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CHAPTER 1 

Managing Clostridum difficile associated diseases: Current and Novel therapeutic 
perspectives 

1.1 Etiology of C. difficile infection 

Clostridium difficile (C. difficile) is an obligate anaerobic, gram-positive, spore forming 

opportunistic pathogen and the main causative agent of toxin mediated antibiotic associated 

diarrhea (Figure 1.1A). The disease severity ranges from asymptomatic colonization to life 

threatening colonic inflammatory lesion, formation of pseudomembranes and can cause death in 

more severe immunosuppressed patients (Figure 1.1B) (1). The disease spreads mainly through 

spores. The spores are highly resistant to high temperatures, desiccation and disinfectants and 

remains viable for months outside of a host (2).  

The main route of infection occurs via fecal-oral transmission by ingestion of spores or 

vegetative cells. However, the subsequent colonization and disease progression entirely depends 

on the host immune response causing extensive tissue damage as the body tries to ward off the 

infection (3). Although the stomach acidity reduces viability of the vegetative cell up to ~ 98% 

(4), highly resistance spores tend to survive in the acidic stomach environments and colonize in 

the intestinal area. Patients receiving acid-suppressive agents would be more susceptible to 

vegetative cells that mediate C. difficile colonization (5). Spore germination in the intestine is 

initiated by small molecules known as germinants (e.g. bile salts and glycine etc.) (6). 

Interestingly, asymptomatic colonization has been reported in ~4% of the adult population and 

25% in infants (3,7). Therefore a relationship between antibiotic mediated alteration of normal 

intestinal microbiota, colonization and subsequent toxin production is proposed that occurs 

through a complex network of events (6). Accordingly, recent studies have shown broad-

spectrum antibiotics impact on the progression of C.  difficile associated diseases in two main  
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Figure 1.1 Pathogenesis of C. difficile infections. (A) Colored transmission electron micrograph (TEM) of C. 
difficile. Magnification: 35,000. Photo credit: Dr. Kari Lounatmaa / Science Source (March 2012, image number 
SL9520 sciencesourcenews.blogspot.com). (B) Comparison of endoscopic views of healthy colon vs. 
pseudomembranous colitis; characterized by scattered yellow plaques due to destroyed intestinal cells and 
inflammations. (Photo credit: Three Riverside Endoscopy center. PA, USA, accessed on www.gi.health.com). (C) 
Pathway of infection. Health care settings remain major reservoirs for C. difficile spores and vegetative cells. Upon 
exposure, subsequent colonization and disease progression depends on combination of multiple risk factors. But 
antibiotics-mediated destruction of colonic microbiota acts as a major risk factor. However asymptomatic 
colonization vs. disease progression is mainly determine by the host innate and adoptive immunity. 
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perspectives by disturbing the integrity of colonic microbiota as well as inducing expression of 

putative colonization factors and toxin production (8). 

1.2 Pathogenesis of C. difficile infections 

Main risk factors associated with C. difficile infections include broad spectrum antibiotic 

usage (cephalosporins, fluroquinolones and clindamycin) and a recent hospitalization as these-

events provide opportunities for contact with bacterial spores and compromise protective 

microbiota that compete with C. difficile for nutrients in the GI tract (9,10). Other factors that 

affect clinical onset of C. difficile infections include: age ( >65 have ~10-fold greater 

susceptibility compared to a younger host) (11), recent gastrointestinal surgery (12) and 

individuals with compromised immune systems (13).  However, recent changes in the 

epidemiology of C. difficile infections have shown an increased potential for additional risk 

factors for community acquisition of the disease, via food-born contamination (retail meat 

products, vegetables etc) (Figure 1.1C) (14,15). 

C. difficile colonization resistance is mediated by gut microbiota and the host immune 

response (16). The proposed mechanism involves competition for nutrients, the ability of normal 

flora to convert host metabolites to compounds inhibitory to C. difficile, secretion of 

antimicrobial peptides toxic to C. difficile and the host’s immunity (16). However, the extent of 

contribution by host factors and the microbiome on colonization resistance is not fully 

understood. Colonization, secretion of virulence factors and subsequent biofilm formation is 

initiated when the colonization barrier is distressed by combination of both primary and other 

risk factors. 

Key disease symptoms are mediated by the activity of primary virulence factors, the two 

large cytotoxins Toxin A (TcdA) and Toxin B (TcdB). Both TcdA and TcdB bind to the apical 

3



side of intestinal epithelial cells are taken up by host cells through endocytosis but the N-

terminal region escapes the endosome during acidification (Figure 1.2) through an autocatalytic 

processing event mediated by its own internal cysteine protease activity (17); cleaving parent 

TcdA/B between amino acid residues (543/544)/(544/545) correspondingly and releasing the 

catalytic domain to the cytosol where it acts as a glucosyltransferase. Irreversible glucosylation 

the RhoA family of small GTPases (18) alters intracellular signaling, integrity of the 

cytoskeleton and thus results in the destruction of tight junctions and the epithelial cells barrier. 

Following the breach of intestinal epithelial cells, toxins induce the resident mucosal immune 

process including intestinal epithelial cells, mast cells and macrophages to release of 

proinflammatory cytokines ultimately resulting edema, influx of neutrophils, increased mucosal 

permeability, fluid secretion in to intestinal lumen and diarrhea (19,20). The acute severe 

inflammatory responses are the main cause of intestinal injury followed by pseudomembranous 

colitis. However, an exact mechanism by which both toxins trigger the immune system is yet to 

be determined (2,3,19,21). 

1.3 Epidemiology of C. difficile infections 

The epidemiology of C. difficile associated infections (CDI) has drastically changed over 

the past decade. This is associated with two main changes. The first was an increase in the 

incidence of C. difficile associated diseases (CDAD) (500,000/year in US), severity, mortality 

(14,000/year in US) (2,22), poor response to antibiotic treatments and high relapse rates; in 

North America there has been an approximately five-fold increase in the whole population (23). 

Similarly, higher frequencies of CDI have been observed in Canada, European countries (UK, 

Netherlands, Belgium, and France etc), New Zealand and Australia (24). In addition several 

incidences have identified in Asian and Middle Eastern countries which were not previously  

4



 

Figure 1.2 Etiology of C. difficile infections. (A) Etiology of TcdA/TcdB, The CROP region binds to receptors and 
get internalize via receptor-mediated endocytosis. Endosomal acidification triggers a conformational change and 
leads to membrane insertion. Binding of cytosolic myo-inositol hexaphosphate (IP6) activates the auto processing 
activity of cystine protease domain and releases the enzymatic domain, where it catalyses glucosylation of Rho 
family GTPases and thereby resulting in cell death [Figure modified from (25)]. 
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reported (26-30). Therefore C. difficile infection is becoming increasing burden to health care 

systems (e.g. $ 3 billion /year in extra health cost in US). The epidemic out-breaks and disease 

severity have been mainly associated with immergence of a fluoroquinolone resistant 

hypervirulent strain called ribotype 027 or NAP1 (24,31,32). In an in vitro study, the NAP1/027 

strain has been reported to produce 16-fold higher concentrations of TcdA, 23-fold higher 

concentrations of TcdB than other non-toxinotype strains (33). The extreme virulence, high 

relapse rate and epidemic outbreaks of the NAP1/027 strain have been proposed due to 

combination of increased TcdA/B production, secretion of binary toxin, increased sporulation 

rates and mutations in a toxin negative regulatory protein TcdC etc. The second alarming change 

is associated with the increasing number of community-acquired infections without previous 

direct contact with a hospital setting as well as occurrence of CDI in populations that were 

previously considered to be low risk (34,35), such as infants, young children and pregnant 

women. Proposed community resources for CDI include soil, water, animals used for food 

(Calves, Piglets, and Chicken etc), retail meat and vegetables (potatoes, mushroom, tomatoes, 

cucumber and salad etc) (14). In addition to the ribotype 027/NAP1 strain another potentially 

important high-toxin producing strain found in community-acquired disease is ribotype 078 (36). 

Although the contaminated food animal and vegetables are the major public concern, the original 

source of C. difficile is still under debate in the field. Therefore to better control the spread of 

CDI and eliminate the overwhelming cost in health care systems; improved guidelines for 

diagnosis, efficient health care hygienic managements and development in wide range of new 

effective therapeutic options are crucial in the near future. 

6



1.4 Pathogenicity Locus (PaLoc) - mediated tox gene regulation 

  Toxins TcdA/B are encoded on the same 19.6 kb chromosomal pathogenicity locus 

(PaLoc) together with three other proteins TcdR, TcdE and TcdC, (Figure1.3) (37) involved in 

toxin regulation, production and release into the extracellular environment. tcdR lies upstream to 

the major virulence factor encoded for an alternative sigma factor for RNA polymerase. Proteins 

homologous to TcdR have been identified in other gram-positive pathogenic bacteria such as 

Clostridium tetani (TetR), Clostridium perfringens (UviA) and Clostridium botulinum (BotR) 

(38). In both in vivo and in vitro studies TcdR have shown to activate its own promoter as well as 

gene specific activation of toxin gene promoters (38,39).  

The tcdC gene is oriented in the opposite direction relative to the rest of the PaLoc genes 

and encodes a negative regulatory protein lacking the common helix-loop-helix DNA binding 

motif. It is a membrane associated dimmeric protein with no helix-loop-helix motif for DNA 

binding. In contrast to other genes encoded within the PaLoc, tcdC expression is highly 

expressed during early exponential phase and is repressed when cells enter stationary phase (37). 

This inverse pattern of expression has initially led to the hypothesis that TcdC may act as a 

putative negative regulator during exponential phase. Although its negative regulatory role has 

been probed in vivo using reporter fusion studies the exact mechanism by which it perform the 

regulatory role is currently unknown. 

TcdE shows homology with phage holin proteins (40). During the phage lytic cycle, 

bacterial cell wall degradation enzymes endolysin are released through the cell membrane by 

holin oligomerization and pore formation (41). Recently Revadi Govind et al., reported TcdE 

oligomers facilitates the release of C. difficile toxins to the extracellular environment, however 

7



 

 

Figure 1.3 Schematic representation of PaLoc gene regulation. During the exponential phase, TcdC may inhibit 
tox genes transcription either by inhibiting tcdR transcription alone or it may target multiple promoter regions (tcdR, 
tcdB and tcdA) and maintains tightly regulated expression of virulence factors. In addition to that additional layer of 
inhibition also reported by global negative regulator CodY and catabolic control protein CcpA. However 
environmental cues governing the PaLoc gene expression are not known to date. 
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unlike the phage holing-mediated pathway, expression of TcdE does not cause destruction of the 

entire cell wall (42). 

PaLoc genes are regulated in a highly complex manner. Under normal growth conditions, 

toxin synthesis increases as cells enter stationary phase and is stimulated by addition of certain 

amino acids, antibiotics, biotin and is inhibited by rapidly metabolizable carbon sources, etc (43-

45). It has been reported that upstream genes of PaLoc (tcdR, tcdB, tcdE, tcdA) are transcribed 

from their own promoter, as well as by read through transcription from promoter tcdR (37,46). 

(38,47). During the transition from exponential phase to stationary phase, TcdR activates tcdB, 

tcdE and tcdA as well as its own promoter and therefore plays a crucial role in expression of 

virulence factors. Due to its positive feedback loop activity on its own promoter, very low level 

of TcdR accumulation inside the cell will amplify its regulatory role. Therefore very tight 

regulation of tcdR is essential during exponential phase of growth for the invasion of host by C. 

difficile. Based on this concept, several regulatory circuits have been identified to act upon TcdR 

expression such as TcdC, CodY and CcpA.  CodY, the global negative regulator of gram positive 

bacteria, has been shown to mediate growth dependent toxin gene regulation by repressing toxin 

genes during the exponential phase via binding to promoter tcdR (43). The catabolic control 

protein CcpA, a regulatory protein mediates catabolic repression based on rapidly catabolizable 

carbon sugars was found to bind to both tcdA and tcdB promoter regions (45) as well as tcdR and 

tcdC regulatory regions. However, the complex regulatory network in terms of proteins and 

environmental cues governing the PaLoc gene expression is not fully clarified to date. 

1.5 Virulence Factors 

C. difficile associated diseases are mediated through a combination of virulence factors. 

The large clostridial glucosyltransferases, TcdA/B are the major disease causative agents and are  
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Figure 1.4 Structural organization of C. difficile toxin A (TcdA) and B (TcdB). (A) Both proteins consist of four 
functional domains. An enzymatic domain (GTD), an intrinsic cysteine protease domain (CPD), translocation 
machinery with central hydrophobic patch and the receptor binding region known as CROP (C-terminal repetitive 
oligopeptide). (B) TcdA holotoxin 3D model build based on a 25Å low resolution negative stain EM structure (48). 
In neutral pH it is known to exist as a bi-lobed structure with two protrusions. The shorter protrusion (Red) is 
proposed as GTD domain whereas the longer curve region (Green) as CROP. Upon exposure to lower pH “pincher-
like” head region (Yellow: central translocation machinery) rearranges to form an elongated appendage for 
membrane insertion and delivery of GTD. Region colored in blue indicates the CPD. 
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discussed in detail below. The other characterized minor virulence factors include a binary actin 

ADP-ribosyltransferase toxin (CDT) (49,50), the surface layer protein (SLP) (51,52), two 

flagella proteins (53), a fibronectin binding protein (Fbp68) (54), cell wall adhesion Cwp66 and 

cell wall protease Cwp84 etc (55). These factors function in pathogenesis by promoting efficient 

adherence and colonization in hosts.  

TcdA/B belong to the family of single-chain large clostridial toxins (LCT, > 250 kDa) 

that includes Clostridium novyi alpha toxin (TcnA), Clostridium sordidellii hemorrhagic toxin 

(TcsH) and lethal toxin (TcsL) (56). These toxins are grouped together on the basis of their 

primary structural organization and function (57). They are also known as A-B type toxins based 

on their mechanism of activity in hosts, where the B-moiety mediates host receptor recognition 

binding and internalization whereas the A-moiety contains an enzymatic domain harboring 

glycosyltransferase activity to covalently modify host Rho- and Ras-GTPases (56,57). Both 

TcdA (308 kDa) and TcdB (270 kDa) are encoded within the 19.6 kb pathogenicity locus, share 

47% sequence identity, 63% similarity and found to have similar native structures according to a 

recent negative stain electron microscopy image (Figure 1.4) (20,48,58). The major regions of 

homology between TcdA and TcdB are found within the receptor binding and enzymatic 

domains of both toxins (59). Despite of their structural and functional similarity there have been 

controversies over the relative importance of each toxin towards disease progression. 

A number of variations in activity of purified TcdA and TcdB have been observed in 

cells and animal models. In cultured cells both TcdA and TcdB have reported to induce 

cytotoxicity but TcdB has shown to be ~1000 times more potent than TcdA (20,60). TcdA was 

initially identified as an enterotoxin while TcdB failed to provide enterotoxin activity unless it is 

combined with TcdA, thereof known to be a cytotoxin (61). However with the isolation of TcdA-
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/TcdB+ strain in nosocomial outbreak of Clostridium difficile-associated diarrhea (62,63) and 

with most recent findings on isogenic mutants of C. difficile producing either TcdA or TcdB 

alone can cause fulminant disease in a hamster model (64,65), provided more evidence that 

TcdA/B are potent enterotoxins and both can play important roles in pathogenesis. Both toxins 

harbors a multidomain organization with  an enzymatic domain, an intrinsic cysteine protease 

domain (CPD), translocation machinery with a central hydrophobic patch and the receptor 

binding region known as CROP (C-terminal repetitive oligopeptide) (Figure 1.4). 

1.5.1 Receptor binding domain 

Toxin internalization is initiated by the binding of the C-terminal CROP receptor binding 

region to intestinal epithelial cells. The CROP regions are composed of 19-24 short amino acid 

repeats (SR) and 31 amino acid long repeats (LR) (66). The CROP domain of TcdB (532 amino 

acids) is considerably shorter than that of TcdA (878 amino acids). The TcdA CROP domain 

composes of 32 SRs and 7 LRs (Figure 1.5A), whereas TcdB possesses 19 SRs and 4 LRs (66). 

Based on a model derived from a crystal structure of the short fragment of TcdA (127 amino acid 

fragment), toxins composed of antiparallel β-hairpins formed with SRs that are interrupted by the 

kinks introduced by LRs to form a flexible β-solenoid helix (Figure 1.5A) (67). The kinks in the 

β-solenoid structure of TcdA was initially shown to bind various glycans such as α-Gal-(1,3)-β-

Gal-(1,4)-β-GlcNAc (PDB: 2G7C) (68), however the specific α-galactosyltransferases involved 

in the formation of α-galactosyl bond on such sugars are not found in humans (69). A 

glycoprotein sucrose-isomaltase in rabbit ileum was found to bind TcdA (70), followed by this a 

recent study employing co-immunoprecipitation and mass spectrometric methods identified a 

human sucrose-isomaltase colonocyte plasma membrane protein gp96, binds to TcdA (71). But 

the nature of the carbohydrate modification involved in the binding events is yet to be  
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Figure 1.5 Crystal structures-based in detail view of CROP, CPD and GT domains of TcdA. (A) Structural 
organization of TcdA CROP region. (A1) CROP is made out of alternative arrangements of short amino acid repeats 
(SR) and 31 amino acid long repeats (LR). TcdA consists of 32 short repeats (green) and 7 long repeats (blue) 
[Adopted from (72)], (A2) crystal structure of a 127 fragment of C-terminal repetitive (PDB: 2G7C) peptide region, 
kinks regions were bound with liposaccharide α-Gal-(1,3)-β-Gal-(1,4)-β-GlcNAc, (A3) β-solenoid-like entire model 
of the CROP binding domain is build based on a crystal structure PDB: 2G7C.(B) InsP6 (red) bound, CPD is shown 
(PDB: 3HO6). InsP6 binds to a basic lysine-rich cleft separated from active site by 3-stranded-β-hairpin structures. 
(C) Crystal structures are shown for the UDP-glucose bound glucosyltransferase domain of TcdA (PDB: 3SRZ) 
[Modified based on (73)]. (C1) In detail structural analysis provides, well defined regional organization for substrate 
recognition, binding and catalysis. The membrane localization four helix bundles are shown in brown. Consists 
upper promontories (cyan), substrate recognition region (green), UDP-glucose binding (yellow) and catalysis 
moieties (orange), (C2) A close-up view of active site, amino acids highlighted in violet indicates, residues involved 
in Mn2+ (purple), UDP-glucose (dark blue) binding and catalysis. Coordinating water molecules are shown in blue. 

 

 

 

14



 

investigated. Although TcdB is known to be toxic for a wide range of cells, the receptor involved 

in TcdB-host cell interactions are not known to date. 

Previously it was believed the receptor-mediated endocytosis was exclusively dependent 

on the CROP-binding region, however Olling et al., 2011 reported a truncated form of TcdA 

lacking the CROP region retained cytotoxicity but was 5 to 10-fold less potent than wild type 

TcdA (74). This finding was further confirmed by Genisyuereketal et al., 2011 (75), showing an 

additional binding activity is contributed by a ~350 amino acid segment preceding the C-

terminal region (75). However due its lectin-like structural repeats, CROP region is considered a 

major immunogenic region of C. difficile toxins and plays important roles in the field of vaccine 

development (76-78). 

1.5.2 Central translocation machinery 

After binding to membrane receptors, toxins are endocytosed through the clathrin-

mediated pathway (79). The membrane localization domain lays between the cysteine protease 

and receptor binding domain, spaning around ~1000 amino acids (66,80). It is known to play a 

number of roles in membrane insertion, pore formation and delivery (81-83). Although the other 

domains are structurally well characterized, the membrane translocation domain has to date not 

been characterized. Recent low resolution negative-stain electron microscopy data provide more 

evidence on the structural changes within the translocation domain associated with pH changes 

(Figure 1.4B) (48). Further deletion studies by Genisyuerek et al., revealed both toxins harbors a 

~160 amino acid containing two hydrophobic transmembrane region (Figure 1.4A) flanking a 

negatively charged loop region and neutralization of above negatively charged region by 

endosomal acidity is prerequisites of membrane insertion and pore formation activity of the 

central translocation machinery (75).  
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1.5.3 Cysteine protease domain 

Cysteine protease domain (CPD) lies in between the N-terminal glucosyltransferase 

domain and the central translocation machinery and is involved in the release of the N-terminal 

region into the cytosol by its auto-proteolysis. Both TcdA CPD and TcdB CPD exhibit 56% 

sequence similarity (84) (Figure 1.5B). Cysteine protease activity is mediated through a catalytic 

triad mechanism, involving cysteine histidine and aspartate residues. Eukaryotic intracellular 

metabolite inositol hexakisphosphate (InsP6) and the reducing environment of the cytosol are 

required to activation an allosteric circuit and subsequent cleavage (85). According to recent 

crystal structures, it has been revealed that negatively charged InsP6 binds to a basic, lysine-rich 

cleft separated from that active site by a 3-stranded-β-hairpin structure denoted as the β-flap 

(Figure 1.5B) (17,86,87). However systematic mutational and disulfide bond engineering studies 

further identified both regions contain an interconnected network of amino acid interactions that 

are involved in transmitting InsP6-induced structural changes to the active site (86).  

1.5.4 Glucosyltransferase domain (GT) 

  The autoproteolytic cleavage leads to the delivery of the N-glucosyltransferase bearing 

543 amino acid region of TcdA/544 amino acid of TcdB into the cytosol (20). The catalytic 

domain uses cellular UDP-glucose as a co-substrate, irreversibly glucosylating the RhoA family 

of small GTPases (Figure 1.5C) (18), and induces subsequent apoptosis and epithelial cell 

destruction (88). According to the crystal structures of the N-terminal region of TcdA and TcdB, 

they share 74% structural homology and similarity have been preserved within catalytic core 

involved in UDP-glucose binding and glucose transfer, however GTPase-binding surfaces vary 

greatly (89). The above difference has been proposed to be associated with their substrate 

specificity. The enzymatic domain possesses several structural elements important for its 
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function (Figure 1.5C). It has a central catalytic core surrounded by three helical structures that 

includes an N-terminal four helix bundle later named as the membrane localization domain 

(MLD); identified by analyzing several GT-A family of glycosyltransferase protein toxins (90). 

It is known to localize the catalytic domain towards the membrane and thereby mediates the 

interaction with GDP-bound small Rho/Ras family GTP-ases. The two lateral helical structures 

are known as “upper promontories’’ (73). A recent MD simulation study identified that the 

above helix regions undergo scissoring motion and proposed to function in substrate 

accommodation (73). The mobile loop region shown in yellow includes another typical feature of 

GT-A family glucosyltranferases, the DXD motif (Asp-X-Asp) (91). It coordinates with the 

catalytic Mn2+ and thereby indirectly involves in precise positioning of UDP-glucose for 

catalysis (Figure 1.5C). The hairpin loop [Figure 1.5C (orange)] known as active site flap region 

was postulated to be involved in catalysis and substrate recognition (92). The green region has 

been reported to be involved in substrate recognition (92).  

  Substrate small Rho family GTP-ases are molecular switches that plays a crucial function 

in intracellular signal transduction pathways. Both TcdA and TcdB are reported to mono-

glucosylate small Rho family GTP-ase RhoA, RhoB, RhoC, RhoG, RacI and CdC42 (20). A 

recent study identified TcdA also modifies Ras family GTPases Rap1A and Rap2A (89). 

Rho/Ras family GTP-ases are master regulators in actin cytoskeletal integrity (89), beside this 

they also play vital roles in a large variety of other cellular functions such as cell adhesion, cell 

migration, cell cycle progression, phagocytosis, modulation of epithelial and endothelial cell 

junctions, apoptosis etc (93). Small GTP-ases cycle between an inactive GDP-bound and an 

active GTP-bound state to regulate activity (93,94). Mono-glucosylation occurs at Thr-37 in 

RhoA and at Thr-35 in Rac1/CdC42 in an effector loop region and stabilizes Rho proteins in 
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GDP-bound inactive state (95,96). Glucosylation thus prevents Rho activation by guanine 

nucleotide exchange factors and its coupling to downstream effector proteins and cytosol-

membrane cycling of Rho protein. Ultimately glucosylation leads to the complete shutdown of 

Rho-dependent signaling pathway and induces cell death via apoptosis (97). Due to its crucial 

role in epithelial cell destruction, the enzymatic domain has been considered as an attractive 

target towards the development of small molecule inhibitors, immunotherapeutics and vaccines. 

1.5.5 Binary toxins 

  In addition to major protein toxins TcdA and TcdB, some C. difficile isolates (< 10%) 

produce a third toxin known as binary toxin (CDT) (98). It is characterized as the family of actin-

ADP-ribosylating toxins produced by many pathogenic species such as C. botulinum (C2 toxin), 

C. perfringens (iota toxin) etc. CDT is positioned within a 6.2 kb CdtLoc locus separate from the 

PaLoc (99). CdtLoc encodes three genes, the two-component ADP ribosyltransferase encoded by 

the genes cdtA (enzymatic component) and cdtB (binding component) and cdtR encodes for a 

transcriptional activator (98). CDT is characterized as an AB type binary toxin made up of two 

independent components: 48 kDa actin-modifying ADP-ribosyltransferase (CDTa) and a 74 kDa 

transport component. Both components act synergistically to transport the enzymatic component 

into the cytosol of target cells (98,100). In the cytosol, the enzymatic region ADP-ribosylates G-

actin at arginin-117 thereby prevents actin polymerization (101). However the role of CDT as a 

virulence factor is not clear so far. A more recent study showed that CDT induces the formation 

of microtubule-based protrusions leading to a dense meshwork at the cell surface (102). The 

meshwork increases the surface area for adherence of clostridia to the intestinal epithelium. 

Accordingly, Carsten Schwan et al., showed that CDT induces a ~5 fold increase in adherence of 

C. difficile under anaerobic conditions (100). In animal model studies, C. difficile A-B-CDT+  
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strain caused fluid accumulation in rabbit ileal loops but no diarrhea or death in hamsters (103). 

The above experimental evidence on CDT shows that in the early phase of infection CTD-

induced adherence of vegetative cells to epithelia may be more involved in enhancing 

colonization than direct cytotoxicity. 

1.6 C. difficile associated diseases preventive and therapeutic view 

In terms of CDI management the old saying “prevention is better than cure” could be 

more appropriate. There are three challenges associated with CDI management (a) control of 

disease transmission, (b) management of fulminant or severe complicated disease symptoms and 

(c) controlling of multiple recurrences. Preventing transmission of C. difficile solely relies on use 

of consistent standard precaution techniques by health care settings and on time accurate 

diagnosis of patients with CDAD. From the year of 2000 to the present, recurrence after the first 

episode have been reported to be ~33-45% (104). Up to 20-50% of recurrence is mediated 

through re-infection due to a new antibiotic resistance C. difficile strain or re-colonization due 

incomplete irradication of the resistant original strain (105,106). Therefore the most successful 

way to treat such patients is to taper antibiotic usage, minimize the activity of toxins to subdue 

the symptoms and replenish the normal gut flora to promote better competition with C. difficile. 

Furthermore there are no promising treatment strategies for severe and complicated CDI (107), 

where in most cases medical managements fails, patients are subjected to subtotal or total 

colectomy. However it is related with high risk of mortality. Thus newer agents and strategies 

are desperately needed for CDI.  

If we look at the strategies used for combating C. difficile associated diseases, it can be 

divided into two main categories, involving infection control and treatments (Figure 1.6). 

Treatments can be directed towards the elimination of the microbe by means of classical  
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Figure 1. 6 Overview of classical and novel approaches towards combating C. difficile associated diseases. 
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antibiotics, establishing colonization barriers and reduce the disease progression and symptoms 

by hampering the major virulence factors.  

1.6.1 Preventive measures of CDI 

The main sources of C. difficile are colonized/infected individuals and contaminated 

environment. Therefore there are two types of control measures that have to be considered in 

health care settings; those including barrier methods and environmental hygiene. Barrier methods 

control healthcare workers-to-patient and patients-to-patients transmission, whereas 

environmental hygiene prevents the encounter of contaminated environment-to-individuals 

(108).   

Barrier methods mainly rely on clinical isolation of patients with diarrhea to prevent 

transmission and consistent hygiene practices (hand washing, decontamination of surfaces, etc). 

Patient isolation and restrictions in patient transfer are the most important way to prevent 

environmental contamination with C. difficile spores. Prompt isolation of patients with 

confirmed CDI or suspected CDI in a separate room with appropriate sanitization facilities are 

essential in hospital environments, in addition, movement and transport of such patients should 

be restricted unless required due to severe health conditions (109). Health care workers are often 

the primary vectors of transmission (110), therefore hand hygiene and preventive cloths such as 

disposable gloves and disposable gowns have to be strictly maintained in handling such patients. 

Since the alcohol-based hand rubs and gels are not effective against removing C. difficle spores, 

traditional hand washing with antimicrobial soap and water is preferred (111).  

Studies performed to correlate infection rates with hospital environment shows that, in 

hospital conditions with poor infection control practices; the rate of contamination is 
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proportional to the number of patients (112). Therefore environmental and equipment hygiene is 

critical. The major drawback associated with C. difficile spore eradication is the traditional 

detergents and ammonium-based agents that do not show any sporicidal activity and actually 

enhances sporulation of vegetative cells (113,114). Hypochlorite-based disinfectant (at least 

5000 ppm) was shown to significantly reduce spores (115). Significant attention towards 

cleaning and decontamination should be maintained patients frequently touched surfaces such as 

toilet areas, bedrails, call bells, TV remote controls and linens etc. Further medical devices (e.g. 

thermometers) need to be decontaminated properly or where possible disposable items can be 

used. Combination of education on disease management among health care workers and 

expanded-infection control measures can be utilized to reduce the spread of C. difficile 

infections. 

1.6.2 Antibiotics 

Although many new therapeutic approaches for CDAD have been studied, to date 

antibiotic treatments still remains as standard treatments. The main goal of any antibiotic is 

clearance or prevention of infection within the context of the host. One of the most important 

risk factor associated with CDI is with the use of broad spectrum antibiotics such as 

clindamycine, cephalosporin, quinolones and fluoroquinolones, etc (116). As a first line of 

disease management, in younger patients with mild diarrhea; withdrawal of the predisposing 

antibiotic and the use of supportive care with hydration is effective enough for the recovery. 

However for the individuals with moderate-to-severe infections; along with the removal of 

primary antibiotics, specific antibiotic therapy is recommended (32).  

The two antibiotics (Metronidazole and Vancomycin) have been in use against CDAD for 

more than 30 years. Metronidazole is generally prescribed as the first-line treatment for C. 
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difficile infection due its low cost. It disturbs the DNA structure, leading to the inhibition of 

DNA replication (117). Standard initial oral dose has been shown to successfully resolve 

symptoms in >90% patients within 10 days (32). Although MIC (minimum inhibitory 

concentration) of metronidazole was shown to differ between strains, it is highly active against 

many pathogenic strains of C. difficile (118,119). However, prolonged use of Metronidazole can 

lead to resistance and decreased susceptibility over time (120). Therefore Metronidazole has 

been found ineffective in recurrent infections (104).  

Vancomycin is often considered as a second-line for treating moderate-to-severe CDI 

(121). It is a glycopetide known to have broad activity against the gram-positive bacterial cell 

wall synthesis (122). Because of its low systemic absorption, higher colonic concentrations can 

be achieved. Therefore vancomycin provides a better response rate compared to metronidazole 

(121). It is highly active against all pathogenic strains of C. difficile (123). However, its usage is 

limited due to its high cost and emergence of vancomycin-resistant enterococci and 

Staphylococcus aureus (121). But both vancomycin and metronidazole have been shown to 

suppress Bacteroids spp in the fecal flora, which are considered helpful as a colonization barrier 

(121). Although C. difficile is sensitive to both antibiotics, with the recent change in 

epidemiology they have been associated with treatment failures and ineffective in recurring 

infections. Fidaxomicin is a macrocyclic narrow-spectrum antibiotic approved by the FDA in 

2011 for the treatment of CDI. It is minimally absorbed from the bowel into the bloodstream and 

reported to be with more active than vancomycin against C. difficile (124). Its minimal activity 

against normal gut flora and Bacteroids spp makes it as a promising candidate to treat recurrent 

CDI (125).  
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Even though antibiotics have been the preferred treatment strategy, long-term usage 

applies enormous evolutionary pressure and leads to the emergence of resistant strains. For C. 

difficile infections, the main is the alteration of colonic micro-flora. Although antibiotics provide 

some respite, it increases the risk of recurrence due to the disruption of the colonization barrier 

normal microbiota provides. In this case very narrower spectrum antibiotics with high potency 

would be more effective (126). Since the disease symptoms are mainly mediated due to the 

toxins, anti-virulence agents that targets the toxins in combination with antibiotics are crucial to 

obtain effective therapeutic outcomes in patients with severe diarrhea. 

1.6.3 Reestablishment of colonic microflora 

The development of diarrhea (AAD: antibiotic associated diarrhea) following antibiotic 

administration is common. In general the disease is mild and no specific pathogens are isolated. 

AAD is mainly due to the disruption of the colonic mucosal integrity and basal micro biota 

(127).  However, upon C. difficile exposure, the antibiotic-mediated destruction of colonic 

microbiome becomes a major risk factor in CDI initiation. Therefore it is believed that 

reconstruction of colonic microbiota-mediated homeostasis would provide C. difficile 

colonization barrier (16). Two methods are employed to reestablish colonic microbiota including 

probiotics and fecal-source microbial repopulation. In addition to this, a new approach indicates 

that colonization with nontoxigeneic strains of C. difficile is effective in preventing toxigenic C. 

difficile colonization in hamsters (128). In future, recent developments in human microbiome 

projects will be tremendously helpful in-depth identity on gut normal flora, impact on antibiotics 

in such systems and will lead to develop carefully defined therapeutic approaches  (116,129). 

1.6.3.1 Probiotics 
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Probotics are defined as live or live-attenuated microbes that are administered to the 

patient to repopulate gut microbiota in order to prevent and treat infectious diarrhea (130). A 

large variety of organisms have been studied including, Saccharomyces boulardii, Lactobacillus 

acidophilus, Bifidobacterium bifidum. However, most probiotics consist of single or mixed 

formulations of certain bacteria (130,131). Although many probiotic-mediated studies were 

conducted, a smaller number of studies have shown a modest therapeutic benefit from probiotics 

towards treatments of C. difficile diarrhea (132). Difficulties in interpreting these studies were 

mainly due to variability of the type of probiotics used and differences in specified indications 

(e.g usage in mild diarrhea vs. severe diarrhea / acute disease vs. recurrence) (133). However the 

draw backs in the development of standard probiotics are due to lack of standardized 

preparations (the exact composition of individual microbe is typically not known) and most 

probiotics are not evaluated or approved by the Food and Drug Administration (FDA) (134). 

Despite the disparate results in the field, probiotics remains a safe and reasonable way to provide 

an initial colonization barrier to patients under long-term antibiotic therapy and possibly a 

treatment for recurrence infections. Studies with carefully defined and widely available probiotic 

preps are underway to optimize the type of organism and usage in moderate-to-recurrence CDI. 

1.6.3.2 Fecal transplantation 

The widespread interest in the field of “fecal source-based microbial repopulation” has its 

own contradictions due to poor patient acceptability and possible transmission of other infectious 

diseases (bacteraimia, fundaemia) (135). However with increased disease severity and recurrence 

of C. diffile associated diseases scientists have revisited this form of therapy as an option. In this 

case the donor fecal product is administered using nasouodenal, nasogastric and enema infusions 

via colonoscopy. Although many preliminary studies provide ~90% beneficial results after one 
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or two treatments (136,137), there are many issues associated with dosage, mechanism of 

collection, processing, selection of donor individuals etc. Leading to the lack of well-controled 

studies published in the field. However preliminary animal studies comparing this mode of 

treatment with standard antibiotics for recurrent CDI are ongoing. 

1.6.4 Immunotherapy 

The clinical outcome of C. difficile mediated diseases ranges from asymptomatic carriers 

to severe pseudomembranous colitis. Serum and colonic antibody responses to C. difficile 

virulence factors have been reported in ~60% of the general population (138,139). Therefore in 

most cases the clinical C. difficile disease presentation and recurrence have been believed to link 

with host factors rather than bacterial. Warny et al., reported serum levels of IgG antibody 

against toxin A and fecal levels of IgA antibody against toxin A were higher in patients with 

mild CDI compared to severe CDI (140). Followed by this another study further confirmed 

increased serum levels of IgG antibody against tcdA were found in asymptomatic carriage of C. 

difficile (141). Information gathered from in vivo, animals and clinical studies show that immune 

system-based toxin neutralization approaches are feasible to prevent and treat CDI. Since both 

toxins play crucial role in disease symptoms, antibodies to both TcdA and TcdB are required to 

provide therapeutically effective protection. There are two immune system-based approaches 

that have been in progress; active immunization/vaccine and passive intravenous 

immunoglobulin infusion therapy. 

1.6.4.1 Active immunization (Vaccines) 

Active immunization can be used prophylactically against CDI symptoms but also used 

in recurrent infection along with other non-antibiotic approaches such as probiotics. Vaccines are 

mainly designed to target major virulence factors TcdA and TcdB (142). Non-toxic 
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immunogenic determinants are generated by two main approaches: (a) chemically inactivated 

purified TcdA/TcdB and (b) recombinant chimeric units with the combination of both TcdA and 

TcdB regions. Formalin-inactivated toxoids A and B (ACAM-CDIFFTM- Sanofi Pasteur) where 

the toxins have been purified from C. difficile bacterial cultures was shown to be safe and 

immunogenic in healthy volunteers (142). Although it is still in Phase 2 clinical trails, it has been 

granted fast track designation by the FDA in 2010, for urgent or life-threatening medical need. 

The other two most promising vaccines which entered for Phase 1 clinical trials include: a fusion 

protein containing the receptor binding domains of C. difficile TcdA and TcdB (C-TAB.G5- 

Intercell) (78) and a chimeric vaccine (cTxAB) by switching the receptor binding domain of 

TcdB with that of TcdA (143). cTxAB has been shown to be effective in treating spore-induced 

disease relapse (143). 

1.6.4.2 Passive immunization 

While there has been significant development in the field of vaccines over past few years, 

the protective effect obtained by passive immunization will be useful in treating 

immunocompromised patients with CDI. A variety of antibodies (e.g., IgY, IgG, IgA) targeting 

C. difficile toxins have been produced from immunized animals (144).  Many studies have been 

reported that the administration of pooled human IgG containing anti-toxin antibodies improved 

the diseases severity of patients with severe CDI (145). In C. difficile infections, antibodies 

targeting toxins have been designed for oral and systemic administration.  For systematic 

therapeutic usage, antibodies should be humanized or human origin to suppress potential 

immunogenicity. However this should not be a concern in the oral approach. In this case 

antibodies have to be further formulated to survive harsh gastrointestinal environments. Babcock 

et al., reported the first humanized monoclonal antibody in 2006 (146) and now fully human 

27



monoclonal anti-TcdA (CD-1) and TcdB (CD-2) antibodies targeting the receptor binding region 

are in phase III clinical trials for the treatment of CDI ( Massachusetts Biologic Laboratories in 

partnership with Medarex, Inc) (147). 

1.6.5 Anti-virulent strategies 

Managing multiple recurrences and disease progression into more severe infections are 

the two most pressing challenges in treating C. difficile associated diseases. Although antibiotics 

are useful in clearing pathogenic bacteria during infections, their uses increases the risk of 

emergence of antibiotic resistant strains and high relapse rates that renders this line of treatments 

less effective in the long run in eliminating CDI. Alternative ways to combat C. difficile 

infections stems from the mechanistic insights where targeting specific virulence factors such as 

the “toxins” that plays a pivotal role in disease pathogenesis. This line of strategy serves a two-

fold advantage where on one hand it provides a specific and direct response to disrupt the 

infection while on the other hand having no effect on normal flora that helps maintain the 

equilibrium of bacterial populations (148,149). Newer strategies utilize the mechanistic details of 

virulence factors in pathogenesis to develop effective anti-virulent agents. In terms of C. difficile 

toxin agents can be designed to inhibit uptake, processing and enzymatic activity essential for 

ultimate host cell destruction (Figure 1.6). 

1.6.5.1 Toxin-binding agents 

 Initiation of toxin internalization begins with the binding of toxin to appropriate 

receptors. Receptor mimics/toxin-binding agents have been a longstanding interest in the field 

(150,151). These compounds can be orally administered and readily excreted without any 

systemic absorption. The main advantages of using such agents are that they act in the lumen of 

the intestine, do not require cellular uptake and prophylactically higher concentrations can be 
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achieved to efficiently inhibit toxin activity (151). A variety of toxin-binding agents have been 

reported such as cholestyramine- an anionic exchange resin (151), Tolevamer - an anionic 

styrene-based polymer (152,153), Synsorb 90- inert silica-based resin coated with trisaccharide 

to enhance binding of receptor binding region (Synsorb Biotech; Calgary, Alberta, Canada) etc 

(154). However these compounds failed in clinical trials due to cross-reactivity with of standard 

antibiotics, poor tolerability and reduced availability due to aggregation issues (151). While there 

is still hope in this area with newer compounds with improved properties would clinically useful.   

1.6.5.2 Auto processing activators / inhibitors 

Both toxins require cysteine protease (CPD) mediated autocatalytic cleavage to release 

the enzymatic domain into the cytosol. Although many specific inhibitors for C. difficile CDP 

have been reported (87), they may not be therapeutically successful since the catalytically active 

N-terminal region is already poised for cellular damage. But specific CPD activators that induce 

premature cleavage of CPD before toxin internalization would be more appropriate. A recent 

study has shown that one of the host-mediated endogenous mechanisms to protect from 

clostridial toxin is by nitrosylation of the active site cysteine (S-NO) of CPD (155). Above 

observations opens up a new therapeutic scenario for CPD inhibitors, if inhibitors were 

specifically designed to irreversibly bind catalytic cysteine in the GI tract, the inhibitors will 

remain intact even when the toxin gets internalized and there by prevent release of N-terminal 

catalytic domain.  

1.6.5.3 Enzymatic domain inhibitors 

Mechanistic-based enzymatic domain inhibitors remain as the most promising area 

regarding reduction of symptoms associated with CDI. As explained in CPD, although catalytic 

activity occurs intracellularly the inactivation could be targeted in the GI tract (Explained in 
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detail in Chapter 2 and Chapter 3).  Toxin etiology indicates that two main approaches can be 

used to develop GTD inhibitors (148). A homolog that mimics UDP-glucose and small 

molecules or peptides that mimic the RhoA substrate might provide a greater interaction surface 

with GTD. Sugar analogs bind poorly and make poor drug candidates (156). A polyhydroxylated 

indolizidine alkaloid, castanospermine was found to inhibit in vitro glucosyltransfer of TcdA and 

TcdB via transition state mimicry (157). However it showed poor in vivo binding properties and 

tissue micro injection was required for its protection. 

1.6.5.4 Inhibitors towards potential virulence factors 

These factors function in pathogenesis by promoting efficient adherence and colonization 

in host. Therefore inhibitors targeting potential virulence factors interfere with colonization 

initiation. In recent years an array of studies have provided detailed understanding on 

mechanisms of spore formation, germination and colonization that has set the stage towards 

identification of novel clinically potential targets. The recent research interests in this field have 

mainly focused on two areas: germination inhibitors (158) and inhibitors for surface layer-

mediated host cell adherence (159). These non-absorbable agents appear to be amenable for oral 

administration and may act prophylactically to prevent colonization. 

1.7 Conclusions 

According to a recent report by the CDC (Centers of Disease Control and Prevention), C. 

difficile infection has known to be the most costly healthcare-associated infection. Despite the 

incontestable success of antibiotics in treating C. difficile infections, with the emergence of high 

toxin producing epidemic strains, high recurrence rates, potential emergence as a community-

acquired pathogen and increased morbidity and mortality of disease have increased the need of 
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more reinforced infection control procedures in healthcare settings and novel effective 

therapeutic approaches. 

1.8 Thesis Statement 

The major pathophysiology associated with numerous epidemic life-threatening bacterial 

infections such as anthrax (Bacillus anthracs), cholera (Vibrio cholera), antibiotic-associated 

diarrhea (C. difficile), hemolytic-uremic syndrome (Enterohemorrhagic Escherichia coli) are 

mainly caused by the secretion of virulence factors categorized as “protein toxins”. Although 

antibiotics are broadly used as the treatment strategy, the main challenge has been the 

development of resistance strains and toxins that continue to cause symptoms even when bacteria 

are cleared form the system. Alternative ways to combat such diseases are from targeting 

specific virulence factors. Our lab has been interested in exploring the mechanistic details of C. 

difficile virulence factors and anti-virulent treatment strategies over past 10 years. This body of 

work centered on two main areas focusing on pathogenesis of C. difficile. (I) Identification and 

characterization of peptide-based anti-virulence agents specifically target glucosyltrasferase 

domain of C. difficile Toxins A and B. (II) Detailed understanding on regulatory networks that 

govern expression of virulence factors.  

(1) Towards development of mechanistic-based anti-toxin agent, phage display was used 

to identify peptides that bind to the catalytic domain of C. difficile Toxin A. Characterization of 

the binding and inhibitory activity revealed that the lack of parent peptide ability to inhibit the 

cells in vivo. Further derivatization of above parent peptides in to irreversible binders lead to 

protects cells in vivo. Mass spectroscopy approaches revealed the peptide inhibition was mainly 

due to cross-linking of modified peptide in to key catalytic residues in active site. While there are 

still several steps required to further explore in terms of the stability of these compounds that 
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could withstand harsh gastrointestinal environments, formulation, administration etc, before 

these candidates can be taken to the clinic, our results can be viewed in broader perspective in 

which it shows for the first time a pathway towards the systematic construction and proof of an 

active site binding peptide that can irreversibly inactivate an enzymatic domain of bacterial A-B 

type toxins and protect cells from its activity. Agents like these could be potentially used 

prophylactically to avoid extensive cellular damage during treatment with broad spectrum 

antibiotics or in populations prone to CDI. 

 (2) In addition to development of an anti-virulent agent, we are interested in gaining 

better understanding on toxin gene expression by a negative regulatory protein TcdC. Here we 

have employed both biochemical and genetic approaches to characterize the role of TcdC. 

Together our in vitro and in vivo studies illustrate that TcdC is not a repressor rather it could act 

as an anti-sigma factor. We have first time provided evidence that TcdC harbors a putative N-

terminal signal peptide region and it undergoes cleavage in vivo. In vivo fusion studies revealed 

that the removal signal peptide leads to loss of function of TcdC. Fusion studies together with 

co-immunoprecipitation provided evidence on a direct interaction between TcdC and RNA 

polymerase in vivo. Above observations based on biochemical and genetic studies lead us to 

propose that TcdC, may function as a ECF class anti-sigma factor with regulated transmembrane 

proteolysis (RIP) pathway. In addition to that our data further verified that the truncated mutation 

leads to the activation of toxin promoters and thus play an important role in high toxin producing 

epidemic strains. Further our GFP-based reporter system system has a potential to be an 

adaptable tool for investigating fine details on PaLoc gene tunings, such as promoter specificities 

etc. Being able to adopt in host environment is vital for survival and propagation of a pathogenic 
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bacteria. Thus, exploring the regulatory nodes on PaLoc gene expression can be lead to exploit 

potential therapeutic opportunities hidden within such systems.  
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CHAPTER 2 

Peptide Inhibitors Targeting Clostridium difficile Toxins A and B 

2.1 Abstract  

Clostridium difficile causes severe hospital-acquired antibiotic associated diarrhea due to 

the activity of two large protein toxins. Current treatments suffer from a high relapse rate and are 

generating resistant strains, thus new methods of dealing with these infections that target the 

virulence factors directly are of interest. Phage display was used to identify peptides that bind to 

the catalytic domain of C. difficile Toxin A. Library screening and subsequent quantitative 

binding and inhibition studies showed that several of these peptides are potent inhibitors. 

Fragment based computational docking of these peptides elucidated the binding modes within 

the active site. These anti-toxin peptides will serve as potential lead compounds to further 

engineer peptidomimetic inhibitors of the clostridial toxins. 

2.2 Introduction 

Clostridium difficile infections cause one of the most common and vital hospital-acquired 

diseases often associated with broad-spectrum antibiotic usage (20). Disease severity ranges 

from asymptomatic colonization to life threatening colitis including toxic megacolon and colonic 

perforation (161). The emergence of hyper-virulent strains that are both more resistant to current 

antibiotics and produce dramatically more toxin during infection have lead to epidemic outbreaks 

in clinics around the world (162). Although elderly hospitalized patients still remain as the most 

susceptible entity for infection, recent reports indicate an increased prevalence of CDAD 

(Clostridium difficile associated diseases) in pediatric and adult population (163,164). An 

                                                      
 A part of this work is published in ACS Chemical Biology 160. Abdeen, S.J., Swett, R.J. and Feig, A.L. 
(2010) Peptide inhibitors targeting Clostridium difficile toxins A and B. ACS chemical biology, 5, 1097-1103. 
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alarming rise in the incidence of community acquisition of CDAD has also been observed 

indicating new strains that may have serious health consequences for the general population if 

left unchecked. 

While standard antibiotics such as metronidazole or oral vancomycin (165,166) provide 

some respite, due to the development of antibiotic-resistance, high relapse rates and more severe 

disease presentation caused by the epidemic strains, this line of treatment alone has often proven 

to be suboptimal. Therefore an increased demand for new, non-antimicrobial therapeutics has 

been born. Development in this area has focused on two basic strategies, one involving the active 

reconstitution of normal colonic micro flora with the idea that native microbiota provide 

significant protection from pathogens like C. difficile (16). The second area involves design of 

agents that target virulence factors assisted by the array of studies that have provided detailed 

understanding of the structure and function of these toxins (148,167). Recent therapeutic 

advances have focused on immunotherapy (168), vaccinations (78), toxin binding agents (158), 

and mechanistic-based inhibitors that targets toxin function(87,157,160). The above therapeutic 

strategies have an additional advantage that they minimally impact normal gut micro flora which 

should reduce risk of developing secondary C. difficile infections.  

The N-terminal glucosyltransferase domain (GTD) binds to cellular UDP-glucose and 

irreversibly glucosylates small Rho family GTPases leading to the main pathophysiological 

effects (88,97). Mutations of key catalytic residues of the glucosyltransferase (GTD) completely 

inactivate the toxins (92), showing that inhibition of the GTD would be an effective route of 

preventing disease progression. Two main approaches can be used to develop GTD inhibitors. A 

homolog that mimics UDP-glucose without interfering with cellular glycobiology could be 

effective, but typical sugar analogs bind poorly and make poor drug candidates (156). 

35



Alternatively, small molecules or peptides that mimic the RhoA substrate might provide greater 

interaction surface with GTD and thus make a more attractive starting point to develop drug 

candidates. 

Phage display is a proven method for selecting peptides/proteins from large libraries 

where random short peptides/proteins are expressed as fusion proteins on bacteriophage coat 

proteins (169-171). This concept was first introduced by George Smith in 1985 (172). The rapid 

identification of specific ligands by phage display has been successfully used in many 

applications including antibody-epitope mapping, identification of peptide mimics of non-

peptide ligands, selection of DNA binding proteins, drug discovery, used in enzymology to 

determine substrate specificity and to identify modulators/inhibitors etc (170,173-179). Phage 

display-based inhibitory peptide selection was effectively employed against the anthrax toxin 

(174,180). In phage display, exogenous peptides/proteins of interest are expressed and presented 

on non-lytic filamentous phages (M13, f1, fd) or lytic phages (T7, T4, lambda), where 

filamentous phage are employed for displaying short peptides where as lytic phage are 

commonly used for cDNA expressing larger proteins (169,171,181). Filamentous phage M13 is 

the most frequently used vector to generate random peptide-display libraries. In M13-based 

display, protein or peptide of interest is fused N-terminally to pIII or pVIII coat proteins (Figure 

2.1A). pIII is present at 5 copies per phage of which all five can be fused to peptides without 

interfering with infectivity. But pVIII coat protein is present as ~2700 copies per virion but only 

about ~ 10 % of the pVIII can be fused with peptide/protein of interest. Peptide libraries based 

on pVIII coat proteins suffers from “avidity effect” and generally results identification of  low-

affinity binders for target (169,182,183). The most common screening method is based on 

enrichment of phage clones that bind to the target, by a process called biopanning (Figure 2.1B). 
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The biopanning includes; introduction of phage library to an immobilized target, washing away 

unbound phages, elution of bound phages and amplification in host bacteria. This process was 

continued until the desired sequence enrichment is achieved and then the displayed peptides 

were identified by DNA sequencing. 

2.3 Results and Discussion 

2.3.1 Biopanning of M13 Ph.D.- 7 library indentified TcdA binding peptide families 

We selected a commercially available M13 Ph.D. -7 (NEB) phage display library with 

random heptapeptides fused to the N-terminal of pIII coat proteins. Compared to the other longer 

peptide libraries, the heptapeptide library is useful in identifying tighter binding peptide 

sequences instead the selection of multiple weak binding contacts. Biopanning was performed 

using an affinity capture method. The direct immobilization of target (toxin) to plastic support 

will potentially lead to partial denaturation of proteins and alter protein confirmation that is 

required for ligand binding. Therefore we used the affinity capture method to overcome these 

issues. The biopanning protocol (Figure 2.2A) was specifically designed to identify phage that 

bind toxin within the substrate binding pocket by requiring direct competition with RhoA. 

Therefore as the target, instead of holo Toxin A, a recombinant form of Toxin A, previously 

constructed in our lab with the minimal catalytic domain (rTcdA540) was used. The rTcdA540 was 

immobilized to Ni- NTA resin using its 6x his tag. In order to overcome the problem of selection 

of Ni2+ binding phages, during the biopanning a pre-clearance step was carried out by 

introducing the phage pool to the resin in the absence of rTcdA540. Initially the library was pre-

cleared three times to remove Ni2+ binding phage. This step was reiterated at the beginning of 

each round of selection. During the first round of biopanning, bound phage were recovered non- 
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Figure 2. 1 Overview of M13-based phage display screening. (A) Schematic representation of M13 phage with 
major coat proteins. Exogenous peptides/ proteins are displayed on pIII or PVIII coat proteins. (B) Representative 
image of biopanning. The phage library is introduced to immobilized target, and unbound phages are removed by 
washing. Bound phages are eluted, amplified in E. coli, and subjected to the next cycle of biopanning. The cycle is 
repeated several times to enrich target-specific phages. Individual enriched phages are isolated and sequenced. 
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Figure 2. 2 Overview of biopanning strategy and progression of selection. (A) Schematic diagram of the phage 
display protocol. A pre-clearance step was carried out to remove nonspecifically binding phages from Ph.D-7 
library. In the first round non-specific elution was performed with EDTA to elute his-tagged rTcdA540 from Ni-NTA 
magnetic beads along with bound phage. During other three subsequent rounds, specific elutions were carried with 
RhoA, such that the eluted phages are those competitively released from the RhoA-rTcdA540. (B) Histogram 
showing the progress of biopanning over the course of the selection process indicating the fraction of the phage 
recovered during each round. Identical numbers (1010pfu/ml) of phage were introduced in all four rounds. 
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specifically by releasing with EDTA. In the next three rounds, the bound phage was eluted 

competitively with RhoA while increasing the stringency of the washing to improve the overall 

affinity of the surviving phage. As shown in Figure 2.2B, despite an equal number of phage 

being introduced during each round of selection, the number of eluted phage decreased in the 

second round. This result indicates that by switching from non-specific to competitive elution, 

non-specific peptides that survived the first round were removed from the pool. During rounds 2 

- 4, phage recovery increased continuously and at the end of the fourth round, 10% of all input 

phage were captured. The above pattern represents a strong selection of rTcdA540-interacting 

peptide sequences at this step. The consensus sequences obtained by sequencing 200 phages at 

the end of the 4th round (Figure 2.3A) further confirmed that strong selection of target binding 

peptides. Analysis of 200 peptides sequences revealed 36 unique peptides, many of which were 

identified multiple times (Figure 2.3A). These peptides were divided into five distinct families 

based on their sequence similarity (Families A - E) and highly structured subfamilies, suggesting 

that these peptides are not random but have been preferentially selected.  

2.3.2 ELISA-based screen revealed 17 potential rTcdA540 binders 

Individual phages were tested in isolation to measure their affinity for TcdA540. First, a 

rapid ELISA screen was used employing a single concentration of rTcdA540 (Figure 2.3A), 

identifying 17 individual peptides (shown in red) with the tightest toxin binding. Hit scores 

reflected the binding capacities of each phage (described in detail in materials and methods). The 

preliminary binding study indicated within each family the binding affinities of phage varied. 

Subfamilies C2 and B2 consist of mostly very weak binders (Figure 2.3A). Thereby indicating, 

binding affinities were distributed based on specific peptide sequence preferences. A more 

quantitative ELISA assay was then used to measure affinities (Kd) for phage-bound peptides. A  
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Figure 2.3 Binding affinities of phage displaying inhibitory peptides. (A) Families of peptide sequences 
identified from the analysis of 200 independent phage sequences and their apparent affinities. The binding affinities 
were obtained by a phage-based preliminary ELISA. Those marked in red exhibited binding affinities < 200 nM, 
blue: 200 – 1000 nM, and grey: > 1 µM. (B) Representative binding plot showing the interaction of phage 
HAIYPRH binding rTcdA540 with Kd of 170 ± 10 nM and cooperativity factor of 3. (C) Histogram showing the 
frequency with which each of the 17 tight binding peptides was observed among the 200 phage sequenced. Peptides 
are ordered based on their affinities for rTcdA540 and cooperativity values (n) are shown at the far right. All Kd 
values are the mean of four independent measurements. 
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quantitative ELISA assay was then used to measure affinities (Kd) for the phage-bound peptides 

by titrating the amount of rTcdA540 immobilized in each well (Figure 2.3B). For the quantitative 

binding studies the tightest binders (Red) from preliminary ELISA was chosen.  Overall, 

peptides exhibited cooperative binding with Hill coefficients of 2-3 and with Kd values ranging 

from mid-nanomolar to low micromolar (Figure 2.3C). The majority of the tightest binders 

presented with the coorperativity factor of 3. All 14 out of 17 peptides exhibited Kd of below 500 

nM. In a polyvalent phage display, multiple binding events can give rise to chelate or avidity 

effects leading to over-representation of lower affinity peptides during the selection process. 

Since the natural substrate RhoA has poor affinity (KM >300 µM) to TcdA (184), the peptides 

exhibit tight binding relative to the natural substrate. 

2.3.3 Selected TcdA binding phages inhibit toxin glucosyltransferase activity in vitro 

Two phage sequences were selected for detailed inhibition analysis. Phage displaying the 

peptide EGWHAHT is a tight binder from family D (Kd~100 nM) and was among the tightest 

interactions from the initial screen. HQSPWHH from Family A2 binds toxin with modest affinity 

(Kd~330 nM) but showed the highest affinity in computational docking studies (section 2.2.6). 

(A fragment-based computational docking approach was used to observe the binding modes 

within the active site. The docking analysis was performed by our lab member Rebecca J. Swett). 

Inhibition activity was tested using a filter plate assay (184). UDP-[14C]-glucose, rTcdA540 and 

phage were incubated with RhoA in glucosylation buffer. Aliquots were removed at desired time 

points, quenched, and applied to a protein binding membrane to capture the radiolabeled product 

(Figure 2.4A). Control experiments in the absence of RhoA verified that the TcdA was incapable 

of glucosylating phage proteins. Typical data from a kinetic time course, measured as a function 

of phage concentration, are shown in (Figures 2.4B and 2.4C). Both peptides HQSPWHH and  
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Figure 2.4 Phage and peptide-based in vitro glucosyltransferase inhibition. (A) Schematic of filter plate assay. 
Phage/peptide at varying concentration was titrated against constant rTcdA540 concentration. At appropriate time 
points aliquots were removed and quenched and applied on membrane (B) Phosphorimage of an inhibition assay 
time course involving phage displaying the peptide HQSPWHH. Each column is an independent 60 minute time 
course. (C) GT inhibition progress curve at initial time points for Phage HQSPWHH. Glucosylated RhoA at each 
time point was calculated using a standard curve methodology. (D) Representative glucosyltransferase inhibition 
plot for synthetic peptides HQSPWHHGGGC and EGWHAHTGGGC showing the relative rate (vi/v0 where vi is the 
rate in the presence of inhibitor and v0 is the rate in the absence of inhibitor) as a function of peptide concentration. 
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Table 2. 1 Comparison of Kd and Ki values of peptides 

Sequence Kd (nM)a Ki (pfu)a 
Ki (peptide) nMb 

rTcdA540 rTcdB 

EGWHAHT 100 ± 5 105 500 ± 200 54 ± 20 

HQSPWHH 330 ± 40 102 300 ± 200 18 ± 9 

a  Values were obtained from phage-based TcdA540 binding and GT inhibition experiments.  
b Obtained from peptide-based GT inhibition experiments. 
TcdA540- recombinant form of TcdA consists of only glucosyltransferase domain. 
rTcdB  - recombinant form of holotoxin TcdB 
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EGWHAHT effectively inhibit glucosyltransfer activity (GT) in vitro. In the context of the 

phage, HQSPWHH was 100-fold more effective as an inhibitor than EGWHAHT (Table 2.1),  

despite the fact that EGWHAHT has a tighter binding affinity. Thus, the phages that bind more 

tightly to TcdA are not necessarily the best glucosylation inhibitors. This can be explained by the 

fact that the weaker binders may comprise an appropriate binding geometry in the active site of 

TcdA so that they efficiently interfere with RhoA binding and glucosylation. 

2.3.4 Synthetic peptides inhibit both TcdA and TcdB in vitro 

A recent study indicates isogenic mutants of C. difficile producing either toxin A or toxin B 

alone can cause fulminant disease in a hamster model (64). Thus it’s important to classify 

inhibitory activities of peptides with respect to both toxins A and B. In phage display the 

peptides were fused in a polyvalent context with phage. This may affect target binding and 

inhibition potencies of peptides. Therefore following the phage-based analysis intact peptides-

based binding affinities and inhibition efficiencies were characterized. The synthetic peptides 

were designed with the following features, since the C-terminal of displayed peptides were fused 

to the phage, the C-terminal carboxylate residue of the synthetic peptides were amidated to block 

the negative charge. The Ph.D.-7 phage display library consists of randomized linear 

heptapeptide fused to the coat protein pIII via a flexible linker Gly-Gly-Gly-Ser, our synthetic 

peptides were designed to have a Gly-Gly-Gly linker to the C-terminal but we replaced the Ser 

with Cys. The free thiol group of cysteine can be easily employed for peptide labeling purposes. 

Consequently, synthetic peptides with the sequence EGWHAHTGGGC and HQSPWHHGGGC 

were tested for GT inhibition activity with both TcdA and TcdB and a non-specific 7-mer peptide 

from a different phage display experiment employing the PhD-7 library showed no inhibition. 

These data were fit to a partial competitive inhibition model to obtain the apparent Ki. Consistent  
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Figure 2.5 Schematic representation of optical enzyme coupled glucosylhydrolase (GH) assay and competitive 
UDP-glucose mediated GH inhibition recovery. (A) The generation of UDP by TcdA/TcdB mediated UDP-
glucose hydrolysis was quantified through the coupled-enzyme system of pyruvate kinase (PK) and lactate 
dehydrogenase (LDH). The turnover rate of PK and LDH were much faster than GH activity of TcdA/TcdB, 
allowing accurate rate determination of UDP production. The oxidation of NADH is monitored by the loss of 
absorbance at 340 nm. (B) At constant maximal GH inhibitory peptide concentration UDP-glucose (UDP-Glc) was 
titrated from 0.5 to 13.5 mM. The relative GH rate was calculated using the ratio of initial GH rate in the presence 
(vi) and absence of peptide (v0). HQSPWHHGGGC-UDP-Glc titration is indicated in blue and EGWHAHTGGGC-
UDP-glc titration in green. At 0.5 mM UDP-Glc concentration ~ 95% inhibition was observed in the presence of 10 
nM HQSPWHHGGGC and 1 µM EGWHAHTGGGC and recovery in inhibition was observed with increase in 
UDP-glc concentrations. 
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with the phage-based inhibition studies, (Figure 2.4D and Table 2.1) HQSPWHHGGGC had a 

lower Ki (300 ± 200 nM) compared to EGWHAHTGGGC (500 ± 200 nM), but a lower overall  

extent of inhibition. Whereas in the case of rTcdB apparent inhibition constants (Ki) of 18 ± 9 

nM for HQSPWHHGGGC and 54 ± 20 nM for EGWHAHTGGGC was obtained. Promisingly, 

the peptides effectively inhibit both TcdA and TcdB in the low micomolar range. The differences 

in Ki in the presence of rTcdA540 and rTcdB can be largely explained by the fact that truncated 

TcdA/TcdB harboring only glucosyltransferase domains posses enhanced (~ 800 fold) 

glucosyltransferase catalytic activity over the holotoxins A and B  in vitro(89) and  observed 

RhoA modifying rate is higher in TcdA compared to TcdB (89). Thus leads to lower inhibitory 

potential of peptides towards rTcdA540 compared to rTcdB. 

2.3.5 Peptides act as reversible competitive inhibitors 

In addition to the GT activity, in the absence of suitable protein substrates, toxins 

catalyze UDP-glucose hydrolysis (GH activity). Although GH activity is thought to be irrelevant 

in vivo, it is useful in an enzymology perspective to identify and characterize the properties of 

inhibitors. Both peptides EGWHAHTGGGC and HQSPWHHHGGGC effectively inhibited 

TcdA540 GH activity at low (0.5 mM) UDP-glucose concentrations (Figure 2.5C and 2.5D), and 

inhibition behavior was competitive with respect to UDP-glucose. But in contrast to 

EGWHAHTGGGC, in the presence of  HQSPWHHHGGGC, the inhibition was ~90% recovered 

with increasing UDP-glucose concentration. The above observation validates the fact that both 

peptides having different binding modes within the active site. In addition to that the partial 

competitive inhibition observed in GT inhibition assays thus results from the high UDP-Glc 

concentrations used in the enzyme assays to ensure rapid GT activity and may be less important 

in a cellular context where UDP-Glc concentrations are relatively low (185). 
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2.3.6 Docking studies elucidated the peptides binding modes within the TcdB active site 

[In sillico studies were performed by Rebecca J. Swett] 

To better understand how the peptides bind to C. difficile toxins, a computational 

approach was used. Molecular models of the selected peptides were created and flexibly docked 

into N-terminal catalytic domain of TcdB (96). The crystal structure of the N-terminal catalytic 

domain of TcdB was used as the catalytic domain as TcdA has not been crystallographically 

resolved by that time. Both TcdA and TcdB target Rho proteins, Rac1 and Cdc42 and have 

identical substrate specificities. Furthermore, the catalytic domains of TcdA and TcdB exhibit 

74% sequence homology (20) making it a suitable substitute for these studies. The docked 

structures were then validated using molecular dynamics under full solvation. Over a 10 ns time 

course, no major rearrangements were observed. 

 Peptides EGWHAHT and HQSPWHH both bind with their N-terminal residue occupying 

the active site (Figure 2.6). Binding conformations exhibit backbone coordination of the catalytic 

metal ion and electrostatic interactions with the highly charged active site region. HQSPWHH 

adopts a more curled conformation (Figure 2.6A) in order to facilitate interaction of the C-

terminal histidines with the charged loop region comprised of residues 513-526, a known mobile 

loop within the active site critical for GT activity (83,186). These two histidines form close 

contacts with a methionine and an asparagine respectively (Figure 2.6C). The curled 

conformation directs the backbone segment between the serine and the proline to the 

coordination sites of the magnesium (Figure 2.6C), while allowing the N-terminal histidine to 

contact a pocket comprised of an Asn-Asp pair. EGWHAHT adopts an extended conformation 

(Figure 2.6B and 2.6D) inserting His-4 in an Asn-Gln-Lys pocket just above the metal center 

(Figure 2.6D) while His-7 occupies a Glu-Asn-Glu pocket. Interestingly the docking studies in 
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good correlation with out in vitro inhibition studies, clarify the fact of moderate binder 

HQSPWHH being the strongest inhibitor is mainly due to its binding confirmation in the active 

site, where it interacts with a mobile loop within the active site critical for substrate recognition 

region required for glucosytransferase activity of C. difficile toxins. 

2.3.6  Synthetic peptide-TcdA540 binding 

In order to identify the binding interaction of EGWHAHTGGGC and 

HQSPWHHHGGGC with toxin, isothermal titration calorimetry (ITC) was used. It will provide 

a better understanding on the binding affinities (Kd), stoichiometry and the cooperative binding 

nature of intact peptides to rTcdA540. We did not observe any significant binding energy, once 

2.5 µM of TcdA540 (titrate) was titrated with 30 µM of EGWHAHTGGGC and 

HQSPWHHHGGGC. This may predominantly due to insufficient heat of binding associated 

with peptide-TcdA540 interaction. Our previous binding studies were carried out with 

pentavalently displayed peptides in context with the phage. Compared to the size of the fused 

peptides and its targets, the M13 phage size itself very large (65 Å diameter and 9300 Å length). 

Therefore the large surface and polyvalency may assist structural constrains on displayed 

peptides, thereby leading to increased affinity and cooperative effects on target binding compare 

to intact peptides. It is possible; to increase the biological activity of weakly binding peptides by 

presenting multiple copies of it, on the same molecule (polyvalent inhibitors) therefore in future 

presenting the peptide in a polymer backbone may enhance the binding affinities (187) and may 

result in detectable binding energies in ITC experiment. 

2.3.7  Characterization of selected peptides 
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Figure 2.6 Binding modes of peptides HQSPWHH (blue) and EGWHAHT (green) derived from 
computational docking. (A) HQSPWHH in the TcdB active site. (B) EGWHAHT in the TcdB active site. Catalytic 
magnesium is indicated as a green sphere. (C) A stick diagram showing close up view of HQSPWHH in the TcdB 
active site. All TcdB residues within 3 Å of the peptide are shown and labeled. The curled conformation and 
backbone coordination of the catalytic manganese are more readily apparent when viewed in stereo. (D) A stick 
diagram showing close up view of EGWHAHT in the TcdB active site. All TcdB residues within 3 Å of the peptide 
are shown and labeled. Ring stacking of the peptide tryptophan on Trp520 of TcdB is apparent, as are the numerous 
electrostatic interactions. 

 

50



Toxin inhibitory activity was initially characterized with two peptides HQSPWHH and 

EGWHAHT. However, the analysis has to be expanded to other potential binders in our library 

in order to establish their usefulness as inhibitors. As a cost-effective approach, peptides were 

recombinantly expressed as fusion proteins.  Green fluorescent protein was used as a scaffold for 

presentation of peptides (188,189). The light emitting properties of fusion constructs allow easy 

purification of our small hepta-peptides and detection on binding studies. 

Cloning, characterization of binding and inhibition activity of peptide fusion constructs was 

carried out by Stephanie Kern (Former graduate student in our lab). The LC-ESI mass 

spectroscopy data confirmed the purified protein have expected product but the N-terminal 

methionine remained intact in the purified protein even though it was expected to be cleaved 

from expressed protein in E. coli.      

 The ELISA based binding assay and a gel shift binding assays did not reveal any 

significant binding of pep-GFP fusion to TcdA540. This may be due to two main reasons; the 

displayed peptides on GFP may not be in a preferred orientation so that it can interact with 

TcdA540 or the N-terminal methionine may interfere with the peptide-TcdA540  binding. 

According to computational based docking data, the N-terminal residues in peptides were crucial 

for favorable peptide-toxin interactions. Thus, introducing an additional amino acid residue may 

have hindered the favorable contact of the peptide with the active site. This requires an 

expression system to produce peptides without additional N-terminal residues. 

       Alternatively, we used cyanogen bromide (CNBr) treatment for the removal of N-

terminal methionine. This protocol included TEV protease treatment on purified peptide-EmGFP 

to release of fused peptide, followed by cyanogen bromide cleavage. This methodology led to a 

poor yield of peptide which was insufficient to carry out inhibition studies. In addition, there 
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were issues with separation of un-cleaved methionine from the cleavage products. While 

considering the time requirement for all above steps, the amount of starting material required and 

final yield, it is more cost efficient to proceed with synthetic peptides. But due the financial 

limitations we could not progress with the analysis of the remaining 15 peptides. 

2.4 Conclusions 

We used a random heptapetide phage display library to identify peptide inhibitors that 

target C. difficile toxin. The consensus peptide sequences obtained at the end of the 4th round of 

biopanning, suggested that these peptides are not just random peptides but have been 

preferentially selected over other sequences. Subsequent qualitative and quantitative binding 

studies provided, 17 potent rTcdA540 binders with affinities varying from high nanomolar to the 

low micromolar range. The phage-based and peptide-based GT inhibition assays revealed the 

possible notion of strong binders may not be the strongest inhibitors. Above peptides inhibit both 

TcdA and TcdB activity in vitro. The UDP-glucose competition analysis on GH activity 

presented that both peptides bind with TcdA540 competitively with respect to UDP-glucose. The 

peptide-based inhibition analysis revealed that both peptide EHWHAHTGGGC and 

HQSPWHHGGGC inhibits TcdA and TcdB. The UDP-glucose competition analysis on GH 

activity presented that both peptides bind with TcdA540 competitive with respect to UDP-

glucose. In sillico studies provides evidence that both peptides bind to the active site of TcdB, 

albeit with different geometries. This finding clarifies the fact the strong binders may not be the 

strongest inhibitors. The binding study based of peptide-EmGFP fusion constructs provides that 

incorporation of an extra amino acid at N-terminal may abolish peptide-toxin binding. Binding 

and inhibition activity of the remaining 15 peptides have to be further characterized using 

synthetic peptides as well as alanine scanning of inhibitory peptides can be carried out to identify 
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the amino acid residues that required in making favorable contact with active site. This 

information can be utilized to build small molecules with better in vivo stability and potency.     

2.5 Materials and Methods     

2.5.1 rTcdA540 purification 

All procedures with rTcdA540 DNA were carried out in Biosafety Level 2 lab (BL2) 

following standard operating procedures. The N-terminal minimal catalytic domain of C. difficile 

Toxin A comprised of residues 1-540 (rTcdA540) was successfully cloned and catalytic activity 

was confirmed (184). E. coli BL21 (DE3) cells (Stratagene) harboring a rTcdA540 plasmid was 

used for protein expression. Cells were lysed by sonication in 50 mM sodium phosphate, 300 

mM NaCl, 10 mM imidazole, at pH 8.0, supplemented with EDTA-free complete protease 

inhibitor cocktail (Roche). The cell lysate was clarified by centrifugation and sterile filtered 

(0.22µm filter). The protein was purified using a nickel-chelated HiTrap column (GE 

Healthcare) and eluted with 250 mM imidazole. It was further purified over a HiLoad 16/60 

Superdex 200 gel filtration column (GE Healthcare). Size exclusion column fractions were 

reapplied to the nickel-chelated HiTrap column to concentrate the protein and eluted in a small 

volume of buffer containing 250 mM imidazole. The purified protein was dialyzed into storage 

buffer (50 mM HEPES-K, 100 mM KCl and 1 mM MgCl2, at pH 7.5) and stored at 4 °C. 

2.5.2 RhoA purification 

The Glutathione-S-transferase (GST)-tagged RhoA was purified using E. coli Rosetta2 

(DE3) cells (Invitrogen) harboring pGEX-2T-RhoA-GST, courtesy of the Richard A. Cerione lab 

(190). Cells were lysed by sonication in PBS, supplemented with EDTA-free complete protease 

inhibitor cocktail (Roche). The clarified cell lysate was loaded onto immobilized Glutathione 

resin (Thermo Scientific) and incubated for 1 hour at 4 °C on a rotating platform. After the 
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incubation period, the slurry was transferred to a disposable plastic column (Thermo Scientific). 

Bound protein was eluted in 50 mM Tris.HCl, containing 10 mM reduced glutathione at pH 8. 

 E. coli Rosetta2 (DE3) cells (Invitrogen) containing pET28a vector with His6-tagged 

human RhoA were also utilized for protein expression (184). Cells were lysed by sonication in 

lysis buffer (50 mM HEPES, 300 mM NaCl, 1mM MgCl2 pH 8.0), supplemented with protease 

inhibitors. Proteins were purified using an imidazole gradient from a nickel-chelated HiTrap 

column. Both the purified GST-tagged and His6-tagged protein were dialyzed into storage buffer 

and stored at 4 °C.  

2.5.3 Phage display 

 M13 phage-based 7-mer linear peptide library (Ph.D-7 peptide library from New England 

Biolabs) was used as the initial phage display library. Magnetic Ni-NTA bead-based affinity 

capture was used to immobilize rTcdA540. Therefore a pre-clearance step was performed prior to 

each round of panning to remove plastic and Ni2+ binders from the phage pool. Ni-NTA (250 µg 

capacity) magnetic agarose beads (QIAGEN) were washed 5 times with TBST buffer (50 mM 

Tris.HCl, 150 mM NaCl, 0.1 % [v/v] Tween-20, pH 7.5). TBST buffer containing 1010 pfu/ml of 

the phage library was incubated with washed Ni-NTA magnetic agarose beads at room 

temperature for 1 hour with continuous rotation. The supernatant of this solution provided the 

pre-cleared phage pool. For target immobilization, 20 µl of washed Ni-NTA magnetic agarose 

beads (50 µg capacity) were coated for 1 hour at room temperature with 100 µg of purified his-

tagged rTcdA540 with continuous rotation. After the incubation period, unbound toxin was 

washed away with storage buffer. The pre-cleared phage pool was added to the rTcdA540 coated 

Ni-NTA beads, and incubated at room temperature for 1 hour with continuous rotation. Unbound 

phage were removed by washing 20 times with 200 µl TBST buffer. Four rounds of elution were 
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performed under the following conditions: TBST buffer supplemented with 50 mM EDTA for 

round 1, 25 µg of purified Glutathione S transferase-tagged RhoA   in round 2, and 50 µg of 

purified GST-tagged RhoA for rounds 3 and 4. 

At the end of each round of selection, eluted phage were amplified in E.coli ER2738 cells (NEB) 

and phage were counted. After the fourth round, 200 phage colonies were selected randomly. 

Phage DNA was purified using the manufacturers protocol (NEB) and sequenced (Beckman-

Coulter CEQ8000 sequencer). 

2.5.4 Preliminary ELISA to identify rTcdA540 binding peptides 

A 96-well flat-bottom black assay plate (Fisher) was incubated with TBS (50 mM 

Tris.HCl, 150 mM NaCl, pH 7.5) buffer containing 1010 pfu from each of 36 phage colonies 

overnight at 4 °C. (Note: all colonies were plated in duplicate, allowing one well to serve as a 

negative control). After the incubation period, the wells were washed 6 times with TBS and then 

blocked with 2% bovine serum albumin (Sigma) in TBS for 2 hours at room temperature. Wells 

were then washed 6 times with TBS. Storage buffer (negative control), or storage buffer 

supplemented with 2 µM rTcdA540 was added to each well. The plate was incubated at room 

temperature for 1 hour with shaking and then washed 3 times with TBS buffer. To each well 

1µg/ml His Probe-HRP [a nickel (Ni2+) activated derivative of horseradish peroxidase (Thermo 

Scientific)] was added and incubated at room temperature for 1 hour. Wells were washed 4 times 

with TBS. To each well 200 µl of 1:1 mixture of Luminol/Enhancer Solution with Stable 

Peroxide Solution (Thermo Scientific) was added and after 5 minutes chemiluminesence was 

measured on a luminometer (Tecan GENios Plus multi label reader). Sample readings were 

compared to their corresponding negative control to obtain a hit score using equation 1 where A0 

is the chemiluminescence of the sample and B0 is the intensity of the negative control. 
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 Hit score = log (A0-B0) /log B0 (1) 

2.5.5 Quantitative phage-rTcdA540 binding assay  

Purified rTcdA540 (2 nM to 1000 nM in storage buffer) was coated overnight at 4 °C to 

96-well flat-bottom transparent assay plates (Fisher). After the coating step, unbound toxin was 

removed and wells were washed with storage buffer. Plates were blocked for 2 hours at room 

temperature with a solution of 2% non-fat dry milk in storage buffer and then washed again. 

Approximately 40 µl solution containing 1x1010 phages were added to wells and incubated for 3 

hours at room temperature with shaking. After washing 6 times with storage buffer, the plates 

were incubated for an additional 1 hour with anti-M13 monoclonal antibody coupled to 

horseradish peroxidase (GE healthcare) (1:10,000 dilution into storage buffer). Unbound 

antibodies were removed and the wells were washed 10 times with storage buffer. The enzymatic 

activity was assayed by addition of 1 Step Turbo TMB-ELISA (Thermo Scientific). The reaction 

was terminated with 100µl of 1M H2SO4. Color intensity was quantified at 450 nm using a Tecan 

GENios Plus multi label plate reader and compared to control reactions using milk-coated wells. 

Data were plotted as the mean ± SD of four independent experiments. Binding data were fit 

using nonlinear least square analysis (Kaleidagraph, Synergy Software) to a cooperative binding 

model (191). 

2.5.6 Phage based glucosyltransfer inhibition assay 

Glucosyltransferase activity in the presence or absence of inhibitory phage was measured 

by pre-incubating 2 nM rTcdA540 with 1010 pfu phage for 1 hour at 37 °C. Reaction was initiated 

by addition of pre-incubated toxin-phage mixture to glucosylation buffer (50 mM HEPES-K, 100 

mM KCl, 2 mM MgCl2, 2 mM MnCl2, pH 7.5) containing 2 µM RhoA, 15 µM UDP-glucose 

(Sigma) and 15 µM UDP-[14C]-glucose (Perkin Elmer). At desired time points, 8 μL aliquots 
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were removed and quenched into 40 μL 10 mM EDTA at pH 8.0. Quenched sample points were 

loaded onto a Biodyne-B high-protein binding 96-well filter plate (Nunc) and aspirated into a 

collection plate in a MultiScreen Vacuum Manifold (Millipore). The filter membrane was 

washed extensively with wash buffer (50 mM HEPES-K, 100 mM KCl, pH 7.5), dried and 

imaged overnight in a phosphorimage cassette. A Typhoon phosphorimager (GE Healthcare) and 

ImageQuant software were used to quantify the pixel intensities.  

Pixel intensities were converted to moles of [14C]-glucosylated RhoA by using a standard 

curve(184). A GT reaction containing 20 µM RhoA, 163 nM rTcdA540 and 30 µM UDP-[14C]-

glucose (Perkin Elmer) was incubated at 37 °C for 5 hrs to achieve quantitative modification of 

RhoA. The reaction mixture was then dialyzed using a 3500 MWCO Slide-A-Lyzer Cassette 

(Pierce) to remove all unincorporated label. Serially diluted dialyzed reaction mixture was 

applied to Biodyne-B high-protein binding 96-well filter plate (Nunc), while duplicate samples 

were analyzed by liquid scintillation counter (Beckman Coulter). Radioactivity was then directly 

related to amount of 14C-labeled RhoA retained on the filter membrane, which provides the 

conversion factor to moles of 14C retained on the membrane. The standard curve membrane is 

exposed on the same PI plate with all experimental data to account for differential exposure. 

Apparent inhibition constants (Ki) were obtained by fitting the ratio of initial rate of the 

GT assay, in the presence (vi) and absence (v0) of peptide using nonlinear linear least square 

analysis to a reversible partial competitive inhibition model (192)(equation 2) where I = phage or 

peptide inhibitor concentration, KM = Michaelis-Menten constant for RhoA, Ki is the inhibition 

constant, S is the substrate concentration (RhoA) and X0 is the coefficient of maximum 

inhibition under the experimental conditions. 

 vi/vo = [KM / (((KM*(1+I/Ki)) + S)] + X0 (2) 
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2.5.7 Peptide inhibition of glucosyltransferase assay 

Synthetic peptides EGWHAHTGGGC and HQSPWHHGGGC with C-terminal amide-

modification were purchased from American Peptide Company, Inc. Sunnyvale, CA. Peptides 

were purified by reverse-phase HPLC over a C18 column (Beckman Coulter)], using a gradient 

of 0 – 100% acetonitrile containing 0.1% trifluoroacetic acid and monitored by UV absorption. 

After purification, the peptide was lyophilized and redissolved in water. The identity of each 

product was confirmed by electrospray mass spectrometry. 

 GT inhibition assays contained 10 µM RhoA, 15 µM UDP-glucose (Sigma) and 15 µM 

UDP-[14C]-glucose (Perkin Elmer) in glucosylation buffer as described above, as well as 0 - 

3000 nM peptide. Reactions were initiated by addition of 2 nM rTcdA540 or TcdB (courtesy of 

the Prof. Hanping Feng (192)). Ki values were obtained by fitting the data to a partial 

competitive reversible inhibition model as described for the phage-based GT inhibition assays. 

2.5.8 Glucosylhydrolysis (GH) assay 

This an optical coupled assay, UDP released from hydrolysis is coupled to the oxidation 

of NADH(193) using pyruvate kinase (PK) and lactate dehydrogenase (LDH). The reaction was 

carried out using an Agilent 8453 UV-VIS spectrophotometer equipped with a circulating water 

bath to maintain the temperature at 370 °C. Reaction was monitored by adding 200 nM rTcdA540 

to glucosylation buffer supplemented with UDP-glucose, 0.2 mM NADH, 1 mM 

phosphoenolpyruvate (PEP), 3 units of pyruvate kinase and 6 units of lactate dehydrogenase. The 

initial GH rate was measured at 0.5 mM UDP-glucose (standard saturation conditions) in the 

absence or at constant maximal peptide inhibitory concentrations of 10 nM HQSPWHHGGGC 

or 1µM EGWHAHTGGGC while varying UDP-glucose from 0.5 to 13.5 mM to monitor the 

effect of increased substrate concentration on the inhibition behavior. The relative rate (vi/v0) 
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was calculated by the ratio of the initial rate of the GH assay, in the presence and absence of 

peptide. 

2.5.9 Peptide docking 

Molecular models of selected peptides were built using Spartan ‘02(181), minimizing at 

the AM1 level of theory. Models were saved in Sybyl mol2 format and catenated into a library 

for docking. Flexible docking was performed using FlexX 3.1.0(194).  Crystal structure 

2BVL(96) was retrieved from the RCSB database for use as the docking receptor. 

Crystallographic phasing markers and counter ions were removed, retaining crystallographic 

water molecules. The active site for docking was defined by 20Å spheres around each atom of 

the crystallographically observed UDP. The crystallographic catalytic manganese was replaced 

with a magnesium ion for ease of calculation. A docking pharmacophore with two optional 

constraints was constructed utilizing the two octahedral coordination sites of the magnesium 

occupied by the crystallographic UDP molecule.  Water molecules within the active site were 

included in the docking, designated as fully rotatable and displaceable. Dockings were ranked 

using the FlexX internal scoring protocol (195). Results were viewed and all images were 

generated using the UCSF Chimera visualization program (196) version 1.4.1. The docked 

structures were then simulated for 10ns to determine the stability of the docked conformation. 

The complete protein/peptide complex was solvated and ionized to 0.5mm NaCl and simulated 

using the CHARMM27 force field under NAMD(20) on the WSU Grid supercomputer. A 

timestep of one femtosecond was used, periodic boundary conditions applied, and Langevin 

dynamics were utilized to maintain constant temperature at 300K. A scaled cutoff was employed 

in the calculation of the long range electrostatics.   
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2.5.10 Isothermal titration calorimetry (ITC) 

A VP-ITC titration calorimeter (MicroCal, Inc.) was used for all measurements. Samples 

were prepared by diluting a small volume of stock into TcdA540 storage buffer. The syringe and 

sample cell components were prepared in matched buffers to minimize background heats of 

dilution. All buffers were prepared from stock solutions on the day of use and extensively 

degassed under vacuum. After an initial 2 μL injection to counteract backlash in the auto-titrator, 

ITC experiment consisted of 40 injections (at 7 μL per injection) of a 30 μM peptide 

EGWHAHTGGGC and HQSPWHHGGGC into 1.4 mL of the TcdA540 at 2.5 μM. Sample 

stirring was set at 280 rpm for all measurements and temperature was maintained at 15 ºC.  

2.5.11 Expression of peptide-EmGFP   

[Fusion constructs were cloned and charecterized by Stephanie S. Kern] 

For expression purposes, pRSET/EmGFP vector was selected as the parent vector and 

further manipulations were carried out to generate peptide fusions. Peptide-EmGFP was 6xHis 

tagged at C-terminal for purification purposes. Classical cloning, expression and purification 

protocols were followed to purify the fusion construct. The purity of the peptide was ensured by 

SDS-PAGE.   
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CHAPTER 3 

Rational design of an irreversible peptide inhibitor targeting the major Clostridium difficile 
virulence factors  

3.1 Abstract 

Clostridium difficile infections cause one of the most common hospital-acquired diseases, 

often associated with broad-spectrum antibiotic usage. Recent increases in infection rates, 

disease severity and recurrence have spawned renewed efforts to develop more effective 

therapeutics against this pathogen. The previous chapter described a family of peptides that 

bound the active sites of TcdA and TcdB, the primary virulence factors that cause cellular 

damage during infection. However, the parent peptides failed to protect cells from intoxication as 

they were displaced from the toxins during translocation due to their reversible binding and poor 

cell permeability. In this chapter, the peptides have been re-engineered to bind the toxins 

irreversibly. Modified in this way, one of the derivatized peptides provides ~95% cell protection 

from Clostridium difficile toxin induced cytotoxicity in cell culture assays. Mass spectrometry 

studies further confirm that the derivatized peptide cross-links within the active site of 

Clostridium difficile toxin A (TcdA).  These peptides, or derivatives thereof, might provide an 

alternative approach to treating these infections that avoids traditional antibiotics by directly 

targeting bacterial virulence factors. In so doing, they provide a therapeutic modality that 

provides less evolutionary pressure toward the emergence of resistant strains.  

3.2 Introduction 

Managing multiple recurrences and disease progression into more severe infections are 

the two challenges in treating C. difficile associated diseases. Although antibiotics are useful in 

clearing pathogenic bacteria during infection they increase the risk of generating antibiotic 
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resistance. Furthermore, high relapse rates render such treatments less effective in the long run. 

Alternative ways to combat C. difficile infections stem from targeting specific virulence factors 

such as the “toxins” that plays a pivotal role in pathogenesis. This strategy serves a two-fold 

advantage; on one hand it provides a specific and direct response to disrupt the infections, 

whereas on the other hand it has little impact on normal microflora that helps maintain the 

equilibrium of bacterial populations and thus indirectly helps minimize CDI (C. difficile 

associated infections) in the first place. However to date a rationally designed drug that targets 

the “toxins” is yet to be used as a therapeutic.  

The successful design of small molecule inhibitors for bacterial toxins depends on better 

in vivo inhibitory activities. In the previous chapter we discussed a collection of peptides that 

inhibited both TcdA and TcdB in vitro. Cellular protection studies performed with these 

peptides, however, revealed that they lacked the ability to protect cells from intoxication. It was 

hypothesized that this failure was likely due to the reversible nature of peptide binding. Because 

the clostidial toxins are endocytosed into cells, the conformational changes may accompany the 

dissociation of peptide-toxin interaction. This finding explains the poor performance of the 

parent as an in vivo inhibitor. Here we set out a goal that if these peptides could be derivatized 

with an appropriate electrophile in a reactive geometry relative to potential nucleophilic side 

chains near their binding site, a covalent adduct would form, such that inhibitory peptide would 

remain permanently bound in the active site and thus inhibit toxicity in vivo. This approach 

provides an added advantage in that the therapeutic molecules need not enter the cell, but rather 

could inactivate the toxins in the intestinal lumen avoiding numerous complications and 

minimizing the likelihood of serious toxicity through off-target interactions. 
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Figure 3. 1 Examples of peptides modified to be irreversible inhibitors through covalent crosslinking with 
their targets. Outline of synthesis and mechanism of action of epoxy peptide inhibitors. (A) Amino acid derivatives 
that can be incorporated into synthetic peptides to facilitate spontaneous covalent cross linking with targets. (B) 
Epoxide “war head” can be incorporated into the peptide by oxidation of allylglycine residue with meta-
chloroperoxybenzoic acid. In this case the oxidation leads to a mixture of (R) and (S) epoxy peptides stereoisomes 
for the epoxide-containing side chain. Alternative synthetic transformations can be used that are stereospecific. (C) 
Nucelophilic ring opening of epoxide leads to covalent attachment of the peptide with its bindig partner. 
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A variety of electrophilic moieties, such as the acyloxymethyl ketone (AOMK) (197), α-

keto-β-aldehyde, peptide epoxy ketone, O-aryloxycarbonyl hydroxamates, epoxy peptides, 

pyridones, 2-pyrrolidone (87,198-203).etc (Figure 3.1A), can be introduced into synthetic 

peptides to facilitate spontaneous crosslinking to its protein partner. We opted for an epoxide 

modification for the proof of concept as it could be incorporated in high yield in a single step 

with great selectivity from a synthetic peptide containing an allylglycine at the appropriate site of 

modification (Figure 3.1B and 3.1C). 

 Enzymatic domains of bacterial A-B type toxins produced by C.difficile (TcdA/TcdB), 

Bacillus anthracis (anthrax toxin), Vibrio cholera (cholerae) toxin are all attractive targets for 

non-antibiotic treatments plans, the design of inhibitors is challenging since small molecules that 

resemble the natural substrates have the potential to interfere with other cellular activities and 

must has to be bind to their targets before cellular internalization. In this work, we show that 

epoxy-based peptide inhibitors can act as attractive therapeutic molecules, due to their ability to 

irreversibly bind C. difficile toxins before internalization.   

3.3 Results and Discussion 

3.3.1 Parent peptides failed to protect cells in vivo 

First we characterized our parent peptides ability to obstruct TcdA induced cytotoxicity in 

cellulo. Toxin levels were set to induce > 60 % cell death during the incubation period in the 

absence of peptide. Then, the toxin was challenged with various concentrations of parent peptide 

HQSPWHH/EGWHAHT. Control cells were incubated with PBS/peptides/ TcdA. Cells were 

imaged after 24 hrs (Figure 3.2A). However, both parent peptides EGWHAHT and HQSPWHH 

failed to protect cells from TcdA. It was hypothesized that the lack of protection could be due to 

the reversible binding nature of peptides to toxins where the interaction may not have been 
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sufficient to withstand toxin internalization. This led to the hypothesis of two possible remedies. 

First, we could find a way to allow cellular uptake of the peptides, potentially by fusing them to 

cell penetrating peptide sequences. Alternatively, we could derivative the peptides to make their 

interaction with the toxin irreversible so that the inhibitor would not be left behind in the 

endosome during internalization. We therefore opted to pursue derivatization approach.   

3.3.2 Peptide cross-linked TcdA by means of a heterobifunctional cross linker, posses less 

cellular toxicity 

As a proof of concept experiment to validate the use of irreversible inhibitors and to 

clarify their applicability in C. difficle toxin inactivation in cellulo, we initially used a photo 

activatable-thiol reactive heterobifunctional cross-linker benzophenone-4-iodoacetamide (BPIA). 

This was completed in two steps, first parent peptide EGWHAHTGGGC (Cys) was allowed to 

react with iodoacetamide (204-207) (Figure 3.2B). Next BPIA labeled peptide was cross-linked 

to holo Toxin A via UV irradiation (365 nm) (Figure 3.2B). At this wave length protein damage 

is minimized.  The photo activation forms a covalent adduct between benzophenone moiety and 

bound toxin. Next the activity of above cross-linked rTcdA was tested in cellulo. Cell viability 

was imaged after 2 hrs (Figure 3.2C). The peptide cross-linked rTcdA provided ~ 70 % cell 

protection showing that irreversibly linked peptide can be transported along with toxin and 

permanently inactivates toxin activity. Control experiments performed with UV exposed rTcdA 

confirmed, UV exposure itself does not affect rTcdA activity. This experiment provided 

sufficient evidence that covalent attachment of a peptide into the active site inactivates the toxin 

to justify moving forward this approach. 
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Figure 3.2 In cellulo viability assays with parent peptide HQSPWHHGGGC and cellular toxicity of rTcdA 
cross-linked to EGWHAHTGGGC via heterobifunctional cross linker. (A) Images showing the morphology of 
Vero cells obtained from cell viability assay performed with parent peptide HQSPWHHGGGC (A1) PBS-treated 
healthy Vero cells (A2) HQSPWHHGGGC treated cells showing that the peptide is non-toxic to cells (A3) Rounded 
and detached cells observed after rTcdA treatment (A4) rTcdA/HQSPWHHGGGC (0.6 mM) indicates that the 
parent peptide is unable to provide protection from rTcdA induced cytotoxicity. (B) Scheme showing the reactivity 
of photo activatable-thiol reactive heterobifunctional cross-linker BPIA with parent peptide EGWHAHTGGGC and 
rTcdA. The cartoon represents the cross-linking of peptide with catatytic domain of TcdA. (C) Images showing the 
morphology of Vero cells obtained with treatment of EGWHAHTGGGC cross-linked rTcdA after 2 hrs. (C1) PBS-
treated healthy Vero cells (C2) Rounded cells observed after rTcdA treatment (0.2 nM) (C3) Cells treated with 
peptide cross-linked rTcdA (0.2 nM) showing a significant reduction in cell rounding. 
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3.3.3 In sillico epoxy screening provided information on optimal site for modification  

[In silico studies were performed by Rebecca J. Swett] 

 Proper placement of the epoxide residue within the peptide sequence is critical for this 

mode of inhibition, such that the derivatized peptide could still bind to the toxin active site and 

inhibit toxin activity while also able to confer appropriate chemistry to form a covalent bond 

with the toxin. Possible amino acid candidates within the peptide for derivatization can be 

selected based on two methods where screening modified synthetic peptide libraries or 

computer-based virtual screening approaches are equally useful. The latter is a time saving and 

cost-effective method, which can be utilized to screen, enhance selectivity and specificity of the 

ligand of interest with its target (208,209). Virtual screening has been successfully utilized in 

discovery and modification of pharmacophores where this approach was used to identify 

inhibitors to a variety of protein systems, including inhibitors of HIV-1-proteases (210) and 

influenza hemagglutinin (211,212) among others. Here we utilized flexible protein-ligand 

docking to screen the epoxy peptide library. 

Accordingly, HQSPWHH, the inhibitor shown to have the best in vitro activity was 

selected for further derivatization. In silico scanning was performed to determine the optimal site 

for modification based on docking energies to TcdB (PDB: 2BVL). This optimization was done 

in several steps. The first step involved incorporation of an alanine at each position to determine 

the relative contribution of the parent side chain at that site. Then, the peptides were re-docked, 

but this time in the presence of the R- and S-isomers of the epoxide-derivative of allylglycine 

(Table 3.1). In all of these experiments the overall parent peptide binding site was retained as 

was the overall backbone conformation, since all members of the docked library had RMSD <1 

Å relative to the parent, unmodified peptide. Due to the nature of the docking 
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Figure 3.3 Close-up view of ribbon structures and stereoimages of the TcdB active site, showing binding 
modes of highest scoring structures of HQSPGepoxyHH and HQSPWHGepoxy respectively. Peptides are 
shown with all TcdB residues within 3Å. Coordinates were derived from computational docking as described in the 
Materials and Methods. (A) Ribbon diagram of the TcdB active site showing the lowest energy binding 
conformations of peptides HQSPGepoxyHH (dark blue) and (B) HQSPWHGepoxy (cyan) in the active site of 
TcdB. The epoxide residue of H-epoxy-7 is in close proximity to more polar amino acids when compared to H-
epoxy-5. The catalytic magnesium ion is indicated as a green sphere in both images. Stereoimages of the (C) The 
epoxide of HQSPGepoxyHH has close contact with Lys142, Leu 265 and Asn 139. (D) The epoxide of 
HQSPWHGepoxy is within reach of Lys 452, Asp 523, Asp 461 and Ser 518. 
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Table 3. 1 Indicates docking scores of parent peptide and family of peptides obtained by substitution of each 
amino acid with alanine and R- or S- epoxy derivative of allylglycine.   

 WT H-1-X Q-2-X S-3-X P-4-X W-5-X H-6-X H-7-X 

Alanine -36.01 -38.84 -31.93 -29.86 -35.18 -34.74 -35.47 -39.12 

Epoxide R -35.58 -32.53 -15.74 -24.94 -40.76 -32.04 -37.50 -43.38 

Epoxide S -36.04 -29.04 -2.06 -35.34 -20.89 -52.85 -33.01 -24.26 

WT: Parent peptide HQSPWHH 
X- Represent alanine/ (-R) or (-S) epoxy substitute 

 

69



 

algorithm, slight fluctuations in scores occur as a consequence of sub-angstrom variations in the 

docked conformation, predominantly through rotation around bonds in the flexible side chains 

(Table 3.1). While not on an absolute energy scale, this procedure provides reliable relative 

binding affinities to assess positions where the epoxide might be accepted. A docking score of 

greater magnitude than the parent’s was considered an advantageous modification, while a 

docking score lower than the parent’s was considered disadvantageous. For example, the 

substitution of an S-epoxidated allyl glycine at the fifth position (Table 3.1) leads to significant 

improvement in the docking score. The addition of an R or S-epoxidation at the second position 

causes a major decrease in the favorability of binding. For derivatization, peptides were selected 

based on two caveats, where either epoxy modified peptides with tighter binding affinity but 

with few reactive nucleophiles near its binding site or with moderate binding affinity but with 

larger number of surrounding nucleophiles could be used. Two peptides derivatized at different 

residues were subsequently selected for the synthesis (Figure 3.3), both with docking scores 

more favorable than the parent peptide (parent docking score, -35.58): HQSPGepoxyHH (H-

epoxy-5) (Figure 3.3A and 3.3C) and HQSPWHGepoxy (H-epoxy-7) (Figure 3.3B and 3.3D). 

One reason for selecting H-epoxy-5 was that it displayed the overall tightest docking score (-

52.85) (Table 3.1), while the rationale for selecting H-epoxy-7, despite a more modest docking 

score of -43.38 (Table 3.1), was due to the large number of potential nucleophiles in its vicinity 

that might facilitate rapid crosslinking. 

3.3.4 Epoxy peptide derivatization 

Allylglycine incorporated peptides (H-allyl-5) and (H-allyl-7) were purchased from 

American Peptide Company (Sunnyvale, California). Both peptides were modified with a GGGC 

tail at the C-terminus which has been shown previously to have no unfavorable effects on  
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Figure 3.4 Showing structures of derivatized epoxy-peptides and purity of H-epoxy-5 peptide. (A) Structure of 
peptide HQSPGepoxyHHGGGC (H-epoxy-5), in which W5 of the parent peptide was replaced with the non-natural 
epoxide-containing amino acid and (B) Peptide HQSPWHGepoxyGGGC (H-epoxy-7), where H7 of the parent 
peptide was substituted. The free thiol of cysteine was protected with an acetamide group. (C) HPLC trace showing 
purity of H-epoxy-5 peptide obtained by an analytical injection. The gradient program is shown as an inset. 
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peptide binding or inhibition but provides a handle for labeling and other derivatizations in the 

future (160). The free C-terminus cysteine was protected with iodoacetamide (Figure 3.4A and 

Figure 3.4B) in order to avoid thiol mediated epoxide ring opening and to prevent non specific 

oxidation of free thiol by m-chloroperbenzoic acid. Thiol-protected, purified peptides were then 

converted to a racemic mixture of their corresponding epoxide by treatment with m-

chloroperbenzoic acid (199,213) in a well-buffered reaction to prevent non-specific nucleophilic 

epoxide ring opening during the synthesis. HPLC purification (Figure 3.3C) was carried out after 

each step and the desired product was confirmed by LC/ESI-MS (Method and Materials). 

3.3.5 Derivatized H-epoxy-5 peptide exhibits ~95% cell protection in cellulo  

The ability of H-epoxy-5 and H-epoxy-7 peptides to block TcdA induced intoxication was 

tested in cellulo. Vero cells were challenged with TcdA in the presence of various concentrations 

of peptides H-epoxy-5 and H-epoxy-7 as well as the parent peptide HQSPWHH to observe any 

protection over the period of 48 hrs. Cell viability was qualitatively assessed by light 

microscopy, observing the number of rounded cells visible per field and quantitatively measured 

using the measured using a luminescent ATP-based (CellTiter-Glo) assay (Figure 3.5B). 

Interestingly, H-epoxy-5 showed concentration-dependent cell protection (Figure 3.5A and 

3.5C). It provided ~95% cell protection at 600 µM and yielded an IC50 of ~100 µM. Cell 

protection studies revealed that the H-epoxy-5-toxin complex remained intact during 

translocation while H-epoxy-7 was unable to protect cells from TcdA intoxication. Although 

computationally it was predicted to bind in a manner that would present more nucleophilic 

groups nearby, the activity assay indicating that the binding affinity governs the overall 

inhibition potential. Further it demonstrates that proper selection and placement of the epoxied  
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Figure 3.5 In cellulo protection of vero cells from TcdA using epoxide-derivatized peptide inhibitors. (A) 
Morphology of vero cells obtained from cell viability assay with parent peptide HQSPWHH and H-epoxy-5 (A1) 
Adherent, elongated, healthy cells after PBS treatment (A2) Rounded detached cells observed upon treatment of 
TcdA  (A3) Control cells treated with only 0.6 mM H-epoxy-5, indicating the derivatized peptides were non-toxic to 
cells (A4) Cells treated with 0.6 mM H-epoxy-5 and TcdA showing a significant reduction in cell rounding in the 
presence of inhibitor. (B) CellTiter-Glo® Luminecent assay (Promega) is based on luciferase reaction. Mono-
oxygenation of luciferin is catalyzed by luciferase in the presence of Mg2+, ATP and molecular oxygen. The number 
of metabolically active (viable) cells in the culture is based on measurement of ATP levels. (C) Quantitative 
measurement of vero cell viability using CellTiter-GLO assay. The peptide concentrations were titrated at constant 
TcdA (0.4 nM) level. Parent peptide HQSPWHHGGGC did not show any protection against TcdA. Whereas H-
epoxy-5 shows increased cell protection in a concentration-dependent manner with ~95% protection at 600 µM. 
Peptide H-epoxy-7 did not exhibit any protection against TcdA.(D) Indicates the half life of 0.6 mM H-epoxy-5 
peptide monitored over two weeks period. 
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moiety within the parent peptide was essential for effective inhibition. The activity of H-epoxy-5 

was monitored over a 2-week period revealing that the activity of the derivatized peptide 

reduces; yielding a half-life of approximately 13 days (Figure 3.5D). The loss of activity is most 

likely mainly due to the non-specific opening of the epoxide during the repeated freeze thaw 

cycles and thus indicates the necessity of optimization of storage conditions for long term usage. 

3.3.6 Mass spectrometry studies confirm that the derivatized peptide cross-links within the 

active site of TcdA 

[Mass spectroscopy was carried out in collaboration with Prof. Mary T. Rodgers lab (Yuan-wei 

Nei) Department of Chemistry, Wayne State University] 

To confirm the selectivity and specificity of H-epoxy-5 peptide-toxin interactions, mass 

spectrometry was used. Modern cross-linking mass spectrometry and bottom-up proteomics 

techniques have significantly increased the scope of mapping proteins-proteins interfaces to 

supplement X-ray crystallography and NMR methods, due to its sensitivity and rapid analysis of 

complex mixtures where the size of the protein complexes is not a limiting factor since the 

proteolytic peptides are analyzed (214-216). Here we employed the ICR methodology because of 

its high mass accuracy that provides an invaluable prerequisite for the precise assignment of 

cross-linker containing species (217-219). 

We mapped the binding site by bottom-up proteomic profiling using nano-high-

performance liquid chromatography (HPLC)/ nano-electrospray FTICR (Fourier transform ion 

cyclotron resonance) mass spectrometry. In-gel trypsin digestion was performed on both TcdA540 

(catalytically active fragment of TcdA consisting of residues 1-540) (160) and TcdA540 treated 

with H-epoxy-5. The resultant fragment libraries were compared to allow rapid identification of  
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Figure 3.6 Representative mass spectra from the Nano-HPLC/Nano-ESI-FTICR mass spectrometry data of 
H-epoxy-5 treated TcdA540 tryptic digest and TcdA540 sequence coverage obtained from deconvoluted ESI-
FTICR mass spectrum of the tryptic digestion of H-epoxy-5 treated TcdA540. (A) Shows overlapped 
chromatograms containing UV trace of separated peptides at 214 nm (Blue) and corresponding total ion count (TIC-
green). For data analysis purpose the TIC trace was separated to 16 individual peaks and ions in each peaks were 
deconvoluted. (B) Representation of the total number of peaks containing sequence coverage information obtained 
after deconvoluting all 16 peaks of LC run. The peaks were obtained in the m/z range of 200-2,000 over the period 
of 22.9 min to 51.4 min. (C) TcdA540 sequence coverage obtained from deconvoluted ESI-FTICR mass spectrum of 
the tryptic digestion of H-epoxy-5 treated TcdA540. The data was obtained using Buker Daltonics Biotools software 
3.2. Sequences highlighted in grey indicate the corresponding peptides observed in the data set. The amino acids 

marked in red specify the residues involved in glucosyltransferase activity. Diamonds ( ) denote every typtic 
cleavage sites identified from the mass spectra. The arrow (blue) indicates the peptide to which H-epoxy-5 
covalently attaches to TcdA540. 
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cross-linked fragments. In this approach maximal sequence coverage should be achieved to 

allow precise identification of the interaction site. Our data analysis revealed ~ 70% TcdA540 

sequence coverage (Figure 3.6), leading towards unbiased mapping of H-epoxy-5 and TcdA540 

cross-linked regions. Based on signals in the mass spectra of H-epoxy-5 and TcdA540 cross-

linked mixture, but not those of control samples from non cross-linked TcdA540, the H-epoxy-5 

interaction surface was indentified. Further in peak 4 (Figure 3.7 and Table 3.2), the signal at m/z 

757.6962 can be assigned as [M+ H-epoxy-5 +H]3+ charged state of H-epoxy-5 cross-linked 

TcdA540  fragment GNLAAASDIVR  (residues 282-292 of TcdA) (Figure 3.7). The calculated 

monoisotopic mass of the respective cross-linked product is 22771.0801 (Table 3.2), which 

deviates by -3 ppm from the experimentally obtained monoisotopic mass. The overlap of 

theoretically obtained [M+ H-epoxy-5 +H]3+ isotopic distribution  profile with experimental 

profile (Figure 3.7C) provides more agreement on assignment of the (+3) charge state. 

The peptide GNLAAASDIVR lies in the core of the catalytic site including two residues 

(Asp-289 and Arg-292) (92) known to be involved in glucosyltransferase activity (Figure 3.8A 

and Figure 3.6). This further confirmed that H-epoxy-5 mediated cell protection (Figure 3.5B 

and 3.5C) is achieved due to the irreversible crosslink between TcdA and the derivatized peptide 

within the active site. Mass spectroscopy data, in agreement with computational docking studies 

revealed that the peptides covalently cross linked within the active site of TcdA exactly where 

the parent peptide was predicted to bind. In addition to the GNLAAASDIVR-H-epoxy-5 crosss-

linked fragment, we also found SHLVSEYNR peptide region on TcdA540 as another point of H-

epoxy-5 cross-linking (Figure 3.8B and Table 3.2). The peptide SHLVSEYNR is located within 

the “upper promontories” (73). According to MD simulation studies (73), the “upper 

promontories” are the one of the highly flexible regions involved in a scissoring motion which in  
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Figure 3.7 Mass spectra from tryptic digestion of TcdA540 after treatment with H-epoxy-5 obtained from 
Nano HPLC/ nano ESI-FTICR mass spectroscopy. (A) Indicates overlapped chromatograms, consist UV trace of 
separated peptides at 214 nm (Blue) and corresponding total ion count (TIC, green). For data analysis purposes, the 
TIC trace was separated to 16 individual peaks and ions in each peak were deconvoluted. Peak 4 contained the H-
epoxy-5 crosslinked-TcdA540 peptide fragment (B) Intensity of the isotopic distribution pattern of [M+ H-epoxy-5 
+H]3+charge state of H-epoxy-5 cross-linked GNLAAASDIVR (282-292) TcdA540 peptide fragment.(C) Illustration 
showing the overlap of theoretically obtained isotopic distribution profile for [GNLAAASDIVR+ H-epoxy-5 +H] 3+ 
and experimentally obtained charge distribution profile. The theoretical profile was obtained from Bruker Daltonics 
Data Analysis software version 4.0. The experimental profile was calculated using the individual peak intensities. 
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Table 3. 2 H-epoxy-5 cross-linked to TcdA540 peptide fragment GNLAAASDIVR and SHLVSEYNR peptide 
identified using deconvoluted ESI-FTICR mass spectra of H-epoxy-5 treated TcdA540 tryptic digest.   

 
Observed 

charge 
state 

 
Observed 

m/z 

Experimental 
monoisotopic 

mass 

Theoretical 
monoisotopi

c mass 

Peak 
intensity 

Deviation 
± ppm 

TcdA 
sequence 

range 

TcdA Sequence 
 

[Ma+I] [Ma+I+H]3

+ 
757.6962 2271.0740 2271.0801 2.3 x 106 - 0.27 282-292 GNLAAASDIVR 

[Mb+I] [Mb+H]2+ 1145.0212 2289.0351 2289.0332 3 x 106 0.83 227-235 SHLVSEYNR 

I:  Represent H-epoxy-5 peptide 
M: Predicted TcdA540 peptide fragment 
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turn affects the conformation of the active site of  toxin, and is predicted to be involved in 

substrate accommodation. Therefore, it is logical that the high flexibility of this region may thus 

lead to non-specific interactions with the epoxy peptide. Alternatively, binding of H-epoxy-5 to 

GNLAAASDIVR may lock the TcdA540 confirmation in such that providing SHLVSEYNR 

peptide region as a secondary H-epoxy-5 binding site. However the specificity of the interaction 

has to be further clarified. This will provide more in sight on exact site of interaction and reactive 

nucleophile etc. 

3.3.7 Epoxy-peptide derivatives towards therapeutic applications in future 

Irreversible inhibitors are preferred lead compounds in pharmaceutics due to the 

requirement of clinically relevant low nano molar inhibitory constants (IC50). In terms of 

therapeutic approaches for the treatment of CDAD, agents that act extracellularly would be 

advantageous, as higher concentrations can be achieved in the intestinal lumen compared to the 

systemic administrations.  

During C. difficile infection, maintaining sufficiently high concentration of therapeutics 

in the gut due to the diarrhea is challenging. In this scenario effective therapeutic activity can be 

obtained by increasing the affinity of such compounds and formulating those that withstands the 

environmental conditions and proper release. Even though 95% cell protection was achieved by 

our epoxy-derivatized peptide, several concerns associated with its therapeutic application 

remain. The current compounds have high micromolar (~100 µM) IC50 and the stability of these 

compounds in the GI track is as of yet untested. Although the purity of epoxy-peptide derivatives 

have been confirmed by analytical HPLC analysis, we have used an isomeric mixture of both 

(R)-and (S)-epoxides. These species can be easily resolved in the future if necessary. However it 

is not known which form of isomer is more potent and percentage of the specific active isomer  
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Figure 3. 8 Ribbon structure of TcdA540 (PDB: 2SS1) showing GNLAAASDIVR (green) and SHLVSEYNR 
(purple) peptide regions to which H-epoxy-5 is crosslinked. Residues marked in red are critical amino acids 
involved in glucosyltransferase chemistry where mutations lead to loss of activity. (A) Showing 
GNLAAASDIVR peptide region where it resides amino acids (Asp-289 and Arg-292) that harbors key catalytic 
residues involved in glucosyltransferase activity. (B) Showing SHLVSEYNR peptide region in periphery of 
TcdA540.  
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generated during synthesis, may lead to overall reduction in efficacy (activity/mg) of the 

derivatized peptides. Therefore in the future, stereo specific separation of each isomer may 

increase the apparent potency of the epoxy peptide. In addition to that, to further optimize our 

derivatives in terms of stability and potencies other electrophilic modification such as epoxy 

ketones/petidyl (acyloxy) methyl ketone/α-keto-β-aldehydes/a 2-pyridone/2-pyrrolidone (section 

3.2) etc., can be screened in combination with in silico approaches. 

Several other epoxide/epoxy derivatives containing drugs are FDA (U. S. Food and Drug 

Administration) approved or in advanced clinical trials (Table 3.3). Thus provides evidence on 

possibility of utilizing our epoxy peptides as potential therapeutic leads; however the key 

challenge in our case is to package the epoxy peptides for GI stabilization and colonic release. 

Several oral formulation strategies are known for compounds like the epoxypeptides. Examples 

include; liposomal medicated encapsulation, solid nano particle encapsulation, soft gelatin coated 

capsules, azo-polymers, microspheres, emulsions, mucoadhesive polymeric system and 

mesoporous silica-based materials etc (220-230). Ongoing work in collaboration with Prof. 

Joshua Reineke, Department of Pharmaceutical Sciences, Wayne State University is addressing 

the formulation challenges of these peptide inhibitors to achieve stability for oral delivery and 

controlled release in the lower GI tract. We are currently focusing on a mucoadhesive polymeric 

system based on poly(fumaric-co-sebacic) (pFASA) anhydride (231). In principle these polymers 

with large surface area, alterable pore size, and desirable biocompatibility, also have surface 

properties for further functionalization and differential absorptivity along the gastrointestinal 

tract leading to targeted binding and controlled release. The above properties make it amiable for 

our peptide formulation. Initially mouse models/ mouse ileal loop assays will be used understand  
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Table 3. 3 Examples of epoxide containing therapeutic agents are FDA approved or in advanced clinical trails 

Drug Approval Disease 
Route of 

administration 
Carfilzomib FDA approved myeloma Intravenous 
Fosfomycine FDA approved Urinary tract infection Oral 

Beloranib Phase I clinical trial Obesity Subcutaneous 
Scopolomine FDA approved Motion sickness Cutaneous 
Ixabepilone FDA approved Metastatic breast cancer Intravenous 
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the therapeutic relevance such as bioavailability, stability, toxicity etc. Although are still several 

steps to be fulfilled to attain clinical value of our peptide inhibitors, overall agents like these 

could be potentially used prophylactically to avoid extensive cellular damage during treatment 

with broad spectrum antibiotics or in populations prone to CDI. 

3.4 Conclusions 

In this study, we rationally designed an epoxide-containing peptide that acts as an 

irreversible inhibitor of the clostridial-glucosylating toxins sufficiently potent to protect cultured 

cells from intoxication. Mass spectrometry studies showed that the peptide covalently cross-

linked within the active site of TcdA exactly where the parent peptides were computationally 

predicted to bind. While there are still several steps required to further explore in terms of the 

stability of these compounds that could withstand harsh gastrointestinal environments, 

formulation, administration etc, before these candidates can be taken to the clinic, our results can 

be viewed in a broader perspective. They show for the first time a pathway towards the 

systematic selection and design. Therefore toxin inhibitors can, if appropriately designed, 

irreversibly inactivate bacterial virulence factors and prevent cellular damage during infections. 

3.5 Materials and Methods 

3.5.1 C. difficile toxin purification 

All procedures with TcdA and rTcdA540 DNA was carried out in Biosafety Level 2 lab 

(BL2) following standard operating procedures. The proteins were removed from BL2 only after 

lysate were sterile filtered and DNAase treated. 
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TcdA holotoxin purification 

The Bacillus magaterium Protein Expression System (MoBiTec) was used for the expression of 

TcdA holotoxin. Expression was induced by addition of 1% xylose to 1L culture at OD600~ 0.3-

0.4. Cells were harvested after 4 hours growth at room temperature and lysed by sonication in 50 

mM sodium phosphate, 300 mM NaCl, 10 mM imidazole, at pH 8.0, supplemented with EDTA-

free complete protease inhibitor cocktail (Roche). The cell lysate was clarified by centrifugation 

and sterile filtered (0.22µm filter). The protein was purified using a nickel-chelated HiTrap 

column (GE Healthcare) and eluted with 250 mM imidazole. It was further purified over a 

HiLoad 16/60 Superdex 200 gel filtration column (GE Healthcare). Size exclusion column 

fractions were reapplied to the nickel-chelated HiTrap column to concentrate the protein and 

eluted in a small volume of buffer containing 250 mM imidazole. The purified protein was 

dialyzed into storage buffer (50 mM Sodium phosphate and 300 mM NaCl at  pH 7.5 and stored 

at 4°C. 

rTcdA540 purification 

Cloning and expression of the N-terminal minimal catalytic domain of TcdA comprising residues 

1-540 (rTcdA540) was previously reported (160). In brief, cells were lysed by sonication in 50 

mM sodium phosphate, 300 mM NaCl, 10 mM imidazole, at pH 8.0, supplemented with EDTA-

free complete protease inhibitor cocktail (Roche). The cell lysate was clarified by centrifugation 

and sterile filtered (0.22µm filter). The protein was purified using a nickel-chelated HiTrap 

column (GE Healthcare) and eluted with 250 mM imidazole. It was further purified over a 

HiLoad 16/60 Superdex 200 gel filtration column (GE Healthcare). Size exclusion column 
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fractions were reapplied to the nickel-chelated HiTrap column to concentrate the protein and 

eluted in a small volume of buffer containing 250 mM imidazole. The purified protein was 

dialyzed into storage buffer (50 mM sodium phosphate and 300 mM NaCl at  pH 7.5 and stored 

at 4°C. 

3.5.2 Crosslinking of rTcdA and peptide with benzophenone-4- iodoacetamide (BPIA) and 

cellular protection assay 

The C-terminal Cysteine was reduced with DTT (25 mM) for 54°C for 30 minutes, and 

excess DTT was removed by microdialysis against water. BPIA [in 0.05 mM stock in DMSO] in 

2 fold excess was added and gently stirred at 4 ºC for 1.45 hr in the dark (206). Excess BPIA was 

quenched with 4 fold excess 2-mercaptoethanol for 10 min in the dark. The sample was dialyzed 

at 4 ºC for 3 hr in rTcdA540 storage buffer. An equimolar mixture of BP-Peptide and rTcdA were 

incubated at room temperature for 5 min and transferred to a petri dish. The petri dish was kept 

on ice and positioned underneath a hand-held UV lamp (Spectroline, Model ENF-240C) with a 5 

cm distance. The solution was irradiated with UV light at 365 nm for 10 min. As a control rTcdA 

without any peptide was subjected to UV exposure. The samples were microdialyzed using 10 K 

cut off dialyzer to remove excess uncrosslinked peptides. The toxin concentrations were 

determined using a UV spectrometer. 

Vero cells (African green monkey kidney cells) were plated in 96 well plates (1x105 

cells/well) in Essential Minimal Eagles Media (EMEM,ATCC) with 10% fetal bovine serum 

(FBS, USA Scientific) and 1x Antibiotic-Antimycotic and then incubated 24 hrs at 37°C, 5% 

CO2. Serum containing media was removed and exchanged with 200 µl serum free EMEM and 

incubated at 37°C, 5% CO2 briefly while the samples were prepared. From each well, Serum free 

EMEM was removed and replaced with 50 µl serum free EMEM containing 0.2 nM rTcdA or 
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0.2 nM rTcdA-EGWHAHTGGGC cross-liked sample. [The toxin concentration was selected 

after titrating the activity (cell death/4 hours)]. Images were collected prior to the assay and after 

incubation period of 2 hrs (30 min, 60 min, 90 min, 120 min and 240 min) using a 10x objective 

on a Nikon Eclipse TS100-F microscope, Photometrics CCD camera and NIS-Elements 

Software. 

3.5.3 Modeling of toxin catalytic domain and docking studies  

Molecular models of selected peptides were built using Spartan ’02 (Wave function, 

Irvine, California), minimizing at the AM1 level of theory. Models were saved in Sybyl mol2 

format and catenated into a library for docking. Flexible docking was performed using LeadIT 2. 

Crystal structure 2BVL was retrieved from the RCSB database for use as the docking receptor. 

Crystallographic phasing markers and counter ions were removed, retaining crystallographic 

water molecules. The active site for docking was defined by 20Å spheres around each atom of 

the crystallographically observed UDP. The crystallographic catalytic manganese was replaced 

with a magnesium ion for ease of calculation. A docking pharmacophore with two optional 

constraints was constructed utilizing the two octahedral coordination sites of the magnesium 

occupied by the crystallographic UDP molecule. Water molecules within the active site were 

included in the docking, designated as fully rotatable and displaceable. Dockings were ranked an 

internal scoring protocol(195). Results were viewed and all images were generated using the 

UCSF Chimera visualization program version1.5.3. The docked structures were then simulated 

for 10ns to determine the stability of the docked conformation. The complete protein/peptide 

complex was solvated and ionized to 0.5mM NaCl and simulated using the CHARMM27 force 

field under NAMD on the WSU Grid Rocks cluster. A timestep of one femtosecond was used, 

periodic boundary conditions applied, and Langevin dynamics were utilized to maintain constant 

88



temperature at 300K. A scaled cutoff was employed in the calculation of the long-range 

electrostatics.  

After docking studies were performed, amino acid contributions to the binding interaction 

were further assessed by computational alanine scanning (CAS). In this process, a single amino 

acid in the peptide is replaced with an alanine and the binding energy recalculated (Table 1). The 

difference between the original binding energy of the peptide to the toxin and the new alanine-

containing binding energy provides the contribution to binding of that side chain. From these 

calculations one can select amino acid sites in the peptide for derivatization based on the lowest 

contribution to binding energy. Additionally, each position in the peptide was replaced with an 

R- or S-epoxide derivative of allylglycine and subjected to docking as described above, each 

with the original parent peptide included in the docking library. As the docking algorithm is quite 

computationally demanding, the calculations were split into packets to facilitate processing. The 

wild type docked structure score is presented with each set. This allows determination of 

possible steric interference from epoxidation of the inhibitory peptides. Docked epoxide 

structures were ranked as described above (Table 3.1). 

3.5.4 Peptide derivatization 

C-terminally amidated, allylglycine-incorporated peptides were purchased from 

American Peptide Company (Sunnyvale, California) and purified. Peptides were dissolved in 0.1 

M (NH4)2CO3 buffer (pH 8.0), and the reaction vial was flushed with N2. An equimolar (1:1) 

ratio of freshly prepared DTT was added and incubated at 54°C for 30 minutes. To the reaction 

mix, a 10-fold molar excess of iodoacetamide solid (Sigma) was added under N2 and incubated 

in the dark at room temperature with continuous stirring for two hours. Iodoacetamide-labeled 

peptides were purified by reverse-phase HPLC over a C18 column (Beckman Coulter) using a 
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gradient of 0 to 100% acetonitrile containing 0.1% trifluoroacetic acid and monitored by UV 

absorption. After purification, the peptide was lyophilized and redissolved. The identity of each 

product was confirmed by ESI mass spectrometry. 

To a stirred solution of CH2Cl2:0.01 M Na2HPO4/NaH2PO4 buffer (pH 8.0) (ratio of 

organic to aqueous phase, 2:1), peptide and a 10-fold molar excess of p-chloroperbenzoic acid 

(PCBA) was added. The reaction was kept under N2 and incubated at room temperature with 

stirring for five hours. Reaction progress was monitored by TLC: a 34% propanol:water mix was 

made, then using that as a solvent a solution was made of 70% NH4OH:30% of the 

propanol:water. After completion of the reaction, the epoxide derivative was precipitated by 

addition of diethyl ether and the precipitate was washed several times with ether (199,213). The 

peptide was dried in a lyophilizer and redissolved in water, desalted and purified by reverse-

phase HPLC over a C18 column, using a gradient of 0 to 100% acetonitrile containing 0.1% 

trifluoroacetic acid and monitored by UV absorption. After purification, the peptide was 

lyophilized and stored at -20°C until used. Purity of the epoxide-derivatized peptides was 

evaluated by analytical HPLC and LC-ESI. The calculated monoisotopic mass of the 

HQSPGallylHHGGGC peptide, after cysteine protection with acetamide C47H68N20O14S: 

1,168.4944; found positive mass spectrum: [M+H]+ m/z 1,169.5023. For final epoxized 

HQSPGepoxyHHGGGC peptide (H-epoxy-5) with acetamidated cysteine, calculated 

monoisotopic mass of C47H68N20O15S: 1,184.4893; found positive mass spectrum: [M+H]+ m/z 

1,185.5494. HQSPWHGallylGGGC peptide after cysteine protection with acetamide calculated 

monoisotopic mass of C52H71N19O14S: 1,217.51481; found positive mass spectrum: [M+H]+ m/z 

1,217.4238. For final epoxydized HQSPGepoxyHHGGGC peptide (H-epoxy-7) with 
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acetamidated cysteine, calculated monoisotopic mass of C52H71N19O15S: 1,233.5093; found 

positive mass spectrum: [M+H]+ m/z 1,233.3894 and  [M+H]2+ m/z 618.9166. 

3.5.5 Cell protection assay  

Vero cells (African green monkey kidney cells) were plated in 96 well plates (1x105 

cells/well) in Essential Minimal Eagles Media (EMEM,ATCC) with 10% fetal bovine serum 

(FBS, USA Scientific) and 1x Antibiotic-Antimycotic and then incubated 24 hrs at 37°C, 5% 

CO2. Serum containing media was removed and exchanged with 200 µl serum free EMEM and 

incubated at 37°C, 5% CO2 briefly while the samples were prepared. From each well, Serum free 

EMEM was removed and replaced with 50 µl serum free EMEM containing 0.4 nM TcdA or 0.4 

nM TcdA and inhibitor [The toxin concentration were selected after titrating the activity (cell 

death/48 hours)]. Cells were incubated for 48 hrs at 37°C, 5% CO2. Cell viability was measured 

using CellTiter-GLO assay (Promega), a luminescent ATP-based assay. CellTiter-GLO reagent 

was thawed to room temperature from -20°C. Cells were exchanged into 50µl fresh serum free 

EMEM at room temperature. Plates were maintained at room temperature for 45 minutes, after 

which 50 μl of the CellTiter-Glo reagent was added to each well. Plates were shaken on an 

orbital shaker for 2 minutes at moderate speed and maintained at room temperature for an 

additional 10 minutes before luminescence measurements were taken (Tecan GENios Plus multi 

label reader). Luminescence readings were compared to their corresponding negative control to 

obtain % cell protection using equation (1) where; B0 is the luminescence intensity of cell treated 

with PBS, P0 is the luminescence intensity of cells treated with peptide-TcdA mix and T0 

luminescence intensity of cells treated with TcdA. Data were collected from three independent 

experiments and errors were estimated based on standard propagation. Images were collected 
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prior to the assay and after incubation period of 28 hrs using a 10x objective on a Nikon Eclipse 

TS100-F microscope, Photometrics CCD camera and NIS-Elements Software. 

                                       1001
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00 
















 TB

PB                                                    (1)           

3.5.6 In-gel trypsin digestion  

H-epoxy-5 and TcdA540 were incubated together at room temperature for 20 min at a 10:1 

molar ratio of peptide to toxin in phosphate buffer [50 mM Sodium phosphate and 300 mM NaCl 

(pH 7.5)]. Toxin samples with and without peptide were boiled at 95°C for 12 min in the 

presence of 4x SDS-PAGE gels loading buffer. The samples were resolved on 4-12 % gradient 

SDS-PAGE gel and stained with Coomasie blue. Sections of the gel containing the toxin were 

cut into 1 mm thick pieces and washed twice with 50 mM ammonium bicarbonate/acetonitrile 

(1:1) at 37°C for 30 min. After incubation, the buffer was removed and 100 μl acetonitrile was 

added. Once the gel plugs had shrunk, the acetonitrile was removed. The gel pieces were 

rehydrated in 50 mM ammonium bicarbonate for 15 min. An equal volume of acetonitrile was 

added and incubated for another 15 min. The ammonium bicarbonate/acetonitrile mixture was 

removed and 100% acetonitrile was added to cover the gel fragments. Acetonitrile was removed 

after the gel pieces had shrunk and samples were dried in a speedvac for 45 min to remove any 

excess solvent [Proteomic protocols for mass spectrometry-Bruker Daltonic Manual (version 1.0, 

6.12.2000)]. Lyophilized trypsin (SIGMA- Trypsin proteomic grade) was reconstituted 

according to the manufacturer’s protocol and 40 µl of the resulting trypsin solution was added to 

the gel and incubated at RT for 15 min. Then, 100 µl of 40 mM ammonium bicarbonate in 9% 

acetonitrile solution was added and incubated at 37°C for 6 hrs. Supernatant from the digestion 

containing the fragmented protein was removed and stored. Further extraction of the peptides 
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was accomplished by adding 50 µl of 0.1% TFA in 50% acetonitrile solution to gel pieces and 

incubating at 37°C for 30 min. After the final extraction the solutions were pooled with the initial 

digestion supernatant and the peptide digests were stored at -20°C until the mass spectrometry 

experiments could be completed. 

3.5.7 Nano-HPLC/Nano-ESI-FTICR mass spectrometry 

Tryptic digests were separated on a reverse phase separation column (Pep Map, C4, 

75µm*150 mm, 3 µm, and 300° A, Dionex) equilibrated with 95% solvent A (0.1% formic acid 

in water) and 5% B (0.1% formic acid in acetonitrile). Using a Dionex nano-HPLC system, the 

peptides were separated with a flow rate of 30 nL/min and a 65 min gradient (0-50 min: 4-50% 

solvent B, 50-55 min:50-95% solvent B, 55-65 min, wash with 95% solvent B). The peptides 

were detected based on their UV absorption at 214 and 280 nm. For the LC/MS data acquisition, 

Hystar software (Bruker Daltonics) was used. Nano-HPLC system was coupled on-line to a 

FTICR mass spectrometer (SOLARIX, Bruker Daltonics) using a nano-electrospray ionization 

source (Bruker Daltonics). The capillary voltage was set to -1,500 V. Mass spectral data were 

acquired at estimated resolving power of 9,900 at 400 m/z over a m/z range of 150-2,000 with 1 

MW data size. Averages of 10 scans were accumulated per spectra. Data were acquired over 70 

min time. Data acquisition, data processing and data analysis were performed using Data 

Analysis version 4.0 (Bruker Daltonics) and Biotools 3.2 (Bruker Daltonics). After 

deconvolution of the ESI mass spectra, manually created monoisotropic masses peak lists were 

used for calculating masses of cross-linked products. 
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CHAPTER 4 

Characterizing the regulatory roles of a putative negative regulator TcdC in C. difficile 
toxin gene expression 

4.1 Abstract 

C. difficile toxin production has been known to differ greatly among strains and is 

influenced by a range of environmental factors. High toxin producing epidemic strains carry a 

common mutation in a putative negative regulator (TcdC). Various correlations were made 

between the truncated forms of TcdC and increased disease severity as a result of higher levels of 

toxin expression. However the exact mechanism of TcdC-mediated regulation is not fully 

understood. Here we employed genetic and biochemical approaches to further elucidate the role 

of TcdC on the pathogenesis of C. difficile using E. coli as a surrogate host. This study reveals 

that TcdC is not a repressor as it was proposed, but rather acts as an anti-sigma factor and 

negatively regulates tox gene expression via a direct interaction with RNA polymerase. GFP 

(green fluorescent protein)-based fusion studies clarified the fact that the truncated form of TcdC 

derepress the tcdA promoter activity. Our study provides evidence that the hampered activity of 

the truncated form of TcdC is mainly due to the loss of a ~50 amino acid region that constitutes a 

putative N-terminal signal peptide. 

4.2 Introduction 

Epidemiology of C. difficile associated diseases (CDAD) has changed dramatically over 

the past decade, predominantly due to the emergence of hyper-virulent strains that have grater 

antibiotic resistance and changes in virulence properties (232,233). Disease severity with above 

strains has been proposed to associate with significantly higher levels of expression of toxins, 

higher sporulation rates and secretion of an actin-ADP-ribosylating toxin known as the binary 
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toxin (CDT) (234). PaLoc genes are regulated in a highly complex manner by multiple 

regulatory networks (45). Under normal growth conditions, toxin synthesis increases as cells 

enter stationary phase and is stimulated by addition of certain amino acids, antibiotics, biotin and 

is inhibited by rapidly metabolizable carbon sources, etc (43-45). Both tcdA and tcdB encode for 

major C. difficile virulence factors that are located within a 19.6 kb pathogenicity locus (PaLoc) 

together with three accessory genes tcdR, tcdE and tcdC (Figure 4.1) (37) which encodes an 

alternative σ factor, a proposed toxin releasing protein (the definite role of TcdE is controversial 

in the field) (42,235) and a negative regulator respectively.  

TcdR plays a crucial role in specific transcriptional activation of tcdA, tcdB promoters as 

well as its own promoter during stationary phase (38,47) which implicates that even a very low 

level of TcdR accumulation will amplify its regulatory role. Therefore, very tight regulation of 

tcdR is essential for successful invasion of host by C. difficile. Based on this scenario, several 

other regulatory circuits have been identified to act upon TcdR expression. CodY the global 

negative regulator of gram positive bacteria has been shown to mediate growth dependent toxin 

gene regulation by repressing toxin genes during the exponential phase via binding to the tcdR 

promoter (43). The catabolic control protein CcpA, a regulatory protein mediates catabolic 

repression based on rapidly catabolizable carbon sugars, was found to bind to both tcdA and tcdB 

promoter regions (45) as well as tcdR and tcdC regulatory regions . TcdE has been shown to 

facilitate the release of C. difficile toxins to the extracellular environment (42), however another 

recent  study based on insertionaly inactivated PaLoc tcdE has questioned this role (235). 

The putative negative regulator TcdC is a highly charged acidic protein (37,236). 

Bioinformatics analyses suggest that TcdC does not have sequence or structural homology to any 

known regulatory proteins. PsiBLAST alignments did identify several proteins with putative 

95



evolutionary relationships to TcdC; however, none of them were funcationally characterized. 

Growth dependent transcriptional analysis shows that tcdC expression is maximal during the 

exponential phase and greatly reduced when cells enter stationary phase, in contrast to other 

genes encoded within the PaLoc. (37). The negative regulatory role of TcdC was first 

characterized in vivo by a reporter fusion study (237). To date, the actual mechanism by which 

TcdC negatively regulates toxin gene expression in not clearly understood. It has been reported 

that upstream genes of PaLoc (tcdR, tcdB, tcdE, tcdA) are transcribed from their own promoter, 

as well as by read-through transcription from the promoter tcdR (Figure 4.1) (37,46). Moreover, 

transcription of gene-specific promoters are repressed during the exponential growth phase but 

induced when cells enter stationary phase, leading to speculation that there should be a common 

regulatory node which represses tox gene-specific promoters during exponential phase. 

Expression of  TcdC has been shown to interfere with the interaction between TcdR and RNA 

polymerase holoenzyme based on a in vitro run-off transcription assay (237). However, direct 

binding between TcdC with TcdR/RNA polymerase core enzyme has not been shown. The above 

observations prompted us to test the hypothesis that TcdC can act as a repressor by binding to 

promoter regions and interfering with transcription initiation. On the other hand TcdC may act as 

an anti-sigma factor and down regulate gene expression by interfering with the activity of its 

cognate sigma factor TcdR or with RNA polymerase.  

High toxin producing epidemic strains including NAP1/027 carry either a common 18 

base pair deletion or a frame shift mutation in tcdC resulting in the production of a truncated 

form of TcdC [Explained in detail in Figure 4.6 and Section 4.3.4] (33). This mutation leads to 

the proposal that high levels of toxin expression in epidemic strains may be associated with the 

presence of a truncated, non-functional form of TcdC. However, due to lack of experimental  
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Figure 4.1 Genetic organization of the C. difficile 19.6 kb pathogenicity locus (PaLoc). PaLoc consists of 5 
coding regions, including genes that encode for two cytotoxins TcdA (tcdA), TcdB (tcdB) attributed to disease 
symptoms and the other three proteins TcdR (tcdR ), TcdE (tcdE) and TcbC (tcdC) are shown to be functional in 
gene regulation and toxin release. All five coding regions have their own putative promoter regions [Modified based 
on (238)]. 
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evidence, the exact regulatory network of TcdC and its association with high toxin production 

remains controversial in the field (239,240). Therefore understanding the regulatory mechanism 

of toxin gene expression is crucial for exploring the pathogenesis of C. difficile. Moreover this 

knowledge can be utilized in the development of new strategies for treating/preventing C. 

difficile infections. 

4.3 Results and Discussion 

4.3.1 TcdC undergoes N-terminal cleavage in trans  

TcdC is a membrane associated protein with 3 predicted functional regions that comprise 

an N-terminal membrane spanning region, a highly charged mid-helical coil-coil domain and a 

C-terminal region postulated to be involved in its negative regulatory role (Figure 4.2A) (237). 

We designed two different recombinant TcdC constructs, one bearing a His6 tag at the N-

terminus and the other with the tag on C-terminus. We selected this approach because it was 

unclear whether one or both termini would be functionally affected by the extra amino acids. 

A previous study reported that the N-terminal region may be involved in dimerization 

(236). If dimerization is essential for its function, introducing a His6-tag at the N-terminus may 

disturb its activity. In this case, using a C-terminal His6-tag TcdC in binding studies would be 

more appropriate. On the other hand if the C-terminal region of TcdC is essential for its 

regulatory role, introducing an N-terminal His6-tag will be more relevant. Both constructs were 

cloned and expressed in E. coli BL21 (DE3) expression cells and proteins were purified using 

IMAC (Immobilized metal ion affinity chromatography) and an imidazole step gradient for 

elution. Interestingly, the SDS-PAGE analysis of purified TcdC exhibited two very closely 

spaced bands (< 5 kDa difference) (Figure 4.2B). The overall yield (mg/L culture) of purified 

TcdC obtained from N-terminal His6-tag was significantly lower than that of the C-terminal 
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His6-tag. Even though we used protease inhibitors during lysis and purification we explored the 

possibility that TcdC undergoes proteolytic processing in vivo or during purification steps. The 

above observation was consistent with a recent study that monitored TcdC expression levels in 

C. difficile strain VPI10463 by western blot analysis over time (239). They too observed two 

TcdC isoforms but interpreted their data in light of the potential that the existence of two protein 

bands in gels are due to cross-reactivity of their TcdC-specific antibody with another protein of 

slightly different molecular weight. In our case, we were using an anti-His6 antibody rather than 

a TcdC antibody, so the cross reactivity pattern should not have been the same. Thus, we 

hypothesized that TcdC may be undergoing proteolytic cleavage in vivo and questioned the 

potential relevance of this cleavage to its function. 

In order to identify the processing site, we first utilized purified TcdC harboring either N 

or C-terminal His6-tags. Western blot analysis was performed with HisProbe-HRP (Thermo 

scientific), a nickel (Ni2+) activated derivative of horseradish peroxidase (HRP) used for the 

detection of proteins with poly-histidine-tags. If TcdC undergoes an N-terminal cleavage, the 

product would lack a poly-histidine tag. As a result, the majority of TcdC would be present 

without a poly-histidine tag. Accordingly, western blot analysis reveal, purified N-terminally 

His6-tagged TcdC lacks corresponding signal for poly-histidine tag (Figure 4.2B). On the other 

hand, C-terminal His6-tagged TcdC retains poly-histidine tags on both closely spaced bands 

(Figure 4.2B). The above observation provides a clue that TcdC may undergo N-terminal 

cleavage (Figure 4.2B).   

To further understand the identity of the cleavage product we performed bioinformatic-

based search using several software packages [ Expasy SignalP V2.0.b2  
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Figure 4.2 Amino acid sequence of TcdC and proteolytic cleavage pattern of purified TcdC. (A) Amino acid 
sequence of TcdC [C. difficile 630] with predicted functional regions. An N-terminal transmembrane region 
(magenta) highly charged helical coil-coil region with alternative acidic and basic residues followed by the C-
terminal functional region. (B) Proposed N-terminal cleavage pattern of both recombinant N-terminal His6-tagged 
and C-terminal His6-tagged TcdC. Blunt end arrow (red) denotes the cleavage and green boxes represents the poly-
histidine-tags. (C) Coomassie and western blot analysis of purified N-terminal His6-tagged and C-terminal His6-
tagged TcdC. Coomassie stain analysis of denaturation SDS-PAGE indicates barely separated two protein bands 
(~34 kDa). Corresponding western blot is indicated in far left. Where in the case of C-terminal His6-tagged TcdC, 
an intense chemiluminescence signal includes both full length and cleaved TcdC with poly-histidine-tag. However 
in N-terminal His6-tagged TcdC, the lack of corresponding chemiluminescence signals signifies the absence of the 
poly histidine tag. 
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(http://www.cbs.dtu.dk/services/SignalP-2.0/) (18,19) (Figure 4.3B), PredSi 

(http://www.predisi.de/) , Phobius perdiction (http://phobius.sbc.su.se/) ] to classify possible 

signal peptide sequence within the TcdC sequence that might be removed by subsequent 

processing. Interestingly, all of the algorithms predicted a putative N-terminal ~ 52 amino acid 

length signal peptide with a predicted serine protease cleavage site between amino acid Ser52 

and Glu53 (Figure 4.3A and 4.3B). The above observation led us to ask a series of questions 

regarding the physiological roles of signal peptides in toxin gene regulation (discussed in section 

4.3.4), an exploration of the exact site of cleavage and what proteases might be involved in 

cleavage.  

To probe the site of cleavage, we performed MALDI-TOF analysis on purified C-

terminally His6-tagged TcdC. According to the mass spectrum (Figure 4.3C and Table 4.1), the 

m/z at 53,911.01 can be assigned to intact C-terminally His6-tagged TcdC dimers, whereas the 

corresponding monomer was observed at m/Z of 27,172.54. Peak at 42, 548.334 m/z can be 

assigned to dimer of a processed C-terminal hexa-His tagged TcdC with a theoretical mass of 

42,937.68 m/z (~ 289 Da deviations, Table 4.1). However we were not able to obtain a peak 

corresponding to the signal peptide deleted TcdC monomer (21,468.840 m/z). This could be due 

to the observed base-line shift of spectra in the related m/z region. The base-line shift (high 

noise) may associate with the protein storage conditions (high concentration of glycerol and 

Triton X-100). The above observation suggests that TcdC exists predominantly as dimers and 

supports that TcdC undergoes cleavage near the predicted signal peptide region. In future 

bottom-up proteomic profiling/ N-terminal sequencing approaches can be employed to obtain the 

precise identity on the origin of cleavage.  
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Figure 4.3 N-terminal signal peptide region prediction and MALDI-TOF analysis of purified TcdC. (A) TcdC 
amino acid sequence showing the predicted N-terminal signal peptide region with putative cleavage site between Ser 
52 and Glu 53. Plot indicates the SignalP-HMM prediction scores of gram-positive model obtained from Expasy 
SignalP V2.0.b2 software. Signal peptide probability: 0.828 and maximum cleavage site probability: 0.718 between 
position 52 and 53. (C) MALDI-TOF spectra of purified TcdC with C-terminal His6 tag. Sinapinic acid was used as 
matrix. Above spectra reveals TcdC predominantly exists as dimmers. 
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4.3.2  TcdC does not directly interact with upstream PaLoc promoters 

Secondary structure predictions of TcdC sequence revealed that it lacks a conserved 

(helix-turn-helix) DNA binding motif and could exists as a homo-tetramer or homo-dimer (13). 

Such organization would be consistent with an oligonucleotide binding fold (OB fold) common 

among DNA binding proteins (20) or a zinc finger-like DNA binding protein (21). Based on this 

concept we proposed oligomeric form of TcdC may form potential DNA binding motifs and acts 

as a repressor by binding to promoters regions.  

Gel mobility shift assays were used to probe the interaction between TcdC and upstream 

promoter regions of TcdC. Both N- terminal and C-terminal His6-tag TcdC were tested for DNA 

binding activity. As a potential DNA target, we initially selected the full length promoter tcdR 

region (246 bp) (Figure 4.4 A and 4.4B). The 5’ UTR of tcdR contains two short putative 

promoter segments and a putative operator (Figure 4.1A, 4.4A and 4.4B). But regulatory factors 

that are involved in tuning of these promoter regions are poorly understood. Therefore to begin 

with, we analyzed the binding of TcdC with a longer DNA segment harboring both 

ptcdR1/ptcdR2 regions (246 bp) (Figure 4.4A) (43) and with individual shorter DNA segments (~ 

60 bp) containing putative ptcdR1 and ptcdR2 regions (Figure 4.4A and 4.4B) (37). Based on 

these experiments neither N- nor C terminal tagged TcdC showed any significant binding with 

ptcdR (Figure 4.4C) promoter DNA regions. Although TcdC failed to bind the tcdR promoter, it 

does not overrule the possibility of TcdC having a potential binding preference to other promoter 

regions of PaLoc (Figure 4.1A). Due to the fact that the transcription of gene-specific promoters 

is repressed during the exponential growth phase, we hypothesized (46) that TcdC may repress 

the transcription of gene specific promoters (ptcdB, ptcdE, ptcdA) in PaLoc. Consequently we 

extended our gel mobility shift assays to putative tcdA and tcdB promoter regions (Figure 4.4D).  
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Figure 4.4 Functional characterization of TcdC as a DNA binding protein. (A) Schematic of promoter tcdR 
region. (B) Sequence of individual short promoter elements ptcdR’ and ptcdR. Vertical bars represent the -35 and -
10 boxes of gram positive bacteria. Purple arrows indicate a sequence with twofold symmetry which presumably 
functions as an operator region. (C) Analysis of both N-termianl and C-termianl his6 tagged TcdC interaction with 
tcdR (246 bp) promoter region. 32P labeled ptcdR was titrated with varying concentrations of TcdC. Showing no 
interaction of TcdC with promoter tcdR . (D) Electromobility shift assay of C-terminal his6 tagged TcdC with 
individual short promoter segments ptcdB1 (51bp) and ptcdB2 (54 bp) accordingly. 
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Table 4.1 m/z observed for TcdC-C-terminal His6 by MALDI-TOF analysis 

  

 

 

 

 Theoretical mass (m/z) Experimental mass (m/z) Deviation (±Da) 

TcdC-C-terminal His6 
tag monomer 

27,055.74 27,172.542 -116.802 

TcdC-C-terminal His6 
tag dimer 

54,111.48 53,911.008 200.472 

Signal peptide deleted 
TcdC-C-terminal His6 

tag monomer 
21,468.84 Not found - 

Signal peptide deleted 
TcdC-C-terminal His6 

tag dimer 
42,937.68 42, 648.334 289.346 
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Consistent with promoter tcdR binding studies, TcdC showed no significant binding interactions 

with ptcdA or ptcdB.  

While this was a negative result, we envisioned the lack of interactions could be due to a 

mechanism in which a co-factor was required to stimulate DNA binding. Several such cases are 

known in gram positive bacteria including: a mechanism by which pathogenic gram positive 

bacteria sense nutrients using small molecules such as GTP, cyclic nucleotides (cGMP), 

branched amino acids, metal ions (Fe2+) etc (43,245) where molecules can act as co-repressors 

by increasing the affinity of repressors to target DNA in which TcdC-ptcdR interaction may 

require other small molecules for efficient DNA binding. To test this phenomenon, gel mobility 

shift assays were performed in the presence of small molecules such as GTP and Mn2+. None of 

the co-factors we tested affected the binding and we still failed to observe any interaction 

between TcdC and ptcdR DNA.  

The collection of negative results led us to ask whether it was possible that TcdC repress 

PaLoc genes through a mechanism other than direct DNA binding. However we cannot exclude 

the possibility that TcdC acts in conjunction with other proteins/small molecules to bind DNA 

and perform growth dependent tox gene repression. Despite this, as an alternative mechanism, 

TcdC may destabilize the interaction of TcdR-RNA polymerase core enzyme and function as an 

anti-sigma factor (246).  

4.3.2 The ptcdA-GFP expression system for analysis of TcdC mediated gene regulation in 

trans 

To understand the functional role of TcdC as an anti-sigma factor and to elucidate the 

activity of truncated forms of TcdC found in hyper virulent strains and signal peptide deleted 

version of TcdC, we designed an Emerald green fluorescent protein (EmGFP)-based three-
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plasmid system (Figure 4.5A) which can be expressed in E. coli. Although E. coli is not an ideal 

heterologous host, the fact that E. coli lacks any homologous protein sequences to TcdC or TcdR 

helps its use as an adequate surrogate host and further confirming this, E. coli was successfully 

employed in TcdR mediated tox gene regulation studied by Scott et al.,(39). To allow the 

expression of tcdR, tcdC and promoter-tcdA in trans, we sub-cloned the toxin promoter ptcdA in 

frame with EmGFP into a low-copy number plasmid (247), which can co-exist with the pT7-

tcdR and pBAD-tcdC vectors (Figure 4.5A).  

In order to validate our plasmid system, GFP expression levels were monitored in the 

presence and absence of both TcdR and TcdC over a 13-hour time course spanning exponential 

to early stationary phase. At 7hrs (late exponential phase) time point, cells were withdrawn and 

GFP levels were measured in cell lysates. The strains harboring 2 plasmids were also used as a 

control to monitor the tightness of pT7 and pBAD promoters. GFP expression rose significantly 

when TcdR was co-expressed in trans (Figure 4.5B). The above data validates that TcdR 

activates promoter tcdA in vivo. Furthermore the ability to up-regulate promoter tcdA by TcdR 

was diminished when TcdC was co-expressed (Figure 4.5B). Consequently the above 

observations reveal the presence of a negative regulatory role of TcdC on ptcdA-EmGFP 

expression in our system just as it would in context of the PaLoc. Our initial data are nicely in 

line with previous findings pertaining to this mode of regulation in gram-positive bacterial 

models and are indicative of the proper functionality of our GFP-based fusion system in E. coli 

(39). 

4.3.3 Truncated TcdC modulates tox gene expression 

The main phenotypic differences found in epidemic strains include, enhanced toxin 

production, faster sporulation rates, secretion of binary toxin and increased antibiotic resistance  
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Figure 4.5 GFP fusion system designed to measure the transcriptional regulation of promoter tcdA in the 
presence of other regulatory proteins TcdR and TcdC. (A) Representative image showing the three-plasmid 
systems (a) 5’ UTR of tcdA fused in frame with GFP (ptcdA-EmGFP). The fusion plasmid maintains a low copy 
number in cells (b) tcdC was cloned under the control of a pBAD promoter (pBAD-tcdC) and expression of TcdC is 
induced by L-arabinose. (c) tcdR was clone under control of a pT7 promoter (pT7-TcdR). TcdR expression can be 
induced by IPTG. (B) Fluorescence measurements respective to ptcdA-EmGH expression system at 7 hrs. Cells were 
co-transformed with either two plasmids or all 3 plasmid constructs. Bacterial cell cultures were generated from 
overnight cultures and after 3 hrs of growth (OD600 ~ 0.4 to 0.5) positive controls were induced with either L-
arabinose or IPTG or both. Fluorescence measurements were obtained from cell lysates. All fluorescence 
measurements were at least triplicated using independent inoculations. In cells harboring plasmids ptcdA-EmGFP 
and pT7-tcdR, GFP levels were significantly high (~2 fold) when TcdR is co-expressed confirming the functionality 
of fusion system in vivo.  
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(26).  The epidemic strains bear two common mutations in the tcdC gene, an 18 base pair 

deletion and a frame shift mutation at position 117 that consequently leads to the production of 

an 88 amino acid N-terminal truncated form of TcdC (Figure 4.6A) (248,249). In order to 

address questions regarding the function of the truncated versions of TcdC and high toxin 

production, as well as to discover the functional role of the proposed signal peptide region 

(Section 4.3A), we used our GFP-based fusion system in trans. TcdC with an 88 N-terminal 

amino acids deleted mutant (TcdCframe-shift) and a mutant lacking the 52 amino acids signal 

peptide (TcdCΔsignal peptide) were cloned in frame with a pBAD promoter. The functional role of 

TcdCΔsignal peptide/ TcdCframe-shift mutants on promoter tcdR was monitored in the presence of the 

activator TcdR. Relative repression levels of each forms of TcdC (wild type and mutants) were 

calculated by comparing the GFP levels in both TcdR, TcdC co-expressed cells with 

corresponding TcdR only expressed cells. As seen in Figure 4.6B, ~85% repression was 

observed in cells expressing wild type TcdC.   Interestingly, in the presence of either TcdCΔsignal 

peptide or TcdCframe-shift mutants, significant reduction in repression was observed, 50% and 30% 

correspondingly (Figure 4.6). Therefore the loss of negative regulatory functions of the mutants 

may lead to enhanced promoter tcdA mediated GFP expression. As well as the data further 

reveals the signal peptide region  indeed plays a crucial role in regulatory activity of TcdC. 

Consistent with a recent study (239), our data provides more evidence that the truncated TcdC 

found in epidemic strain may be an important determinant in its association with high toxin 

production. In addition to that, the loss of function of the signal peptide deleted mutant leads to 

the postulation that the lack of activity of truncated mutations found in epidemic strains may be a 

result of deletion of signal peptide bearing region. Furthermore due to presence of the functional 
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role of the putative signal peptide region predict the likelihood of TcdC being an ECF (Extra 

Cytoplasmic Functions) anti-σ-factor (Section 4.3.5 and Section 4.3.6).  

4.3.4 TcdC may act as an anti-sigma factor 

One mechanism for regulating transcription utilizes interaction between a sigma factor 

and a second protein known as an anti-sigma factor (38,250-252). TcdR, an alternative sigma 

factor used to express tox genes shows similarities to the ECF (Extra Cytoplasmic Functions) 

subfamily σ factors, that regulate a wide variety of functions by sensing growth conditions in the 

membrane, periplasm or extracellular environments (246,253,254). These σ factors are often 

regulated by cognate anti- σ factors. ECF subfamily anti-sigma factors typically have a sensor 

domain in the periplasm and a regulatory domain in the cytoplasm (246,251,255). Due to the fact 

that TcdC has a putative single pass trans-membrane domain and a putative signal peptide region 

we postulate that TcdC may be a member of the ECF class anti-σ factors (236). By definition, all 

anti-σ factors act by binding to cognate σ factors and prevent the interaction with RNA 

polymerase. However, to date there is no evidence showing a direct interaction between TcdR 

and TcdC.  

In C. difficile, expression of TcdC occurs predominantly during exponential phase (239), 

whereas TcdR is expressed during stationary phase. Presumably, depending on the cytoplasmic 

concentrations of TcdC and TcdR, TcdC may compete with TcdR for core RNA polymerase 

instead of actively promoting the dissociation of TcdR from the pre-formed RNA polymerase 

holoenzyme. Therefore in order for TcdC to act as a negative regulator during exponential phase, 

it needs to directly interact with the RNA polymerase core enzyme instead of TcdR. 

Many biochemical methods such as co-immunoprecipiation (256), blue native PAGE 

(257), in vitro binding [Surface plasma resonance (SPR) (258), isothermal titration calorimetry  
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Figure 4.6 Functional characterization of signal peptide and truncation mutation of TcdC. (A) Sequence 
alignment of TcdC wild type with truncated form of TcdC obtained from single frame shift mutation. The epidemic 
hypervilulence strains harbors an 88 amino acids deleted truncated form of TcdC. (B) In order to probe the 
physiological role of truncated forms of TcdC, ptcdA-GFP expression levels were monitored in the presence of 
TcdCΔsignalpepetide, TcdCframeshift mutants and TcdR. % repression was compared with average of GFP expression level 
in the presence of TcdCWT, TcdCΔsignal pepetide and TcdCframeshift (white bar). There is a significant reduction in 
repression levels in the presence of TcdCΔsignal pepetide and TcdCframeshift mutants. 
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(ITC) etc], chemical cross-linking (259-261), rate-zonal sedimentation (262) can be used to 

characterize protein-protein interactions. In a cell, proteins can take part in a highly complex 

network of interactions, which can be characterized as transient to weak interactions or highly 

stable multiple protein interactions. A method of analysis to study these interactions is selected 

depending on the nature of interactions and purpose of analysis etc. We used a combination of 

chemical cross-linking and co-immunoprecipitation to probe TcdC-RNA polymerase interaction 

in vivo. Chemical cross-linking provides a direct means of probing both transient and stable 

protein interactions in vivo and in vitro. We opted for chemical cross-linking to preserve any 

transient interaction in vivo and co-immunoprecipitation to separate and identify specific proteins 

of interest. In our study para-formaldehyde was chosen as the cross-linking agent, since it is a 

membrane permeable, small molecule having reactivity by means of adjacent Lysine residues. 

Although it has an interaction distance of just of 2Å, it is considered as a “zero length” cross-

linker, meaning it cross-links protein interactions which are in very close proximity, 

consequently avoiding many non-specific protein-protein interactions in vivo (263). 

  We utilized a GFP-based fusion system to gain more evidence on the TcdC-RNA 

polymerase interaction in vivo. For the pull down and detection purposes TcdC with a C-terminal 

His6 tag was cloned under the control of pBAD promoter. Cells were grown in identical 

conditions similar to the GFP-based fusion study (Materials and Methods) and harvested after 7 

hrs of growth. Next, 1% paraformaldehyde in PBS was used to cross-link any protein 

interactions in vivo (Materials and Methods) (264-266), followed by mild enzyme-based cell 

lysis in the presence of 1% Triton X-100 to maintain optimal conditions for solubilizing 

membrane bound proteins and to ensure release of membrane-bound TcdC. Two 

immunoprecipitation strategies were used to pull down TcdC-RNA polymerase. First, an 
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immnunoaffinity pull down using E. coli RNA polymerase monoclonal antibody specific for β 

subunit was carried out and probed for the presence of TcdC C-ter His6 tag via a nickel (Ni2+) 

activated derivative of horseradish peroxidase (HRP) used for the detection of proteins with 

poly-histidine-tag (Figure 4.7A). Secondly, a complimentary reverse pull down of TcdC C-ter 

His6 tag by Ni-NTA affinity beads was performed and probed for the presence of RNA 

polymerase by western blot analysis with E. coli RNA polymerase β monoclonal antibody 

(Figure 4.7B). In both approaches paraformaldehyde cross-link was released by heating with 

SDS-PAGE gel loading dye for 15 min at 95°C before SDS-PAGE and western blot analysis. 

Accordingly, [Figure 4.6Aand 4.6B] western bolt analysis reveals, RNA polymerase β antibodies 

precipitated TcdC (Figure 4.7A, Lane 4) in its immunocomplex, which was confirmed by 

loading affinity purified TcdC with poly-histidine-tag (Figure 4.7A, Lane 5). On the other hand 

in the Ni-NTA pull down of poly-histidine-tagged TcdC, precipitated RNA polymerase (Figure 

4.7B, Lane 4). Both blots lack corresponding bands in washing steps (Figure 4.7A, Lane 3 and 

Figure 4.7B Lane 3 ), indicating that the washing conditions are sufficient enough to eliminate 

non-specific binding interactions and the observed corresponding immuno-eluted bands (Figure 

4.7A, Lane 4 and Figure 4.7B, Lane 4) were due to specific protein-protein interactions. Both 

approaches confirmed for the first time a direct TcdC/RNA polymerase interaction in vivo. 

Moreover binding of TcdC to RNA polymerase suggests it may act via a complex layer of 

negative regulation as seen in other well characterized anti-sigma factors such as the 

bacteriophage T4 anti-sigma factor AsiA (253,267,268). These observations leads to the 

postulation that TcdC may trap RNA polymerase core enzyme/TcdR in a ternary complex and 

prevents direct interaction of TcdR with the RNA polymerase core during exponential phase 

(Figure 4.7C). 
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Figure 4.7 Co-immunoprecipitation of TcdC associated proteins and proposed model for TcdC-mediated 
negative gene regulation. (A), (B) Western blot analysis of immunoprecipitation experiments performed on 
TcdR/TcdC/ptcdA-EmGFP expressing cells. Showing direct interaction between TcdC and RNA polymerase (A) 
Indicates immunoprecipitation carried out using Ecoli RNA polymerase mono clonal antibody specific for β subunit. 
Lane 1; lyaste, Lane 2; follow-through after separation of immunocomplex by Protein A/G Agarose beads, Lane 3; 
fraction form 4th wash by lysate buffer, Lane 4; immunoeluted sample, Lane 5; purified C-terminal His6 tag 
TcdC.(B) Indicates pull-down experiment carried out using. Ni-NTA Agarose beads, Lane 1; lyaste, Lane 2; follow-
through after separation of TcdC associated proteins with Ni-NTA beads, Lane 3; fraction from 3rd 50 mM 
imidazole buffer wash; Lane 4; Immunoeluted sample. (C) TcdC may functions as ECF class anti-sigma factors, 
following regulated transmembrane proteolysis (RIP) pathway. During exponential phase TcdC/RNA 
polymerase/TcdR ternary complex prevents transcriptional activation. Putative proteases are held in inactive 
conformations. However, direct interactions of TcdC with putative proteases during this phase were pictured for 
simplicity. During exponential to stationary phase transition, periplasmic signals leads to activation of putative site 1 
protease and cleaves TcdC in site 1 cleavage site (cleavage at putative signal peptide region) initiates TcdC 
degradation, followed by activation of putative site 2 proteases leading to complete degradation of TcdC and there 
by releasing RNA polymerase and TcdR. Consequently TcdR bind to RNA polymerase forming RNA polymerase 
holoenzyme and subsequent transcriptional activation of tox genes.[Figure adopted from (52)] 
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4.3.5 Proposed model for TcdC mediated gene regulation 

A number of previous studies have revealed ECF class-σ-factors, their cognate anti- σ-

factors and the proteases that regulate them play significant roles in pathogenesis of several 

gram-negative and gram-positive pathogens such as Vibrio cholerae (270), Mycobacterium 

tuberculosis (271) , Staphylococcus aureus (272) and Clostridium difficile (273). The above 

signal transduction regulatory pathway is known as regulated transmembrane proteolysis (RIP). 

Proteolytic degradation of membrane bound anti- σ-factor leads to release of sigma factor and 

transcriptional activation. RIP pathway utilizes two intra-membrane proteases. Site-1 proteases 

receive the extracellular signals and cleave at the site one of anti-sigma factor. After Site-1 

cleavage, Site-2 proteases further degrade the anti-sigma factors and follow-on activation of 

sigma factor. One of the well studied systems is E. coli  σE (251,269) , its cognate ECF class 

anti-σ-factor RseA and inner membrane proteases DegS and YaeL (274). In the absence of stress 

conditions RseA binds σE and prevents its association with RNA polymerase inhibiting 

transcription of sigma-E dependent genes. Upon receiving stress, the periplasmic serine protease 

DegS, cleaves RseA at site 1, which is subsequently cleaved by a membrane-embedded 

metalloprotease YaeL at site 2. The result of this cascade is that σE released from its association 

with RseA and can initiate σE depentdent transcription with the help of RNAP (274,275). 

The work described above lead us to conclude that TcdC is in fact an ECF-class anti-

sigma factor. It is a membrane bound dimeric protein; it lacks the ability to bind DNA but still 

negatively regulates tox gene expression; it harbors an N-terminal signal peptide which 

undergoes proteolytic cleavage at a canonical serine protease cleavage site and loses function 

upon processing; and finally it interacts directly with RNA polymerase. Thus, it has all of the 

hallmarks of a RIP pathway (Fig. 4.7C). However, an additional layer of interaction needs to be 
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considered in this case is the possible incidence of a direct association with RNA polymerase. 

The ternary TcdR/TcdC/RNA polymerase complex could result in the proteolytic destabilization 

of TcdC and TcdR-RNA polymerase association followed by transcriptional activation. A recent 

study identified three ECF class sigma factors CsfT, CsfU, and CsfV and their cognate anti-

sigma factors RsiT, RsiU, and RsiV, respectively in C. difficile (273). CsfT-RsiT regulation was 

mediated by a putative site 1 protease PrsW and the above interactions play important roles in 

antimicrobial resistance and colonization. Accordingly, TcdC may function through the RIP 

pathway for the regulation of tox gene expression.  

Further biochemical and genetic studies are required to definitively prove the occurrence 

of TcdR/TcdC/RNA polymerase complex in vivo, putative proteases associated with the cleavage 

and extracellular recognition signals associated with pathway etc. In this case the role of anti-

sigma may expand to include pathogenesis and development of hypervirulent strains.  

4.4 Conclusions 

Finely tuned expression of virulence factors is critical for the success of a pathogenic 

organism. Here we identified that the negative regulator TcdC is not a DNA binding protein and 

rather it could act as an anti-sigma factor. We have provided evidence that TcdC harbors a 

putative N-terminal signal peptide region and it undergoes cleavage. In vivo fusion studies 

further confirmed that an N-terminal signal peptide region could have a functional role and 

removal of signal peptide that significantly reduces its negative regulatory role. Co-

immunoprecipitation experiments provided evidence of a direct interaction between TcdC and 

RNA polymerase in vivo. The above observations based on biochemical and genetic studies lead 

us to propose that TcdC may function as a ECF class anti-sigma factor with the regulated 

transmembrane proteolysis (RIP) pathway. Consistent with previous findings (239) our data 
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further verified that the truncated mutation leads to the activation of toxin promoters and thus 

TcdC in an important factor in development of high toxin producing epidemic strains. Since 

there is much less known about the PaLoc regulatory network, having a functional GFP fusion in 

hand can be an advantages in future to identify promoter specificities of major PaLoc regulatory 

proteins, etc. Ultimately understanding the mechanism of regulation of toxin gene expression 

may open up new therapeutic strategies in controlling C. difficile infections. 

4.5 Materials and Methods 

All procedures involving C.difficile genomic DNA were carried out in a Biosafety level 2 lab 

following standard operation conditions. 

4.5.1 DNA oligonucleotides 

The complete lists of DNA oligonucleotides used in the study for cloning and 

electromobility shift assay are provided in Table 4.2. and Table 4.3. 

4.5.2 Bacterial strains, media and growth conditions 

The E.coli strains XL-10 (Stratagene) or Top 10 (Invtrogen) were used for cloning 

purposes and E.coli BL21 (DE3) cells were used for protein expression and for in vivo fusion 

studies. All constructs made carrying genes of interests in this study were confirmed by DNA 

sequencing. Growth in Luria-Bertani (LB) broth or LB Agar plates were carried out in 37°C 

unless specified. Antibiotics were used in following concentrations when appropriate; 

Kanamycin (34 µg/ml), Ampicillin (100 µg/ml), Chloramphenicol (30 µg/ml) and 

Spectinomycin (100 µg/ml). 
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4.5.3 Purification of TcdC  

To construct TcdC with both N-terminal and C-terminal polyhistidine tag, the tcdC from 

chromosomal DNA of C.difficile strain ATCC 9689 was amplified [Primer pairs  (SA001and 

SA002), (SA003 and SA004)] and cloned within Nde1 and Xho 1 sites of pET30-b (Novagen). 

The resulting plasmid was expressed in E.coli Rosetta2 (DE3) (Invitrogen) cells, a 1-liter culture 

was grown at room temperature for 16 hrs (OD600 ~ 3.0) till stationary phase (237). Cells were 

induced by 1mM IPTG and continued to grow for another 3 hrs and harvested by centrifuging at 

5,000 rpm for 15 min. Cells were lysed by sonication in 50 mM Tris.HCl, 300 mM NaCl, 10 mM 

imidazole, 10% glycerol at pH 7.5, supplemented with EDTA-free complete protease inhibitor 

cocktail (Roche). The cell lysate was clarified by centrifugation, supernatant was incubated with 

1% Triton X-100, DNAase (100 U/ml) for 1hr at 4°C and sterile filtered (0.22µm filter). Proteins 

were purified using an imidazole step gradient from a nickel-chelated HiTrap column using 

FPLC (AKTAFPLC, Amersham Pharmacia Biotech). The purified His6-tagged protein were 

dialyzed into storage buffer (50 mM Tris.HCl pH 7.5, 300 mM NaCl, 1mM DTT and 10% 

glycerol) and stored at 4 °C in the presence of 40% glycerol.  

4.5.4 Gel mobility shift assays 

A 246 bp DNA fragment containing the promoter tcdR region was amplified form 

chromosomal DNA using primers (SA005 and SA006), purified and radio labeled with [γ-32P]-

ATP. To obtain short putative promoters, individual single stranded DNA fragments were 

purchased (IDT-Integrated DNA Technologies), single strand is radio labeled and annealed with 

corresponding complementary strand by heating at 95°C for 3 min and cooled to room 

temperature for 15 min in annealing buffer (10 mM Tris.HCl pH 7.5, 20 mM NaCl). List of 

oligonucleotides used in the gel mobility shift assays were indicated in Table 4.2. Labeled DNAs 
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(10 kcpm final count) were mixed with increasing concentration of purified recombinant TcdC 

and binding reactions were performed in binding buffer [25 mM Tris.HCl pH 7.5, 75 mM NaCl, 

50 mM Potassium glutamate, 10 mM MgCl2, 0.1 mM EDTA, 12% glycerol, 0.3 mM DTT, 0.005 

mg/ml BSA (where indicated 2mM GTP/ 125 M MnCl2 added as co-repressors] at room 

temperature for 30 min. For all reactions 15 µl aliquots were loaded after mixing with loading 

buffer (4% w/v sucrose, 1 mM Tris.HCl pH 7.5, 0.001% bromophenol blue) on to a 5 or 8 % 

native polyacrylamide (37:1) gel. Electrophoresis was carried out at 7W in Tris-glycine buffer. 

Dried gels were phosphorimaged, scanned by a Typhoon 9210 imaging system (GE Lifer 

Scieneces) and quantification was performed using ImageQuant 5.1(Molecular Dynamics).  

4.5.5 In vivo fusion study plasmid constructs   

Parent plasmids were selected with compatible origins of replications and independent 

antibiotic selection for co-expression and maintenance. The GFP fusion plasmid was constructed 

starting from the plasmid pBAC-EmGH [gift from Cunningham Lab] (247,276). The pBAD 

promoter form the plasmid was removed by MluI and BamH1 restriction digestions. Promoter 

tcdA region (521 bp) was amplified from C.difficile ATCC 9689 genomic DNA using primers 

SA0017, SA0018 and inserted in-frame with reporter gene Em-gfp to generate pSA121201 

(ptcdA-EmGH) (Figure 4.5A(a)). pSA111202 (pT7-TcdR) was based on plasmid pJLM016 [a 

pCDF-1b derivative, gift from Tamara L. Hendrickson lab]. A 555 bp length tcdR coding region 

was amplified using primers (SA025 and SA026) and cloned in-frame with T7 promoter within 

NcoI and XhoI sites (Figure 4.5A(c)). pSA101203 (pBAD-TcdC), TcdCwt (wild type) was 

amplified using SA021 and SA022 primers from C.difficile ATCC 9689. Cloned in-frame with 

pBAD promoter using MscI and EcoRI restriction sites of parent plasmid pNM12 (Figure 4.5A 

(b)) (277,278). pSA101204, TcdCfarme-shift mutant was generated using SA029 and SA030 primers 
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from pSA101203. Cloned in-frame with pBAD promoter using MscI and EcoRI restriction sites 

of pNM12. pSA101205, TcdCΔ signal peptide  mutant was generated using SA029 and SA031 

primers from pSA101203. Cloned in-frame with pBAD promoter using MscI and EcoRI 

restriction sites of pNM12. pSA101206, TcdC-C-terminal His6 tag was amplified using SA032 

and SA022 primers from pSA101203. Cloned in-frame with pBAD promoter using MscI and 

EcoRI restriction sites of pNM12. 

4.5.6 In vivo GFP-reporter assay 

Bacterial start up cell cultures with OD600nm of 0.02 were obtained by diluting overnight 

cultures with LB. Cells were induced after 3 hrs (OD600nm of ~0.4-0.5) with 0.2% L-arabinose 

(Sigma) or 0.1 mM IPTG accordingly and allowed to grow until early stationary phase for 13 

hrs.  At (3hrs, 7hrs, 11hrs, 13hrs) indicated time points, cells were withdrawn, absorbance were 

measured, 2 ml cultures were harvested at13,000 rpm for 1 min and stored at -80°C until lysis. 

For lysis and GFP measurements, cell pellets were re-suspended in 200 µl lysis buffer (50 mM 

Tris.Cl pH 7.5, 25 mM NaCl, 2 mM EDTA). In order to lyse the cells, 20 µl of lysozyme (25 

mg/mL, freshly prepared), 30 μl of protease inhibitor (one tablet per 8 mL ultrapure water, 

complete EDTA-free protease inhibitor cocktail, Roche) and 25 μl of 10 % TritonX-100 were 

added and incubated at 37°C for 45 min with continuous shaking. Followed a freeze thaw cycle 

by incubating in ethanol/dry ice bath for 10 min and thawed at room temperature for 10 min. For 

the complete lysis, cells were further incubated at 37°C for another 30 min with continuous 

shaking. Lysed cells were centrifuged at 13 000 rpm for 2 min to separate the membrane 

components and 200 µl supernatant was transferred into a 96-well flat bottom black plate 

(Coaster®). The fluorescence measurements were made at an excitation wavelength of 485 nm 

and at an emission wavelength of 535 nm (Tecan GENios Plus multi label reader). Individual 
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fluorescence measurements were normalized by corresponding OD600 measurements. The 

fluorescence gain values were consistently set between 95 and 103. All measurements were 

triplicated and error values were based on the standard deviation between independent trials.  

4.5.7 In vivo cross-linking 

Bacterial cells carrying 3 plasmids ptcdA-EmGH, pBAD-TcdC, pT7-TcdR or 2 plasmids 

ptcdA-EmGH, pBAD-TcdC were used. Cells were grown in identical conditions as described in 

GFP-reporter assy. Bacterial start up cell cultures (500 mL) with OD600nm of 0.02 were generated 

by diluting overnight cultures with LB. Cells harboring 3 plasmids were induce with 0.2% L-

arabinose (Sigma), 0.1 mM IPTG and cells with 2 plasmids were induced with 0.2% L-

arabinose. At the 7 hrs time point (OD600nm~ 1.2), cells were harvested at 5,000 rpm for 15 min, 

and separated in to 100 mg cells (wet weight) aliquots and washed twice with 1×PBS (pH 7.4, 

Calbiochem). Cell pellets were suspended in 1% (w/v) paraformaldehyde in PBS (pH 7.4) 

(Sigma) and incubated at room temperature for 45 min without shaking. Cells were harvested, 

remaining paraformaldehyde solution was removed, washed once with 1×PBS and twice with 

TcdC lysis buffer (50 mM Tris.HCl, 300 mM NaCl). The washed cell pellets were used for 

immunoprecipitation. 

4.5.8 Co-immunoprecipitation and western blot analysis 

Cells were lysed by B-PER® Direct Bacterial Protein Extraction Kit (Thermo Scientific), 

800 µL B-PER Direct reagent, 8 µL Lysozyme (50 mg/mL stock), 8 µL DNAase I (2,500 U/mL 

stock), 80 μl 10 % Triton X-100, 50 μl of protease inhibitor (complete EDTA-free, Roche) 80 μl 

80 % Glycerol were added and incubated at 37°C for 30 min with shaking. Briefly centrifuged to 

remove not lysed cells and supernatant was proceeded for immunoprecipitation experiments. 
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4.5.9 Immunoprecipitation with E.coli RNA pol β mouse monoclonal antibody 

To cell lysate 4 µg of E.coli RNA polymerase β subunit mouse monoclonal antibody 

(Santa Cruz Biotechnology, Inc) was added and incubated overnight at 4°C with rotation. 

Immunocomplex was captured by adding pre-washed 50 µL (packed beads) Pierce® Protein A/G 

Agarose (Thermo Scientific) and incubation for 2 hrs at 4°C with rotation. Beads were collected 

by centrifugation at 700*g for 3 min and washed 4 times with ice cold TcdC lysis buffer (400 µL 

wash each time). Beads were re-suspended in 100 µL TcdC lysis buffer, 25 µL of 4X SDS gel 

loading buffer and boiled at 95°C for 15 min to dissociate immunocomplexes from beads and to 

reverse paraformaldehyde cross-linking. Samples were next loaded with appropriate controls, 

separated on 4-10% denaturation polyacrylamide gel and electroblotted to a PVDF membrane. 

Presence of C-terminally poly-histidine tagged TcdC was probed by HisProbe-HRP (Thermo 

scientific), a nickel (Ni2+) activated derivative of horseradish peroxidase (HRP) (1:5000) and 

visualized by chemiluminescence signal obtained from Super Signal West Pico 

Chemiluminescence Substrate kit (Thermo scientific). Images were obtained from CCD camera. 

4.5.10 Pull-down experiments using poly-histidine tagged TcdC 

To cell lysate, imidazole was added to final concentration of 10 mM, followed by 

addition of 60 µL (packed beads) pre-washed HisPurTM Ni-NTA resin (Thermo Scientific). 

Samples were incubated overnight at 4°C with rotation. Beads were collected by centrifugation 

at 700*g for 3 min and washed once with lysis buffer with 10 mM Imidazole and followed by 

three washes with 50 mM imidazole containing lysis buffer (400 µL wash each time). Bound 

proteins were eluted, electrophoresed and electroblotted to a PVDF membrane as indicated in 

RNA pol β pull down experiments. The presence of RNA polymerase from the pull-down was 

probed by E.coli RNA pol β mouse monoclonal antibody (Santa Cruz Biotechnology, Inc) 
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(1:200) and Goat anti-mouse IgG H&L (Cy5 ®) secondary antibody (abcam) (1: 1000). 

Membrane was scanned by a Typhoon 9210 imaging system (GE Lifer Scieneces) and analyzed 

by ImageQuant 5.1(Molecular Dynamics). 
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 Table 4.2 List of oligonucleotides used in gel mobility shift assays and expression of recombinant TcdC with 
N-terminal His6 tag and C-terminal His6 tag 

Code DNA primer name Sequence 

SA001 TcdC N-terminal his Fw primer 
CCGAGCCTCGAGTTAATTAATTTTCTCTACAGC 

SA002 TcdC N-terminal his Rev primer 
GGAACCCATATGCACCATCATCACCACGGTTCTATGTTTTCTAAA
AAAAATGATG 

SA003 TcdC C-terminal his Fw primer CCGAGCCTCGAGATTAATTTTCTCTACAGCTATC 

SA004 TcdC C-terminal his  Rev primer GGAACCCATATGTTTTCTAAAAAAAATGATG 

SA005 PtcdR Fw primer CCGAGCGCATGCATGTTATTATTTTTATTACAATTTAG 

SA006 PtcdR Rev primer GGAACCGAATTCTCATAAAAAGACTTTTGC 

SA007 PtcdR a 
GACTAAATTATAAAGTTTACATAATTATTTAATAATTATGTAATT
GTTACTTGAAAATTGATCT 

SA008 PtcdR b 
AGATCAATTTTCAAGTAACAATTACATAATTATTAAATAATTATG
TAAACTTTATAATTTAGTC 

SA009 PtcdR’ I 
ATAAAATGATTTGTTTTTACAATACTTTATTAATATAAAGTTTATT
GCTAAAATACTTTATT 

SA010 PtcdR’ II 
ATAAAGTATTTTAGCAATAAACTTTATATTAATAAAGTATTGTAA
AAACAAATCATTTTAT 

SA011 PtcdA upper strand 
AATATAAGATATGTTTACAAATTACTATCAGACAATCTCCTTATC
TAATAGAAGAGTCAA 

SA012 PtcdA lower strand 
TTGACTCTTCTATTAGATAAGGAGATTGTCTGATAGTAATTTGTA
AACATATCTTATATT 

SA013 PtcdB 1 upper strand 
TAGAACAAAGTTTACATATTTATTTCAGACAACGTCTTTATTCAA
TCGAAG 

SA014 PtcdB 1 lower strand 
CTTCGATTGAATAAAGACGTTGTCTGAAATAAATATGTAAACTTT
GTTCTA 

SA015 PtcdB 2 upper sd 
CAATAACTTAATCTAAGAATATCTTAATTTTTATATTTTATATAGA
ACAAAGTT 

SA016 PtcdB 2 lower sd 
AACTTTGTTCTATATAAAATATAAAAATTAAGATATTCTTAGATT
AAGTTATTG 
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Table 4.3 List of oligonucleotides used in gel mobility shift assays and expression of recombinant TcdC with 
N-terminal His6 tag and C-terminal His6 tag 

 

 

Code DNA primer name Sequence  

SA017 ptcdA forward primer 
CCGAGCACGCGTAGTTGGTAAAATCTATTAAG 

SA018 ptcdA reverse primer 
GGAACCGGATCCAGATATTAAAGACATAAAAACC 

SA019 ptcdA-EmGH Fw seq primer CTTATTAAAAGCATTCTGTAAC 

SA020 ptcdA-EmGH Rev seq primer CTTATTAAAAGCATTCTGTAAC 

SA021 TcdC Fw primer CCGAGCGAATTCTTAATTAATTTTCTCTACAGC 

SA022 TcdC Rev primer GGAACCTGGCCAATGTTTTCTAAAAAAAATGATG 

SA023 pNM12 Fw seq primer TATCCATAAGATTAGCGGATC  

SA024 pNM12 Rev seq primer TGTATCAGGCTGAAAATC 

SA025 TcdR Fw primer 
CCGAGCCCATGGATGCAAAAGTCTTTTTATG 

SA026 TcdR Rev primer 
GGAACCCTCGAGTTACAAGTTAAAATAATTTTC 

SA027 pJLMO16 Fw seq primer GAATTGTGAGCGGATAAC 

SA028 pJLMO16 Rev seq primer AGCAGCGGTTTCTTTAC 

SA029 TcdC frame shift mutation Fw CCGAGCGAATTCTTAATTAATTTTCTCTACAGCTATC 

SA030 TcdC frame shift mutation Rev GGAACCTGGCCAATGAAAGACGACGAAAAG  

SA031 
TcdC signal peptide deleted Rev 
Primer 

GGAACCTGGCCAATGTGTTCTGAAGACCATGAG 

SA032 TcdC-Cter 6*His tag Fw primer 
CGAGCGAATTCTTAGTGGTGGTGGTGGTGGTGCTCGAGATTAATT
TTCTCTACAGCTATC    
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Clostridium difficile infections cause one of the most common and vital hospital-

acquired diseases often associated with broad-spectrum antibiotic usage. TcdA and TcdB 

are the key virulence factors involved in major patho-physiology. While standard 

antibiotics provide some respite, due to the high relapse rates and the emergence of more 

severe disease presentations, antibiotics alone have often proven to be suboptimal. 

Therefore there is a desperate need to develop an effective non-antimicrobial 

therapeutics. Part of this work focuses on identification and further characterization of 

peptide therapeutic that target the major virulence factor TcdA/TcdB. Towards 

development of mechanistic-based anti-toxin agent, phage display was used to identify 

peptides that bind to the catalytic domain of C. difficile Toxin A. Characterization of the 

binding and inhibitory activity revealed that the lack of parent peptide ability to inhibit 

the cells in vivo. Further derivatization of above parent peptides in to irreversible binders 
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lead to protects cells in vivo. Mass spectroscopy approaches revealed the peptide 

inhibition was mainly due to cross-linking of modified peptide in to key catalytic residues 

in active site. While there are still several steps required to further explore in terms of the 

stability of these compounds, agents like these could be potentially used prophylactically 

to avoid extensive cellular damage during treatment with broad spectrum antibiotics or in 

populations prone to CDI. 

The other area, focused on this thesis, is identification of the functional role of a 

negative regulator (TcdC) involved in toxin gene expression. In this work, we used a 

variety of biochemical and genetic approaches and characterized TcdC is not repressor 

instead acts as an Extra Cytoplasmic Class (ECF) anti-sigma factor and was able to 

propose a new mechanistic model regarding the regulatory role of TcdC. As well as here 

we have successfully developed GFP-based reporter system which has a potential to be 

an adaptable tool for investigating fine details on toxin genes tuning. Being able to adopt 

in host environment is vital for survival and propagation of a pathogenic bacteria. Thus, 

exploring the regulatory nodes on PaLoc gene expression can be lead to exploit potential 

therapeutic opportunities hidden within such systems.  
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