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Abstract 

The analyses of 15 autosomal and 23 Y-chromosome DNA STR loci in five rural populations from the 

Caucasus, namely four ethnically Georgian and one ethnically Armenian populations, indicated that two 

populations of Georgians - one from the west and the other one from the east of the Greater Caucasus 

Mountains - were both patrilineally and autosomally most differentiated from each other, and the other 

populations of Georgians and Armenians held an intermediate position between those two. This pattern 

may be due to human dispersal from two distinct glacial refugia in the last glacial period and the early 

Holocene, followed by less gene flow among the populations from the Greater Caucasus than those 

from the rest of the Caucasus, where the populations have undergone substantial admixture in historical 

time. This hypothesis is supported by a strong correlation between genetic differentiation among the 

populations and landscape permeability to human migrations. The latter is determined by terrain 

ruggedness, forest cover, and snow cover. Although geographic patterns of autosomal and Y-

chromosome DNA are not fully concordant, both are influenced by landscape permeability, and show a 

similar east-west gradient. Our results suggest that this permeability was a stronger factor limiting gene 

flow among human populations in the Caucasus than ethnic or linguistic boundaries. 
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The human population of the Caucasus, the mountain region between the Black and Caspian 

Seas, is relatively well studied with molecular genetic methods (Bulayeva et al., 2003; Nasidze et al., 

2003, 2004a,b; Marchiani et al., 2008; Balanovsky et al., 2011; Yunusbayev et al., 2012; Tarkhnishvili et 

al., 2014). People that belong to different ethnic and linguistic groups of the Caucasus are genetically 

closest to the populations of West Asia and Eastern Mediterranean, although they show certain genetic 

distinctiveness (Nasidze et al., 2004b; Balanovsky et al., 2011; Busby et al., 2015). There are also 

substantial genetic differences between the ethnic and subethnic groups of the Caucasus, which often 

exceed the differences between geographically more distant human populations of Europe (Nasidze et 

al., 2004b). The local genetic differences follow geographic gradients rather than linguistic disruptions 

(Marchiani et al., 2008) and genetics may differ between populations of the same ethnic group due to 

living in different physical environment (Tarkhnishvili et al., 2014).  

There is a clear east-west gradient in Y-chromosome DNA haplogroup frequencies in the 

Caucasus. People with Y-chromosome DNA haplogroup G2a prevail in the west of the Greater Caucasus 

Mountains regardless of ethnic or linguistic affiliation, whereas people with the haplogroups J1 and J2 

dominate in the east of the Greater Caucasus (Balanovsky et al., 2011; Yunusbayev et al., 2012; 

Tarkhnishvili et al., 2014). A similar east-west gradient is observed in ethnic groups south of the Greater 

Caucasus, and holds for the entire ethnic range of Georgians (Tarkhnishvili et al., 2014). 

This east-west gradient of the frequencies of Y-chromosome DNA haplogroups G and J across 

the Caucasus is probably inherited from the Paleolithic time. Haplogroup J is almost certainly derived 

from ancestral populations in the Fertile Crescent (Cinnioğlu et al., 2004; Battaglia et al., 2008; Tofanelli 

et al., 2009;Grugni et al., 2012; Gavashelishvili and Tarkhnishvili, 2016), where people of this haplogroup 

probably survived the last glacial period, including the Last Glacial Maximum (LGM). Haplogroup G 

(which diverged from the other haplogroups ca. 50 kya (Wei et al., 2012; Karmin et al., 2015), most likely 

persisted during the last glacial period in the Caucasus (Gavashelishvili & Tarkhnishvili, 2016). The 
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majority of the languages spoken in the northeastern Caucasus, the region where Y-chromosome DNA 

haplogroup J dominates, are shown to be related to a written language of ancient Urartu, the political 

state that was located in the north of the Fertile Crescent (Diakonoff & Starostin, 1986). This is a strong 

argument that suggests that Caucasians bearing haplogroup J expanded to their current range from the 

Fertile Crescent. Gavashelishvili & Tarkhnishvili (2016) suggest that this mainly happened in the early 

Holocene, when natural barriers between the human refugia of Fertile Crescent and West Caucasus 

disappeared as a result of post-glacial warming. They showed rough correspondence of individual Y-

chromosome DNA haplogroups distribution to the refugia, modeled on the basis of paleovegetation 

data and known human locations from Last Glacial Maximum. Hence, the current pattern of the Y-

chromosome DNA haplogroup distributions in the Caucasus may be inherited from the early post-glacial 

period, perhaps the Paleolithic or early Neolithic. It appears that so far the integration of Caucasian 

populations into ethnic and political units has not completely erased genetic differences between these 

populations. This is evident from differences in the frequency of Y-chromosome DNA lineages between 

local populations of Georgians (Tarkhnishvili et al., 2014), even in spite of considerable gene flow among 

local populations, especially since industrial era in the XIX-XX centuries. In spite of a clear pattern of Y-

chromosome DNA haplogroup differentiation in the Caucasus largely maintained through the 

combination of male territoriality and landscape heterogeneity, autosomal markers are expected to 

exhibit a higher degree of admixture due to female-biased gene flow (Sielstad et al., 1998; Nasidze et al., 

2004a). 

In this study, we tested whether the genetic structure of differentiated human populations 

could be detected for a small region between the Greater Caucasus and Eastern Turkey, using a limited 

set of autosomal microsatellite loci. We characterized the factors accounting for the observed patterns, 

testing ethnicity, linguistic differences, geographic distance, and landscape structure. We also compared 

autosomal differentiation among the human populations with Y-chromosomal differentiation. For this 
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purpose, we compared autosomal and Y-chromosome DNA profiles of Georgians from four provinces of 

the country, as well as Armenians of Eastern Anatolian origin. We showed how the geographic 

landscape within a limited geographic space has determined the processes of population expansion and 

limiting gene flow in the past, and has helped to maintain the resulting pattern until the present. 

 

Material and Methods 

Sampling. We collected DNA samples from five geographically and linguistically distinct groups from six 

historical provinces of Georgia (Fig 1): (1) 25 Georgians from the mountain province of Tusheti in the 

eastern Greater Caucasus, speaking a distinct local dialect of Georgian language (Kartvelian linguistic 

family) and overwhelmingly represented by Y-chromosome DNA lineage J2 (Tarkhnishvili et al., 2014); 

(2) 26 Georgians from the mountain province of Svaneti in the western Greater Caucasus, speaking a 

distinct language of the Kartvelian linguistic family and overwhelmingly represented by Y-chromosome 

DNA lineage G2a; (3) 32 Georgians from the country’s western province of Samegrelo (mostly in lowland 

or foothills of the Greater Caucasus), speaking a distinct language of the Kartvelian linguistic family and 

mostly represented by the haplogroups J2, G2a, R1b, L; (4) 30 Georgians from the country’s southern 

province of Meskheti in the Lesser Caucasus, speaking a local dialect of Georgian (Kartvelian linguistic 

family) and (5) 21 Armenians from the country’s southern province of Javakheti, descendants of the 

families displaced from Mush and Erzurum provinces of eastern Turkey in the early 19th century (Fig 1). 

The samples were collected from locals with no ancestors from outside of the respective 

ethnic/geographic population over the last three generations. DNA was extracted from10-12 male chest 

hairs. Extraction was performed using Qiagen DNeasy Blood and Tissue kit, following the manufacturer’s 

recommendations (QIAGEN, Valencia, California, USA). 
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Ethics Statement. The research team members, through their contacts in the studied communities, 

enquired whether locals would voluntarily participate in genetic research that would enable them to 

retrace their remote ancestry based on their Y-chromosome DNA haplogroup identification. There was a 

verbal agreement made with volunteer donors of DNA samples, according to which the results would be 

communicated, electronically or in hard copy with participants individually. Participants were informed 

that, upon the completion of the lab study, the research would be published without mentioning the 

names of sample donors.  Those who agreed provided us with the envelopes containing their chest 

hairs, with the birth place of their ancestors (last 3 generations) written on the envelope.  In accordance 

with the preferences of the sample donors, the agreement was verbal and not written. The envelopes 

are stored as evidence of voluntary provision of the samples and the related information. Analysis of  

data was done anonymously,  using only location and ethnic information; only the first author of the 

manuscript had access to names associated with samples. Therefore, this study was based on non-

invasive and non-intrusive sampling (volunteers provided hair samples they collected themselves), and 

the information destined for open publication does not contain any personal information. The study 

methodology was discussed in detail with the members of the Ilia State University Commission for 

Ethical Issues before the field survey started, and it was decided by the Commission that the formal 

ethical approval was not needed for conducting this study.  This is confirmed in a letter from the 

Commission chairman, a copy of which has been provided to the journal editor as part of the submission 

process. 

 

PCR, amplification, and visualization. All samples were genotyped for 16 nuclear STR loci using the 

PowerPlex® 16 HS System. The PowerPlex® 16 HS kit is used for human identification applications 

including forensic analysis and relationship testing (Levadokou et al., 2001; Ensenberger et al., 2010). 

The system allows co-amplification and three color detection of sixteen loci (fifteen STR loci and 
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Amelogenin), including Penta E, D18S51, D21S11, TH01, D3S1358, FGA, TPOX, D8S1179, vWA, 

Amelogenin, Penta D, CSF1PO, D16S539, D7S820, D13S317 and D5S818 (16 HS technical manual 

Promega (Edwards et al., 1992; Bacher et al., 2000; Ensenberger et al., 2010)). Only two pairs of the 

selected STR markers are located on the same chromosome: CSF1PO + D5S818 (chromosome 5), and 

D21S11 + Penta D (chromosome 21), 11 autosomal markers are all located on different chromosomes 

(Edwards et al., 1992), and the 16th marker is used for sex determination. PCR was run with PowerPlex 

16 HS System kit according to the following protocol: 10 μl total volume, with 4–6 μl template DNA, 

2 μl PowerPlex® HS 5X Master Mix, 1μl PowerPlex® 16 HS 10X Primer Pair Mix and Amplification Grade 

water. Thermal cycling was performed at 96 °C for 2 min, 9 cycles of 94 °C for 45 s, 60 °C for 35s, 70 °C 

for 45 s, 17 cycles of 90 °C for 30 s, 60 °C for 30s, 70 °C for 45 s followed by final 60 °C 10 min. Amplicons 

were run on an ABI 3130 Automated Genetic Analyzer.  Genotypes were screened using GENEMAPPER 

v. 3.5 (Perkin- Elmer, Waltham, MA, USA). 

For identification of Y-chromosome haplogroups, the same samples were genotyped for 23 loci, 

including DYS576, DYS389I, DYS448, DYS389II, DYS19, DYS391, DYS481, DYS549, DYS533, DYS438, 

DYS437, DYS570, DYS635, DYS390, DYS439, DYS392, DYS643, DYS393, DYS458, DYS385a/b, DYS456 and 

Y-GATA-H4. STR markers were amplified according to the following protocol: in 10l total volume, with 

4–6 l template DNA, PowerPlex. Y235X Master Mix 2l, PowerPlex. Y2310X Primer Pair Mix 1 l. 

Thermal cycling was performed at 95 °C for 2 min, 30 cycles of 94 °C for 20 s, 61 °C for 1 min, 72 °C for 

45 s, followed by final extension at 60 °C for 20 min. Amplicons of both autosomal and Y-chromosome 

markers were run on an ABI 3130 Automated Genetic Analyzer and CC5 Internal Lane Standard 500 Y23. 

Genotypes were screened using Genemapper v. 3.5 software package (Perkin- Elmer, Waltham, MA, 

USA). The updated recommendations of the DNA Commission of the International Society of Forensic 

Genetics for analysis of Y-STR systems were followed (Gusmão et al., 2006). The number of genotypes 

and haplotypes identified for each geographic population was: 24 of Tusheti, 26 of Svaneti, 20 of 
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Samegrelo, 30 of Meskheti, 21 Armenians for autosomal loci; 25 of Tusheti, 19 of Svaneti, 32 of 

Samegrelo, 25 of Meskheti, 21 Armenians for Y-chromosome DNA loci. 

 

Identification of Y-chromosome DNA haplogroups. Y-STR haplotypes were grouped into Y-chromosome 

DNA haplogroupsE1b1b, I2, J2, J1, G2a, L, T, R1b, using (1) the Y-DNA calculator (Athey, 2005, 2006) and 

(2) the haplogroup predictor (y-predictor) by Vadim Urasin (available at http://predictor.ydna.ru/). We 

used the approach described in a previous paper (Tarkhnishvili et al., 2014). The approach results in 

misclassification rates below 1%. The most common haplogroups were G2a, J2, J1, and R1b (see also 

Tarkhnishvili et al., 2014). 

 

Analysis of the population genetic structure. We used two different approaches for exploring the 

structure of the studied populations. The first one was a traditional approach of estimating genetic 

differentiation between the five studied populations, and in the second approach individuals were 

assigned to one of the panmictic units, inferred using Bayesian modeling. We estimated genetic 

differentiation among the populations using Rst values, an analogue of ordinary F statistics commonly 

applied for microsatellite genotypes, which takes into account the extent of differences between 

individual alleles at the same locus (Slatkin, 1995; Excoffier, 2001). Rst values were calculated using the 

software ARLEQUIN v3.5 (Excoffier, Smouse and Quattro, 1992; Excoffier, Laval, and Schneider, 2005). 

We calculated both Rst based on the autosomal loci and patrilineal Rst values (hereafter RstP) using the 

Y-chromosome DNA STR profiles. 

We also measured standard indices of genetic diversity, including observed heterozygosity 

(autosolmal loci only), mean allele number and range per locus, and Garza-Williamson index (GW) (both 

autosomal and Y-chromosome DNA loci) using ARLEQUIN v3.5. GW index derives from the ratio of 

microsatellite allele number and the allele range, where low values of the index indicate a possible 
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bottleneck that a population has experienced - i.e. it can be used as an indirect measure of the effective 

population size across time (Garza & Williamson, 2001). 

For inferring spatial structure for the five studied samples, we used the matrix of pair-wise Rst 

and RstP values and their significance taken separately for the autosomal and Y-chromosome DNA 

markers. We constructed the UPGMA trees based on the genetic differentiation among the five 

populations, using the free software R (Dray and Dufour, 2007). We tested the statistical significance of 

differentiation among the tree clusters by calculating Rst/ RstP and P-values among them, using locus-

by-locus AMOVA (autosomal loci only). 

To separate the entire dataset of genotypes into the groups with a high genetic cohesiveness 

based on the autosomal markers, software STRUCTURE v2.2 (Pritchard, Stephens, and Donnelly, 2000) 

was used.  Markov chain Monte Carlo parameters were set to a burn-in period of 10,000, and 100,000 

replications after burn-in. We repeated the procedure ten times for each set of a priori delimited 

number of clusters (K) ranging from 1 to 6, in order to calculate a probability for each K as described in 

Pritchard, Wen, and Falush (2009), with the default parameter set (no prior information included). 

 

Landscape heterogeneity & genetic structuring. We used the isolation-by-resistance (IBR) model to 

incorporate data on landscape heterogeneity into genetic structuring of our study populations. IBR is 

based on the resistance distance that, as a predictor of genetic differentiation, is likely to perform better 

than Euclidean or least cost path-based distance measures (McRae, 2006). Unlike Euclidean and least-

cost distances, the IBR algorithm assumes that a disperser does not have complete knowledge of the 

landscape it is traversing and can use multiple paths to reach a destination. The resistance distance was 

calculated from relationships between random walk times and effective resistances in electronic 

networks via the software Circuitscape 4 (McRae, Shah & Mohapatra, 2013). The program models 

multiple random walk paths between populations across a resistance grid that is a raster map, wherein 
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the value of each cell indicates the relative difficulty (or resistance) of moving through that cell. The 

program treats the raster map as an electrical circuit, where cells with finite resistances are converted to 

nodes, cells with infinite resistance (absolute barriers) are dropped, and adjacent cells with zero 

resistance are consolidated into a single node. In this electrical circuit, adjacent nodes are connected by 

resistors, with resistances equal to the mean of cell values between a pair of orthogonal neighbors, and 

the mean resistance multiplied by the square root of 2 between a pair of diagonal neighbors to reflect 

the greater distance between cell centers. By injecting 1 ampere (by default) of current into each focal 

node (population) and using Kirchoff’s and Ohm’s laws, the program calculates effective resistances (i.e. 

resistance distances), current, and voltages that can then be related to ecological processes (e.g. 

individual movement and gene flow). Effective resistance acts as the ecological concept of effective 

geographic distance between populations, but incorporates multiple paths and scales linearly with 

equilibrium genetic differentiation. The current through nodes or resistors can be ecologically 

interpreted as expected net movement probabilities (i.e. movement rates) for random walkers moving 

through a heterogeneous landscape. Voltages can be used to predict the probability that random 

walkers leaving any point on a heterogeneous landscape will reach a given destination before another. 

To see whether landscape complexity acted as a barrier to gene flow among the populations, we 

performed a correlation analysis between a matrix of genetic differentiation (Rst and RstP) and those of 

resistance distances (Table S3) among major cultural and economic centers of these populations (Fig 1). 

The effect of interactions among landscape variables on gene flow was tested using the products of 

these variables (Table S3). Significance of these relationships was estimated through Mantel Tests at 

10,000 permutations, using the free software R (Dray and Dufour, 2007) and its package ade4(R Core 

Team, 2015). Also, we inferred and mapped movement rates among the five human populations, using 

the software Circuitscape 4. 
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Results 

Genetic diversity and differentiation: autosomal loci. Genetic profiles of the study populations, both 

autosomal and Y-chromosomal, are presented in Table S1. Pairwise genetic differentiation between the 

studied populations (Rst) based on the autosomal STR loci are shown in Table 1a. The highest genetic 

differentiation was observed between the Tusheti and the Svaneti populations (both ethnically 

Georgian). All other populations, including the Armenians from Mush and Erzurum regions of Turkey, did 

not show significant differentiation from each other, although some of them showed significant 

differentiation from the Tusheti and/or the Svaneti populations. 

The Svaneti, the Tusheti, and the Meskheti populations had lower observed heterozygosity than 

the two other populations. The Garza-Williamson index did not significantly differ among the 

populations (Table 2). 

 

Genetic diversity and differentiation: Y chromosome. The composition of the haplogroups was 

significantly different between the studied populations. In the Svaneti population, haplogroup G2a 

strongly dominated, whereas in the Tusheti population haplogroup J2 was the dominant one. In the rest 

of the populations, more than one haplogroup with high frequencies were present, with the most 

common being G2a, J2, R1b, J1, and L,  but in different proportions (J2 and G2a dominating in the 

Samegrelo population; J2 and R1b in the Armenian population; J1, J2 and R1b in the Meskheti 

population) (Fig 1). Similar to the data based on the autosomal loci, the highest patrilineal difference 

was between the Tusheti and Svaneti populations, as well as between these two populations and most 

of the others (Table 1b). 

Patrilineal genetic differentiation between the populations (RstP), are shown in Table 1b. The 

Svaneti population had the lowest number of alleles per locus, and the lowest allele range. The 
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Samegrelo population had the highest number of alleles per locus and the highest Garza-Williamson 

index. The Tusheti population had the lowest Garza-Williamson index (Table 2b). 

The correlation between pair-wise autosomal and patrilineal differentiation was minor and 

insignificant (Mantel-Test, r =0.208, p >> 0.05). 

 

Spatial pattern. A UPGMA tree based on the autosomal loci showed a high degree of separation 

between the Tusheti-Samegrelo cluster and the cluster including the other three populations (Fig 2a). 

The Rst value was significantly different from zero when these two clusters were compared, but was 

insignificant when individual populations or population groups were compared within each of the two 

clusters. 

The UPGMA tree, based on patrilineal differentiation, showed a different configuration from 

that based on autosomal loci (Fig 2b). Specifically, the tree showed high patrilineal similarity between 

the Svaneti and the Samegrelo populations, which strongly differ if autosomal loci are considered, and 

the Tusheti population clustered with closely related populations from Meskheti and Armenians. The 

RstP values were highly significant when all population pairs and clusters were compared to each other, 

except the Samegrelo and the Svaneti populations. 

The Bayesian modeling with STRUCTURE, without including prior information on the sampling 

locations showed the highest support for K=2 (TableS2). The analysis showed some differentiation 

among the studied populations (Fig 3). The average proportion of the conventional cluster 1 was the 

lowest (0.348+/-0.035) for the Tusheti and the highest (0.6343+/-0.040) for the Svaneti population. The 

Meskheti population (0.426+/-0.052), the Armenians population (0.553+/-0.051) and the Samegrelo 

population (0.522+/-0.053) held intermediate positions. One-way ANOVA showed significant (p <0.0001) 

differences among the groups relative to cluster 1, with pairwise significant differences (Bonferroni test) 
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between the Tusheti and the Svaneti populations (p =0.0001), the Tusheti population and the Armenians 

(p =0.037), and the Meskheti and the Svaneti populations (p =0.011). 

 

Genetic vs geographic differences. The values of landscape resistance distances among individual 

populations are shown in Table 1d. Mantel Test showed significant (p <0.05) correlation of autosomal 

genetic differentiation (Rst) with the resistance values calculated using the combination of ruggedness, 

snow cover, and tree canopy cover. Fig 5 highlights movement rate and corridors among the five human 

populations. For paternal genetic differentiation (RstP), the highest significant correlation was with the 

resistance values calculated from snow cover time series (Table 4, Fig 4). Neither patrilineal nor 

autosomal genetic differentiation significantly correlated with simple Euclidean distances among the 

populations. 

 

Discussion 

The output of the analyses of both Y-chromosome DNA and autosomal markers presented here 

converged on the same conclusion, that landscape permeability to humans, rather than simple 

geographic distance, is critically important for maintaining the genetic differences among the 

populations across millennia in the study area.  The permeability of the landscape to human populations 

is accounted for by the interaction of ruggedness, snow cover and tree canopy cover. Snow cover was 

the most important landscape feature impeding paternal movements. As a result of harsh 

environmental conditions and challenging terrain providing a stronghold effect, populations from the 

Greater Caucasus Mountains have maintained genetic signatures that formed in pre- or early post-

glacial time, whereas the populations from areas south of the Greater Caucasus have undergone 

substantial admixture in the following millennia. 
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Our analyses demonstrated that both autosomal and Y-chromosomal genetic differentiation was 

the highest (Rst=0.108, RstP=0.348) between the Tusheti and the Svaneti populations, one from the 

east, and the other from the west of the Greater Caucasus, respectively, and the genetic differentiation 

among the populations from areas south of this mountain system were relatively low. STRUCTURE 

simulations based on the autosomal markers, without considering population information as a prior, 

also showed the highest differentiation between the Tusheti and the Svaneti populations: the 

conventional cluster 1 had 63% of the Svaneti population gene pool and only 35% of the Tusheti 

population gene pool (with intermediate values for the other three populations), and the differences 

were significant. The proportions of the Y-chromosome DNA haplogroups are also sharply different: the 

majority of the Svaneti population has the haplogroup G2a, whereas the majority of the Tusheti 

population has the haplogroup J2, and the haplogroup G2a is effectively absent from this population; 

other populations have both G2a and J2 haplogroups in different proportions. The genetic 

differentiation among the populations, both based on the autosomal and patrilineal genes, significantly 

correlated with landscape resistance distances among their geographic centers, determined by 

ruggedness of terrain, snow cover, and closed-canopy forests. In other words, landscape permeability to 

migrations has accounted for gene flow rates between the populations rather than ethno-linguistic 

barriers. 

As already mentioned in the introduction, the contrast between the compositions of major Y-

chromosome DNA haplogroups for the Western and the Eastern Greater Caucasus was described earlier 

for both the northern (Marchiani et al., 2008; Balanovsky et al., 2011; Yunusbayev  et al., 2012) and the 

southern (Tarkhnishvili et al., 2014) sides of this mountain range. This paper suggests that a similar 

transition also exists for the autosomal genes. We relate this pattern with human expansion influenced 

by landscape complexity in early post-glacial times from the Fertile Crescent area to the Eastern 

Caucasus (while the Western Caucasus was largely populated by people that settled there before or 
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during glacial period (Tarkhnishvili et al., 2014; Gavashelishvili and Tarkhnishvili, 2016), and limited gene 

flow among the Greater Caucasus settlements. 

In the introduction of this paper, we reviewed the present knowledge and hypotheses on the 

formation of human genetic patterns in the Caucasus. Our results suggest that, while gene flow 

remained low within the Greater Caucasus Mountains, and caused a distinct geographic pattern in this 

region, it was high in the post-Neolithic period among most of the West Asian populations. A recent 

study by Busby et al. (2015) also demonstrated a high degree in admixture throughout West Eurasia, but 

without investigating the situation in remote mountain regions. For this reason, the genetic 

differentiation among the populations from the areas south of the Greater Caucasus is less distinct. 

An earlier study (Yunusbayev et al., 2012) did not identify significant autosomal genetic 

differentiation between populations of the eastern and the western Greater Caucasus, even though it 

included 214 samples with the Illumina 610 K SNP markers, along with the 906 samples from throughout 

the world (Li et al., 2008; Behar et al., 2010. This study also, described relatively little differentiation in 

autosomal markers within the Caucasus region. The authors did not discuss the genetic cline going along 

the Greater Caucasus range east to west. Our study suggests the presence of concordant clines, both in 

autosomal genotypes and Y-chromosome haplotypes, going from the east to the west of the Greater 

Caucasus range. 

Previous studies suggest that the differentiation between human populations may indeed be 

strongly associated with the landscape permeability, showing higher genetic differentiation of mountain 

populations compared to lowland ones. In one of the rare cases where differences were found between 

neighboring lowland populations, Palo et al. (2009) showed significant autosomal differences (Fst, 10 

STR loci) between three parts of Finland, one of which went through a narrow bottleneck in late 

medieval time. However, the differences were very low (Fst ~ 0.003), much lower than the differences 

described here, and resolution was achieved by using very large sample numbers (over 1000). The study 
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based on the autosomal 15 STR loci in three groups of Tunisian Berbers (Hodjet-El-Khil et al., 2008) 

showed significant differentiation between one of the studied populations and the two others, and the 

pair-wise Fst values varied between 0.02-0.04. Significant differences among mountain populations are 

more common. Significant autosomal differences exist among the target Basque populations and 

between the Basques and other Europeans, but not among the rest of European ethnic groups (Zlojutro 

et al., 2006).  Even more prominent differences were recorded among populations of the Himalayas, 

whose steep and snowy slopes can potentially be no less effective barriers to human admixture than the 

mountains of the Greater Caucasus. The analysis of linguistically distant populations of the Himalayas, 

based on the 21 autosomal STR loci (Kraaijenbrink et al., 2014), showed significant differences 

(P<0.0001) between Tibeto-Burman and Indo-European speaking populations, both from southwestern 

slopes of the Himalayas, but separated by the branches of the main mountain backbone. In contrast, 

Dravidian and Indo-European speakers, whose populations are located south of the Himalayan Range in 

relatively gentle and clement terrain, did not show significant autosomal differences, although they 

speak distinct languages, have different dominant paternal lineages (Kayser et al., 2001), and geographic 

distances between the groups are much larger. To generalize the pattern, limited accessibility and 

permeability of mountain regions is an important factor for the persistence of relic genetic structures of 

humans. 

A plausible scenario of formation of the human genetic pattern in the rural areas of the 

Caucasus is described in Tarkhnishvili et al. (2014) and Gavashelishvili and Tarkhnishvili (2016). The 

recent publication describing post-glacial ancient (Paleolithic) DNA from western Georgia confirms the 

hypothesis that the migration from the Fertile Crescent to the Caucasus had already started before the 

expansion of agriculture from the Middle East: the human remains had haplogroup J (Jones et al., 2015) 

originated from the Fertile Crescent region. An earlier paper by Tofanelli et al. (2009) also suggests the 

formation of the genetic structure throughout West Asia in the Pleistocene and Early Holocene, 
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challenging widespread hypotheses that assume major expansions in historical times as critically 

important for the makeup of regional human population structure. This present paper suggests that the 

post-glacial expansion from the West Caucasus Refugium (i.e. Colchis) to the Fertile Crescent Refugium 

was almost as strong as the expansion from the Fertile Crescent to the Eastern Caucasus. This 

phenomenon is reflected in some genetic affinity of the Svaneti, the Meskheti, and the East Anatolian-

Armenian populations with a north-south decreasing cline for haplogroup G2a frequencies. However, 

after these early post-glacial expansions, the Greater Caucasus Mountains have largely preserved the 

genetic differentiation that formed 12-15 thousand years ago. 
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Table 1. Genetic and resistance differentiation among the studied populations: (a) autosomal pairwise 

genetic differentiation (Rst) with significance values (exact test) shown in parenthesis; (b) Paternal 

genetic differences (RstP) with respective p-values shown in parenthesis. Significant (P<0.05) differences 

are in boldface; (c) Euclidean distances; (d) Resistance distances based on the product of ruggedness, 

snow cover and tree canopy cover, which has the strongest correlation with Rst (see Table 4); (e) 

Resistance distances based on snow cover time series, which has the strongest correlation with RstP  

(see Table 4). 

(a) Rst Tusheti Meskheti Armenians Samegrelo 

Meskheti 0.074 (0.000)    

Armenians 0.100 (0.000) -0.034 (0.991)   

Samegrelo 0.018 (0.108) 0.014 (0.099) 0.022 (0.081)  

Svaneti 0.108 (0.000) 0.006 (0.243) -0.005 (0.477) 0.036 (0.036) 

(b) RstP Tusheti Meskheti Armenians Samegrelo 

Meskheti 0.085 (0.000)    

Armenians 0.130 (0.000) 0.050 (0.036)   

Samegrelo 0.116 (0.000) 0.067 (0.000) 0.070 (0.000)  

Svaneti 0.348 (0.000) 0.309 (0.000) 0.310 (0.000) 0.119 (0.000) 

(c) Eucl_dist (m) Tusheti Meskheti Armenians Samegrelo 

Meskheti 306583.700    

Armenians 555573.000 266347.400   

Samegrelo 419534.300 157923.500 290713.800  

Svaneti 332151.100 160303.200 37969.600 112984.600 

(d) resist_slp*snw*cnp Tusheti Meskheti Armenians Samegrelo 

Meskheti 2261.875    

Armenians 1861.464 497.095   

Samegrelo 2071.100 658.797 345.020  

Svaneti 2898.440 1586.300 1211.505 1276.085 

(e) resist_ snw Tusheti Meskheti Armenians Samegrelo 

Meskheti 2.724    
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Armenians 3.307 1.579   

Samegrelo 2.544 1.115 2.357  

Svaneti 4.801 3.378 4.597 2.182 
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Table 2. Genetic diversity indices for each of the five studied populations. The calculations are based on 

the autosomal (a) and Y-chromosome DNA (b) microsatellite loci. NA – mean number of alleles per 

locus; Obs. H – observed heterozygosity; AR – allelic range averaged for the studied loci; GW – Garza-

Williamson statistic. Significant (P<0.05) differences are in boldface. 

  NA Obs. H AR GW 

(a)      

Tusheti Mean 6.867 0.74555 6.6 0.92257 

 s.d. 2.446 0.17185 3.225 0.09212 

Meskheti Mean 7.267 0.74741 6.867 0.944 

 s.d. 2.12 0.09437 2.748 0.08747 

Armenians Mean 6.933 0.81503 6.6 0.93611 

 s.d. 1.792 0.12759 2.694 0.09757 

Samegrelo Mean 6.867 0.76155 6.333 0.94939 

 s.d. 2.503 0.13157 2.895 0.06841 

Svaneti Mean 6.867 0.71168 6.4 0.94389 

 s.d. 2.416 0.16496 2.947 0.09378 

(b)      

Tusheti Mean 4.783  6.000 0.72543 

 s.d. 1.565  2.780 0.17797 

Meskheti Mean 5.000  5.478 0.85988 

 s.d. 1.279  3.287 0.2028 

Armenians Mean 4.565  5.261 0.82229 

 s.d. 1.161  2.973 0.22861 

Samegrelo Mean 5.609  5.652 0.88845 

 s.d. 1.469  2.534 0.16834 

Svaneti Mean 3.435  3.435 0.84447 

 s.d. 0.788  1.95 0.20438 
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Table 3. The probability distribution for each of the five identified conventional clusters (STRUCTURE run 

that does not include a priori information on the sampling locations) at five studied populations. 

population cluster  Mean 

  Statistic Std. Error 

Tusheti 1 0.1181 0.04177 

2 0.7939 0.06497 

3 0.0032 0.00075 

4 0.0840 0.05759 

5 0.0007 0.00020 

Meskheti 1 0.5444 0.07605 

2 0.0124 0.00337 

3 0.0045 0.00089 

4 0.0000 0.00000 

5 0.4387 0.07817 

Armenians 1 0.9140 0.01719 

2 0.0750 0.01779 

3 0.0080 0.00133 

4 0.0000 0.00000 

5 0.0029 0.00105 

Samegrelo 1 0.6854 0.05572 

2 0.3081 0.05629 

3 0.0053 0.00085 

4 0.0002 0.00020 

5 0.0010 0.00036 

Svaneti 1 0.8097 0.06377 

2 0.0122 0.00296 

3 0.1749 0.06295 

4 0.0003 0.00021 

5 0.0026 0.00088 
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Table 4. Correlation between genetic differentiation and landscape resistance values among human 

populations (values significant at a p-value of 0.05 are in bold; see Table S3 for abbreviations). 

 

Landscape resistance Autosomal differentiation: 

r (p-value) 

Y-chromosome 

differentiation: 

r (p-value) 

Eucl_dist 0.416 (0.230) 0.067 (0.412) 

resist_snw -0.465 (0.892) 0.882 (0.011) 

resist_NPPH 0.512 (0.058) 0.664 (0.033) 

resist_slp 0.612 (0.051) 0.721 (0.051) 

resist_slp*cnp 0.722 (0.047) 0.493 (0.231) 

resist_slp*snw 0.564 (0.094) 0.819 (0.017) 

resist_slp*snw*cnp 0.744 (0.048) 0.515 (0.225) 

resist_slp*snw*elv 0.627 (0.103) 0.774 (0.017) 

resist_slp*elv*snw*cnp 0.731 (0.049) 0.582 (0.158) 
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Supporting Information 

Table S1. Genetic profiles of the studied individuals (Excel file with profile distributions on Y-DNA and 

autosomal markers). “YDNA” – Y-chromosomal DNA profiles, “Autosomal” – autosomal STR loci profiles. 

For each individual, Y-chromosomal DNA profile, the respective haplotype, calculated using Athey (2006) 

haplogroup predictor is shown with the respective probability * 100. If probability value is below 99, 

additionally haplogroup scored using Vadim Urasin haplogroup predictor, with the respective 

probability, is shown.  

 

Table S2. Minimum lnP(D) for different K and probabilities of K (P(K)) varying from 1 to 6, calculated as 

described in Pritchard, Wen &Falush (2009). Least values of lnP(D) for each K, based on the 10 repeats, 

are selected.  

no prior lnP(D) P(K) 

K=1 -6031.6 0.47048 

K=2 -6037.1 0.445302 

K=3 -6225.7 0.067542 

K=4 -6463 0.006295 

K=5 -6481.8 0.005216 

K=6 -6482.8 0.005164 
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Table S3. Variables used for calculating effective resistances in gene flow between human populations in 

the study area. 

Abbreviated variable Description 

elv SRTM elevation grid of 90-m cells (Jarvis et al., 2008)  

slp Ruggedness as average slope(0) calculated in 1 × 1kmrectangular focal 

neighborhoods of a SRTM elevation grid of 90-m cells 

  

cnp % of tree canopy cover, extracted from 500-m MODIS data 

‘MOD44B’[1] and averaged over the 2000-2010 year period 

NPP Yearly Net Primary Production (kg_C/m2/yr) extracted from 1-km 

MODIS data ‘MOD17A3’[1] and averaged over the 2000-2010 year 

period 

NPPH NPP*[1-(Canopy cover/100)] = the amount of NPP (kg_C/m2/yr) 

produced by herbaceous and non-forested biomes – i.e. more 

accessible production to humans 

Eucl_dist Straight-line (Euclidean) distance 

resist_slp Resistance distance calculated from slp as a resistor 

resist_elv Resistance distance calculated from elv as a resistor 

resist_snw Between population pair-wise resistance distance with snow cover 

time series as a resistor: 

  

Where i = 1,…,n 8-day intervals, and Ri is the ith resistance distance 

between two populations, calculated by considering snow cover as a 

full barrier (i.e. conductance = 0). Snow cover at 8-day intervals is 

extracted from 500-m MODIS data ‘MOD10A2’[1] over the 2000-2010 

year period. 

resist_cnp Resistance distance calculated from cnp as a resistor 

resist_slp*elv Resistance distance calculated from the product of slp and elv as a 

1

1

1n

i i

D

R




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resistor 

resist_slp*snw Resistance distance calculated from the product of slp and resist_snw 

as a resistor 

resist_slp*cnp Resistance distance calculated from the product of slp and cnp as a 

resistor 

resist_elv*snw Resistance distance calculated from the product of elv and resist_snw 

as a resistor 

resist_elv*cnp Resistance distance calculated from the product of elv and cnp as a 

resistor 

resist_snw*cnp Resistance distance calculated from the product of resist_snw and 

cnp as a resistor 

resist_slp*elv*snw Resistance distance calculated from the product of slp, elv and 

resist_snw as a resistor 

resist_slp*elv*cnp Resistance distance calculated from the product of slp, elv and cnp as 

a resistor 

resist_slp*snw*cnp Resistance distance calculated from the product of slp, resist_snw and 

cnp as a resistor 

resist_elv*snw*cnp Resistance distance calculated from the product of elv, resist_snw 

and cnp as a resistor 

resist_slp*elv*snw*cnp Resistance distance calculated from the product of slp, elv, resist_snw 

and cnp as a resistor 

resist_NPP Resistance distance calculated from the reciprocal of NPP as a resistor 

resist_NPPH Resistance distance calculated from the reciprocal of NPPH as a 

resistor 

[1]NASA: http://www.echo.nasa.gov/reverb/about_reverb.htm 
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Figure captions 

Fig. 1. Geographic centers of origin of the populations used in this study (see text for further 

explanations), and composition of Y-chromosome DNA haplogroups in each of the populations. 

Fig. 2. UPGMA trees based on pairwise autosomal (a) and Y-chromosomal (b) differentiation at the STR 

loci. The numbers at the nodes indicate probability that two populations or clusters belong to the same 

panmictic population. 

Fig. 3. The output of STRUCTURE analysis with the most probable number of clusters evaluated using the 

procedure of Pritchard et al. (2009). No prior information on the sample locations included, K=2. The 

numbers indicate average individual probability to be associated with conventional cluster 1 for each 

population. 

Fig. 4. Plot of autosomal (Rst) differences among the study populations against resistance distance 

based on the product of ruggedness, snow cover and tree canopy cover (resist_slp*snw*cnp) (upper 

panel) and plot of paternal (RstP) differences among the study populations against resistance distance 

based on snow cover (resist_snw) (see Table 4). 

Fig. 5. Isolation-by-resistance (IBR) model of cumulative current flow (analogous to probability of gene 

flow or migration rate) highlights potential corridors among the study human populations, using the 

product of ruggedness, snow cover and tree canopy cover as a resistor to human movement. Brighter 

color predicts higher migration rate. Pie diagrams show population centers, colors indicate haplogroups 

as in Fig. 1. 
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Fig. 1 

 

 

  



Pre-print version. Visit http://digitalcommons.wayne.edu/humbiol/ after publication to acquire the final 
version. 

Fig. 2 
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Fig. 4  
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Fig. 5 
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