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Abstract 

 

Identifying the processes by which human cultures spread across different populations is one of 

the most topical objectives shared amongst different fields of study. Seminal works have 

analysed a variety of data and attempted to determine whether empirically observed patterns 

are the result of demic and/or cultural diffusion. This special issue collects papers exploring 

several themes (from modes of cultural transmission to drivers of dispersal mechanisms) and 

contexts (from the Neolithic in Europe to the spread of computer programming languages), 

which offer new insights that will augment the theoretical and empirical basis for the study of 

demic and cultural diffusion. In this introduction we outline the state of art in the modelling of 

these processes, briefly discuss the pros and cons of two of the most commonly used 

frameworks (i.e. equation-based models and agent-based models), and summarise the 

significance of each paper published in this special issue.  

 

Submitted Dec 1 2015 

Accepted Feb 25 2016 

 

Keywords 

Cultural Diffusion, Cultural Transmission, Demic Diffusion, Reaction-Dispersal Models, Agent-

Based Simulation, Cultural Evolution 

Short Title: Modelling Demic and Cultural Diffusion – An Introduction  



 
 

Pre-print version. Visit http://digitalcommons.wayne.edu/humbiol/ after publication to acquire 
the final version. 

 
 
The remarkable adaptive capacity of our species is testified by the dispersal of early human 

communities and their colonization of a diverse range of environmental settings. This successful 

process is underpinned by the fact that human culture is cumulative and can rapidly spread 

among human populations located at large distances. The study of the diffusion of cultural traits 

is thus of great interest, forming the basis for understanding human cultural diversity and 

complexity.  

 

 

Demic and cultural diffusion 

A new cultural trait can spread by different combinations of the following three processes: demic 

diffusion, cultural diffusion, and local innovation. Demic diffusion is the spread of human 

communities carrying the new trait; cultural diffusion is the spread of the cultural trait through 

social learning (without a concurrent substantial population movement); and local innovation is 

the independent invention of the same new trait by communities located at different places. The 

three processes are also pivotal to one of the most intriguing questions shared by a variety of 

disciplines (including but not limited to anthropology, genetics, archaeology, and linguistics), 

namely to infer whether observed cultural similarities between different geographic regions are 

the result of: 1) shared ancestry and demic diffusion; 2) cultural diffusion; or 3) convergent 

adaptation to similar selective pressures. These processes are deeply intertwined, not mutually 

exclusive, and often exhibit (at least superficially) similar spatial structures of cultural 

diversity/similarity (Nunn et al. 2006, Crema et al. 2014).  

 

Earlier studies by Ammerman and Cavalli-Sforza (1971) focused on a specific, seminal case 

study: the spread of farming in Europe. According to archaeological data, the oldest farming 

sites are located in the Near East and dated at about 12,000 yr Before Present (BP). From 

there, agriculture and stockbreeding spread across Europe until about 5,000 yr BP. Local 

convergent innovation is widely disregarded for this instance, as most of the wild varieties of the 

domesticated plants and animals are found only in the Near East (Smith 1995). Genetic studies 

further support this argument, as several lines of evidence suggest that almost all European 

domesticates have a Near Eastern origin (Troy et al. 2001; Morrell and Clegg 2007). However, 

the roles of demic and cultural diffusion in the expansion of these domesticates into Europe 

have been strongly debated during the last 50 years. Edmonson (1961) hypothesised that 

farming propagated by cultural diffusion. In contrast, Ammerman and Cavalli-Sforza (1971) 
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advocated for an important role of demic diffusion in the spread of farming. They argued that 

demic diffusion will be most relevant in situations with marked differences in demographic 

pressure (Ammerman and Cavalli-Sforza 1973), and that early farming promoted population 

growth. Crucially, they predicted that such a process would lead to genetic clines but that: (i) 

these will not form as a consequence of a total replacement of Mesolithic groups by Neolithic 

ones; and that (ii) mixing or interbreeding between individuals of the Neolithic and Mesolithic 

genetic types are required for the emergence of such a spatial pattern (Ammerman and Cavalli-

Sforza 1971).  

 

Albeit both genetic and cultural transmission can be framed within a Darwinian and population-

thinking framework, they are characterised by different inheritance systems (Cavalli-Sforza and 

Feldman 1981, Boyd and Richerson 1985). Cultural transmission can follow three different 

forms: vertical, horizontal, and oblique (Cavalli-Sforza and Feldman 1981). The first one, vertical 

cultural transmission, resembles closely a genetic inheritance system, as cultural traits are 

transmitted from parent to offspring. In the case of spread of farming, vertical transmission 

results into cultural change in case of interbreeding between agriculturalists and hunter-

gatherers, as offsprings will inevitable choose the trait of one of the two parents (in this case 

agriculturalists, see Cavalli-Sforza 1986; Bentley et al. 2009).. The second pathway, referred to 

as horizontal transmission, includes any social learning within the same generation while the 

third —generally referred to as oblique transmission— is non-parental but inter-generational. 

Horizontal and oblique transmissions can often provide faster means of diffusion. Both 

pathways can be many-to-one (i.e. multiple teachers, one learner) and one-to-many (i.e. single 

teacher, multiple learners), rather than being injective (one-to-one or two-to-one) as in vertical 

cultural transmission. Thus, in the case of the spread of farming, agriculturalists can both teach 

specific skill-sets to hunter-gatherers of the same (horizontal transmission) or subsequent 

generations (oblique transmission).  

 

Under any of the three forms (or combinations of them), the Neolithic genetic type will eventually 

mix with the Mesolithic one. If the proportion of people with the Mesolithic genetic type involved 

was sufficiently high (relative to those with the Neolithic genetic type), interbreeding will have led 

to a genetic gradient or cline, with highest frequencies of the Neolithic genes at the origin of the 

farming expansion in the Near East. This cline will gradually disappear over time as a result of 

admixture, but it may be still observed if not too much time has elapsed (so that populations 

have not substantially mixed since the cline was formed). The prediction of genetic clines 
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centred in the Near East by Ammerman and Cavalli-Sforza (1971) was impressively confirmed 

by Menozzi, Piazza and Cavalli-Sforza (1978), who analyzed genetic data from modern 

Europeans. Although other processes (such as the spread of modern humans) may have also 

played a role in the formation of some of those observed clines, the Neolithic spread is 

considered as an important cause (Rasteiro and Chikhi 2013).  

 

Ammerman and Cavalli-Sforza (1973) calculated the farming spread rate using Fisher's wave-

of-advance mathematical model, which assumes a purely demic process. This has sometimes 

led to the wrong impression that the authors advocated for purely demic diffusion. On the 

contrary, they pointed out that demic and cultural diffusion are not mutually exclusive, and that 

their relative importance were probably not the same across Europe (Ammerman and Cavalli-

Sforza 1984). Recently, cultural transmission theory has been incorporated to extend demic 

wave-of-advance models in order to include cultural in addition to demic diffusion (Fort 2012). 

This new demic-cultural theory has been used to estimate the relative importance of demic and 

cultural diffusion in different regions of Europe (Fort 2015; cover figure of this special issue).  

 

In parallel to these studies that seek to assess the relative contribution of demic and cultural 

diffusion, an independent research agenda targeting the cultural and demic components 

separately has flourished during the last three decades. Cultural evolutionary studies, with early 

works inspired from population genetics (Cavalli-Sforza and Feldman 1981, Boyd and 

Richerson 1985), have matured into a cross-disciplinary field with a rich tradition in both 

theoretical and empirical studies (see Mesoudi 2011 for a review). The population-level 

consequences of a variety of transmission modes — ranging from simple random cultural drifts 

to more intricate context (i.e. frequency and model-based) and content biased transmissions 

(e.g. functional, aesthetic, etc.) — have been first predicted mathematically and then examined 

against a variety of data, from the diffusion of crop types (Henrich 2001), to baby names 

(Bentley et al. 2004) and pottery decoration (e.g. Kandler and Shennan 2014). Other studies 

have contributed to a broader research agenda from slightly different standpoints, looking for 

instance at the effect of convergent adaptation in relation to cultural inheritance (e.g. Beheim 

and Bell 2011), or using linguistic data and graph theory to discern vertical and horizontal 

transmission (Towner et al. 2012).  

 

Studies dealing with the demic diffusion component also gradually grew with, for example: (i) 

reaction-diffusion equations with a time delay linked to the generation time (Fort and Méndez 
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1999); (ii) a distribution of delay times (Vlad and Ross 2002); (iii) advection due to non-isotropic 

dispersal (Davison et al. 2006); (iv) cohabitation equations that further improve the description 

of the effect of the time interval during which offspring live with their parents (Fort et al. 2007); 

and (v) reaction-dispersal equations with a set of dispersal distances and probabilities (Isern et 

al. 2008), which are more precise that their second-order approximations (these approximations 

are usually called reaction-diffusion equations, see Steele 2009 for an excellent review on their 

applications to human dispersals). For some detailed comparisons between reaction-dispersal 

and reaction-diffusion equations, see Fort (2015), section S5.  

Purely demic diffusion models have been used to simulate the "Out of Africa" dispersal of 

modern humans (Mithen and Reed 2002, Hughes et al. 2007) and the cline of genetic diversity  

that is expected by this process (Ramachandran et al. 2005). Demic diffusion theory has also 

been applied to understand the geographical rates of spread of postglacial re-colonisations (Fort 

et al. 2004) and the initial Paleoindian occupation of America (Hamilton and Buchanan 2007). 

Purely demic analyses also include the role of waterways in the spread of human populations 

(Davison et al. 2006, Silva and Steele 2014), the evolution of Neolithic cultural diversity (Pérez-

Losada and Fort 2011), the spread of Bantu populations (Russell et al. 2014), the geographical 

origins of rice cultivation in Asia (Silva et al. 2015), the effect of topography and climate on the 

spread of farming (Bernabeu et al. 2015), and others. 

 

Language competition is an important phenomenon involving both demic and cultural diffusion. 

The purely cultural model proposed by Abrams and Strogatz (2003) was extended through the 

inclusion of a demic component by Patriarca et al. (2004, 2009). Kandler and co-workers (2009, 

2010) considered bilingual speakers as a third population, and applied a demic-cultural model to 

the dynamics of Britain's Celtic languages. For a review on such models, see Solé et al. (2010). 

More recently, Isern and Fort (2014) pointed out some limitations of the original model by 

Abrams and Strogatz (2003) and its extensions, and introduced an alternative language-

competition model with demic diffusion. This model was applied to predict the replacement 

speed of the Welsh language, yielding a speed consistent with the observed one.  

 

Demic-cultural models have also been applied to simulate genetic clines (Rendine et al. 1986, 

Aoki et al. 1996, Currat and Excoffier 2005), the formation of cultural boundaries (Ackland et al. 

2008), as well as to model the survival of hunter-gatherers in regions where environmental 

conditions do not favour farming (Patterson et al. 2010). 
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The mathematical foundations of cultural and demic studies have eased the integration of 

recent simulation techniques since the early 90s. In particular, the development of agent-based 

simulation has exponentially increased possibilities offered by model-based research in the 

social sciences. On one hand, this lead to the development of rich,  “whole-society” models, 

which enabled the formalisation and integration of multiple behavioural assumptions drawn from 

different theoretical backgrounds (Lake 2013 for a review). While these studies have 

undoubtedly increased the level of realism, offering multi-proxy comparison to the empirical 

data, in some cases the cost of increased complexity outweighed the benefit derived by the 

addition of extra parameters. On the other hand, these technical developments have also 

encouraged the study of detailed aspects of the agent model and how small differences at this 

scale can lead to drastically different patterns at the population level.  Several authors have 

tackled both ends of the spectrum, from abstract theoretical models (e.g. Premo and Scholnick 

2011, Crema et al. 2014, Wren et al. 2014) to more empirically grounded models aimed to study 

specific historical and geographic contexts (e.g. Mithen and Reed 2002, Bernabeu et al. 2015) 

of demic and cultural diffusion. 

 

Reaction-dispersal models are often used when dealing with demic and/or cultural front 

propagation. In contrast, agent-based models are applied to many other anthropological, 

biological and archaeological challenges involving demic and cultural diffusion and other 

processes. In this context, it is useful to compare when reaction-dispersal models are preferable 

to agent-based models and vice versa. This aspect has been often overlooked but it is very 

relevant to this special issue (see also the contribution by Romanowska). The next section deals 

with this aspect and readers not interested in this technical problem can move directly to the last 

section, which summarises the papers collected in this special issue. 

 

Reaction-dispersal versus agent-based models 

In agent-based models, a set of rules describes the behaviour of agents (i.e. dispersal, 

reproduction, etc.). If such rules are sufficiently simple, we can replace them with mathematical 

equations (such that the evolution of the system predicted by those equations is the same as 

those predicted by the rules of the agent-based model). For example, consider the rule: “the net 

reproduction (births minus deaths) of agents is proportional to their population density p”. This 

rule can be replaced by the equation 
𝑑𝑝

𝑑𝑡
= 𝑘𝑝, where t is the time and 𝑘 is a constant. 
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If individuals move in space, the equations are usually called reaction-dispersal equations 

(these include reaction-diffusion equations, see previous section). Reaction-dispersal equation 

models cannot be used if the rules driving the behaviour of agents are so complicated that it is 

not possible to determine a formula for computing the front speed. As an example, consider the 

Sugarspace model by Epstein and Axtell (1996) that was later modified to simulate the 

population dynamics of the Anasazi (Axtell et al. 2002). In this agent-based model, different 

points on a surface have different amounts of sugar.  Each agent has a value for its metabolism 

and a value for its vision. The motion rules are as follows: “Each agent looks around as far as its 

vision permits, finds the spot with the most sugar, goes there and eats the sugar. Every time an 

agent moves, it burns some sugar (according to its metabolic rate). Agents die if they burn up all 

their sugar.” It does not seem possible to describe this model as an equation and determine the 

front speed under such complex rules. This example clearly shows the limitations of reaction-

dispersal models, as compared to agent-based models. 

Nevertheless, reaction-dispersal models are preferable to agent-based models when the 

evolution equations are simple enough so that it is possible to determine a formula for 

computing the front speed. This provides several advantages. Firstly, this allows for a 

substantial reduction in the computation time.  For example, let us consider a recent model of 

Neolithic spread on a homogeneous surface. Let (𝑥, 𝑦) stand for the spatial coordinates and 𝑡 

for time. The rules are: “Every generation, the following events take place: (i) every individual 

has a number of offspring equal to 𝑅0, provided that the local population density 𝑝(𝑥, 𝑦, 𝑡) is 

below its saturation value 𝑝𝑚𝑎𝑥 (but if the local population density 𝑝(𝑥, 𝑦, 𝑡) is equal of above 

𝑝𝑚𝑎𝑥, not all individuals have offspring and the new population density is equal to 𝑝𝑚𝑎𝑥); (ii) all 

parents die; and (iii) each offsprings stays at the same location with probability 𝑝𝑒 (the so-called 

persistence) or jumps a distance 𝑟 in a horizontal or vertical direction (with probability (1 − 𝑝𝑒)/

4).” These rules are simple enough to be written with mathematical equations, as follows (Fort 

et al. 2007) 

𝑝(𝑥, 𝑦, 𝑡 + 𝑇) = 𝑅[∫ ∫ 𝑝(𝑥 + ∆𝑥 , 𝑦 + ∆𝑦, 𝑡)
∞

−∞
 

∞

−∞
𝜙(∆𝑥 , ∆𝑦) 𝑑∆𝑥  𝑑∆𝑦],             (1) 

where 𝑇 is the generation time;  we further introduce the following reproduction function 

𝑅[𝑝(𝑥, 𝑦, 𝑡)] = {
𝑅0 𝑝(𝑥, 𝑦, 𝑡)   if    𝑝(𝑥, 𝑦, 𝑡) < 𝑝𝑚𝑎𝑥

0                       if    𝑝(𝑥, 𝑦, 𝑡) > 𝑝𝑚𝑎𝑥
 ,   (2) 
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and 𝜙(∆𝑥 , ∆𝑦), the dispersal probability to jump from location (𝑥 + ∆𝑥, 𝑦 + ∆𝑦) to location (𝑥, 𝑦). 

In this very simple case, 

𝜙(∆𝑥, ∆𝑦) = 𝑝𝑒𝛿(∆) + (1 − 𝑝𝑒)𝛿(∆ − 𝑟),     (3) 

where ∆= √∆𝑥
2+∆𝑦

2  is the jump length and 𝛿(∆ − 𝑟) is a function that vanishes everywhere 

except at ∆= 𝑟 (so that only jumps of length 𝑟 are allowed in this simple model). For systems 

evolving according to these equations, the speed of front solutions has been shown to be (Fort 

et al. 2007) 

𝑐 =
min

𝜆 > 0
ln{𝑅0 [𝑝𝑒+(1−𝑝𝑒)𝐼0(𝜆 𝑟)]}

𝑇𝜆
,                                             (4) 

where 𝐼0(𝜆 𝑟) is the modified Bessel function of the first kind and order zero. We can use this 

equation and numerical values of the parameters (𝑅0 , 𝑝𝑒, 𝑟 and 𝑇) into a mathematical 

computer program (e.g., Mathematica or Matlab), plot the function in the right-hand site of Eq. 

(4), and find out its minimum (i.e., the front speed 𝑐) very quickly. But if we decide, instead, to 

write down and run an agent-based computer program, we will surely need more time to find out 

the front speed 𝑐. This is the main advantage of evolution-equation models, as compared to 

agent-based models. As a consequence, a second advantage is that, we are also able to 

directly and rapidly estimate the dependence of the front speed 𝑐 to one or more parameters 

(𝑅0 , 𝑝𝑒, 𝑟 and 𝑇), a process that will, again, require substantial computational time with agent-

based simulations.  

In some cases, the advantage of reaction-dispersal models becomes further more relevant 

when we can identify instances where we do not even need to assume parameter values or 

ranges to know the dependency of the front speed on the variables. For example, Fisher's 

model (see Steele 2009 for details) leads to the wave-of-advance speed 𝑐 = √𝑎𝐷, which 

immediately shows how the speed 𝑐 depends on the net reproduction rate 𝑎 and diffusion 

coefficient 𝐷. Thus the formula 𝑐 = √𝑎𝐷 also shows that the front speed does not depend on the 

carrying capacity. Obviously, such a general conclusion cannot be reached using agent-based 

models, simply because it is impossible to run a simulation an infinite number of times. 

However, as explained above, reaction-dispersal models are useful only for sufficiently simple 

agent rules. Moreover, they have the following two additional limitations. 
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1. Non-homogeneous surfaces. If the spread takes place in non-homogeneous surfaces, usually 

we cannot find out a formula for the front speed. For example, Eq. (4) is valid only for 

homogeneous surfaces. However, it is worth noting that for these surfaces we can perform 

numerical simulations using the same reaction-dispersal equations (not necessarily agent-

based models). For example, the reaction-dispersal equations (1)-(3) above have been applied 

by Fort et al. (2012) to take into account the effect of seas and mountains in the spread of 

farming in Europe. The difference between such simulations and agent-based models is that 

simulations of reaction-dispersal equations find the population density, whereas agent-based 

models follow the dispersal and movement of individual agents. Both approaches will be valid if 

they yield the same results for the variable that can be compared to empirical data (e.g., the 

wave-of-advance speed). Incidentally, in the case of homogeneous surfaces, reaction-dispersal 

simulations are useful to check the validity of the formula for the front speed (this was done, 

e.g., by Fort et al. (2007) for Eq. (4)). 

2. Even for homogeneous surfaces, reaction-dispersal models are of little use if we are not 

exclusively interested in the front speed, but also to other variables. For example, it is seldom 

possible to find an equation for a front profile, a genetic cline, etc. However, we can again use 

the same evolution equations [e.g., Eqs. (1)-(3)] to perform computer simulations (as explained 

in the previous paragraph) and find results that cannot be obtained analytically. 

 

The special issue contributions 

 

This volume offers a series of contributions that provide insightful considerations over some 

details and assumptions that are often uncritically used in models of demic and cultural 

diffusion, ranging from drivers of dispersal processes (Wren and Costopoulos) to different 

modes of transmission (Crema and Lake, Wilder and Kandler). Some of the works are purely 

theory-building exercises, whilst other focus on specific historical contexts, from hominid 

dispersals (Wren and Costopoulos, Romanowska) to Neolithic landscape productivity (Shukurov 

et al.) and the evolution of computer programming languages (Valverde and Solé).  

 

The paper by Romanowska offers a comprehensive introduction to the theory and practice of 

the computational modelling of demic diffusion. She carefully describes equation-based 

modelling, cellular automata, and agent-based modelling. Her paper provides an extensive 

overview that can guide non-experts and students, with highlights on key aspects of the 
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modelling cycle. Although tailored to hominid dispersal models, the review is relevant to a 

broader readership with interest in computational modelling.   

 

Wren and Costopoulos also consider hominid dispersal. They offer a detailed exercise of agent-

based theory-building in a system with demic diffusion. Their simulation study demonstrates that 

the degree of environmental knowledge (resulting from individual or social learning) and the 

specific pattern of resource distribution can strongly affect dispersal dynamics. Their results 

suggest that a high degree of knowledge can lead to a particular form of ‘tragedy of commons’ 

(Hardin 1968) where agents converge to the same spatial destination leading to instances of,   

local overcrowding. Their model is based on the assumption that agents find high-resource 

patches attractive even if such a crowding decrease reproduction rate. As the authors suggest, 

empirical data could be used in future models to introduce more detailed mechanisms  (e.g., the 

inhibition of the attraction of high-resource patches above some threshold for the population 

density), possibly leading to a weaker reduction of dispersal due to environmental knowledge. 

 

Crema and Lake also show how an increase in knowledge is not necessarily always beneficial. 

Their paper questions how the size of the sample pool of social “teachers” and the uncertainty in 

the payoff attributed to a specific cultural trait can profoundly drive cultural evolution. In 

particular, their agent-based model demonstrates that certain types of social learning strategy 

(e.g. copy the individual with the highest payoff), when associated with a large pool of social 

teachers and high payoff uncertainty, can slow down the rate by which beneficial traits (i.e. traits 

with higher payoff) spread within a population. 

 

The paper by Wilder and Kandler also tackles the topic of social learning, focusing on whether 

different forms of cultural transmission can generate discernable patterns in the frequency of 

cultural variants, given the limitations imposed by the temporal resolution in the observed data. 

Their results provide useful guidance on the conditions where this inferential exercise is 

possible, as well as a cautionary tale on how increasingly incomplete samples will decrease our 

capacity to distinguish one mode from another.  

 

Shukurov and colleagues offer a detailed palaeo-economic reconstruction of pre-modern 

agriculture for a case study, the Neolithic-Eneolithic Cucuteni-Trypillia cultural unity (5,400-

2,700 BC) in Ukranie, Romania and Moldova. Other case studies can in the future apply their 

methodology, and probably some of their parameter values (they obtain some of them from 
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modern experimental farms in other regions). Their results suggest that farming settlements of a 

few thousand people are sustainable only if technological innovations, such as the ard for land 

tilling, are available. The lack of such technological innovation could explain the dominance of 

small and medium-sized settlements during the early CTU. The authors also explain the 

observed lifetimes of early CTU villages. The work by Shukurov et al. contains an impressive 

amount of data, of interest in models of the spread and consequent development of farming 

systems. Furthermore, similar studies for hunter-gather societies could be useful for comparing 

the advantages of farming and hunting-gathering in diverse ecological settings, which might 

lead to new insights on the relationship between the environment and the relative importance of 

demic and cultural diffusion. 

 

Finally, the paper by Valverde and Solé applies many of the concepts of cultural diffusion 

tackled by the other authors, and examines the evolution of computer programming languages. 

Their work is not limited to historical trends. Indeed, they also develop a cellular-automaton 

model of software developers (with innovation, adoption or diffusion and forgetting rules) that 

reproduces the empirical power law observed in the frequency-rank distribution in programming 

language popularity. Their model also predicts a substantial decline in language diversity.   

 

An overall conclusion from the works gathered in this special issue is that there are still plenty of 

important problems to be solved by means of demic, cultural and demic-cultural models, which 

deserve further theoretical development and application to new case studies. 
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