for positive and negative spatial diffusion while ensuring the positiveness of the

intensity at the same time (Beger, 2012, pp. 36). The model is estimated using MCMC

methods.

Held et al. (2005) propose to use the sum of the observed counts in neighboring units of unit

i (j∼ i) in the intensity equation of their space-time model. The intensity of their Poisson

or negative binomial model is given by

µit = λyi,t−1 + φ
∑
j∼i

yj,t−1 + ηitνit (27)

where ηit are population counts of unit i and νit is an exponential function of all remaining

regressors, including a trend. They estimate their model using maximum likelihood and

apply it to measles case counts for Lower Saxony.

Liesenfeld et al. (2016b) turn away from observation-driven modelling of spatial counts and

adopt the parameter-driven models for time series of counts by Zeger (1988) with their SAL-

Poisson model. Their resulting spatial parameter-driven model for the i-th observed count

is given as

yi|µi ∼ Po(µi) with E[yi|µi] = exp(µi) (28)

Collecting all the µi’s in the latent state vector µ, the structure of the model can compactly

be written as

µ = λWµ+Xβ + ε (29)

⇒ µ = (I − λW )−1Xβ + (I − λW )−1ε (30)

Due to the error term ε ∼ N(0, σ2I) the model allows for spatial dependence in the unex-

plained part of the variation in the data, too. In that sense it is more flexible and closer

to the continuous SAR model specification than the P-SAR model. The SAL-model can-

not be estimated via standard maximum likelihood methods as the likelihood contains an

n-dimensional integral. Liesenfeld et al. (2016b) propose an efficient importance sampling

(EIS) procedure to evaluate the integral and obtain the likelihood function.

A panel data version of the SAL model is proposed in Liesenfeld et al. (2016a) by general-

izing the model and the EIS procedure to allow for temporal dependency and unobserved

heterogeneity (by including random effects). Equation (29) then becomes:

µt = κµt−1 + λWµt +Xtβ + εt (31)

where µt denotes the (n − 1) × 1 vector of latent state variables in period t and the error
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term follows a Gaussian random-effect specification:

εt = τ + et, with et|Xt ∼ NN (0, σ2
eIN ), τ |Xt ∼ NN (o, σ2

τIN ) (32)

The model is used to estimate and forecast crime counts for the U.S. cities Pittsburgh and

Rochester.

Besides the model of Liesenfeld et al. (2016a), two other parameter-driven specifications are

available. In the framework of generalized ordered-response probit (GORP) models Castro

et al. (2012) implement a Poisson model as a special case. It contains spatial dependence of

the underlying latent continuous variable y∗it:

y∗it = δ
n∑
j=1

wijy
∗
jt + βixit + εit (33)

yit = mit if ψi,mit−1,t < y∗it < ψi,mit,t

The error term εit is supposed to be standard normally distributed and uncorrelated across

observation unit i but to have a temporal first-order autoregressive structure. The latent

variable y∗it is mapped to the observed counts by the thresholds ψi,mit,t (for details on their

form see p. 258). The model is applied to crash frequencies at urban intersections in Arling-

ton, Texas, and is estimated using pairwise composite marginal likelihood.

A variation of the model has been introduced by Bhat et al. (2014), who model the number

of new businesses in the counties of Texas for 11 different sectors in a multivariate setting.

They allow the error terms εis to be correlated over the sectors s = 1, . . . , S. Additionally,

they add spatial lags of the K explanatory variables to the model, leading to the following

latent process

y∗is = δs

n∑
j=1

wijy
∗
js + βsxi +

K∑
k=1

πsk

n∑
j=1

wijxjk + εis (34)

Estimation is again carried out using composite marginal likelihood.

In the framework of generalized linear modelling Melo et al. (2015) introduce a general-

ized linear space-time autoregressive model with space-time autoregressive disturbances

(GLSTARAR) for discrete and binary data. The model is applied to a count data set

on armed actions of guerillas in Columbia.

ηit = logE[yit|xit,εit ] = β0 + x′itβt + πt

n∑
j=1

w
(1)
ij ηjt + εit (35)

εit = ψt

n∑
j=1

w
(2)
ij εjt + eit

where the coefficients of the explanatory variables βt as well as the spatial autocorrela-

tion parameter πt and the spatial autocorrelation parameter of the error term ψt are al-

28



2 LITERATURE ON SPATIAL ECONOMETRIC MODELS FOR COUNT DATA

lowed to vary over time. eit is assumed to be i.i.d. normally distributed with zero mean,

E(eit, eis) = σts ∀i, t, s and E(eit, ejt) = 0 ∀i, j, t. The number of armed actions yit is

supposed to be independently Poisson distributed given the explanatory variables and the

unobserved space-time process εit, which is a spatial error term. Additionally, the model can

contain a second vector of explanatory variables which are time-invariant. For estimation

they propose space-time generalised estimation equations.

At the end of this chapter a class of models is described which has been developed from

an entirely different viewpoint. While all previous models try to incorporate the SAR

component of continuous models into count models, the following models start from the per-

spective of the observations-driven integer-valued autoregressive (INAR) model (McKenzie,

1985) and extend its structure to model spatial dependency. Ghodsi et al. (2012) propose a

first-order spatial integer-valued autoregressive (SINAR(1,1)) model on a two-dimensional

regular lattice. In a regular lattice each observation is characterized by its position on the

lattice denoted by i, j and neighbors of unit (i, j) are for example yi,j−1, yi+1,j or yi−1,j−1,

i.e. all eight rectangles around yij (see Figure 2 for a display of a regular lattice). In the

SINAR(1,1) a unilateral spatial structure is assumed, i.e. spatial spillovers are considered

to move in one direction across the lattice. The SINAR(1,1) model is given by

yij = α1 ◦ yi−1,j + α2 ◦ yi,j−1 + α3 ◦ yi−1,j−1 + εi,j (36)

where ◦ is the binomial thinning operator with α1 ◦ yi−1,j =
∑yi−1,j

k=1 Zk and Zk ∼ Ber(α1).

α1, α2, α3 ∈ [0, 1) and α1 + α2 + α3 < 1 ensure the positivity of the mean of y. εi,j is a se-

quence of i.i.d. integer-valued random variables. The model is estimated using Yule-Walker

estimators and applied to Student’s classic yeast cell count data set. In a later article, a

conditional maximum likelihood estimator is proposed for the SINAR(1,1) model (Ghodsi,

2015).

The design of the SINAR(1,1) model stems from a different viewpoint than the previous

models and does not fit into the idea of a spatial econometric model with a spatial auto-

correlation parameter and explanatory variables. But it accounts very well for the count

nature of the data and its application to an economic problem with a spatial process that has

one source from which it spreads is not implausible. Brännäs (2013, 2014) propose a more

general extension of the INAR model with their simultaneous integer-valued autoregressive

model of order one (SINAR(1)) which also includes explanatory variables and models the

spatial structure with one or two parameters:

yt = A ◦ yt +B ◦ yt−1 + εt (37)

where yt is a n× 1 vector of counts. The elements of the matrices A and B, αij and βij , are

parameters which are interpreted as probabilities (αij ∈ [0, 1], βij ∈ [0, 1]). Also the elements

on the principal diagonal of A (i.e. αii∀i) are equal to zero. The elements in A and B can con-

tain covariates, e.g. in a logistic form (Brännäs, 1995): aij,t = 1/(1 + exp(xij,tθ)). Similarly,

they can contain the spatial distance of units in the form aij,t = 1/(1 + exp(α1wij)), i 6= j
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(Brännäs, 2013, p. 8) or aij,t = 1/(1 + exp(α0 + α1wij)), i 6= j (Brännäs, 2014, p. 6) where

wij is the respective element of a spatial inverse distance matrix W . The inclusion of a

spatial distance measure in this way reduces the number of unknown parameters from n2 in

A to one or two (α0 and α1), respectively (Brännäs, 2013, p. 6). The authors do not give

an empirical application but make some comments on IV and GMM estimation.
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3 Investigation and Extension of the Poisson SAR Model

3.1 Introduction

After summarizing the literature on spatial count data modelling, the remainder of this the-

sis is concerned with count data models incorporating a spatial autoregressive component.

The starting point is the exploration of the spatial autoregressive Poisson model (P-SAR)

of Lambert et al. (2010). This model seems to be the most promising observation-driven

attempt so far, with respect to a model which is straightforwardly applicable for empirical

economists. First, the range of the spatial autocorrelation parameter is not restricted to neg-

ative values as it is the case in the auto-models. Second, its estimation does not require any

computationally extensive methods like other proposed models. But, Lambert et al.’s article

leaves open the question why or if at all full information maximum likelihood estimation

(FIML) is not applicable and the proposed limited information maximum likelihood (LIML)

estimator is the better choice. The authors claim that in repeated Monte Carlo trials “[t]he

usual optimization algorithms were too frequently unsuccessful [...]” (Lambert et al., 2010,

p. 244). The FIML and LIML estimation results for the P-SAR model will be compared

in a Monte Carlo study (Section 3.4) to verify this statement. Additionally, the effect of

ignored spatial correlation or dispersion in the P-SAR model is investigated in the study. In

a second step the model and some extensions, which are introduced in Section 3.3, are used

to estimate spillover effects in the counts of start-up firm births in the manufacturing sector

of the United States (Section 3.6). For evaluation of the empirical results, scoring rules are

employed, which are discussed in Section 3.5. Before starting with the Monte Carlo study,

a closer description of the model and the LIML estimation procedure takes place in the

following section.

3.2 The Poisson Autoregressive Model and Limited Information Likeli-

hood Estimation

The P-SAR model of Lambert et al. (2010) is given in Equations (23) and (24). This model

translates the spatial autoregressive (SAR) model for continuous data to counts by including

the spatially lagged logarithm of the conditional expectation µ into the intensity equation.

But the reduced form in Equation (24) highlights that, unlike in the continuous SAR model,

this way of introducing spatial dependence only allows for spatial dependence in the regres-

sors, not in the unexplained part of the observations. In this model the spatial correlation

parameter λ measures the spatial correlation between the conditional expectations of the

dependent variable in a spatial unit and its neighbors.

Due to the spatial component as well as the nonlinearity in parameters, the parameter

estimates cannot be interpreted directly. This makes the calculation of marginal effects of

a change in a regressor necessary (see Section 1.2 and LeSage and Pace (2009)). For the

P-SAR model the direct marginal effects, which are comparable to the marginal effects in a

non-spatial model, are obtained by
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∂µyi|X

∂xik
= aii exp(Ai.Xβ)βk (38)

where A denotes the Leontief inverse, i.e. A = (I − λW )−1, and aii the respective element

of this matrix. They give the marginal change in conditional expectation µi if regressor xik

changes.

Because of the spatial dependence, the dependent variable also changes if a neighbor’s

regressor changes. This is denoted as indirect effects whose sum over all neighbors equals

n∑
j=1
j 6=i

∂µyi|X

∂xjk
=

n∑
j=1
j 6=i

aij exp(Ai.Xβ)βk (39)

Accordingly, the total marginal effect, i.e. the sum of the effects of a change in each element

in vector X.k is

n∑
j=1

∂µyi|X

∂xjk
=

n∑
j=1

aij exp(Ai.Xβ)βk (40)

where Ai. denotes the ith row of the Leontief inverse.

The non-spatial Poisson model is typically estimated using (quasi) maximum likelihood es-

timation. This estimator also seems to be appropriate for the P-SAR model at first sight.

Lambert et al. (2010, p. 244), however, claim that full information maximum likelihood

(FIML) estimation is numerically infeasible for estimating the P-SAR model and suggest a

limited information maximum likelihood (LIML) approach instead. This estimation proce-

dure consists of two steps. First, the logarithmized counts (zeros are transformed beforehand

either by an inverse hyperbolic sine transformation or by adding 0.5) are regressed on spatial

instruments via ordinary least squares, which yields:

δ̂ = (Q′Q)−1Q′Wg(y∗i )

with the instrumental variables Q = [X,WX̄,WWX̄], X̄ containing all regressors of the

original problem excluding the constant, and g(y∗i ) being the logarithmized counts with

transformed zeros.

The predicted values from step one, ĝ(y∗i ) = Qδ̂, replace yi in the Poisson probability density

function

f(yi|Xi.,W,Qiδ̂;βλ) =
exp(Xi.β + λQ′iδ̂)

yi exp(− exp(Xi.β + λQ′iδ̂))

yi!

and corresponding likelihood function

logL =
N∑
i=1

yi(Xi.β + λQ′iδ̂))− exp(Xi.β + λQ′iδ̂))− log yi! (41)
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The likelihood function is maximized using standard methods, e.g. Newton-Raphson, to ob-

tain the parameter estimates. Lambert et al. (2010) also give formulas to obtain standard

errors for estimators of both steps (see pp. 244).

Aside from the statements in the article, there seems to be no obvious reason why full

information maximum likelihood estimation should not work for this model. Therefore,

Section 3.4 contains a Monte Carlo study which compares the performance of the LIML and

FIML estimators. Before turning to the Monte Carlo Study Section 3.3 introduces several

extensions of the Poisson SAR model.

3.3 Extensions of the Poisson SAR Model

The spatial structure of the P-SAR model of Lambert et al. (2010) can straightforwardly

be transferred to other count data models because it only alters the intensity equation of

the models. As a first, obvious extension, a negative binomial spatial autoregressive model

(NB-SAR) is introduced. The Poisson model assumes the data to be equidispersed, i.e. to

have equal (conditional) mean and variance. The negative binomial (NB) model removes

this constraint and allows for overdispersion, which leads to more efficient estimation of

overdispersed data. Nevertheless, the variance is still a function of the mean in negative

binomial models (with several proposed forms). Here, the negative binomial 2 specification

is chosen, whose variance function is V ar[yi|Xi.] = µi + αµ2
i with α being an additional

dispersion parameter. The density of the NB model is then

f(yi|µi, α) =
Γ(α−1 + yi)

Γ(α−1)Γ(yi + 1)

(
α−1

µi + α−1

)α−1(
µi

µi + α−1

)yi
(42)

For obtaining the NB-SAR model, the intensity parameter µ is modelled as in Equation

(24) which equals, like in the P-SAR model, the conditional expectation of y. Estimation is

usually carried out using maximum likelihood estimation with log likelihood function

logL =
n∑
i=1

( yi−1∑
j=0

log(α−1 + j)

)
− log(yi!)

−(yi + α−1) log( 1 + αµi) + yi log(α) + yi log(µi) (43)

Many other extensions of the Poisson model have been introduced in the literature, the

most prevalent ones being zero-inflated Poisson (ZIP) and Hurdle Poisson (HP) models.

Both have been developed to take special care of excess zeros in the data, but by doing so

they also introduce a greater variability into the model, which in any case allows a better

fit to the data structure.

The zero-inflated Poisson models are two-part models which have an inflation process addi-

tionally to the Poisson count process. Both processes generate zeros as outcomes, i.e. the

inflation process adds additional probability mass to the outcome zero as compared to the

standard Poisson model. This means in turn that the other process can assign less probabil-
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ity mass to zeros. Therefore, the probability mass can be shifted to the positive outcomes

making the zero-inflated Poisson model more flexible as compared to the standard Poisson

model. Especially, it has an improved ability to account for very large outcomes when at

the same time many zeros are present. The inflation process usually follows a binary distri-

bution, a typical choice is logit. This is combined with a spatially lagged intensity in the

Poisson process to obtain the ZIP-SAR regression model

f(yi|X,Z) =
exp(Zi.γ)

1 + exp(Zi.γ)
(1−min{yi, 1})

+

(
1− exp(Zi.γ)

1 + exp(Zi.γ)

)
exp(−µi)µyii

yi!
(44)

with logµ = (I − λW )−1Xβ

Z are the regressors of the inflation process and γ their parameters.

The conditional expectation of yi in the ZIP-SAR model with logit inflation process is

E[yi|X,Z] =

(
1− exp(Zi.γ)

1 + exp(Zi.γ)

)
exp(µi) (45)

Zero-inflated models are usually estimated via maximum likelihood. The according log

likelihood function of the ZIP-SAR model with logit inflation process is given by

`(γ, β) =
∑
yi=0

log(exp(Zi.γ) + exp(−µi)) +
∑
y>0

yi log(µi)− µi − log(yi!)

−
n∑
i=1

log(1 + exp(Zi.γ)) (46)

Hurdle models are motivated by the idea that a certain threshold has to be crossed before

positive outcomes can be observed. The two-part model consists of two completely separable

processes, a dichotomous one which generates the zeros by determining whether the hurdle

is crossed or not (i.e. the hurdle process) and a second one which gives the probabilities

of positive outcomes (i.e. the parent process). The latter one usually follows a truncated

count data distribution. The hurdle Poisson model employed here has a Poisson model right

censored at one as the hurdle part and a truncated Poisson as the parent process. If the

probability of not crossing the hurdle is larger than the probability for a zero in the parent

process (i.e. the not truncated Poisson distribution), then the parent process alone has a

larger mean than the overall model. This means that the range will be larger than in a

classical Poisson model and the hurdle model can better adapt to very large observations if

many zeros are present at the same time.

This hurdle Poisson SAR (HP-SAR) model consists of two Poisson processes, the hurdle

Poisson is modelled without spatial dependency, the Poisson parent process incorporates

the spatial autoregressive structure of the intensity, which leads to following regression
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model:

f(yi|X,Z) = [exp(− exp(Zi.γ))](1−min{yi,1}) ×

×
[(

1− exp(− exp(Zi.γ))

1− exp(−µi)

)
exp(−µi)µyii

yi!

]min{yi,1}
(47)

with logµ = (I − λW )−1Xβ (48)

The conditional expectation of yi in this model is given by

E[yi|X,Z] =
1− exp(− exp(Zi.γ))

1− exp(−µi)
µi (49)

Estimation can be carried out with maximum likelihood estimation. The likelihood function

of the Poisson-Poisson hurdle model is

`(γ, β) =
n∑
i=0

− exp(Zi.γ) (1−min{yi, 1})

+[log(1− exp(− exp(Zi.γ)))− log(1− exp(−µi))]min{yi, 1}

+[yi log(µi)− µi − log(yi!)]min{yi, 1} (50)

Z denote the regressors of the hurdle process with parameters γ. The likelihood function can

also be separated into two independent parts, one being a function of γ and one a function

of β, which can be optimized separately.

Figure 3 gives an overview of all proposed models and their connections. With exception of

the zero-inflated Poisson model, all models nest at least the non-spatial Poisson.4

Poi

P‐SAR

NB

NB‐SAR

HP‐SAR
Poisson hurdle process

ZIP‐SAR
Logit inflation process

0 0,  
0

0

,

0

0
0

Figure 3: Extensions of the P-SAR model. βH are the parameters of the hurdle process, βP the
parameters of the parent process. Models to which an arrow points are nested.

4For more details on the underlying non-spatial models see e.g. Cameron and Trivedi (2013), Hilbe (2011)
or Winkelmann (2010).
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3.4 Monte Carlo Study

Before applying the various specifications introduced in the last section to an empirical

example, a Monte Carlo study is conducted. Motivated by the argument of Lambert et al.

(2010) that the Poisson SAR model could not be estimated consistently via full maximum

likelihood, the main goal of the study is to investigate and compare the asymptotic properties

of the two maximum likelihood estimators for the P-SAR model. Additionally to that, the

NB-SAR model is considered for both data generating process (DGP) and regression model

to analyze the influence of overdispersion on the spatial estimation. To my knowledge, there

are no studies which analyse the consequences of neglecting the spatial autocorrelation of

count data. Therefore, this study is extended to address the question whether the P-SAR

and NB-SAR model estimators are able to detect non-spatial data and whether there are

consequences if the spatial structure in the data is ignored, i.e. if spatial data is estimated

using a non-spatial Poisson or negative binomial model.

3.4.1 Data Generating Processes and Study Setup

Data are generated from the two most popular count data processes, namely the Pois-

son process and the negative binomial 2 process, both extended with the spatial structure

proposed by Lambert et al. (2010). In addition, data from a Poisson distribution with-

out any spatial structure, i.e. non-spatial data, are generated for comparison. From each

data generating process 20 different combinations of the spatial autoregressive parameter

λ = {0, 0.2, 0.4, 0.6, 0.8} and sample size n = {1000, 5000, 25000, 50000} with each 100 sam-

ples (repetitions) are produced. The study is restricted to the case of positive spatial au-

tocorrelation since real-world examples of negative spatial autocorrelation are hard to find

in econometrics. The spatial weight matrix used is a contiguity matrix generated by us-

ing the function xy2cont of the Spatial Statistics Toolbox for MATLAB 2.0 (Pace, 2003)

on randomly generated coordinates. The regressors include a constant (X0), a uniformly

distributed variable X1 ∼ U(0, 2) and a normally distributed variable X2 ∼ N(1, 2). The

corresponding parameters are β = [β0, β1, β2] = [0.1, 0.1, 0.1].

The P-SAR data originates from the data generating process (23) and (24). For the NB-

SAR data the overdispersion parameter α takes the values 1/8 and 1/2, respectively. The

data is generated from:

y|µ ∼ NB(µ, α) (51)

logµ = (I − λW )−1Xβ (52)

α = {1/8, 1/2} (53)

Finally, the non-spatial data is produced using a standard Poisson model (Equation (16)).

In this Monte Carlo study, the P-SAR data and the NB-SAR data are estimated using the

P-SAR model (23)-(24) as well as the NB-SAR model (42). Additionally, the spatial data

sets are estimated using the non-spatial Poisson (16). All spatial models are estimated with

LIML and FIML (i.e. quasi maximum likelihood). The non-spatial model is only estimated
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Model and Estimation Method

P-SAR P-SAR NB-SAR NB-SAR Poisson
LIML FIML LIML FIML QML

Data
P-SAR x x x x x
NB-SAR (α = 1/8) x x x x x
NB-SAR (α = 1/2) x x x x x

Table 1: SAR models Monte Carlo setup.

with the quasi maximum likelihood procedure commonly used for this model. Table 1 gives

an overview of the estimated combinations of data and models.

3.4.2 Monte Carlo Parameter Estimates

In the following, the estimation results from 100 simulated samples each for n = {1000, 50000}
and λ = {0.2, 0.8} for each model and data combination are discussed. Bias, relative bias

and root mean squared error (RMSE) of all remaining specifications are reported in Ap-

pendix A.1.
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(d) λ = 0.8, n = 50000

Figure 4: Monte Carlo results of probability density estimates for λ̂ of generated P-SAR data.
Dashed and solid lines, respectively, are overlapping. Please note the different scaling on the x-axis.
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P-SAR P-SAR NB-SAR NB-SAR Non-spatial

LIML FIML LIML FIML Poisson

RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias

λ = 0.2, n = 1000

λ̂ 0.325 0.067 0.306 −0.051 0.220 0.038 0.262 −0.051

β̂0 0.089 0.018 0.126 0.028 0.055 0.005 0.114 0.026 0.106 0.084

β̂1 0.052 −0.003 0.051 −0.004 0.031 0.002 0.045 −0.006 0.051 −0.002

β̂2 0.013 −0.002 0.013 −0.002 0.010 0.000 0.011 −0.002 0.012 0.000

α̂ 0.009 0.003 0.013 0.006

λ = 0.2, n = 50000

λ̂ 0.073 0.059 0.033 0.003 0.073 0.059 0.033 0.003

β̂0 0.017 0.012 0.014 −0.002 0.017 0.012 0.014 −0.002 0.073 0.073

β̂1 0.007 0.001 0.007 0.001 0.007 0.001 0.007 0.001 0.007 0.002

β̂2 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.001

α̂ 0.003 0.002 0.003 0.002

λ = 0.8, n = 1000

λ̂ 0.090 −0.077 0.029 0.004 0.073 −0.049 0.025 0.000

β̂0 0.224 0.214 0.038 −0.004 0.182 0.144 0.034 0.001 1.154 1.153

β̂1 0.026 −0.003 0.017 −0.001 0.022 −0.001 0.015 0.000 0.036 0.024

β̂2 0.009 −0.001 0.008 −0.001 0.007 −0.001 0.007 −0.002 0.019 0.018

α̂ 0.005 0.002 0.003 0.001

λ = 0.8, n = 50000

λ̂ 0.078 −0.077 0.004 −0.001 0.078 −0.077 0.004 −0.001

β̂0 0.212 0.212 0.005 0.001 0.212 0.212 0.005 0.001 1.169 1.169

β̂1 0.004 0.000 0.003 0.000 0.004 0.000 0.003 0.000 0.022 0.021

β̂2 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.021 0.021

α̂ 0.002 0.001 0.001 0.001

Table 2: Monte Carlo results of parameter estimates for generated P-SAR data with λ = {0.2, 0.8}
and n = {1000, 50000}. Values reported as 0.000 are smaller than 0.0005.

Figure 4 displays the sampling distribution plots of λ̂ for the P-SAR data set and FIML and

LIML estimation.5 The corresponding values for bias and RMSE are summarized in Table 2.

The dashed lines in Figure 4 correspond to the LIML estimates, the solid lines to the FIML

ones. The distribution plots of the P-SAR model estimation and the NB-SAR model estima-

tion are practically identical for both estimation methods. This has been expected since the

NB-SAR model nests the P-SAR model and, furthermore, Gourieroux et al. (1984) showed

for the non-spatial case that a correctly specified conditional mean is sufficient for the con-

sistency of the quasi maximum likelihood estimator. These distribution plots support this

result also for the spatial model discussed here. But the results differ considerably between

LIML and FIML estimation. Whereas both methods produce more precise estimates, i.e.

the probability mass of the sampling distribution is stronger concentrated if the true spatial

autocorrelation is larger, the behavior for increasing n differs between FIML and LIML.6

For the smallest sample size (n = 1000) the bias of λ is of the same magnitude for LIML

and FIML estimates (though in opposite directions). The bias of FIML decreases with in-

creasing sample size, indicating the consistency of the estimator, whereas the bias of the

5Calculated using the MATLAB function ksdensity.
6Please note that the scaling of the x-axis differs between the graphs to allow for a better visualization.

38



3 INVESTIGATION AND EXTENSION OF THE POISSON SAR MODEL

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 

 

P−SAR − LIML
P−SAR − FIML
NB−SAR − LIML
NB−SAR − FIML

(a) λ = 0.2, n = 1000

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

2

4

6

8

10

12

 

 

P−SAR − LIML
P−SAR − FIML
NB−SAR − LIML
NB−SAR − FIML

(b) λ = 0.2, n = 50000

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0

2

4

6

8

10

12

 

 

P−SAR − LIML
P−SAR − FIML
NB−SAR − LIML
NB−SAR − FIML

(c) λ = 0.8, n = 1000

0.7 0.72 0.74 0.76 0.78 0.8 0.82
0

10

20

30

40

50

60

70

80

 

 

P−SAR − LIML
P−SAR − FIML
NB−SAR − LIML
NB−SAR − FIML
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Figure 5: Monte Carlo results of probability density estimates for λ̂ of generated NB-SAR data,
α = 1/8. Please note the different scaling on the x-axis.

LIML estimation remains at the same level. Also, the distributions of the FIML estimates

are more peaked than the ones of the LIML, especially for large λ. The smaller variation

in the estimates, visualized by the stronger concentrated sampling distribution plots and

documented in the smaller RMSE, shows that the model is estimated more precisely using

FIML, indicating the higher efficiency of the FIML estimates compared to the LIML esti-

mates. Generally, this would not be surprising since using the full information available

should always lead to results which are at least as good (and often better) as results from

another approach using less information. For this model, Lambert et al. (2010) argue that

FIML estimation of the P-SAR model is infeasible. With regard to the estimation of the

spatial autocorrelation parameter λ, the results just presented contradict this statement and

show the clear superiority of the FIML estimation.

The difference between LIML and FIML are less pronounced for the estimates of the param-

eter vector β, whose bias and RMSE are also displayed in Table 2. The largest bias and

RMSE is obtained for the constant β0. The coefficients of the regressors X1 and X2 are gen-

erally estimated more precisely, i.e. with much smaller bias and RMSE. Differences between

FIML and LIML are observed for data with large spatial correlation, for which the bias

and RMSE of the LIML estimations do not decrease, and in some cases even increase, with

increasing sample size. The bias and RMSE of the FIML estimation stay at least constant

with increasing sample size, in most cases they decrease. Again, FIML clearly outperforms

LIML in terms of accuracy of the estimation.
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Figure 6: Monte Carlo results of probability density estimates for λ̂ of generated NB-SAR data,
α = 1/2. Please note the different scaling on the x-axis.

The two columns on the right hand side of Table 2 give the results for the non-spatial Poisson

estimation. The bias of the β’s (except the constant β0) increases with increasing spatial

correlation in the data. The RMSE is of the same magnitude for the small sample size but de-

creases less with increasing n for data with a high value of λ. The constant β0 shows a more

severe bias than the other ones. This indicates that the missing spatial component is mostly

absorbed by this estimate and only slightly influences the estimates of the other coefficients.

Having discussed the simulation results for the parameter vector β, it must be noted that

the parameter estimates themselves are only of limited use for interpreting the influence of

explanatory variables on the dependent variable. To evaluate the influence of a regressor on

the outcomes in a count data model, which models only the dependence of the conditional

expectation of y on the explanatory variables X, it is necessary to calculate the marginal

effects, which are nonlinear functions of the parameters. This also means that the ability

of an estimation procedure to correctly estimate the effects of explanatory variables on the

dependent variable should be evaluated through the estimated marginal effects. Because

of this, the simulation results of the marginal effects are presented in the next section to

gain a better understanding of the implications of an ignored spatial dependence in the data.

Before getting to the marginal effects, Figures 5 and 6 and Tables 3 and 4 display the re-

sults for the NB-SAR data estimations with α = 1/8 and α = 1/2, respectively. Again,

the P-SAR and the NB-SAR model estimations lead to almost identical distribution plots
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P-SAR P-SAR NB-SAR NB-SAR Non-spatial
LIML FIML LIML FIML Poisson

RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias

λ = 0.2, n = 1000

λ̂ 0.394 0.171 0.309 −0.023 0.395 0.174 0.309 −0.022

β̂0 0.096 0.000 0.137 0.017 0.096 −0.001 0.137 0.017 0.103 0.082

β̂1 0.048 −0.005 0.049 −0.005 0.047 −0.005 0.049 −0.005 0.049 −0.004

β̂2 0.014 −0.002 0.014 −0.002 0.014 −0.002 0.014 −0.002 0.014 0.000
α̂ 0.035 −0.003 0.035 −0.002

λ = 0.2, n = 50000

λ̂ 0.078 0.056 0.042 −0.007 0.078 0.056 0.042 −0.007

β̂0 0.024 0.019 0.017 0.004 0.024 0.019 0.017 0.004 0.075 0.075

β̂1 0.007 0.000 0.007 0.000 0.007 0.000 0.007 0.000 0.007 0.001

β̂2 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000
α̂ 0.005 0.000 0.005 0.000

λ = 0.8, n = 1000

λ̂ 0.089 −0.057 0.041 −0.002 0.088 −0.056 0.041 −0.003

β̂0 0.243 0.229 0.054 0.003 0.241 0.228 0.053 0.003 1.147 1.146

β̂1 0.033 0.003 0.023 −0.001 0.033 0.003 0.022 −0.001 0.042 0.028

β̂2 0.011 0.001 0.009 0.001 0.011 0.001 0.009 0.001 0.021 0.019
α̂ 0.014 0.000 0.014 −0.001

λ = 0.8, n = 50000

λ̂ 0.059 −0.059 0.005 −0.001 0.059 −0.059 0.005 −0.001

β̂0 0.235 0.235 0.007 0.001 0.235 0.235 0.007 0.001 1.169 1.169

β̂1 0.004 0.000 0.003 0.000 0.004 0.000 0.003 0.000 0.021 0.021

β̂2 0.002 0.000 0.001 0.000 0.002 0.000 0.001 0.000 0.021 0.021
α̂ 0.000 0.003 0.001 0.002 0.000

Table 3: Monte Carlo results of parameter estimates for generated NB-SAR data with α = 1/8,
λ = {0.2, 0.8} and n = {1000, 50000}. Values reported as 0.000 are smaller than 0.0005.

for λ̂, although here small differences are visible. The sampling distributions of the FIML

estimates are more peaked than the ones of the LIML, especially for large λ. There seems

to be no systematic differences in RMSE and bias between data with stronger and weaker

overdispersion. In both cases, LIML leads to stronger biased estimates for λ, especially for

the smaller sample sizes with relatively weak spatial dependence in the data. Generally, the

biases become smaller with increasing sample size, but again, as in the case of the P-SAR

data, the bias of the FIML estimations decreases stronger whereas the bias of the LIML

estimations stays of the same magnitude. In summary, the results confirm the ones of the

P-SAR model regarding the predominance of the FIML estimation. The presence of overdis-

persion in different strength does not influence this. For the estimates of the non-spatial

Poisson estimations we can again note that the constant β0 is much stronger biased than

the other parameter estimates, which seem not to be much influenced by the ignored spatial

correlation in the data. As noted above, the estimates for marginal effects should be calcu-

lated in order to investigate the ability of the estimations to correctly capture the effects of

the regressors on the dependent variable.
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P-SAR P-SAR NB-SAR NB-SAR Non-spatial
LIML FIML LIML FIML Poisson

RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias

λ = 0.2, n = 1000

λ̂ 0.562 0.175 0.396 0.002 0.568 0.167 0.402 −0.085

β̂0 0.109 0.018 0.163 −0.006 0.111 0.020 0.165 0.043 0.109 0.081

β̂1 0.064 −0.003 0.063 0.007 0.065 −0.004 0.064 −0.005 0.065 −0.002

β̂2 0.019 −0.007 0.019 −0.004 0.019 −0.007 0.019 −0.007 0.018 −0.004
α̂ 0.058 −0.021 0.058 −0.020

λ = 0.2, n = 50000

λ̂ 0.123 0.100 0.047 0.001 0.123 0.100 0.047 0.000

β̂0 0.027 0.023 0.019 −0.001 0.027 0.023 0.018 0.000 0.074 0.073

β̂1 0.009 0.001 0.009 0.001 0.009 0.001 0.009 0.001 0.009 0.002

β̂2 0.003 0.000 0.003 0.000 0.003 0.000 0.003 0.000 0.003 0.001
α̂ 0.008 0.001 0.008 0.001

λ = 0.8, n = 1000

λ̂ 0.116 0.018 0.056 −0.005 0.113 0.020 0.058 −0.009

β̂0 0.295 0.268 0.070 0.008 0.288 0.264 0.070 0.014 1.155 1.153

β̂1 0.053 0.001 0.039 −0.001 0.052 0.003 0.038 −0.001 0.058 0.025

β̂2 0.018 −0.002 0.015 0.000 0.018 −0.002 0.015 0.000 0.023 0.017
α̂ 0.034 −0.003 0.034 −0.004

λ = 0.8, n = 50000

λ̂ 0.021 0.014 0.008 −0.002 0.021 0.014 0.008 −0.002

β̂0 0.276 0.276 0.011 0.003 0.275 0.275 0.011 0.002 1.170 1.170

β̂1 0.008 −0.001 0.005 0.000 0.008 −0.001 0.005 0.000 0.021 0.020

β̂2 0.002 0.000 0.002 0.000 0.002 0.000 0.002 0.000 0.021 0.021
α̂ 0.005 0.002 0.005 0.000

Table 4: Monte Carlo results of parameter estimates for generated NB-SAR data with α = 1/2,
λ = {0.2, 0.8} and n = {1000, 50000}. Values reported as 0.000 are smaller than 0.0005.
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3.4.3 Monte Carlo Estimates of Marginal Effects

Figures 7 and 8 and Tables 5 to 7 show RMSE, bias and relative bias of the median estimated

direct and total marginal effects for X1 and X2 in the P-SAR and NB-SAR simulations.

They are calculated using Equations (38) and (40) for the P-SAR and NB-SAR model,

respectively. For the standard Poisson model the marginal effects are:

∂µyi|X

∂xik
= exp(Xi.β)βk (54)

with Xi. being the ith row of the explanatory variables matrix X. The relative bias is ob-

tained as the bias of the median estimated marginal effect divided by the true marginal

effect according to the DGP.

Figures 7 and 8 show heat grids of the relative bias in the median estimated direct and total

marginal effects. Each rectangle represents one specification consisting of DGP, sample size

n, strength of spatial autocorrelation λ, and estimated model. The red shading indicates

the size of the deviation from zero on a scale which takes the darkest color for absolute

deviations of 0.5 and white for values close to zero. This scale is used to visualize the results

of the LIML estimations. Because the deviations in the estimated marginal effects from

the FIML estimations are in general smaller, a finer scale is necessary to make differences

among the FIML estimation results visible. Therefore, the blue shading indicates the size

of the deviation from zero on a scale which takes the darkest color for absolute deviations

of 0.1 and again white for values close to zero. The visualization of Monte Carlo results

in spatial econometrics through heat grids has been proposed by Arribas-Bel et al. (2012)

under the name “nested spatial maps.”

In most cases the relative bias of the marginal effect of X1 is larger than the one of X2, which

stems from the higher variance in the DGP of X2. The two lower rows of blocks display the

results for the LIML estimations which are much worse for all cases except for λ = 0. There,

LIML outperforms FIML in terms of bias for some specifications. Additionally, LIML esti-

mation seems to be very sensitive to small sample sizes and large spatial correlation. After

the decrease in bias from n = 1000 to n = 5000, the bias stays of the same magnitude when

the sample size increases further. Interestingly, the estimations for P-SAR data are better

than the ones for NB-SAR data but still worse than the complementary FIML estimations.
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Figure 7: Heat maps for the relative bias of estimated median direct marginal effects for all
generated data sets. The blue shading ranges from -0.1 to 0.1, the red shading ranges from -0.5 to

0.5.

The next two blocks above the LIML blocks display the results for the FIML estimation

of the P-SAR and NB-SAR models. The relative biases here are generally much smaller

than the corresponding ones of the LIML estimations and show the expected behavior of

decreasing bias with increasing sample size. The strength of the spatial correlation in the

data has no clear effect on the bias of the estimated marginal effects, however.
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Figure 8: Heat maps for the relative bias of estimated median total marginal effects for all
generated data sets. The blue shading ranges from -0.1 to 0.1, the red shading ranges from -0.5 to

0.5.

Finally, the upper block of rows shows the results from the non-spatial Poisson estimation.

With regard to the direct effects, the relative biases are of the same magnitude than the ones

of the FIML estimations of the spatial models. The total effects are naturally underestimated

by the non-spatial model, in cases with positive spatial correlation, since it does not allow

for any indirect effects of neighboring observations (see Chapter 1.2 for definitions of direct

and indirect impacts).
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Tables 5 to 7 give an overview of the calculated RMSE, bias and relative bias of the marginal

effects. Results for all specifications can be found in Appendix A.2. LIML also performs

worse than FIML in terms of RMSE. With exception of the small n, large λ case with NB-

SAR data, the average RMSE of the non-spatial Poisson estimation is even smaller than for

the (correct) spatial models.

The numbers presented in this section confirm the results from the previous one in the sense

that the estimates of the marginal effects from the FIML estimation are clearly superior to

those of the LIML estimation. As outlined in the previous section, this is not surprising,

since FIML uses more information in the estimation and the computation of large inverses

is manageable with the computational power available nowadays. Misspecification of the

dispersion, i.e. estimation of Poisson data with a negative binomial model and vice versa,

has no relevant consequences on the consistency and precision of the estimates from a FIML

estimation. This is in line with the theoretical result of Gourieroux et al. (1984) for non-

spatial models. The estimated direct marginal effects of the non-spatial models have slightly

higher biases than the ones of the spatial models, but still, the non-spatial model is able to

estimate the marginal effects well, even though the spatial structure in the data is ignored.

This indicates that the spatial structure of the DGP could also be regarded as a nuisance

(and for example modelled in a spatial error model) if one is only interested in the effects of

the explanatory variables. The estimates of the total marginal effects obviously cannot be

as accurately estimated by a non-spatial model, since such a model does not allow indirect

impacts.

P-SAR - FIML NB-SAR - FIML Non-spatial Poisson

Total Effects Total Effects Direct Effects

RMSE Bias ReBias RMSE Bias ReBias RMSE Bias ReBias

λ = 0.2 n = 1000

X1 0.117 0.005 0.026 0.117 0.005 0.026 0.077 −0.004 −0.025

X2 0.069 0.007 0.039 0.069 0.007 0.039 0.018 0.000 0.001

λ = 0.2 n = 50000

X1 0.014 0.002 0.013 0.014 0.002 0.013 0.010 0.001 0.008

X2 0.009 0.001 0.004 0.009 0.001 0.004 0.003 0.000 −0.001

λ = 0.8 n = 1000

X1 0.482 0.061 0.026 0.482 0.061 0.027 0.120 0.010 0.019

X2 0.243 0.036 0.016 0.243 0.036 0.016 0.044 −0.020 −0.036

λ = 0.8 n = 50000

X1 0.067 −0.005 −0.002 0.067 −0.005 −0.002 0.016 −0.001 −0.001

X2 0.034 −0.004 −0.002 0.034 −0.005 −0.002 0.005 −0.002 −0.003

Table 5: Monte Carlo results of median marginal effects for P-SAR data, λ = {0.2, 0.8},
n = {1000, 50000}. The relative bias (ReBias) is calculated as the bias divided by the true marginal

effect according to the DGP. Values reported as 0.000 are smaller than 0.0005.

46



3 INVESTIGATION AND EXTENSION OF THE POISSON SAR MODEL

P-SAR - FIML NB-SAR - FIML Non-spatial Poisson

Total Effects Total Effects Direct Effects

RMSE Bias ReBias RMSE Bias ReBias RMSE Bias ReBias

λ = 0.2 n = 1000

X1 0.127 0.010 0.056 0.126 0.011 0.057 0.073 −0.007 0.029

X2 0.074 0.014 0.076 0.074 0.015 0.078 0.022 0.000 0.028

λ = 0.2 n = 50000

X1 0.523 −0.002 −0.006 0.015 −0.001 −0.007 0.011 0.000 −0.013

X2 0.327 0.041 −0.008 0.009 −0.002 −0.008 0.003 0.000 −0.001

λ = 0.8 n = 1000

X1 0.015 −0.001 −0.001 0.515 −0.002 −0.001 0.144 0.025 −0.107

X2 0.009 −0.002 0.018 0.334 0.046 0.020 0.045 −0.014 0.004

λ = 0.8 n = 50000

X1 0.077 −0.007 −0.003 0.077 −0.007 −0.003 0.018 −0.002 0.008

X2 0.046 −0.002 −0.001 0.045 −0.002 −0.001 0.007 −0.001 −0.002

Table 6: Monte Carlo results of median marginal effects for NB-SAR data, λ = {0.2, 0.8},
n = {1000, 50000}, α = 1/8. The relative bias (ReBias) is calculated as the bias divided by the true

marginal effect according to the DGP. Values reported as 0.000 are smaller than 0.0005.

P-SAR - FIML NB-SAR - FIML Non-spatial Poisson

Total Effects Total Effects Direct Effects

RMSE Bias ReBias RMSE Bias ReBias RMSE Bias ReBias

λ = 0.2 n = 1000

X1 0.148 0.003 0.016 0.150 −0.001 −0.003 0.097 −0.004 −0.027

X2 0.076 −0.001 −0.007 0.077 −0.002 −0.008 0.028 −0.007 −0.048

λ = 0.2 n = 50000

X1 0.018 0.002 0.012 0.018 0.002 −0.019 0.014 0.002 0.012

X2 0.011 0.000 0.002 0.011 0.000 0.006 0.004 0.000 −0.002

λ = 0.8 n = 1000

X1 0.838 −0.097 −0.042 0.817 −0.043 0.011 0.243 0.015 0.026

X2 0.477 0.002 0.001 0.485 0.013 0.002 0.076 −0.020 −0.036

λ = 0.8 n = 50000

X1 0.130 −0.019 −0.008 0.126 −0.017 −0.007 0.033 −0.006 −0.011

X2 0.069 −0.018 −0.008 0.067 −0.016 −0.007 0.010 −0.003 −0.005

Table 7: Monte Carlo results of median marginal effects for NB-SAR data, λ = {0.2, 0.8},
n = {1000, 50000}, α = 1/2. The relative bias (ReBias) is calculated as the bias divided by the true

marginal effect according to the DGP. Values reported as 0.000 are smaller than 0.0005.
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3.5 Model Selection: Scoring Rules

With the help of scoring rules, the fit of the predictive distribution to the observed data can

be compared among models. Like information criteria which are based on the likelihood

values of the estimates, scoring rules negatively penalize a worse fit of the model to the data

and are therefore to be minimized. This method of model selection is adopted from the times

series of counts literature (see Czado et al. (2009) and Jung et al. (2016)). The score is av-

eraged over all observations for model selection. Several scores are suggested in the count

data literature. In the following, the logarithmic, quadratic and ranked probability scores

are presented, which place their emphasis on different aspects of the estimated distributions.

The logarithmic score focusses on the predicted probability of the observed count and penal-

izes predictive distributions for which the observation has a small probability. The average

logarithmic score is

LogS =
1

n

n∑
i=1

− log(P̂i(yi)) (55)

where P̂i(yi) is the predictive probability distribution of observation yi.

The quadratic score also considers the whole estimated probability distribution by adding

the squared probabilities of all possible outcomes:

QS =
1

n

n∑
i=1

−2P̂i(yi) +
∞∑
j=0

P̂i(j)
2 (56)

As a third scoring rule the ranked probability score is used which especially penalizes a flat

estimated distribution:

RPS =
1

n

n∑
i=1

∞∑
j=0

(F (j)− I(yi ≤ j))2 (57)

An important property of scoring rules is propriety, i.e. the score takes its worst value for

the worst possible fit and its best value for the best. This property holds for all three scoring

rules presented here (Czado et al. (2009) and Jung et al. (2016)).
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3.6 Empirical Application: Start-up Firm Births

After the Monte Carlo study has shown that the FIML estimation works well for this model

type, the P-SAR model and its extensions introduced in Section 3.3 are applied to the

start-up firm births data set also used by Lambert et al. (2010).

3.6.1 Data

For the application of the SAR count models the cross-sectional data of Lambert et al.

(2010) on aggregated firm births in the manufacturing sector of the United States between

2000 and 2004 is revisited. The data contains the number of start-up firms during this time

period for 3078 U.S. counties as well as variables measuring the location factors like market

structure, labor market, and infrastructure for each county (see Table 8). Figure 9 displays

the spatial structure of the number of firm births. Large numbers of new firms (marked

dark red) can be found at the west and east coast and around the Great Lakes. Almost

no start-up firm births (dark blue areas) were registered in the Midwest. The frequency

distribution for values up to 100 is shown in Figure 10. The data does not exhibit excess

zeros but an extraordinarily large range (from 0 to 6938) for a counts process. Descriptive

statistics for the variables in the data set are shown in Table 60 in Appendix A.3.

Figure 9: Map of observations for subirth in deciles with dark blue representing the lowest values
and dark red representing the highest ones.

In the empirical analysis four different spatial weight matrices are used to check the robust-

ness of the results against the choice of the spatial structure.

First, an 8 nearest neighbors inverse distance matrix (Wdnn) is implemented which has also

been employed in the empirical investigation of Lambert et al. (2010). It is obtained by

calculating the inverse distance matrix of the centroids of the counties, then keeping only
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subirths Single unit start-ups in the lower 48 United
States during 2000-2004 in the manufacturing sector
(NAICS 31-33)

Agglomeration economies msemp Manufacturing share of employment

tfdens Total establishment density (in 100s)

pel10emp Percent of manufacturing establishments with less
than 10 employees

pem100emp Percent of manufacturing establishments with more
than 100 employees

Market structure mhhi Median household income (in 1000s)

pop Population (in 10000s)

cclass Share of workers in creative occupations

Labor availability and cost uer Unemployment rate

pedas Percent of adults with an associate’s degree

awage Average wage per job (in 1000s)

netflow Net flow of wages per commuter (in 1000s)

Infrastructure proad Public road density

interst Interstate highway miles

hwypc Government expenditures on highways per capita (in
100s)

avland Percent of farmland to total county

Fiscal policy educpc Government expenditures on education per capita
(in 100s)

bci State tax business climate index (higher values indi-
cate more favorable business climates)

Area metro Dummy variable identifying counties as belonging to
metropolitan areas

micro Dummy variable identifying counties as belonging to
micropolitan areas

Table 8: Description of start-up firm births data. For detailed information on data sources see
Lambert, Brown, and Florax (2010), pp. 249.

the values for the 8 nearest neighbors of each observation and setting all other elements to

zeros.

Next, a queen contiguity matrix (Wcon) which only indicates whether two counties share

a common border or vertex, a nearest neighbors matrix (Wnn) which has a positive value

(i.e. 1) for each of the 8 nearest neighbors, and a full inverse distance matrix which consists

of the inverse distances (Wd) of each pair of counties in the sample, are considered. All

matrices are row-standardized. Table 9 gives some descriptives for each weight matrix and

Moran’s I of the dependent variable using the respective weight matrix.

Moran’s I (introduced by Moran (1950) for binary weights and generalised for arbitrary

weight matrices by Cliff and Ord (1981, p. 17)) is the most prevalent measure of spatial

association. It quantifies the dependence across the complete data set by summarising

cross-products of deviations from the mean:

I =
n

W0

∑n
i=1

∑n
j=1wij(yi − ȳ)(yj − ȳ)∑n

i=1(yi − ȳ)2
(58)
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Wdnn Wcon Wnn Wd

Mean 8 5.985 8 3077
Min 8 3 8 3077
Max 8 12 8 3077
Sum of Relations 24624 18422 24624 9471006

Moran’s I 0.3115 0.2471 0.2331 0.0224

Table 9: Number of neighbors in different spatial weight matrices for the start-up firm births data.

where W is the assumed spatial weight matrix and W0 =
∑n

i=1

∑n
j 6=iwij , which equals n

for row-standardized weight matrices.

Unlike its counterparts from time series analysis, its mean is not 0 but − 1
(n−1) and it is not

bounded between -1 and 1. Unfortunately, there is no distributional theory available for

Moran’s I calculated from count data. If one assumed an asymptotic normal distribution

(as it is done for the measure calculated from normally distributed data, see Cliff and Ord

(1981, pp. 19)), the standardized I using Wdnn, Wcon or Wnn as spatial structure would

lie far above any relevant significance levels and vote for significant spatial association in

the data. The small value of Moran’s I for the full inverse distance matrix is remarkable.

Apparently, the size of the map with 3078 counties is too large to employ a full weight

matrix which leads to more than 9 million relations between the counties.

Figure 10: Histogram of start-up firm birth counts in the manufacturing sector, U.S. counties,
2000-2004, x-axis is cut at 100.
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3.6.2 Empirical Results

Table 10 gives an overview of all estimates for the spatial correlation parameter λ.7 If an

estimate is given in brackets, convergence could not be achieved with standard methods

for the respective combination of model and spatial weight matrix. The estimates of the

specifications with nearest neighbors and contiguity matrices are of the same magnitude for

the same regression model and range from about 0.17 to 0.29. The estimates from NB-SAR

models are the highest. The estimates from the P-SAR model are between 0.23 and 0.27

and larger than the ones of the zero-inflated and hurdle Poisson models which give the

smallest values. Estimations using the full inverse distance matrix turned out to be difficult.

Convergence might have been reached for three of the four models, but results differ in a

way that no clear statement can be made. It seems likely that the extremely large number

of spatial relationships imposed by this matrix at a sample size of 3078 causes difficulties

when estimating the model, even though the weights are diminishing for increasing distance

between the units. Therefore, this spatial weight matrix will not be considered any further.

Tables with all parameter estimates can be found in Appendix A.4.

Wdnn Wcon Wnn Wd

P-SAR 0.2533∗∗∗ 0.2774∗∗∗ 0.2306∗∗∗−0.0353

(0.0634) (0.0655) (0.0537) (0.5407)

NB-SAR 0.2803∗∗∗ 0.2902∗∗∗ 0.2932∗∗∗ 0.5416∗∗∗

(0.0297) (0.0321) (0.0257) (0.0534)

ZIP-SAR 0.1685∗∗ 0.2000∗∗∗ 0.1878∗∗∗ [0.0028]

(0.0728) (0.0784) (0.0559)

HP-SAR 0.1686∗∗ 0.2001∗∗∗ 0.1879∗∗∗ 0.0019

(0.0727) (0.0786) (0.0559) (0.3201)

Table 10: Estimation results for λ from SAR models for the start-up firm births data. Standard
errors in parentheses, ∗∗ and ∗∗∗ denote a 5% and 1% significance, respectively. Convergence was

not achieved if result is given in brackets.

Table 11 gives the scoring rules of the P-SAR, NB-SAR, ZIP-SAR, and HP-SAR estima-

tions. Log score and quadratic score are smallest for the negative binomial specifications for

each spatial weight matrix as well as among the non-spatial models. The rank probability

score is smallest for the zero-inflated Poisson specifications, again regardless of the choice

of the weight matrix. Between weight matrices the score values are similar. Log score and

ranked probability score slightly prefer the 8 nearest neighbors matrix (Wnn), the ranked

probability score is smallest for the 8 nearest neighbors inverse distance matrix (Wdnn). Be-

cause of these numbers, the hurdle model is excluded from the further analysis since it is

outperformed by the other models with regard to all scoring rules employed here. Among

the remaining models, no clear choice can be made since depending on the chosen scoring

rule either the NB-SAR or the ZIP-SAR model is preferred.

7All spatial regressions and the non-spatial hurdle Poisson model are computed using MATLAB code
written by myself, the remaining non-spatial regressions are executed using the build-in procedures in STATA.
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P-SAR NB-SAR ZIP-SAR HP-SAR

Wdnn LogS 9.720 3.356 9.157 9.180

QS −0.020 −0.073 −0.047 0.284

RPS 15.182 25.967 11.374 43.770

Wcon LogS 9.692 3.356 9.041 9.066

QS −0.021 −0.073 −0.048 0.296

RPS 15.158 27.210 11.380 55.543

Wnn LogS 9.697 3.354 9.038 9.063

QS −0.021 −0.073 −0.048 0.290

RPS 15.293 31.604 11.441 89.305

Non-spatial LogS 9.313 3.379 9.306 9.313

QS −0.017 −0.070 −0.047 0.541

RPS 15.244 37.858 11.731 190.447

Table 11: Scoring rules of SAR model estimates for the start-up firm births data.

Figure 11 compares the relative frequencies in the data (gray bins) to the predicted probabil-

ities from the P-SAR, NB-SAR and ZIP-SAR estimations with Wdnn as the spatial weight

matrix, which will also be used for the analyses in the following chapter. The zeros are

naturally best met by the ZIP-SAR model, which then leads to an underestimation of the

probabilities for values between 1 and 4. The P-SAR model predicts the probabilities for

small values larger than 0 best. The NB-SAR predicts a larger probability for zeros than

the P-SAR model, which is more suitable to the data, but performs worse for small positive

outcomes. But then, it presents a smoother decrease in probabilities for large values than

the Poisson models. To sum up, this figure shows that none of the models employed here is

able to accurately capture the structure in the data, i.e. the large number of observations

smaller than 10, as well as the extraordinarily large observations up to 6000.
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Figure 11: Predicted probabilities of P-SAR, ZIP-SAR, NB-SAR for the start-up firm births data
and weighting matrix Wdnn .

Finally, the predicted marginal effects of the regressors are computed. The formulas of the

marginal effects for the P-SAR and NB-SAR models are given in Equations (38) - (40). The

marginal effects of the ZIP-SAR model are obtained by differentiating Equation (45) with

respect to X. In this application the regressors of the inflation process and the Poisson

process are identical. For this special case, the marginal effects take the form

∂E[yi|X]

∂xik
=

γk exp(Xi.γ)

(1 + exp(Xi.γ))2

(
aii exp(Ai.Xβ)βk − exp(Ai.Xβ)

)
(59)

for the direct effects where A denotes the Leontief inverse, i.e. A = (I−λW )−1. Ai. denotes

the ith row and aii the respective element of this matrix.

The indirect effects summarized over all neighbors are given by

n∑
j=1
j 6=i

∂E[yi|X]

∂xjk
=

n∑
j=1
j 6=i

1

1 + exp(Xi.γ)

(
aij exp(Ai.Xβ)βk

)
(60)

and the total marginal effects equal the sum of direct and indirect effects.

Table 20 gives the results for the Wdnn matrix, which is chosen for better comparability to

the following chapter. The predictions using Wcon and Wnn do not differ relevantly and are

reported in Appendix A.4, Tables 65 and 66. Following LeSage and Pace (2009, pp. 39), the

standard errors for the marginal effects can be obtained using their sample counterparts of

draws from the asymptotic joint distribution of the parameter estimators (this procedure is

also applied e.g. by Baltagi et al. (2014), Fischer et al. (2009), and Liesenfeld et al. (2016b)).

The largest number of significant marginal effects is obtained in the NB-SAR model, closely

followed by the P-SAR model. The ZIP-SAR specification leads to only few significant

effects. In the first two models the direct effects are in general larger than the indirect
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ones. The opposite holds for the ZIP-SAR model. Aside from the effect of being in a

metro- or micropolitan as opposed to a rural area, the largest effects on the number of start-

up firms in the P-SAR model are predicted for education (percentage of adults with an

associate’s degree, pedas), public road density (proad) and the business climate (state tax

business climate index, bci). The ZIP-SAR shows a similar pattern in the total effects, but

also predicts a relatively large influence of the unemployment rate (uer). For the NB-SAR

model the highest values are obtained for unemployment rate, public road density, and the

share of workers in creative occupations (cclass).

3.7 Summary

The presented Monte Carlo results show that FIML estimation clearly outperforms LIML

estimation. Furthermore, the LIML estimators do not show consistency. FIML also shows

considerable bias for λ in small sample sizes (n = 1000) but it is in general decreasing for

increasing true λ and increasing sample size, respectively. Ignoring the spatial structure

of the kind employed in this chapter does not lead to a larger bias or RMSE in the direct

marginal effects. Additionally, data without any spatial structure (λ = 0) is correctly iden-

tified by the spatial models and for sample sizes of at least 5000 even the LIML procedure

performs well in this case. Looking at the FIML results, there are no relevant differences

in bias of λ̂ and of the marginal effects observed between the estimation results of NB-SAR

data with α = 1/2 and α = 1/8, respectively.

In the empirical application, the SAR count structure has been transferred to a zero-inflated

Poisson and a hurdle Poisson specification. The employed scoring rules as well as a visual

inspection of the predicted probability in comparison to the observed relative frequencies

do not lead to a clear choice for the best model. The scoring rules choose either the NB-

SAR or ZIP-SAR model. The predicted probabilities plot indicates that the two Poisson

specifications are in general better in reproducing the distribution for small values whereas

the NB-SAR model better predicts the probabilities of very large outcomes. With exception

of the full inverse distance matrix, with which estimation is difficult, the choice of the spatial

weight matrix had no relevant influence on the results.
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4 The Spatial Linear Feedback Model

4.1 Introduction

In the P-SAR model of Lambert et al. (2010), which is discussed in Chapter 3, the intensity

of the firm birth process at location i is related to the intensity of its neighboring regions.

This allows the authors to obtain a reduced form of the conditional mean function of the

counts and to derive a spatial multiplier term, i.e the Leontief inverse (Equation (24)). The

interpretation of the spatial dependence between neighboring regions in this model is less

intuitive than in a continuous SAR model, especially because the intensity is an unobserved

measure. Therefore, the spatial dependency is only part of an unobserved process. In con-

trast, a spatial linear feedback model (SLFM) is proposed in this chapter which allows for

an interpretation of the spatial dependence parameter closer to that of the continuous SAR

model. The spatial dependence parameter of the SLFM denotes the average change in the

conditional expectation of the count in region i given a one unit change in the (observable)

counts of the neighboring regions (row-standardized weight matrix assumed). Therefore,

the spatial dependency is not completely driven by an unobservable process.

Moreover, the model of Lambert et al. (2010) allows for spatial dependence in the exoge-

nous regressors only, since its conditional expectation does not contain an error term. The

latter criticism has been taken up in the paper by Liesenfeld et al. (2016b) where the P-SAR

model is extended with an additional error term allowing for spatial dependence in the unex-

plained part of the conditional expectation, too. While the P-SAR model of Lambert et al.

(2010) is easily estimated via maximum likelihood, the estimation of the model proposed by

Liesenfeld et al. (2016b) is not straightforward and their proposal to use efficient importance

sampling estimation is not routinely available.

The SLFM is proposed as an alternative which is convenient to estimate and to interpret

for empirical economists interested in studying spatially correlated count data. In partic-

ular, it overcomes the numerical difficulties associated with the full information maximum

likelihood estimation of the P-SAR model caused by the need to invert a transformation

of the n × n spatial weight matrix, where n denotes the sample size. The SLFM is based

on a Poisson regression model (P-SLFM). As a second variant, a negative binomial version

(NB-SLFM) is introduced. Unlike the Poisson model, its variance function is more flexible

and allows for overdispersion which is able to capture unobserved heterogeneity in the data.

Finally, two visual diagnostic tools and model validation methods are adopted from the time

series literature of counts to assess the adequacy of a fitted model and to compare two or

more competing model specifications: a suitably adjusted variant of the probability integral

transform (PIT) and a relative deviations plot. Additionally, the scoring rules already dis-

cussed in Section 3.5 are used for model evaluation.
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4 THE SPATIAL LINEAR FEEDBACK MODEL

4.2 Modelling Approach

To overcome the shortcomings of the two models discussed above, a model specification

is proposed that follows up Besag’s (1974) model in some sense but introduces spatially

lagged counts additively into the conditional expectation equation of a Poisson regression

or negative binomial regression, respectively. The conditional expectation of the SLFM is

then given as

yi|µi ∼ D(µi) (61)

µi = E[yi|Y−i, X] = λ
n∑

j=1

j 6=i

wijyj + exp(Xi.β) (62)

with Xi. denoting the ith row of the matrix of exogenous regressors, Y−i the observations

of all neighbors of i, and wij an element of the spatial weight matrix W . In terms of

the model classification introduced in Chapter 2.4, this model classifies as an observation-

driven model since the neighboring observations enter the latent process, which includes no

additional random process as opposed to parameter-driven models. Several count data distri-

butions can be assumed for D, the most prominent being the Poisson. The resulting model

will be denoted as P-SLFM. Further, to deal with unobserved heterogeneity in the counts, a

negative binomial distribution is used and the resulting model will be denoted as NB-SLFM.

Because a reduced form is not readily available for these SLF models and due to the lack

of an operational multivariate count distribution for large n, the true likelihood function

cannot be obtained. For estimation of the model the full likelihood is approximated with a

pseudo conditional likelihood. The idea to compose a pseudo likelihood function of condi-

tional probability functions like the ones described in Equations (61)-(62) stems from Besag

(1975), who proposed this technique for the auto-normal schemes introduced in Besag (1974).

He also sketches a proof of the estimator’s consistency relating it to the coding technique:

Besag points out that the obtained estimator can be thought of as a weighted average of

coding estimators. Since these are consistent, the estimator of the conditional pseudo likeli-

hood approach is consistent as well (under suitable regularity conditions).

In case of a P-SLFM specification, the corresponding pseudo log likelihood function is given

by

logLC =
n∑
i=1

yi log

(
λ

n∑
j=1

j 6=i

wijyj + exp(Xi.β)

)

−
(
λ

n∑
j=1

j 6=i

wijyj + exp(Xi.β)

)
− log(yi!) (63)
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In case of the NB-SLF model, the pseudo log likelihood function takes the form

logLC =
n∑
i=1

( yi−1∑
j=0

log(α−1 + j)

)
− log(yi!)

−(yi + α−1) log

(
1 + α

(
λ

n∑
j=1

j 6=i

wijyj + exp(Xi.β)

))

+yi log(α) + yi log

(
λ

n∑
j=1

j 6=i

wijyj + exp(Xi.β)

)
(64)

The parameter estimates from the pseudo likelihood for both models can straightforwardly

be obtained using standard numerical optimization methods. The asymptotic properties of

the estimators as well as their behavior in small samples are investigated in the Monte Carlo

study in Section 4.4.

Due to the row-standardization of W , the spatial autocorrelation parameter λ can be inter-

preted as the absolute change in the conditional expectation of yi given that the observations

of all neighbors of i change by one unit. Accordingly, the change of the observation of a

single neighbor j of i causes a change of E[yi|Y−i, X] by λwij . In spatial models for contin-

uous data the row standardization leads to a parameter range for λ between the smallest

eigenvalue of the standardized weights matrix and 1. Since the parameter µ of a Poisson

or negative binomial distribution can only take positive values, the spatial autocorrelation

parameter of the spatial linear feedback models must additionally fulfill a possibly more

restrictive condition ensuring the positiveness of µ:

λi > −
exp(Xi.β)

Wiy
∀i (65)

where Wi and Xi. denote the ith row of the respective matrix. The lower bound for λ

will therefore be negative, although it might be greater than -1 restricting the strength of

negative spatial correlation in the data for which the model is suitable.8 In the empirical

example in Chapter 4.5, however, it is far smaller than -1.

With help of the equality y = E[y|Y−i, X] + ε, Equation (62) can be reformulated as

E[y|Y−i, X] = (I − λW )−1 exp(Xβ) + (I − λW )−1λWε (66)

Using this expression it is possible to derive the marginal effects for continuous regressors

xik of the spatial linear feedback model:

∂µyi|X

∂xik
= aii exp(Xi.β)βk (67)

8The unlikely case in which the observations of all neighbors of i equal 0 can be ignored since then, λ
does not affect its µ.
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where aii is the respective element from A = (I − λW )−1 and Xi. denotes the ith row of

the matrix X. The interpretation of the average of the direct impacts over all units i cor-

responds to the interpretation of a coefficient in a linear non-spatial model or a marginal

effect in a non-linear non-spatial model. It is the average change in the dependent variable

i if regressor xik changes (LeSage and Pace, 2009). But in this spatial model it also includes

feedback loops (see Chapter 1.2).

Unlike in non-spatial models, a change of the explanatory variable xjk will affect the depen-

dent variable observation of unit i if unit j is a neighbor or a neighbor’s neighbor etc. due

to spillover effects and feedback loops (as discussed in Chapter 1.2), i.e.

∂µyi|X

∂xjk
= aij exp(Xj.β)βk (68)

The sum of all these effects over all units except i is the indirect impact (or indirect marginal

effect) on yi of a change in the kth regressor in each of the neighboring units:

n∑
j=1
j 6=i

∂µyi|X

∂xjk
=

n∑
j=1
j 6=i

aij exp(Xj.β)βk (69)

Finally, these two impacts sum up to the total impact or total marginal effect (LeSage and

Pace, 2009):

n∑
j=1

∂µyi|X

∂xjk
= Ai. exp(Xβ)βk (70)

where Ai. denotes the ith row of A.

Average marginal effects can be computed in the usual fashion. Standard errors for the

marginal effects are again calculated using their sample counterparts of draws from the

asymptotic joint distribution of the parameter estimators (LeSage and Pace, 2009, pp. 39).

4.3 Diagnostics

This section introduces two visual diagnostic tools adopted from time series models of counts

to evaluate estimation results from the SLF models. Although the general importance of

evaluating predictions is obvious, diagnostic tools specially designed for count data are rarely

considered in the spatial literature. Together with the scoring rules already used in Chapter

3, this is a first attempt to fill this gap by employing the non-randomized probability integral

transform histogram and a relative deviations plot.

The probability integral transform (PIT) which was originally proposed for continuous data

by Dawid (1984) and whose idea dates back to Rosenblatt (1952) is an informal way to check
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the calibration of a model. In the continuous case the PIT is calculated as the values of the

predictive cumulative distribution function (CDF) for the observations. If the (continuous)

predictive CDF equals the data generating process of the observations the obtained values

follow a standard uniform distribution. This can then be checked graphically, for example by

plotting a histogram of the PIT values. The advantage of this visual inspection as opposed

to a formal test is, that the shape of the histogram also gives guidance as to why the unifor-

mity condition is not met (Diebold et al., 1998, p. 869). If the histogram is u-shaped instead

of showing a uniform distribution it indicates overdispersion in the data (compared to the

predictive distribution) and if it is inverse u-shaped underdispersion in the data is indicated.

For the discrete case, this concept is not directly applicable because the predictive CDF will

not be a continuous function. In the case of count data it is a step function meaning that

the calculated PIT values will not follow a standard uniform distribution even when DGP

and estimation model are identical. Two adaptations of the PIT for time series of counts

are discussed in the literature. The first is the randomized PIT (e.g. Denuit and Lambert

(2005), Frühwirth-Schnatter (1996), Liesenfeld et al. (2006)), which spreads out the PIT by

adding a random term ν weighted with the probability of the observation i.e.

u+
i = Pyi−1 + ν(Pyi − Pyi−1) 0 ≤ u ≤ 1 (71)

where Pyi is the predictive CDF of observation yi, evaluated at yi. The PIT of these mod-

ified observations follows a standard uniform distribution if the predictive CDF is the true

data generating process. However, Jung and Tremayne (2011) point out that the shape of

the PIT histogram can change considerably between different sets of random terms ν.

The second adaptation of PIT for count data, introduced by Czado et al. (2009), is the

nonrandomized PIT which avoids the additional error source of adding a random term. The

nonrandomized PIT approach uses the predictive CDF for each observed count y to obtain

the distribution of the PIT values directly:

F (u|y) =


0, u ≤ Py−1

(u− Py−1)/(Py − Py−1), Py−1 ≤ u ≤ Py
1, u ≥ Py

(72)

In practice this CDF is evaluated at u = j/J to obtain a chosen number of bins J in the

resulting nonrandomized PIT histogram. The n resulting distributions are then averaged

and plotted to obtain the histogram. Like in the original case, the PIT histogram should

display a uniform distribution if the observations are draws from the predictive distribution.

A method for evaluating the whole predictive distribution graphically is plotting the relative

deviations of the estimated probability function and the observed frequencies. Similar plots

can be found in Long (1997), for example. This graphic compares the predicted probabilities

P̂i(k) for each predictive distribution i = 1, . . . , n and possible outcome k = 0, 1, 2, . . . with

the observed frequencies h(k) in the data set and averages over the n predictive distributions:
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RelP =
1
n

∑n
i=1 P̂i(k)− h(k)

h(k)
(73)

with

P̂i(k) =
µ̂ki e
−µ̂i

k!
k = {0, 1, 2, 3, . . .} (74)

and µ̂i being the estimate for the conditional expectation of observation yi.

Other than the logarithmic score, this measure takes the whole predictive distribution into

account. In addition to the information in the quadratic score and the ranked probability

score, which also take into account the whole estimated probability function, the deviation

plot gives a visual impression how well the predictive distributions display the different

features of the data like mode, tails, etc.

4.4 Monte Carlo Study

4.4.1 Data Generating Process and Study Setup

The data is generated from the conditional model specification in Equations (61)-(62) using

a Poisson and negative binomial (2) distribution, respectively, and the Gibbs sampling

algorithm of Geman and Geman (1984). That is, by iteratively drawing from the conditional

distributions of yi, i = 1, . . . , n given all other yj ’s draws from the joint distribution of

y1, . . . yn are obtained asymptotically. In the kth iteration of this procedure the draws stem

from the following distributions:

y
(k)
1 ∼ P (y1|y(k−1)

2 , . . . , y(k−1)
n )

y
(k)
2 ∼ P (y2|y(k)

1 , y
(k−1)
3 , . . . , y(k−1)

n )

...

y(k)
n ∼ P (y2|y(k)

1 , . . . , y
(k)
n−1)

where P is the conditional probability distribution as specified in Equations (61)-(62) using

a Poisson or negative binomial (2) distribution. The start values y
(0)
i are drawn from a non-

spatial Poisson and negative binomial (2) distribution, respectively, with µi = exp(Xiβ).

For the negative binomial case the dispersion parameter α is set to 0.2.

An 8-nearest neighbors inverse distance matrix is used for the spatial weighting matrix.

To calculate this matrix, first n random coordinates are generated using random numbers

from a U(0, 1) distribution. Then, the Euclidian inverse distance matrix for these points,

which represent the n spatial units of the simulated data set, is computed using the function

make nnw of the spatial econometrics library for MATLAB by LeSage (1999). After selecting

the 8 nearest neighbors of each unit, all other entries of the matrix are set to zero and the

resulting matrix is finally row-standardized.

The regressor matrix X consists of a constant, X1 ∼ U(0, 2), and X2 ∼ N(1, 2). The

parameter vector β is set to [0.5, 0.5, 0.5]′. Data is generated for λ = {0, 0.2, 0.4, 0.6, 0.8} and
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n = {100, 1000, 5000, 10000}. As mentioned in Chapter 3.4, real-life examples of negative

spatial autocorrelation are rare in econometrics and therefore this Monte Carlo study focuses

on the case of positive spatial autocorrelation.

4.4.2 Monte Carlo Results

The pseudo likelihood estimation introduced above is conducted for both the P-SLFM and

the NB-SLFM. The results are displayed in Tables 13 and 14. With exception of the pa-

rameter of the constant (β0) the root mean squared errors and biases for P-SLFM are in

general small. The estimates of the spatial autocorrelation parameter λ are biased down-

ward though, especially in the case of a small sample and a weak spatial autocorrelation in

the data.

λ̂ β̂0

λ\n 100 1000 5000 10000 100 1000 5000 10000

RMSE
0 0.035 0.010 0.004 0.002 0.149 0.047 0.019 0.012

0.2 0.045 0.013 0.006 0.004 0.188 0.050 0.024 0.016
0.4 0.054 0.015 0.006 0.004 0.255 0.064 0.028 0.019
0.6 0.040 0.013 0.006 0.004 0.243 0.081 0.035 0.024
0.8 0.023 0.009 0.005 0.004 0.299 0.102 0.045 0.033

Bias
0 −0.005 −0.001 0.000 0.000 0.005 0.002 −0.001 0.000

0.2 −0.005 −0.002 −0.001 −0.001 0.009 0.004 0.004 0.004
0.4 −0.008 −0.002 −0.001 −0.001 0.009 0.006 0.005 0.006
0.6 −0.004 −0.001 −0.001 −0.001 0.000 0.007 0.006 0.005
0.8 −0.004 −0.003 −0.003 −0.003 −0.019 −0.003 0.003 0.003

Relative bias
0 - - - - 0.009 0.004 0.002 0.000

0.2 0.026 0.008 0.005 0.005 0.018 0.008 0.008 0.008
0.4 0.019 0.004 0.002 0.003 0.017 0.012 0.009 0.011
0.6 0.007 0.002 0.002 0.001 0.000 0.014 0.012 0.011
0.8 0.005 0.004 0.004 0.004 0.038 0.006 0.005 0.006

β̂1 β̂2

λ\n 100 1000 5000 10000 100 1000 5000 10000

RMSE
0 0.069 0.021 0.009 0.006 0.027 0.008 0.003 0.002

0.2 0.084 0.022 0.011 0.007 0.031 0.008 0.004 0.003
0.4 0.079 0.026 0.011 0.008 0.049 0.010 0.005 0.003
0.6 0.091 0.031 0.013 0.010 0.043 0.012 0.005 0.004
0.8 0.107 0.039 0.017 0.012 0.042 0.013 0.006 0.005

Bias
0 0.003 0.000 0.001 0.000 −0.002 0.000 0.000 0.000

0.2 −0.001 −0.001 −0.001 −0.001 −0.002 −0.001 −0.001 −0.001
0.4 −0.001 −0.001 −0.001 −0.001 −0.002 −0.001 −0.001 −0.001
0.6 0.002 −0.001 −0.002 −0.001 −0.001 −0.001 −0.001 −0.001
0.8 0.003 0.002 −0.001 −0.001 0.002 0.000 0.000 0.000

Relative bias
0 0.007 0.000 0.001 0.000 0.005 0.001 0.000 0.000

0.2 0.003 0.001 0.002 0.001 0.004 0.002 0.001 0.001
0.4 0.002 0.003 0.002 0.002 0.003 0.002 0.002 0.002
0.6 0.005 0.002 0.003 0.001 0.001 0.002 0.002 0.002
0.8 0.006 0.003 0.002 0.002 0.005 0.000 0.001 0.001

Table 13: Monte Carlo results for P-SLFM. The bias is calculated as the average difference between
estimates and true parameter value. The relative bias is the absolute value of the bias divided by

the true parameter value. Values reported as 0.000 are smaller than 0.0005.
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λ̂ β̂0

λ\n 100 1000 5000 10000 100 1000 5000 10000

RMSE
0 0.044 0.009 0.004 0.003 0.216 0.062 0.027 0.021

0.2 0.087 0.023 0.012 0.010 0.349 0.107 0.059 0.047
0.4 0.090 0.027 0.014 0.012 0.399 0.134 0.077 0.074
0.6 0.105 0.030 0.013 0.010 0.823 0.197 0.104 0.090
0.8 0.077 0.029 0.013 0.010 2.641 0.324 0.168 0.132

Bias
0 −0.007 −0.001 0.000 0.000 0.006 0.000 −0.001 0.000

0.2 −0.023 −0.009 −0.008 −0.008 0.058 0.043 0.042 0.038
0.4 −0.025 −0.009 −0.007 −0.008 0.069 0.054 0.054 0.060
0.6 −0.024 −0.008 −0.004 −0.005 0.066 0.086 0.069 0.071
0.8 −0.014 −0.009 −0.006 −0.006 −0.175 0.101 0.103 0.095

Relative bias
0 - - - - 0.013 0.000 −0.002 0.000

0.2 −0.113 −0.043 −0.040 −0.038 0.116 0.085 0.084 0.077
0.4 −0.062 −0.023 −0.017 −0.021 0.139 0.107 0.108 0.120
0.6 −0.040 −0.013 −0.007 −0.008 0.132 0.171 0.137 0.143
0.8 −0.017 −0.012 −0.007 −0.007 −0.350 0.201 0.205 0.190

β̂1 β̂2

λ\n 100 1000 5000 10000 100 1000 5000 10000

RMSE
0 0.116 0.036 0.016 0.011 0.047 0.014 0.006 0.005

0.2 0.165 0.046 0.022 0.016 0.068 0.021 0.012 0.009
0.4 0.202 0.056 0.027 0.022 0.075 0.026 0.015 0.014
0.6 0.351 0.076 0.036 0.027 0.116 0.036 0.019 0.018
0.8 0.986 0.128 0.061 0.043 0.325 0.057 0.030 0.024

Bias
0 0.004 0.002 0.001 0.000 −0.005 −0.001 0.000 0.000

0.2 −0.015 −0.009 −0.008 −0.007 −0.013 −0.008 −0.008 −0.008
0.4 −0.017 −0.007 −0.010 −0.011 −0.013 −0.012 −0.011 −0.012
0.6 −0.010 −0.018 −0.015 −0.015 −0.023 −0.018 −0.014 −0.015
0.8 0.049 −0.015 −0.022 −0.019 −0.008 −0.023 −0.021 −0.019

Relative bias
0 0.008 0.005 0.001 0.000 −0.010 −0.002 0.000 0.000

0.2 −0.030 −0.018 −0.016 −0.014 −0.027 −0.015 −0.017 −0.015
0.4 −0.034 −0.014 −0.021 −0.023 −0.026 −0.023 −0.022 −0.024
0.6 −0.019 −0.036 −0.030 −0.031 −0.046 −0.036 −0.028 −0.030
0.8 0.099 −0.031 −0.045 −0.038 −0.017 −0.045 −0.042 −0.038

Table 14: Monte Carlo results for NB-SLFM. The bias is calculated as the average difference
between estimates and true parameter value. The relative bias is the absolute value of the bias

divided by the true parameter value. Values reported as 0.000 are smaller than 0.0005.

For a better perception of the size of the average biases the relative bias is also reported,

which is the absolute value of the bias divided by the true parameter value. The relative bias

of λ ranges from 0.2% to 2.6% with the highest values associated with small sample size and

weak spatial autocorrelation. β1 and β2 show relative biases smaller than 1% throughout

the study. Only the parameter of the constant β0 shows higher relative biases which lie

between 0.2% and 3.8%.

Generally, the results for the NB-SLFM are worse than for the P-SLFM, which is not sur-

prising since the P-SLFM is the more parsimonious model. In the results for the NB-SLFM

the constant β0 shows again the largest RMSE and bias. The estimates of λ are biased

downward like in the P-SLFM. The relative bias of λ ranges from 0.7% to 11.3% with the

largest values belonging again to estimations of data with a small sample size and a small

true value of λ.

64



4 THE SPATIAL LINEAR FEEDBACK MODEL

λ\n 100 1000 5000 10000
X1 X2 X1 X2 X1 X2 X1 X2

Bias of average total marginal effect
0 0.029 −0.015 −0.001 −0.003 0.005 0.001 0.001 0.000

0.2 −0.012 −0.015 −0.008 −0.011 −0.010 −0.006 −0.007 −0.006
0.4 −0.016 −0.024 −0.021 −0.012 −0.009 −0.009 −0.012 −0.011
0.6 0.047 −0.005 −0.024 −0.021 −0.030 −0.017 −0.011 −0.018
0.8 −0.237 −0.231 −0.216 −0.276 −0.299 −0.286 −0.300 −0.284

Relative bias of average total marginal effect
0 0.008 −0.004 0.000 −0.001 0.001 0.000 0.000 0.000

0.2 −0.003 −0.003 −0.002 −0.002 −0.002 −0.001 −0.001 −0.001
0.4 −0.003 −0.004 −0.003 −0.002 −0.001 −0.001 −0.002 −0.002
0.6 0.005 −0.001 −0.003 −0.002 −0.003 −0.002 −0.001 −0.002
0.8 −0.010 −0.010 −0.011 −0.014 −0.016 −0.015 −0.016 −0.015

Bias of average direct marginal effect
0 0.042 −0.002 0.003 0.001 0.004 0.000 0.001 0.001

0.2 0.004 0.003 −0.001 −0.003 −0.004 0.000 −0.001 0.000
0.4 0.015 0.003 −0.004 0.001 0.000 0.000 −0.001 0.000
0.6 0.043 0.010 −0.001 0.001 −0.006 0.000 0.002 −0.001
0.8 0.004 −0.002 −0.001 −0.015 −0.020 −0.017 −0.018 −0.014

Relative bias of average direct marginal effect
0 0.011 0.000 0.001 0.000 0.001 0.000 0.000 0.000

0.2 0.001 0.001 0.000 −0.001 −0.001 0.000 0.000 0.000
0.4 0.004 0.001 −0.001 0.000 0.000 0.000 0.000 0.000
0.6 0.011 0.003 0.000 0.000 −0.001 0.000 0.000 0.000
0.8 0.001 0.000 0.000 −0.003 −0.004 −0.004 −0.004 −0.003

Bias of average indirect marginal effect
0 −0.013 −0.013 −0.004 −0.004 0.000 0.000 0.000 0.000

0.2 −0.015 −0.018 −0.008 −0.008 −0.006 −0.005 −0.006 −0.006
0.4 −0.031 −0.028 −0.017 −0.014 −0.008 −0.008 −0.011 −0.011
0.6 0.004 −0.015 −0.023 −0.022 −0.024 −0.017 −0.013 −0.016
0.8 −0.241 −0.229 −0.215 −0.261 −0.279 −0.270 −0.282 −0.270

Relative bias of average indirect marginal effect
0 - - - - - - - -

0.2 −0.018 −0.021 −0.009 −0.009 −0.007 −0.006 −0.006 −0.006
0.4 −0.014 −0.012 −0.007 −0.006 −0.003 −0.003 −0.005 −0.005
0.6 0.001 −0.003 −0.004 −0.004 −0.005 −0.003 −0.002 −0.003
0.8 −0.013 −0.013 −0.014 −0.017 −0.019 −0.019 −0.020 −0.019

Table 15: Monte Carlo results of median marginal effects for P-SLFM data. The bias is calculated
as the average difference between estimates and true value. The relative bias is the absolute value

of the bias divided by the true value. Values reported as 0.000 are smaller than 0.0005.

Overall, the estimations show satisfactory results for all sample sizes. The Monte Carlo

results support the arguments of Besag (1975) regarding the consistency of the estimator,

even though there seems to be a small downward bias in the estimates of λ for the sample

sizes considered here. With regard to the empirical application which will be presented

in Chapter 4.5 the simulation shows that for a sample size of about 3000 observations the

estimation based on the presented pseudo likelihoods works well.

In the following, additional Monte Carlo results are presented. First, the performance of

the spatial linear feedback models with regard to marginal effects is evaluated. Then, the

suitability of PIT histograms as a visual investigation tool of model fit is investigated. And

finally, simulation results of several specification alternatives are reported to show their in-

fluence on the results.
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λ\n 100 1000 5000 10000
X1 X2 X1 X2 X1 X2 X1 X2

Bias of average total marginal effect
0 0.048 −0.018 0.021 −0.007 0.008 0.004 −0.001 −0.002

0.2 −0.101 −0.087 −0.084 −0.072 −0.090 −0.093 −0.080 −0.085
0.4 −0.145 −0.107 −0.092 −0.151 −0.139 −0.146 −0.155 −0.166
0.6 −0.043 −0.268 −0.325 −0.324 −0.311 −0.292 −0.309 −0.304
0.8 2.338 0.489 −0.674 −0.948 −1.094 −1.027 −0.943 −0.958

Relative bias of average total marginal effect
0 0.013 −0.005 0.005 −0.002 0.002 0.001 0.000 0.000

0.2 −0.025 −0.022 −0.017 −0.015 −0.019 −0.019 −0.016 −0.017
0.4 −0.023 −0.017 −0.015 −0.024 −0.022 −0.023 −0.025 −0.026
0.6 −0.005 −0.032 −0.036 −0.036 −0.032 −0.030 −0.032 −0.032
0.8 0.095 0.020 −0.036 −0.051 −0.056 −0.053 −0.048 −0.049

Bias of average direct marginal effect
0 0.070 −0.003 0.025 −0.003 0.009 0.005 −0.001 −0.002

0.2 −0.036 −0.020 −0.031 −0.021 −0.036 −0.039 −0.030 −0.034
0.4 0.006 0.010 −0.008 −0.046 −0.048 −0.052 −0.050 −0.057
0.6 −0.072 −0.078 −0.089 −0.087 −0.100 −0.091 −0.097 −0.095
0.8 0.689 −0.069 −0.055 −0.125 −0.177 −0.158 −0.134 −0.138

Relative bias of average direct marginal effect
0 0.018 −0.001 0.006 −0.001 0.002 0.001 0.000 0.000

0.2 −0.011 −0.006 −0.008 −0.005 −0.009 −0.010 −0.008 −0.009
0.4 0.001 0.003 −0.002 −0.012 −0.012 −0.013 −0.013 −0.015
0.6 −0.020 −0.022 −0.023 −0.022 −0.023 −0.021 −0.023 −0.023
0.8 0.106 −0.011 −0.012 −0.027 −0.036 −0.033 −0.027 −0.028

Bias of average indirect marginal effect
0 −0.022 −0.015 −0.004 −0.004 0.000 0.000 0.000 0.000

0.2 −0.065 −0.067 −0.053 −0.051 −0.053 −0.054 −0.050 −0.051
0.4 −0.151 −0.117 −0.084 −0.105 −0.091 −0.094 −0.105 −0.109
0.6 0.029 −0.190 −0.236 −0.237 −0.211 −0.201 −0.211 −0.209
0.8 1.649 0.558 −0.619 −0.823 −0.917 −0.869 −0.809 −0.821

Relative bias of average indirect marginal effect
0 - - - - - - - -

0.2 −0.090 −0.093 −0.056 −0.054 −0.057 −0.058 −0.053 −0.054
0.4 −0.065 −0.051 −0.035 −0.044 −0.038 −0.039 −0.044 −0.045
0.6 0.006 −0.040 −0.046 −0.046 −0.039 −0.037 −0.039 −0.039
0.8 0.091 0.031 −0.044 −0.059 −0.063 −0.059 −0.055 −0.056

Table 16: Monte Carlo results of median marginal effects for NB-SLFM data. The bias is calculated
as the average difference between estimates and true value. The relative bias is the absolute value

of the bias divided by the true value. Values reported as 0.000 are smaller than 0.0005.

Marginal effects according to the Monte Carlo estimates are calculated using Equations

(67) to (70) introduced above. Tables 15 and 16 display bias and relative bias of the total,

direct, and indirect marginal effects for P-SLFM and NB-SLFM. Like for the parameter

estimates, the biases are generally small in the P-SLF model. The indirect effect is in most

cases slightly underestimated, whereas the direct effect of the change in the regressor on

the dependent variable of the same unit tends to be overestimated. This leads in sum to a

negatively biased total effect in most cases.

The biases of the marginal effects in the NB-SLF model are larger in absolute terms which

is also the case for the parameters. In addition to the indirect effects, the direct effects of

the NB-SLFM are underestimated in most cases as well. This leads to larger total biases in

absolute terms. To sum up, the results of the Monte Carlo study document the ability of

the SLF models to correctly estimate the marginal effects of exogenous regressors.
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(a) λ = 0 (b) λ = 0 (c) λ = 0

(d) λ = 0.2 (e) λ = 0.2 (f) λ = 0.2

(g) λ = 0.4 (h) λ = 0.4 (i) λ = 0.4

(j) λ = 0.6 (k) λ = 0.6 (l) λ = 0.6

(m) λ = 0.8 (n) λ = 0.8 (o) λ = 0.8

Figure 12: PIT histograms for Monte Carlo estimates from the NB-SLFM. n=5000.
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λ̂ β̂0

λ\n 100 1000 5000 10000 100 1000 5000 10000

RMSE
0 0.074 0.011 0.004 0.003 0.301 0.079 0.035 0.024

0.2 0.086 0.033 0.019 0.017 0.301 0.147 0.099 0.092
0.4 0.112 0.044 0.022 0.020 0.525 0.205 0.145 0.143
0.6 0.161 0.045 0.020 0.016 1.077 0.307 0.190 0.183
0.8 0.160 0.044 0.022 0.018 14.498 0.503 0.310 0.281

Bias
0 −0.021 −0.001 0.000 0.000 0.044 0.000 0.000 0.000

0.2 −0.018 −0.017 −0.015 −0.015 0.049 0.079 0.082 0.083
0.4 −0.034 −0.016 −0.015 −0.017 0.161 0.109 0.123 0.133
0.6 −0.048 −0.016 −0.010 −0.010 0.110 0.176 0.157 0.166
0.8 −0.052 −0.021 −0.013 −0.013 −1.450 0.300 0.256 0.252

Relative bias
0 - - - - 0.087 0.001 0.001 0.001

0.2 −0.088 −0.086 −0.075 −0.073 0.097 0.157 0.164 0.166
0.4 −0.085 −0.041 −0.036 −0.042 0.323 0.218 0.247 0.266
0.6 −0.080 −0.026 −0.016 −0.017 0.220 0.352 0.314 0.332
0.8 −0.065 −0.026 −0.016 −0.016 −2.900 0.600 0.512 0.504

β̂1 β̂2

λ\n 100 1000 5000 10000 100 1000 5000 10000

RMSE
0 0.171 0.050 0.022 0.016 0.076 0.018 0.008 0.006

0.2 0.189 0.061 0.033 0.025 0.075 0.031 0.020 0.019
0.4 0.259 0.082 0.045 0.038 0.096 0.040 0.028 0.029
0.6 0.435 0.114 0.058 0.050 0.159 0.059 0.038 0.037
0.8 15.898 0.180 0.090 0.072 2.142 0.098 0.060 0.055

Bias
0 −0.005 0.001 0.001 0.000 −0.013 0.000 0.000 0.000

0.2 −0.009 −0.014 −0.018 −0.016 −0.016 −0.017 −0.017 −0.017
0.4 −0.028 −0.026 −0.028 −0.029 −0.034 −0.023 −0.024 −0.027
0.6 −0.015 −0.043 −0.034 −0.038 −0.030 −0.038 −0.033 −0.035
0.8 −0.487 −0.056 −0.051 −0.049 0.187 −0.066 −0.052 −0.050

Relative bias
0 −0.009 0.001 0.001 0.000 −0.025 −0.001 0.000 0.000

0.2 −0.019 −0.027 −0.035 −0.032 −0.032 −0.033 −0.034 −0.034
0.4 −0.055 −0.052 −0.056 −0.058 −0.067 −0.045 −0.049 −0.054
0.6 −0.029 −0.087 −0.068 −0.076 −0.059 −0.076 −0.066 −0.069
0.8 −0.974 −0.112 −0.102 −0.098 0.374 −0.132 −0.105 −0.101

Table 17: Monte Carlo results for NB-SLFM, α = 0.5. The bias is calculated as the average
difference between estimates and true parameter value. The relative bias is the absolute value of
the bias divided by the true parameter value. Values reported as 0.000 are smaller than 0.0005.

The appropriateness of a visual inspection of the PIT histograms for comparing the fit of

different SLF models is also evaluated using the Monte Carlo estimates. PIT histograms

are calculated for each iteration of the Monte Carlo study. To give an impression of the

results for the SLF models, three representative PIT histograms for each variant of λ =

{0, 0.2, 0.4, 0.6, 0.8} and n = 5000 are displayed.

Figure 20 in Appendix B.1 and Figure 12 show the PIT histograms of the estimations of

P-SLFM and NB-SLFM data with the respective models. The histograms are close to uni-

formity for the majority of simulated samples which has been expected since DGP and

estimated model are identical here. Figure 21 in Appendix B.1 shows the PIT histograms

of estimations of NB-SLFM data with the P-SLFM model. As expected the histograms

exhibit a u-form, indicating that the dispersion in the data is higher than in the estimated

model. Since the overdispersion in the generated data is a function of the intensity, which

increases with increasing λ given an otherwise unchanged DGP, the fit also gets worse with
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λ̂ β̂0

λ\n 100 1000 5000 10000 100 1000 5000 10000

RMSE
0 0.046 0.012 0.005 0.004 0.275 0.091 0.039 0.029

0.2 0.091 0.024 0.012 0.010 0.421 0.118 0.062 0.048
0.4 0.094 0.028 0.015 0.011 0.477 0.151 0.085 0.062
0.6 0.102 0.030 0.014 0.010 1.699 0.201 0.109 0.082
0.8 0.091 0.029 0.013 0.011 4.571 0.350 0.171 0.124

Bias
0 −0.004 −0.001 0.000 0.000 0.001 −0.001 −0.002 0.001

0.2 −0.018 −0.007 −0.007 −0.007 0.025 0.025 0.026 0.024
0.4 −0.021 −0.006 −0.006 −0.007 0.041 0.020 0.032 0.038
0.6 −0.016 −0.008 −0.004 −0.004 −0.044 0.052 0.034 0.041
0.8 −0.018 −0.008 −0.006 −0.006 −0.635 0.037 0.061 0.051

Relative bias
0 - - - - 0.001 −0.002 −0.005 0.002

0.2 −0.092 −0.036 −0.034 −0.033 0.050 0.050 0.053 0.048
0.4 −0.054 −0.016 −0.016 −0.018 0.082 0.040 0.064 0.076
0.6 −0.027 −0.013 −0.007 −0.007 −0.088 0.104 0.068 0.082
0.8 −0.023 −0.010 −0.008 −0.008 −1.270 0.075 0.122 0.103

β̂1 β̂2

λ\n 100 1000 5000 10000 100 1000 5000 10000

RMSE
0 0.150 0.047 0.020 0.014 0.058 0.020 0.009 0.007

0.2 0.206 0.052 0.027 0.018 0.079 0.024 0.013 0.009
0.4 0.241 0.067 0.030 0.022 0.087 0.031 0.017 0.011
0.6 0.604 0.083 0.041 0.028 0.424 0.036 0.019 0.015
0.8 2.523 0.134 0.065 0.044 0.319 0.063 0.028 0.021

Bias
0 0.005 0.003 0.001 0.000 −0.007 −0.001 0.001 0.000

0.2 −0.005 −0.005 −0.004 −0.003 −0.008 −0.004 −0.005 −0.004
0.4 −0.015 0.001 −0.006 −0.006 −0.008 −0.004 −0.005 −0.007
0.6 −0.048 −0.010 −0.007 −0.008 0.008 −0.010 −0.006 −0.008
0.8 0.159 −0.001 −0.013 −0.008 0.033 −0.009 −0.011 −0.009

Relative bias
0 0.009 0.005 0.002 −0.001 −0.013 −0.002 0.001 −0.001

0.2 −0.011 −0.009 −0.008 −0.007 −0.016 −0.007 −0.009 −0.008
0.4 −0.030 0.002 −0.012 −0.013 −0.017 −0.008 −0.010 −0.013
0.6 −0.096 −0.020 −0.013 −0.015 0.016 −0.019 −0.012 −0.015
0.8 0.319 −0.003 −0.027 −0.016 0.065 −0.018 −0.021 −0.018

Table 18: Monte Carlo results for NB-SLFM data estimated with P-SLFM model, α = 0.2. The
bias is calculated as the average difference between estimates and true parameter value. The

relative bias is the absolute value of the bias divided by the true parameter value. Values reported
as 0.000 are smaller than 0.0005.

increasing λ as visible in the PIT histograms in Figure 21. These results support that the

visual inspection of the PIT histograms works fine for the spatial linear feedback models

with regard to a possible misspecification of the dispersion.

Finally, several variations of the standard specifications are presented to investigate the

robustness of the estimation. They cover variation in the dispersion parameter α, misspec-

ification due to ignoring the overdispersion in the data, the choice of a different spatial

weighting matrix in the data generating process and estimation model, and the increase of

the exogenous regressors’ influence on the dependent variable.

Increasing the dispersion parameter in the DGP from 0.2 to 0.5 leads to more dispersion

in the generated data. Table 17 shows that both the RMSE and the bias are larger in the

presence of larger dispersion, especially for small sample sizes and high values of λ. This
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points to the fact that small sample sizes are more sensitive to outliers, which are more

likely if the dispersion is larger, and which enter the intensity equation of the NB-SFLM

directly through the spatial term Wy. For sample sizes of at least 5000, estimation works

well, nevertheless.

Table 18 contains the simulation results of a P-SLFM estimation with NB-SLFM data (ac-

cording to the DGP in Section 4.4.1). As noted in the previous chapter, a correctly specified

conditional mean function leads to consistent estimates in a non-spatial count data model

(Gourieroux et al., 1984) despite misspecification of the conditional variance. Here, the

results of the estimates for β support this only for small values of λ. For large values of the

true spatial autocorrelation parameter RMSE and bias are considerably larger, especially

for the constant β0. This is surprising regarding the contrary results for the P-SAR model

in Chapter 3.4 and indicates a sensitivity to misspecification of the dispersion. Through the

neighbor’s outcomes of the dependent variable, which enter the intensity equation directly,

the conditional expectation contains a part which is influenced by the dispersion, e.g. due

to a larger number of outliers. This might in turn lead to less precise estimates and slower

convergence rates.

Since the choice of a spatial weight matrix is arbitrary, Table 67 (in Appendix B.2) displays

the results for P-SLFM data with a contiguity matrix used in the DGP and in the estimation

instead of the 8 nearest neighbors inverse distance matrix used so far. The contiguity matrix

is calculated and row-standardized using the function xy2cont of the Spatial Statistics

Toolbox for MATLAB 2.0 (Pace, 2003) on randomly generated coordinates. Not surprisingly,

the RMSE and bias do not differ in magnitude from the ones of the standard specification

presented in Table 13. This supports that to the general applicability of the spatial linear

feedback models does not depend on the choice of the spatial weight matrices.

Finally, the RMSE and bias of estimation of a P-SLF model with true β coefficients values

of 1.5 instead of 0.5 are shown in Table 68 (in Appendix B.2). The large coefficients in

combination with the otherwise unchanged DGP lead to larger values of conditional mean

and therefore potentially larger values of the dependent variable. This also means an increase

of the variation in the data since conditional mean and variance are equal in a Poisson model.

All values of RMSE and bias are much smaller than in the standard specification (Table

13) which is not surprising since larger variation in the data, i.e. more informative data,

generally leads to more precise estimates.

70



4 THE SPATIAL LINEAR FEEDBACK MODEL

4.5 Empirical Application: Start-up Firm Births

Using the data from Lambert et al. (2010) on firm births in the United States (see Section

3.6.1), an empirical application of the spatial linear feedback model is conducted in this

section. Again, an 8 nearest neighbors matrix is used for the spatial weight matrix which

equals the weight matrix used by Lambert et al. (2010). To calculate this matrix the

Euclidian inverse distance matrix for the counties is computed first, then the 8 nearest

neighbors of each observation are selected, setting all other entries of the matrix equal to

zero and finally the resulting matrix is row-standardized.

Table 19 displays the estimation results for the P-SLF and NB-SLF models discussed in Sec-

tion 4.2 and, for comparison, the non-spatial Poisson and non-spatial NB regression whose

conditional expectation is given by Equation (16). In the case of the NB model, the so called

negative binomial 2 specification is chosen which exhibits a quadratic variance function. In

both spatial models the spatial autocorrelation parameter λ is highly significant, indicating

that the proposed spatial structure is present in the data, but it is considerably different in

size. Also several other parameter estimates (and marginal effects, respectively) show clear

differences between the P-SLF and NB-SLF results. Both the log score and the quadratic

score clearly favor the negative binomial models and give the spatial variant a slight prefer-

ence. The ranked probability score in contrast prefers the spatial Poisson model because it

highly penalizes the relatively flat estimated distributions from the negative binomial mod-

els. All three scores provide evidence in favor of the spatial model specification, which is

also supported by the high statistical significance of λ.

To investigate the robustness of these results with regard to the choice of the spatial weight-

ing matrix, estimations using a contiguity matrix (Wcon) and an 8 nearest neighbors matrix

(Wnn), which weights all neighbors equally (instead of taking the distance to the neighbors

into account), are conducted additionally. The matrices are calculated from the center’s

coordinates of the U.S. counties using the already mentioned MATLAB functions xy2cont

and make nnw (LeSage, 1999). Table 69 (in Appendix B.3) gives the parameter estimates

and scores of the P-SLFM and NB-SLFM estimations with these weight matrices which

do not differ substantially from the previous results using an 8 nearest neighbors inverse

distance matrix in Table 19. The scores indicate a similar, some a slightly worse, fit than

the one obtained with the 8 nearest neighbors matrix (Table 19).

To get a first visual impression of the models’ fit, Figure 13 shows the estimated conditional

expectations of each county for the four models. The classes equal the deciles of the ob-

servations displayed in Figure 9 going from dark blue (0 firm births) to dark red (60 to

6938 firm births). On all four maps the clusters of high numbers of firm births at west

and east coast as well as at the Great Lakes are recognizable as well as the cluster of lower

values in the Midwest. The spatial models, however, predict higher values for many counties

and reproduces the map of the observations more properly. Nevertheless, all models tend

to overestimate the number of start-up firms in counties with observation 0 (dark blue in

Figure 9).

The nonrandomized PIT is calculated to visually compare the calibration of the models and
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SLFM Non-spatial

Variable Poisson NB Poisson NB

λ 0.288∗∗∗ 0.166∗∗∗

(0.043) (0.022)
const −1.707∗∗∗ −1.120∗∗∗ −0.934∗∗∗ −1.066∗∗∗

(0.397) (0.249) (0.281) (0.195)
msemp 0.035∗∗∗ 0.053∗∗∗ 0.031∗∗∗ 0.050∗∗∗

(0.006) (0.003) (0.004) (0.002)
pelt10 −0.007∗∗ 0.005∗∗∗ −0.002 0.005∗∗∗

(0.003) (0.001) (0.002) (0.001)
pemt100 −0.034∗∗∗ −0.023∗∗∗ −0.029∗∗∗ −0.018∗∗∗

(0.006) (0.003) (0.004) (0.002)
tfdens −0.013 −0.046∗∗∗ 0.006 −0.053∗∗∗

(0.011) (0.016) (0.010) (0.013)
mhhi −0.034∗∗∗ 0.024∗∗ 0.000 0.027∗∗∗

(0.008) (0.010) (0.009) (0.005)
pop 0.002∗∗∗ 0.017∗∗∗ 0.002∗∗∗ 0.018∗∗∗

(0.000) (0.003) (0.000) (0.003)
cclass 0.088∗∗∗ 0.101∗∗∗ 0.048∗∗∗ 0.082∗∗∗

(0.011) (0.007) (0.013) (0.005)
uer 0.037 0.076∗∗∗ 0.073∗∗∗ 0.080∗∗∗

(0.037) (0.021) (0.022) (0.013)
pedas 0.150∗∗∗ 0.062∗∗∗ 0.130∗∗∗ 0.044∗∗∗

(0.022) (0.011) (0.021) (0.009)
awage 0.033∗∗∗ −0.058∗∗∗ 0.019∗∗∗ −0.038∗∗∗

(0.008) (0.012) (0.007) (0.007)
netflow 0.003 −0.027 0.002 −0.016∗∗∗

(0.003) (0.006) (0.820) (0.003)
proad 0.093∗∗∗ 0.084∗∗∗ 0.103∗∗∗ 0.083∗∗∗

(0.023) (0.024) (0.018) (0.022)
interst 0.009∗∗∗ 0.005∗∗∗ 0.007∗∗∗ 0.005∗∗∗

(0.001) (0.001) (0.001) (0.001)
avland −0.007∗∗∗ −0.006∗∗∗ −0.009∗∗∗ −0.007∗∗∗

(0.002) (0.001) (0.001) (0.001)
bci 0.128∗∗∗ 0.032 0.080 0.034

(0.042) (0.021) (0.037) (0.015)
educpc 0.006∗∗∗ 0.006∗∗ 0.004 0.004

(0.002) (0.003) (0.002) (0.003)
hwypc −0.039 −0.132 −0.030 −0.028

(0.023) (0.031) (0.019) (0.021)
metro 1.630∗∗∗ 1.017∗∗∗ 1.265∗∗∗ 0.845∗∗∗

(0.157) (0.081) (0.092) (0.054)
micro 0.839∗∗∗ 0.645∗∗∗ 0.573∗∗∗ 0.546∗∗∗

(0.119) (0.055) (0.063) (0.038)
α 0.403∗∗∗ 0.437∗∗∗

(0.026) (0.024)

Log L −28149 −10300 −32248 −10401
LogS 9.002 3.348 9.917 3.379
QS −0.027 −0.073 −0.017 −0.070
RPS 14.035 22.836 15.244 37.858

Table 19: Estimation results from P-SLF, NB-SLF, non-spatial Poisson, and non-spatial NB
models for the start-up firm births data. N=3078. Heteroscedasticity robust standard errors in
brackets, calculated with the sandwich formula (White, 1980), ∗∗ and ∗∗∗ denote a 5% and 1%

significance, respectively. Values reported as 0.000 are smaller than 0.0005.
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(a) P-SLFMM (b) NB-SLF

(c) Non-spatial Poisson (d) Non-spatial NB

Figure 13: Estimated conditional expectations of the number of start-up firm births with dark blue
representing the lowest values and dark red the highest ones. The color scheme corresponds to the

size classes used in Figure 9, i.e. deciles of the observed data.

to get an indication whether the dispersion allowed by the model is suitable for the data.

Figure 14 displays the PIT histograms for the four estimated models. The u-shaped PIT

histograms of both Poisson models show clear sign of too little dispersion allowed by the

model. The PIT histograms of both negative binomial models have an even shape, but the

NB-SLFM shows a decrease for PIT values larger than 0.8. This might be caused by the

extreme outliers in the data (> 6000) and at the same time relatively high frequencies of

small values (< 3). Single index models as used here generally have difficulties to cope with

such a data structure. To sum up, the PIT histograms clearly advocate for the negative

binomial models.

A further way to look at the fit of the model is to predict the probabilities of each possible

outcome and to compare these visually with the empirical frequencies in a relative devia-

tions plot. The relative differences of predictive probabilities and observed frequency of the

four models are displayed in Figure 15. Generally, the two negative binomial models out-

perform the Poisson models. Small values are underestimated by the Poisson models, large

values overestimated by all models. For outcomes between 5 and 25 only small differences

between frequencies and predicted distributions of the negative binomial models and the

P-SLF model can be observed, whereas the non-spatial Poisson model fits the data less well.

For estimating the impact of the regressors on the number of firm births the marginal effects

have to be computed. Table 20 displays the median marginal effects for all four models. The

median is reported, rather than the mean, since the data set contains some unusually large

observations of the dependent variable (at least in the context of count data). Because of
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(c) Non-spatial Poisson
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(d) Non-spatial NB

Figure 14: Nonrandomized PIT histograms for SLF models and the start-up firm births data.

that, the predicted effects for these regions distort the mean marginal effects. In contrast,

calculating only the marginal effect for a certain (hypothetical) observation would not reflect

the spatial nature of the data accurately since only one particular pattern of neighbors could

then be considered.

As mentioned in Section 4.2, there exist direct and indirect marginal effects in a spatial

model which sum up to the total marginal effects. The direct effect gives the impact of a

change of regressor xik on observation i of the dependent variable and is therefore compara-

ble to a marginal effect in a non-spatial model. The indirect effect is the sum of the impacts

of a change in all other regressors xjk, j 6= i on observations i, which does not exist in a

non-spatial model. The standard errors for the marginal effects are obtained using B = 2000

draws from the asymptotic joint distribution of the parameter estimators (LeSage and Pace,

2009).

As can be seen in Table 20, the majority of effects is significant. In general, more effects are

significant in the negative binomial models than in the Poisson models. In the spatial models

the indirect effects are smaller than the direct ones. When comparing the impacts between

spatial and non-spatial models we see that the total marginal effects are in general of the

same magnitude than the marginal effects of the corresponding non-spatial model. This im-

plies that the spatial models decompose in some sense the effects from the non-spatial ones

into direct and indirect ones highlighting the influence of neighboring observations. Again,
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Figure 15: Relative deviations plot for SLF models and the start-up firm births data.

there are similar patterns for non-spatial and spatial versions of the Poisson as well as the

negative binomial models. The variables pedas (percent of adults with an associate’s degree),

bci (state tax business climate index ), and proad (public road density) for the P-SLFM and

cclass (share of workers in creative occupations), hwypc (government expenditures on high-

ways per capita), and proad for the NB-SLFM have the largest influence on the conditional

mean of the dependent variable (besides the area dummies). The predictions for marginal

effects are generally in line with the predicted marginal effects of the models presented in

Chapter 3. The signs of significant effects are identical (only for the insignificant marginal ef-

fects of tfdens (total establishment density) in the spatial Poisson models different signs are

observed). For most variables also the significance of the effects agrees, but a few additional

variables have a significant influence here. The significance differs in some cases, especially

the marginal effects of median household income (mhhi) and the government expenditures

for education (educpc) are highly significant in both the P-SLFM and the NB-SLFM but

not in the P-SAR and NB-SAR models. In most cases, the marginal effects of the SAR and

SLF models are of the same magnitude. The total effects of the dummy variables metro and

micro, which characterize the urbanization of the county, are smaller in the SLF model than

in the SAR models, with an additional shift from indirect to direct effects. The latter are

even higher than in the SAR models. Apart from that, the in absolute terms much smaller

effect of tfdens and the larger effect of hwypc, both in the NB-SLFM are noticeable.
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4 THE SPATIAL LINEAR FEEDBACK MODEL

In conclusion, the two model classes, SAR and SLF, lead to similar results regarding the

influence of the considered exogenous regressor on the number of start-up firm births. The

diagnostics above show that none of the models considered here perfectly match the start-up

firm births data set of the U.S. counties. Nevertheless, there is clear evidence for spatial

dependency of the form considered in the SLF models in these data. Also, the results

of the negative binomial models are clearly favoured upon those of the Poisson models.

The additional source of dispersion introduced by the additional parameter in the negative

binomial specification further improves the fit of the spatial linear feedback model. Therefore,

the negative binomial spatial feedback model presents itself as best choice in this analysis.

4.6 Unilateral Modelling with Composite Maximum Likelihood

Because the SLF model does not have a reduced form and there is no operational multivari-

ate count distribution for large n available, a full likelihood function cannot be obtained. In

the previous sections it has been shown that the used pseudo likelihood leads to consistent

estimates. A way to obtain a full likelihood function is to adopt a unilateral modelling ap-

proach (Arbia et al., 2014, pp. 178). In this approach, the units in the data set are ordered

linearly resulting in a data structure similar to that of a time series. Correspondingly, the

likelihood function is derived as the product of the conditional density functions, with the

condition for observation i consisting of all preceding observations according to the applied

ordering. According to Arbia et al. (2014, pp. 178) this unilateral model is supposed to be

a good approximation to the complete spatial model as long as the spatial effect is isotropic,

i.e. there is no directional differences of the spatial dependence, all neighbors influence the

dependent variable by the same amount (see Cressie (1993, pp. 60) for a formal definition

of isotropy in this context).

For the start-up firm births data set four different order directions based on the coordinates

of the county centers (rounded to one digit) are taken into account: (i) from north-west to

south-east, (ii) from south-west to north-east, (iii) from west-north to east-south, (iv) from

west-south to east-north. For each of these order directions either the western or the eastern

neighbors can be considered as preceding ones leading to a total of 8 different estimations.

The conditional likelihood function of the unilateral P-SLFM for order direction k equals:

LogLk =

n∑
i=1

P (yi|yj , j ∈ Nk(i), X)

=

n∑
i=1

yi log(λ Σj∈Nk(i)wijyj + exp(Xi.β))

−λ Σj∈Nk(i)wijyj + exp(Xi.β)− log(yi!)

where Nk(i) denotes the set of preceding neighbors of observation i under order direction k.

The likelihood specification implies that y1 ∼ Po(µ = exp(X1.β)), i.e. the first observation

in the respective order has no preceding neighbors. This approach only considers spatial

effects from a part of the neighbors, which is not a plausible assumption for all applications.

In case of start-up firm births this does not seems to be an intuitive approach. Particularly,
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4 THE SPATIAL LINEAR FEEDBACK MODEL

NW ↔ SE SW ↔ NE

Western Eastern Western Eastern
Neighbors Neighbors Neighbors Neighbors

λ 0.371 0.200 0.217 0.366
(0.072) (0.037) (0.041) (0.076)

WN ↔ ES WS ↔ EN

Western Eastern Western Eastern
Neighbors Neighbors Neighbors Neighbors

λ 0.397 0.215 0.344 0.263
(0.069) (0.040) (0.064) (0.063)

Table 21: Estimation results of the unilateral modelling approach using P-SLFM for the start-up
firm births data, heteroscedasticity robust standard errors in brackets.

it ignores the dependencies between the preceding and following neighbors. Arbia (2014, pp.

178) argue that the estimates for the spatial autocorrelation parameter should be similar for

different orders if the data is isotropic. In this case, the estimators of the unilateral model

give good approximations for the parameters of the full model.

Table 21 displays the estimation results for the spatial autocorrelation parameter of the uni-

lateral P-SLF models employing the four different orders mentioned above. The estimates

vary between 0.200 and 0.397 which, together with the small standard errors, makes the

isotropy of the data unlikely and therefore does not justify the usage of unilateral approxi-

mation for this application.

4.7 Summary

This chapter has introduced a new model for spatially autocorrelated count data, the spatial

linear feedback model. The main advantage of this model is that it includes the neighboring

observations linearly in the conditional expectation equation of a standard Poisson or neg-

ative binomial regression model. Doing this, a more intuitive interpretation of the spatial

autocorrelation parameter is obtained as opposed to the ones in previous models for this data

type. Additionally, the model can be estimated via pseudo maximum likelihood making it

straightforwardly adoptable for empirically working economists. The asymptotic properties

of the pseudo likelihood estimation are investigated in a Monte Carlo study which confirms

its applicability. Secondly, evaluation methods have been introduced which are already used

in the times series analysis of counts, i.e. PIT histograms and relative deviations plots. In

the empirical example it is shown that the data set contains dispersion from more than one

source, leading to inferior estimation results if only one source is considered. The estimated

marginal effects are of the same magnitude for both spatial and non-spatial models, indi-

cating a general appropriateness of the estimation strategy for the spatial models. In the

spatial models, however, these effects can be separated into direct and indirect impacts to

reveal the influence of neighboring observations. The best fit for the modelling of firm births

in U.S. counties is reached with the negative binomial spatial linear feedback model.
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5 Spatial Panel Models: Forecasting Crime Counts

5.1 Introduction

This chapter is concerned with modelling spatial panel data of counts and especially with

its forecasting. The first of three approaches discussed in the following is an extension of the

spatial linear feedback model of the previous chapter with fixed effects (Section 5.3). This

follows the common way of modelling a fixed effects panel model for counts by introducing

multiplicative fixed effects which are multiplied with the exponential function of the inten-

sity equation.

The other two models additionally consider serial correlation. The second approach deals

with an extension of a dynamic panel count data model. For this, the linear feedback model

(LFM) of Blundell et al. (2002) is chosen as a starting point to which spatial terms are added

(Section 5.4). The LFM is a fixed effects model with a linearly included serial correlation

component and therefore has a structure which is suitable for the linear inclusion of spatial

autoregressive terms.

The third modelling approach stems not from a count data model but from a spatial panel

model for continuous data. To use this model for count data, the non-negativity of the

estimated conditional expectations and especially of the forecasts must be ensured. This is

handled with parameter restrictions and through the use of an exponential function for the

explanatory variables.

All models are applied to forecasting crime in Pittsburgh’s census tracts. The data set is

described in the next section. In each of the following three sections one model and its

results are discussed.

5.2 Data: Crime in Pittsburgh

The investigated panel data set contains crime counts for the 138 census tracts of Pitts-

burgh (in the borders for the 2010 census). It covers the months January 2008 to December

2013. 33 different crime types are reported separately, and summarized into two categories

according to the U.S. Department of Justice (U.S. Department of Justice, Federal Bureau

of Investigation, 2004). Part I crimes are all major crimes namely aggravated assault, bur-

glary, larceny, motor vehicle theft, murder/manslaughter, negligent manslaughter, rape, and

robbery. Part II crimes are accordingly the remaining, minor offenses like drunken driving,

fraud, and vandalism (see U.S. Department of Justice, Federal Bureau of Investigation (2004,

p. 8) for the full list). The logarithm of the lagged Part II crimes will be used as an explana-

tory variable in the models for the Part I crimes following the Broken Windows theory of

crimes (Wilson and Kelling, 1982; Kelling and Coles, 1996). It says that the occurrence of

less severe crimes often increases first in a neighborhood before more severe ones take place

more often, too.
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5 SPATIAL PANEL MODELS: FORECASTING CRIME COUNTS

Figure 16 displays the geographical distribution of the average number of Part I crimes

in Pittsburgh’s census tracts. Colors indicate the deciles of the data with dark red tracts

belonging to the highest decile of Part I crimes and dark blue ones to the lowest one. The

highest number of Part I crimes with an average of 76 per months is observed for census

tract 201 (“Downtown”) followed by census tract 1702 (“Southside”) which lies in its south-

west and has an average number of Part I crimes of 42. Small values are observed for tracts

at the city border (dark blue areas in Figure 16) and ones with a small population density.

Figure 16: Map of time averages of Part I crimes in Pittsburgh, grouped in deciles. Dark red areas
belong to highest deciles, dark blue ones to lowest.

Table 22 gives some descriptive statistics of the variables in the data set for the whole pe-

riod and for each year separately. On average, more Part II crimes than Part I crimes are

observed per month and census tract, although the difference is small given the difference

in the number of crime types in the two crime classes. The highest amount of crimes was

conducted in 2008. A downward tendency is recognizable through the years in the sample,

although the differences between the years are small. 2013 shows the smallest average crime

rates.

Figure 17(a) gives a visual impression of the seasonal pattern in the data. Generally, there

are more crimes in the first half of the year and also a hump in the Part II crimes during the

months August and September. The autocorrelation functions (ACF) of the Part I crimes

for each of the 138 census tracts are plotted together in Figure 17(b) (blue lines are the 95

% confidence interval). They indicate autocorrelation with the first lag for the majority of

census tracts and with the second and third lag for some of the tracts. Also, the autocorre-

lation functions point to weak positive or negative autocorrelations with other lags in a few
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5 SPATIAL PANEL MODELS: FORECASTING CRIME COUNTS

census tracts.

Mean Std. Dev. Min. Max.

Number of Part I crimes 8.436 8.897 0 106

Number of Part II crimes 11.495 10.980 0 120

Number of Part I crimes

2008 9.626 9.719 0 99

2009 9.059 9.474 0 106

2010 8.455 8.848 0 97

2011 7.722 7.885 0 84

2012 8.143 8.723 0 89

2013 7.612 8.232 0 102

Number of Part II crimes

2008 13.283 12.463 0 120

2009 12.137 11.089 0 91

2010 11.201 10.681 0 91

2011 10.993 10.312 0 89

2012 10.992 10.457 0 83

2013 10.361 10.234 0 90

Table 22: Descriptive statistics of the Pittsburgh crime data set.

The spatial weight matrix used for this application is a queen contiguity matrix. Each

census tract has on average 5.6 neighbors. As a measure of spatial association Moran’s I

has been introduced in Section 3.6.1. Figures 17(c) and 17(d) show the values of Moran’s I

and standardized Moran’s I for each month in the data set. The standardized values range

from 1.334 to 5.155 with an average of 3.328. The lowest values are obtained for August

2009, June 2010, and December 2012. If an asymptotic normal distribution is assumed,

only Moran’s I of August 2009 and December 2012 are not significant at the 5% level. Even

without an appropriate test at hand, these high values of Moran’s I clearly point to the

existence of spatial correlation in the data.
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Figure 17: Pittsburgh crime data descriptives.

5.3 The Spatial Linear Feedback Panel Model with Fixed Effects

5.3.1 Specification of the Spatial Linear Feedback Panel Model

In the course of this thesis, the extension of the SLFM for cross-sections, introduced in

Chapter 4, to a panel fixed effects model is a straightforward way to estimate and forecast

panel data of spatially correlated counts. The introduction of entity fixed effects is done in

the usual fashion for count data modelling, i.e. by multiplying the fixed effects νi with the

intensity equation. Assuming time invariant spatial dependence, the Poisson spatial linear

feedback panel model (P-SLFPM) is obtained as:

yit|µit, νi ∼ Po(νiµit)

µit = λ
N∑
j=1
j 6=i

wijyjt + ρ
N∑
j=1
j 6=i

wijyjt−1 + exp(Xit.β) (75)

with λ denoting the spatial autocorrelation parameter, wij the corresponding element of

a row-standardized spatial weight matrix for the N spatial units, i = 1, . . . , N , Xit. =

[xit1, . . . , xitK ] the vector of exogenous regressors with parameter vector β, and time peri-

ods t = 1, . . . , T . In addition to the spatial dependence in the cross-section, this model also

allows for dependence between the observation yit and the neighboring observations in the
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previous time period. y−it denotes the vector of observations in t of all neighbors to unit

i. Because the spatial terms enter the conditional expectation E[yit|y−it, yt−1, Xit.] = νiµit,

which has to be non-negative for count data, special restrictions to the parameter spaces of

λ and ρ apply. These depend on the values of W , X and β and have to be checked manually

for each application. Alternatively, the conditions λ, ρ > 0 can be set independently of the

data, even though the parameter space is then possibly stronger restricted than necessary,

since λ and ρ can be allowed to be negative as long as the estimated conditional expectation

is positive for each unit.

The resulting model is estimated using the pseudo maximum likelihood approach explained

in Chapter 4.2 and the conditional maximum likelihood for Poisson fixed effects models,

introduced for this particular case by Palmgren (1981) and Hausman et al. (1984). The log

likelihood function resulting from conditioning on the sufficient statistics for νi,
∑T

t=1 yit, is:

logL =
N∑
i=1

[
log(

T∑
t=1

yit)!−
T∑
t=1

log(yit!) +
T∑
t=1

yit log

(
µit∑T
s=1 µis

)]
(76)

Cluster-robust standard errors are obtained by the sandwich formula using the scores of the

log-likelihood function (e.g. described in Cameron and Trivedi (2013, pp. 353)). To obtain

one-step ahead point forecasts from this model, the intensity in Equation (75) is evaluated

for t = T + 1 and multiplied by the estimate of the fixed effect

ν̂i =

∑T
t=1 yit∑T
t=1 µ̂it

(77)

Rounding can take place to obtain integer forecasts. Additionally, the result can be employed

as the conditional expectation of a Poisson distribution to gain a forecast density.

5.3.2 Empirical Application: Forecasts for Pittsburgh’s Crime Counts

The P-SLFPM model is applied to the crime data set from Pittsburgh. To forecast the

number of Part I crimes in the census tracts of Pittsburgh for each month of 2013 a one-

step-ahead expanding window forecast is employed. Therefore, the first estimation sample

ranges from January 2008 to December 2012. Results of the parameter estimates of this first

estimation sample are displayed in Table 23. Model 1 is a pooled estimation using the P-SLF

model, Model 2 a panel estimation with monthly time fixed effects and Models 3-5 include

entity fixed effects as well as time fixed effects. The simultaneous spatial correlation parame-

ter λ is highly significant in all specifications as well as the time lagged Part II crimes. Also,

the serial lagged spatial term is highly significant. Its parameter estimate is relatively small

compared to the one of the simultaneous spatial term. The size remains stable, whether or

whether not the Part II crimes are included as a regressor, which entails information about

the same period as the serial lagged spatial term. Apparently they are independent of each

other. The majority of the time dummy parameters turns from negative to positive values

when individual fixed effects are included (base category is January). February shows the

least criminal activity with a significant, negative coefficient. The summer months have the
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Figure 18: Scoring rules of density forecasts from the P-SLFPM for the Pittsburgh crime data.

highest coefficient values which supports the hypothesis that criminal activity raises with

the temperature, since then, a bad temper is evoked faster (Gorr et al., 2003). Therefore,

the inclusion of one dummy for the months May to September, instead of using monthly

time dummies, has been considered as well, but does not improve the forecasts. Results for

this specification are displayed in Appendix C.1, Tables 70 to 72.

The lower part of Table 23 gives the root mean squared forecast error (RMSFE) and mean

absolute forecast error (MAFE) averaged over the 12 months of the forecasting period

(January to December 2013). Table 73 in Appendix C.1 displays the forecast results for

each month separately. In general, the measures over the single months are close together.

The specifications with entity fixed effects clearly outperform the pooled and time fixed

effects model in terms of point forecast accuracy. Among those with both types of fixed

effects the one including all introduced regressors performs best (even though only with a

small lead) with an average mean absolute forecast error of 2.590.
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1 2 3 4 5

pooled time effects fixed effects fixed effects fixed effects

Estimates for January 2008 to December 2012

WPartIt 0.247∗∗ 0.235∗∗∗ 0.118∗∗∗ 0.112∗∗∗ 0.101∗∗∗

(0.115) (0.018) (0.020) (0.027) (0.020)

WPartIt−1 0.043∗∗∗ 0.040∗∗

(0.015) (0.016)

log(PartIIt−1) 0.943∗∗∗ 0.930∗∗∗ 0.090∗∗∗ 0.091∗∗

(0.224) (0.034) (0.033) (0.040)

Jan −0.629∗∗∗

(0.114)

Feb −0.320∗∗∗ −0.259∗∗∗ −0.205∗∗ −0.255∗∗

(0.112) (0.076) (0.090) (0.104)

Mar −0.450∗∗∗ 0.112 0.045 0.120

(0.119) (0.084) (0.079) (0.118)

Apr −0.368∗∗∗ 0.134∗∗ 0.099 0.163

(0.117) (0.066) (0.062) (0.098)

May −0.398∗∗∗ 0.182∗∗∗ 0.158∗∗∗ 0.206∗∗

(0.119) (0.065) (0.061) (0.094)

Jun −0.352∗∗∗ 0.222∗∗∗ 0.198∗∗∗ 0.253∗∗∗

(0.121) (0.062) (0.057) (0.090)

Jul −0.326∗∗∗ 0.259∗∗∗ 0.234∗∗∗ 0.287∗∗∗

(0.119) (0.058) (0.052) (0.081)

Aug −0.421∗∗∗ 0.297∗∗∗ 0.274∗∗∗ 0.327∗∗∗

(0.117) (0.052) (0.047) (0.075)

Sep −0.382∗∗∗ 0.152∗∗ 0.162∗∗ 0.177∗∗

(0.117) (0.066) (0.065) (0.090)

Oct −0.423∗∗∗ 0.139∗∗ 0.128∗∗ 0.157

(0.116) (0.065) (0.064) (0.092)

Nov −0.388∗∗∗ 0.064 0.066 0.079

(0.112) (0.072) (0.072) (0.097)

Dec −0.321∗∗∗ 0.413∗∗∗ 0.365∗∗∗ 0.439∗∗∗

(0.111) (0.104) (0.115) (0.156)

Constant −0.449

(0.778)

Log L −26766 −26650 −223777 −223804 −223789

Average Forecast Results for January to December 2013

RMSFE 5.523 5.507 3.567 3.660 3.603

MAFE 3.583 3.571 2.590 2.649 2.619

Table 23: Results from the P-SLFPM for the Pittsburgh crime data. Robust standard errors in
parentheses; W is a queen contiguity spatial weighting matrix; ∗∗ and ∗∗∗ denote 5% and 1%

statistical significance.

Additionally to point forecasts, density forecasts can be obtained. Since the point forecast

(before rounding) is actually the forecast of the conditional expectation of the respective

density, it directly leads to Poisson density forecasts. Figure 18 displays the scoring rules

(introduced in Chapter 3.5) of the density forecasts from Model 1 to 5. The numerical values

can be found in Appendix C.1, Table 74. The forecast for the summer months are slightly

worse, except for July, than for the rest of the year. The entity fixed effect models again

outperform the other specifications. Model 3 is evaluated best by all three criteria but is

closely followed by the other entity fixed effects specifications.

An alternative way to evaluate density forecast is by looking at their PIT histograms. The
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0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Probability integral transform

R
el

at
iv

e 
fr

eq
ue

nc
y

(d) Model 4
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Figure 19: Nonrandomized PIT histograms of density forecasts from the P-SLFPM for the
Pittsburgh crime data.

nonrandomized PIT histograms (for a description of the concept see Chapter 4.3) are shown

in Figure 19. For panel data, the PIT residuals are averaged over both dimensions to

obtain one graph per forecasting model (Diebold et al., 1998). The histograms again show

the better fit of the entity fixed effects models indicated by the almost even shape of the

bins. On the contrary, the histograms of Model 1 and 2 have a clear u-shape, which points

towards more dispersion in the data than the model is able to forecast. But also none of the

histograms for the fixed effects models displays a completely even distribution. This leads

to the conclusion that there is some dispersion in the data which is not captured by the

forecasts of any of these Poisson models. To improve the forecasting of the crime counts,

dynamic models which incorporate a serial lag of the Part I crimes are introduced in the

next two sections.
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5.4 A Dynamic Spatial Panel Model for Counts with Multiplicative Fixed

Effects

5.4.1 Specification of the Model with Multiplicative Fixed Effects

The autocorrelation functions in Section 5.2 indicate that the data inhibits serial correlation.

Therefore, the use of a dynamic model may lead to improved forecasts. For this purpose, a

dynamic count data model from the literature is extended with spatial terms. The linear

feedback model (LFM) of Blundell et al. (2002) is chosen, which is an observation-driven

dynamic count data model. Blundell et al. (2002) follow a distribution-free approach and

estimate the model using quasi-differenced generalized method of moments (GMM). They

argue that the usual specification of the conditional mean of a count variable, including

fixed effects νi, E[yit|Xit.νi] = exp(Xit.β + ηi) = µitνi implicitly gives a regression model of

the form

yit = µitνi + uit

Based on this, they introduce the dynamic LFM for count data

E[yit|yit−1, Xit., νi] = γyit−1 + µitνi

= γyit−1 + exp(Xit.β + ηi)

where Xit. = [xit1, . . . , xitK ] is the vector of explanatory variables with parameter vector

β, i = 1, . . . , N and t = 1, . . . , T . The serial correlation parameter γ needs to fulfil γ ≥ 0

to ensure positive estimates for the conditional expectation. By including the serial lag of

the dependent variable additively instead of including it in the argument of the exponential

function, there is no risk of explosive behavior in this model as long as γ < 1 also holds.

For our purpose, a simultaneous and serially lagged spatial term is added to the LFM to

obtain a spatial dynamic fixed effects model:

E[yit|Y−it, Yt−1, Xit., νi] = γyit−1 + λ
N∑
j=1
j 6=i

wijyjt + ρ
N∑
j=1
j 6=i

wijyjt−1 + exp(Xit.β + ηi)

(78)

with wij being elements from a spatial weight matrix W , Y−it are the observations of all

neighbors of i for period t, Yt−1 is the vector of N observations for period t− 1. Again, the

estimation results from Equation (78) must be positive, which can be reached by restricting

γ ≥ 0, λ ≥ 0, and ρ ≥ 0. Valid exceptions are possible, depending on the values of X,β,

and W , as long as Equation (78) is positive.
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The corresponding regression model is given by

yit = γyit−1 + λ
N∑
j=1
j 6=i

wijyjt + ρ
N∑
j=1
j 6=i

wijyjt−1 + exp(Xit.β + ηi) + uit (79)

Aside from the restrictions on the serial and spatial autocorrelation parameters that guaran-

tee a positive conditional expectation, the parameters also need to fulfil conditions to warrant

stationarity. Stationarity conditions for miscellaneous dynamic spatial (panel) models are

summarized in Elhorst (2012). Relevant for this model are the following conditions, de-

rived in Elhorst (2012) and Parent and LeSage (2011), which imply that there is a trade-off

between the serial and spatial correlation to maintain a stable model (Elhorst, 2008):

γ < 1− (λ+ ρ)ωmax if λ+ ρ ≥ 0 (80)

γ < 1− (λ+ ρ)ωmin if λ+ ρ < 0 (81)

γ > (λ+ ρ)ωmax − 1 if λ− ρ ≥ 0 (82)

γ > (λ+ ρ)ωmin − 1 if λ− ρ < 0 (83)

where ωmin and ωmax denote the smallest and largest characteristic root of the spatial weight

matrix W . The largest characteristic root of row-standardized spatial weight matrices equals

1.

5.4.2 Quasi-Differenced GMM Estimation

The model in Equation (79) can be estimated with quasi-differenced GMM as long as the

regressors X do not contain endogenous variables (Blundell et al., 2002). If the regressors

X contain endogenous variables, the multiplicative specification of the fixed effects together

with additive error terms cannot be estimated since no valid moment conditions are available

(Windmeijer, 2008). Chamberlain (1992) and Wooldridge (1997) propose quasi-differencing

transformations of the errors which eliminate the fixed effects and can therefore be used in

the GMM function. The moment conditions based on these are only valid for predetermined

or exogenous explanatory variables X. The Wooldridge quasi-differenced errors are used in

the following and obtained by

qit =
uit

exp(Xit.β)
− uit−1

exp(Xit−1.β)
(84)

=

yit − γyit−1 + λ
∑N

j=1
j 6=i

wijyjt + ρ
∑N

j=1
j 6=i

wijyjt−1

exp(Xit.β)

−
yit−1 − γyit−2 + λ

∑N
j=1
j 6=i

wijyjt−1 + ρ
∑N

j=1
j 6=i

wijyjt−2

exp(Xit−1.β)

For predetermined regressors (E[xituit+j ] = 0, j ≥ 0 and E[xituit−s] 6= 0, s ≥ 1) it holds

that

E[qit|yt−2
i , xt−1

i ] = 0 (85)
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with yt−2
i = [yi1, . . . , yit−2] and xt−1

i = [xi1, . . . , xit−1].

This allows the choice of instruments for the GMM estimation which are gathered in matrix

Z. For the model considered here two lags of the dependent variable, yt−2 and yt−3, two

lags of the simultaneous spatial term, Wyt−2 and Wyt−3, and two lags of the predetermined

regressor X, Xt−1 and Xt−2, form the instrument matrix. Additional exogenous variables

added to the model are also included in Z. If the model contains a serially lagged spatial

term (Wyt−1), an additional lag of the spatial term, Wyt−4, is inserted in Z. To reduce

the instrument count and to limit overfitting of the endogenous variables due to too many

instruments, Roodman (2009) proposes the use of collapsed instruments. That is, moment

conditions are summarized over t so that the estimator is asked to minimize for example

the condition
∑

t ∆yi,t−2qit instead of the T − 2 conditions ∆yi,t−2qit, t = 2, . . . , T . Using

collapsed instruments leads to a more precise estimation of the optimal weight matrix in

the second step and less biased estimates (Roodman, 2009).

The instrument matrix takes the form:

Zi =



yi1 0 [Wy1]i 0 0 xi2 xi1

yi2 yi1 [Wy2]i [Wy1]i 0 xi3 xi2

yi3 yi2 [Wy3]i [Wy2]i [Wy1]i xi4 xi3
...

...
...

...
...

...
...

yiT−2 yiT−3 [WyT−2]i [WyT−3]i [WyT−4]i xiT−1 xiT−2


where [Wy1]i denotes the ith row of the product Wy1.

The quasi-differenced error terms and the instrument matrix enter the GMM function

gmf =

(
1

N

N∑
i=1

qi(θ)
′Zi

)
H−1

(
1

N

N∑
i=1

Z ′iqi(θ)

)
(86)

with qi(θ) = (qi3, qi4, . . . , qiT )′, θ is the vector of parameters to be estimated, and H is a

weight matrix. This function is numerically minimized with respect to the parameters θ

in two steps to obtain consistent (already achieved in the first step) and efficient estimates.

The weight matrix is set to the identity matrix for the first step. Afterwards, the weight

matrix for the second step is calculated using the results from the first step, θ̂1:

H(θ̂1) =
1

N

N∑
i=1

Z ′iqi(θ̂1)qi(θ̂1)′Zi (87)

The asymptotic variance of the resulting efficient two-step GMM estimator is

v̂ar(θ̂2) =
1

N

(
C(θ̂2)′H−1(θ̂1)C(θ̂2)

)−1

(88)
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where

C(θ̂2) =
1

N

N∑
i=1

∂Z ′iqi(θ)

∂θ

∣∣∣
θ̂2

One-step ahead forecasts cannot be obtained straightforwardly because unlike in the case of

difference GMM for continuous data, the forecast of the quasi-differenced dependent variable

cannot simply be added to the level of the previous period to obtain a level forecast. Instead,

another equation has to be found which provides a forecast ŷT+1 based only on values known

at time T . Especially, the function is not allowed to depend on the multiplicative fixed

effects. From the following equation, which equals the Wooldridge transformation for a

static non-spatial count model in t = T + 1,

yiT+1

exp(XiT+1.β)
− yiT

exp(XiT.β)
=

γyiT + λ
∑N

j=1
j 6=i

wijyjT+1 + ρ
∑N

j=1
j 6=i

wijyjT + uiT+1

exp(XiT+1.β)

−
γyiT−1 + λ

∑N
j=1
j 6=i

wijyjT + ρ
∑N

j=1
j 6=i

wijyjT−1 + uiT

exp(XiT.β)

an expression for yT+1 can be derived:

yiT+1 =

(
yiT

exp(XiT.β)
−Ai.

(
γ

(
yT−1

exp(XiT.β)
− yT

exp(XiT+1.β)

)
+ρWi.

(
yT−1

exp(XiT.β)
− yT

exp(XiT+1.β)

)))
exp(XiT+1.β)

−Ai.
(

uiT
exp(XiT.β)

− uiT+1

exp(XiT+1.β)

)
exp(XiT+1.β) (89)

with Ai. being the ith row of the Leontief inverse A = (I − λW )−1 and Wi. the ith row of

the spatial weight matrix. Because of the assumed predetermination of X and Equations

(84) and (85) the expected value of Equation (89) is given by

E[yiT+1|xT+1] =

(
yiT

exp(XiT.β)
−Ai.

(
γ

(
yT−1

exp(XiT.β)
− yT

exp(XiT+1.β)

))
exp(XiT+1.β)

(90)

which can serve as a one-step ahead forecast if xiT+1 is known at time T .

5.4.3 Illustration with Simulated Data

Before forecasting the crime counts of Pittsburgh, a small simulation study is supposed

to give some insights into the behavior of the quasi-differenced GMM estimates. For this

purpose, a smaller version of the model is estimated including only the simultaneous spa-

tial term. To get the whole picture of the model’s properties, the entire parameter space

of the model should be covered by the generated data. For this, the values of the 3 pa-

rameters γ, λ, and β should be varied and the resulting combinations be used in samples
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of different size, obtained by varying N and T . This would lead to a multitude of con-

figurations and the need of time and computational resources for a Monte Carlo study

of this size cannot be provided in the context of this thesis. Therefore, 16 exemplary

configurations are chosen. The serial and spatial correlation parameters take the values:

(γ, λ) = {(0.5, 0.4), (0.2, 0.1), (0.2, 0.6), (0.7, 0.2)}. These represent situations with either

strong serial or spatial correlation as well as strong serial and spatial correlation and weak

serial and spatial correlation. In accordance with the crime data set only large T -samples

are considered with (N,T ) = {(50, 50), (100, 50), (100, 100), (500, 100)}. The model contains

one additional regressor x whose coefficient β is set to 1.5 in all configurations. For each

of these 16 combinations, 1000 repetitions are generated. The outcomes of the dependent

variable are generated using an iterative procedure which first iterates 50 times over the N

units for time t and repeats this for all time periods discarding a burn-in of 50 time periods.

The vector yt is updated instantly after each step i = 1 . . . N . After B iterations over all

units i, the last vector is kept as yt and used as a regressor for generating the outcomes for

t+ 1. The outcomes are calculated using equation

yi,t = γyj,t−1 + λ
N∑
j=1

wijyt + exp(xitβ + ηi) + ei,t (91)

where the error terms e ∼ i.i.d. N(0, 5), the individual effects η ∼ i.i.d. N(0, 0.5), and the

N × 1 starting vector y1 = exp(X.1β + η) + e1. The spatial contiguity weight matrix W

is generated using the function xy2cont of the Spatial Statistics Toolbox for MATLAB 2.0

(Pace, 2003) on randomly generated coordinates. The result of Equation (91) is rounded

to the nearest integer. If this returns a negative value, it is set to 0 to meet the required

count data nature of the generated data. The N × 1 vector of the regressor X.t is generated

iteratively in the style of Blundell et al. (2002) with serial correlation and correlated with

the individual effects

X.t = δX.t−1 + τη + εt

with random term ε ∼ i.i.d. N(0, 0.1) and X.1 = τ
1−δη + ξ, ξ ∼ i.i.d. N(0, 0.5

1−δ2 ), τ = 0.1,

and δ = 0.5.

The results of the simulations, displayed in Table 24, are mixed. Among all parameters

the estimates for γ have the smallest RMSE which decreases with increasing sample size

and is mostly independent of the size of the true γ. The RMSE of λ̂ also decreases with

increasing sample size but is in general larger than that of γ̂. Especially for samples with

small true λ, it is considerably large. The worst fit is obtained for estimates of β. The

RMSE decreases for increasing sample size but only slightly and is very sensitive to small

true values of γ and λ. The biases of all parameter estimates are negative, with very few

exceptions, and are sensitive to small values of true γ. Again the results for β̂ in terms of bias

are much worse than for γ̂ and λ̂. All in all in the scope of this small illustration, the GMM

estimator performs acceptably well for estimating the serial autocorrelation parameter γ and

the spatial autocorrelation parameter λ, if their true values are of medium size. But it is not
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RMSE

N T γ λ γ̂ λ̂ β̂

50 50 0.5 0.4 0.033 0.089 1.155
100 50 0.5 0.4 0.026 0.060 1.036
100 100 0.5 0.4 0.022 0.042 0.736
500 100 0.5 0.4 0.013 0.022 0.462

50 50 0.2 0.1 0.064 0.380 1.080
100 50 0.2 0.1 0.065 0.279 1.092
100 100 0.2 0.1 0.064 0.190 1.042
500 100 0.2 0.1 0.060 0.092 1.018

50 50 0.2 0.6 0.036 0.126 1.050
100 50 0.2 0.6 0.032 0.101 0.891
100 100 0.2 0.6 0.027 0.083 0.814
500 100 0.2 0.6 0.020 0.057 0.704

50 50 0.7 0.2 0.036 0.095 1.194
100 50 0.7 0.2 0.032 0.063 1.070
100 100 0.7 0.2 0.029 0.043 0.860
500 100 0.7 0.2 0.021 0.022 0.593

Bias Relative Bias

N T γ λ γ̂ λ̂ β̂ γ̂ λ̂ β̂

50 50 0.5 0.4 −0.011 −0.004 −0.198 −0.021 −0.010 −0.132
100 50 0.5 0.4 −0.015 −0.011 −0.444 −0.030 −0.028 −0.296
100 100 0.5 0.4 −0.016 −0.016 −0.469 −0.032 −0.041 −0.313
500 100 0.5 0.4 −0.012 −0.010 −0.369 −0.023 −0.025 −0.246

50 50 0.2 0.1 −0.057 0.140 −0.423 −0.283 1.402 −0.282
100 50 0.2 0.1 −0.062 0.041 −0.900 −0.310 0.408 −0.600
100 100 0.2 0.1 −0.063 −0.005 −1.014 −0.313 −0.045 −0.676
500 100 0.2 0.1 −0.060 −0.025 −1.013 −0.298 −0.245 −0.675

50 50 0.2 0.6 −0.020 −0.003 −0.186 −0.099 −0.004 −0.124
100 50 0.2 0.6 −0.023 −0.032 −0.593 −0.116 −0.053 −0.395
100 100 0.2 0.6 −0.023 −0.048 −0.719 −0.114 −0.080 −0.479
500 100 0.2 0.6 −0.019 −0.047 −0.684 −0.094 −0.079 −0.456

50 50 0.7 0.2 −0.017 −0.005 −0.251 −0.025 −0.023 −0.167
100 50 0.7 0.2 −0.023 −0.009 −0.519 −0.033 −0.046 −0.346
100 100 0.7 0.2 −0.025 −0.012 −0.548 −0.036 −0.059 −0.366
500 100 0.7 0.2 −0.020 −0.007 −0.452 −0.028 −0.037 −0.301

Table 24: Monte Carlo results for the dynamic spatial panel model with multiplicative fixed effects.
Relative bias is calculated as bias divided by true parameter value. The instrument matrix contains

additionally a constant.

able to accurately estimate β, the coefficient of the predetermined regressor X. Nevertheless,

the investigation here is very limited and a closer inspection would be necessary to come

to general conclusions about the applicability of a quasi-differenced GMM estimator for

estimating the spatial version of this model.
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5.4.4 Empirical Application: Forecasts for Pittsburgh’s Crime Counts

Despite the partly discouraging Monte Carlo results in the previous section, the forecast

ability of the model with multiplicative fixed effects is also investigated. For this, the crime

data set described in Section 5.2 and a one-step-ahead expanding window forecast are used

again. Table 25 displays the estimation results for the data from January 2008 to December

2012 as well as the average RMSFE and MAFE for the one-step-ahead forecasts of January

to December 2013. Detailed results of the forecasting exercise are displayed in Appendix

C.2, Table 77, as well as the results for estimations with one summer dummy for the months

May to September instead of monthly time dummies (Tables 75 and 76).

The relevant stationarity conditions from Equations (80) - (83) are fulfilled by the results

in Table 25 (ωmin = −0.333, ωmax = 1) and the Sargan test does not reject instrument

exogeneity for any specification. But none of the regressors is significant in any of the

specifications. This stands in strong contrast to the results for the spatial linear feedback

panel model in Section 5.3.2 where serial and spatial correlation of the Part I crimes as well as

the lagged Part II crimes are significant. The average forecast results displayed in the lower

part of Table 25 point to the importance of the simultaneous spatial term Wyt for forecasting.

But even the best specification, which is Model 1 containing all proposed regressors, is clearly

worse than the fixed effects models of the panel spatial linear feedback model. Together with

the results from the Monte Carlo illustration these outcomes indicate that the estimation

approach used here is not reliable. Blundell et al. (2002) also report shortcomings of the

quasi-differenced estimation for the non-spatial LFM and propose alternatively a pre-sample

mean estimator, which is less biased. But for this estimator a long time series of the

dependent variable must be available previous to the actual estimation sample. Therefore,

its applicability depends on the data availability which is not given here.
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1 2 3 4 5

Estimates for January 2008 to December 2012

PartIt−1 0.031 0.043 0.318 0.023 0.034
(0.383) (0.322) (1.050) (0.401) (0.312)

WPartIt 0.606 0.564 0.640 0.575
(0.407) (0.425) (0.419) (0.594)

WPartIt−1 −0.037 0.240 −0.064
(0.284) (0.170) (0.290)

log(PartIIt−1) 0.522 0.433 1.542 0.551 0.481
(2.036) (1.880) (5.079) (1.736) (2.679)

Feb −0.407 −0.498 −0.165
(2.367) (2.276) (2.633)

Mar −0.133 −0.027 0.956
(2.527) (2.393) (2.643)

Apr −0.144 −0.054 0.877
(3.310) (2.968) (3.829)

May −0.088 0.016 0.159
(3.519) (3.043) (3.029)

Jun −0.097 0.013 0.175
(3.799) (3.291) (3.176)

Jul 0.146 0.252 0.574
(3.928) (3.320) (4.125)

Aug 0.103 0.214 0.360
(4.341) (3.624) (4.377)

Sep 0.069 0.059 0.459
(3.084) (2.577) (5.033)

Oct 0.144 0.135 0.881
(2.843) (2.482) (5.635)

Nov −0.112 −0.103 0.032
(2.612) (2.338) (2.749)

Dec −0.110 −0.135 0.379
(2.734) (2.492) (3.992)

Sargan 0.000 0.000 0.002 0.000 0.000
[1.000] [1.000] [1.000] [1.000] [1.000]

Average Forecast Results for January to December 2013

RMSFE 5.866 5.540 17.711 6.001 5.607
MAFE 4.013 3.844 7.094 4.066 3.862

Table 25: Results from the dynamic spatial panel model with multiplicative fixed effects for the
Pittsburgh crime data. Standard errors in parentheses; p-value of the Sargan test in brackets; W is
a queen contiguity spatial weighting matrix; ∗∗ and ∗∗∗ denote 5% and 1% statistical significance.

Values reported as 0.000 are smaller than 0.0005.
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5.5 A Dynamic Spatial Panel Model for Counts with Additive Fixed

Effects

5.5.1 Specification of the Model with Additive Fixed Effects

This section describes an alternative autoregressive model to forecast spatial count data.

Instead of extending a multiplicative fixed effects count data model with spatial terms, the

spatial model considered here was originally intended for continuous data by Kukenova and

Monteiro (2009) and includes the fixed effects additively. When using the model for count

data, the conditional expectation of the count variable yit from this model can either entail

an exponential term for the explanatory variables X, which is a typical form in count data

models, or be entirely linear. In the former case it is given by:

E[yit|Y−it, Yt−1, Xit., ηi] = γyit−1 + λ
N∑
j=1
j 6=i

wijyjt + ρ
N∑
j=1
j 6=i

wijyjt−1 + exp(Xit.β) + ηi

(92)

with wij being elements from the spatial weight matrix W. Y−it are the observations of

all neighbors of i for period t, Yt−1 is the vector of N observations for period t − 1,

Xit. = [xit1, . . . , xitK ] is a vector of regressors, ηi an individual fixed effect, i = 1, . . . , N , and

t = 1, . . . , T . Together with restrictions on the parameters, namely γ ≥ 0, λ ≥ 0, ρ ≥ 0, the

exponential function increases the chance of a positive estimation result for the expectation.

Alternatively, the conditional expectation can be modelled linearly:

E[yit|Y−it, Yit−1, Xit., ηi] = γyit−1 + λ
N∑
j=1
j 6=i

wijyjt + ρ
N∑
j=1
j 6=i

wijyjt−1 +Xit.β + ηi

(93)

However, these specifications may lead to negative estimates of the conditional expectation,

even when all parameters are restricted to non-negative values. Either the regressors could

cause negativity of the conditional expectation (in the linear variant), or the fixed effects

could take on negative values. Since count data is non-negative, a procedure to handle this

is necessary. If the outcome of the conditional expectation serves as a prediction or forecast,

one solution is to replace negative values with zero. The rationale behind this method is that

since only zero or positive values of the dependent variable can be observed, a forecasted

negative conditional expectation may be interpreted as a clear sign of a zero outcome being

the most likely one. Therefore, zero is taken as the prediction or forecast instead of the

value of the conditional expectation.
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The regression model corresponding to Equations (92) or (93), respectively, is

yit = γyit−1 + λ
N∑
j=1
j 6=i

wijyjt + ρ
N∑
j=1
j 6=i

wijyjt−1 + g(Xit.) + ηi + uit (94)

where g(Xit.) = exp(Xit.β) for the exponential specification, g(Xit.) = Xit.β for the linear

one and uit is an error term. The conditions in Equations (80) - (83) for spatial and serial

stationarity described in Section 5.4.1 apply here as well.

One-step ahead forecasts ŷT+1 can be calculated as the sum of observed values of the previous

period and the forecasted differences for the forecasting period:

∆̂yT+1 = (I − λ̂W )−1(γ̂yT + g(XT+1β̂)) (95)

This leads to non-integer and potentially negative forecasts. Positive forecasts are rounded

to the closest integer. A negative forecast value is interpreted as a zero following the rationale

described above. The advantage of this forecasting approach is that it does not to need any

distributional assumption, which also has not been made for the estimation since GMM is

used. A subsequent distributional assumption to obtain integer forecasts (instead of the

rounding described above) would therefore seem artificial.

5.5.2 System GMM Estimation

A GMM estimation of an equivalent linear spatial panel model with fixed effects and en-

dogenous regressors was conducted by Kukenova and Monteiro (2009). They use the system

GMM estimator of Blundell and Bond (1998), which estimates the difference equation and

the level equation simultaneously to obtain less biased results than a corresponding differ-

ence GMM estimator.

For the previously introduced Model (94), the difference equation is:

∆yit = γ∆yit−1 + λ∆[
N∑
j=1
j 6=i

wijyjt] + ρ∆[
N∑
j=1
j 6=i

wijyjt−1] + ∆g(Xit.) + ∆uit

(96)

With regard to the moment conditions a distinction is made between exogenous (EX) and

endogenous explanatory variables (EN). Possible moment conditions for the difference

equation are (see Kukenova and Monteiro (2009, p. 10) and Arellano and Bond (1991)):

E(yi,t−τ∆uit) = 0 for t = 3, . . . , T and 2 ≤ τ ≤ t− 1 (97)

E(EXi,τ∆uit) = 0 for t = 3, . . . , T and 1 ≤ τ ≤ T (98)

E(ENi,t−τ∆uit) = 0 for t = 3, . . . , T and 2 ≤ τ ≤ t− 1 (99)

E([Wyt−τ ]i∆uit) = 0 for t = 3, . . . , T and 2 ≤ τ ≤ t− 1 (100)
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And the extra moment conditions for extended GMM are:

E(∆yi,t−1uit) = 0 for t = 3, . . . , T (101)

E(∆EXi,tuit) = 0 for t = 2, . . . , T (102)

E(∆ENi,t−1uit) = 0 for t = 3, . . . , T (103)

E(∆[Wyt−1]iuit) = 0 for t = 3, . . . , T (104)

As before, collapsed instruments are employed (see also Section 5.4.2). That is, moment

conditions are summarized over t so that the estimator is asked to minimize, for example,

the condition
∑

t ∆yi,t−2uit instead of the T − 2 conditions ∆yi,t−2uit t = 2, . . . , T .

Estimates are obtained by numerically minimizing the GMM function:

gmf =

(
1

N

N∑
i=1

V ′i Zi

)
H−1

(
1

N

N∑
i=1

Z ′iVi

)
(105)

with the instrument matrix Zi = [Z
(1)
i Z

(2)
i ] similar to the one proposed by Kukenova and

Monteiro (2009):

Z
(1)
i =



yi1 0 0 [Wy1]i 0 0 0

yi2 yi1 0 [Wy2]i [Wy1]i 0 0

yi3 yi2 0 [Wy3]i [Wy2]i [Wy1]i 0
...

...
...

...
...

...
...

yiT−2 yiT−3 0 [WyT−2]i [WyT−3]i [WyT−4]i 0

0 0 ∆yi2 0 0 0 [W∆y2]i
...

...
...

...
...

...
...

0 0 ∆yiT−1 0 0 0 [W∆yT−1]i



Z
(2)
i =



EXi3 ENi1 0 0

EXi4 ENi2 ENi1 0

EXi5 ENi3 ENi2 0
...

...
...

...

EXiT ENiT−2 ENiT−3 0

∆EXi3 0 0 ∆ENi2

...
...

...
...

∆EXiT 0 0 ∆ENiT−1


where yt = [y1t, . . . , yNt]

′, EX = [EXit1, . . . , EXitK ] is a vector of exogenous and EN =

[ENit1, . . . , ENitK ] of endogenous regressors. The error vector is defined as

Vi = [∆ui2 . . .∆uiT−1, ui2 . . . uiT−1]′.
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The weighting matrix equals H =
∑N

i=1 Z
′
iH

(k)
i Zi with

H
(1)
i =

[
H(1)D 0

0 I

]
H(1)D =



1 −.5 0 . . . 0

−.5 1 −.5 0 . . . 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . . 1 −.5

0 0 0 . . . −.5 1


for step 1 and

H
(2)
i = Vi(θ̂1)V ′i (θ̂1)

for step 2. θ̂1 = {γ̂, λ̂, ρ̂, β̂} are the estimates from step 1.

The asymptotic variance for θ̂2 is given by

v̂ar(θ̂2) =
1

N

(
C(θ̂2)′(H(2)(θ̂1))−1C(θ̂2)

)−1

where

C(θ̂2) =
1

N

N∑
i=1

∂Z ′iVi(θ)

∂θ

∣∣∣
θ̂2

5.5.3 Illustration with Simulated Data

Like in the Monte Carlo analysis for the dynamic model with multiplicative fixed effects in

Section 5.4.3, only a few exemplary configurations can be considered in this Monte Carlo

analysis. The simulated data is generated using a DGP similar to the one described in

Section 5.4.3 with further adaption from the DGP of Kukenova and Monteiro (2009). For

each time t the N observations are generated iteratively. A burn-in of 50 repetitions for

each t and 50 time periods applies.

yit is generated using:

yit = γyi,t−1 + λ

N∑
j=1

wijyt + g(xit) + ηi + 0.4εit + eit (106)

with g(xit) = exp(xitβ) for the non-linear version and g(xit) = xitβ for the linear one, results

are rounded to the nearest non-negative integer. β is set to 1.5 in all configurations. The

individual effects are drawn from η ∼ i.i.d. U(0, 1) and the errors from e ∼ i.i.d. U(0, 1)

and ε ∼ i.i.d. U(0, 0.1). Again, the spatial contiguity weight matrix W is generated using

the function xy2cont of the Spatial Statistics Toolbox for MATLAB 2.0 (Pace, 2003) on

randomly generated coordinates.
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RMSE

N T γ λ γ̂ λ̂ β̂

50 50 0.5 0.4 0.037 0.085 0.431
100 50 0.5 0.4 0.026 0.055 0.326
100 100 0.5 0.4 0.019 0.054 0.227
500 100 0.5 0.4 0.013 0.051 0.097

50 50 0.2 0.1 0.033 0.375 0.488
100 50 0.2 0.1 0.023 0.234 0.367
100 100 0.2 0.1 0.015 0.159 0.225
500 100 0.2 0.1 0.007 0.088 0.104

50 50 0.2 0.6 0.032 0.131 0.469
100 50 0.2 0.6 0.023 0.117 0.369
100 100 0.2 0.6 0.017 0.082 0.219
500 100 0.2 0.6 0.010 0.050 0.101

50 50 0.7 0.2 0.035 0.055 0.353
100 50 0.7 0.2 0.025 0.069 0.304
100 100 0.7 0.2 0.018 0.078 0.178
500 100 0.7 0.2 0.009 0.052 0.085

Bias Relative Bias

N T γ λ γ̂ λ̂ β̂ γ̂ λ̂ β̂

50 50 0.5 0.4 −0.011 0.060 0.040 −0.022 0.150 0.026
100 50 0.5 0.4 −0.010 0.047 −0.002 −0.021 0.118 −0.001
100 100 0.5 0.4 −0.010 0.048 0.020 −0.020 0.120 0.013
500 100 0.5 0.4 −0.011 0.036 0.016 −0.022 0.089 0.011

50 50 0.2 0.1 0.004 0.282 0.018 0.019 2.823 0.012
100 50 0.2 0.1 0.001 0.139 0.035 0.006 1.389 0.024
100 100 0.2 0.1 0.000 0.061 0.013 −0.001 0.614 0.009
500 100 0.2 0.1 −0.001 −0.003 −0.002 −0.003 −0.027 −0.002

50 50 0.2 0.6 −0.009 0.110 −0.021 −0.043 0.184 −0.014
100 50 0.2 0.6 −0.008 0.079 0.013 −0.038 0.131 0.009
100 100 0.2 0.6 −0.008 0.040 0.014 −0.039 0.066 0.009
500 100 0.2 0.6 −0.007 0.000 0.006 −0.035 0.000 0.004

50 50 0.7 0.2 0.001 0.042 0.008 0.002 0.208 0.005
100 50 0.7 0.2 0.000 0.044 0.004 0.001 0.218 0.003
100 100 0.7 0.2 0.001 0.042 0.019 0.001 0.208 0.013
500 100 0.7 0.2 −0.002 0.021 0.020 −0.003 0.104 0.013

Table 26: Monte Carlo results for the dynamic non-linear spatial panel model with additive fixed
effects and g(Xit.) = exp(Xit.β). The relative bias is calculated as bias divided by true parameter

value. Values reported as 0.000 are smaller than 0.0005.

The generation of yit is done iteratively, updating yit after each step i = 1, . . . , N in vec-

tor yt instantly. After 50 iterations over all units i the last vector is kept as yt and used

as a regressor for generating the outcomes for t + 1. For the time dimension a burn-in

of 50 iterations is discarded, too. As starting values for the iteration, the N × 1 vector

y1 = g(X1) + η + 0.4ε1 + e1 is used.
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RMSE

N T γ λ γ̂ λ̂ β̂

50 50 0.5 0.4 0.038 0.112 0.791
100 50 0.5 0.4 0.026 0.084 0.523
100 100 0.5 0.4 0.020 0.067 0.378
500 100 0.5 0.4 0.014 0.049 0.181

50 50 0.2 0.1 0.032 0.435 1.033
100 50 0.2 0.1 0.022 0.256 0.730
100 100 0.2 0.1 0.015 0.167 0.420
500 100 0.2 0.1 0.007 0.080 0.195

50 50 0.2 0.6 0.033 0.199 0.895
100 50 0.2 0.6 0.024 0.118 0.658
100 100 0.2 0.6 0.017 0.077 0.400
500 100 0.2 0.6 0.007 0.080 0.195

50 50 0.7 0.2 0.037 0.082 0.639
100 50 0.7 0.2 0.025 0.094 0.499
100 100 0.7 0.2 0.018 0.098 0.313
500 100 0.7 0.2 0.009 0.065 0.150

Bias Relative Bias

N T γ λ γ̂ λ̂ β̂ γ̂ λ̂ β̂

50 50 0.5 0.4 −0.011 0.101 0.059 −0.023 0.253 0.039
100 50 0.5 0.4 −0.009 0.073 0.159 −0.019 0.184 0.106
100 100 0.5 0.4 −0.010 0.051 0.130 −0.021 0.127 0.087
500 100 0.5 0.4 −0.011 0.019 0.091 −0.022 0.048 0.060

50 50 0.2 0.1 −0.001 0.251 0.055 −0.004 2.510 0.037
100 50 0.2 0.1 0.000 0.153 0.192 0.002 1.532 0.128
100 100 0.2 0.1 −0.001 0.068 0.098 −0.007 0.675 0.066
500 100 0.2 0.1 −0.001 0.011 0.004 −0.004 0.107 0.003

50 50 0.2 0.6 −0.012 0.148 0.131 −0.061 0.247 0.087
100 50 0.2 0.6 −0.010 0.075 0.159 −0.051 0.124 0.106
100 100 0.2 0.6 −0.008 0.031 0.093 −0.039 0.051 0.062
500 100 0.2 0.6 −0.001 0.011 0.004 −0.004 0.107 0.003

50 50 0.7 0.2 0.005 0.070 0.072 0.007 0.350 0.048
100 50 0.7 0.2 0.001 0.064 0.065 0.002 0.319 0.044
100 100 0.7 0.2 0.001 0.042 0.061 0.001 0.210 0.041
500 100 0.7 0.2 −0.003 0.015 0.026 −0.004 0.073 0.017

Table 27: Monte Carlo results for the dynamic linear spatial panel model with additive fixed effects
and g(Xit.) = Xit.β. The relative bias is calculated as bias divided by true parameter value. Values

reported as 0.000 are smaller than 0.0005.

The regressors are generated to be autocorrelated, correlated with the individual effects η

and endogenous through ε:

X.t = δX.t−1 + τη + εt (107)

with starting vector X.1 = τ
1−δη + ξ, ξ ∼ i.i.d. N(0, 0.5

1−δ2 ), τ = 0.1, and δ = 0.5.

Tables 26 and 27 display the Monte Carlo results for Model (94) without the serial lagged

spatial term
∑N

j=1wijyjt−1. In both variants, RMSE and bias decrease with increasing
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sample size N+T . β̂ shows again the highest RMSE which is partly influenced by the much

higher true value of 1.5 compared to γ and λ. The bias of the serial correlation parameter γ

is mostly negative, as expected, due to the Nickell bias (which is also reported by Kukenova

and Monteiro (2009)). Also expectedly, it diminishes with increasing sample size but in

some cases turns from positive to negative. In the model with the exponential function, the

largest average relative bias is obtained for the spatial correlation parameter λ, which is

more sensitive to relative small sample sizes compared to the other parameter estimators.

Additionally, a small true λ leads to stronger biased estimates, but in all cases the bias

decreases with increasing sample size. In contrast to the Monte Carlo results of the model

with multiplicative fixed effects in Section 5.4.3, here the bias of β̂ is of acceptable size. This

generally also holds for the completely linear version of the model, even though its bias of

β̂ is larger compared to the version with the exponential function. Nevertheless, it is still

much smaller than in the model with multiplicative fixed effects.

5.5.4 Empirical Application: Forecasts for Pittsburgh’s Crime Counts

The number of Part I crimes in the census tracts of Pittsburgh is again forecasted for each

month of 2013 using a one-step-ahead expanding window forecast. The lagged Part II crimes

are considered as an endogenous variable here and the instrument matrix for the dynamic

panel models with additive fixed effects is built accordingly. The estimation sample of the

Pittsburgh crime counts data (2008 to 2012) is estimated with Equation (94) in both vari-

ants. The results are reported in Tables 28 and 29. For comparison with the previous panel

models, both variants have also been estimated with one summer dummy for the months

May to September instead of monthly time dummies, even though the discussion below

shows that this is not a useful specification here. The respective results are reported in

Appendix C.3, Tables 78 - 81.

The Sargan test does not reject the null hypothesis of exogeneity of the instruments for any

of the specifications. With exception of Specification 4 of the exponential variant all specifi-

cations are stationary with regard to the conditions in Equations (80) - (83) (ωmin = −0.333

and ωmax = 1). Condition (80) does not hold for Specification 4 in Table 28. Its estimate

of the spatial correlation parameter is large which leads together with the slightly increased

estimate for the serial autocorrelation (compared to the other specifications) to an instable

model. The serial autocorrelation parameter is significant in all specifications. This confirms

the usefulness of a dynamic model for this data set. The exponential variant of the model

generally estimates a smaller serial autocorrelation than the linear one. In Specification 1,

which incorporates all regressors, the simultaneous spatial term is not significant in both

variants, but the lagged spatial term is significant. In the linear variant, the simultaneous

spatial term turns significant if the lagged spatial term is excluded (Specification 2). If it is

significant, its size is much larger than in the SLFP model estimations in Section 5.3. Alto-

gether, the results for the dynamic model specifications do not allow for a clear statement,

whether simultaneous spatial correlation is present in the data.

The lagged Part II crimes are surprisingly only significant if either the simultaneous spatial
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1 2 3 4 5

Estimates for January 2008 to December 2012

PartIt−1 0.044∗∗ 0.042∗∗ 0.040∗∗ 0.074∗∗∗ 0.079∗∗∗

(0.021) (0.020) (0.020) (0.018) (0.018)
WPartIt 0.108 0.231 0.955∗∗∗ 0.875∗∗∗

(0.191) (0.188) (0.108) (0.105)
WPartIt−1 0.089∗∗ 0.095∗∗∗ 0.001

(0.038) (0.026) (0.041)
log(PartIIt−1) 0.771∗∗∗ 0.719∗∗∗ 0.807∗∗∗ −0.282

(0.070) (0.084) (0.033) (0.918)
Feb −1.702∗∗∗ −1.284∗∗∗ −1.700∗∗∗ −0.176

(0.352) (0.338) (0.321) (0.431)
Mar 0.240 0.270 0.558 −0.052

(0.686) (0.697) (0.396) (0.689)
Apr −0.317 −0.051 −0.043 −0.085

(0.745) (0.772) (0.545) (0.859)
May 0.002 0.274 0.336 −0.073

(0.814) (0.834) (0.517) (0.919)
Jun −0.217 0.059 0.106 −0.205

(0.838) (0.877) (0.592) (0.962)
Jul 0.291 0.538 0.694 −0.088

(0.912) (0.931) (0.542) (0.992)
Aug 0.256 0.543 0.646 −0.150

(0.927) (0.960) (0.577) (1.033)
Sep −0.582 −0.127 −0.298 −0.255

(0.806) (0.833) (0.562) (0.947)
Oct −0.145 0.165 0.169 −0.218

(0.761) (0.789) (0.482) (0.881)
Nov −0.523 −0.207 −0.275 −0.255

(0.672) (0.690) (0.464) (0.785)
Dec −0.506 −0.270 −0.306 −0.314

(0.542) (0.550) (0.380) (0.618)

Sargan 0.035 0.071 0.036 0.053 0.022
[1.000] [1.000] [1.000] [1.000] [1.000]

Average Forecast Results for January to December 2013

RMSFE 4.941 4.745 5.126 7.750 4.794
MAFE 3.678 3.520 3.818 6.397 3.546

Table 28: Results from the dynamic non-linear spatial panel model with additive fixed effects for
the Pittsburgh crime data and g(Xit.) = exp(Xit.β). Standard errors in parentheses; p-value of the

Sargan test in brackets; W is a queen contiguity spatial weighting matrix; ∗∗ and ∗∗∗ denote 5%
and 1% statistical significance.

term is not included in the model or is not significant. Apparently, the triggering effect of

the Part II crimes can either be measured by including the lagged Part II crimes themselves

or by including the outcomes of the Part I crimes in the neighbor tracts, which might have

been exposed to the same change in Part II crimes. In models with additive fixed effects, it

is possible to leave out the Part II crimes and still estimate the model with individual fixed

effects. This is done in Specification 5 in Table 28 which can be counted to the exponential

or linear variants of the model. There, the simultaneous spatial correlation parameter is

significant and large, but the lagged spatial correlation parameter is insignificant. Lastly,

only the time dummy for February has a significant influence on the number of Part I
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1 2 3 4

Estimates for January 2008 to December 2012

PartIt−1 0.068∗∗∗ 0.067∗∗∗ 0.066∗∗∗ 0.071∗∗∗

(0.017) (0.017) (0.017) (0.020)
WPartIt 0.148 0.601∗∗ 0.919∗∗∗

(0.331) (0.245) (0.146)
WPartIt−1 0.099∗∗ 0.114∗∗∗

(0.050) (0.038)
log(PartIIt−1) 2.561∗∗ 0.916 3.022∗∗∗ 0.345

(1.085) (0.799) (0.325) (0.664)
Feb −1.567∗∗∗ −0.641 −1.688∗∗∗

(0.546) (0.391) (0.455)
Mar 0.200 0.078 0.434

(0.686) (0.679) (0.510)
Apr −0.069 0.004 0.160

(0.788) (0.799) (0.657)
May 0.167 0.092 0.469

(0.881) (0.875) (0.664)
Jun 0.077 −0.013 0.380

(0.930) (0.932) (0.708)
Jul 0.522 0.227 0.910

(1.031) (0.996) (0.700)
Aug 0.493 0.230 0.876

(1.059) (1.037) (0.717)
Sep −0.350 −0.155 −0.114

(0.849) (0.865) (0.723)
Oct −0.048 −0.056 0.226

(0.825) (0.828) (0.634)
Nov −0.366 −0.222 −0.175

(0.694) (0.707) (0.594)
Dec −0.493 −0.321 −0.357

(0.538) (0.544) (0.481)

Sargan 0.051 0.078 0.046 0.044
[1.000] [1.000] [1.000] [1.000]

Average Forecast Results for January to December 2013

RMSFE 4.786 4.661 4.881 5.589
MAFE 3.580 3.435 3.672 4.359

Table 29: Results from the dynamic linear spatial panel model with additive fixed effects for the
Pittsburgh crime data and g(Xit.) = Xit.β. Standard errors in parentheses; p-value of the Sargan
test in brackets; W is a queen contiguity spatial weighting matrix; ∗∗ and ∗∗∗ denote 5% and 1%

statistical significance.

crimes, all other time dummies are insignificant in all specifications. The estimation and

forecasting of the models with linear additive fixed effects have also been repeated using

only the dummy for the month February instead of 11 dummies. This improves the forecast

results slightly but otherwise does not lead to relevant changes. Therefore the results are

not reported here.

Tables 28 and 29 also give the average RMSFE and MAFE from the one-step ahead forecasts

for 2013. Single results for all months are given in Appendix C.3, Tables 82 and 83. The

results for the single months are in general similar to each other. The overall best forecasts

in terms of RMSE and MAFE are obtained from the linear Specification 2, closely followed
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by exponential Specification 2 and Specification 5, which does not incorporate the lagged

Part II crimes. The worse forecast results of specification 3 underline the importance of

the simultaneous spatial correlation term even though its significance could not be shown

steadily. Even more, the inclusion of time dummies is crucial. Compared to the forecast

results of the spatial linear feedback panel model, the forecasts obtained from the dynamic

models employed in this section are clearly worse, even though the additional serial corre-

lation in these models is highly significant. Apparently, this additional, relevant variable is

outweighed in terms of forecast ability by the less precise GMM estimation.

5.6 Summary

In this chapter, three different models for spatial panel count data and their forecasting per-

formance are investigated. The first approach is an extension of the SLFM model introduced

for cross-sectional data in Chapter 4. Individual fixed effects are added into the exponential

function of the model in the usual fashion for count data. Estimation of this spatial linear

feedback panel model is based on the quasi-maximum likelihood approach discussed in the

previous chapter.

The two other alternatives in this chapter are dynamic panel models. The first one is a

spatial version of the linear feedback model for counts of Blundell et al. (2002). The model

contains multiplicative fixed effects and an additive serial autocorrelation term. The spatial

terms are also added linearly and the resulting model is estimated using quasi-differenced

GMM. The small Monte Carlo analysis of the model indicates problems in estimating the

parameters and the empirical application leads to unrealistic results. Therefore, it must be

assumed that the spatial version of the model cannot be estimated with quasi-differenced

GMM. Blundell et al. (2002) propose a pre-sample mean estimator instead for the non-spatial

LFM. But its applicability is limited since a long time series of the dependent variable pre-

vious to the actual estimation sample must be available in order to use this estimator. The

third model is developed from a different starting point. It is based on a spatial panel model

for continuous data which includes additive fixed effects. In order to apply it to count data,

a version with and without an exponential function for the explanatory variables is consid-

ered. Estimation is carried out using system GMM as proposed by Kukenova and Monteiro

(2009), which leads to good results regarding bias and RMSE.

All three models are applied to a data set of crime counts for Pittsburgh which shows

serial and spatial correlation. As mentioned before, estimation of the dynamic model with

multiplicative fixed effects does not lead to satisfactory results. Estimation of the other

two models works well, though. The Broken Windows theory that the more severe Part I

crimes are triggered by Part II crimes can be confirmed for this data. The best forecasts

for Pittsburgh’s crime counts are obtained from the spatial linear feedback panel model

estimated with pseudo maximum likelihood. But nevertheless, the accuracy of the forecasts

would have to be improved before a use in practice could be considered. If dynamic structures

in the data shall be considered, the panel model with additive fixed effects introduced in

this chapter is a good choice, even though it was not originally intended for count data.
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6 Conclusion

This thesis introduces new spatial count data models. The models are observation-driven,

referring to the concept known from the time series of counts literature. Further, the models

fulfill two additional conditions: First, they measure a global spatial effect in the dependent

variable. Second, they allow the inclusion of additional explanatory variables into the model.

The first condition is motivated by the idea to estimate a parameter of spatial correlation

which is comparable to the parameter of serial autocorrelation in time series. The second

one allows to study the effect of covariates on the dependent variable, which is a major

concern in econometric analysis. Therefore, spatial econometric models should be able to

do so while dealing with the spatial process as well.

The literature on spatially correlated counts is limited. A spatial correlation in the error

term is modelled more often, especially in connection with Bayesian hierarchical models and

using a conditional autoregressive structure for the error term. But spatial autoregression is

rarely used and none of the modelling approaches introduced so far received broad reception.

Most probably, the main reason for the lack of literature on this topic lies in the special

structure of count data models compared to the linear models for continuous data. Count

data models typically do not establish a direct connection between the regressors and the de-

pendent variable. Instead, the regressors are included in an equation modelling the intensity

parameter, which equals the conditional expectation of the dependent variable. Therefore,

a direct transfer of the spatial autoregressive structure from these models is not possible.

The starting point for this thesis has been the investigation of the spatial autoregressive

(SAR) Poisson model for counts, introduced by Lambert et al. (2010). It uses the spatially

lagged intensity parameter to introduce a spatial association in the intensity equation. For

this model, a limited information maximum likelihood estimation had been proposed by

Lambert et al. (2010). But in a Monte Carlo study reported in this thesis it is shown that

the model can be estimated using full information maximum likelihood which leads to better

results than the limited information maximum likelihood approach. In a second step the

spatial structure of the original Poisson model is transferred to other count data models, i.e.

negative binomial, zero-inflated Poisson and hurdle Poisson.

In an empirical illustration, these SAR count models are applied to start-up firm births

data from the manufacturing industry in the U.S. The cross-sectional data set contains the

number of firm births between 2004 to 2007 for each county as well as several characteristics

of the counties and their population. The estimations show a significant spatial correlation

in the conditional expectations of the firm births. To evaluate the fit of the different count

data models employed, the use of scoring rules, known from the non-spatial literature, is pro-

posed. They indicate a better fit of the negative binomial and zero-inflated Poisson model

compared to the Poisson model. The data has at the same time many small values (smaller

than 4) and some very high values (up to 6938) which is untypical for count data and not

well captured by standard count data models. To improve the fit, a next step would be to

transfer the spatial structure to more advanced count data models, which are more flexible.

105



6 CONCLUSION

Examples could be a mixture of Poisson, a hurdle model whose hurdle is larger than 0, for

example 4, or inflated models, which also inflate for other small outcome values aside from 0.

The SAR models for counts have two important drawbacks: First, the interpretation of

their spatial correlation parameter is not intuitive since it measures the spatial dependence

in an unobserved process. Second, this measured spatial dependence is only driven by the

explanatory variables, since the intensity equation does not contain any random error term.

To overcome these issues, a spatial linear feedback model (SLFM) is proposed that includes

the spatially lagged dependent variable as a regressor. Because the incorporation of such

a term into the exponential function could lead to explosive behaviour if the spatial cor-

relation is positive, it is added linearly into the intensity equation. A reduced form and

full maximum likelihood cannot be obtained for this model because an operational multi-

variate count distribution for a large number of related units does not exist. Therefore, a

pseudo maximum likelihood approach is proposed, whose likelihood function consists of the

conditional density functions of each outcome conditioned on the respective neighboring

outcomes. The appropriateness of this pseudo maximum likelihood estimation is shown in

a Monte Carlo study. As an empirical example, the start-up firm births data set is revisited.

Nonrandomized PIT residuals, which are already used in the times series analysis of counts,

are introduced to the spatial econometrics literature as an additional diagnostic tool. They

are in clear favour of the negative binomial spatial linear feedback model for the application

at hand.

In the last part of this thesis three spatial panel models for forecasting counts are proposed.

Two of them prove to be reliable: the spatial linear feedback panel model (SLFPM), which

is an extension of the cross-sectional spatial linear feedback model with multiplicative fixed

effects, and a dynamic linear model with additive fixed effects. The former one can be esti-

mated using the aforementioned pseudo maximum likelihood, the latter is estimated using

system GMM. Asymptotic properties of the GMM estimation are illustrated with a small

Monte Carlo analysis. The models are applied to forecasting crime counts for the census

tracts of Pittsburgh. For this, the SLFPM outperforms the dynamic model.

In this thesis spatial models for count data are developed, which incorporate spatially lagged

dependent variables to estimate a global spatial effect. Estimation can be carried out using

pseudo maximum likelihood in the cross-sectional case and pseudo maximum likelihood or

GMM in the panel case. These straightforward and only moderately computation intensive

estimation procedures, especially compared to previous propositions in the field, foster the

applicability of the models by the empirically working economist. Also, due to the inclusion

of lagged observations in the SLFM, rather than lagged intensities, the interpretation of

the measured spatial correlation is closer to the one known from linear spatial models for

continuous data, making these count data models more accessible. Further research could

give attention to extensions of the existing models, e.g. by introducing SEM structures or

random spatial weight matrices into the proposed models, or could consider the use of the

SLFM structure in more complex count data models, for example Poisson mixture models.
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Also, the cross-sectional and panel SLFM should be applied to further economic problems to

confirm their general suitability. Nevertheless, a big obstacle for the propagation of spatial

count data models is the lack of available count data on a small geographic scale. This is

especially true for Europe and leads to few and often slightly abstruse empirical examples

in the literature. How fast spatial methods will be established in count data econometrics

will – aside from the availability of manageable models, to which this thesis contributes –

mainly depend on the availability of suitable economic data.
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A Further Results for the SAR Models

A.1 Monte Carlo Parameter Estimates

The first section of this appendix contains the complete results of the parameter estimation

from the Monte Carlo study for the P-SAR, NB-SAR and non-spatial Poisson (see also Sec-

tion 3.4.2). Each table compiles the RMSE and bias for all parameters of one combination

of DGP, model and estimation method. For an overview of all employed combinations see

Table 1 on Page 37.

λ̂ β̂0

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

RMSE

0.0 0.3083 0.1507 0.0553 0.0429 0.1031 0.0546 0.0205 0.0174

0.2 0.3056 0.1188 0.0518 0.0331 0.1263 0.0527 0.0201 0.0135

0.4 0.2049 0.0736 0.0438 0.0252 0.0999 0.0383 0.0217 0.0125

0.6 0.0976 0.2973 0.0191 0.0153 0.0713 0.0580 0.0138 0.0108

0.8 0.0285 0.0133 0.0058 0.0041 0.0384 0.0192 0.0078 0.0054

Bias

0.0 −0.0035 −0.0077 0.0034 −0.0065 0.0093 0.0008 −0.0001 0.0017

0.2 −0.0509 −0.0256 0.0013 0.0030 0.0278 0.0102 0.0000 −0.0016

0.4 −0.0330 0.0087 −0.0005 0.0005 0.0108 −0.0036 0.0005 0.0002

0.6 −0.0116 −0.1492 −0.0025 0.0006 0.0108 −0.0204 0.0008 0.0001

0.8 0.0037 0.0025 0.0000 −0.0006 −0.0037 −0.0025 −0.0002 0.0007

Relative bias

0.0 - - - - 0.0926 0.0078 −0.0011 0.0172

0.2 −0.2545 −0.1278 0.0065 0.0150 0.2776 0.1021 0.0002 −0.0165

0.4 −0.0825 0.0218 −0.0012 0.0012 0.1076 −0.0358 0.0051 0.0017

0.6 −0.0194 −0.2487 −0.0042 0.0011 0.1079 −0.2041 0.0079 0.0007

0.8 0.0046 0.0032 0.0000 −0.0007 −0.0373 −0.0245 −0.0018 0.0067

β̂1 β̂2

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

RMSE

0.0 0.0458 0.0219 0.0095 0.0069 0.0140 0.0054 0.0029 0.0020

0.2 0.0513 0.0229 0.0082 0.0067 0.0127 0.0062 0.0024 0.0019

0.4 0.0377 0.0200 0.0076 0.0055 0.0145 0.0062 0.0027 0.0017

0.6 0.0303 0.0509 0.0065 0.0048 0.0112 0.0492 0.0023 0.0015

0.8 0.0167 0.0081 0.0040 0.0026 0.0084 0.0037 0.0014 0.0011

Bias

0.0 −0.0116 0.0008 −0.0009 0.0008 −0.0009 −0.0006 −0.0002 −0.0003

0.2 −0.0038 0.0003 −0.0002 0.0007 −0.0021 −0.0001 −0.0001 −0.0001

0.4 0.0014 −0.0014 −0.0003 −0.0003 0.0025 0.0001 0.0000 −0.0002

0.6 −0.0012 −0.0239 0.0009 −0.0005 −0.0004 −0.0235 0.0000 −0.0002

0.8 −0.0007 −0.0005 0.0000 0.0001 −0.0014 −0.0009 0.0001 0.0001

Relative bias

0.0 −0.1163 0.0078 −0.0090 0.0075 −0.0091 −0.0062 −0.0023 −0.0029

0.2 −0.0376 0.0033 −0.0018 0.0072 −0.0214 −0.0014 −0.0013 −0.0014

0.4 0.0137 −0.0143 −0.0032 −0.0027 0.0250 0.0014 0.0005 −0.0015

0.6 −0.0123 −0.2389 0.0090 −0.0046 −0.0037 −0.2350 0.0000 −0.0019

0.8 −0.0074 −0.0051 0.0000 0.0006 −0.0136 −0.0087 0.0006 0.0008

Table 30: Monte Carlo results of parameter estimates for FIML estimations of P-SAR data and
P-SAR model. Values reported as 0.0000 are smaller than 0.00005.
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λ̂ β̂0

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

RMSE

0.0 0.4311 0.1890 0.0734 0.0565 0.0901 0.0450 0.0180 0.0152

0.2 0.3246 0.1528 0.0877 0.0726 0.0892 0.0486 0.0224 0.0170

0.4 0.2469 0.1293 0.0888 0.0772 0.0876 0.0501 0.0435 0.0402

0.6 0.1152 0.0647 0.0366 0.0352 0.1211 0.1000 0.0919 0.0927

0.8 0.0900 0.0767 0.0778 0.0775 0.2237 0.2089 0.2121 0.2123

Bias

0.0 0.0972 0.0115 0.0092 −0.0061 −0.0082 −0.0033 −0.0008 0.0009

0.2 0.0669 0.0344 0.0566 0.0592 0.0182 0.0195 0.0141 0.0124

0.4 0.0696 0.0857 0.0703 0.0714 0.0311 0.0342 0.0389 0.0387

0.6 0.0142 0.0214 0.0271 0.0282 0.1023 0.0947 0.0907 0.0919

0.8 −0.0770 −0.0733 −0.0772 −0.0771 0.2141 0.2069 0.2117 0.2121

Relative bias

0.0 - - - - −0.0820 −0.0333 −0.0077 0.0088

0.2 0.3344 0.1721 0.2828 0.2961 0.1824 0.1948 0.1407 0.1242

0.4 0.1740 0.2142 0.1756 0.1785 0.3114 0.3423 0.3894 0.3868

0.6 0.0236 0.0357 0.0452 0.0470 1.0232 0.9467 0.9067 0.9191

0.8 −0.0962 −0.0917 −0.0965 −0.0964 2.1407 2.0693 2.1167 2.1210

β̂1 β̂2

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

RMSE

0.0 0.0467 0.0216 0.0095 0.0069 0.0140 0.0054 0.0029 0.0020

0.2 0.0515 0.0231 0.0083 0.0066 0.0131 0.0062 0.0025 0.0019

0.4 0.0411 0.0205 0.0086 0.0060 0.0149 0.0061 0.0028 0.0018

0.6 0.0361 0.0166 0.0080 0.0057 0.0111 0.0055 0.0025 0.0016

0.8 0.0260 0.0131 0.0060 0.0036 0.0089 0.0042 0.0017 0.0012

Bias

0.0 −0.0133 0.0006 −0.0009 0.0007 −0.0009 −0.0006 −0.0002 −0.0003

0.2 −0.0032 0.0004 −0.0003 0.0007 −0.0019 −0.0002 −0.0001 −0.0001

0.4 0.0029 −0.0019 −0.0005 −0.0004 0.0021 0.0000 0.0001 −0.0002

0.6 −0.0035 −0.0005 0.0007 −0.0009 −0.0009 0.0003 −0.0001 −0.0002

0.8 −0.0026 0.0009 0.0008 0.0002 −0.0008 −0.0010 0.0000 0.0000

Relative bias

0.0 −0.1329 0.0057 −0.0091 0.0074 −0.0086 −0.0056 −0.0023 −0.0029

0.2 −0.0320 0.0038 −0.0034 0.0066 −0.0192 −0.0022 −0.0014 −0.0014

0.4 0.0288 −0.0187 −0.0049 −0.0040 0.0209 0.0001 0.0006 −0.0016

0.6 −0.0348 −0.0053 0.0068 −0.0095 −0.0088 0.0032 −0.0009 −0.0021

0.8 −0.0257 0.0092 0.0076 0.0017 −0.0076 −0.0099 0.0002 0.0001

Table 31: Monte Carlo results of parameter estimates for LIML estimations of P-SAR data and
P-SAR model. Values reported as 0.0000 are smaller than 0.00005.
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λ̂ β̂0

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

RMSE

0.0 0.3080 0.1507 0.0553 0.0429 0.1030 0.0546 0.0205 0.0174

0.2 0.3057 0.1188 0.0518 0.0331 0.1263 0.0527 0.0201 0.0135

0.4 0.2050 0.0736 0.0437 0.0252 0.0999 0.0383 0.0217 0.0125

0.6 0.0975 0.0483 0.0191 0.0153 0.0714 0.0334 0.0138 0.0108

0.8 0.0285 0.0133 0.0058 0.0041 0.0384 0.0192 0.0078 0.0054

Bias

0.0 −0.0033 −0.0077 0.0034 −0.0065 0.0092 0.0008 −0.0001 0.0017

0.2 −0.0511 −0.0256 0.0013 0.0030 0.0278 0.0102 0.0000 −0.0016

0.4 −0.0328 0.0087 −0.0005 0.0005 0.0107 −0.0036 0.0005 0.0002

0.6 −0.0119 −0.0040 −0.0025 0.0006 0.0109 0.0031 0.0008 0.0001

0.8 0.0037 0.0026 0.0000 −0.0006 −0.0038 −0.0025 −0.0002 0.0007

Relative bias

0.0 - - - - 0.0925 0.0078 −0.0010 0.0171

0.2 −0.2553 −0.1281 0.0066 0.0150 0.2777 0.1023 0.0001 −0.0164

0.4 −0.0821 0.0217 −0.0012 0.0012 0.1069 −0.0358 0.0051 0.0017

0.6 −0.0198 −0.0067 −0.0041 0.0011 0.1085 0.0307 0.0079 0.0006

0.8 0.0046 0.0032 0.0000 −0.0007 −0.0376 −0.0247 −0.0018 0.0068

β̂1 β̂2

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

RMSE

0.0 0.0458 0.0219 0.0095 0.0069 0.0140 0.0054 0.0029 0.0020

0.2 0.0513 0.0229 0.0082 0.0067 0.0127 0.0062 0.0024 0.0019

0.4 0.0377 0.0200 0.0076 0.0055 0.0144 0.0062 0.0027 0.0017

0.6 0.0302 0.0152 0.0065 0.0048 0.0112 0.0052 0.0023 0.0015

0.8 0.0167 0.0081 0.0040 0.0026 0.0084 0.0037 0.0014 0.0011

Bias

0.0 −0.0117 0.0008 −0.0009 0.0008 −0.0009 −0.0006 −0.0002 −0.0003

0.2 −0.0037 0.0003 −0.0002 0.0007 −0.0021 −0.0001 −0.0001 −0.0001

0.4 0.0014 −0.0014 −0.0003 −0.0003 0.0025 0.0001 0.0000 −0.0002

0.6 −0.0011 −0.0006 0.0009 −0.0005 −0.0003 0.0005 0.0000 −0.0002

0.8 −0.0007 −0.0005 0.0000 0.0001 −0.0014 −0.0009 0.0001 0.0001

Relative bias

0.0 −0.1168 0.0079 −0.0090 0.0075 −0.0090 −0.0062 −0.0023 −0.0029

0.2 −0.0372 0.0033 −0.0018 0.0072 −0.0212 −0.0014 −0.0013 −0.0014

0.4 0.0138 −0.0143 −0.0032 −0.0027 0.0248 0.0014 0.0005 −0.0015

0.6 −0.0114 −0.0061 0.0090 −0.0046 −0.0034 0.0049 0.0000 −0.0019

0.8 −0.0075 −0.0051 0.0000 0.0006 −0.0136 −0.0087 0.0006 0.0008

α̂

λ\n 1000 5000 25000 50000

RMSE

0.0 0.0206 0.0115 0.0041 0.0026

0.2 0.0143 0.0091 0.0039 0.0029

0.4 0.0168 0.0082 0.0038 0.0025

0.6 0.0122 0.0052 0.0027 0.0020

0.8 0.0050 0.0031 0.0013 0.0009

Bias

0.0 0.0104 0.0064 0.0025 0.0015

0.2 0.0069 0.0052 0.0021 0.0015

0.4 0.0069 0.0043 0.0021 0.0014

0.6 0.0064 0.0028 0.0014 0.0012

0.8 0.0023 0.0018 0.0008 0.0005

Table 32: Monte Carlo results of parameter estimates for FIML estimations of P-SAR data and
NB-SAR model. Values reported as 0.0000 are smaller than 0.00005.
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λ̂ β̂0

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

RMSE

0.0 0.4306 0.1889 0.0734 0.0564 0.0899 0.0450 0.0180 0.0152

0.2 0.3245 0.1527 0.0877 0.0726 0.0892 0.0486 0.0223 0.0170

0.4 0.2470 0.1292 0.0888 0.0772 0.0875 0.0501 0.0435 0.0402

0.6 0.1154 0.0647 0.0366 0.0352 0.1210 0.1000 0.0919 0.0927

0.8 0.0898 0.0767 0.0778 0.0775 0.2235 0.2089 0.2121 0.2123

Bias

0.0 0.0975 0.0113 0.0092 −0.0061 −0.0083 −0.0033 −0.0008 0.0009

0.2 0.0669 0.0344 0.0567 0.0592 0.0182 0.0195 0.0140 0.0124

0.4 0.0700 0.0856 0.0702 0.0714 0.0310 0.0343 0.0389 0.0387

0.6 0.0144 0.0214 0.0271 0.0282 0.1022 0.0947 0.0907 0.0919

0.8 −0.0769 −0.0733 −0.0772 −0.0771 0.2139 0.2069 0.2117 0.2121

Relative bias

0.0 - - - - −0.0827 −0.0329 −0.0077 0.0088

0.2 0.3345 0.1720 0.2834 0.2961 0.1820 0.1950 0.1401 0.1242

0.4 0.1749 0.2139 0.1756 0.1785 0.3102 0.3426 0.3894 0.3870

0.6 0.0240 0.0357 0.0452 0.0470 1.0217 0.9466 0.9067 0.9189

0.8 −0.0961 −0.0916 −0.0965 −0.0964 2.1394 2.0693 2.1167 2.1210

β̂1 β̂2

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

RMSE

0.0 0.0467 0.0216 0.0095 0.0069 0.0140 0.0054 0.0029 0.0020

0.2 0.0515 0.0231 0.0083 0.0066 0.0131 0.0062 0.0025 0.0019

0.4 0.0411 0.0205 0.0086 0.0060 0.0149 0.0061 0.0028 0.0018

0.6 0.0360 0.0166 0.0080 0.0057 0.0111 0.0055 0.0025 0.0016

0.8 0.0260 0.0131 0.0060 0.0036 0.0089 0.0042 0.0017 0.0012

Bias

0.0 −0.0133 0.0006 −0.0009 0.0007 −0.0008 −0.0006 −0.0002 −0.0003

0.2 −0.0032 0.0004 −0.0003 0.0007 −0.0019 −0.0002 −0.0001 −0.0001

0.4 0.0029 −0.0019 −0.0005 −0.0004 0.0021 0.0000 0.0001 −0.0002

0.6 −0.0035 −0.0005 0.0007 −0.0009 −0.0009 0.0003 −0.0001 −0.0002

0.8 −0.0026 0.0009 0.0008 0.0002 −0.0008 −0.0010 0.0000 0.0000

Relative bias

0.0 −0.1332 0.0056 −0.0091 0.0074 −0.0084 −0.0057 −0.0023 −0.0029

0.2 −0.0317 0.0037 −0.0032 0.0066 −0.0191 −0.0022 −0.0014 −0.0014

0.4 0.0289 −0.0187 −0.0050 −0.0040 0.0207 0.0001 0.0006 −0.0016

0.6 −0.0347 −0.0053 0.0068 −0.0095 −0.0088 0.0033 −0.0009 −0.0021

0.8 −0.0256 0.0091 0.0076 0.0017 −0.0076 −0.0099 0.0002 0.0001

α̂

λ\n 1000 5000 25000 50000

RMSE

0.0 0.0206 0.0114 0.0041 0.0026

0.2 0.0142 0.0091 0.0039 0.0029

0.4 0.0166 0.0081 0.0038 0.0025

0.6 0.0121 0.0052 0.0027 0.0020

0.8 0.0057 0.0038 0.0020 0.0017

Bias

0.0 0.0104 0.0064 0.0025 0.0015

0.2 0.0068 0.0052 0.0021 0.0015

0.4 0.0069 0.0043 0.0021 0.0014

0.6 0.0064 0.0028 0.0015 0.0012

0.8 0.0028 0.0025 0.0016 0.0013

Table 33: Monte Carlo results of parameter estimates for LIML estimations of P-SAR data and
NB-SAR model. Values reported as 0.0000 are smaller than 0.00005.
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β̂0 β̂1

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

RMSE

0.0 0.0550 0.0271 0.0128 0.0093 0.0460 0.0217 0.0095 0.0069

0.2 0.1062 0.0795 0.0750 0.0733 0.0512 0.0232 0.0082 0.0068

0.4 0.1939 0.1924 0.1956 0.1961 0.0405 0.0207 0.0086 0.0060

0.6 0.4603 0.4372 0.4335 0.4378 0.0344 0.0192 0.0127 0.0100

0.8 1.1535 1.1718 1.1620 1.1686 0.0355 0.0232 0.0231 0.0217

Bias

0.0 0.0063 −0.0021 0.0009 −0.0003 −0.0106 0.0010 −0.0009 0.0008

0.2 0.0838 0.0745 0.0741 0.0729 −0.0022 0.0012 0.0004 0.0016

0.4 0.1866 0.1909 0.1952 0.1960 0.0062 0.0034 0.0026 0.0019

0.6 0.4581 0.4367 0.4334 0.4378 0.0047 0.0105 0.0103 0.0084

0.8 1.1532 1.1717 1.1620 1.1686 0.0243 0.0198 0.0224 0.0214

Relative bias

0.0 0.0628 −0.0212 0.0089 −0.0032 −0.1058 0.0098 −0.0087 0.0078

0.2 0.8378 0.7452 0.7413 0.7286 −0.0224 0.0116 0.0043 0.0155

0.4 1.8657 1.9088 1.9523 1.9596 0.0619 0.0336 0.0262 0.0188

0.6 4.5815 4.3667 4.3342 4.3777 0.0468 0.1046 0.1027 0.0838

0.8 11.5315 11.7173 11.6201 11.6857 0.2427 0.1976 0.2244 0.2143

β̂2

λ\n 1000 5000 25000 50000

RMSE

0.0 0.0135 0.0053 0.0028 0.0020

0.2 0.0119 0.0061 0.0025 0.0020

0.4 0.0152 0.0073 0.0041 0.0036

0.6 0.0132 0.0104 0.0089 0.0086

0.8 0.0194 0.0211 0.0219 0.0212

Bias

0.0 0.0007 −0.0002 −0.0002 −0.0003

0.2 0.0002 0.0005 0.0006 0.0006

0.4 0.0061 0.0043 0.0033 0.0031

0.6 0.0081 0.0092 0.0086 0.0085

0.8 0.0176 0.0208 0.0219 0.0211

Relative bias

0.0 0.0068 −0.0023 −0.0018 −0.0026

0.2 0.0019 0.0048 0.0063 0.0059

0.4 0.0613 0.0425 0.0326 0.0315

0.6 0.0812 0.0925 0.0863 0.0851

0.8 0.1761 0.2083 0.2187 0.2114

Table 34: Monte Carlo results of parameter estimates for QML estimations of P-SAR data and
non-spatial Poisson model.
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λ̂ β̂0

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

RMSE

0.0 0.4379 0.5026 0.0649 0.0462 0.1597 0.0548 0.0240 0.0154

0.2 0.3086 0.1176 0.0511 0.0417 0.1366 0.0465 0.0207 0.0166

0.4 0.2259 0.0960 0.0422 0.0263 0.1100 0.0481 0.0216 0.0139

0.6 0.1058 0.0518 0.0238 0.0164 0.0774 0.0370 0.0166 0.0117

0.8 0.0409 0.0159 0.0078 0.0051 0.0538 0.0224 0.0092 0.0070

Bias

0.0 −0.1021 0.3038 0.0063 0.0053 0.0285 −0.0016 0.0014 −0.0016

0.2 −0.0229 −0.0252 0.0009 −0.0071 0.0170 0.0068 0.0002 0.0037

0.4 −0.0262 −0.0172 −0.0002 −0.0014 0.0064 0.0118 −0.0001 0.0006

0.6 −0.0094 −0.0015 −0.0007 0.0006 0.0110 0.0026 −0.0001 −0.0004

0.8 −0.0022 −0.0016 0.0003 −0.0006 0.0029 0.0042 −0.0006 0.0009

Relative bias

0.0 - - - - 0.2847 −0.0158 0.0141 −0.0162

0.2 −0.1145 −0.1260 0.0047 −0.0356 0.1700 0.0681 0.0020 0.0365

0.4 −0.0655 −0.0429 −0.0006 −0.0034 0.0638 0.1183 −0.0015 0.0056

0.6 −0.0157 −0.0026 −0.0012 0.0009 0.1101 0.0257 −0.0006 −0.0044

0.8 −0.0027 −0.0020 0.0004 −0.0007 0.0288 0.0416 −0.0057 0.0091

β̂1 β̂2

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

RMSE

0.0 0.0498 0.0208 0.0097 0.0073 0.0175 0.0082 0.0031 0.0020

0.2 0.0493 0.0206 0.0085 0.0070 0.0144 0.0066 0.0032 0.0020

0.4 0.0410 0.0181 0.0085 0.0060 0.0123 0.0061 0.0029 0.0019

0.6 0.0399 0.0157 0.0076 0.0059 0.0117 0.0064 0.0027 0.0018

0.8 0.0227 0.0104 0.0047 0.0027 0.0089 0.0043 0.0020 0.0013

Bias

0.0 0.0017 −0.0014 −0.0022 0.0008 −0.0020 0.0004 −0.0006 −0.0002

0.2 −0.0054 0.0024 0.0004 −0.0001 −0.0024 0.0009 −0.0002 −0.0002

0.4 0.0050 −0.0033 0.0012 0.0000 −0.0002 0.0001 −0.0004 0.0000

0.6 −0.0020 −0.0007 0.0008 −0.0001 −0.0001 −0.0003 −0.0002 0.0001

0.8 −0.0009 −0.0020 0.0000 −0.0001 0.0006 0.0003 0.0001 0.0001

Relative bias

0.0 0.0175 −0.0139 −0.0224 0.0077 −0.0198 0.0037 −0.0059 −0.0018

0.2 −0.0536 0.0238 0.0044 −0.0006 −0.0243 0.0088 −0.0018 −0.0024

0.4 0.0498 −0.0327 0.0116 −0.0001 −0.0016 0.0006 −0.0042 −0.0003

0.6 −0.0203 −0.0074 0.0081 −0.0006 −0.0013 −0.0030 −0.0021 0.0006

0.8 −0.0089 −0.0205 −0.0003 −0.0011 0.0061 0.0028 0.0011 0.0011

Table 35: Monte Carlo results of parameter estimates for FIML estimations of NB-SAR data
(α = 1/8) and P-SAR model. Values reported as 0.0000 are smaller than 0.00005.
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λ̂ β̂0

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

RMSE

0.0 0.4848 0.1936 0.0894 0.0648 0.1029 0.0400 0.0200 0.0129

0.2 0.3938 0.1604 0.0946 0.0779 0.0958 0.0416 0.0230 0.0236

0.4 0.2935 0.1498 0.1076 0.0972 0.0871 0.0642 0.0457 0.0445

0.6 0.1513 0.0951 0.0656 0.0619 0.1292 0.1075 0.0974 0.0964

0.8 0.0890 0.0661 0.0568 0.0592 0.2432 0.2398 0.2310 0.2352

Bias

0.0 0.0307 0.0219 0.0137 0.0096 −0.0113 −0.0032 0.0010 −0.0017

0.2 0.1712 0.0473 0.0683 0.0559 −0.0002 0.0177 0.0159 0.0193

0.4 0.1256 0.0813 0.0932 0.0911 0.0266 0.0498 0.0418 0.0427

0.6 0.0480 0.0544 0.0561 0.0578 0.1072 0.1001 0.0959 0.0957

0.8 −0.0572 −0.0598 −0.0553 −0.0585 0.2292 0.2370 0.2304 0.2349

Relative bias

0.0 - - - - −0.1128 −0.0324 0.0099 −0.0166

0.2 0.8560 0.2365 0.3413 0.2794 −0.0023 0.1768 0.1586 0.1931

0.4 0.3141 0.2032 0.2329 0.2279 0.2664 0.4979 0.4175 0.4272

0.6 0.0801 0.0906 0.0935 0.0963 1.0717 1.0006 0.9594 0.9575

0.8 −0.0715 −0.0748 −0.0691 −0.0731 2.2918 2.3695 2.3041 2.3492

β̂1 β̂2

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

RMSE

0.0 0.0495 0.0213 0.0096 0.0073 0.0164 0.0073 0.0031 0.0020

0.2 0.0475 0.0209 0.0090 0.0073 0.0141 0.0066 0.0032 0.0020

0.4 0.0459 0.0194 0.0093 0.0067 0.0135 0.0064 0.0030 0.0019

0.6 0.0488 0.0168 0.0085 0.0071 0.0123 0.0069 0.0028 0.0019

0.8 0.0327 0.0144 0.0067 0.0041 0.0108 0.0045 0.0022 0.0016

Bias

0.0 0.0037 0.0004 −0.0022 0.0008 −0.0014 0.0001 −0.0006 −0.0002

0.2 −0.0049 0.0023 0.0007 0.0000 −0.0024 0.0009 −0.0002 −0.0002

0.4 0.0025 −0.0046 0.0012 −0.0003 −0.0005 0.0000 −0.0004 0.0000

0.6 −0.0047 −0.0020 0.0012 0.0001 −0.0007 −0.0004 −0.0002 0.0001

0.8 0.0026 −0.0002 0.0004 −0.0001 0.0005 −0.0001 −0.0001 0.0001

Relative bias

0.0 0.0374 0.0039 −0.0223 0.0080 −0.0142 0.0008 −0.0058 −0.0018

0.2 −0.0495 0.0233 0.0065 0.0005 −0.0238 0.0091 −0.0021 −0.0025

0.4 0.0253 −0.0458 0.0120 −0.0031 −0.0055 −0.0003 −0.0041 −0.0002

0.6 −0.0470 −0.0203 0.0123 0.0013 −0.0068 −0.0042 −0.0020 0.0009

0.8 0.0261 −0.0017 0.0037 −0.0006 0.0055 −0.0010 −0.0006 0.0015

Table 36: Monte Carlo results of parameter estimates for LIML estimations of NB-SAR data
(α = 1/8) and P-SAR model. Values reported as 0.0000 are smaller than 0.00005.
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λ̂ β̂0

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

RMSE

0.0 0.4352 0.1457 0.0649 0.0462 0.1586 0.0501 0.0240 0.0155

0.2 0.3090 0.1172 0.0510 0.0417 0.1368 0.0462 0.0207 0.0165

0.4 0.2257 0.0964 0.0422 0.0261 0.1096 0.0482 0.0216 0.0138

0.6 0.1057 0.0520 0.0238 0.0163 0.0772 0.0371 0.0167 0.0116

0.8 0.0411 0.0156 0.0076 0.0050 0.0533 0.0220 0.0091 0.0069

Bias

0.0 −0.0994 −0.0021 0.0063 0.0053 0.0276 0.0016 0.0014 −0.0016

0.2 −0.0220 −0.0244 0.0010 −0.0072 0.0166 0.0065 0.0002 0.0037

0.4 −0.0272 −0.0176 −0.0003 −0.0014 0.0070 0.0121 −0.0002 0.0006

0.6 −0.0088 −0.0016 −0.0007 0.0005 0.0106 0.0028 −0.0001 −0.0004

0.8 −0.0025 −0.0013 0.0003 −0.0005 0.0028 0.0036 −0.0005 0.0008

Relative bias

0.0 - - - - 0.2759 0.0157 0.0142 −0.0164

0.2 −0.1099 −0.1220 0.0051 −0.0360 0.1662 0.0652 0.0020 0.0371

0.4 −0.0680 −0.0440 −0.0006 −0.0035 0.0700 0.1212 −0.0016 0.0057

0.6 −0.0146 −0.0027 −0.0012 0.0008 0.1057 0.0279 −0.0007 −0.0036

0.8 −0.0031 −0.0016 0.0004 −0.0006 0.0285 0.0363 −0.0054 0.0082

β̂1 β̂2

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

RMSE

0.0 0.0497 0.0216 0.0097 0.0073 0.0174 0.0072 0.0031 0.0020

0.2 0.0490 0.0205 0.0085 0.0070 0.0144 0.0066 0.0032 0.0020

0.4 0.0411 0.0180 0.0085 0.0059 0.0123 0.0060 0.0029 0.0019

0.6 0.0397 0.0155 0.0076 0.0059 0.0117 0.0064 0.0027 0.0018

0.8 0.0224 0.0103 0.0047 0.0027 0.0087 0.0043 0.0020 0.0013

Bias

0.0 0.0018 −0.0001 −0.0023 0.0008 −0.0020 0.0000 −0.0006 −0.0002

0.2 −0.0053 0.0024 0.0004 −0.0001 −0.0024 0.0008 −0.0002 −0.0002

0.4 0.0050 −0.0034 0.0012 0.0000 −0.0003 0.0001 −0.0004 0.0000

0.6 −0.0021 −0.0008 0.0008 −0.0001 −0.0002 −0.0004 −0.0002 0.0001

0.8 −0.0007 −0.0021 −0.0001 −0.0001 0.0009 0.0003 0.0001 0.0001

Relative bias

0.0 0.0175 −0.0011 −0.0226 0.0080 −0.0195 0.0005 −0.0058 −0.0018

0.2 −0.0535 0.0243 0.0040 −0.0010 −0.0238 0.0083 −0.0017 −0.0023

0.4 0.0502 −0.0340 0.0117 0.0002 −0.0028 0.0012 −0.0041 −0.0004

0.6 −0.0206 −0.0083 0.0082 −0.0006 −0.0016 −0.0037 −0.0020 0.0005

0.8 −0.0074 −0.0206 −0.0010 −0.0014 0.0086 0.0029 0.0011 0.0009

α̂ α̂

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

RMSE Relative bias

0.0 0.0430 0.0175 0.0081 0.0062 −0.1137 −0.0005 −0.0107 −0.0017

0.2 0.0351 0.0154 0.0084 0.0052 −0.0178 0.0166 −0.0097 −0.0017

0.4 0.0315 0.0153 0.0073 0.0048 −0.0792 −0.0323 0.0033 −0.0052

0.6 0.0261 0.0113 0.0054 0.0038 −0.0373 −0.0224 0.0009 0.0082

0.8 0.0139 0.0067 0.0033 0.0022 −0.0073 −0.0023 0.0050 0.0021

Bias

0.0 −0.0142 −0.0001 −0.0013 −0.0002

0.2 −0.0022 0.0021 −0.0012 −0.0002

0.4 −0.0099 −0.0040 0.0004 −0.0006

0.6 −0.0047 −0.0028 0.0001 0.0010

0.8 −0.0009 −0.0003 0.0006 0.0003

Table 37: Monte Carlo results of parameter estimates for FIML estimations of NB-SAR data
(α = 1/8) and NB-SAR model. Values reported as 0.0000 are smaller than 0.00005.
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λ̂ β̂0

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

RMSE

0.0 0.4839 0.1939 0.0893 0.0649 0.1024 0.0403 0.0199 0.0129

0.2 0.3947 0.1605 0.0947 0.0777 0.0956 0.0413 0.0231 0.0236

0.4 0.2916 0.1500 0.1076 0.0970 0.0872 0.0644 0.0457 0.0445

0.6 0.1502 0.0947 0.0656 0.0617 0.1282 0.1079 0.0974 0.0965

0.8 0.0881 0.0651 0.0568 0.0591 0.2409 0.2391 0.2313 0.2351

Bias

0.0 0.0330 0.0213 0.0137 0.0096 −0.0117 −0.0030 0.0010 −0.0017

0.2 0.1736 0.0483 0.0684 0.0557 −0.0008 0.0175 0.0158 0.0194

0.4 0.1231 0.0809 0.0932 0.0910 0.0275 0.0500 0.0417 0.0427

0.6 0.0491 0.0536 0.0561 0.0576 0.1066 0.1006 0.0959 0.0959

0.8 −0.0562 −0.0595 −0.0554 −0.0585 0.2278 0.2366 0.2308 0.2349

Relative bias

0.0 - - - - −0.1175 −0.0296 0.0100 −0.0169

0.2 0.8682 0.2417 0.3422 0.2787 −0.0084 0.1745 0.1584 0.1936

0.4 0.3078 0.2022 0.2329 0.2276 0.2754 0.5002 0.4174 0.4274

0.6 0.0818 0.0894 0.0936 0.0961 1.0656 1.0059 0.9588 0.9586

0.8 −0.0703 −0.0743 −0.0693 −0.0731 2.2779 2.3657 2.3082 2.3489

β̂1 β̂2

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

RMSE

0.0 0.0495 0.0214 0.0096 0.0073 0.0163 0.0073 0.0031 0.0020

0.2 0.0472 0.0208 0.0089 0.0073 0.0141 0.0066 0.0032 0.0020

0.4 0.0461 0.0193 0.0092 0.0067 0.0135 0.0063 0.0030 0.0019

0.6 0.0486 0.0166 0.0085 0.0071 0.0122 0.0069 0.0028 0.0019

0.8 0.0326 0.0142 0.0067 0.0041 0.0106 0.0046 0.0022 0.0015

Bias

0.0 0.0038 0.0002 −0.0023 0.0008 −0.0014 0.0001 −0.0006 −0.0002

0.2 −0.0049 0.0024 0.0006 0.0000 −0.0023 0.0009 −0.0002 −0.0002

0.4 0.0026 −0.0047 0.0012 −0.0003 −0.0007 0.0000 −0.0004 0.0000

0.6 −0.0046 −0.0020 0.0013 0.0001 −0.0007 −0.0005 −0.0002 0.0001

0.8 0.0025 −0.0003 0.0002 −0.0001 0.0008 −0.0001 −0.0001 0.0001

Relative bias

0.0 0.0378 0.0025 −0.0226 0.0083 −0.0141 0.0006 −0.0057 −0.0018

0.2 −0.0491 0.0239 0.0062 0.0001 −0.0232 0.0086 −0.0020 −0.0024

0.4 0.0256 −0.0474 0.0120 −0.0028 −0.0067 0.0003 −0.0040 −0.0003

0.6 −0.0463 −0.0204 0.0126 0.0011 −0.0069 −0.0049 −0.0020 0.0008

0.8 0.0251 −0.0026 0.0018 −0.0006 0.0079 −0.0012 −0.0008 0.0012

α̂ α̂

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

RMSE Relative bias

0.0 0.0432 0.0175 0.0081 0.0062 −0.1124 −0.0005 −0.0107 −0.0017

0.2 0.0351 0.0153 0.0084 0.0052 −0.0200 0.0163 −0.0098 −0.0017

0.4 0.0317 0.0154 0.0073 0.0048 −0.0812 −0.0329 0.0032 −0.0052

0.6 0.0262 0.0112 0.0054 0.0038 −0.0396 −0.0224 0.0012 0.0086

0.8 0.0137 0.0068 0.0037 0.0026 0.0033 0.0063 0.0144 0.0115

Bias

0.0 −0.0140 −0.0001 −0.0013 −0.0002

0.2 −0.0025 0.0020 −0.0012 −0.0002

0.4 −0.0102 −0.0041 0.0004 −0.0007

0.6 −0.0049 −0.0028 0.0002 0.0011

0.8 0.0004 0.0008 0.0018 0.0014

Table 38: Monte Carlo results of parameter estimates for LIML estimations of NB-SAR data
(α = 1/8) and NB-SAR model. Values reported as 0.0000 are smaller than 0.00005.
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β̂0 β̂1

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

RMSE

0.0 0.0625 0.0274 0.0133 0.0084 0.0499 0.0214 0.0096 0.0073

0.2 0.1026 0.0761 0.0749 0.0751 0.0487 0.0208 0.0088 0.0072

0.4 0.1943 0.1966 0.1952 0.1956 0.0447 0.0186 0.0099 0.0068

0.6 0.4662 0.4402 0.4338 0.4370 0.0452 0.0189 0.0133 0.0114

0.8 1.1472 1.1723 1.1626 1.1694 0.0418 0.0229 0.0229 0.0213

Bias

0.0 −0.0072 −0.0001 0.0032 −0.0001 0.0053 0.0005 −0.0022 0.0008

0.2 0.0818 0.0716 0.0742 0.0746 −0.0042 0.0030 0.0012 0.0008

0.4 0.1865 0.1952 0.1948 0.1955 0.0078 0.0006 0.0043 0.0020

0.6 0.4633 0.4396 0.4337 0.4369 0.0024 0.0094 0.0106 0.0092

0.8 1.1464 1.1722 1.1626 1.1694 0.0276 0.0181 0.0222 0.0210

Relative bias

0.0 −0.0723 −0.0009 0.0315 −0.0008 0.0529 0.0054 −0.0218 0.0082

0.2 0.8180 0.7159 0.7416 0.7457 −0.0422 0.0304 0.0120 0.0077

0.4 1.8647 1.9524 1.9483 1.9546 0.0781 0.0056 0.0429 0.0200

0.6 4.6334 4.3959 4.3367 4.3689 0.0243 0.0938 0.1059 0.0918

0.8 11.4642 11.7220 11.6261 11.6936 0.2764 0.1808 0.2215 0.2099

β̂2

λ\n 1000 5000 25000 50000

RMSE

0.0 0.0160 0.0072 0.0031 0.0020

0.2 0.0140 0.0067 0.0033 0.0019

0.4 0.0127 0.0069 0.0039 0.0037

0.6 0.0140 0.0104 0.0089 0.0089

0.8 0.0210 0.0221 0.0220 0.0213

Bias

0.0 0.0005 0.0004 −0.0005 −0.0001

0.2 0.0002 0.0015 0.0006 0.0004

0.4 0.0038 0.0038 0.0028 0.0033

0.6 0.0086 0.0086 0.0085 0.0088

0.8 0.0190 0.0217 0.0219 0.0212

Relative bias

0.0 0.0054 0.0042 −0.0052 −0.0014

0.2 0.0025 0.0152 0.0057 0.0042

0.4 0.0385 0.0376 0.0277 0.0325

0.6 0.0864 0.0857 0.0853 0.0878

0.8 0.1905 0.2173 0.2193 0.2124

Table 39: Monte Carlo results of parameter estimates for QML estimations of NB-SAR data
(α = 1/8) and non-spatial Poisson model.
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λ̂ β̂0

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

RMSE

0.0 0.4796 0.1689 0.0723 0.0543 0.1649 0.0631 0.0254 0.0188

0.2 0.3956 0.1635 0.0593 0.0468 0.1626 0.0745 0.0253 0.0185

0.4 0.3197 0.1100 0.0537 0.0328 0.1546 0.0576 0.0280 0.0173

0.6 0.1471 0.0741 0.0322 0.0197 0.0971 0.0540 0.0235 0.0139

0.8 0.0560 0.0232 0.0114 0.0083 0.0696 0.0310 0.0141 0.0110

Bias

0.0 −0.0254 0.0114 0.0032 0.0016 0.0147 0.0004 −0.0004 0.0009

0.2 −0.0785 −0.0484 −0.0112 0.0005 0.0393 0.0205 0.0057 −0.0005

0.4 −0.1054 −0.0028 0.0009 −0.0008 0.0397 0.0039 −0.0012 0.0005

0.6 −0.0205 −0.0086 0.0041 0.0027 0.0025 0.0055 −0.0016 −0.0016

0.8 −0.0098 −0.0009 −0.0019 −0.0016 0.0165 0.0026 0.0013 0.0025

Relative bias

0.0 - - - - 0.1470 0.0041 −0.0042 0.0088

0.2 −0.3926 −0.2420 −0.0560 0.0026 0.3929 0.2051 0.0567 −0.0055

0.4 −0.2634 −0.0069 0.0023 −0.0019 0.3975 0.0394 −0.0122 0.0051

0.6 −0.0342 −0.0143 0.0068 0.0045 0.0251 0.0551 −0.0158 −0.0156

0.8 −0.0123 −0.0011 −0.0023 −0.0020 0.1649 0.0257 0.0127 0.0245

β̂1 β̂2

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

RMSE

0.0 0.0643 0.0250 0.0102 0.0074 0.0205 0.0076 0.0038 0.0024

0.2 0.0625 0.0282 0.0116 0.0091 0.0188 0.0078 0.0036 0.0028

0.4 0.0547 0.0219 0.0106 0.0077 0.0175 0.0068 0.0033 0.0026

0.6 0.0450 0.0200 0.0083 0.0066 0.0188 0.0074 0.0036 0.0022

0.8 0.0388 0.0158 0.0070 0.0047 0.0148 0.0067 0.0028 0.0020

Bias

0.0 −0.0049 −0.0016 −0.0006 −0.0011 −0.0045 −0.0010 −0.0006 −0.0003

0.2 −0.0041 −0.0013 −0.0002 0.0009 −0.0069 −0.0009 −0.0002 −0.0002

0.4 0.0048 −0.0018 0.0003 0.0004 0.0013 −0.0009 0.0000 −0.0001

0.6 0.0084 0.0008 −0.0016 −0.0007 0.0019 −0.0003 −0.0002 0.0001

0.8 −0.0026 −0.0011 0.0009 −0.0001 0.0003 −0.0001 0.0006 0.0000

Relative bias

0.0 −0.0491 −0.0160 −0.0058 −0.0106 −0.0449 −0.0099 −0.0061 −0.0027

0.2 −0.0410 −0.0126 −0.0018 0.0088 −0.0686 −0.0095 −0.0021 −0.0024

0.4 0.0483 −0.0184 0.0027 0.0041 0.0132 −0.0091 0.0000 −0.0008

0.6 0.0842 0.0077 −0.0155 −0.0069 0.0193 −0.0026 −0.0022 0.0009

0.8 −0.0255 −0.0107 0.0092 −0.0012 0.0030 −0.0012 0.0057 −0.0002

Table 40: Monte Carlo results of parameter estimates for FIML estimations of NB-SAR data
(α = 1/2) and P-SAR model. Values reported as 0.0000 are smaller than 0.00005.
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λ̂ β̂0

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

RMSE

0.0 0.5971 0.2440 0.1133 0.0829 0.0944 0.0464 0.0191 0.0139

0.2 0.5621 0.2257 0.1233 0.1227 0.1093 0.0640 0.0334 0.0272

0.4 0.3901 0.2273 0.1745 0.1577 0.1210 0.0739 0.0591 0.0578

0.6 0.2587 0.1664 0.1483 0.1493 0.1474 0.1261 0.1167 0.1110

0.8 0.1158 0.0504 0.0243 0.0211 0.2946 0.2900 0.2752 0.2761

Bias

0.0 0.2185 0.0422 0.0165 0.0059 −0.0197 −0.0014 −0.0016 0.0006

0.2 0.1751 0.0511 0.0867 0.1002 0.0180 0.0339 0.0269 0.0227

0.4 0.0908 0.1621 0.1563 0.1494 0.0582 0.0556 0.0543 0.0559

0.6 0.1170 0.1277 0.1413 0.1462 0.1141 0.1161 0.1148 0.1102

0.8 0.0182 0.0043 0.0120 0.0137 0.2684 0.2851 0.2743 0.2756

Relative bias

0.0 - - - - −0.1968 −0.0141 −0.0156 0.0064

0.2 0.8757 0.2553 0.4335 0.5011 0.1805 0.3387 0.2686 0.2265

0.4 0.2269 0.4051 0.3908 0.3736 0.5819 0.5561 0.5427 0.5592

0.6 0.1950 0.2128 0.2355 0.2437 1.1407 1.1609 1.1484 1.1019

0.8 0.0227 0.0054 0.0150 0.0171 2.6843 2.8514 2.7425 2.7562

β̂1 β̂2

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

RMSE

0.0 0.0618 0.0252 0.0103 0.0074 0.0187 0.0077 0.0037 0.0024

0.2 0.0639 0.0293 0.0119 0.0091 0.0189 0.0078 0.0036 0.0028

0.4 0.0544 0.0228 0.0123 0.0082 0.0179 0.0068 0.0033 0.0027

0.6 0.0536 0.0229 0.0094 0.0079 0.0193 0.0080 0.0038 0.0022

0.8 0.0534 0.0246 0.0095 0.0076 0.0176 0.0078 0.0033 0.0023

Bias

0.0 −0.0035 −0.0015 −0.0005 −0.0011 −0.0034 −0.0009 −0.0006 −0.0003

0.2 −0.0027 −0.0013 −0.0003 0.0009 −0.0072 −0.0010 −0.0002 −0.0003

0.4 0.0063 −0.0024 −0.0001 0.0008 0.0013 −0.0011 0.0000 −0.0002

0.6 0.0054 0.0011 −0.0027 0.0000 0.0011 −0.0001 0.0001 0.0000

0.8 0.0010 −0.0003 0.0009 −0.0014 −0.0016 0.0007 0.0007 0.0001

Relative bias

0.0 −0.0347 −0.0150 −0.0048 −0.0108 −0.0338 −0.0092 −0.0061 −0.0027

0.2 −0.0268 −0.0134 −0.0031 0.0095 −0.0716 −0.0096 −0.0023 −0.0026

0.4 0.0629 −0.0241 −0.0008 0.0083 0.0135 −0.0109 0.0001 −0.0016

0.6 0.0543 0.0111 −0.0269 −0.0002 0.0106 −0.0010 0.0012 −0.0002

0.8 0.0101 −0.0031 0.0093 −0.0144 −0.0157 0.0067 0.0068 0.0010

Table 41: Monte Carlo results of parameter estimates for LIML estimations of NB-SAR data
(α = 1/2) and P-SAR model. Values reported as 0.0000 are smaller than 0.00005.
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λ̂ β̂0

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

RMSE

0.0 0.4837 0.1696 0.0708 0.0542 0.1654 0.0636 0.0251 0.0189

0.2 0.4015 0.1641 0.0596 0.0471 0.1651 0.0756 0.0255 0.0184

0.4 0.3241 0.1082 0.0534 0.0330 0.1573 0.0562 0.0278 0.0174

0.6 0.1507 0.0739 0.0324 0.0198 0.1024 0.0536 0.0237 0.0139

0.8 0.0579 0.0230 0.0111 0.0080 0.0704 0.0308 0.0138 0.0106

Bias

0.0 −0.0235 0.0127 0.0041 0.0008 0.0138 0.0001 −0.0007 0.0010

0.2 −0.0854 −0.0481 −0.0116 0.0003 0.0427 0.0202 0.0057 −0.0004

0.4 −0.1063 −0.0011 0.0012 −0.0008 0.0410 0.0026 −0.0014 0.0005

0.6 −0.0209 −0.0087 0.0043 0.0026 0.0038 0.0054 −0.0015 −0.0017

0.8 −0.0094 0.0005 −0.0016 −0.0016 0.0138 0.0011 0.0012 0.0023

Relative bias

0.0 - - - - 0.1381 0.0014 −0.0075 0.0095

0.2 −0.4268 −0.2404 −0.0581 0.0016 0.4265 0.2022 0.0567 −0.0035

0.4 −0.2657 −0.0027 0.0031 −0.0020 0.4104 0.0264 −0.0135 0.0045

0.6 −0.0349 −0.0146 0.0071 0.0043 0.0381 0.0544 −0.0153 −0.0168

0.8 −0.0117 0.0006 −0.0021 −0.0019 0.1383 0.0107 0.0119 0.0227

β̂1 β̂2

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

RMSE

0.0 0.0628 0.0251 0.0103 0.0073 0.0206 0.0076 0.0037 0.0025

0.2 0.0637 0.0282 0.0117 0.0088 0.0185 0.0079 0.0035 0.0027

0.4 0.0553 0.0214 0.0107 0.0077 0.0174 0.0067 0.0033 0.0026

0.6 0.0448 0.0201 0.0083 0.0066 0.0182 0.0073 0.0035 0.0022

0.8 0.0376 0.0152 0.0068 0.0046 0.0145 0.0065 0.0027 0.0019

Bias

0.0 −0.0043 −0.0016 −0.0005 −0.0010 −0.0049 −0.0011 −0.0006 −0.0002

0.2 −0.0054 −0.0011 0.0000 0.0007 −0.0066 −0.0009 −0.0002 −0.0002

0.4 0.0046 −0.0014 0.0003 0.0005 0.0008 −0.0008 −0.0001 −0.0001

0.6 0.0076 0.0009 −0.0017 −0.0006 0.0018 −0.0003 −0.0003 0.0001

0.8 −0.0006 −0.0016 0.0007 0.0000 0.0003 −0.0002 0.0005 0.0000

Relative bias

0.0 −0.0428 −0.0156 −0.0053 −0.0098 −0.0486 −0.0113 −0.0060 −0.0021

0.2 −0.0536 −0.0112 0.0000 0.0075 −0.0660 −0.0090 −0.0023 −0.0023

0.4 0.0462 −0.0145 0.0033 0.0048 0.0083 −0.0085 −0.0007 −0.0006

0.6 0.0761 0.0094 −0.0169 −0.0055 0.0183 −0.0025 −0.0026 0.0014

0.8 −0.0063 −0.0156 0.0074 −0.0003 0.0029 −0.0023 0.0052 0.0004

α̂ α̂

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

RMSE Relative bias

0.0 0.0607 0.0281 0.0123 0.0084 −0.0138 0.0062 0.0040 −0.0004

0.2 0.0581 0.0267 0.0110 0.0083 −0.0405 −0.0086 −0.0032 0.0013

0.4 0.0610 0.0221 0.0125 0.0083 0.0069 −0.0047 0.0049 −0.0011

0.6 0.0485 0.0212 0.0089 0.0069 −0.0013 −0.0128 −0.0021 −0.0008

0.8 0.0341 0.0140 0.0065 0.0050 −0.0077 0.0013 −0.0006 0.0006

Bias

0.0 −0.0069 0.0031 0.0020 −0.0002

0.2 −0.0203 −0.0043 −0.0016 0.0007

0.4 0.0035 −0.0024 0.0024 −0.0006

0.6 −0.0006 −0.0064 −0.0010 −0.0004

0.8 −0.0039 0.0006 −0.0003 0.0003

Table 42: Monte Carlo results of parameter estimates for FIML estimations of NB-SAR data
(α = 1/2) and NB-SAR model. Values reported as 0.0000 are smaller than 0.00005.
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λ̂ β̂0

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

RMSE

0.0 0.6003 0.2452 0.1111 0.0828 0.0943 0.0470 0.0189 0.0140

0.2 0.5678 0.2238 0.1227 0.1227 0.1111 0.0645 0.0333 0.0272

0.4 0.3897 0.2288 0.1746 0.1577 0.1220 0.0723 0.0590 0.0578

0.6 0.2616 0.1664 0.1490 0.1496 0.1501 0.1260 0.1168 0.1106

0.8 0.1130 0.0472 0.0232 0.0208 0.2878 0.2889 0.2755 0.2753

Bias

0.0 0.2205 0.0441 0.0180 0.0049 −0.0205 −0.0015 −0.0018 0.0006

0.2 0.1671 0.0510 0.0861 0.1000 0.0201 0.0337 0.0268 0.0228

0.4 0.0915 0.1658 0.1566 0.1494 0.0587 0.0542 0.0542 0.0558

0.6 0.1179 0.1275 0.1418 0.1466 0.1144 0.1161 0.1149 0.1098

0.8 0.0204 0.0057 0.0120 0.0142 0.2642 0.2847 0.2746 0.2749

Relative bias

0.0 - - - - −0.2046 −0.0148 −0.0180 0.0061

0.2 0.8357 0.2548 0.4306 0.5001 0.2005 0.3373 0.2680 0.2281

0.4 0.2287 0.4145 0.3915 0.3736 0.5873 0.5419 0.5421 0.5582

0.6 0.1966 0.2125 0.2363 0.2443 1.1437 1.1605 1.1486 1.0983

0.8 0.0255 0.0072 0.0151 0.0177 2.6418 2.8470 2.7464 2.7490

β̂1 β̂2

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

RMSE

0.0 0.0609 0.0254 0.0104 0.0073 0.0186 0.0077 0.0037 0.0025

0.2 0.0648 0.0293 0.0120 0.0089 0.0186 0.0079 0.0035 0.0027

0.4 0.0547 0.0225 0.0124 0.0082 0.0179 0.0066 0.0033 0.0027

0.6 0.0522 0.0231 0.0094 0.0078 0.0187 0.0080 0.0038 0.0022

0.8 0.0522 0.0238 0.0095 0.0075 0.0176 0.0075 0.0032 0.0022

Bias

0.0 −0.0028 −0.0015 −0.0004 −0.0010 −0.0037 −0.0011 −0.0006 −0.0002

0.2 −0.0038 −0.0012 −0.0001 0.0008 −0.0070 −0.0009 −0.0003 −0.0003

0.4 0.0062 −0.0020 0.0000 0.0009 0.0009 −0.0010 −0.0001 −0.0001

0.6 0.0050 0.0012 −0.0029 0.0001 0.0009 −0.0001 0.0001 0.0000

0.8 0.0028 −0.0013 0.0006 −0.0013 −0.0018 0.0006 0.0006 0.0001

Relative bias

0.0 −0.0275 −0.0147 −0.0042 −0.0101 −0.0370 −0.0106 −0.0061 −0.0021

0.2 −0.0378 −0.0122 −0.0012 0.0081 −0.0696 −0.0092 −0.0026 −0.0025

0.4 0.0623 −0.0204 −0.0001 0.0090 0.0089 −0.0103 −0.0006 −0.0014

0.6 0.0496 0.0124 −0.0288 0.0013 0.0088 −0.0010 0.0007 0.0003

0.8 0.0279 −0.0135 0.0062 −0.0134 −0.0179 0.0059 0.0058 0.0014

α̂ α̂

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

RMSE Relative bias

0.0 0.0606 0.0281 0.0123 0.0084 −0.0135 0.0062 0.0040 −0.0004

0.2 0.0584 0.0267 0.0110 0.0083 −0.0414 −0.0087 −0.0033 0.0013

0.4 0.0609 0.0221 0.0125 0.0083 0.0063 −0.0049 0.0048 −0.0012

0.6 0.0487 0.0213 0.0089 0.0069 −0.0018 −0.0127 −0.0020 −0.0007

0.8 0.0338 0.0142 0.0066 0.0052 −0.0057 0.0038 0.0018 0.0030

Bias

0.0 −0.0067 0.0031 0.0020 −0.0002

0.2 −0.0207 −0.0043 −0.0016 0.0006

0.4 0.0031 −0.0025 0.0024 −0.0006

0.6 −0.0009 −0.0064 −0.0010 −0.0003

0.8 −0.0028 0.0019 0.0009 0.0015

Table 43: Monte Carlo results of parameter estimates for LIML estimations of NB-SAR data
(α = 1/2) and NB-SAR model. Values reported as 0.0000 are smaller than 0.00005.
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β̂0 β̂1

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

RMSE

0.0 0.0711 0.0340 0.0130 0.0097 0.0629 0.0251 0.0102 0.0074

0.2 0.1089 0.0844 0.0768 0.0739 0.0645 0.0291 0.0119 0.0092

0.4 0.1919 0.1955 0.1945 0.1959 0.0560 0.0229 0.0123 0.0086

0.6 0.4446 0.4359 0.4362 0.4370 0.0512 0.0251 0.0114 0.0117

0.8 1.1548 1.1726 1.1615 1.1697 0.0582 0.0289 0.0246 0.0214

Bias

0.0 0.0024 0.0029 0.0003 0.0013 −0.0018 −0.0011 −0.0005 −0.0010

0.2 0.0807 0.0763 0.0754 0.0730 −0.0021 −0.0004 0.0004 0.0018

0.4 0.1782 0.1932 0.1939 0.1957 0.0102 0.0029 0.0032 0.0029

0.6 0.4398 0.4351 0.4361 0.4369 0.0133 0.0118 0.0072 0.0089

0.8 1.1531 1.1723 1.1615 1.1697 0.0249 0.0184 0.0229 0.0202

Relative bias

0.0 0.0235 0.0288 0.0033 0.0131 −0.0183 −0.0110 −0.0046 −0.0102

0.2 0.8070 0.7627 0.7544 0.7304 −0.0214 −0.0041 0.0036 0.0176

0.4 1.7822 1.9323 1.9389 1.9569 0.1020 0.0286 0.0325 0.0293

0.6 4.3984 4.3508 4.3608 4.3691 0.1327 0.1179 0.0716 0.0892

0.8 11.5310 11.7229 11.6148 11.6967 0.2489 0.1844 0.2294 0.2023

β̂2

λ\n 1000 5000 25000 50000

RMSE

0.0 0.0179 0.0075 0.0037 0.0024

0.2 0.0176 0.0077 0.0036 0.0028

0.4 0.0174 0.0075 0.0046 0.0040

0.6 0.0203 0.0108 0.0094 0.0091

0.8 0.0232 0.0228 0.0225 0.0211

Bias

0.0 −0.0008 −0.0005 −0.0005 −0.0002

0.2 −0.0040 −0.0002 0.0005 0.0005

0.4 0.0052 0.0032 0.0033 0.0032

0.6 0.0107 0.0085 0.0089 0.0089

0.8 0.0174 0.0217 0.0224 0.0210

Relative bias

0.0 −0.0084 −0.0048 −0.0053 −0.0022

0.2 −0.0399 −0.0023 0.0047 0.0048

0.4 0.0521 0.0316 0.0327 0.0318

0.6 0.1069 0.0854 0.0887 0.0885

0.8 0.1745 0.2175 0.2237 0.2102

Table 44: Monte Carlo results of parameter estimates for QML estimations of NB-SAR data
(α = 1/2) and non-spatial Poisson model.
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A.2 Monte Carlo Marginal Effects Estimates

Here, the complete results of the marginal effects estimations from the Monte Carlo study for

the P-SAR, NB-SAR and non-spatial Poisson models are reported (see also Section 3.4.3).

Each table compiles the RMSE and bias for all parameters of one combination of DGP,

model and estimation method. For an overview of all employed combinations see Table 1

on Page 37 in the main text.

Total Marginal Effects

RMSE X1 X2

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

0 0.0870 0.0388 0.0152 0.0120 0.0502 0.0211 0.0086 0.0065

0.2 0.1174 0.0512 0.0182 0.0143 0.0692 0.0262 0.0124 0.0085

0.4 0.1290 0.0638 0.0273 0.0166 0.0841 0.0336 0.0179 0.0114

0.6 0.1986 0.2802 0.0385 0.0301 0.1079 0.2724 0.0220 0.0173

0.8 0.4816 0.2448 0.1008 0.0669 0.2430 0.1053 0.0497 0.0343

Bias

0 −0.0039 0.0032 −0.0004 0.0005 0.0110 0.0009 0.0005 −0.0010

0.2 0.0049 −0.0011 0.0007 0.0023 0.0073 −0.0025 0.0009 0.0008

0.4 0.0098 0.0033 0.0001 −0.0003 0.0140 0.0078 0.0011 0.0002

0.6 −0.0023 −0.1334 0.0021 −0.0012 0.0041 −0.1307 −0.0027 0.0003

0.8 0.0605 0.0270 0.0001 −0.0049 0.0359 0.0144 0.0017 −0.0044

Relative bias

0 −0.0282 0.0233 −0.0027 0.0034 0.0801 0.0062 0.0040 −0.0075

0.2 0.0261 −0.0057 0.0035 0.0125 0.0393 −0.0136 0.0046 0.0042

0.4 0.0347 0.0119 0.0005 −0.0009 0.0497 0.0279 0.0040 0.0007

0.6 −0.0041 −0.2436 0.0038 −0.0023 0.0073 −0.2386 −0.0050 0.0005

0.8 0.0264 0.0115 0.0000 −0.0021 0.0157 0.0062 0.0007 −0.0019

Direct Marginal Effects

RMSE X1 X2

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

0 0.0635 0.0299 0.0132 0.0095 0.0186 0.0076 0.0041 0.0028

0.2 0.0779 0.0346 0.0120 0.0101 0.0180 0.0092 0.0036 0.0030

0.4 0.0657 0.0346 0.0129 0.0093 0.0248 0.0104 0.0042 0.0030

0.6 0.0732 0.1211 0.0153 0.0113 0.0240 0.1172 0.0052 0.0031

0.8 0.0929 0.0469 0.0224 0.0147 0.0405 0.0166 0.0060 0.0050

Bias

0 −0.0143 0.0014 −0.0012 0.0011 0.0005 −0.0005 −0.0003 −0.0003

0.2 −0.0031 0.0009 −0.0001 0.0012 −0.0002 0.0001 0.0000 −0.0001

0.4 0.0033 −0.0020 −0.0005 −0.0005 0.0052 0.0007 0.0002 −0.0002

0.6 −0.0029 −0.0570 0.0018 −0.0011 −0.0008 −0.0560 −0.0003 −0.0004

0.8 −0.0024 −0.0016 −0.0003 0.0000 −0.0063 −0.0039 0.0001 0.0001

Relative bias

0 −0.1039 0.0100 −0.0087 0.0080 0.0035 −0.0037 −0.0020 −0.0025

0.2 −0.0204 0.0058 −0.0010 0.0078 −0.0012 0.0006 −0.0003 −0.0008

0.4 0.0189 −0.0115 −0.0027 −0.0026 0.0300 0.0042 0.0010 −0.0013

0.6 −0.0120 −0.2391 0.0078 −0.0046 −0.0034 −0.2350 −0.0011 −0.0018

0.8 −0.0043 −0.0028 −0.0005 0.0000 −0.0112 −0.0068 0.0002 0.0002

Table 45: Monte Carlo results of marginal effects for FIML estimations of P-SAR data and P-SAR
model. Values reported as 0.0000 are smaller than 0.00005.
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Total Marginal Effects

RMSE X1 X2

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

0 0.3050 0.0486 0.0176 0.0139 0.3170 0.0330 0.0122 0.0090

0.2 17.3133 0.0800 0.0374 0.0330 23.2387 0.0592 0.0349 0.0293

0.4 2.2432 0.1642 0.1055 0.0920 2.6324 0.1519 0.1027 0.0912

0.6 0.5801 0.3416 0.2713 0.2573 0.9400 0.3193 0.2591 0.2591

0.8 0.9867 0.4086 0.1768 0.1268 0.6276 0.2664 0.1144 0.0848

Bias

0 0.0663 0.0094 0.0011 0.0007 0.0907 0.0073 0.0020 −0.0008

0.2 1.7920 0.0293 0.0253 0.0269 2.3968 0.0275 0.0258 0.0253

0.4 0.3393 0.1119 0.0895 0.0865 0.1569 0.1195 0.0914 0.0875

0.6 0.2996 0.2600 0.2555 0.2460 0.4226 0.2676 0.2496 0.2518

0.8 0.1341 0.1275 0.0598 0.0404 0.1465 0.0826 0.0427 0.0362

Relative bias

0 0.4818 0.0683 0.0078 0.0054 0.6596 0.0527 0.0146 −0.0057

0.2 9.5906 0.1577 0.1360 0.1448 12.8275 0.1481 0.1391 0.1362

0.4 1.2061 0.3994 0.3179 0.3071 0.5579 0.4265 0.3247 0.3108

0.6 0.5333 0.4747 0.4693 0.4503 0.7523 0.4886 0.4584 0.4610

0.8 0.0586 0.0545 0.0257 0.0173 0.0640 0.0353 0.0184 0.0155

Direct Marginal Effects

RMSE X1 X2

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

0 0.0737 0.0304 0.0133 0.0097 0.0366 0.0081 0.0042 0.0029

0.2 0.9858 0.0393 0.0153 0.0140 1.3228 0.0146 0.0096 0.0090

0.4 0.2642 0.0542 0.0345 0.0312 0.3602 0.0388 0.0313 0.0297

0.6 0.1506 0.1047 0.0934 0.0874 0.1472 0.0943 0.0877 0.0879

0.8 0.2895 0.2272 0.1999 0.1924 0.2115 0.1929 0.1899 0.1892

Bias

0 −0.0061 0.0023 −0.0009 0.0011 0.0130 0.0007 0.0000 −0.0004

0.2 0.1099 0.0098 0.0079 0.0093 0.1476 0.0088 0.0082 0.0081

0.4 0.0873 0.0308 0.0292 0.0288 0.0979 0.0347 0.0303 0.0293

0.6 0.0863 0.0875 0.0894 0.0850 0.1075 0.0905 0.0870 0.0874

0.8 0.1849 0.2043 0.1950 0.1901 0.1943 0.1899 0.1895 0.1889

Relative bias

0 −0.0442 0.0169 −0.0066 0.0078 0.0948 0.0053 0.0002 −0.0025

0.2 0.7299 0.0658 0.0526 0.0624 0.9799 0.0586 0.0549 0.0541

0.4 0.5012 0.1775 0.1672 0.1651 0.5616 0.2001 0.1736 0.1680

0.6 0.3529 0.3672 0.3774 0.3576 0.4398 0.3798 0.3670 0.3677

0.8 0.3316 0.3586 0.3449 0.3343 0.3485 0.3334 0.3351 0.3321

Table 46: Monte Carlo results of marginal effects for LIML estimations of P-SAR data and P-SAR
model. Values reported as 0.0000 are smaller than 0.00005.
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Total Marginal Effects

RMSE X1 X2

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

0 0.0869 0.0388 0.0152 0.0120 0.0502 0.0211 0.0086 0.0065

0.2 0.1173 0.0511 0.0182 0.0143 0.0692 0.0262 0.0124 0.0085

0.4 0.1289 0.0638 0.0273 0.0166 0.0841 0.0336 0.0178 0.0114

0.6 0.1986 0.0878 0.0385 0.0301 0.1082 0.0503 0.0220 0.0173

0.8 0.4816 0.2449 0.1008 0.0670 0.2430 0.1052 0.0497 0.0342

Bias

0 −0.0039 0.0032 −0.0004 0.0005 0.0110 0.0009 0.0005 −0.0010

0.2 0.0049 −0.0011 0.0007 0.0023 0.0073 −0.0025 0.0009 0.0008

0.4 0.0099 0.0033 0.0001 −0.0003 0.0140 0.0078 0.0011 0.0002

0.6 −0.0020 −0.0044 0.0021 −0.0012 0.0040 0.0026 −0.0027 0.0003

0.8 0.0607 0.0272 0.0001 −0.0050 0.0362 0.0145 0.0016 −0.0045

Relative bias

0 −0.0286 0.0233 −0.0028 0.0034 0.0803 0.0062 0.0040 −0.0075

0.2 0.0262 −0.0059 0.0036 0.0125 0.0392 −0.0136 0.0046 0.0042

0.4 0.0350 0.0119 0.0005 −0.0009 0.0499 0.0279 0.0040 0.0007

0.6 −0.0036 −0.0081 0.0038 −0.0022 0.0071 0.0048 −0.0050 0.0006

0.8 0.0265 0.0116 0.0000 −0.0021 0.0158 0.0062 0.0007 −0.0019

Direct Marginal Effects

RMSE X1 X2

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

0 0.0635 0.0299 0.0132 0.0095 0.0186 0.0076 0.0041 0.0028

0.2 0.0779 0.0346 0.0120 0.0101 0.0180 0.0092 0.0036 0.0030

0.4 0.0657 0.0346 0.0129 0.0093 0.0248 0.0104 0.0042 0.0030

0.6 0.0730 0.0353 0.0153 0.0113 0.0239 0.0111 0.0052 0.0031

0.8 0.0930 0.0469 0.0224 0.0147 0.0405 0.0166 0.0060 0.0050

Bias

0 −0.0144 0.0014 −0.0012 0.0011 0.0005 −0.0005 −0.0003 −0.0003

0.2 −0.0030 0.0009 −0.0001 0.0012 −0.0002 0.0001 0.0000 −0.0001

0.4 0.0033 −0.0020 −0.0005 −0.0005 0.0052 0.0007 0.0002 −0.0002

0.6 −0.0027 −0.0016 0.0018 −0.0011 −0.0008 0.0011 −0.0003 −0.0004

0.8 −0.0024 −0.0016 −0.0003 0.0000 −0.0062 −0.0039 0.0001 0.0001

Relative bias

0 −0.1043 0.0101 −0.0087 0.0080 0.0035 −0.0037 −0.0020 −0.0025

0.2 −0.0200 0.0057 −0.0010 0.0078 −0.0010 0.0006 −0.0003 −0.0008

0.4 0.0191 −0.0115 −0.0028 −0.0026 0.0298 0.0042 0.0010 −0.0013

0.6 −0.0112 −0.0068 0.0078 −0.0046 −0.0032 0.0047 −0.0011 −0.0018

0.8 −0.0043 −0.0028 −0.0005 0.0000 −0.0112 −0.0068 0.0002 0.0002

Table 47: Monte Carlo results of marginal effects for FIML estimations of P-SAR data and
NB-SAR model. Values reported as 0.0000 are smaller than 0.00005.
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Total Marginal Effects

RMSE X1 X2

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

0 0.3043 0.0487 0.0176 0.0139 0.3165 0.0330 0.0122 0.0090

0.2 16.5297 0.0799 0.0374 0.0330 22.2452 0.0591 0.0349 0.0293

0.4 2.0760 0.1640 0.1055 0.0920 2.9451 0.1519 0.1027 0.0912

0.6 0.5876 0.3417 0.2713 0.2574 0.9482 0.3193 0.2590 0.2592

0.8 0.9867 0.4083 0.1767 0.1268 0.6237 0.2658 0.1142 0.0847

Bias

0 0.0660 0.0094 0.0011 0.0007 0.0907 0.0072 0.0020 −0.0008

0.2 1.6611 0.0293 0.0253 0.0269 2.2652 0.0275 0.0259 0.0253

0.4 0.2844 0.1117 0.0895 0.0864 0.0797 0.1194 0.0914 0.0875

0.6 0.3022 0.2601 0.2555 0.2461 0.4257 0.2676 0.2495 0.2519

0.8 0.1346 0.1277 0.0598 0.0404 0.1467 0.0827 0.0427 0.0362

Relative bias

0 0.4802 0.0680 0.0078 0.0054 0.6592 0.0525 0.0146 −0.0057

0.2 8.8899 0.1574 0.1363 0.1448 12.1229 0.1479 0.1392 0.1362

0.4 1.0109 0.3988 0.3178 0.3071 0.2832 0.4261 0.3246 0.3107

0.6 0.5380 0.4748 0.4692 0.4504 0.7578 0.4886 0.4583 0.4612

0.8 0.0588 0.0545 0.0257 0.0173 0.0641 0.0353 0.0184 0.0155

Direct Marginal Effects

RMSE X1 X2

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

0 0.0736 0.0304 0.0133 0.0097 0.0365 0.0081 0.0042 0.0029

0.2 1.0292 0.0393 0.0153 0.0140 1.2995 0.0146 0.0096 0.0090

0.4 0.3243 0.0541 0.0345 0.0312 0.6157 0.0388 0.0313 0.0297

0.6 0.1512 0.1047 0.0934 0.0874 0.1482 0.0943 0.0877 0.0879

0.8 0.2896 0.2272 0.1999 0.1924 0.2113 0.1929 0.1899 0.1892

Bias

0 −0.0062 0.0023 −0.0009 0.0011 0.0130 0.0007 0.0000 −0.0004

0.2 0.0677 0.0098 0.0079 0.0093 0.1189 0.0088 0.0082 0.0081

0.4 0.0968 0.0308 0.0292 0.0288 0.1237 0.0347 0.0303 0.0293

0.6 0.0867 0.0876 0.0894 0.0850 0.1079 0.0905 0.0870 0.0874

0.8 0.1849 0.2043 0.1950 0.1902 0.1943 0.1899 0.1894 0.1889

Relative bias

0 −0.0447 0.0168 −0.0066 0.0078 0.0947 0.0053 0.0002 −0.0025

0.2 0.4495 0.0656 0.0529 0.0624 0.7894 0.0585 0.0549 0.0541

0.4 0.5556 0.1773 0.1672 0.1650 0.7098 0.2000 0.1736 0.1680

0.6 0.3545 0.3673 0.3774 0.3576 0.4416 0.3798 0.3670 0.3677

0.8 0.3318 0.3587 0.3449 0.3343 0.3486 0.3334 0.3351 0.3321

Table 48: Monte Carlo results of marginal effects for LIML estimations of P-SAR data and
NB-SAR model. Values reported as 0.0000 are smaller than 0.00005.
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Total Marginal Effects

RMSE X1 X2

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

0 0.0633 0.0296 0.0132 0.0095 0.0185 0.0076 0.0041 0.0028

0.2 0.0863 0.0494 0.0384 0.0362 0.0404 0.0374 0.0363 0.0364

0.4 0.1228 0.1119 0.1090 0.1099 0.1051 0.1055 0.1072 0.1073

0.6 0.3355 0.3078 0.3048 0.3097 0.3198 0.3086 0.3079 0.3092

0.8 1.7262 1.7810 1.7561 1.7709 1.7530 1.7752 1.7586 1.7722

Bias

0 −0.0147 0.0011 −0.0012 0.0011 0.0005 −0.0005 −0.0003 −0.0003

0.2 −0.0400 −0.0352 −0.0365 −0.0348 −0.0361 −0.0363 −0.0362 −0.0362

0.4 −0.1020 −0.1065 −0.1082 −0.1094 −0.1022 −0.1050 −0.1071 −0.1073

0.6 −0.3266 −0.3058 −0.3043 −0.3095 −0.3189 −0.3084 −0.3079 −0.3092

0.8 −1.7221 −1.7801 −1.7559 −1.7708 −1.7526 −1.7751 −1.7586 −1.7722

Relative bias

0 −0.1072 0.0083 −0.0089 0.0079 0.0036 −0.0034 −0.0020 −0.0024

0.2 −0.2142 −0.1896 −0.1962 −0.1875 −0.1933 −0.1953 −0.1946 −0.1952

0.4 −0.3626 −0.3801 −0.3843 −0.3888 −0.3633 −0.3748 −0.3804 −0.3812

0.6 −0.5814 −0.5583 −0.5589 −0.5666 −0.5677 −0.5630 −0.5655 −0.5661

0.8 −0.7521 −0.7604 −0.7552 −0.7570 −0.7654 −0.7583 −0.7563 −0.7576

Direct Marginal Effects

RMSE X1 X2

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

0 0.0633 0.0296 0.0132 0.0095 0.0185 0.0076 0.0041 0.0028

0.2 0.0766 0.0347 0.0121 0.0100 0.0182 0.0092 0.0036 0.0030

0.4 0.0685 0.0345 0.0136 0.0099 0.0249 0.0104 0.0042 0.0030

0.6 0.0773 0.0352 0.0168 0.0119 0.0242 0.0111 0.0053 0.0031

0.8 0.1200 0.0582 0.0269 0.0161 0.0444 0.0172 0.0064 0.0054

Bias

0 −0.0147 0.0011 −0.0012 0.0011 0.0005 −0.0005 −0.0003 −0.0003

0.2 −0.0037 0.0009 −0.0004 0.0013 0.0002 −0.0002 −0.0001 −0.0002

0.4 0.0050 0.0001 −0.0011 −0.0023 0.0048 0.0016 0.0000 −0.0002

0.6 −0.0093 0.0036 0.0031 −0.0010 −0.0016 0.0010 −0.0005 −0.0007

0.8 0.0103 −0.0088 0.0039 −0.0005 −0.0202 −0.0038 0.0012 −0.0019

Relative bias

0 −0.1072 0.0083 −0.0089 0.0079 0.0036 −0.0034 −0.0020 −0.0024

0.2 −0.0249 0.0058 −0.0026 0.0084 0.0010 −0.0013 −0.0006 −0.0012

0.4 0.0288 0.0008 −0.0060 −0.0133 0.0278 0.0094 0.0002 −0.0010

0.6 −0.0379 0.0150 0.0131 −0.0041 −0.0066 0.0042 −0.0019 −0.0028

0.8 0.0185 −0.0155 0.0069 −0.0009 −0.0362 −0.0067 0.0022 −0.0033

Table 49: Monte Carlo results of marginal effects for QML estimations of P-SAR data and
non-spatial Poisson model. Values reported as 0.0000 are smaller than 0.00005.
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Total Marginal Effects

RMSE X1 X2

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

0 0.0998 1.4383 0.0156 0.0116 0.0570 1.4091 0.0108 0.0074

0.2 0.1265 0.0437 0.0195 0.0153 0.0737 0.0265 0.0137 0.0090

0.4 0.1442 0.0642 0.0304 0.0199 0.0880 0.0391 0.0171 0.0109

0.6 0.2411 0.1012 0.0475 0.0347 0.1299 0.0522 0.0249 0.0193

0.8 0.5233 0.2764 0.1088 0.0765 0.3269 0.1303 0.0692 0.0462

Bias

0 0.0133 0.8463 −0.0017 0.0021 0.0040 0.8476 0.0007 0.0009

0.2 0.0104 0.0020 0.0019 −0.0012 0.0141 −0.0006 0.0008 −0.0015

0.4 0.0250 −0.0107 0.0046 −0.0003 0.0146 −0.0020 0.0000 −0.0004

0.6 0.0023 0.0011 0.0048 0.0010 0.0171 0.0025 −0.0008 0.0018

0.8 −0.0018 −0.0563 0.0041 −0.0074 0.0408 −0.0044 0.0080 −0.0022

Relative bias

0 0.0964 6.1458 −0.0121 0.0155 0.0290 6.1554 0.0053 0.0064

0.2 0.0555 0.0105 0.0103 −0.0064 0.0756 −0.0030 0.0046 −0.0082

0.4 0.0889 −0.0380 0.0164 −0.0009 0.0520 −0.0073 −0.0001 −0.0014

0.6 0.0042 0.0019 0.0088 0.0019 0.0304 0.0046 −0.0015 0.0033

0.8 −0.0008 −0.0241 0.0018 −0.0031 0.0178 −0.0019 0.0034 −0.0010

Direct Marginal Effects

RMSE X1 X2

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

0 0.0697 0.2687 0.0134 0.0101 0.0225 0.2602 0.0044 0.0028

0.2 0.0750 0.0309 0.0129 0.0105 0.0214 0.0099 0.0051 0.0029

0.4 0.0704 0.0313 0.0149 0.0104 0.0210 0.0098 0.0048 0.0033

0.6 0.0956 0.0369 0.0178 0.0138 0.0268 0.0131 0.0055 0.0038

0.8 0.1188 0.0590 0.0249 0.0149 0.0407 0.0202 0.0086 0.0065

Bias

0 0.0064 0.1557 −0.0030 0.0012 0.0011 0.1584 −0.0007 −0.0001

0.2 −0.0053 0.0039 0.0009 0.0000 −0.0008 0.0017 0.0000 −0.0003

0.4 0.0095 −0.0056 0.0022 −0.0001 0.0010 0.0001 −0.0005 −0.0001

0.6 −0.0036 −0.0014 0.0019 −0.0001 0.0013 −0.0004 −0.0005 0.0002

0.8 −0.0070 −0.0123 −0.0001 −0.0007 0.0020 0.0008 0.0007 0.0006

Relative bias

0 0.0464 1.1308 −0.0215 0.0087 0.0077 1.1505 −0.0049 −0.0008

0.2 −0.0355 0.0261 0.0062 0.0000 −0.0050 0.0113 −0.0001 −0.0018

0.4 0.0546 −0.0325 0.0129 −0.0004 0.0057 0.0006 −0.0030 −0.0006

0.6 −0.0146 −0.0058 0.0081 −0.0002 0.0053 −0.0016 −0.0021 0.0010

0.8 −0.0125 −0.0216 −0.0001 −0.0013 0.0036 0.0014 0.0013 0.0010

Table 50: Monte Carlo results of marginal effects for FIML estimations of NB-SAR data (α = 1/8)
and P-SAR model. Values reported as 0.0000 are smaller than 0.00005.
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Total Marginal Effects

RMSE X1 X2

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

0 0.2359 0.0428 0.0190 0.0143 0.2071 0.0383 0.0161 0.0114

0.2 7.54E+29 0.0800 0.0446 0.0354 1.18E+30 0.0727 0.0403 0.0315

0.4 1.23E+79 0.2446 0.1473 0.1227 1.16E+79 0.2273 0.1345 0.1212

0.6 528.2818 0.7548 0.4668 0.4390 1.86E+03 0.7535 0.4486 0.4368

0.8 25.5919 1.2148 0.9936 0.8767 22.3771 1.0870 0.9651 0.8709

Bias

0 0.0909 0.0106 0.0004 0.0034 0.0815 0.0114 0.0029 0.0022

0.2 7.54E+28 0.0395 0.0331 0.0266 1.18E+29 0.0380 0.0315 0.0260

0.4 1.23E+78 0.1332 0.1293 0.1153 1.16E+78 0.1498 0.1222 0.1165

0.6 61.6330 0.5249 0.4383 0.4255 197.1658 0.5413 0.4252 0.4260

0.8 4.5189 0.9066 0.9403 0.8470 4.0827 0.9017 0.9277 0.8528

Relative bias

0 0.6610 0.0769 0.0031 0.0247 0.5928 0.0826 0.0213 0.0156

0.2 4.04E+29 0.2124 0.1782 0.1434 6.30E+29 0.2045 0.1693 0.1400

0.4 4.38E+78 0.4754 0.4591 0.4098 4.14E+78 0.5347 0.4342 0.4138

0.6 109.7132 0.9583 0.8050 0.7789 350.9760 0.9883 0.7810 0.7799

0.8 1.9735 0.3873 0.4044 0.3621 1.7829 0.3852 0.3990 0.3646

Direct Marginal Effects

RMSE X1 X2

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

0 0.0827 0.0290 0.0132 0.0102 0.0367 0.0114 0.0050 0.0032

0.2 3.66E+30 0.0362 0.0186 0.0151 5.71E+30 0.0189 0.0122 0.0097

0.4 4.11E+76 0.0601 0.0476 0.0401 3.88E+76 0.0512 0.0398 0.0383

0.6 25.0430 0.1718 0.1397 0.1337 87.3700 0.1662 0.1318 0.1318

0.8 2.3022 0.4307 0.4102 0.3919 2.0051 0.4053 0.4022 0.3918

Bias

0 0.0215 0.0027 −0.0025 0.0015 0.0136 0.0025 −0.0002 0.0002

0.2 3.657E+29 0.0148 0.0114 0.0095 5.706E+29 0.0129 0.0100 0.0090

0.4 4.106E+75 0.0334 0.0420 0.0372 3.877E+75 0.0428 0.0385 0.0378

0.6 3.2036 0.1403 0.1347 0.1308 9.6043 0.1462 0.1296 0.1308

0.8 0.7478 0.3958 0.4043 0.3890 0.6945 0.3953 0.4004 0.3909

Relative bias

0 0.156 0.0195 −0.0179 0.0112 0.099 0.0181 −0.0011 0.0015

0.2 2.43E+30 0.0991 0.0760 0.0632 3.79E+30 0.0860 0.0670 0.0600

0.4 2.36E+76 0.1925 0.2409 0.2132 2.22E+76 0.2468 0.2206 0.2167

0.6 13.1057 0.5886 0.5684 0.5502 39.2900 0.6135 0.5469 0.5503

0.8 1.3415 0.6948 0.7153 0.6839 1.2459 0.6939 0.7082 0.6872

Table 51: Monte Carlo results of marginal effects for LIML estimations of NB-SAR data (α = 1/8)
and P-SAR model.
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Total Marginal Effects

RMSE X1 X2

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

0 0.0996 0.0330 0.0156 0.0117 0.0569 0.0229 0.0108 0.0074

0.2 0.1260 0.0435 0.0194 0.0153 0.0739 0.0265 0.0137 0.0090

0.4 0.1432 0.0641 0.0304 0.0198 0.0874 0.0391 0.0170 0.0108

0.6 0.2384 0.1006 0.0479 0.0343 0.1303 0.0522 0.0248 0.0192

0.8 0.5148 0.2733 0.1089 0.0772 0.3344 0.1286 0.0683 0.0453

Bias

0 0.0134 0.0020 −0.0017 0.0022 0.0042 0.0029 0.0007 0.0009

0.2 0.0107 0.0022 0.0019 −0.0013 0.0145 −0.0005 0.0009 −0.0015

0.4 0.0242 −0.0112 0.0046 −0.0002 0.0137 −0.0020 0.0000 −0.0004

0.6 0.0029 0.0005 0.0049 0.0009 0.0180 0.0021 −0.0008 0.0016

0.8 −0.0018 −0.0529 0.0027 −0.0070 0.0456 −0.0003 0.0083 −0.0016

Relative bias

0 0.0977 0.0147 −0.0123 0.0158 0.0307 0.0212 0.0054 0.0064

0.2 0.0573 0.0119 0.0100 −0.0069 0.0775 −0.0026 0.0048 −0.0082

0.4 0.0859 −0.0399 0.0164 −0.0008 0.0486 −0.0073 0.0000 −0.0016

0.6 0.0051 0.0010 0.0090 0.0016 0.0320 0.0037 −0.0015 0.0030

0.8 −0.0008 −0.0226 0.0011 −0.0030 0.0199 −0.0001 0.0036 −0.0007

Direct Marginal Effects

RMSE X1 X2

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

0 0.0697 0.0297 0.0134 0.0101 0.0223 0.0103 0.0044 0.0028

0.2 0.0745 0.0306 0.0128 0.0104 0.0214 0.0098 0.0051 0.0029

0.4 0.0705 0.0312 0.0149 0.0103 0.0210 0.0096 0.0047 0.0032

0.6 0.0949 0.0365 0.0178 0.0137 0.0267 0.0131 0.0054 0.0038

0.8 0.1166 0.0584 0.0251 0.0151 0.0398 0.0202 0.0088 0.0064

Bias

0 0.0063 0.0005 −0.0030 0.0012 0.0011 0.0007 −0.0007 −0.0001

0.2 −0.0053 0.0040 0.0009 −0.0001 −0.0007 0.0016 0.0000 −0.0003

0.4 0.0095 −0.0059 0.0022 0.0000 0.0008 0.0002 −0.0005 −0.0001

0.6 −0.0036 −0.0016 0.0019 −0.0001 0.0013 −0.0005 −0.0005 0.0002

0.8 −0.0063 −0.0122 −0.0005 −0.0008 0.0034 0.0011 0.0008 0.0005

Relative bias

0 0.0461 0.0034 −0.0217 0.0090 0.0077 0.0054 −0.0049 −0.0008

0.2 −0.0351 0.0267 0.0057 −0.0004 −0.0044 0.0109 0.0000 −0.0017

0.4 0.0548 −0.0339 0.0129 −0.0002 0.0044 0.0011 −0.0029 −0.0007

0.6 −0.0147 −0.0068 0.0082 −0.0003 0.0053 −0.0023 −0.0021 0.0009

0.8 −0.0113 −0.0214 −0.0009 −0.0015 0.0062 0.0019 0.0013 0.0009

Table 52: Monte Carlo results of marginal effects for FIML estimations of NB-SAR data (α = 1/8)
and NB-SAR model. Values reported as 0.0000 are smaller than 0.00005.
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Total Marginal Effects

RMSE X1 X2

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

0 0.2365 0.0429 0.0189 0.0143 0.2146 0.0384 0.0161 0.0114

0.2 8.0769 0.0802 0.0446 0.0353 10.9556 0.0729 0.0403 0.0315

0.4 7.42E+03 0.2448 0.1472 0.1225 6.94E+03 0.2282 0.1346 0.1209

0.6 4.00E+04 0.7511 0.4672 0.4374 1.41E+05 0.7530 0.4484 0.4353

0.8 31.7100 1.1757 0.9775 0.8768 27.2540 1.0487 0.9523 0.8693

Bias

0 0.0920 0.0103 0.0004 0.0035 0.0837 0.0113 0.0029 0.0021

0.2 1.2972 0.0400 0.0331 0.0265 1.5735 0.0383 0.0315 0.0260

0.4 743.0076 0.1323 0.1293 0.1153 695.0297 0.1500 0.1223 0.1163

0.6 4.00E+03 0.5204 0.4387 0.4243 1.41E+04 0.5370 0.4253 0.4250

0.8 5.1326 0.8987 0.9283 0.8478 4.7729 0.8951 0.9209 0.8525

Relative bias

0 0.6687 0.0750 0.0028 0.0251 0.6086 0.0818 0.0214 0.0156

0.2 6.9423 0.2151 0.1782 0.1428 8.4213 0.2058 0.1697 0.1398

0.4 2.64E+03 0.4724 0.4591 0.4095 2.47E+03 0.5353 0.4344 0.4130

0.6 7.13E+03 0.9500 0.8058 0.7767 2.51E+04 0.9804 0.7811 0.7779

0.8 2.2414 0.3839 0.3992 0.3624 2.0844 0.3824 0.3961 0.3644

Direct Marginal Effects

RMSE X1 X2

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

0 0.0826 0.0291 0.0132 0.0102 0.0374 0.0114 0.0049 0.0032

0.2 0.5649 0.0360 0.0185 0.0150 0.7417 0.0188 0.0122 0.0097

0.4 265.10 0.0598 0.0476 0.0401 247.95 0.0513 0.0398 0.0383

0.6 1363.14 0.1706 0.1398 0.1334 4802.51 0.1655 0.1318 0.1316

0.8 2.7147 0.4269 0.4074 0.3921 2.3502 0.4026 0.4008 0.3916

Bias

0 0.0217 0.0025 −0.0025 0.0016 0.0139 0.0139 −0.0001 0.0002

0.2 0.1183 0.0150 0.0113 0.0094 0.1403 0.1403 0.0101 0.0090

0.4 26.6734 0.0330 0.0420 0.0372 24.9681 24.9681 0.0385 0.0377

0.6 136.6723 0.1395 0.1349 0.1306 480.6801 480.6801 0.1296 0.1306

0.8 0.7876 0.3945 0.4016 0.3892 0.7487 0.7487 0.3993 0.3907

Relative bias

0 0.1575 0.0180 −0.0181 0.0116 0.1012 0.0178 −0.0010 0.0015

0.2 0.7856 0.1002 0.0756 0.0628 0.9318 0.0859 0.0671 0.0601

0.4 153.0662 0.1902 0.2409 0.2134 143.2804 0.2473 0.2208 0.2164

0.6 559.1086 0.5852 0.5690 0.5492 1966.3993 0.6096 0.5470 0.5494

0.8 1.4129 0.6925 0.7105 0.6842 1.3430 0.6925 0.7063 0.6869

Table 53: Monte Carlo results of marginal effects for LIML estimations of NB-SAR data (α = 1/8)
and NB-SAR model.
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Total Marginal Effects

RMSE X1 X2

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

0 0.0692 0.0293 0.0133 0.0102 0.0226 0.0103 0.0044 0.0028

0.2 0.0847 0.0446 0.0376 0.0374 0.0424 0.0360 0.0365 0.0365

0.4 0.1242 0.1154 0.1063 0.1098 0.1085 0.1062 0.1079 0.1072

0.6 0.3459 0.3100 0.3040 0.3080 0.3178 0.3099 0.3081 0.3086

0.8 1.7136 1.7891 1.7573 1.7727 1.7471 1.7710 1.7581 1.7714

Bias

0 0.0074 0.0009 −0.0030 0.0012 0.0008 0.0008 −0.0007 −0.0001

0.2 −0.0434 −0.0324 −0.0352 −0.0359 −0.0366 −0.0347 −0.0361 −0.0364

0.4 −0.0998 −0.1111 −0.1053 −0.1093 −0.1063 −0.1057 −0.1078 −0.1072

0.6 −0.3306 −0.3079 −0.3035 −0.3077 −0.3167 −0.3097 −0.3080 −0.3085

0.8 −1.7077 −1.7879 −1.7571 −1.7726 −1.7466 −1.7709 −1.7581 −1.7714

Relative bias

0 0.0539 0.0065 −0.0216 0.0088 0.0060 0.0056 −0.0050 −0.0008

0.2 −0.2323 −0.1745 −0.1894 −0.1932 −0.1958 −0.1866 −0.1945 −0.1960

0.4 −0.3548 −0.3965 −0.3739 −0.3882 −0.3779 −0.3773 −0.3830 −0.3807

0.6 −0.5886 −0.5621 −0.5575 −0.5633 −0.5637 −0.5654 −0.5657 −0.5648

0.8 −0.7458 −0.7638 −0.7557 −0.7578 −0.7627 −0.7565 −0.7561 −0.7573

Direct Marginal Effects

RMSE X1 X2

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

0 0.0692 0.0293 0.0133 0.0102 0.0226 0.0103 0.0044 0.0028

0.2 0.0731 0.0308 0.0132 0.0106 0.0215 0.0099 0.0051 0.0029

0.4 0.0743 0.0316 0.0153 0.0111 0.0216 0.0099 0.0048 0.0032

0.6 0.1026 0.0361 0.0182 0.0149 0.0268 0.0132 0.0055 0.0037

0.8 0.1443 0.0681 0.0278 0.0177 0.0448 0.0203 0.0090 0.0068

Bias

0 0.0074 0.0009 −0.0030 0.0012 0.0008 0.0008 −0.0007 −0.0001

0.2 −0.0071 0.0037 0.0009 0.0002 −0.0003 0.0014 −0.0001 −0.0003

0.4 0.0072 −0.0045 0.0019 −0.0021 0.0007 0.0009 −0.0007 0.0000

0.6 −0.0133 0.0015 0.0039 0.0009 0.0007 −0.0003 −0.0006 0.0000

0.8 0.0247 −0.0166 0.0028 −0.0023 −0.0142 0.0004 0.0017 −0.0011

Relative bias

0 −0.0249 0.0058 −0.0026 0.0084 0.0010 −0.0013 −0.0006 −0.0012

0.2 0.0288 0.0008 −0.0060 −0.0133 0.0278 0.0094 0.0002 −0.0010

0.4 −0.0379 0.0150 0.0131 −0.0041 −0.0066 0.0042 −0.0019 −0.0028

0.6 0.0185 −0.0155 0.0069 −0.0009 −0.0362 −0.0067 0.0022 −0.0033

0.8 −0.1072 0.0083 −0.0089 0.0079 0.0036 −0.0034 −0.0020 −0.0024

Table 54: Monte Carlo results of marginal effects for QML estimations of NB-SAR data (α = 1/8)
and non-spatial Poisson model. Values reported as 0.0000 are smaller than 0.00005.
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Total Marginal Effects

RMSE X1 X2

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

0 0.1195 0.0452 0.0175 0.0125 0.0777 0.0270 0.0108 0.0090

0.2 0.1482 0.0697 0.0253 0.0182 0.0763 0.0371 0.0144 0.0113

0.4 0.1752 0.0752 0.0390 0.0268 0.1114 0.0508 0.0237 0.0136

0.6 0.2917 0.1369 0.0637 0.0412 0.1498 0.0854 0.0355 0.0241

0.8 0.8377 0.4265 0.1637 0.1302 0.4772 0.1971 0.0931 0.0693

Bias

0 0.0168 0.0042 0.0003 −0.0009 0.0202 0.0045 0.0002 0.0003

0.2 0.0030 −0.0042 −0.0017 0.0022 −0.0012 −0.0060 −0.0018 0.0003

0.4 0.0107 0.0013 0.0032 0.0019 0.0014 0.0047 0.0022 0.0003

0.6 0.0577 0.0077 0.0003 0.0009 0.0233 0.0003 0.0066 0.0052

0.8 −0.0968 −0.0102 0.0043 −0.0194 0.0017 0.0063 −0.0031 −0.0176

Relative bias

0 0.1221 0.0308 0.0018 −0.0062 0.1465 0.0324 0.0013 0.0021

0.2 0.0161 −0.0228 −0.0091 0.0121 −0.0066 −0.0325 −0.0097 0.0018

0.4 0.0381 0.0045 0.0114 0.0067 0.0049 0.0166 0.0078 0.0010

0.6 0.1028 0.0141 0.0005 0.0016 0.0414 0.0006 0.0122 0.0095

0.8 −0.0423 −0.0044 0.0018 −0.0083 0.0008 0.0027 −0.0013 −0.0075

Direct Marginal Effects

RMSE X1 X2

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

0 0.0911 0.0341 0.0142 0.0102 0.0260 0.0107 0.0054 0.0035

0.2 0.0960 0.0426 0.0174 0.0135 0.0277 0.0121 0.0054 0.0042

0.4 0.0939 0.0376 0.0186 0.0136 0.0290 0.0118 0.0055 0.0042

0.6 0.1071 0.0469 0.0201 0.0159 0.0411 0.0149 0.0075 0.0048

0.8 0.2079 0.0892 0.0382 0.0264 0.0712 0.0322 0.0132 0.0094

Bias

0 −0.0025 −0.0015 −0.0008 −0.0014 −0.0015 −0.0005 −0.0008 −0.0003

0.2 −0.0029 −0.0015 −0.0001 0.0014 −0.0073 −0.0011 −0.0001 −0.0002

0.4 0.0085 −0.0027 0.0006 0.0009 0.0025 −0.0010 0.0001 0.0000

0.6 0.0196 0.0015 −0.0033 −0.0014 0.0040 −0.0010 −0.0002 0.0005

0.8 −0.0177 −0.0057 0.0045 −0.0016 −0.0012 −0.0006 0.0026 −0.0011

Relative bias

0 −0.0181 −0.0107 −0.0057 −0.0102 −0.0106 −0.0037 −0.0060 −0.0022

0.2 −0.0193 −0.0101 −0.0006 0.0096 −0.0484 −0.0072 −0.0009 −0.0016

0.4 0.0489 −0.0154 0.0032 0.0052 0.0143 −0.0057 0.0004 0.0001

0.6 0.0802 0.0064 −0.0139 −0.0058 0.0162 −0.0041 −0.0008 0.0020

0.8 −0.0317 −0.0101 0.0080 −0.0029 −0.0021 −0.0010 0.0045 −0.0019

Table 55: Monte Carlo results of marginal effects for FIML estimations of NB-SAR data (α = 1/2)
and P-SAR model. Values reported as 0.0000 are smaller than 0.00005.

133



A FURTHER RESULTS FOR THE SAR MODELS

Total Marginal Effects

RMSE X1 X2

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

0 1.12E+66 0.0760 0.0249 0.0169 1.23E+66 0.0601 0.0197 0.0154

0.2 Inf 0.2139 0.0696 0.0619 Inf 0.1527 0.0639 0.0577

0.4 1.95E+152 0.7295 0.3153 0.2620 1.98E+152 0.7530 0.3047 0.2494

0.6 1.06E+53 446.5421 1.9878 1.7635 1.66E+53 532.2618 1.9755 1.7797

0.8 8.77E+14 44.7439 11.9960 10.9190 1.08E+15 53.4690 11.9124 11.1559

Bias

0 1.12E+65 0.0217 0.0045 0.0008 1.23E+65 0.0210 0.0042 0.0020

0.2 Inf 0.0762 0.0464 0.0515 Inf 0.0661 0.0464 0.0491

0.4 1.95E+151 0.4564 0.2688 0.2408 1.98E+151 0.4739 0.2681 0.2343

0.6 1.06E+52 57.6102 1.6736 1.6475 1.66E+52 65.5708 1.7101 1.6558

0.8 8.80E+13 19.9051 10.7386 10.3423 1.09E+14 21.6886 10.7113 10.5680

Relative bias

0 8.13E+65 0.1574 0.0323 0.0057 8.94E+65 0.1522 0.0302 0.0147

0.2 Inf 0.4101 0.2495 0.2776 Inf 0.3558 0.2495 0.2647

0.4 6.94E+151 1.6292 0.9549 0.8556 7.02E+151 1.6916 0.9524 0.8324

0.6 1.88E+52 105.1779 3.0739 3.0159 2.96E+52 119.7115 3.1409 3.0312

0.8 3.84E+13 8.5031 4.6185 4.4215 4.75E+13 9.2650 4.6068 4.5180

Direct Marginal Effects

RMSE X1 X2

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

0 1.49E+66 0.0375 0.0148 0.0103 1.64E+66 0.0144 0.0058 0.0045

0.2 -Inf 0.0681 0.0265 0.0233 -Inf 0.0337 0.0184 0.0173

0.4 4.30E+152 0.1534 0.0886 0.0783 4.35E+152 0.1501 0.0824 0.0723

0.6 7.30E+50 29.2160 0.4308 0.4106 1.15E+51 34.6744 0.4329 0.4119

0.8 1.97562E+13 5.8314 2.4899 2.3525 2.44E+13 6.7321 2.4715 2.3993

Bias

0 1.49E+65 0.0030 0.0003 −0.0010 1.64E+65 0.0037 0.0001 0.0001

0.2 -Inf 0.0197 0.0151 0.0176 -Inf 0.0183 0.0152 0.0157

0.4 -4.30E+151 0.1043 0.0770 0.0730 -4.35E+151 0.1093 0.0770 0.0703

0.6 7.30E+49 4.3426 0.3876 0.3949 1.15E+50 4.8244 0.4009 0.3962

0.8 1.98E+12 3.3874 2.3497 2.2845 2.45E+12 3.6008 2.3433 2.3334

Relative bias

0 1.08E+66 0.0218 0.0022 −0.0073 1.19E+66 0.0266 0.0007 0.0010

0.2 -Inf 0.1317 0.1012 0.1175 -Inf 0.1222 0.1018 0.1047

0.4 -2.47E+152 0.6011 0.4417 0.4189 -2.49E+152 0.6297 0.4417 0.4032

0.6 2.99E+50 18.2173 1.6352 1.6610 4.69E+50 20.2385 1.6913 1.6668

0.8 3.56E+12 5.9464 4.1566 4.0162 4.40E+12 6.3211 4.1453 4.1021

Table 56: Monte Carlo results of marginal effects for LIML estimations of NB-SAR data (α = 1/2)
and P-SAR model.
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Total Marginal Effects

RMSE X1 X2

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

0 0.1211 0.0456 0.0177 0.0125 0.0776 0.0269 0.0107 0.0090

0.2 0.1496 0.0698 0.0255 0.0179 0.0770 0.0373 0.0143 0.0113

0.4 0.1743 0.0732 0.0390 0.0271 0.1152 0.0506 0.0236 0.0137

0.6 0.2958 0.1351 0.0639 0.0406 0.1527 0.0836 0.0355 0.0246

0.8 0.8173 0.4204 0.1616 0.1264 0.4847 0.2034 0.0918 0.0669

Bias

0 0.0190 0.0045 0.0004 −0.0008 0.0199 0.0045 0.0003 0.0003

0.2 −0.0005 −0.0037 −0.0014 0.0020 −0.0015 −0.0058 −0.0019 0.0003

0.4 0.0093 0.0026 0.0035 0.0021 0.0012 0.0055 0.0021 0.0003

0.6 0.0557 0.0079 −0.0002 0.0015 0.0243 −0.0001 0.0067 0.0054

0.8 −0.0430 −0.0050 0.0024 −0.0173 0.0127 0.0207 −0.0019 −0.0160

Relative bias

0 0.1380 0.0330 0.0032 −0.0061 0.1449 0.0324 0.0021 0.0020

0.2 −0.0026 −0.0198 −0.0077 0.0106 −0.0081 −0.0313 −0.0104 0.0016

0.4 0.0331 0.0094 0.0123 0.0074 0.0042 0.0195 0.0076 0.0012

0.6 0.0991 0.0144 −0.0003 0.0027 0.0432 −0.0002 0.0123 0.0098

0.8 −0.0188 −0.0021 0.0010 −0.0074 0.0055 0.0088 −0.0008 −0.0068

Direct Marginal Effects

RMSE X1 X2

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

0 0.0895 0.0343 0.0143 0.0102 0.0260 0.0107 0.0053 0.0035

0.2 0.0979 0.0426 0.0176 0.0132 0.0275 0.0122 0.0053 0.0041

0.4 0.0946 0.0368 0.0187 0.0137 0.0286 0.0118 0.0055 0.0042

0.6 0.1070 0.0469 0.0201 0.0157 0.0396 0.0148 0.0074 0.0048

0.8 0.2004 0.0862 0.0373 0.0259 0.0686 0.0316 0.0123 0.0090

Bias

0 −0.0016 −0.0014 −0.0007 −0.0013 −0.0019 −0.0007 −0.0008 −0.0002

0.2 −0.0047 −0.0013 0.0002 0.0012 −0.0068 −0.0010 −0.0002 −0.0002

0.4 0.0081 −0.0020 0.0007 0.0010 0.0017 −0.0008 0.0000 0.0001

0.6 0.0178 0.0019 −0.0036 −0.0010 0.0038 −0.0010 −0.0003 0.0006

0.8 −0.0067 −0.0078 0.0036 −0.0011 −0.0008 −0.0005 0.0024 −0.0007

Relative bias

0 −0.0115 −0.0103 −0.0052 −0.0094 −0.0137 −0.0051 −0.0060 −0.0016

0.2 −0.0315 −0.0086 0.0013 0.0083 −0.0454 −0.0066 −0.0011 −0.0015

0.4 0.0462 −0.0114 0.0038 0.0059 0.0097 −0.0049 −0.0002 0.0003

0.6 0.0728 0.0080 −0.0152 −0.0044 0.0154 −0.0041 −0.0012 0.0025

0.8 −0.0120 −0.0137 0.0063 −0.0020 −0.0014 −0.0009 0.0042 −0.0013

Table 57: Monte Carlo results of marginal effects for FIML estimations of NB-SAR data (α = 1/2)
and NB-SAR model. Values reported as 0.0000 are smaller than 0.00005.
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Total Marginal Effects

RMSE X1 X2

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

0 1.06E+16 0.0778 0.0251 0.0170 8.96E+15 0.0602 0.0196 0.0154

0.2 Inf 0.1967 0.0687 0.0616 Inf 0.1381 0.0620 0.0577

0.4 4.57E+26 0.7879 0.3152 0.2627 7.26E+26 0.7906 0.3044 0.2496

0.6 5.46E+63 82.5983 2.0728 1.7762 3.02E+64 94.8308 2.0387 1.7886

0.8 3.37E+11 30.5315 11.3337 10.7979 3.81E+11 27.5187 11.2170 11.0595

Bias

0 -1.06E+15 0.0226 0.0047 0.0007 -8.96E+14 0.0213 0.0044 0.0019

0.2 -2.84E+181 0.0730 0.0464 0.0512 -2.78E+181 0.0630 0.0458 0.0491

0.4 -4.57E+25 0.4720 0.2694 0.2413 -7.26E+25 0.4872 0.2681 0.2345

0.6 -5.46E+62 15.2580 1.7019 1.6578 3.02E+63 16.1389 1.7371 1.6635

0.8 4.77E+10 16.1096 10.4972 10.3492 5.13E+10 16.1813 10.4732 10.5835

Relative bias

0 -7.67E+15 0.1639 0.0343 0.0054 -6.52E+15 0.1544 0.0316 0.0141

0.2 -1.52E+182 0.3926 0.2495 0.2757 -1.49E+182 0.3387 0.2465 0.2645

0.4 -1.62E+26 1.6848 0.9568 0.8573 -2.58E+26 1.7390 0.9522 0.8330

0.6 -9.71E+62 27.8563 3.1258 3.0349 5.37E+63 29.4644 3.1905 3.0453

0.8 2.08E+10 6.8818 4.5147 4.4244 2.24E+10 6.9124 4.5044 4.5246

Direct Marginal Effects

RMSE X1 X2

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

0 2.27E+16 0.0380 0.0150 0.0103 1.92E+16 0.0142 0.0058 0.0045

0.2 Inf 0.0661 0.0266 0.0229 Inf 0.0317 0.0180 0.0173

0.4 1.60E+28 0.1595 0.0887 0.0785 2.55E+28 0.1544 0.0823 0.0723

0.6 3.58E+64 6.7833 0.4405 0.4129 1.98E+65 7.6738 0.4403 0.4135

0.8 9.38E+09 4.5338 2.4166 2.3411 1.07E+10 4.2062 2.3944 2.3921

Bias

0 2.27E+15 0.0032 0.0004 −0.0009 1.92E+15 0.0035 0.0001 0.0002

0.2 -3.62E+181 0.0193 0.0154 0.0173 -3.55E+181 0.0178 0.0151 0.0157

0.4 1.60E+27 0.1073 0.0772 0.0732 2.55E+27 0.1116 0.0769 0.0704

0.6 -3.58E+63 1.6205 0.3912 0.3971 1.98E+64 1.6677 0.4048 0.3977

0.8 1.33E+09 2.9783 2.3145 2.2885 1.43E+09 3.0194 2.3106 2.3384

Relative bias

0 1.65E+16 0.0232 0.0029 −0.0067 1.40E+16 0.0257 0.0009 0.0015

0.2 -2.41E+182 0.1290 0.1027 0.1159 -2.36E+182 0.1190 0.1008 0.1048

0.4 9.19E+27 0.6185 0.4429 0.4199 1.46E+28 0.6430 0.4411 0.4036

0.6 -1.46E+64 6.7980 1.6506 1.6703 8.10E+64 6.9961 1.7079 1.6730

0.8 2.38E+09 5.2283 4.0944 4.0232 2.57E+09 5.3005 4.0874 4.1109

Table 58: Monte Carlo results of marginal effects for LIML estimations of NB-SAR data (α = 1/2)
and NB-SAR model.
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Total Marginal Effects

RMSE X1 X2

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

0 0.0871 0.0343 0.0142 0.0102 0.0254 0.0108 0.0054 0.0035

0.2 0.1053 0.0574 0.0405 0.0370 0.0510 0.0393 0.0366 0.0366

0.4 0.1338 0.1138 0.1091 0.1084 0.1085 0.1074 0.1073 0.1072

0.6 0.3281 0.3070 0.3117 0.3087 0.3167 0.3106 0.3075 0.3085

0.8 1.7348 1.7890 1.7537 1.7769 1.7539 1.7707 1.7559 1.7729

Bias

0 −0.0019 −0.0014 −0.0007 −0.0014 −0.0009 −0.0005 −0.0008 −0.0003

0.2 −0.0404 −0.0378 −0.0364 −0.0345 −0.0435 −0.0374 −0.0362 −0.0364

0.4 −0.0963 −0.1073 −0.1072 −0.1075 −0.1046 −0.1068 −0.1072 −0.1071

0.6 −0.3084 −0.3031 −0.3111 −0.3083 −0.3140 −0.3102 −0.3074 −0.3084

0.8 −1.7179 −1.7859 −1.7532 −1.7766 −1.7524 −1.7704 −1.7558 −1.7729

Relative bias

0 −0.0135 −0.0104 −0.0053 −0.0103 −0.0067 −0.0034 −0.0060 −0.0022

0.2 −0.2162 −0.2034 −0.1959 −0.1856 −0.2327 −0.2014 −0.1950 −0.1958

0.4 −0.3422 −0.3830 −0.3809 −0.3819 −0.3718 −0.3811 −0.3808 −0.3804

0.6 −0.5490 −0.5535 −0.5715 −0.5643 −0.5590 −0.5663 −0.5646 −0.5646

0.8 −0.7502 −0.7629 −0.7540 −0.7595 −0.7653 −0.7563 −0.7552 −0.7579

Direct Marginal Effects

RMSE X1 X2

λ\n 1000 5000 25000 50000 1000 5000 25000 50000

0 0.0871 0.0343 0.0142 0.0102 0.0254 0.0108 0.0054 0.0035

0.2 0.0973 0.0432 0.0177 0.0135 0.0277 0.0120 0.0054 0.0042

0.4 0.0936 0.0380 0.0199 0.0138 0.0291 0.0117 0.0055 0.0043

0.6 0.1123 0.0486 0.0199 0.0168 0.0411 0.0151 0.0076 0.0048

0.8 0.2425 0.1059 0.0426 0.0331 0.0759 0.0332 0.0142 0.0099

Bias

0 −0.0019 −0.0014 −0.0007 −0.0014 −0.0009 −0.0005 −0.0008 −0.0003

0.2 −0.0041 −0.0017 −0.0003 0.0016 −0.0072 −0.0013 −0.0002 −0.0003

0.4 0.0108 −0.0007 −0.0001 −0.0004 0.0024 −0.0001 −0.0001 0.0000

0.6 0.0089 0.0062 −0.0037 0.0003 0.0033 −0.0008 0.0000 0.0001

0.8 0.0145 −0.0146 0.0067 −0.0063 −0.0200 0.0009 0.0040 −0.0026

Relative bias

0 −0.0135 −0.0104 −0.0053 −0.0103 −0.0067 −0.0034 −0.0060 −0.0022

0.2 −0.0274 −0.0113 −0.0022 0.0107 −0.0478 −0.0089 −0.0011 −0.0020

0.4 0.0618 −0.0038 −0.0006 −0.0022 0.0140 −0.0008 −0.0003 0.0002

0.6 0.0365 0.0261 −0.0156 0.0011 0.0134 −0.0035 0.0002 0.0005

0.8 0.0261 −0.0256 0.0118 −0.0112 −0.0359 0.0016 0.0071 −0.0046

Table 59: Monte Carlo results of marginal effects for QML estimations of NB-SAR data (α = 1/2)
and non-spatial Poisson model. Values reported as 0.0000 are smaller than 0.00005.
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A.3 Descriptives of the Start-Up Firm Birth Data Set

The following table contains descriptive statistics for the start-up firm births data set de-

scribed in Section 3.6.1.

Variable Mean Median Std. Dev. Min. Max.

subirths 32.8363 8.0000 157.5482 0 6938

msemp 15.1887 13.4459 10.3547 0 63.6628

tfdens 0.0518 0.0084 0.5997 0.0000 31.9162

pel10emp 52.1149 50.0000 19.9908 0 100

pem100emp 11.0494 9.7571 9.9253 0 100

mhhi 35.2150 33.6920 8.7417 12.6920 82.9290

pop 9.1035 2.5339 29.5729 0.0065 954.5829

cclass 17.1841 15.6987 5.9427 3.8793 54.0700

uer 4.3191 4.0000 1.6419 1.4000 17.5000

pedas 5.7015 5.6925 1.9857 0.3831 15.6037

awage 24.6862 23.6085 5.5921 13.6730 74.3810

netflow 7.5757 3.8629 16.8373 −461.6669 102.2310

proad 1.8341 1.6830 1.5096 0.0279 20.8855

interst 14.6878 0 25.2290 0 398.3130

hwypc 1.7746 1.2796 2.5008 0 76.0398

avland 31.3027 23.1203 25.9624 0 98.2397

educpc 11.8356 10.8124 11.6976 0 561.5168

bci 5.9071 5.8300 0.9869 3.9700 8.3000

metro 0.3454 - - - -

micro 0.2160 - - - -

Table 60: Descriptives of start-up firm births data set, n = 3078. Values reported as 0.0000 are
smaller than 0.00005.
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A.4 Empirical Results for SAR Models

In this section the full results of the parameter estimates for the start-up firm births data

set are reported. The tables contain the results for each of the 4 employed spatial weight

matrices (see Section 3.6.1) and the non-spatial variant for the P-SAR, NB-SAR, ZIP-SAR

and HP-SAR models.

Variable Wdnn Wcon Wnn Wd Poisson

rho 0.2533∗∗∗ 0.2774∗∗∗ 0.2306∗∗∗ −0.0353
(0.0634) (0.0655) (0.0537) (0.5407)

const −1.1407∗∗∗ −1.1344∗∗∗ −1.1636∗∗∗ −0.8438 −0.9337∗∗∗

(0.2416) (0.2392) (0.2417) (1.4942) (0.2818)

msemp 0.0284∗∗∗ 0.0282∗∗∗ 0.0288∗∗∗ 0.0306∗∗∗ 0.0306∗∗∗

(0.0039) (0.0038) (0.0039) (0.0042) (0.0041)

pelt10 −0.0007 −0.0003 −0.0008 −0.0021 −0.0021
(0.0020) (0.0020) (0.0020) (0.0022) (0.0019)

pemt100 −0.0270∗∗∗ −0.0276∗∗∗ −0.0269∗∗∗ −0.0293∗∗∗ −0.0294∗∗∗

(0.0035) (0.0033) (0.0034) (0.0041) (0.0036)

tfdens 0.0047 0.0056 0.0019 0.0067 0.0062
(0.0103) (0.0106) (0.01) (0.0115) (0.0102)

mhhi −0.0122 −0.0104 −0.0113 0.0006 0.0002
(0.0072) (0.0075) (0.0075) (0.0106) (0.0089)

pop 0.0022∗∗∗ 0.0021∗∗∗ 0.0023∗∗∗ 0.0023∗∗∗ 0.0023∗∗∗

(0.0004) (0.0004) (0.0005) (0.0005) (0.0004)

cclass 0.0498∗∗∗ 0.0484∗∗∗ 0.0521∗∗∗ 0.0481∗∗∗ 0.0484∗∗∗

(0.0121) (0.012) (0.0119) (0.0137) (0.0129)

uer 0.0603∗∗∗ 0.0667∗∗∗ 0.0649∗∗∗ 0.0725∗∗∗ 0.0730∗∗∗

(0.0192) (0.0187) (0.0196) (0.0244) (0.0223)

pedas 0.1051∗∗∗ 0.1036∗∗∗ 0.1082∗∗∗ 0.1306∗∗∗ 0.1300∗∗∗

(0.0151) (0.0161) (0.0164) (0.0254) (0.0208)

awage 0.0191∗∗∗ 0.0166∗∗ 0.0179∗∗ 0.0187∗∗∗ 0.0186∗∗∗

(0.0074) (0.0081) (0.0076) (0.0068) (0.0072)

netflow 0.0021 0.0018 0.0018 0.0019 0.0019
(0.0022) (0.0022) (0.0022) (0.0023) (0.0023)

proad 0.067∗∗∗ 0.0661∗∗∗ 0.0741∗∗∗ 0.1038∗∗∗ 0.1028∗∗∗

(0.0175) (0.018) (0.017) (0.0249) (0.0185)

interst 0.0062∗∗∗ 0.0066∗∗∗ 0.0063∗∗∗ 0.0073∗∗∗ 0.0073∗∗∗

(0.0011) (0.0009) (0.0011) (0.0011) (0.0010)

avland −0.0051∗∗∗ −0.0051∗∗∗ −0.0055∗∗∗ −0.0088∗∗∗ −0.0086∗∗∗

(0.0011) (0.0012) (0.0012) (0.0034) (0.0015)

bci 0.0878∗∗∗ 0.0767∗∗ 0.0869∗∗∗ 0.0791 0.0801∗∗

(0.0269) (0.0273) (0.0283) (0.0465) (0.0371)

educpc 0.0027 0.0034 0.0027 0.0038 0.0036∗∗

(0.0020) (0.0022) (0.0018) (0.0024) (0.0019)

hwypc −0.0252 −0.0258 −0.0228 −0.0313 −0.0300
(0.0192) (0.0190) (0.0172) (0.0254) (0.0193)

metro 1.2405∗∗∗ 1.2085∗∗∗ 1.2461∗∗∗ 1.2660∗∗∗ 1.2651∗∗∗

(0.0906) (0.0841) (0.0883) (0.0894) (0.0922)

micro 0.6430∗∗∗ 0.6171∗∗∗ 0.6335∗∗∗ 0.5723∗∗∗ 0.5726∗∗∗

(0.0634) (0.0597) (0.0618) (0.0633) (0.0630)

Table 61: P-SAR estimates for the start-up firm births data set with 4 different weighting matrices
and the non-spatial Poisson model, robust standard errors in brackets. ∗∗ and ∗∗∗ denote a 5% and

1% significance.
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Variable Wdnn Wcon Wnn Wd NB

rho 0.2803∗∗∗ 0.2902∗∗∗ 0.2932∗∗∗ 0.5416∗∗∗

(0.0297) (0.0321) (0.0257) (0.0534)

const −0.8673∗∗∗ −0.8857∗∗∗ −0.8464∗∗∗ −2.0638∗∗∗ −1.0664∗∗∗

(0.1703) (0.1491) (0.1513) (0.2104) (0.1950)

msemp 0.0438∗∗∗ 0.0431∗∗∗ 0.0437∗∗∗ 0.0475∗∗∗ 0.0500∗∗∗

(0.0022) (0.0022) (0.0021) (0.0021) (0.0023)

pelt10 0.0051∗∗∗ 0.0053∗∗∗ 0.0051∗∗∗ 0.0056∗∗∗ 0.0051∗∗∗

(0.0011) (0.0012) (0.0011) (0.0012) (0.0012)

pemt100 −0.0165∗∗∗ −0.0163∗∗∗ −0.0166∗∗∗ −0.0185∗∗∗ −0.0183∗∗∗

(0.0024) (0.0021) (0.0021) (0.0023) (0.0023)

tfdens −0.0599∗∗∗ −0.0619∗∗∗ −0.0624∗∗∗ −0.0567∗∗∗ −0.0527∗∗∗

(0.0160) (0.0163) (0.0171) (0.0142) (0.0134)

mhhi 0.0089 0.0102 0.0075∗∗ 0.0207∗∗∗ 0.0265∗∗∗

(0.0063) (0.0053) (0.0037) (0.0055) (0.0053)

pop 0.0151∗∗∗ 0.0147∗∗∗ 0.0153∗∗∗ 0.0183∗∗∗ 0.0182
(0.0026) (0.0026) (0.0025) (0.0030) (0.0031)∗∗∗

cclass 0.0828∗∗∗ 0.0812∗∗∗ 0.0842∗∗∗ 0.0858∗∗∗ 0.0817∗∗∗

(0.0046) (0.0046) (0.0044) (0.0049) (0.0049)

uer 0.0548∗∗∗ 0.0544∗∗∗ 0.0529∗∗∗ 0.0716∗∗∗ 0.0802∗∗∗

(0.0133) (0.0097) (0.0087) (0.0128) (0.0128)

pedas 0.0336∗∗∗ 0.0338∗∗∗ 0.0326∗∗∗ 0.0344∗∗∗ 0.0444∗∗∗

(0.0082) (0.008) (0.0076) (0.0094) (0.0090)

awage −0.0373∗∗∗ −0.0373∗∗∗ −0.0378∗∗∗ −0.0419∗∗∗ −0.0380∗∗∗

(0.0079) (0.0065) (0.0052) (0.0066) (0.0065)

netflow −0.0166∗∗∗ −0.0169∗∗∗ −0.0168∗∗∗ −0.0163∗∗∗ −0.0156∗∗∗

(0.0028) (0.0026) (0.0023) (0.0027) (0.0027)

proad 0.0511∗∗∗ 0.0557∗∗∗ 0.0518∗∗∗ 0.0564∗∗∗ 0.0830∗∗∗

(0.0190) (0.0187) (0.0168) (0.0198) (0.0225)

interst 0.0041∗∗∗ 0.0042∗∗∗ 0.0040∗∗∗ 0.0049∗∗∗ 0.0047∗∗∗

(0.0007) (0.0007) (0.0007) (0.0007) (0.0008)

avland −0.0042∗∗∗ −0.0043∗∗∗ −0.0040∗∗∗ −0.0045∗∗∗ −0.0066∗∗∗

(0.0006) (0.0006) (0.0006) (0.0007) (0.0007)

bci 0.0292∗∗ 0.0264∗∗ 0.0284∗∗∗ 0.0365∗∗ 0.0338∗∗

(0.0146) (0.0113) (0.0107) (0.0143) (0.0146)

educpc 0.0036 0.0037 0.0037∗∗ 0.0033 0.0038
(0.0026) (0.0022) (0.0018) (0.0022) (0.0027)

hwypc −0.0277 −0.0266 −0.0271 −0.0226 −0.0276
(0.0203) (0.0183) (0.0143) (0.0163) (0.0210)

metro 0.8314∗∗∗ 0.8236∗∗∗ 0.8397∗∗∗ 0.8600∗∗∗ 0.8452∗∗∗

(0.0491) (0.0463) (0.0477) (0.0520) (0.0536)

micro 0.5368∗∗∗ 0.5288∗∗∗ 0.5360∗∗∗ 0.5381∗∗∗ 0.5462∗∗∗

(0.0349) (0.0344) (.0349) (0.0359) (0.0377)

α 0.4131∗∗∗ 0.4120∗∗∗ 0.4104∗∗∗ 0.4267∗∗∗ 0.4365∗∗∗

(0.0228) (0.0225) (0.0225) (0.0413) (0.0236)

Table 62: NB-SAR estimates for the start-up firm births data set with 4 different weighting
matrices and the non-spatial NB model, robust standard errors in brackets. ∗∗ and ∗∗∗ denote a 5%

and 1% significance.
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Variable Wdnn Wcon Wnn Wd ZIP

rho 0.1685∗∗ 0.2000∗∗ 0.1878∗∗∗ 0.0030
(0.0728) (0.0784) (0.0559)

const −0.6154∗∗ −0.6130∗∗ −0.6523∗∗ −0.3650 −0.3576
(0.2810) (0.2800) (0.2787) (0.3154)

msemp 0.0286∗∗∗ 0.0282∗∗∗ 0.0290∗∗∗ 0.0300 0.0301∗∗∗

(0.0037) (0.0036) (0.0036) (0.0039)

pelt10 −0.0022 −0.0019 −0.0015 −0.0020 −0.0025
(0.0028) (0.0029) (0.0028) (0.0028)

pemt100 −0.0360∗∗∗ −0.0362∗∗∗ −0.0357∗∗∗ 0.0380 −0.0390∗∗∗

(0.0041) (0.0039) (0.0039) (0.0041)

tfdens 0.0081 0.0090 0.0045 0.0070 0.0072
(0.0118) (0.0123) (0.0115) (0.0111)

mhhi 0.0119 0.0134 0.0131 0.0260 0.0260∗∗

(0.0133) (0.0129) (0.0122) (0.0125)

pop 0.0025∗∗∗ 0.0024∗∗∗ 0.0025∗∗∗ 0.0030 0.0026∗∗∗

(0.0004) (0.0004) (0.0004) (0.0005)

cclass 0.0349∗∗∗ 0.0338∗∗∗ 0.0365∗∗∗ 0.0330 0.0327∗∗

(0.0133) (0.0130) (0.0129) (0.0135)

uer 0.0680∗∗∗ 0.0716∗∗∗ 0.0694∗∗∗ 0.0760 0.0759∗∗∗

(0.0204) (0.0201) (0.0207) (0.0230)

pedas 0.10297∗∗∗ 0.1000∗∗∗ 0.0992∗∗∗ 0.1110 0.1111∗∗∗

(0.0177) (0.0189) (0.0180) (0.0224)

awage −0.0015 −0.0045 −0.0057 −0.0090 −0.0090
(0.0114) (0.0118) (0.0113) (0.0118)

netflow −0.0117∗∗ −0.0125∗∗ −0.0138∗∗∗ −0.0150 −0.0153∗∗∗

(0.0057) (0.0055) (0.0051) (0.0053)

proad 0.0748∗∗∗ 0.0733∗∗∗ 0.0774∗∗∗ 0.1000 0.1000∗∗∗

(0.0197) (0.0204) (0.0195) (0.0215)

interst 0.0059∗∗∗ 0.0061∗∗∗ 0.0057∗∗∗ 0.0060 0.0065∗∗∗

(0.0010) (0.0009) (0.0010) (0.0010)

avland −0.0073∗∗∗ −0.0072∗∗∗ −0.0072∗∗∗ −0.0100 −0.0097∗∗∗

(0.0016) (0.0016) (0.0015) (0.0015)

bci 0.0772∗∗∗ 0.0694∗∗ 0.0759∗∗∗ 0.0640 0.0643∗∗

(0.0273) (0.0284) (0.0279) (0.0354)

educpc 0.0022 0.0029 0.0021 0.0030 0.0029
(0.0022) (0.0023) (0.0021) (0.0021)

hwypc −0.0242 −0.0262 −0.0226 −0.0290 −0.0288
(0.0222) (0.0218) (0.0216) (0.0233)

metro 1.3394∗∗∗ 1.3221∗∗∗ 1.3496∗∗∗ 1.3520 1.3520∗∗∗

(0.0996) (0.0948) (0.0967) (0.0975)

micro 0.5953∗∗∗ 0.5857∗∗∗ 0.5958∗∗∗ 0.5230 0.5233∗∗∗

(0.0625) (0.0627) (0.0628) (0.0684)

Table 63: ZIP-SAR estimates for the start-up firm births data set with 4 different weighting
matrices and the non-spatial ZIP model, robust standard errors in brackets. ∗∗ and ∗∗∗ denote a

5% and 1% significance.
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Variable Wdnn Wcon Wnn Wd HP

rho 0.1686∗∗ 0.2001∗∗ 0.1879∗∗∗ 0.0019
(0.0727) (0.0786) (0.0559) (0.3201)

const −0.6169∗∗ −0.6143∗∗ −0.6534∗∗ −0.3631 −0.3582
(0.2812) (0.2815) (0.2786) (0.8040) (17.5158)

msemp 0.0286∗∗∗ 0.0283∗∗∗ 0.0291∗∗∗ 0.0302∗∗∗ 0.0302
(0.0037) (0.0036) (0.0037) (0.0039) (0.2195)

pelt10 −0.0022 −0.0019 −0.0015 −0.0025 −0.0025
(0.0028) (0.0029) (0.0028) (0.0028) (0.1537)

pemt100 −0.0362∗∗∗ −0.0363∗∗∗ −0.0358∗∗∗ −0.0391∗∗∗ −0.0391
(0.0041) (0.0040) (0.0040) (0.0042) (0.2506)

tfdens 0.0081 0.0090 0.0045 0.0072 0.0072
(0.0118) (0.0124) (0.0116) (0.0130) (0.6192)

mhhi 0.0119 0.0134 0.0131 0.0256 0.0257
(0.0133) (0.0129) (0.0123) (0.0139) (0.6962)

pop 0.0025∗∗∗ 0.0024∗∗∗ 0.0025∗∗∗ 0.0026∗∗∗ 0.0026
(0.0004) (0.0004) (0.0004) (0.0005) (0.0250)

cclass 0.0349∗∗∗ 0.0338∗∗∗ 0.0365∗∗∗ 0.0327∗∗ 0.0327
(0.0133) (0.0131) (0.0129) (0.0140) (0.7487)

uer 0.0680∗∗∗ 0.0717∗∗∗ 0.0695∗∗∗ 0.0759∗∗∗ 0.0759
(0.0204) (0.0202) (0.0207) (0.0230) (1.2780)

pedas 0.1031∗∗∗ 0.1002∗∗∗ 0.0994∗∗∗ 0.1112∗∗∗ 0.1112
(0.0177) (0.0189) (0.0180) (0.0251) (1.2468)

awage −0.0015 −0.0045 −0.0057 −0.0090 −0.0090
(0.0113) (0.0117) (0.0115) (0.0116) (0.6583)

netflow −0.0117∗∗ −0.0125∗∗ −0.0138∗∗∗ −0.0153∗∗∗ −0.0153
(0.0057) (0.0055) (0.0051) (0.0052) (0.2924)

proad 0.0749∗∗∗ 0.0733∗∗∗ 0.0774∗∗∗ 0.1000∗∗∗ 0.1001
(0.0197) (0.0204) (0.0195) (0.0215) (1.1925)

interst 0.0059∗∗∗ 0.0061∗∗∗ 0.0057∗∗∗ 0.0065∗∗∗ 0.0065
(0.0010) (0.0009) (0.0010) (0.0010) (0.0544)

avland −0.0073∗∗∗ −0.0072∗∗∗ −0.0072∗∗∗ −0.0097∗∗∗ −0.0097
(0.0016) (0.0016) (0.0015) (0.0022) (0.0842)

bci 0.0775∗∗∗ 0.0696∗∗ 0.0761∗∗∗ 0.0646 0.0645
(0.0274) (0.0288) (0.0279) (0.0359) (1.9631)

educpc 0.0023 0.0030 0.0021 0.0030 0.0030
(0.0022) (0.0023) (0.0022) (0.0027) (0.1213)

hwypc −0.0251 −0.0271 −0.0234 −0.0298 −0.0299
(0.0229) (0.0224) (0.0224) (0.0294) (1.4328)

metro 1.3392∗∗∗ 1.3219∗∗∗ 1.3497∗∗∗ 1.3514∗∗∗ 1.3513
(0.1001) (0.0960) (0.0974) (0.0981) (5.4671)

micro 0.5956∗∗∗ 0.5859∗∗∗ 0.5963∗∗∗ 0.5234∗∗∗ 0.5233
(0.0632) (0.0636) (0.0634) (0.0689) (3.8623)

Table 64: HP-SAR estimates for the start-up firm births data set with 4 different weighting
matrices and the non-spatial HP model, robust standard errors in brackets. ∗∗ and ∗∗∗ denote a 5%

and 1% significance.
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B Further Results for the SLF Models

B.1 Monte Carlo Results for PIT Histograms

This section reports the PIT histograms for the Monte Carlo results from P-SLFM estimated

with P-SLF data and NB-SLF data, respectively (see Section 4.4.2).
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B FURTHER RESULTS FOR THE SLF MODELS

(a) λ = 0 (b) λ = 0 (c) λ = 0

(d) λ = 0.2 (e) λ = 0.2 (f) λ = 0.2

(g) λ = 0.4 (h) λ = 0.4 (i) λ = 0.4

(j) λ = 0.6 (k) λ = 0.6 (l) λ = 0.6

(m) λ = 0.8 (n) λ = 0.8 (o) λ = 0.8

Figure 20: PIT histograms of Monte Carlo results for P-SLFM. n=5000.
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B FURTHER RESULTS FOR THE SLF MODELS

(a) λ = 0 (b) λ = 0 (c) λ = 0

(d) λ = 0.2 (e) λ = 0.2 (f) λ = 0.2

(g) λ = 0.4 (h) λ = 0.4 (i) λ = 0.4

(j) λ = 0.6 (k) λ = 0.6 (l) λ = 0.6

(m) λ = 0.8 (n) λ = 0.8 (o) λ = 0.8

Figure 21: PIT histograms of Monte Carlo results for NB-SLFM estimated with P-SLFM. n=5000.
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B FURTHER RESULTS FOR THE SLF MODELS

B.2 Monte Carlo Parameter Estimates

This section contains additional Monte Carlo results for the SLF models, for which the stan-

dard specifications in Section 4.4.2 are alternated. First, a different spatial weight matrix is

employed, afterwards the parameter vector β is changed.

λ̂ β̂0

λ\n 100 1000 5000 10000 100 1000 5000 10000

RMSE

0 0.0296 0.0091 0.0038 0.0028 0.1425 0.0433 0.0177 0.0131

0.2 0.0418 0.0125 0.0060 0.0045 0.1532 0.0505 0.0229 0.0172

0.4 0.0389 0.0143 0.0063 0.0044 0.1802 0.0650 0.0281 0.0194

0.6 0.0353 0.0109 0.0056 0.0041 0.2583 0.0674 0.0335 0.0248

0.8 0.0440 0.0090 0.0053 0.0042 0.6374 0.0924 0.0484 0.0356

Bias

0 −0.0049 −0.0001 0.0002 0.0001 0.0051 0.0004 −0.0014 −0.0003

0.2 −0.0047 −0.0011 −0.0016 −0.0014 0.0081 0.0033 0.0051 0.0050

0.4 −0.0025 −0.0010 −0.0013 −0.0012 −0.0045 0.0047 0.0063 0.0057

0.6 −0.0039 0.0001 −0.0008 −0.0007 −0.0015 0.0003 0.0054 0.0049

0.8 −0.0078 −0.0028 −0.0029 −0.0028 −0.0747 −0.0002 0.0001 −0.0002

Relative bias

0 - - - - 0.0102 0.0008 −0.0028 −0.0007

0.2 −0.0236 −0.0056 −0.0079 −0.0071 0.0162 0.0067 0.0101 0.0100

0.4 −0.0064 −0.0025 −0.0032 −0.0031 −0.0089 0.0094 0.0125 0.0114

0.6 −0.0065 0.0001 −0.0013 −0.0011 −0.0031 0.0007 0.0107 0.0098

0.8 −0.0098 −0.0036 −0.0037 −0.0035 −0.1494 −0.0005 0.0002 −0.0003

β̂1 β̂2

λ\n 100 1000 5000 10000 100 1000 5000 10000

RMSE

0 0.0557 0.0215 0.0092 0.0067 0.0242 0.0080 0.0032 0.0023

0.2 0.0638 0.0221 0.0103 0.0073 0.0231 0.0074 0.0039 0.0028

0.4 0.0812 0.0262 0.0117 0.0080 0.0251 0.0105 0.0043 0.0030

0.6 0.0923 0.0297 0.0134 0.0095 0.0378 0.0091 0.0051 0.0037

0.8 0.2369 0.0351 0.0172 0.0121 0.0881 0.0121 0.0067 0.0052

Bias

0 0.0007 −0.0003 0.0007 0.0001 −0.0013 −0.0002 0.0001 0.0001

0.2 −0.0022 −0.0004 −0.0010 −0.0008 −0.0015 −0.0008 −0.0008 −0.0008

0.4 0.0017 −0.0015 −0.0007 −0.0008 −0.0003 −0.0009 −0.0011 −0.0009

0.6 0.0042 −0.0006 −0.0002 −0.0010 −0.0009 −0.0001 −0.0011 −0.0008

0.8 0.0384 −0.0009 0.0000 0.0000 0.0093 0.0001 0.0000 0.0000

Relative bias

0 0.0015 −0.0007 0.0013 0.0002 −0.0026 −0.0004 0.0003 0.0002

0.2 −0.0044 −0.0007 −0.0020 −0.0016 −0.0030 −0.0017 −0.0015 −0.0015

0.4 0.0034 −0.0030 −0.0013 −0.0017 −0.0006 −0.0019 −0.0023 −0.0019

0.6 0.0084 −0.0012 −0.0004 −0.0019 −0.0018 −0.0002 −0.0023 −0.0016

0.8 0.0768 −0.0017 −0.0001 0.0001 0.0187 0.0002 0.0000 0.0000

Table 67: Monte Carlo results for P-SLFM data with a contiguity matrix as spatial weighting
matrix. The bias is calculated as the average difference between estimates and true parameter
value. The relative bias is the absolute value of the bias divided by the true parameter value.

Values reported as 0.0000 are smaller than 0.00005.
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B FURTHER RESULTS FOR THE SLF MODELS

λ̂ β̂0

λ\n 100 1000 5000 10000 100 1000 5000 10000

RMSE

0 0.0000 0.0000 0.0000 0.0000 0.0073 0.0000 0.0000 0.0000

0.2 0.0005 0.0002 0.0001 0.0000 0.0150 0.0025 0.0008 0.0006

0.4 0.0004 0.0002 0.0001 0.0001 0.0086 0.0021 0.0007 0.0006

0.6 0.0007 0.0002 0.0001 0.0001 0.0151 0.0025 0.0008 0.0007

0.8 0.0029 0.0029 0.0031 0.0028 0.0138 0.0059 0.0031 0.0043

Bias

0 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000

0.2 0.0000 0.0000 0.0000 0.0000 −0.0019 0.0000 0.0000 0.0000

0.4 0.0000 0.0000 0.0000 0.0000 −0.0003 0.0000 0.0000 0.0000

0.6 0.0000 0.0000 0.0000 0.0000 0.0004 −0.0001 −0.0001 −0.0001

0.8 −0.0028 −0.0028 −0.0031 −0.0028 −0.0027 −0.0048 −0.0029 −0.0042

Relative bias

0 - - - - 0.0001 0.0000 0.0000 0.0000

0.2 0.0000 0.0000 0.0000 0.0000 −0.0012 0.0000 0.0000 0.0000

0.4 0.0000 0.0000 0.0000 0.0000 −0.0002 0.0000 0.0000 0.0000

0.6 −0.0001 −0.0001 −0.0001 0.0000 0.0003 −0.0001 0.0000 −0.0001

0.8 −0.0035 −0.0036 −0.0038 −0.0036 −0.0018 −0.0032 −0.0019 −0.0028

β̂1 β̂2

λ\n 100 1000 5000 10000 100 1000 5000 10000

RMSE

0 0.0018 0.0000 0.0000 0.0000 0.0010 0.0000 0.0000 0.0000

0.2 0.0064 0.0007 0.0003 0.0002 0.0017 0.0003 0.0001 0.0001

0.4 0.0035 0.0008 0.0003 0.0002 0.0013 0.0003 0.0001 0.0001

0.6 0.0045 0.0008 0.0003 0.0003 0.0024 0.0003 0.0001 0.0001

0.8 0.0028 0.0014 0.0004 0.0009 0.0021 0.0008 0.0005 0.0005

Bias

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.2 0.0007 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000

0.4 −0.0001 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000

0.6 −0.0001 0.0000 0.0000 0.0000 −0.0001 0.0000 0.0000 0.0000

0.8 0.0008 0.0005 0.0001 0.0009 0.0003 0.0007 0.0005 0.0005

Relative bias

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.2 0.0005 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000

0.4 −0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.6 0.0000 0.0000 0.0000 0.0000 −0.0001 0.0000 0.0000 0.0000

0.8 0.0005 0.0003 0.0001 0.0006 0.0002 0.0005 0.0003 0.0003

Table 68: Monte Carlo results for P-SLFM data with β = [1.5, 1.5, 1.5]. The bias is calculated as
the average difference between estimates and true parameter value. The relative bias is the

absolute value of the bias divided by the true parameter value. Values reported as 0.0000 are
smaller than 0.00005.
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B FURTHER RESULTS FOR THE SLF MODELS

B.3 Empirical Results for SLF Models

The following table displays estimation results of the SLF models for the start-up firm births

data set using alternative spatial weight matrices (see Section 4.5).

Wcon Wnn

Variable P-SLFM NB-SLFM P-SLFM NB-SLFM

λ 0.2202∗∗∗ 0.1345∗∗∗ 0.2487∗∗∗ 0.1304∗∗∗

(0.0438) (0.0188) (0.0398) (0.0160)

const −1.4865∗∗∗ −1.2060∗∗∗ −1.5958∗∗∗ −1.1837∗∗∗

(0.3686) (0.4491) (0.3861) (0.2138)

msemp 0.0339∗∗∗ 0.0531∗∗∗ 0.0351∗∗∗ 0.0531∗∗∗

(0.0052) (0.0026) (0.0053) (0.0026)

pelt10 −0.0049∗∗ 0.0054∗∗∗ −0.0060∗∗ 0.0052∗∗∗

(0.0024) (0.0013) (0.0026) (0.0013)

pemt100 −0.0322∗∗∗ −0.0222∗∗∗ −0.0339∗∗∗ −0.0218∗∗∗

(0.0048) (0.0029) (0.0052) (0.0030)

tfdens −0.0075 −0.0517∗∗∗ −0.0106 −0.0507∗∗∗

(0.0107) (0.0143) (0.0109) (0.0132)

mhhi −0.0220∗∗ 0.0226∗∗∗ −0.0274∗∗∗ 0.0212∗∗∗

(0.0094) (0.0085) (0.0086) (0.0072)

pop 0.0021∗∗∗ 0.0163∗∗∗ 0.0022∗∗∗ 0.0166∗∗∗

(0.0004) (0.0031) (0.0005) (0.0032)

cclass 0.0754∗∗∗ 0.0983∗∗∗ 0.0823∗∗∗ 0.0998∗∗∗

(0.0120) (0.0059) (0.0109) (0.0060)

uer 0.0468 0.0749∗∗∗ 0.0408 0.0721∗∗∗

(0.0321) (0.0151) (0.0350) (0.0140)

pedas 0.1530∗∗∗ 0.0539∗∗∗ 0.1559∗∗∗ 0.0535∗∗∗

(0.0232) (0.0130) (0.0240) (0.0104)

awage 0.0278∗∗∗ −0.0520∗∗∗ 0.0287∗∗∗ −0.0521∗∗∗

(0.0079) (0.0122) (0.0082) (0.0089)

netflow 0.0030 −0.0247∗∗∗ 0.0032 −0.0240∗∗∗

(0.0024) (0.0052) (0.0024) (0.0046)

proad 0.1023∗∗∗ 0.0905∗∗∗ 0.1020∗∗∗ 0.0885∗∗∗

(0.0222) (0.0340) (0.0230) (0.0254)

interst 0.0083∗∗∗ 0.0053∗∗∗ 0.0081∗∗∗ 0.0052∗∗∗

(0.0011) (0.0009) (0.0013) (0.0009)

avland −0.0076∗∗∗ −0.0060∗∗∗ −0.0074∗∗∗ −0.0059∗∗∗

(0.0017) (0.0009) (0.0017) (0.0009)

bci 0.1008∗∗ 0.0300 0.1125∗∗∗ 0.0321

(0.0414) (0.0641) (0.0427) (0.0204)

educpc 0.0048∗∗ 0.0120∗∗∗ 0.0050∗∗ 0.0119∗∗∗

(0.0021) (0.0043) (0.0021) (0.0031)

hwypc −0.0332 −0.0957∗∗∗ −0.0339 −0.0930∗∗∗

(0.0222) (0.0341) (0.0221) (0.0232)

metro 1.4780∗∗∗ 0.9824∗∗∗ 1.5866∗∗∗ 1.0004∗∗∗

(0.1331) (0.0754) (0.1480) (0.0745)

micro 0.7126∗∗∗ 0.6237∗∗∗ 0.7944∗∗∗ 0.6344∗∗∗

(0.0966) (0.0505) (0.1086) (0.0499)

α 0.4071∗∗∗ 0.4037∗∗∗

(0.0248) (0.0246)

Log L −29494 −10309 −29248 −10303

LogS 9.2792 3.3502 9.1869 3.3482

QS −0.0263 −0.0730 −0.0256 −0.0726

RPS 14.4995 23.7479 14.3704 24.6600

Table 69: Estimation results from P-SLF and NB-SLF for the start-up firm births data set with
weight matrices Wcon and Wnn. N=3078, Heteroscedasticity robust standard errors in brackets,

calculated with the sandwich formula (White, 1980), ∗∗ and ∗∗∗ denote a 5% and 1% significance,
respectively.
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C Further Results for the Panel Models

C.1 Empirical Results for the P-SLFP Model

Here, results for the P-SLFPM (see Section 5.3) using a summer dummy are displayed first.

Afterwards, the following tables contain detailed results for the model with monthly dum-

mies which is discussed in the main text.

(2) (3) (4) (5)

fixed effects fixed effects fixed effects

WPartIt 0.1685∗∗∗ 0.1529∗∗∗ 0.1427∗∗∗ 0.1272

(0.0087) (0.0306) (0.0529) (0.0699)

WPartIt−1 0.0446∗∗ 0.0401

(0.0208) (0.0517)

log(PartIIt−1) 0.8126∗∗∗ 0.1061 0.1087

(0.0066) (0.0585) (0.0967)

summer 0.0421∗∗ 0.1251∗∗∗ 0.1272∗∗∗ 0.1396∗∗∗

(0.0199) (0.0334) (0.0417) (0.0391)

Log L −26858 −223940 −223968 −223954

Table 70: Estimation results from the P-SLFPM with a summer dummy for the Pittsburgh crime
data. The estimation sample is January 2008 to December 2012. Robust standard errors in

parentheses; W is a queen contiguity spatial weighting matrix; ∗∗ and ∗∗∗ denote 5% and 1%
statistical significance.

(2) (3) (4) (5)

WPartIt x x x x

WPartIt−1 x x

log(PartIIt−1) x x x

fixed effects x x x

summer dummy x x x x

RMSFE MAFE RMSFE MAFE RMSFE MAFE RMSFE MAFE

Jan 13 4.9292 3.1812 3.1033 2.3551 3.1714 2.3768 3.1427 2.4130

Feb 13 4.5437 3.4275 3.4505 2.6449 3.7504 2.8333 3.5793 2.7536

Mar 13 4.7739 3.2971 3.4662 2.4928 3.5529 2.5942 3.4336 2.4855

Apr 13 6.1568 3.8043 3.7926 2.7609 3.7455 2.7536 3.7552 2.7246

May 13 5.1941 3.9638 4.0271 2.9855 4.4827 3.1377 3.9673 2.9710

Jun 13 5.6735 3.5652 4.3597 3.1087 4.6703 3.2754 4.4019 3.1739

Jul 13 5.6209 3.1739 3.4881 2.6739 3.6978 2.8043 3.5733 2.7391

Aug 13 7.0721 3.7681 4.0975 2.7754 4.1205 2.8333 4.2006 2.8478

Sep 13 6.7066 3.8478 3.9489 2.7826 4.0352 2.8768 3.9873 2.8551

Oct 13 6.0774 3.6594 3.3805 2.5435 3.6166 2.6014 3.3794 2.5362

Nov 13 5.5950 3.6522 3.2737 2.3986 3.3665 2.4783 3.3210 2.4638

Dec 13 5.5063 3.6377 3.7888 2.6304 3.7281 2.6377 3.8795 2.7174

Average 5.6541 3.5815 3.6814 2.6793 3.8282 2.7669 3.7184 2.7234

Table 71: Point forecast evaluation of P-SLFPM with summer dummy for the Pittsburgh crime
data.

151



C
F

U
R

T
H

E
R

R
E

S
U

L
T

S
F

O
R

T
H

E
P

A
N

E
L

M
O

D
E

L
S

(2) (3) (4) (5)

WPartIt x x x x

WPartIt−1 x x

log(PartIIt−1) x x x

fixed effects x x x

summer dummy x x x x

LogS QS RPS LogS QS RPS LogS QS RPS LogS QS RPS

Jan 13 3.0496 −0.0805 2.4057 2.4310 −0.1091 1.6185 2.4598 −0.1051 1.6647 2.4504 −0.1070 1.6492

Feb 13 2.9485 −0.0664 2.4451 2.4953 −0.1061 1.8504 2.5480 −0.1039 1.9553 2.5234 −0.1033 1.8818

Mar 13 3.2974 −0.0739 2.4607 2.4990 −0.1151 1.7690 2.5184 −0.1122 1.8351 2.4927 −0.1154 1.7686

Apr 13 3.4554 −0.0540 2.9145 2.5987 −0.1034 1.9487 2.6080 −0.1026 1.9626 2.5957 −0.1043 1.9452

May 13 3.3551 −0.0442 2.8986 2.6515 −0.1064 2.1106 2.7288 −0.1033 2.2756 2.6422 −0.1075 2.0804

Jun 13 3.1610 −0.0743 2.6725 2.7977 −0.0908 2.2389 2.8571 −0.0888 2.3596 2.8064 −0.0896 2.2508

Jul 13 2.9655 −0.0744 2.3540 2.5020 −0.1079 1.8285 2.5519 −0.1046 1.9386 2.5250 −0.1070 1.8667

Aug 13 3.3551 −0.0572 2.8515 2.6245 −0.1160 2.0350 2.6586 −0.1132 2.0889 2.6597 −0.1142 2.0913

Sep 13 3.2466 −0.0630 2.8987 2.5571 −0.1150 1.9635 2.5991 −0.1117 2.0342 2.5794 −0.1124 2.0075

Oct 13 3.1734 −0.0578 2.7286 2.4644 −0.1193 1.7571 2.4822 −0.1190 1.8261 2.4755 −0.1184 1.7642

Nov 13 3.1855 −0.0627 2.7033 2.3332 −0.1289 1.6607 2.3551 −0.1250 1.7090 2.3454 −0.1272 1.6845

Dec 13 3.1722 −0.0735 2.6904 2.4921 −0.1332 1.8875 2.4831 −0.1320 1.8579 2.5166 −0.1300 1.9242

Average 3.1971 −0.0652 2.6686 2.5372 −0.1126 1.8890 2.5708 −0.1101 1.9590 2.5510 −0.1114 1.9095

Table 72: Scoring rules of density forecasts from P-SLFPM with summer dummy for the Pittsburgh crime data. ŷiT+1 ∼ Po(µ̂iT+1 = ̂E[yiT+1|.]).
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(1) (2) (3) (4) (5)

WPartIt x x x x x

WPartIt−1 x x

PartIIt−1 x x x x

fixed effects x x x

time dummies x x x x

RMSFE MAFE RMSFE MAFE RMSFE MAFE RMSFE MAFE RMSFE MAFE

Jan 13 4.7457 3.2029 4.7028 3.2464 2.9952 2.1884 3.0288 2.2319 3.0657 2.2246

Feb 13 4.4673 3.4203 4.2758 2.9638 2.8233 2.1159 2.7452 2.0725 2.8194 2.1232

Mar 13 4.6974 3.2536 4.7105 3.3188 3.4829 2.5362 3.4631 2.5000 3.4599 2.5362

Apr 13 6.1432 3.9130 6.1426 3.8043 3.8307 2.7899 3.8505 2.8261 3.8382 2.7899

May 13 5.2316 3.9348 5.2847 4.0145 3.8420 2.9058 4.1980 3.0580 3.7936 2.8841

Jun 13 5.6202 3.6159 5.5769 3.6087 3.9791 2.9203 4.1380 2.9493 4.0154 2.9783

Jul 13 5.4100 3.1522 5.4785 3.2754 3.3297 2.5942 3.5763 2.7464 3.4093 2.6377

Aug 13 6.8826 3.7319 6.8079 3.9275 4.1064 2.8043 4.1868 2.9203 4.2169 2.8841

Sep 13 6.5097 3.8116 6.5779 3.8043 3.8373 2.6087 3.9955 2.7029 3.8183 2.6087

Oct 13 5.8117 3.7029 5.7879 3.6884 3.5509 2.6667 3.6435 2.7101 3.6286 2.6884

Nov 13 5.3717 3.6522 5.4407 3.6159 3.2348 2.3623 3.3922 2.5072 3.3166 2.4493

Dec 13 5.3805 3.6014 5.3024 3.5797 3.7965 2.5870 3.6968 2.5652 3.8523 2.6232

Average 5.5226 3.5827 5.5074 3.5707 3.5674 2.5900 3.6596 2.6492 3.6029 2.6190

Table 73: Point forecast evaluation of P-SLFPM for the Pittsburgh crime data.
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(1) (2) (3) (4) (5)

WPartIt x x x x x

WPartIt−1 x x

PartIIt−1 x x x x

fixed effects x x x

time dummies x x x x

LogS QS RPS LogS QS RPS LogS QS RPS LogS QS RPS LogS QS RPS

Jan 13 3.1036 −0.0796 2.4149 3.0839 −0.0774 2.4567 2.4032 −0.1157 1.5580 2.4227 −0.1123 1.5772 2.4115 −0.1153 1.5695

Feb 13 2.9819 −0.0681 2.4413 2.8760 −0.0906 2.1988 2.2715 −0.1300 1.4613 2.2756 −0.1294 1.4618 2.2914 −0.1274 1.4854

Mar 13 3.3814 −0.0742 2.4438 3.3567 −0.0713 2.4778 2.5130 −0.1133 1.8036 2.5088 −0.1132 1.8127 2.5063 −0.1138 1.7957

Apr 13 3.5075 −0.0508 2.9602 3.5294 −0.0526 2.9349 2.6060 −0.1027 1.9702 2.6236 −0.1011 1.9957 2.6103 −0.1030 1.9823

May 13 3.4177 −0.0424 2.9316 3.4282 −0.0414 2.9757 2.6204 −0.1088 2.0315 2.6825 −0.1065 2.1643 2.6156 −0.1096 2.0128

Jun 13 3.2115 −0.0728 2.7031 3.2003 −0.0735 2.6924 2.7056 −0.0945 2.0702 2.7398 −0.0942 2.1283 2.7177 −0.0929 2.0926

Jul 13 2.9663 −0.0707 2.3216 2.9759 −0.0694 2.3776 2.4766 −0.1100 1.7729 2.5241 −0.1067 1.8760 2.4944 −0.1093 1.8025

Aug 13 3.3592 −0.0566 2.8400 3.3461 −0.0537 2.9084 2.6356 −0.1153 2.0511 2.6819 −0.1117 2.1238 2.6705 −0.1136 2.1071

Sep 13 3.2383 −0.0616 2.8727 3.2495 −0.0625 2.8709 2.5052 −0.1234 1.8643 2.5475 −0.1202 1.9289 2.5145 −0.1219 1.8798

Oct 13 3.1921 −0.0542 2.7397 3.1896 −0.0538 2.7554 2.5205 −0.1125 1.8429 2.5366 −0.1110 1.8879 2.5419 −0.1105 1.8735

Nov 13 3.2143 −0.0603 2.7043 3.2142 −0.0610 2.6895 2.3322 −0.1291 1.6588 2.3597 −0.1243 1.7181 2.3436 −0.1273 1.6810

Dec 13 3.2322 −0.0695 2.7037 3.2213 −0.0697 2.7049 2.4860 −0.1364 1.8585 2.4764 −0.1348 1.8309 2.5042 −0.1340 1.8838

Average 3.2338 −0.0634 2.6731 3.2226 −0.0647 2.6703 2.5063 −0.1160 1.8286 2.5316 −0.1138 1.8755 2.5185 −0.1149 1.8472

Table 74: Scoring rules of density forecasts from P-SLFPM for the Pittsburgh crime data. ŷiT+1 ∼ Po(µ̂iT+1 = ̂E[yiT+1|.]).
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C FURTHER RESULTS FOR THE PANEL MODELS

C.2 Empirical Results for the Dynamic Panel Model with

Multiplicative Fixed Effects

This section contains the results of the dynamic panel model with multiplicative fixed effects

(see Section 5.4) using a summer dummy, as well as the detailed results for the specifications

discussed in the main text which employ monthly dummies.

(1) (2) (3)

PartIt−1 0.0297 0.0626 0.4102

(0.3498) (0.2052) (0.9670)

WPartIt 0.6264 1.0539

(0.4063) (2.0784)

WPartIt−1 −0.0603 0.2823

(0.3184) (0.2077)

log(PartIIt−1) 0.4854 −0.0774 1.5706

(1.7490) (0.6553) (6.1786)

Summer 0.2412 −0.0942 −0.5537

(2.6811) (3.5259) (4.5134)

Sargan 0.0001 0.0002 0.0017

[1.0000] [1.0000] [1.0000]

Table 75: Estimation results from the multiplicative fixed effects model with summer dummy for
the Pittsburgh crime data. The estimation sample is January 2008 to December 2012. Standard

errors in parentheses; W is a queen contiguity spatial weighting matrix; ∗∗ and ∗∗∗ denote 5% and
1% statistical significance.

(1) (2) (3)

PartIt−1 x x x

WPartIt x x

WPartIt−1 x x

log(PartIIt−1) x x x

summer dummy x x x

RMSFE MAFE RMSFE MAFE RMSFE MAFE

Jan 13 6.3975 3.8551 10.8964 8.3696 35.0525 9.6667

Feb 13 4.7610 3.5217 4.6811 3.4928 9.4282 5.6449

Mar 13 4.6943 3.4565 4.7898 3.5217 5.6773 4.1739

Apr 13 7.3834 4.7609 6.9413 4.5000 22.4359 9.8913

May 13 6.1479 4.4058 5.9026 4.1014 17.3029 7.7971

Jun 13 6.3731 4.5145 6.2479 4.4420 24.3211 8.1667

Jul 13 6.3045 3.9928 7.6447 5.6449 19.5926 7.1594

Aug 13 4.9152 3.6522 4.3171 3.3478 10.2073 6.0435

Sep 13 5.8198 3.8261 5.5443 3.6812 27.2823 9.8623

Oct 13 4.5802 3.3986 4.6757 3.4420 7.8482 4.9710

Nov 13 5.2212 3.7391 5.0440 3.6449 13.9860 6.3478

Dec 13 6.2537 4.2536 6.2241 4.2029 21.1031 6.9348

Average 5.7376 3.9481 6.0758 4.3659 17.8531 7.2216

Table 76: Point forecast evaluation of the multiplicative fixed effects model with summer dummy
for the Pittsburgh crime data.
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(1) (2) (3) (4) (5)

PartIt−1 x x x x x

WPartIt x x x x

WPartIt−1 x x x

log(PartIIt−1) x x x x x

time dummies x x x

RMSFE MAFE RMSFE MAFE RMSFE MAFE RMSFE MAFE RMSFE MAFE

Jan 13 6.8271 4.0000 5.8508 3.6667 36.0714 9.7826 7.2372 4.1449 6.2118 3.7464

Feb 13 4.6415 3.4130 4.3862 3.2681 9.3843 5.6159 4.9454 3.6739 4.6819 3.5000

Mar 13 4.6811 3.4348 4.5636 3.3478 5.8588 4.1957 4.7868 3.4928 4.7860 3.5145

Apr 13 7.5939 4.8696 7.0072 4.5507 23.4126 9.7609 7.8850 4.9855 7.0243 4.5290

May 13 6.1972 4.3043 5.9381 4.1014 15.7347 7.3188 6.2843 4.3623 5.9338 4.1087

Jun 13 6.4847 4.5580 6.2130 4.4420 22.7995 7.7899 6.6042 4.5870 6.2797 4.4638

Jul 13 6.3177 4.0290 5.9338 3.8913 19.6506 7.1159 6.4807 4.0870 5.9509 3.8913

Aug 13 4.9731 3.7029 4.8492 3.6594 8.6510 5.5362 5.0188 3.7246 4.8335 3.5942

Sep 13 6.1444 4.1304 5.5730 3.6667 24.4388 9.1812 6.0762 3.9928 5.5443 3.6812

Oct 13 4.8447 3.5435 4.7746 3.5217 7.4547 4.7174 4.7212 3.5072 4.6780 3.4493

Nov 13 5.2963 3.8478 5.1259 3.7826 12.0545 5.9493 5.4534 3.8986 5.0727 3.6594

Dec 13 6.3850 4.3188 6.2693 4.2319 27.0225 8.1594 6.5203 4.3406 6.2837 4.2101

Average 5.8656 4.0127 5.5404 3.8442 17.7111 7.0936 6.0011 4.0664 5.6067 3.8623

Table 77: Point forecast evaluation of the multiplicative fixed effects model for the Pittsburgh crime data.
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C FURTHER RESULTS FOR THE PANEL MODELS

C.3 Empirical Results for the Dynamic Panel Model with

Additive Fixed Effects

This last section reports the results of the dynamic panel model with additive fixed effects

(see Section 5.5) using a summer dummy, as well as the detailed results for the specifications

discussed in the main text which employ monthly dummies.

(1) (2) (3) (5)

PartIt−1 0.0653∗∗∗ 0.0396 0.0236 0.0776∗∗∗

(0.0207) (0.0247) (0.0236) (0.0178)

WPartIt 0.9207∗∗∗ 0.3684 0.8246∗∗∗

(0.1651) (0.2522) (0.0823)

WPartIt−1 0.0178 0.0348 −0.0048

(0.0486) (0.0261) (0.0477)

log(PartIIt−1) −1.0567 0.6299∗∗∗ 0.7990∗∗∗

(5.7351) (0.1621) (0.0204)

Summer −0.7181 0.2769 0.8857∗∗∗ 0.2696

(0.4923) (0.4915) (0.1999) (0.3999)

Sargan 0.0913 0.1140 0.1163 0.0247

[1.0000] [1.0000] [1.0000] [0.9999]

Table 78: Estimation results from the non-linear additive fixed effects model with summer dummy
for the Pittsburgh crime data, g(xit) = exp(xitβ). The estimation sample is January 2008 to

December 2012. Standard errors in parentheses; W is a queen contiguity spatial weighting matrix;
∗∗ and ∗∗∗ denote 5% and 1% statistical significance.

(1) (2) (3) (5)

PartIt−1 x x x x

WPartIt x x x

WPartIt−1 x x x

log(PartIIt−1) x x x

summer dummy x x x x

RMSFE MAFE RMSFE MAFE RMSFE MAFE RMSFE MAFE

Jan 13 4.2264 3.1957 4.3788 3.3913 4.8611 3.7899 4.2767 3.1739

Feb 13 4.0638 3.0942 4.1046 3.1232 4.4306 3.3986 4.0984 3.1304

Mar 13 4.6039 3.5580 4.5739 3.5290 4.6070 3.5580 4.5556 3.4638

Apr 13 5.7294 4.1449 5.5358 4.0072 5.5795 4.0290 4.8871 3.5652

May 13 5.1259 3.6812 5.9618 4.4565 5.5808 4.1739 5.3771 4.0435

Jun 13 5.4686 4.0507 5.5397 4.1087 5.8092 4.3841 5.3263 3.9058

Jul 13 4.4632 3.3551 4.4274 3.3116 5.1288 3.8986 4.3879 3.2971

Aug 13 4.3197 3.2681 4.3489 3.2899 5.1330 3.9420 4.3138 3.2899

Sep 13 5.1633 3.5725 7.6053 5.1449 5.6862 3.8261 5.1506 3.5000

Oct 13 5.5599 4.0870 5.5069 4.0507 4.7404 3.6739 4.6920 3.3478

Nov 13 4.2944 3.1812 4.6827 3.6522 4.9651 3.8406 4.2238 3.1594

Dec 13 5.0641 3.8768 4.9241 3.6812 4.9454 3.6884 4.8663 3.6522

Average 4.8402 3.5888 5.1325 3.8122 5.1222 3.8502 4.6796 3.4607

Table 79: Point forecast evaluation of the non-linear additive fixed effects models with summer
dummy for the Pittsburgh crime data, g(xit) = exp(xitβ).
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(1) (2) (3)

PartIt−1 0.0735∗∗∗ 0.0865∗∗∗ 0.0462∗∗

(0.0179) (0.0197) (0.0184)

WPartIt 1.1051∗∗∗ 1.5961∗∗∗

(0.2629) (0.3679)

WPartIt−1 0.0106 0.0379

(0.0399) (0.0374)

log(PartIIt−1) −0.7010 −2.3338 2.7099∗∗∗

(0.8068) (1.2130) (0.1987)

summer −0.7953 −1.5875∗∗ 1.1295∗∗∗

(0.5506) (0.7233) (0.3309)

Sargan 0.0760 0.0571 0.1393

[1.0000] [1.0000] [1.0000]

Table 80: Estimation results from the linear additive fixed effects model with summer dummy for
the Pittsburgh crime data, g(xit) = xitβ. The estimation sample is January 2008 to December

2012. Standard errors in parentheses; W is a queen contiguity spatial weighting matrix; ∗∗ and ∗∗∗

denote 5% and 1% statistical significance.

(1) (2) (3)

PartIt−1 x x x

WPartIt x x

WPartIt−1 x x

log(PartIIt−1) x x x

summer dummy x x x

RMSFE MAFE RMSFE MAFE RMSFE MAFE

Jan 13 4.7143 3.6884 13.4579 9.1304 4.6219 3.5797

Feb 13 12.3951 9.3333 19.5163 13.0000 4.3121 3.3768

Mar 13 4.6780 3.5507 5.5384 4.3261 4.5309 3.4565

Apr 13 5.4214 4.1014 16.7267 11.7101 5.2689 4.0072

May 13 10.9167 8.3768 10.1317 7.5942 5.3406 3.9710

Jun 13 5.3188 3.8841 5.3202 3.9130 5.3270 3.9420

Jul 13 4.4175 3.2971 4.4151 3.2754 4.5253 3.4348

Aug 13 4.3163 3.3116 10.2999 9.4493 4.7304 3.6957

Sep 13 9.5246 7.6449 11.0552 8.0145 5.3710 3.7609

Oct 13 24.4961 15.8841 6.0834 4.6449 4.6835 3.5290

Nov 13 4.4510 3.3768 5.1591 4.1087 4.6819 3.6304

Dec 13 15.7914 10.7029 21.9627 13.8551 4.8252 3.6159

Average 8.8701 6.4293 10.8055 7.7518 4.8516 3.6667

Table 81: Point forecast evaluation of the linear additive fixed effects model with summer dummy
for the Pittsburgh crime data, g(xit) = xitβ.

158



C
F

U
R

T
H

E
R

R
E

S
U

L
T

S
F

O
R

T
H

E
P

A
N

E
L

M
O

D
E

L
S

(1) (2) (3) (4) (5)

PartIt−1 x x x x x

WPartIt x x x x

WPartIt−1 x x x

log(PartIIt−1) x x x x

monthly dummies x x x x

RMSFE MAFE RMSFE MAFE RMSFE MAFE RMSFE MAFE RMSFE MAFE

Jan 13 4.8797 3.8261 4.6664 3.6159 4.9935 3.8768 4.3871 3.2609 5.2496 4.0507

Feb 13 4.1450 3.1667 4.0136 3.0362 4.2032 3.2029 4.1798 3.1957 4.1117 3.1377

Mar 13 4.5165 3.4275 4.5373 3.4275 4.5707 3.4565 7.3391 5.7609 4.3738 3.3333

Apr 13 5.1906 3.7681 4.8871 3.6232 5.4970 3.9710 36.9568 34.9928 4.9782 3.6667

May 13 5.3872 3.8913 5.0684 3.6159 5.5168 4.0145 5.7269 4.2029 5.0051 3.5435

Jun 13 5.5325 4.1014 5.4706 4.0435 5.7647 4.3333 6.0893 4.4565 5.3297 3.9565

Jul 13 4.8968 3.7029 4.3381 3.2101 5.3031 4.0217 4.6540 3.5435 4.7549 3.6087

Aug 13 4.8469 3.7391 4.6974 3.6304 5.0898 3.9348 4.4216 3.4348 4.3920 3.3188

Sep 13 5.4167 3.5870 5.2378 3.5652 5.7167 3.7246 5.1780 3.5507 5.1556 3.4928

Oct 13 4.8327 3.5725 4.7792 3.5072 4.8938 3.6594 4.8477 3.4275 4.8222 3.4420

Nov 13 4.6376 3.6232 4.4494 3.4058 4.9424 3.8623 4.2469 3.1957 4.3622 3.2754

Dec 13 5.0123 3.7319 4.7966 3.5580 5.0260 3.7536 4.9738 3.7391 4.9964 3.7319

Average 4.9412 3.6781 4.7451 3.5199 5.1265 3.8176 7.7501 6.3967 4.7943 3.5465

Table 82: Point forecast evaluation of the non-linear additive fixed effects model for the Pittsburgh crime data, g(xit) = exp(xitβ).
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(1) (2) (3) (4)

PartIt−1 x x x x

WPartIt x x x

WPartIt−1 x x

log(PartIIt−1) x x x x

monthly dummies x x x

RMSFE MAFE RMSFE MAFE RMSFE MAFE RMSFE MAFE

Jan 13 4.7784 3.7319 4.4510 3.4058 4.8139 3.7536 4.3862 3.2391

Feb 13 4.0271 3.1449 3.9572 2.9928 4.0522 3.1739 4.3489 3.3768

Mar 13 4.4802 3.4203 4.2936 3.2609 4.4859 3.4275 5.2184 3.9855

Apr 13 5.1584 3.8406 4.9593 3.5942 5.3263 4.0362 7.6267 6.1232

May 13 5.1485 3.7246 5.0007 3.5725 5.2716 3.8043 11.5980 10.5870

Jun 13 5.3757 3.9710 5.2805 3.8696 5.4267 4.0290 5.6376 4.1304

Jul 13 4.4923 3.3551 4.4036 3.3043 4.6672 3.5507 4.6227 3.4420

Aug 13 4.5794 3.5942 4.4729 3.4565 4.7777 3.7391 4.4093 3.4275

Sep 13 5.2254 3.5942 5.1633 3.4855 5.3697 3.7319 5.2094 3.6159

Oct 13 4.8124 3.5072 4.7777 3.4058 4.9123 3.5797 4.7296 3.3551

Nov 13 4.4932 3.4348 4.4003 3.3188 4.5755 3.5580 4.3614 3.3261

Dec 13 4.8574 3.6377 4.7686 3.5507 4.8931 3.6812 4.9174 3.7029

Average 4.7857 3.5797 4.6607 3.4348 4.8810 3.6721 5.5888 4.3593

Table 83: Point forecast evaluation of the linear additive fixed effects model for the Pittsburgh crime data, g(xit) = xitβ.
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