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ABSTRACT 

Objectives. Geneticists have argued that the linear decay in within-population genetic diversity 

with increasing geographic distance from East Africa is best explained by a phylogenetic process 

of founder effects, growth, and isolation termed serial founder effects (SFE). However, the SFE 

process has not yet been adequately vetted against other evolutionary processes that may also 

affect geospatial patterns of diversity. Additionally, studies of SFE have been largely based on a 

limited 52 population sample from the HGDP-CEPH. Here, we assess the effects of SFE, 

admixture, and localized gene flow processes on patterns of global and regional diversity using 
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a published dataset consisting of 645 autosomal microsatellite genotypes from 5,415 

individuals in 248 widespread populations.  

Materials and Methods. Because SFE is a phylogenetic process, we used a formal tree-fitting 

approach to explore the role of the process in shaping patterns of global and regional diversity. 

The approach involved fitting global and regional population trees to extant patterns of gene 

diversity and then systematically examining the deviations in fit. We also informally tested the 

SFE process using linear models of gene diversity vs. waypoint geographic distances from Africa. 

Because gene flow and phylogenetic processes can both shape geospatial patterns of diversity, 

we tested the role of localized gene flow using partial Mantel correlograms of gene diversity vs. 

geographic distance controlling for the confounding effects of tree-like genetic structure. 

Results. We corroborate previous findings that global patterns of diversity, both within and 

between populations, are the product of an out-of-Africa SFE process. Within regions, however, 

diversity within populations is uncorrelated with geographic distance from Africa. Instead, 

deviations in the fit of regional population trees are largely the product of recent inter-regional 

admixture.  Additionally, in several regions, we found that positive correlations between 

pairwise gene diversity and geographic distance, frequently attributed to localized gene flow, 

were instead the product of phylogenetic processes associated with initial peopling or 

subsequent range expansions.  

Conclusions. Detailed analyses of the pattern of diversity within and between populations 

reveal that the signatures of different evolutionary processes dominate at different geographic 
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scales. These findings have important implications for recent publications on the biology of 

race. 

  



Pre-print version. Visit http://digitalcommons.wayne.edu/humbiol/ after publication to acquire the final 
version. 

INTRODUCTION 

In recent years, a consensus has begun to emerge that an out-of-Africa serial founder effect 

process (SFE) played a central role in shaping neutral genetic diversity in humans. SFE is a 

special case of the phylogenetic model, which assumes that extant populations formed through 

a tree-like process of splitting and isolation (Cavalli-Sforza and Edwards, 1967). The SFE process 

incorporates splitting and isolation, but it also includes founder effects, growth of descendant 

populations, and a geographic pattern to the populations splits formed by steady movement 

away from an African homeland (Harpending and Rogers, 2000; Prugnolle et al., 2005; 

Ramachandran et al., 2005). This continual movement away from a single source location is 

hypothesized to account for the linear decay in genetic diversity within the 52 populations of 

the HGDP-CEPH  with increasing geographic distance from East Africa (Harpending and Rogers, 

2000; Tishkoff and Kidd, 2004; Prugnolle et al., 2005; Ramachandran et al., 2005; DeGiorgio et 

al., 2009, 2011; Hunley et al., 2009).  

Pickrell and Reich (2014) recently challenged this interpretation of the pattern of diversity, 

arguing that long-range population movements and admixture have been so pervasive in recent 

human evolution that any genetic signature of founder effects associated with the initial 

radiation from Africa would have been erased. Further, they demonstrated using simulations 

that inter-regional admixture alone could have produced the observed decay in diversity from 

East Africa. In support of this view, there is substantial empirical evidence that long-range 

movement and admixture has been common in the past several thousand years, and that this 

admixture has affected patterns of regional genetic diversity, particularly in the Americas 



Pre-print version. Visit http://digitalcommons.wayne.edu/humbiol/ after publication to acquire the final 
version. 

(Rosenberg et al., 2002; Wang et al., 2007; Hunley and Healy, 2011; Pickrell and Pritchard, 

2012). Additionally, though we focus here on recent admixture, long distance dispersals into 

new or previously colonized areas, contractions and expansions associated with the last glacial 

maximum, and range expansions associated with the rise of agriculture may also have obscured 

or erased evidence of SFE (Alves et al., 2016).   

Localized gene flow between neighboring populations may also have shaped patterns of 

diversity at various geographic scales (Relethford, 2004, 2009; Handley et al., 2007). Given 

sufficient time, localized gene flow will erase genetic signatures of earlier evolutionary 

processes, an outcome often referred to as isolation by distance. Importantly, localized gene 

flow is easy to confound with geographically-patterned, tree-like range expansion processes 

like SFE (Meirmans, 2012), because both processes affect the relationship between geographic 

distance and the level of divergence between populations (Ramachandran et al., 2005; Hunley 

et al., 2009). For this reason, tests of localized gene flow must control for the effects of genetic 

structure caused by geographically-patterned range expansions. 

The goal of this study is to reevaluate the SFE model at global and regional levels through joint 

analyses of patterns of within- and between-population variation in 248 globally-distributed 

populations. This joint analysis permitted us to disentangle the effects on patterns of global and 

regional diversity of evolutionary process such as geographically-patterned range expansions, 

admixture, and localized gene flow. Additionally, the large sample of populations overcomes 

several potential limitations of the HGDP-CEPH, including small numbers of populations per 
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region, and the potentially disproportionate representation of relatively isolated populations 

(Cavalli-Sforza, 2005).   

METHODS 

Data. Autosomal microsatellite loci are ideal for this study because they lack the ascertainment 

bias of single nucleotide polymorphisms, which may lead to inaccurate estimates of genetic 

diversity within and between populations (Rogers and Jorde, 1996), and because they have 

been typed in large numbers of populations in each region. The 645 loci used in this study were 

collated by Pemberton et al. (2013) from Cann et al. (2002), Friedlaender et al. (2008), 

Kopelman et al. (2009), Pemberton et al. (2012), Rosenberg et al. (2002, 2005, 2006), Tishkoff 

et al. (2009), and Wang et al. (2007, 2008). In compiling the data, Pemberton et al. excluded 

one individual from each pair of monozygotic twins and first degree relative pairs, both within 

and between all populations except the Karitiana and Surui. We additionally excluded admixed 

Hispanic and African American populations as well as the African Dogon (n=3), Eton (n=4), and 

Ewondo (n=3) populations due to small sample sizes. Our final sample consisted of 5,415 

individuals from 248 populations. We divided the African sample into East and Central West 

subgroupings. The East African sample consists of a cluster of 41 populations spread roughly 

along the Rift Valley across Kenya, Ethiopia and Tanzania. The Central West African sample 

consists of a cluster of 49 populations located in Cameroon, Chad, and Nigeria. “Other” African 

includes populations not located in the East and Central West African clusters, and four pygmy 

populations in Central West Africa. 
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Statistical Methods. Following other studies that have used trees to examine SFE and recent 

admixture (Jakobsson et al., 2008; Li et al., 2008; Pickrell and Pritchard, 2012; Hunley et al., 

2015), our broad approach was to construct population trees from the data and then to test the 

fit of the trees both formally and informally. We chose a tree-fitting approach for several 

reasons. First, as noted, SFE is a phylogenetic process. If SFE were the only process that shaped 

the structure of neutral genetic diversity in our species, a population tree constructed from 

genetic data would perfectly capture the history of population splits and the level of diversity 

within and between extant human populations. Previous studies have in fact shown that 

population trees capture the global structure of human diversity well (Hunley et al., 2015). 

Second, by systematically examining specific causes of lack of fit of trees to the data, we can 

gain direct insights into the effects of recent admixture and localized gene flow on patterns of 

diversity. Third, even if other evolutionary processes like admixture and localized gene flow 

have dominated recent evolution, residual effects of an SFE process will persist. The tree-fitting 

approach we employ here will both capture these residual effects and provide a mechanism for 

controlling for those effects on tests of admixture and gene flow. Miermans (2012) recently 

demonstrated the need for such control when he showed than both isolation by distance and 

geographically-patterned hierarchical processes (like SFE) can produce spatial autocorrelation 

in allele frequencies. For these reasons, the tree-fitting approach can complement other 

approaches that have been employed to study the structure of human diversity and the 

evolutionary and demographic processes that have shaped that diversity (Rosenberg et al., 

2002; Prugnolle et al., 2005; Ramachandran et al., 2005; Novembre et al., 2008; Creanza et al., 

2015; Alves et al., 2016). 
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To implement the tree-fitting approach, we first estimated gene diversity (Nei, 1987) within and 

between populations, visualized the geographic pattern using scatter plots, and fit linear 

models to the data at global and regional levels. Great circle geographic distances were 

estimated through waypoints on land as described in Ramachandran et al. (2005).  

We computed five measures of genetic distance or difference (Reynolds et al., 1983; Weir and 

Cockerham, 1984; Nei, 1987; Goldstein et al., 1995; Slatkin, 1995) under the infinite alleles and 

stepwise mutation models (Kimura and Crow, 1964; Ohta and Kimura, 1973). The five measures 

were strongly correlated with one another. We next constructed a global population tree (GPT) 

using the Fitch-Margoliash method (Fitch and Margoliash, 1967). We rooted the GPT using 

chimpanzee data from Pemberton et al. (2013).  

We also constructed four types of regional population trees using the Neighbor Joining (NJ) 

method (Saitou and Nei, 1987) and formally tested their fit to regional patterns of gene 

diversity. Variation in the topology and fit of these trees is informative about the combined 

effects of SFE and admixture on patterns of regional diversity. The first type, termed the 

“island” model, assumes independent evolution among all populations within a region after 

divergence from a single ancestral population. The island models are intended to represent the 

simplest possible model of tree-like evolution in each region. The second type consisted of 

regional “sub-trees” constructed by simply pruning out regional portions of the GPT. Because 

the topologies and branch lengths were extracted intact from the GPT, the relationships among 

the populations in a given region were directly affected by their relationships to populations in 

other regions. The third type consisted of new “region-only” population trees constructed using 
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only the genetic distances between populations in each region. Since these region-only trees 

were made solely from the distances in each region, their topologies and branch lengths were 

not directly affected by their genetic distance to populations outside of the region. The fourth 

type of tree was constructed independently from genetic distances in each region after 

removing populations with greater than 10% ancestry from another region, a necessarily 

arbitrary value chosen to simply assess the general impact of inter-regional admixture on the 

relative fit of regional population trees. We refer to these as “un-admixed” trees.  

We formally tested the fit of each type of tree to the actual pattern of gene diversity using a 

maximum likelihood-based, generalized hierarchical modeling method (GHM).The GHM 

method estimates a set of ‘‘expected’’ gene diversities contingent on a given tree’s topology 

and the actual gene diversities (Cavalli-Sforza and Piazza, 1975; Long and Kittles, 2003). The fit 

of each tree was assessed using a likelihood ratio statistic, , which, under the limit of large 

sample size, is distributed as a 2 random variable with degrees of freedom equal to the 

number of populations plus the number of pairs of populations minus the number of nodes in 

the tree (Urbanek et al., 1996; Long and Kittles, 2003). The GHM method was also used to 

identify the root of the region-only trees under the assumption that the best fitting tree 

contained the correct root (Hunley et al., 2015). In these analyses, we first constructed an 

unrooted region-only NJ tree for each region, placed the root at every branch in the tree, and 

tested the fit of each tree using the GHM method. For these analyses, we combined the African 

sub-regions into a single African region, and we combined the Middle Eastern and European 

samples into a single region. 
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We examined population-level deviations in the fit of the four types of trees in the Americas as 

follows: First, after fitting the trees using the GHM method, we calculated Nei’s minimum 

genetic distances from the actual gene diversities and from the GHM-estimated gene 

diversities. We then fit a linear model to these actual vs. expected genetic distances, and 

visualized the residuals using violin plots (Hintze and Nelson, 1998).   

We constructed Mantel correlograms and partial Mantel correlograms (Oden and Sokal, 1986; 

Legendre and Legendre, 2012), using the mpmcorrelogram package in R (Matesanz et al., 2011). 

The correlograms measured the correlation between gene diversity matrices and geographic 

distance matrices after converting the latter to n new binary matrices, where n is the number of 

distance classes. The binary matrices for a given distance class contained 1s if the geographic 

distances were in the class and 0s if they were not. For the partial correlations, we controlled 

for genetic structure using GHM-estimated gene diversities for the region-only trees. Distance 

classes of approximately equal size were created from quantiles of geographic distances. The 

results reported below were insensitive to the number of distance classes. P-values for the 

statistical tests were set at 0.05 divided by the number of distance classes.  To minimize the 

impact of inter-regional admixture on the analyses, as above, we removed populations with 

greater than 10% ancestry from a different region, though this removal did not impact our 

results or their interpretation. 

We estimated admixture proportions in individuals and populations using the model-based 

clustering algorithm implemented in Structure (Pritchard et al., 2000). We conducted multiple 

runs of the program for values of K from 3 to 35. The likelihoods were relatively uniform above 
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values of K = 6. Above this value, additional substructure formed within regions, but estimates 

of inter-regional admixture proportions remained stable. We chose to display the results for K = 

7, which was the lowest value of K that separated the geographic regions into separate clusters. 

RESULTS 

Gene diversity within populations. Beginning with the within-population pattern of diversity, 

Figure 1 shows gene diversity vs. geographic distance through waypoints on land from Addis 

Ababa, Ethiopia. The high R2 of 0.778 for the 248-population sample is similar to that reported 

by Ramachandran et al. (2005) for 51 populations in the HGDP-CEPH sample (R2=0.763) and by 

Pemberton et al (2013) for 239 populations (R2 = 0.841). The large circles in the figure mark the 

mean gene diversity vs. mean geographic distance for each region.        

Within regions, however, gene diversity is uncorrelated with waypoint distances from East 

Africa except in the Americas (R2=0.257, p=0.005). This correlation in the Americas, however, 

may be an artifact of a north-south gradient of European admixture. In partial correlation 

analyses controlling for European ancestry, the squared correlation drops to 0.052 (p = 0.23). In 

contrast, the correlation between European ancestry and geographic distance from Beringia 

retains statistical significance when gene diversity is controlled (R2=0.29, p=0.009).   

Gene diversity between populations. Turning to the between-population pattern, we used 

various methods to construct a global population tree (GPT). All trees shared the following 

features, evident in Figure 2.  First, the trees were rooted at the node connecting the Sub-

Saharan African San and !Xun/Khoe to the remaining 246 populations. Second, moving away 

from the root, multiple nodes along the base of the tree separated Sub-Saharan African 
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populations on one side of the node from both Sub-Saharan African and non-Sub-Saharan 

African populations on the other side. Third, outside of Africa, populations clustered by region, 

and the regions were nested inside one another. Fourth, within regions, the population order in 

the GPT often paralleled the geographic location of the populations, though, as we show below, 

there are important exceptions to this pattern. Overall, these features of the GPT are consistent 

with an African origin, migration out of Africa, and successive founder events associated with 

the initial entry into each region. 

Again, if SFE was the only process that affected diversity, the GPT would capture the history of 

population splits as well as the level of gene diversity within and between populations. Figure 3 

permits us to assess how well the GPT actually fits the gene diversity pattern. It shows gene 

diversity vs. waypoint geographic distance between all pairs of populations. The circles show 

the gene diversities between populations within each region, and the dashes show the gene 

diversities between populations in different regions. The most salient feature of the plot is the 

layered pattern of variation. In general, populations connected by a node in the GPT have 

uniform gene diversity to one another, whether they are located nearby or thousands of 

kilometers apart. The San and !Xun/Khoe for example, have high and approximately uniform 

gene diversity to the other 246 populations. This aspect of the plot indicates that the GPT 

captures the gene diversity pattern well.  

Another noteworthy feature of the between-population pattern is that the slope of the plot is 

positive (r = 0.200, p < 0.001). Such positive correlations are typically assumed to be the 

outcome of long periods of continuous, localized gene flow, often referred to as isolation by 
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distance, not a geographically-patterned tree-like process like SFE. However, the layered 

pattern in the figure is clearly inconsistent with isolation by distance.  

We used a model-based clustering method (Pritchard et al., 2000) to examine genetic structure 

globally, and within each region. In Figure 4, we show the results of an unsupervised cluster 

analysis at K = 7. As expected from previous analyses of the HGDP-CEPH sample (Rosenberg et 

al., 2002), as well as the structure of the GPT in Figure 2, populations tend to cluster by region. 

Populations that lie near the borders of regions have ancestry from regions on either side of the 

border, and the level of this inter-regional ancestry tends to dissipate with increasing 

geographic distance from the border. In several cases, admixture between proximate regions 

occurs far away from the regional borders, e.g., the three populations in Remote Oceania have 

high levels of East Asian ancestry, possibly related to the migration of Austronesian speaking 

peoples from Southeast Asia beginning about 3,000 years ago (Friedlaender et al., 2008).  

The plot shows that populations in most regions also have ancestry from non-proximate 

regions. The level of this form of inter-regional ancestry varies widely across populations. The 

most notable example is in the Americas, where the average European ancestry in the 29 

Native American populations is 7.8%. The level of European ancestry is highest in the three 

northernmost populations located in Canada, and lowest in isolated populations in Brazil and 

Paraguay. European ancestry also varies substantially across individuals within admixed 

populations; in the three Canadian populations, for example, it ranges from 0.8%-62.9%. 

To more closely examine the effects of admixture on patterns of regional diversity, we 

constructed and tested the fit of four types of region-specific population trees. As an example, 
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the four tree types for the Americas are shown in Figure 5.  The population names are colored 

by geographic sub-region. The pie charts at the tips of the trees show the proportion of Native 

American ancestry (white) and non-Native American ancestry (colors from Fig. 4) for each 

population. The sub-tree in Figure 5B was pruned from the GPT with topology and branch 

lengths intact. These features of the tree were therefore affected by distances between Native 

American and non-Native American populations. In the tree, populations with high Middle 

Eastern and European genetic ancestry tend to cluster near the base of the tree. The region-

only tree in Fig. 5C was constructed just from genetic distances in the Native American 

populations, and was therefore unconstrained by distances to populations outside of the 

Americas. The un-admixed tree in Fig. 5D was constructed just from genetic distances in the 

Native American populations after removing nine heavily admixed populations (see Methods). 

In contrast to the sub-tree, the order of populations in the region-only and un-admixed trees 

aligns more closely with geographic location, starting in North America and ending in eastern 

South America. Note, for example, the position of the heavily admixed South American Wayuu, 

Arhuaco, and Kaingang populations in the sub-tree vs. the region-only tree.  

We used a generalized hierarchical modeling (GHM) method to formally test the fit of each type 

of tree to the actual gene diversity pattern. The comparative fit of the trees is shown in Figure 

6. In all but one case, 1) sub-trees, region-only trees, and un-admixed trees fit better than the 

island trees, 2) region-only trees fit better than the sub-trees, and 3) un-admixed trees fit better 

than the region-only trees. The lone exception to this pattern was in Africa for the region-only 

vs. un-admixed tree. In the full African sample, only 12 of the 119 populations had greater than 

10% ancestry from another region, and nine of these populations were concentrated in the 
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distal portion of the tree. Residents of the nine populations speak Afro-asiatic languages, and 

they are located near northern and eastern borders of Africa. This result suggests that 

admixture that occurs near the borders of regions has minimal effect on the structure of 

regional trees and their fit to the gene diversity pattern.   

To explore the contribution of individual populations to the lack of fit of the Americas trees, we 

used violin plots of residuals of linear models of actual vs. GHM-estimated genetic distances. 

The top four violin plots in Figure 7 show the range of residuals for the four trees; the range 

decreases steadily from one tree to the next, as expected based on the GHM results. The 

remaining violin plots in the figure compare the residuals for the sub-tree vs. region-only tree 

for the nine most heavily admixed populations. The plots confirm the large contribution of the 

admixed Arhuaco, Wayuu, and Kaingang populations to the lack of fit of the sub-tree.  

It is noteworthy that the three northernmost populations in the Americas (Cree, Ojibwa, and 

Chipewyan) contribute relatively little to the lack of fit despite the fact that they have among 

the highest levels of ancestry from other regions, especially from Europe. This result extends 

that from the model fitting results for Africa above in showing that, to the extent that 1) inter-

regional admixture occurs from populations with relatively high gene diversity (e.g., Europe) 

into populations with relatively low gene diversity (e.g., the Americas), and 2) the low-diversity 

populations were already more diverse that other populations in their region, then the 

admixture has minimal impact on tree structure and the fit of the tree. 

Finally, to examine the impact of localized gene flow on patterns of regional diversity, we 

constructed scatter plots of population-pairwise gene diversity vs. geographic distance, shown 
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in the top row of Figure 8. Persistent localized gene flow will produce a positive correlation 

between these variables. If the populations span a large geographic range, the correlation will 

tend to level out at high geographic distances.  As the plots show, in all regions, the correlation 

is positive. Each correlation is statistically significant at the 0.05 level.  

The Mantel correlograms on the second row permit us to explore the correlations more closely. 

They show evidence of an asymptote at higher geographic distances in Central West Africa, 

Oceania, and the Americas. In other regions, the steady rise in gene diversity continues across 

the full geographic range. While it is tempting to interpret the plots as evidence of localized 

gene flow, as we showed in Figure 3, geographically-patterned, tree-like range expansions can 

also produce positive correlations. To distinguish between these possibilities, it is essential to 

control for genetic structure that may have arisen through range expansion.  

The partial Mantel correlograms on the bottom row of Figure 8 provide this control by holding 

constant the gene diversities estimated using the GHM method for the region-only trees. If the 

Mantel correlograms patterns persist after controlling for genetic structure, the correlations 

may be attributed to localized gene flow; if they dissipate, they are instead the product of tree-

like structure in each region. Compared to the correlogram patterns, the partial correlation 

patterns flatten out in Central West Africa, Central South Asia, and the Americas, indicating that 

tree-like structure, not localized gene flow is responsible for the correlation between gene 

diversity and geographic distance. In contrast, the Mantel correlogram patterns persist in the 

partial correlograms in East Africa and Oceania, and in first distance class in the Middle-East 

Europe and East Asian regions. This persistence indicates that localized gene flow has shaped 
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variation in these regions. The persistence across the full geographic range in East Africa and 

Oceania may reflect the low average geographic distance between populations in these two 

regions, at only 231 km in East Africa, and 280 km in Oceania.  

DISCUSSION 

Our analyses of 248 widespread populations confirm findings from previous analyses of the 

HGDP-CEPH sample of a strong negative correlation between gene diversity within populations 

and geographic distance from East Africa. However, our analyses also showed that gene 

diversity is uncorrelated with geographic distance from East Africa within each region. On its 

own, this finding potentially calls into question the hypothesis that the initial peopling of the 

globe occurred though an out-of-Africa SFE process. The finding also demonstrates the need for 

caution in inferring complex evolutionary processes simply from the magnitude of the 

correlation of a linear model.   

However, we also documented a layered pattern of between-population variation (Fig. 3) that 

also confirms findings from previous analyses of the HGDP-CEPH sample (Hunley et al., 2009; 

DeGiorgio et al., 2011). The layers of variation correspond closely to the structure of the GPT 

(Fig. 2). This correspondence is clearly consistent with a tree-like out-of-Africa SFE process at 

the global level, and it is not consistent with the structured admixture process envisioned by 

Pickrell and Reich (2014).   

Our analyses also demonstrate that recent inter-regional admixture has affected the structure 

of regional population trees (see also Pickrell and Pritchard, 2012). This admixture contributes 

to the lack of correlation between gene diversity and distance from East Africa within regions. 
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Though we concentrate our analyses on the Americas, we find that many populations in all 

regions are admixed; the average level of inter-regional ancestry across all 248 populations was 

greater than 10% for all values of K above 5. In fact, our analyses may understate the 

importance of admixture in recent human evolution because many of the populations in the 

original HGDP-CEPH sample (which comprise 21% of the 248-population sample) were 

intentionally chosen to represent un-admixed descendants of the initial inhabitants of a given 

location (Cavalli-Sforza, 2005). Other evolutionary processes that may contribute to the 

absence of a correlation between gene diversity and geographic distance from East Africa 

within regions include non-uniform movement across a landscape, e.g., preferential dispersal 

along coasts (Wang et al., 2007), and secondary population expansions that occurred after 

initial peopling.  

Our Mantel correlogram analyses showed that spatially-patterned variation that is frequently 

attributed to localized gene flow (Relethford, 2004, 2009; Handley et al., 2007), is in fact the 

product of tree-like range expansions in Central West Africa, Central South Asia, and the 

Americas. The range expansions may have occurred during initial peopling (though probably not 

from a location that is compatible with a simple out-of-East-Africa SFE process), or afterwards, 

for example, during the spread of agriculture. Our findings are consistent with those from 

previous studies that demonstrated that both localized gene flow and SFE processes can 

produce a positive correlation between geographic and genetic distances, a positive correlation 

between gene diversity (between populations) vs. geographic distances, and geographic 

gradients to PCA factors  (Ramachandran et al., 2005; Hunley et al., 2009; Hunley and Healy, 

2011; Creanza et al., 2015). These findings emphasize the importance of taking into account the 
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potentially confounding effects of geographically-patterned genetic structure in tests of 

localized gene flow (Meirmans, 2012).  We also note that it would take a great deal of time for 

localized gene flow to affect patterns of diversity at large geographic scales (Wilkins and 

Marlowe, 2006). In fact, it would take tens of thousands of generations to reach a steady state 

isolation-by-distance pattern that would completely erase genetic signatures of earlier 

processes. This fact may explain why region-only trees still fit the data well even in regions 

where we detected signals of localized gene flow; in these regions, both tree-like range 

expansions and localized gene flow have shaped patterns of variation.  Even in the regions 

where partial Mantel correlograms revealed an absence of evidence for localized gene flow, we 

are not claiming that it has been unimportant, but only that its effects are not always manifest 

at the large geographic scales analyzed here. 

We wish to address the fact that the clustering of people by region in model-based cluster 

analysis (e.g., Figure 4) has been attributed to the existence of biological races, both in 

academic (Sesardic, 2010) and popular literature (Wade, 2014). These racial interpretations fail 

to take into account the following facts. First, unsupervised cluster analyses provide no direct 

information about evolutionary process because they fail to account for the pattern of diversity 

between populations. So, for example, these analyses fail to capture the important fact that 

African populations are not monophyletic, as is clearly demonstrated in the GPT in Figure 2. We 

postulate that the only reason that African individuals cluster together in unsupervised cluster 

analysis is that they do not cluster with individuals from other regions, and not because they 

themselves are a cohesive genetic group. Second, regions are successively nested inside of one 

another in the GPT. This nested pattern indicates that regional, i.e., putative racial, groups did 
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not evolve independently of one another, and, therefore, that any taxonomic structure that 

may exist in our species must consist of successively nested groupings of regions. Third, 

unsupervised cluster analyses show that the populations near the borders of regions contain 

substantial ancestry from regions on the other side of the border. This pattern of substantial 

shared ancestry across regions persisted at all values of K that we analyzed (up to K = 35), and it 

is not consistent with the notion of independently evolving biological races. Based on these 

findings, we reaffirm our previous conclusion that evolution has not produced clusters of 

genetic variation that correspond to conventional racial groupings (Hunley et al., 2009, 2015), 

and we categorically reject racial interpretations of cluster analyses of human genetic diversity. 

Finally, noting the ubiquity of post-initial-colonization population movements during human 

evolution, Pickrell and Reich (2014) advocate large-scale analyses of ancient DNA as a means of 

reconstructing the details of the evolutionary process. While analyses of ancient DNA have and 

will continue to provide important insights into these processes, our analyses demonstrate that 

many of these details can be reconstructed by careful analysis of the joint pattern of diversity 

within and between populations in extant humans.  
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FIGURE LEGENDS 

Figure 1. Gene diversity within populations vs. waypoint geographic distances from Addis 

Ababa, Ethiopia. Populations are colored by geographic region. 

 

Figure 2. Global population tree (GPT) constructed from Nei’s minimum genetic distances using 

the Fitch-Margoliash method. The scale at the bottom is gene diversity. Color coding is the 

same as in Figure 1. 

 

Figure 3. Gene diversity between populations vs. waypoint geographic distances. Dashes show 

the gene diversity between populations in different regions. Circles show gene diversity 

between populations in the same region. The dark gray color shows the gene diversity between 
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the San and !Xun/Khoe vs. the other 246 populations. Otherwise, colors are the same as in 

Figure 1. 

 

Figure 4. Plot of ancestry estimates for 5,415 individuals using an unsupervised cluster analysis 

at K = 7. Individuals are arranged by population in the order of their location in the GPT in 

Figure 2. Regional boundaries are marked with vertical black lines.  

 

 Figure 5. Four types of regional trees for the Americas. White slices of the pie charts show the 

proportion of Native American ancestry. Colored slices show the proportion of non-Native 

American ancestry determined using unsupervised cluster analysis at K = 7. These latter pie 

colors correspond to those from Figure 4. (A) Island model. (B) Sub-tree, pruned from the global 

population tree, with topology and branch lengths intact. (C) Region-only tree, constructed 

from genetic distances from only the Native American populations; its topology and branch 

lengths are unconstrained by genetic distances between Native American and non-Native 

American populations. (D)  Un-admixed tree, constructed from genetic distances from only the 

Native American populations after removing nine populations with more than 10% non-Native 

ancestry. Population names are colored by geographic sub-region: dark blue – northern North 

America; light blue – northern Mexico; green – southern Mexico and northern Central 

Americas; purple – southern Central America and northern South America; black – western 

South America; red – Colombia and southeastern South America. Asterisks mark the Arhuaco, 

Wayuu, and Kaingang populations. 
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Figure 6. Results of GHM model fitting method. The bars show the quantity /degrees of 

freedom. Lower values represent better fit.  

 

Figure 7. Violin plots comparing residual deviations in fit of the trees in the Americas. Narrower 

ranges along the x-axis indicate better fit. Circles within each plot show median residual value. 

The top four plots show the distribution of residuals for the island model, subtree, region-only 

tree, and un-admixed tree respectively. The remaining plots compare the residuals for nine 

populations with more than 10% non-Native ancestry in order of the amount of admixture. For 

each of these populations, the residuals from the sub-tree are on the top, and the residuals 

from the region-only tree are on the bottom. 

 

Figure 8. Gene diversity vs. geographic distance (top row), Mantel correlograms (middle row) 

and partial Mantel correlograms (bottom row). The partial Mantel correlograms control for the 

GHM-estimated gene diversities from the region-only trees. Filled circles represent statistically 

significant correlations at multiple-test-corrected p-values. The Middle Eastern and European 

populations are combined into a single region. Colors correspond to those from Figure 1. 
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Figure 3 
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Figure 4 
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Figure 6 
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Figure 7 
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Figure 8 
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