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Chapter 1

Introduction and Preliminaries

1.1 Introduction

The class of Asplund spaces, i.e., Banach spaces where every convex continuous function is

generically Frétchet differentiable, is sufficiently rich and well-investigated in the geometric

theory of Banach spaces and various applications; see [1, 13, 34, 43] and the references

therein. In particular, it includes every Banach space with a Frétchet differentiable renorm

(hence any reflexive space) and all spaces with separable duals. This dissertation is con-

cerned with the family of parameterized minimization problems:

Minimize ψ0(x, y) + ψ(x, y) over x ∈ X, (1.1)

where X, Y are Asplund spaces, and ψ0, ψ : X × Y −→ IR are lower semicontinuous,

extended real-valued functions. In this model, the cost functions ψ0 depend on the param-

eter x and the decision variable y, and the constraint functions ψ incorporate parameter-

dependent constraints in the problem under consideration. In particular, this model covers

parameterized problems of nonlinear programming, where the focus is on sensitivity analy-

sis of stationary point multifuctions and stationary point-multiplier-multifuntions involving

Karush-Kuhn-Tucker vectors associated with first-order necessary optimality conditions.

A nonsmooth version of Fermat’s rule [34, Proposition 1.114] gives a necessary optimality

condition for problem (1.1) via the so-called partial subdifferentials considered as general-

ized partial derivatives. To be precise, if x̄ is a solution to problem (1.1) with compatible

parameter ȳ then

0 ∈ ∂̂x(ψ0 + ψ)(x̄, ȳ) ⊂ ∂x(ψ0 + ψ)(x̄, ȳ),

where ∂̂x and ∂x denote the Frétchet and basic partial subdifferentials in x, respectively.

Under some suitable assumptions, in particular, when ψ0 is strictly differentiable in x at x̄,

the stationary point multifunction is given by

S(y) =
{
x ∈ X | 0 ∈ ∂xψ0(x, y) + ∂xψ(x, y)

}
. (1.2)
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The set-valued mapping S in (1.2) is the solution map to the so-called parameterized gen-

eralized equation given in the form

0 ∈ ∂xψ0(x, y) + ∂xψ(x, y), (1.3)

which is a special case of

0 ∈ F (x, y) +Q(x, y), (1.4)

where both base F and field Q are set-valued mappings depending on the parameter y.

Solution maps to parametric generalized equations of type (1.4) were recently studied by

Mordukhovich and Nam [32] in Asplund space settings while their less general model with

single-valued base F (x, y) = f(x, y) was previously studied by Levy and Mordukhovich

[21] in finite dimensions. In literature, the generalized equation (1.4) was introduced by

Robinson [46] with single-valued base F (x, y) := f(x, y) and parameter-independent field

Q(x, y) = Q(x), and has been well recognized to provide a convenient framework for the

unified study of optimal solutions in many optimization-related areas including mathe-

matical programming, complementarity, variational inequalities, optimal control, mathe-

matical economics, equilibria, game theory, etc. We refer the readers to the recent texts

[16, 34, 35, 42] and the bibliographies therein for various results, discussions, and applica-

tions regarding the parametric generalized equations of type (1.4) with F (x, y) = f(x, y)

and Q(x, y) = Q(x) in both finite and infinite dimensions.

In this dissertation, we will focus our attention on the solution maps of type (1.2). Our

primary goal is to study the dependence of S on the parameter y near the reference point.

These questions are addressed to local sensitivity analysis of solution maps under parameter

perturbations. One of the principal questions here is the solution stability under parameter

perturbations, which is important not only for better understanding of the solution behavior

with respect to perturbations, but also for constructing effective numerical algorithms to

solve the problems. We particularly interested in robust Lipschitzian stability of multivalued

solution maps (1.2) with respect to parameter perturbations. Note that both classical

local Lipschitzian property and Lipschitz-like property, a natural extension of Lipschitz

continuity to set-valued mappings introduced by Aubin [2], are robust (stable) with respect
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to small perturbations of initial data, which is of great significance for sensitivity analysis.

Let us mention here some applications of coderivative analysis to various problems related

to Lipschitzian stability of constraint and variational systems in finite-dimensional settings

given in [14, 21, 22, 23, 27, 30, 41, 45], among other publications. However, not much

attention has been paid to the study of Lipschitzian stability of solution maps (1.2) in

infinite-dimensional settings.

To conduct such a local sensitivity analysis for solution maps (1.2), we estimate the

coderivatives of S via the second-order partial subdifferentials of the cost and constraint

functions, and employ the pointbased coderivative characterization of robust Lipchitzian

behavior developed by Mordukhovich [26] to derive efficient sufficient (as well as necessary

and sufficient) conditions for Lipschitzian stability of the solution maps (1.2) with evalu-

ating the exact Lipschitzian bound. In order to do this, we need efficient calculus rules for

second-order partial generalized differential constructions together with the corresponding

sequential normal compactness. Nevertheless, while second-order (”full”) subdifferential

calculus (see [14, 24, 25, 34, 30, 38, 39, 44, 48]) and the SNC calculus (see [34, 36, 37]) have

been developed by many authors, not much work has been done on second-order partial

subdifferential calculus, especially in infinite dimensions. Thus, in this dissertation, we

will develop as well the calculus rules for second-order partial subdifferentials of extended-

real-valued functions in both Banach and Asplund space settings. This calculus is not only

useful for the study of sensitivity analysis mentioned above but also of independent interest.

Along with the solution maps (1.2), we also pay our attention to the so-called quasi-

variational inequalities (QVIs) of the following type: Given a parameter y ∈ Y , find a

decision vector x ∈ Γ(x, y) ⊂ X such that

〈g(x, y), u− x〉 ≥ 0 for all u ∈ Γ(x, y) (1.5)

where X, Y are Asplund spaces, g : X × Y → X∗ is a single-valued continuously differen-

tiable function, while Γ : X × Y →→ X is a set-valued mapping.

QVIs were introduced by Bensoussa and Lions in a series of papers (see, e.g., [6]) in

connection with impulse optimal control problems. They have been extensively studied in
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numerous publications, mainly from the viewpoints of existence of solutions and numerical

methods; cf. [5, 11, 12, 16, 20, 40], among others. Much less attention has been paid to

the study of parameter-dependent QVIs, especially those where both mappings g and Γ in

(1.5) depend on parameters in infinite dimensions. The primary goal of our consideration

is to undertake such a study concentrating mainly on the sensitivity analysis and conduct

verifiable conditions ensuring robust Lipschitzian stability of the solution maps to QVIs

(1.5) given by

S(y) =
{
x ∈ X

∣∣ 〈g(x, y), u− x〉 ≥ 0 whenever u ∈ Γ(x, y)
}
, y ∈ Y, (1.6)

which become

S(y) =
{
x ∈ X

∣∣ 0 ∈ g(x, y) +N
(
x; Γ(x, y)

)}
(1.7)

if Γ is of closed-graph and take convex values Γ(x, y). It is obvious that solution maps

(1.7) are special cases of solution maps to (1.4) with F (x, y) := g(x, y) and Q(x, y) :=

N
(
x; Γ(x, y)

)
. However, the sensitivity analysis of solution maps to (1.4) does not implies

the results derived in this dissertation. Our results on QVIs presented in what follows

can be considered as generalization to Asplund space settings of the ones obtained by

Mordukhovich and Outrata [31] in finite dimensions.

The outline of the dissertation is as follows. Chapter 1 provides preliminary material

from variational analysis and generalized differentiation needed for the subsequent sections.

In Chapter 2, we study the first-order and second-order partial subdifferential calculi

and obtain several sum rules and chain rules of rather general nonsmooth extended-real-

valued functions in Banach space settings as well as more developed rules in Asplund space

settings.

In Chapter 3, after establishing a coderivative estimate for the solution maps (1.2)

in the case both ψ0 and ψ are nonsmooth, we turn our attention to the case when cost

function ψ0 is C2 and study the parametric sensitivity of stationary points alone, as well

as the stationary point-multiplier pairs asscociated with the parameterized optimization

problems (1.1).

Finally, Chapter 4 is devoted to the study of coderivative analysis of parameter-dependent
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quasi-variational inequalities in Asplund spaces with application to stability.

1.2 Basic Definitions and Preliminaries

This part contains some material on generalized differentiation widely used in what follows.

We refer the reader to the book by Mordukhovich [34] for more details, references, and

discussions.

Unless otherwise stated, all spaces considered are real Banach whose norms are always

denoted by ‖·‖. For any space X we consider its dual space X∗ equipped with the weak-star

topology, where 〈·, ·〉 means the canonical pairing.

In contrast to the case of single-valued mapping f : X → Y , the symbol F : X →→ Y

stands for a set-valued mapping (multifunction) from X into Y with the domain and kernel

denoted, respectively, by

domF :=
{
x ∈ X

∣∣ F (x) 6= ∅
}

and kerF :=
{
x ∈ X

∣∣ 0 ∈ F (x)
}
.

The inverse set-valued mapping F−1 : Y →→ X to F satisfies the relationships

x ∈ F−1(y) ⇐⇒ y ∈ F (x) ⇐⇒ (x, y) ∈ gphF,

and the norm of any positive homogeneous set-valued mapping is given by

‖F‖ := sup
{
‖y‖

∣∣ y ∈ F (x) and ‖x‖ ≤ 1
}
.

In particular, if F : X →→ X∗, the expression

Lim sup
x→x̄

F (x) :=
{
x∗
∣∣ ∃xk → x̄ and x∗k

w∗→ x∗ with x∗k ∈ F (xk) for all k ∈ IN
}

always means the sequential Painlevé-Kuratowski upper/outer limit with respect to the

norm topology in X and the weak-star topology in X∗.

Given an extended-real-valued function ϕ : X → IR := [−∞,∞] finite at x̄, we start

with the definition of its ε-subgradients x∗ ∈ ∂̂εϕ(x̄), ε ≥ 0, which form the enlargement

of the Fréchet subdifferential ∂̂ϕ(x̄) := ∂̂0ϕ(x̄) of ϕ at x̄:

∂̂εϕ(x̄) :=
{
x∗ ∈ X∗

∣∣∣ lim inf
x→x̄

ϕ(x)− ϕ(x̄)− 〈x∗, x− x̄〉
‖x− x̄‖

≥ −ε
}
. (1.8)
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In (1.8), as usual, subgradients means actually lower subgradients, where the word “lower”

is omitted by taking it for granted.

Based on (1.8), we introduce two limiting subdifferentials by using the sequential Painlevé-

Kuratowski upper/outer limit. The first construction

∂ϕ(x̄) := Lim sup
x

ϕ−→x̄
ε↓0

∂̂εϕ(x) (1.9)

is called the basic subdifferential of ϕ at x̄ which reduces to the classical Fréchet derivative

for strictly differentiable functions and to the subdifferential of convex analysis for convex

functions. If X is an Asplund space and if ϕ is lower semicontinuous (l.s.c.) around x̄,

then we can equivalently put ε = 0 in (1.9). Moreover, we have ∂ϕ(x̄) 6= ∅ for every locally

Lipschitzian function on an Asplund space.

One obviously has ∂̂ϕ(x̄) ⊂ ∂ϕ(x̄) for any ϕ : X → IR finite at x̄. We say that ϕ is

lower regular at x̄ if the latter holds as equality. The collection of lower regular functions

is sufficiently large including, besides convex and strictly differentiable functions, many

other classes of functions important in variational analysis and optimization; see the books

[34, 48] for more details, discussions, and applications.

The second limiting subdifferential construction defined by

∂∞ϕ(x̄) := Lim sup
x

ϕ→x̄
ε,λ↓0

λ∂̂εϕ(x) (1.10)

is called the singular subdifferential of ϕ at x̄, where ε can be omitted for l.s.c. func-

tions on Asplund spaces. Construction (1.10) carries nontrivial information only for non-

Lipschitzian functions, since ∂∞ϕ(x̄) = {0} if ϕ is locally Lipschitzian around x̄. Moreover,

the latter condition is also necessary for ϕ to be locally Lipschitzian provided that it

is l.s.c. around x̄, that X is Asplund, and that ϕ has the so-called sequential normal epi-

compactness property at x̄ (see below), which is always the case whenX is finite-dimensional

(X = IRn).

Given a set Ω ⊂ X and ε ≥ 0, we define the set of ε-normals to Ω at x̄ ∈ Ω by

N̂ε(x̄; Ω) :=
{
x∗ ∈ X∗

∣∣∣ lim sup
x

Ω→x̄

〈x∗, x− x̄〉
‖x− x̄‖

≤ ε
}
, (1.11)
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where the symbol x
Ω→ x̄ signifies that x → x̄ with x ∈ Ω. When ε = 0, this set is called

the Fréchet normal cone to Ω at x̄ and is denoted by N̂(x̄; Ω). The Fréchet normal cone

looks like an adaption of the idea of Fréchet derivative to the case of sets. However, this

construction does not have a number of natural properties expected from an appropriate

notion of normals. In particular, we may have N̂(x̄; Ω) = {0} for boundary points of Ω

even in finite dimensions, and calculus rules often fail. Letting for convenience N̂(x; Ω) = ∅

if x /∈ Ω and employing the outer limit to N̂(·; Ω), we define its sequential regularization

N(x̄; Ω) := Lim sup
x→x̄
ε↓0

N̂ε(x; Ω), (1.12)

where ε can be removed in Asplund space setting. This construction is known as the

basic/limiting/Mordukhovich normal cone to Ω at x̄. It is obvious that

N̂(x̄,Ω) ⊂ N(x̄; Ω) for any Ω ⊂ X and x̄ ∈ Ω.

The equality in this inclusion singles out a class of the so-called normally regular sets. An

important example of set regularity is given by sets Ω locally convex around x̄. In case the

set epiϕ :=
{

(x, α) ∈ X × IR
∣∣ α ≥ ϕ(x)

}
of an extended-real-valued function ϕ : X → IR

is normally regular at
(
x, ϕ(x)

)
we say that ϕ is epigraphically regular at x̄.

In contrast to (1.11), the basic normal cone (1.12) maybe nonconvex in very simple

situations but enjoys some calculus rules in Asplund space setting; see [34]. Both Fréchet

normal cone N̂(·; Ω) and basic normal cone N(·; Ω) reduce to the classical normal cone of

convex analysis for convex sets Ω. These two constructions are invariant with respect to

equivalent norms on X while the ε-normal sets N̂ε(·; Ω) depends on given norm ‖ · ‖ if

ε > 0. Therefore, it is not hard to prove the following representations of Fréchet and basic

normals to Cartesian product of sets:

N̂(x̄; Ω1 × Ω2) = N̂(x̄1; Ω1)× N̂(x̄2; Ω2),

N(x̄; Ω1 × Ω2) = N(x̄1; Ω1)×N(x̄2; Ω2),

for any point x̄ = (x̄1, x̄2) ∈ Ω1 × Ω2 ⊂ X1 × X2. On the other hand, let δ(·; Ω) be the

indicator function of Ω, i.e., δ(x; Ω) := 0 if x ∈ Ω and δ(x; Ω) = ∞ otherwise, the Fréchet
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and basic normal cones to Ω at x̄ are actually the corresponding subdifferentials of the

indicator function. Indeed, we have

N̂(x̄; Ω) = ∂̂δ(x̄; Ω) and N(x̄; Ω) = ∂δ(x̄; Ω) = ∂∞δ(x̄; Ω).

Given a set-valued mapping F : X →→ Y with the graph

gphF :=
{

(x, y) ∈ X × Y
∣∣ y ∈ F (x)

}
,

we define its Fréchet coderivative at (x̄, ȳ) ∈ gphF and its limiting coderivative at (x̄, ȳ),

respectively, by

D̂∗F (x̄, ȳ)(y∗) :=
{
x∗ ∈ X∗

∣∣ (x∗,−y∗) ∈ N̂((x̄, ȳ); gphF )
}
, (1.13)

D∗NF (x̄, ȳ)(y∗) :=
{
x∗ ∈ X∗

∣∣ (x∗,−y∗) ∈ N((x̄, ȳ); gphF )
}
. (1.14)

Note that the coderivative construction (1.14) is called the normal coderivative to dis-

tinguish it from another limiting coderivative for mappings between infinite-dimensional

spaces, which is called mixed coderivative and defined by

D∗MF (x̄, ȳ)(y∗) :=
{
x∗ ∈ X∗

∣∣∣ ∃ εk ↓ 0, (xk, yk)
gphF−→ (x̄, ȳ), x∗k

w∗−→ x∗ and

y∗k
‖·‖−→ y∗ with (x∗k,−y∗k) ∈ N̂εk

((xk, yk); gphF )
}
, (1.15)

where
w∗→ signifies the weak∗ sequential convergence in X∗, while

‖·‖→ stands for the norm

convergence in the dual space; we omit ‖ · ‖ in what follows. We can put εk = 0 in (1.15) if

X and Y are Asplund and if the graph of F is closed around (x̄, ȳ). We also drop ȳ in the

coderivative notation (1.13), (1.14) and (1.15) if F = f : X → Y is single-valued. These

coderivatives are extensions of the corresponding adjoint derivative operators, in the sense

that

D̂∗f(x̄)(y∗) =
{
∇f(x̄)∗y∗

}
and D∗f(x̄)(y∗) =

{
∇f(x̄)∗y∗

}
(1.16)

for all y∗ ∈ Y ∗ if f is Fréchet differentiable and strictly differentiable at x̄, respectively. In

general, all of the three coderivatives defined above are positively homogeneous multifunc-

tions from Y ∗ to X∗ that satisfy the inclusions

D̂∗F (x̄, ȳ)(y∗) ⊂ D∗MF (x̄, ȳ)(y∗) ⊂ D∗NF (x̄, ȳ)(y∗) for all y∗ ∈ Y ∗.
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If the equality holds in the former inclusion then F is said to be M-regular at (x̄, ȳ). In

the case that D∗NF (x̄, ȳ)(y∗) = D̂∗F (x̄, ȳ)(y∗) for all y∗ ∈ Y ∗, F is said to be N-regular at

(x̄, ȳ). Obviously, N -regularity always implies M -regularity but not vice versa; see [34] for

examples. The N -regularity holds if, in particular, if F = f is single-valued and smooth

around x̄ (or merely strictly differentiable at this point). Besides, this property holds for

convex-graph mappings (i.e., mappings that have convex graphs) and other classes of set-

valued mappings, while it may be violated in many important situations, e.g., for every

locally Lipschitzian mapping f : X → Y that is not strictly differentiable at x̄; see [34,

Subsection 3.2.4] for exact results, proofs, and discussions.

Observe that there is a simple relationship between the Fréchet coderivative of a locally

Lipschitzian mapping f : X → Y and the Fréchet subdifferential of its scalarization

〈y∗, f〉(x) := 〈y∗, f(x)〉, y∗ ∈ Y ∗.

This relationship called the scalarization formula is given by

D̂∗f(x̄)(y∗) = ∂̂〈y∗, f〉(x̄) for any y∗ ∈ Y ∗. (1.17)

A similar scalarization formula holds for the limiting constructions (1.9) and (1.14) but

under an additional strict Lipschitzian assumption on f that reduces to the standard local

Lipschitz continuity of f around x̄ if Y is finite-dimensional; see [34, Subsection 3.1.3] and

the references therein.

If a multifunction F : X × Y →→ Z is of two variables (x, y) ∈ X × Y , we denote by

D∗xF (x̄, ȳ, z̄) its partial coderivative (either normal or mixed) with respect to x at the point

(x̄, ȳ, z̄) ∈ gphF which is defined as the corresponding coderivative of the multifunction

F (·, ȳ) at (x̄, z̄).

Let us mention also the relationships between subgradients and coderivatives. Given

ϕ : X → IR, we associate with it the epigraphical multifunction Eϕ : X → IR defined by

Eϕ(x) :=
{
α ∈ IR

∣∣ α ≥ ϕ(x)
}
.

Since Eϕ takes values in IR, there is no difference between its normal and mixed coderiva-
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tives. Also note that gphEϕ = epiϕ. We have

∂ϕ(x̄) = D∗Eϕ
(
x̄, ϕ(x̄)

)
(1) =

{
x∗ ∈ X∗

∣∣ (x∗,−1) ∈ N
(
(x̄, ϕ(x̄)); epiϕ

)}
,

∂∞ϕ(x̄) = D∗Eϕ
(
x̄, ϕ(x̄)

)
(0) =

{
x∗ ∈ X∗

∣∣ (x∗, 0) ∈ N
(
(x̄, ϕ(x̄)); epiϕ

)}
.

One of the most fundamental differences between variational analysis in finite and in-

finite dimensions is the necessity of imposing certain normal compactness requirements in

infinite-dimensional settings that ensure certain nontriviality conclusions while passing to

the limit in the weak∗ topology. We use the following normal compactness properties that

are automatic in finite dimensions, hold for “reasonably good” sets and mappings, and are

preserved under various operations.

A set Ω ⊂ X is sequentially normally compact (SNC) at x̄ ∈ Ω if for any sequences

εk ↓ 0, xk
Ω→ x̄, and x∗k ∈ N̂εk

(xk; Ω) such that x∗k
w∗→ 0 one has

‖x∗k‖ → 0 as k →∞,

where εk can be omitted if X is Asplund and if Ω is locally closed around x̄. The SNC

property is always satisfied if Ω is compactly epi-Lipschitzian (CEL) at x̄ in the sense of

Borwein and Strójwas, that is, there are a compact set C ⊂ Ω, a neighborhood U of x̄, a

neighborhood O of the origin in X, and a number γ > 0 such that

Ω ∩ U + tO ⊂ Ω + tC for all t ∈ (0, γ).

A set-valued mapping F : X →→ Y is SNC at (x̄, ȳ) ∈ gphF if its graph enjoys this

property. In addition, more subtle partial SNC and strongly partial SNC (i.e., PSNC and

strongly PSNC) properties can be defined. We say that F is PSNC at (x̄, ȳ) ∈ gphF if for

any sequences εk ↓ 0, (xk, yk)→ (x̄, ȳ) with (xk, yk) ∈ gphF , (x∗k, y
∗
k) ∈ N̂εk

((xk, yk); gphF )

one has [
x∗k

w∗→ 0, ‖y∗k‖ → 0
]

=⇒ ‖x∗k‖ → 0 as k →∞, (1.18)

where εk = 0 in the Asplund space and closed graph setting. F is said to be strongly PSNC

at (x̄, ȳ) if (1.18) is replaced by[
x∗k

w∗→ 0, y∗k
w∗→ 0

]
=⇒ ‖x∗k‖ → 0 as k →∞.
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The PSNC property always holds when F is Lipschitz-like around (x̄, ȳ) in the following

sense of Aubin [2]: there exist neighborhoods U of x̄ and V of ȳ as well as a modulus ` ≥ 0

such that

F (u) ∩ V ⊂ F (v) + `‖u− v‖IBY whenever u, v ∈ U, (1.19)

where IBY , as usual, denotes the unit ball in Y . This reduces to the classical (Hausdorff)

local Lipschitz behavior of F around z̄ corresponding to V = Y in (1.19). The infimum of

all Lipschitzian moduli ` in (1.19) is called the exact Lipschitzian bound of F around (x̄, ȳ)

and is denoted by lipF (x̄, ȳ).

Note that there is no difference between the SNC and PSNC properties for extended-

real-valued functions. We also consider an epigraphical version of the SNC property of

ϕ : X → IR. We say that ϕ is sequentially normally epi-compact (SNEC) at x̄ ∈ X if its

epigraph is SNC at (x̄, ϕ(x̄)). This property always holds for locally Lipschitzian functions,

their natural directionally Lipschitzian extensions (cf. Rockafellar [47]), etc.

We also use in this dissertation a less restrictive counterpart of Lipschitz-like property

of set-valued mappings called calmness, where u ∈ U that varies around x̄ is replaced by x̄

in (1.19): A set-valued mapping F : X →→ Y between Banach spaces X and Y is calm at

(x̄, ȳ) ∈ gphF with modulus ` ≥ 0 if there are neighborhood U of x̄ and V of ȳ such that

F (x) ∩ V ⊂ F (x̄) + `‖x− x̄‖IBY for all x ∈ U. (1.20)

This calmness property was first recognized by Robinson [46] under the name upper-Lipschi-

tzian, where V = Y in (1.20). As observed by Henrion and Outrata [17], the calmness

property of F at (x̄, ȳ) is equivalent to the condition that there exist ` ≥ 0 and ε > 0 such

that

d
(
y, F (x̄)

)
≤ `d(x, x̄) for all y ∈ F (x) ∩ IB(ȳ, ε), x ∈ IB(x̄, ε),

where d
(
·, F (x̄)

)
denotes the distance function to the set F (x̄).

The following pointbased coderivative characterization of the Lipschitz-like property ob-

tained by Mordukhovich [34, Theorem 4.10] is the basis for applications of the coderivative

calculi to robust Lipschitzian stability of the extended generalized equations and their spec-

ifications. Note that this result provides not only necessary and sufficient conditions for the
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Lipschitz-like property for generalized set-valued mappings but also establishes lower and

upper estimates of the exact Lipschitzian bound, which thus give the precise formula when

the coderivative norms ‖D∗MF (x̄, ȳ)‖ and ‖D∗NF (x̄, ȳ)‖ agree; see [34, Proposition 4.9] for

efficient conditions ensuring this property in infinite-dimensional spaces.

Theorem 1.1 (pointbased coderivative characterization of Lipschitz-like prop-

erty) Let F : X →→ Y be closed-graph around a given point (x̄, ȳ) ∈ gphF . Then F is

Lipschitz-like around this point if and only if F is PSNC at (x̄, ȳ) and

D∗MF (x̄, ȳ)(0) = {0}.

Furthermore, in this case one has the estimates

‖D∗MF (x̄, ȳ)‖ ≤ lipF (x̄, ȳ) ≤ ‖D∗NF (x̄, ȳ)‖,

where the upper estimate holds if dimX <∞.

Our notation is basically standard; see the books by Rockafellar and Wets [48] and by

Mordukhovich [34]. We assume that all of the operations on functions are well-defined.
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Chapter 2

Partial Subdifferentials

There are numerous second-order generalized differential constructions introduced and ap-

plied in the framework of variational analysis and beyond, for example, in Aubin and

Frankowska [3], Bonnans and Shapiro [8], Rockafellar and Wets [48], etc. We adopt the

classical dual derivative-of-derivative approach developed by Mordukhovich who introduced

in [29] the second-order subdifferentials of an extended-real-valued function as the coderiva-

tives of the (basic) first-order subgradient mapping. The main motivation for introducing

such a second-order subdifferential came from applications to sensitivity analysis for sys-

tems described via (first-order) subdifferentials or normal cones in Robinson’s framework

of generalized equations, which cover variational inequalities, complementarity conditions,

etc. This approach follows from the classical development in view of the two facts: the

basic subdifferential of an extended-real-valued function stands for a first-order generalized

derivative; and the coderivatives of set-valued mappings play the role of adjoint derivative

operators. In this approach, the second-order partial subdifferentials of an extended-real-

valued function are defined as the coderivatives of the basic first-order partial subgradient

mapping.

Unless otherwise stated, extended-real-valued functions under consideration are as-

sumed to be proper and finite at reference points.

2.1 First-Order Partial Subdifferentials

2.1.1 Definitions and Properties

Definition 2.1 Given ϕ : X×Y → IR, the basic partial subdifferential and singular partial

subdifferential in x at (x̄, ȳ) ∈ X×Y , denoted by ∂xϕ(x̄, ȳ) and ∂∞x ϕ(x̄, ȳ), respectively, are

the corresponding subdifferentials of the function ϕ(·, ȳ) at x̄.

Example 2.2 Consider ϕ(x, y) := |x| + |y| for (x, y) ∈ IR2. Using the above definitions,
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we get

∂xϕ(x, y) =



{1} if x > 0,

[−1, 1] if x = 0,

{−1} if x < 0,

and ∂∞x ϕ(x, y) = {0} for all (x, y) ∈ IR2.

It is well known that ∂xϕ(x̄, ȳ) =
{
∇xϕ(x̄, ȳ)

}
if ϕ(·, ȳ) is strictly differentiable at x̄, and

that ∂∞x ϕ(x̄, ȳ) = {0} if ϕ(·, ȳ) is Lipschitz continuous around x̄. Additionally, it happens

that in the framework of Asplund spaces there are relations between ”full” and ”partial”

subdifferentials as follows:

Proposition 2.3 Let X, Y be Asplund spaces and ϕ : X × Y → IR be l.s.c around (x̄, ȳ)

and SNEC at this point, and let the qualification condition

[
(0, y∗) ∈ ∂∞ϕ(x̄, ȳ)

]
=⇒ y∗ = 0 (2.1)

hold. Then one has the inclusions

∂xϕ(x̄, ȳ) ⊂
{
x∗ ∈ X

∣∣ ∃y∗ ∈ Y ∗ with (x∗, y∗) ∈ ∂ϕ(x̄, ȳ)
}
, (2.2)

∂∞x ϕ(x̄, ȳ) ⊂
{
x∗ ∈ X

∣∣∃y∗ ∈ Y ∗ with (x∗, y∗) ∈ ∂∞ϕ(x̄, ȳ)
}
. (2.3)

Moreover, ϕ(·, ȳ) is lower regular at x̄ and the equality holds in (2.2) if ϕ is lower regular

at (x̄, ȳ). If in addition ϕ is epigraphically regular at (x̄, ȳ) then the equality holds also in

(2.3) and ϕ(·, ȳ) is epigraphically regular at x̄.

Proof. Letting g : X → Y be a smooth mapping given by g(x) = ȳ, we have ϕ(·, ȳ) =

ϕ(·, g(·)) = (ϕ ◦ g)(·). The subdifferentiation of general compositions in Asplund spaces in
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[34, Theorem 3.41] gives

∂(ϕ ◦ g)(x̄) ⊂
⋃

(x∗,y∗)∈∂ϕ(x̄,ȳ)

[
x∗ + ∂ϕ〈y∗, g〉(x̄)

]
, (2.4)

∂∞(ϕ ◦ g)(x̄) ⊂
⋃

(x∗,y∗)∈∂∞ϕ(x̄,ȳ)

[
x∗ + ∂ϕ〈y∗, g〉(x̄)

]
. (2.5)

Since ∂〈y∗, g〉(x̄) = {0}, we obtain (2.2) and (2.3).

If ϕ is lower regular at (x̄, ȳ) then by the equality statements in [34, Theorem 3.41], the

composition ϕ ◦ g, or ϕ(·, ȳ), is lower regular at x̄ and the equality holds in (2.4), hence in

(2.2). If in addition ϕ is epigraphically regular at (x̄, ȳ) then the composition ϕ◦g = ϕ(·, ȳ)

is epigraphically regular at x̄ and the equality holds in (2.5), hence in (2.3). 4

Example 2.4 For illustration let us reconsider the function ϕ(x, y) = |x|+ |y| for (x, y) ∈

IR2. It is clear that ϕ is Lipschitz continuous on IR2 and ∂∞ϕ(x̄, ȳ) = {(0, 0)}, ∂∞x (x̄, ȳ) =

{0} for all (x̄, ȳ) ∈ IR2. Hence, (2.3) holds as equality for all (x̄, ȳ). On the other hand, we

can calculate via definition that the Fréchet subgradients of ϕ are given by

∂̂ϕ(x̄, ȳ) =



{(1, 1)} if x̄ > 0, ȳ > 0,

{(1,−1)} if x̄ > 0, ȳ < 0,

{(−1, 1)} if x̄ < 0, ȳ > 0,

{(−1,−1)} if x̄ < 0, ȳ < 0,

[−1, 1]× {1} if x̄ = 0, ȳ > 0,

[−1, 1]× {−1} if x̄ = 0, ȳ < 0,

{1} × [−1, 1] if x̄ > 0, ȳ = 0,

{−1} × [−1, 1] if x̄ < 0, ȳ = 0,

[−1, 1]× [−1, 1] if x̄ = 0, ȳ = 0.
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Using the representation ∂ϕ(x̄, ȳ) = Lim sup
(x,y)

ϕ−→(x̄,ȳ)

∂̂ϕ(x, y), we obtain ∂ϕ(x̄, ȳ) = ∂̂ϕ(x̄, ȳ) for

all (x̄, ȳ) ∈ IR2, which means ϕ is lower regular at any (x̄, ȳ) ∈ IR2. In fact, comparing

the formulas for ∂xϕ(x̄, ȳ) and ∂ϕ(x̄, ȳ) calculated previously, we see that (2.2) holds as

equality for all (x, y) ∈ IR2.

2.1.2 Partial Subdifferential Calculus in Banach spaces

In this subsection we present some partial subdifferential calculus rules for extended-real-

valued functions valid in arbitrary Banach spaces. These results are easily proved based

on the corresponding results for ”full” subdifferentials. Let us begin with a partial subdif-

ferential sum rule ensuring equalities with no regularity assumptions.

Proposition 2.5 (partial subdifferential sum rules with equalities in Banach

spaces) Let ψ : X × Y → IR be finite at (x̄, ȳ). The following assertions hold:

(i) For any ϕ : X × Y → IR, if ϕ(·, ȳ) is strictly differentiable at (x̄, ȳ) then one has

∂x(ϕ+ ψ)(x̄, ȳ) = ∇xϕ(x̄, ȳ) + ∂xψ(x̄, ȳ).

(ii) If ϕ(·, ȳ) is Lipschitz continuous around (x̄, ȳ) one has

∂∞x (ϕ+ ψ)(x̄, ȳ) = ∂∞x ψ(x̄, ȳ).

Proof. The results follow directly from the basic and singular subdifferential sum rules in

[34, Proposition 1.107] applied to ϕ(·, ȳ) + ψ(·, ȳ). 4

The next result gives a partial subdifferential chain rule for the standard compositions

(ϕ ◦ g)(x, y) := ϕ(g(x, y)) in a simple case.

Theorem 2.6 (partial subdifferential of composition with equality in Banach

spac-es) Let g : X × Y → Z be Lipschitz continuous around (x̄, ȳ), and let ϕ : Z → IR be
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finite at z̄ := g(x̄, ȳ). If ϕ is strictly differentiable at z̄ then

∂x(ϕ ◦ g)(x̄, ȳ) = ∂x〈∇ϕ(z̄), g〉(x̄, ȳ).

Proof. Putting h(·) := (ϕ ◦ g)(·, ȳ), and g̃(·) := g(·, ȳ). Then ∂x(ϕ ◦ g)(x̄, ȳ) = ∂h(x̄) and

h(x) = (ϕ ◦ g̃)(x). Since ϕ is strictly differentiable at z̄ we have

∂h(x̄) = D∗M g̃(x̄)(∇ϕ(z̄))

due to [34, Theorem 1.110]. On the other hand, g̃ is Lipschitzian around x̄ as g is Lips-

chitzian around (x̄, ȳ), hence

D∗M g̃(x̄)(∇ϕ(z̄)) = ∂〈∇ϕ(z̄), g̃〉(x̄).

This implies

∂h(x̄) = ∂〈∇ϕ(z̄), g̃〉(x̄) = ∂x〈∇ϕ(z̄), g〉(x̄, ȳ).

Therefore, the result follows. 4

Let us consider another important class of compositions

(ϕ ◦ g)(x, y) := ϕ
(
x, y, g(x, y)

)
, (2.6)

which is the standard one ϕ(g(x, y)) when ϕ doesn’t depend on (x, y). The next theorem

contains equality-type partial subdifferential chain rules in the case of surjective partial

derivatives of inner mappings.

Theorem 2.7 (partial subdifferentiation of compositions with surjective deriva-

tives of inner mappings) Let ϕ : X × Y × Z → IR and g : X × Y → Z. Assume that g

is strictly differentiable at (x̄, ȳ) with the surjective partial derivative ∇xg(x̄, ȳ), and that

ϕ(x, y, z) = ϕ1(x, y) + ϕ2(z)
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with ϕ2 : Z → IR finite at z̄ := g(x̄, ȳ). The following assertions hold:

(i) If ϕ1 : X × Y → IR is strictly differentiable at (x̄, ȳ), then

∂x(ϕ ◦ g)(x̄, ȳ) = ∇xϕ1(x̄, ȳ) +∇xg(x̄, ȳ)∗∂ϕ2(z̄).

(ii) If ϕ1 : X × Y → IR is Lipschitz continuous around (x̄, ȳ) then

∂∞x (ϕ ◦ g)(x̄, ȳ) = ∇xg(x̄, ȳ)∗∂∞ϕ2(z̄).

Proof. We first prove assertion (i). Putting ϕ̃(x, z) := ϕ(x, ȳ, z), ϕ̃1(x) := ϕ1(x, ȳ),

g̃(x) = g(x, ȳ), then

h(x) := (ϕ ◦ g)(x, ȳ) = (ϕ̃ ◦ g̃)(x).

Under the assumptions made in assertion (i), g̃ is strictly differentiable at x̄ with surjective

coderivative ∇g̃(x̄) = ∇xg(x̄, ȳ), and ϕ̃(x, z) = ϕ̃1(x) +ϕ2(z) with ϕ̃1 strictly differentiable

at x̄ and ϕ2 finite at z̄ = g̃(x̄). Thus, [34, Proposition 1.112] applied to the composition

ϕ̃ ◦ g̃ implies

∂h(x̄) = ∇ϕ̃1(x̄) +∇g̃(x̄)∗∂ϕ2(z̄).

This means

∂x(ϕ ◦ g)(x̄, ȳ) = ∇xϕ1(x̄, ȳ) +∇xg(x̄)∗∂ϕ2(z̄).

Assertion (ii) is proved similarly by using the second part of the same [34, Proposi-

tion 1.112]. 4

2.1.3 Partial Subdifferential Calculus in Asplund spaces

This subsection is devoted to partial subdifferential calculus for extended-real-valued func-

tions in Asplund spaces. We present here some principle calculus rules for basic and singular

partial subgradients in fairly general settings.

Theorem 2.8 (sum rules for basic and singular subdifferentials in Asplund spaces)

Let X, Y be Asplund spaces and ϕi : X × Y → IR, i = 1, 2, · · · , n ≥ 2 be l.s.c around (x̄, ȳ)
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such that all but one of these functions are SNEC at (x̄, ȳ). Assume that

[
x∗1 + · · ·+ x∗n = 0, x∗i ∈ ∂∞x ϕi(x̄, ȳ)

]
=⇒ x∗i = 0 for i = 1, · · · , n.

Then one has the inclusions

∂x(ϕ1 + · · ·+ ϕn)(x̄, ȳ) ⊂ ∂xϕ1(x̄, ȳ) + · · ·+ ∂xϕn(x̄, ȳ), (2.7)

∂∞x (ϕ1 + · · ·+ ϕn)(x̄, ȳ) ⊂ ∂∞x ϕ1(x̄, ȳ) + · · ·+ ∂∞x ϕn(x̄, ȳ). (2.8)

If in addition each ϕi(·, ȳ) is lower regular at x̄ then the sum (ϕ1 + · · ·+ ϕn)(·, ȳ) is lower

regular at this point and (2.7) holds as equality. The equality also holds in (2.8) and (ϕ1 +

· · · + ϕn)(·, ȳ) is epigraphically regular at x̄ if each ϕi(·, ȳ) is epigraphically regular at this

point.

Proof. We will apply [34, Theorem 3.36] to ϕ1(·, ȳ) + · · · + ϕn(·, ȳ). It remains to verify

that ϕi(·, ȳ) is SNEC at x̄ under the assumption of SNEC property for ϕi at (x̄, ȳ).

Putting F (x, y) := {α| α ≥ ϕ(x, y)}, and F̃ := F (·, ȳ). Taking any sequences εk ↓

0, (xk, αk)
gph eF−−−→ (x̄, ϕ̃(x̄)), and x∗k ∈ D̂∗εk

F̃ (xk, αk)(α
∗
k) with (x∗k, α

∗
k)

w∗−→ (0, 0). Then

lim sup

(x,α)
gph eF−−−→(xk,αk)

〈x∗k, x− xk〉 − α∗k(α− αk)
‖x− xk‖+ |α− αk|

≤ εk.

This implies

lim sup

(x,y,α)
gphF−−−→(xk,ȳ,αk)

〈(x∗k, 0), (x− xk, y − ȳ)〉 − α∗k(α− αk)
‖x− xk‖+ ‖y − ȳ‖+ |α− αk|

≤ εk.

Hence

(x∗k, 0,−α∗k) ∈ N̂εk

(
(xk, ȳ, αk); gphF

)
,

which means

(x∗k, 0) ∈ D̂∗εk
F (xk, ȳ, αk)(α

∗
k).
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Using the SNC property of F , we obtain

‖(x∗k, 0, α∗k)‖ → 0.

Therefore, F̃ is SNC at (x̄, ϕ(x̄, ȳ)), which means ϕ(·, ȳ) is SNEC at x̄. 4

Theorem 2.9 (partial subdifferentiation of general compositions in Asplund spa-

ces) Let X, Y, Z be Asplund spaces, g : X × Y → Z be Lipschitz continuous around (x̄, ȳ),

and ϕ : X × Y × Z → IR be l.s.c around (x̄, ȳ, z̄) with z̄ := g(x̄, ȳ). Then one has the

following assertions:

(i) Assume that either ϕ(·, ȳ, ·) is SNEC at (x̄, z̄) or g(·, ȳ) is SNC at (x̄, z̄), and that

the qualification

∂∞(x,z)ϕ(x̄, ȳ, z̄) ∩
[
−N

(
(x̄, z̄); gph g(·, ȳ)

)]
= {0}

is satisfied. Then the basic and singular partial subdifferentials in x of the composition

ϕ ◦ g := ϕ
(
x, y, g(x, y)

)
satisfy the inclusions

∂x(ϕ ◦ g)(x̄, ȳ) ⊂
⋃

(x∗,z∗)∈∂(x,z)ϕ(x̄,ȳ,z̄)

[
x∗ +D∗N,xg(x̄, ȳ, z̄)(z∗)

]
, (2.9)

∂∞x (ϕ ◦ g)(x̄, ȳ) ⊂
⋃

(x∗,z∗)∈∂∞
(x,z)

ϕ(x̄,ȳ,z̄)

[
x∗ +D∗N,xg(x̄, ȳ, z̄)(z∗)

]
. (2.10)

(ii) Assume in addition to (i) that ϕ(·, ȳ, ·) is lower regular at (x̄, ȳ, z̄), and that either

g(·, ȳ) is strictly differentiable at x̄ or it is N-regular at this point with dimZ < ∞. Then

(2.9) holds as equality. Furthermore, if ϕ(·, ȳ, ·) is epigraphically regular at (x̄, z̄), then

(2.10) holds as equality.

(iii) Let ϕ = ϕ(z) and assume that ϕ is SNEC at z̄ or g̃−1 is PSNC at (z̄, x̄) for

g̃(x) := g(x, ȳ), and that the qualification condition

∂∞ϕ(z̄) ∩
(
−D∗M g̃−1(z̄, x̄)(0)

)
= {0}
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holds. Then one has the inclusions

∂x(ϕ ◦ g)(x̄, ȳ) ⊂
⋃

z∗∈∂ϕ(z̄)

D∗N,xg(x̄, ȳ)(z∗),

∂∞x (ϕ ◦ g)(x̄, ȳ) ⊂
⋃

z∗∈∂∞ϕ(z̄)

D∗N,xg(x̄, ȳ)(z∗),

where the equalities hold under the additional assumptions of (ii).

Proof. Putting ϕ̃(x, z) := ϕ(x, ȳ, z), we have

(ϕ ◦ g)(x, ȳ) = ϕ̃
(
x, g̃(x)

)
.

The results in part (i), (ii) and (iii) follow directly from the corresponding part of [34,

Theorem 3.41] applied to the composition ϕ̃ ◦ g̃. 4

Remark 2.10

(i) If g(·, ȳ) is strictly Lipschitzian around x̄, that is, there is a neighborhood V of the

origin in X such that the sequence

yk :=
g(xk + tkv, ȳ)− g(xk, ȳ)

tk
, k ∈ IN,

contains a norm convergent subsequence whenever v ∈ V , xk → x̄, and tk ↓ 0, then due to

the characterization of normal coderivative in [34, Theorem 3.28] we have

D∗N g̃(x̄, ȳ, z̄)(z∗) = ∂〈z∗, g(·, ȳ)〉(x̄).

Therefore, (2.9) and (2.10) reduce to

∂x(ϕ ◦ g)(x̄, ȳ) ⊂
⋃

(x∗,z∗)∈∂(x,z)ϕ(x̄,ȳ,z̄)

[
x∗ + ∂〈z∗, g(·, ȳ)〉(x̄)

]
, (2.11)

∂∞x (ϕ ◦ g)(x̄, ȳ) ⊂
⋃

(x∗,z∗)∈∂∞
(x,z)

ϕ(x̄,ȳ,z̄)

[
x∗ + ∂〈z∗, g(·, ȳ)〉(x̄)

]
. (2.12)



22

(ii) Taking into account [34, Corollary 3.17], we have the following estimate

D∗N,xg(x̄, ȳ, z̄)(z∗) ⊂ proj xD
∗
Ng(x̄, ȳ, z̄)(z∗),

where proj xD
∗
Ng(x̄, ȳ, z̄)(z∗) denotes the projection of the set D∗Ng(x̄, ȳ, z̄)(z∗) ⊂ X∗ × Y ∗

on the space X∗. This inclusion holds as equality if g is N-regular at (x̄, ȳ, z̄). Moreover,

in the latter case, g(·, ȳ) is also N-regular at (x̄, z̄).

(iii) Observe also that the qualification condition of Theorem 2.9(iii) is implied by the

qualification condition

∂∞ϕ(z̄) ∩ ker
(
proj xD

∗
Ng(x̄, ȳ)

)
= {0}.

2.2 Second-Order Partial Subdifferentials

2.2.1 Definittions and Properties

Definition 2.11 Given ϕ : X×Y → IR with (x̄, ȳ) ∈ X×Y and ū ∈ ∂xϕ(x̄, ȳ). The normal

(or mixed) second-order partial subdifferential in x at (x̄, ȳ, ū), denoted by ∂2
N,xϕ(x̄, ȳ, ū) (or

∂2
M,xϕ(x̄, ȳ, ū), respectively), is the normal (or mixed, respectively) coderivative of ∂xϕ at

(x̄, ȳ, ū). That means

∂2
N,xϕ(x̄, ȳ, ū)(w) := D∗N∂xϕ(x̄, ȳ, ū)(w),

∂2
M,xϕ(x̄, ȳ, ū)(w) := D∗M∂xϕ(x̄, ȳ, ū)(w),

for all w ∈ X∗∗.

There is no difference between ∂2
N,xϕ(x̄, ȳ, ū) and ∂2

M,xϕ(x̄, ȳ, ū) if the normal and mixed

coderivatives agree for ∂xϕ at (x̄, ȳ, ū); then we use the symbol ∂2
xϕ(x̄, ȳ, ū) in Definition
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2.11. It happens, in particular, if X is finite-dimensional and also if ∂xϕ is N -regular at

(x̄, ȳ, ū). The latter always holds for C2 (and for a slightly more general) functions when,

moreover, the values of the second-order partial subdifferential mappings are singletons

and coincide with the image of the adjoint operator to the classical second-order partial

derivative.

Proposition 2.12 Let ϕ ∈ C1 around (x̄, ȳ), and let its partial derivative operator in x,

∇xϕ : X × Y → X∗, be strictly differentiable at (x̄, ȳ) with the strict derivative denoted by(
∇2
xxϕ(x̄, ȳ),∇2

xyϕ(x̄, ȳ)
)
. Then for all w ∈ X∗∗ one has

∂2
N,xϕ(x̄, ȳ)(w) = ∂2

M,xϕ(x̄, ȳ)(w) =
{(
∇2
xxϕ(x̄, ȳ)∗w,∇2

xyϕ(x̄, ȳ)∗w
)}
.

Proof. Since ϕ is C1 around (x̄, ȳ) there exists a neighborhood U of (x̄, ȳ) such that

∂xϕ(x, y) = ∇xϕ(x, y)

for all (x, y) ∈ U . Applying [34, Theorem 1.38] for the strictly differentiable mapping ∇xϕ,

we get

∂2
xϕ(x̄, ȳ)(w) = D∗∇xϕ(x̄, ȳ)(w) =

{(
∇2
xxϕ(x̄, ȳ)∗w,∇2

xyϕ(x̄, ȳ)∗w
)}

for all w ∈ X∗∗, where D∗ stands for either normal coderivative (D∗ = D∗N) or mixed

coderivative (D∗ = D∗M). 4

In general, both ∂2
N,xϕ(x̄, ȳ, ū) and ∂2

M,xϕ(x̄, ȳ, ū) are positively homogeneous mappings

from X∗∗ to X∗ × Y ∗ whose calculation involves evaluations of generalized normals to

gph ∂xϕ. In finite dimensions it is convenient to use the following representations of basic

normals

N(x̄,Ω) = Lim sup
x→x̄

N̂(x; Ω) = Lim sup
x→x̄

[
cone(x− Π(x; Ω))

]
for any set Ω locally closed around x̄ ∈ Ω.

Example 2.13 We consider again the function ϕ(x, y) := |x| + |y| on IR2 and compute
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∂2
xϕ(0, 0, 1). We have

∂xϕ(x, y) =



1 if x > 0,

[−1, 1] if x = 0,

−1 if x < 0.

For (x̄, ȳ, ū) near (0, 0, 1) we have

N̂
(
(x, y, u); gph (∂xϕ)

)
=



{
(0, 0, 0)

}
if x < 0 or x > 0, u 6= 1,

{
(0, 0)

}
× IR if x > 0, u = 1

(−∞, 0]× {0} × [0,∞) if x = 0, u = 1

IR×
{

(0, 0)
}

if x = 0, u < 1.

Using representation N
(
(0, 0, 1); gph (∂xϕ)

)
= Lim sup

(x,y,u)→(0,0,1)

N̂
(
(x, y, u); gph (∂xϕ)

)
, we ob-

tain the following representation for N
(
(0, 0, 1); gph (∂xϕ)

)
[
(−∞, 0]× {0} × [0,∞)

]
∪
[
{(0, 0)} × (−∞, 0)

]
∪
[
(0,∞)× {(0, 0)}

]
Since ∂2

xϕ(0, 0, 1)(w) =
{

(ν1, ν2) ∈ IR2
∣∣ (ν1, ν2,−w) ∈ N

(
(0, 0, 1); gph (∂xϕ)

)}
, we get

∂2
xϕ(0, 0, 1)(w) =



{
(0, 0)

}
if w > 0

(−∞,∞)× {0} if w = 0

(−∞, 0]× {0} if w < 0.

Next, we consider a class of functions consisting of functions ϕ that are continuously

differentiable around (x̄, ȳ) with the partial gradient in x locally Lipschitzian around this

point. The calculation of the mixed second-order partial subdifferential for such functions

can be essentially simplified due to the following representation:
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Proposition 2.14 Let ϕ : X × Y → Z be C1 around (x̄, ȳ) with ∇xϕ Lipschitz continuous

around (x̄, ȳ). Then

∂2
M,xϕ(x̄, ȳ)(w) = ∂〈w,∇xϕ〉(x̄, ȳ)

for all w ∈ X∗∗.

Proof. Since ϕ is C1 around (x̄, ȳ) there exists a neighborhood U of (x̄, ȳ) such that

∂xϕ(x, y) = ∇xϕ(x, y)

for all (x, y) ∈ U . Taking into account that ∇xϕ is Lipschitz continuous around (x̄, ȳ), we

have

D∗M∇xϕ(x̄, ȳ)(w) = ∂〈w,∇xϕ〉(x̄, ȳ)

for all w ∈ X∗∗ due to [34, Theorem 1.90]. This implies the result. 4

2.2.2 Second-Order Partial Subdifferential Calculus in Banach Spaces

Our primary goal in the second-order theory is to develop principle calculus (sum and

chain) rules for the second-order partial subdifferentials defined above. In this subsection

we present results obtained in general Banach spaces. To derive second-order partial sum

and chain rules for ∂2
N,x and ∂2

M,x, we proceed via Definition 2.11 applying calculus rules

for the normal and mixed coderivatives to set-valued mapping generated by the basic first-

order partial subdifferential. In this way we have to restrict ourselves to favorable classes of

functions for which the corresponding first-order partial subdifferential calculus rules hold

as equalities, since neither normal nor mixed coderivative enjoys monotonicity properties

that may allow one to use an inclusion-type partial subdifferential calculus. We begin with

a simple sum rule for the second-order partial subdifferentials.

Proposition 2.15 (equality sum rules for second-order partial subdifferentials)

Let ū ∈ ∂x(ϕ1 + ϕ2)(x̄, ȳ), where ϕ1 is C1 around (x̄, ȳ) with ∇xϕ1 strictly differentiable at

(x̄, ȳ) while ϕ2 is finite at (x̄, ȳ) with ū2 := ū−∇xϕ1(x̄, ȳ) ∈ ∂xϕ2(x̄, ȳ). Then one has

∂2
x(ϕ1 + ϕ2)(x̄, ȳ, ū)(w) =

(
∇2
xxϕ1(x̄, ȳ)∗w,∇2

xyϕ1(x̄, ȳ, ū)∗w
)

+ ∂2
xϕ2(x̄, ȳ, ū2)(w)
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for all w ∈ X∗∗, for both normal (∂2
x = ∂2

N,x) and mixed (∂2
x = ∂2

M,x) second-order partial

subdifferentials in x.

Proof. There exists a neighborhood U of (x̄, ȳ) such that ϕ1 is C1 at every (x, y) ∈ U .

Using Proposition 2.5, we have

∂x(ϕ1 + ϕ2)(x, y) = ∇xϕ1(x, y) + ∂xϕ2(x, y)

for all (x, y) ∈ U . Since ∇xϕ1 is strictly differentiable at (x̄, ȳ), it follows that

∂2
x(ϕ1 + ϕ2)(x̄, ȳ, ū)(w) =

(
∇2
xxϕ1(x̄, ȳ)∗w,∇2

xyϕ1(x̄, ȳ, ū)∗w
)

+ ∂2
xϕ2(x̄, ȳ, ū2)(w)

for all w ∈ X∗∗ due to the coderivative sum rule in [34, Therem 1.62(ii)]. 4

Let us now present the central result of the second-order partial subdifferential calculus

in general Banach spaces.

Theorem 2.16 (second-order partial chain rules with surjective derivatives of

inner mappings) Let ū ∈ ∂x(ϕ ◦ g)(x̄, ȳ) with g : X × Y → Z and ϕ : Z → IR. Assume

that g is C1 around (x̄, ȳ) with the surjective partial derivative ∇xg(x̄, ȳ) : X → Z, and that

the mapping ∇xg : X × Y → L(X,Z) is strictly differentiable at (x̄, ȳ). Let p̄ ∈ Z∗ be a

unique functional satisfying

ū = ∇xg(x̄, ȳ)∗p̄ and p̄ ∈ ∂ϕ(z̄) with z̄ := g(x̄, ȳ).

Then for all w ∈ X∗∗ one has

∂2
M,x(ϕ ◦ g)(x̄, ȳ, ū)(w) =

(
∇2
xx〈p̄, g〉(x̄, ȳ)∗w,∇2

xy〈p̄, g〉(x̄, ȳ)∗w
)

+∇g(x̄, ȳ)∗∂2
Mϕ(z̄, p̄)

(
∇xg(x̄, ȳ)∗∗w

)
,
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∂2
N,x(ϕ ◦ g)(x̄, ȳ, ū)(w) ⊂

(
∇2
xx〈p̄, g〉(x̄, ȳ)∗w,∇2

xy〈p̄, g〉(x̄, ȳ)∗w
)

+∇g(x̄, ȳ)∗∂2
Nϕ(z̄, p̄)

(
∇xg(x̄, ȳ)∗∗w

)
.

Proof. It follows from Theorem 2.7 that

∂x(ϕ ◦ g)(x, y) = ∇xg(x, y)∗∂ϕ(g(x, y))

for all (x, y) around (x̄, ȳ). We then can represent ∂x(ϕ◦ g) as the composition f ◦G where

(f ◦G)(x, y) := f(x, y,G(x, y)) with

f(x, y, p) :=∇xg(x, y)∗p,

G(x, y) :=(∂ϕ) ◦ g.

Let us check that the assumptions in [34, Lemma 1.126] hold under the assumptions made

in this therem. Actually, the only assumption needs to be checked is the injectivity of the

operator ∇xg(x̄, ȳ)∗ : Z∗ → X∗, which follows from the assumed surjectivity of ∇xg(x̄, ȳ)

due to [34, Lemma 1.18]. Thus, the special chain rule for coderivative in [34, Lemma 1.126]

applied to the composition f ◦G gives

D∗M(f ◦G)(x̄, ȳ, ū)(w) = (∇xf(x̄, ȳ, p̄)∗w,∇yf(x̄, ȳ, p̄)∗w) +D∗MG(x̄, ȳ, p̄)
(
f(x̄, ȳ, ·)∗w

)
,

D∗N(f ◦G)(x̄, ȳ, ū)(w) ⊂ (∇xf(x̄, ȳ, p̄)∗w,∇yf(x̄, ȳ, p̄)∗w) +D∗NG(x̄, ȳ, p̄)
(
f(x̄, ȳ, ·)∗w

)
.

On the other hand, it follows from the constructions of f and G that

(∇xf(x̄, ȳ, p̄)∗w,∇yf(x̄, ȳ, p̄)∗w) =
(
∇2
xx〈p̄, g〉(x̄, ȳ)∗w,∇2

xy〈p̄, g〉(x̄, ȳ)∗w
)

and

D∗G(x̄, ȳ, p̄)
(
f(x̄, ȳ, ·)∗w

)
=D∗(∂ϕ ◦ g)(x̄, ȳ, p̄)

(
∇xg(x̄, ȳ)∗∗w

)
=∇g(x̄, ȳ)∗∂2

Nϕ(z̄, p̄)
(
∇xg(x̄, ȳ)∗∗w

)
,

where the latter equality is obtained due to the coderivative chain rule in [34, Theorem 1.66]

for the case that the inner mapping g is strictly differentiable at (x̄, ȳ) with ∇g(x̄, ȳ) is

surjective. The proof is complete. 4
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The last result of this subsection provides equalities for both second-order partial sub-

differentials of compositions ϕ ◦ g in general Banach spaces, where ϕ but not g is assumed

to be twice partial differentiable. Before stating the result, we define the so-called second-

order partial coderivative sets, which will be used in formulations of the next theorem and

related results in the next subsection.

Definition 2.17 (second-order partial coderivative set) Given a Lipschitz continuous

mapping g : X × Y → Z between Banach spaces, the second-order partial coderivative sets

in x for g at (x̄, ȳ, p̄, ū) ∈ X × Y × Z∗ ×X∗ with ū ∈ ∂x〈p̄, g〉(x̄, ȳ) is defined by

D2
xg(x̄, ȳ, p̄, ū)(w) := D∗(∂x〈·, g〉)(x̄, ȳ, p̄, ū)(w)

for all w ∈ X∗∗, where D∗ stands for both normal (D∗ = D∗N) and mixed (D∗ = D∗M)

coderivatives of the mapping (x, y, p)→→ ∂〈p, g〉(x, y). If g is strictly differentiable at (x̄, ȳ)

then

∂x〈p̄, g〉(x̄, ȳ) = ∇xg(x̄, ȳ)∗p̄

and we omit ū in the arguments for D2
xg.

Theorem 2.18 (second-order partial chain rules with twice differentiable outer

mappings) Let g be strictly differentiable at (x̄, ȳ), let ϕ ∈ C1 around z̄ := g(x̄, ȳ) with

∇ϕ strictly differentiable at this point, and let p̄ := ∇ϕ(z̄). Assume that the operator

∇2ϕ(z̄)∇g(x̄, ȳ) : X × Y → Z∗ is surjective. Then

∂2
x(ϕ ◦ g)(x̄, ȳ)(w) =

⋃
(x∗,y∗,q)∈D2

xg(x̄,ȳ,p̄)(w)

[
(x∗, y∗) +∇g(x̄, ȳ)∗∇2ϕ(z̄)∗q

]
for all w ∈ X∗∗, where ∂2

x and D2
x stand for the corresponding normal and mixed partial

second-order constructions.
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These chain rules hold without the above surjectivity assumption if ∇xg is strictly sub-

differentiable at (x̄, ȳ). In the latter case one has

D2
xg(x̄, ȳ, p̄)(w) =

(
∇2
xx〈p̄, g〉(x̄, ȳ)∗w,∇2

xy〈p̄, g〉(x̄, ȳ)∗w,∇xg(x̄, ȳ)∗∗w
)
,

for both D2
x = D2

N,x and D2
x = D2

M,x.

Proof. Since ϕ is C1 around z̄ and g is Lipschitz continuous around (x̄, ȳ) due to its strict

subdifferentiability at this point, it implies by Theorem 2.6 that there is a neighborhood U

of (x̄, ȳ) such that for all (x, y) ∈ U we have

∂x(ϕ ◦ g)(x, y) = ∂x
〈
∇ϕ
(
g(x, y)

)
, g
〉
(x, y) =: (F ◦ h)(x, y)

for F : X × Y × Z∗ →→ X∗ and h : X × Y −→ X × Y × Z∗ defined by

F (x, y, p) : = ∂x〈p, g〉(x, y),

h(x, y) : =
(
x, y,∇ϕ

(
g(x, y)

))
.

Note that since ∇2ϕ(z̄)∇g(x̄, ȳ) is surjective, so is ∇h(x̄, ȳ). We thus have, due to [34,

Theorem 1.66], for both mixed and normal coderivatives that

D∗(F ◦ h)(x̄, ȳ, p̄)(w) = ∇h(x̄, ȳ)∗D∗F (x̄, ȳ, p̄, ū)(w)

for ū ∈ ∂x〈p̄, g〉(x̄, ȳ) = {∇xg(x̄, ȳ)∗p̄} and any w ∈ X∗∗.

On the other hand, we have

D∗F (x̄, ȳ, p̄)(w) = D∗∂x〈·, g〉(x̄, ȳ, p̄)(w) = D2
xg(x̄, ȳ, p̄)(w).

Therefore, taking into account the construction of h, we arrive at

D∗(F ◦ h)(x̄, ȳ, p̄)(w) =
⋃

(x∗,y∗,q)∈D2
xg(x̄,ȳ,p̄)(w)

[
(x∗, y∗) +∇g(x̄, ȳ)∗∇2ϕ(z̄)∗q

]
for all w ∈ X∗∗. This proves the Theorem in the case of surjectivity.

The last claim in the theorem easily follows from the above procedure due to [34,

Theorem 1.65]. 4
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2.2.3 Second-Order Partial Subdifferential Calculus in Asplund Spaces

In this subsection we continue developing the second-order partial subdifferential calculus

started in the preceding subsection in the framework of general Banach spaces. Here we

follow the same scheme that leads us to second-order partial subdifferential sum and chain

rules by using coderivative calculus applied to equality-type sum and chain rule for first-

order partial subgradients. In contrast to the previous consideration, we assume in this

subsection that some of the spaces in question are Asplund. This allows us to employ

extended first-order partial calculus rules obtained in the framework of Asplund spaces.

We start as usual with sum rules and obtain the following three versions for extended-

real-valued functions defined on spaces that are Asplund together with their duals. The

major source of such spaces are reflexive Banach spaces. On the other hand, there are in-

teresting examples of even separable spaces X, which are nonreflexive but Asplund together

with X∗. Let us mention the famous long James space whose natural embedding in the

second dual is of codimension one but which is nevertheless isometrically isomorphic to its

second dual. Other examples, discussion, and references can be found, e.g., in the book of

Bourgin [10].

Recall also that all the functions under consideration below are assumed to be proper

and finite at reference points.

Theorem 2.19 (second-order partial subdifferential sum rules in Asplund spaces)

Let X, Y,X∗ and Y ∗ be Asplund spaces. Given ϕi : X × Y → IR, i = 1, 2 with ū ∈

∂x(ϕ1 + ϕ2)(x̄, ȳ). The following assertions hold for both normal (∂2
x = ∂2

N,x) and mixed

(∂2
x = ∂2

M,x) second-order partial subdifferentials in x:

(i) Assume that ϕ1 ∈ C1 around (x̄, ȳ) with ū1 := ∇xϕ1(x̄, ȳ) and that the graph of

∂xϕ2 is norm-closed around (x̄, ȳ, ū2) with ū2 := ū − ū1. Assume also that either ∇xϕ1 is

Lipschitzian around (x̄, ȳ) or ∂xϕ2 is PSNC at (x̄, ȳ, ū2) and

∂2
M,xϕ1(x̄, ȳ, ū1)(0) ∩

(
− ∂2

M,xϕ2(x̄, ȳ, ū2)(0)
)

= {0}. (2.13)
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Then for all w ∈ X∗∗ one has

∂2
x(ϕ1 + ϕ2)(x̄, ȳ, ū)(w) ⊂ ∂2

xϕ1(x̄, ȳ, ū1)(w) + ∂2
xϕ2(x̄, ȳ, ū2)(w). (2.14)

(ii) Let both ϕi be l.s.c around (x̄, ȳ) and let S : X × Y ×X∗ →→ X∗ ×X∗, with

S(x, y, u) :=
{

(u1, u2) ∈ X∗ ×X∗
∣∣ ui ∈ ∂xϕi(x, y), i = 1, 2, and u1 + u2 = u

}
,

be inner semicontinuous at (x̄, ȳ, ū, ū1, ū2) for a given (ū1, ū2) ∈ S(x̄, ȳ, ū). Assume that the

graph of each ∂xϕi is norm-closed around (x̄, ȳ, ūi) for i = 1, 2, that one of ∂xϕi is PSNC at

the corresponding (x̄, ȳ, ūi), and that the qualification condition (2.13) is fulfilled. Suppose

also that there is a neighborhood U of (x̄, ȳ) such that

∂∞x ϕ1(x, y) ∩
(
− ∂∞x ϕ2(x, y)

)
= {0}

for all (x, y) ∈ U , that one of ϕi SNEC at every (x, y) ∈ U (both assumptions are fulfilled

when one of ϕi is Lipschitz continuous around (x̄, ȳ)), and that each ϕi are partially lower

regular in x at every (x, y) ∈ U . Then the sum rule (2.14) holds for all w ∈ X∗∗.

(iii) Assume that the above set-valued mapping S be inner semicompact at (x̄, ȳ, ū),

that the graph of each ∂xϕi is norm-closed whenever (x, y) is near (x̄, ȳ), and that other

assumptions in (ii) are fulfilled for any (ū1, ū2) ∈ S(x̄, ȳ, ū). Then for all w ∈ X∗∗ one has

∂2
x(ϕ1 + ϕ2)(x̄, ȳ, ū)(w) ⊂

⋃
(ū1,ū2)∈S(x̄,ȳ,ū)

∂2
xϕ1(x̄, ȳ, ū1)(w) + ∂2

xϕ2(x̄, ȳ, ū2)(w).

Proof.

Since ϕ1 is C1 around (x̄, ȳ), Proposition 2.5 assures that there is a neighborhood U of

(x̄, ȳ) such that

∂x(ϕ1 + ϕ2)(x̄, ȳ, ū)(w) = ∇xϕ1(x, y) + ∂xϕ2(x, y)
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for all (x, y) ∈ U . We then apply to this equality the coderivative sum rule in Asplund

spaces from [34, Theorem 3.10(i)] with F1 := ∇xϕ1 and F2 := ∂xϕ2. It yields

D∗∂x(ϕ1 + ϕ2)(x̄, ȳ, ū)(w) ⊂ D∗(∇xϕ1)(x̄, ȳ, ū1) +D∗(∂xϕ2)(x̄, ȳ, ū2).

This proves (i).

In the same way we justify the second-order partial sum rules in (ii) and (iii) by respec-

tively applying [34, Theorem 3.10(i) and (ii)] to the equality

∂x(ϕ1 + ϕ2)(x, y) = ∂xϕ1(x, y) + ∂xϕ2(x, y), for (x, y) ∈ U,

which follows from Theorem 2.8. 4

Next, we derive second-order partial subdifferential chain rules for composition (ϕ ◦

g)(x, y) := ϕ
(
g(x)

)
of a function ϕ : Z → IR and a mapping g : X × Y → Z, where the

spaces X, Y, Z and Z∗ are Asplund. In contrast to Theorem 2.16, the following theorem

doesn’t require the surjectivity of ∇g(x̄, ȳ) while imposing mor assumptions on the outer

function ϕ under first-order and second-order qualification conditions.

Theorem 2.20 (second-order partial subdifferential chain rules with smooth in-

ner mappings in Asplund spaces) Assume that g ∈ C1 around some (x̄, ȳ) with the

partial derivative ∇xg strictly differentiable at this point, that ϕ is l.s.c and lower regular

around z̄ := g(x̄, ȳ), and that the inverse mapping g−1 is PSNC at (z̄, x̄, ȳ). Suppose also

that ϕ is SNEC around z̄ and that the first-order qualification condition

∂∞ϕ
(
g(x, y)

)
∩ ker∇xg(x, y)∗ = {0} (2.15)

is satisfied around (x̄, ȳ) (the last two assumptions are automatic when ϕ is locally Lips-

chitzian around (x̄, ȳ)). Then the following assertions hold for both normal ∂2
x = ∂2

N,x and

mixed ∂2
x = ∂2

M,x second-order partial subdifferentials:
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(i) Given ū ∈ ∂x(ϕ ◦ g)(x̄, ȳ), we assume that the mapping S : X × Y ×X∗ →→ Z∗ with

the values

S(x, y, u) =
{
p ∈ Z∗

∣∣ p ∈ ∂ϕ(g(x, y)
)
,∇xg(x, y)∗p = u

}
is inner semicontinuous at (x̄, ȳ, ū, p̄) for some fixed p̄ ∈ S(x̄, ȳ, ū), that the graph of the

subdifferential mapping ∂ϕ is norm-closed around (z̄, p̄), and that the mixed second-order

qualification condition

∂2
Mϕ(z̄, p̄)(0) ∩ ker∇g(x̄, ȳ)∗ = {0}

is satisfied. Then for all w ∈ X∗∗ we have

∂2
N,x(ϕ ◦ g)(x̄, ȳ, ū)(w) ⊂

(
∇2
xx〈p̄, g〉(x̄, ȳ)∗w,∇2

xy〈p̄, g〉(x̄, ȳ)∗w
)

+∇g(x̄, ȳ)∗∂2
Nϕ(z̄, p̄)

(
∇xg(x̄)∗∗w

)
.

(ii) Given ū ∈ ∂x(ϕ◦g)(x̄, ȳ), we assume that the above mapping S is inner semicompact

at (x̄, ȳ, ū), that the graph of ∂ϕ is norm-closed whenever z is near z̄, and that the mixed

second-order qualification condition in (i) is satisfied for every p̄ ∈ S(x̄, ȳ, ū). Then for all

w ∈ X∗∗ we have

∂2
N,x(ϕ ◦ g)(x̄, ȳ, ū)(w) ⊂

⋃
p̄∈S(x̄,ȳ,ū)

[(
∇2
xx〈p̄, g〉(x̄, ȳ)∗w,∇2

xy〈p̄, g〉(x̄, ȳ)∗w
)

+∇g(x̄, ȳ)∗∂2
Nϕ(z̄, p̄)

(
∇xg(x̄)∗∗w

)]
.

Proof. Since g is C1 around (x̄, ȳ) we have

D∗N,xg
−1(z, x, y)(0) = −ker∇xg(x, y)∗

for (x, y) near (x̄, ȳ) and z := g(x, y). Thus, the first-order qualification implies

∂∞ϕ
(
g(x, y)

)
∩
(
−D∗N,xg−1(z, x, y)(0)

)
= {0}



34

for (x, y) near (x̄, ȳ). Theorem 2.9(iii) then assures that there is a neighborhood U of (x̄, ȳ)

such that for all (x, y) ∈ U we have

∂x(ϕ ◦ g)(x, y) =
⋃

p∈∂ϕ(g(x,y))

∇xg(x, y)∗p.

Let us denote ∂x(ϕ ◦ g)(x, y) = (f ◦G)(x, y) in U , with

G(x, y) =
(
x, y, ∂ϕ

(
g(x, y)

))
,

f(x, y, p) = ∇xg(x, y)∗p, p ∈ Z∗.

We notice that f is smooth and G ◦ f−1 is inner semicontinuous at (x̄, ȳ, ū) under the

assumptions made. Also, we have for both D∗ = D∗N and D∗ = D∗M that

D∗G
(
(x̄, ȳ), (x̄, ȳ, p̄)

)
(x∗, y∗, q) = (x∗, y∗) +D∗(∂ϕ ◦ g)

(
(x̄, ȳ), (x̄, ȳ, p̄)

)
(q)

for (x∗, y∗, q) ∈ X∗ × Y ∗ × Z∗∗. On the other hand, we conclude by [34, Theorem 1.65(i)]

that, for all w ∈ X∗∗,

∂2
x(ϕ ◦ g)(x̄, ȳ, p̄)(w) ⊂

(
D∗NG

(
(x̄, ȳ), (x̄, ȳ, p̄)

)
◦ ∇f

(
(x̄, ȳ), (x̄, ȳ, p̄)

)∗)
(w).

Therefore

∂2
x(ϕ ◦ g)(x̄, ȳ, p̄)(w) ⊂

{(
∇2
xx〈p̄, g〉(x̄, ȳ)∗w,∇2

xy〈p̄, g〉(x̄, ȳ)∗w
)

+D∗N(∂ϕ ◦ g)(x̄, ȳ, p̄)
(
∇xg(x̄, ȳ)∗∗w

)}
.

It remains to compute D∗N(∂ϕ ◦ g). To furnish this, we use [34, Theorem 3.13(i)] that

provides the coderivative chain rule

D∗N(∂ϕ ◦ g)(x̄, ȳ, p̄)(q) ⊂
(
D∗Ng(x̄, ȳ) ◦D∗N(∂ϕ)(z̄, p̄)

)
(q)

= ∇g(x̄, ȳ)∗∂2
Nϕ(z̄, p̄)(q)

for all q ∈ Z∗∗ under the PSNC assumption on g−1 and the mixed qualification condition

(D∗M∂ϕ)(z̄, p̄)(0) ∩ ker∇g(x̄, ȳ)∗ = {0},



35

which reduces to the second-order qualification condition of the theorem. We complete the

proof for (i).

The same arguments work for (ii), in which we use part (ii) instead of part (i) of [34,

Theorem 1.65]. 4

When Z is finite-dimensional (X and Y may be not), some of the assumptions of

Theorem 2.20 either are satisfied automatically or can be essentially simplified. In this

way we get the following result, where ∂2
xϕ stands for the common second-order partial

subdifferential of ϕ : IRm → IR while ∂2
x(ϕ ◦ g) is the same as in the above theorem.

Corollary 2.21 (second-order partial subdifferential chain rules for composi-

tions with finite-dimensional intermediate space) Let ū ∈ ∂x(ϕ ◦ g)(x̄, ȳ), where

ϕ : IRm → IR and g : X ×Y → IRm with Asplund spaces X, Y . Assume that g ∈ C1 around

some (x̄, ȳ) with the partial derivative ∇xg strictly differentiable at this point, that ϕ is l.s.c

and lower regular around z̄ := g(x̄, ȳ) with closed graphs of ∂ϕ and ∂∞ϕ near z̄. Suppose

also that the first-order qualification condition

∂∞ϕ
(
g(x̄, ȳ)

)
∩ ker∇xg(x̄, ȳ)∗ = {0}

is satisfied and one has the second-order qualification condition in the form

∂2ϕ(z̄, p̄)(0) ∩ ker∇g(x̄, ȳ)∗ = {0} if p̄ ∈ ∂ϕ(z̄) with ∇g(x̄)∗p̄ = ū.

Then the second-order partial chain rule of Theorem 2.20(ii) holds for all w ∈ X∗∗.

Proof. The SNEC property of ϕ : X × Y → IR and the PSNC property of g−1 are

automatic when dimZ <∞.

We next check that in the case Z is finte-dimensional, the first-order QC is satisfied in a

neighborhood of x̄ if it is satisfied at x̄. In fact, assuming the contrary and taking into ac-

count that ∂∞ϕ(.) is a cone, there exist sequences (xk, yk)→ (x̄, ȳ) and vk ∈ ∂∞ϕ(g(xk, yk))



36

with ∇xg(xk, yk)
∗vk = 0 and ‖vk‖ = 1. We then extract a convergent subsequence of vk,

which is denoted by the same notation, such that vk converges to some v ∈ ∂∞ϕ(z̄), due

to the closedness property of the graph of ∂∞ϕ near z̄, with ‖v‖ = 1 and ∇g(x̄, ȳ)∗v = 0,

which contradicts (2.15).

The result follows from Theorem 2.20(ii). The only assumption needs to be checked

is that the mapping S is inner semicompact at (x̄, ȳ). Taking sequences {(xk, yk, uk)} →

(x̄, ȳ, ū) and {pk} with pk ∈ S(xk, yk, uk), we will show that {pk} is bounded, and thus

contains a convergent subsequence. This can also be proved by contradiction. Were {pk}

not bounded, we would find a subsequence of
{ pk
‖pk‖

}
, which is denoted by {p′k}, such that

p′k → p′ with ‖p′‖ = 1, p′ ∈ ∂∞ϕ(z̄) and ∇xg(x̄, ȳ)∗p′ = 0. This contradicts (2.15). 4

The next corollary justifies the second-order partial subdifferential chain rule for an

important class of functions that automatically satisfy all the first-order assumptions in

Corollary 2.21. Recall that a function ψ : X × Y → IR is said to be strongly amenable in

x at x̄ with compatible parameterization in y at ȳ if there is a neighborhood U of (x̄, ȳ)

such that ψ = ϕ ◦ g with a C2 mapping g : U → IRm and a proper l.s.c. convex function

ϕ : IRm → IR that satisfy

∂∞ϕ(g(x̄, ȳ)) ∩ ker∇xg(x̄, ȳ)∗ = {0}. (2.16)

Moreover, according to [34, Proposition 1.112] and Theorem 2.9, if ψ is finite around

(x̄, ȳ) then the basic subgradient mapping, the singular subgradient mapping and the first-

order basic partial subgradient mapping of ψ are given by

∂ψ(x, y) = ∇g(x, y)∗∂ϕ(g(x, y)), (2.17)

∂∞ψ(x, y) = ∇g(x, y)∗∂∞ϕ(g(x, y)), (2.18)

∂xψ(x, y) = ∇xg(x, y)∗∂ϕ(g(x, y)). (2.19)

for all (x, y) near (x̄, ȳ).
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Corollary 2.22 (second-order partial chain rule for amenable functions) Let ψ :

X × Y → IR be strongly amenable in x at x̄ with compatible parameterization in y at

ȳ, ū ∈ ∂xψ(x̄, ȳ), and ϕ : IRm → IR, g : U → IRm be mappings from its composite

representation. Assume that X and Y are Asplund spaces and the second-order qualification

condition

∂2ϕ(z̄, p̄)(0) ∩ ker∇g(x̄, ȳ)∗ = {0} if p̄ ∈ ∂ϕ(z̄) with ∇g(x̄, ȳ)∗p̄ = ū (2.20)

holds with z̄ = g(x̄, ȳ). Then for all w ∈ X∗∗ one has the inclusion

∂2
xψ(x̄, ȳ, ū)(w) ⊂

⋃
p̄∈S(x̄,ȳ,ū)

[
∇2〈p̄, g〉(x̄, ȳ)∗(w, 0) +∇g(x̄, ȳ)∗∂2

xϕ(z̄, p̄)(∇xg(x̄, ȳ)∗∗w)
]

where ∂2
xψ stands for either ∂2

N,xψ or ∂2
M,xψ and

S(x, y, u) =
{
p ∈ Z∗

∣∣ p ∈ ∂ϕ(g(x, y)),∇xg(x, y)∗p = u
}
.

Proof. The lower regularity of ϕ, and the closedness of the graphs of ∂ϕ and ∂∞ϕ are

implied by the convexity of ϕ. Hence the result follows from Corollary 2.21. 4

Finally, let us consider a second-order chain rule for compositions ϕ ◦ g involving C1,1
x

functions ϕ and Lipschitzian mappings g. In the next theorem we use the second-order

partial coderivatives (normal and mixed) of Lipschitzian mappings defined in Definition

2.17.

Theorem 2.23 (second-order partial chain rule with Lipschitzian inner map-

pings in Asplund spaces) Let X, Y, Z,X∗, Y ∗ and Z∗ are Asplund spaces. Given ū ∈

∇x(ϕ◦g)(x̄, ȳ), where g : X×Y → Z is Lipschitz continuous around (x̄, ȳ), and ϕ : Z → IR

is C1,1 around z̄ := g(x̄, ȳ) with p̄ := ∇ϕ(z̄). Assume that the graph of the set-valued map-

ping (x, y, p) 7−→ ∂x〈p, g〉(x, y) is norm-closed in X × Y × Z∗ ×X∗ whenever (x, y, p) are
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near (x̄, ȳ, p̄). Then one has the second-order partial chain rule

∂2
x(ϕ ◦ g)(x̄, ȳ, ū)(w) ⊂

⋃
(u,v,q)∈D2

xg(x̄,ȳ,p̄,ū)(w)

[
(u, v) +D∗Ng(x̄, ȳ) ◦ ∂2

Nϕ(z̄)(q)
]

for all w ∈ X∗∗, where ∂2 and D2 stand for the corresponding normal and mixed second-

order partial constructions.

Proof. Using the same arguments as in the proof of Theorem 2.16 we have the represen-

tation

∂x(ϕ ◦ g)(x, y) = (F ◦ h)(x, y)

for all (x, y) in a neighborhood U of (x̄, ȳ), where the mappings F : X ×Y ×Z∗ →→ X∗ and

h : X × Y → X × Y × Z∗ are defined by

F (x, y, t) : = ∂x〈t, g〉(x, y),

h(x, y) : =
(
x, y,∇ϕ

(
g(x, y)

))
, (x, y) ∈ U.

Let us apply to this composition the coderivative chain rule from [34, Theorem 3.13(i)].

This gives

D∗(F ◦ h)(x̄, ȳ, p̄, ū)(w) ⊂ D∗Nh(x̄, ȳ) ◦D∗F (x̄, ȳ, p̄, ū)(w), w ∈ X∗∗

for both normal and mixed coderivatives under the assumptions made. We also have the

conclusion

D∗(∇ϕ ◦ g)(x̄, ȳ)(q) ⊂ D∗Ng(x̄, ȳ) ◦ ∂2
Nϕ(z̄)(q), q ∈ Z∗∗

from the same [34, Theorem 3.13(i)] with the assumption that ∇ϕ is Lipschitz around

z̄. Combining the two inclusions and taking into account the fact that D∗F (x̄, ȳ, p̄, ū) =

D2
xg(x̄, ȳ, p̄, ū) by notation, we arrive at the result. 4
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Chapter 3

Coderivatives in Parametric Optimization in Asplund Spaces

In this chapter we mostly focus on the solution map to the parameter-dependent generalized

equation given by

S(y) =
{
x ∈ X | 0 ∈ ∂xψ0(x, y) + ∂xψ(x, y)

}
, (3.1)

where X, Y are arbitrary Asplund spaces and ψ0, ψ : X ×Y → IR are extended-real-valued

functions. Using coderivatives to analyze solution map (3.1) results in an estimate for the

coderivative of S in terms of the normal second-order partial subdifferentials in x of ψ0 and

ψ. Thus, to carry the analysis further, besides the calculus developed in chapter 2, we also

develop in this chapter an estimate for second-order partial subdifferentials in terms of the

normal full one.

In particular, when the cost function ψ0 is C2, the solution map S in (3.1) become

S(y) =
{
x ∈ X | 0 ∈ ∇xψ0(x, y) + ∂xψ(x, y)

}
, (3.2)

and is the stationary point multifunction of the parameterized minimization problem

Minimize ψ0(x, y) + ψ(x, y) over x ∈ X. (3.3)

We focus particular attention on the case when the constraint function is strongly-amenable.

These covers many interesting examples including nonlinear programs, and our final esti-

mates are given entirely in terms of standard derivative conditions on the original data of

the problem.

In the penultimate section of this chapter, we study stationary point-multiplier pairs

and make connections to our results from earlier sections on stationary points. The final

section is devoted to the special case when canonical perturbations are present in the pa-

rameterization of the optimization model. In this case, the constraint qualifications that

restrict the more general work are all satisfied automatically.
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3.1 General Coderivative Analysis

Let us introduce a new sequential normal compact property of sets, which is essential in

establishing an upper estimate for the second-order partial subdifferentials.

Definition 3.1 Let X be a Banach space. A set Ω ⊂ X is basically sequentially normally

compact (BSNC) at x̄ ∈ Ω if for any sequence (xk, x
∗
k) ∈ Ω×X∗ satisfying

xk → x̄, x∗k ∈ N(xk; Ω), and x∗k
w∗−→ 0,

one has ‖x∗k‖ → 0.

Remark 3.2 Since εk can be equivalently removed from the definition of SNC property in

the Asplund space setting, it is not hard to see that if a closed subset Ω of an Asplund space

is BSNC at x̄, then it is SNC at this point.

The following lemma sets up the relationship between the compactly epi-Lipschitzian

(CEL) property and the basic sequential normal compactness.

Lemma 3.3 Let Ω ⊂ X be compactly epi-Lipschitzian around x̄. Then it is basically

sequentially normally compact at this point.

Proof: Assumming that Ω is CEL at x̄, we find a compact set C ⊂ X and positive

numbers γ and η such that

Ω ∩ (x̄+ ηIB) + tηIB ⊂ Ω + tC for all t ∈ (0, γ).

First, let us show that this implies the existence of a constant α > 0 for which

N̂ε(x; Ω) ⊂
{
x∗ ∈ X∗| η‖x∗‖ ≤ ε(α + η) + max

c∈C
〈x∗, c〉

}
(3.4)

whenever x ∈ Ω∩(x̄+ηB). Indeed, fixing x ∈ Ω+(x̄+ηIB) and employing the CEL property

of Ω, for any e ∈ IB and t ∈ (0, γ) we pick a point ct ∈ C such that x+ t(ηe− ct) ∈ Ω. Due
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to the compactness of C, a subsequence of ct converges to some point c̃ ∈ C as t ↓ 0. This

implies, by the definition of N̂ε(x; Ω), that

〈x∗, ηe− c̃〉 − ε‖ηe− c̃‖ ≤ 0 for all x∗ ∈ N̂ε(x; Ω).

Since e ∈ IB was chosen arbitrarily, the latter gives inclusion (3.4) with α := max
c∈C
‖c‖.

Next, let us show that

N(x; Ω) ⊂
{
x∗ ∈ X∗| η‖x∗‖ ≤ max

c∈C
〈x∗, c〉

}
(3.5)

whenever x ∈ Ω ∩ (x̄ +
η

2
IB). Indeed, fixing any x ∈ Ω ∩ (x̄ +

η

2
IB) and x∗ ∈ N(x; Ω), we

find sequences εk ↓ 0, uk
Ω−→ x, and u∗k ∈ N̂εk

(uk; Ω) such that u∗k
w∗−→ x∗. It follows from

(3.4) that

η‖u∗k‖ ≤ εk(α + η) + max
c∈C
〈u∗k, c〉

when k is sufficiently large. Hence

η‖u∗k‖ ≤ εk(α + η) + max
c∈C
〈u∗k − x∗, c〉+ max

c∈C
〈x∗, c〉. (3.6)

The compactness of C together with u∗
w∗−→ x∗ implies that 〈u∗k − x∗, c〉 → 0 uniformly in

c ∈ C. Therefore, (3.6) ensures (3.5) as k →∞.

Now we are ready to prove that Ω is BSNC at x̄. Indeed, taking any sequences xk
Ω−→ x̄

and x∗k ∈ N(xk; Ω) such that x∗k
w∗−→ 0, we have

η‖x∗k‖ ≤ max
c∈C
〈x∗k, c〉,

when k is sufficiently large. By a similar argument we can see that ‖x∗k‖ → 0 as k → ∞.

The proof is complete. 4

Remark 3.4 As proved in Fabian and Mordukhovich [15], the SNC and CEL properties

agree for closed subsets of WCG spaces, and hence the CEL, BSNC and SNC properties

all agree. This implies, in particular, that the BSNC (SNC) property of closed sets in such

spaces is actually around x̄ ∈ Ω. Moreover, in this case, the mapping x →→ N(x,Ω) is

closed-graph in the norm×weak∗ topology of X ×X∗ around x̄ due to [33, Proposition 3.4].
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Next, let us provide another sufficient condition for the basic sequential normal com-

pactness.

Proposition 3.5

(i) Let F : X →→ Y be a closed-graph set-valued mapping which is Lipschitz-like around

(x̄, ȳ), where X is an arbitrary Banach space while Y is finite dimensional. Then gphF is

BSNC around (x̄, ȳ).

(ii) Let ϕ : X → IR be locally Lipschitzian around x̄, then epiϕ is BSNC at (x̄, ϕ(x̄)).

Proof. Let ` be the Lipschitz modulus of F around (x̄, ȳ). First, we prove that under the

assumptions made in (i) there is η > 0 for which

‖x∗‖ ≤ `‖y∗‖ (3.7)

whenever (x∗, y∗) ∈ N
(
(x, y); gphF

)
with x ∈ x̄ + ηIB and y ∈ F (x) ∩ (ȳ + ηIB). Indeed,

since F is Lipschiz-like around (x̄, ȳ), for any ε ≥ 0 there exists, by [34, Theorem 1.43], a

positive number η such that

sup
{
‖x∗‖

∣∣∣ (x∗, y∗) ∈ N̂ε

(
(x, y); gphF

)}
≤ ‖y∗‖+ ε(1 + `) (3.8)

whenever x ∈ x̄+ηIB, and y ∈ F (x)∩ (ȳ+ηIB). Fix any x ∈ x̄+ηIB, y ∈ F (x)∩ (ȳ+ηIB),

and (x∗, y∗) ∈ N
(
(x, y); gphF

)
. Using the definition of the basic normals, we find sequences

εk ↓ 0, (xk, yk)
gphF−−−→ (x, y), (x∗k, y

∗
k) ∈ N̂εk

(
(xk, yk); gphF

)
such that (x∗k, y

∗
k)

w∗−→ (x∗, y∗)

for all k ∈ IN . Due to (3.8) we have

‖x∗k‖ ≤ `‖y∗k‖+ εk(1 + `)

for all k sufficiently large. Note that ‖y∗k‖ → ‖y∗‖ since Y is finite-dimensional, and that

the norm function is weak∗ lower semicontinuous on X∗. Passing to the limit in the latter

inequality, we get (3.7).

Next, we show that gphF is BSNC at any point (x, y) such that x ∈ x̄ + ηIB, y ∈

F (x) ∩ (ȳ + ηIB). Indeed, taking any (xk, yk)
gphF−→ (x, y) and (x∗k, y

∗
k) ∈ N

(
(xk, yk); gphF

)
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such that (xk, yk)
w∗→ (0, 0), we have ‖y∗‖ → 0 due to the finite dimension of Y , and hence

‖x∗k‖ → 0 by (3.7). Therefore, (i) is proved.

To prove (ii), we observe easily that if ϕ is locally Lipschitz around x̄, then its epigraph-

ical mapping from X to IR defined by x→→ Eϕ(x) is Lipschitz-like around (x̄, ϕ(x̄)). Since

gphEϕ = epiϕ, (ii) follows directly from (i). 4

The next theorem establishes a sufficient condition guaranteeing that if the qualification

condition holds at a point then that condition holds around that point. This enables us to

develop the calculi for second-order subdifferentials in a more convenient way.

Theorem 3.6 Let Ω1 and Ω2 be two closed subsets of an Asplund space and let x̄ ∈ Ω1∩Ω2.

Assume that the graphs of the set-valued mappings x →→ N(x; Ωi) are closed around x̄ in

norm×weak∗ topology of X × X∗, for both i = 1, 2, and that either Ω1 or Ω2 is BSNC at

x̄. Then the qualification condition

N(x̄; Ω1) ∩
(
−N(x̄; Ω2)

)
= {0}

guarantees that there exists a neighborhood V of x̄ such that

N(x; Ω1) ∩
(
−N(x; Ω2)

)
= {0} (3.9)

for all x ∈ Ω1 ∩ Ω2 ∩ V .

Proof. Let us assume that (3.9) does not hold. Then there exists a sequence xk
Ω1∩Ω2−−−−→ x̄

such that

N(xk; Ω1) ∩
(
−N(xk; Ω2)

)
6= {0}.

Fixing x∗k ∈ N(xk; Ω1) ∩
(
−N(xk; Ω2)

)
satisfying x∗k 6= 0, we have

w∗k :=
x∗k
‖x∗k‖

∈ N(xk; Ω1) ∩
(
−N(xk; Ω2)

)
.



44

Since {w∗k} is bounded in the Asplund space X, we can extract a convergent subsequence

(without relabeling) such that w∗k
w∗−→ w∗. Using the closed property of the mappings

x→→ N(x; Ωi) we get

w∗ ∈ N(x̄; Ω) ∩ (−N(x̄; Ω2).

Let us show that w 6= 0, which leads to a contradiction. On the contrary, assume that

w∗ = 0. Since either Ω1 or Ω2 is BSNC at x̄ we have ‖w∗k‖ → 0 as k → ∞. This is a

contradiction since ‖w∗k‖ = 1. This completes the proof. 4

The intersection rule for basic normal cones plays a central role in the calculi of vari-

ational analysis. We will establish in what follows the intersection rules involving points

around a reference point.

Corollary 3.7 In addition to the assumptions made in Theorem 3.6, assume that one of

Ωi is SNC around x̄. Then there exists a neighborhood V of x̄ such that

N(x; Ω1 ∩ Ω2) ⊂ N(x; Ω1) +N(x; Ω2) (3.10)

for all x ∈ Ω1 ∩ Ω2 ∩ V .

Proof. This result follows directly from Theorem 3.6 and [34, Corollary 3.5]. 4

Taking into account Lemma 3.3, we get another corollary of Theorem 3.6.

Corollary 3.8 Let Ω1 and Ω2 be two closed subsets of a WCG Asplund space and let

x̄ ∈ Ω1 ∩ Ω2. Assume that both of Ωi are SNC at x̄, and that the following qualification

condition holds

N(x̄; Ω1) ∩
(
−N(x̄; Ω2)

)
= {0}.

Then there exists a neighborhood V of x̄ such that

N(x; Ω1 ∩ Ω2) ⊂ N(x; Ω1) +N(x; Ω2) (3.11)
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for all x ∈ Ω1 ∩ Ω2 ∩ V .

Let us present a lemma that gives a sufficient condition for the constraint qualification

condition [
(0, y∗) ∈ ∂∞ϕ(x, y)

]
=⇒ y∗ = 0 (3.12)

to hold around a reference point (x̄, ȳ). This is essential to express the partial subgradient

mapping as a projection of the full subgradient mapping.

Lemma 3.9 Let X and Y be Asplund spaces and (x̄, ȳ) ∈ X × Y . Suppose that ϕ :

X × Y → IR is continuous at (x̄, ȳ) ∈ X × Y and that the constraint qualification (3.12)

holds at (x̄, ȳ). Then (3.12) also holds for all (x, y) in a neighborhood of (x̄, ȳ) in each of

the following cases:

(i) epiϕ is BSNC at
(
x̄, ȳ, ϕ(x̄, ȳ)

)
, and (x, y, α) →→ N

(
(x, y, α); epiϕ

)
is closed-graph

in the norm×weak∗ topology of (X × Y × IR)× (X∗ × Y ∗ × IR) at that point.

(ii) X and Y are WCG Asplund spaces and ϕ is SNEC at (x̄, ȳ).

Proof. Taking Remark 3.4 into account, we easily see that (ii) follows from (i). It remains

to prove (i). Let us assume the contrary. There exists a sequence (xk, yk) → (x̄, ȳ) and

y∗k 6= 0 such that (0, y∗k) ∈ ∂∞ϕ(xk, yk), which implies

(0, y∗k, 0) ∈ N
(
(xk, yk, ϕ(xk, yk)); epiϕ

)
.

Putting w∗k =
y∗k
‖y∗k‖

, we have

(0, w∗k, 0) ∈ N
(
(xk, yk, ϕ(xk, yk)); epiϕ

)
.

Due to the weak-star sequentially compactness of the dual unit ball in Asplund space,

we can extract (without relabeling) a convergent subsequence of {w∗k}, which is also de-

noted by the same notation, such that w∗k
w∗−→ w∗. Using the closed-graph property of the

multifunction (x, y, α)→→ N
(
(x, y, α); epiϕ

)
around

(
x̄, ȳ, ϕ(x̄, ȳ)

)
, we get

(0, w∗, 0) ∈ N
(
(x̄, ȳ, ϕ(x̄, ȳ)); epiϕ

)
.



46

This means

(0, w∗) ∈ ∂∞ϕ(x̄, ȳ).

Thus, (3.12) implies w∗ = 0, which in turn yields ‖wk‖ → 0 by the BSNC property of epiϕ

at
(
x̄, ȳ, ϕ(x̄, ȳ)

)
. This is a contradiction since ‖w∗k‖ = 1 for all k. 4

Theorem 3.10 Let X and Y be Asplund spaces. Assume that ϕ : X ×Y → IR is continu-

ous at (x̄, ȳ) and l.s.c around this point. Assume also that ϕ is lower regular around (x̄, ȳ),

and that the constraint qualification (3.12) holds at (x̄, ȳ). Then there exists a neighborhood

of (x̄, ȳ) such that

∂xϕ(x, y) =
{
x∗ ∈ X∗

∣∣ ∃y∗ ∈ Y ∗ with (x∗, y∗) ∈ ∂ϕ(x, y)
}

for any (x, y) in that neighborhood in each of the cases (i) and (ii) in Lemma 3.9.

Proof. The result follows from Lemma 3.9 and Proposition 2.3. 4

Putting Theorem 3.10 together with the chain rule for normal coderivative in [34, The-

orem 3.13] yields the following result which gives an upper estimate for the second-order

partial subdifferentials.

Corollary 3.11 Let ū ∈ ∂xϕ(x̄, ȳ). Under the same assumptions as in Theorem 3.10, the

following inclusion holds for both normal (∂2
x = ∂2

N,x) and mixed (∂2
x = ∂2

M,x) second-order

partial subdifferentials in x:

∂2
xϕ(x̄, ȳ, ū)(w) ⊂

⋃
(ū,v)∈∂ϕ(x̄,ȳ)

∂2
Nϕ(x̄, ȳ, ū, v)(w, 0)

for all w ∈ X∗∗, provided that the graph of the multifunction ∂ϕ is norm-closed around

(x̄, ȳ), and that the multifunction P (x, y, u) :=
{
v ∈ Y ∗

∣∣ (u, v) ∈ ∂ϕ(x, y)
}

is inner semi-

compact at (x̄, ȳ, ū).



47

Proof. Putting G(x, y) := ∂ϕ(x, y) and F := proj 1(X∗, Y ∗), we find, by Theorem 3.10,

a neighborhood of (x̄, ȳ) such that ∂xϕ = F ◦ G on that neighborhood. Observe that

D∗MF (u, v, u)(0) = 0, the qualification condition in [34, Theorem 3.13] holds for any

(ū, v) ∈ P (x̄, ȳ, ū), so the result follows from the chain rule for normal coderivative in that

theorem. 4

Next, we will employ the coderivative calculus in [32, Corollary 4.3], which enables us to

estimate coderivative of the stationary point multifunction stationary point multifunction

in terms of the initial data. This result on coderivatives of solution maps for the so called

generalized equations can be treated as an extended implicit mapping theorem (see [32] for

details).

To proceed, we need to define a notion used in what follows.

Definition 3.12 The pair {F1, F2} satisfies the limiting qualification condition at (x̄, ȳ) if

for any sequences (xik, yik)
gphFi−−−→ (x̄, ȳ) and (x∗ik, y

∗
ik)

w∗−→ (x∗i , y
∗
i ) with x∗ik ∈ D̂∗Fi(xik, yik)(−y∗ik)

for i = 1, 2 one has

[∣∣∣∣(x∗1k + x∗2k, y
∗
1k + y∗2k)

∣∣∣∣→ 0
]

=⇒ (x∗1, y
∗
1) = (x∗2, y

∗
2) = (0, 0).

The aforementioned [32, Corollary 4.3] applied to the stationary point multifunction S

in (3.1) gives the following result:

Proposition 3.13 Let (ȳ, x̄) ∈ gphS for S given in (3.1). We have the following estimates

of the normal coderivative of S at (ȳ, x̄):

(i) Suppose that there is ū ∈ ∂xψ0(x̄, ȳ) ∩
(
− ∂xψ(x̄, ȳ)

)
such that the graphs of ∂xψ0

and ∂xψ are locally norm-closed around (x̄, ȳ, ū) and (x̄, ȳ,−ū), respectively, and that the

intersection mapping ∂xψ0 ∩
(
− ∂xψ

)
is inner semicontinuous at (x̄, ȳ, ū). Then for all
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x∗ ∈ X∗ we have the inclusion

D∗NS(ȳ, x̄)(x∗) ⊂
{
y∗ ∈ Y ∗

∣∣∣ ∃w ∈ X∗∗ such that (−x∗, y∗) ∈ ∂2
N,xψ0(x̄, ȳ, ū)(w)

+∂2
N,xψ(x̄, ȳ,−ū)(w)

}
(3.13)

in each of the following cases:

a) The pair {∂xψ0,−∂xψ} satisfies the limiting qualification condition at (x̄, ȳ, ū), and

either ∂xψ0 is PSNC at (x̄, ȳ, ū) and (∂xψ)−1 is strongly PSNC at (−ū, x̄, ȳ), or (∂xψ0)−1

is PSNC at (ū, x̄, ȳ) and ∂xψ is strongly PSNC at (x̄, ȳ,−ū), or the similar PSNC/SNC

conditions hold with changing places of ψ0 and ψ.

b)The pair {∂xψ0,−∂xψ} satisfies the limiting qualification condition at (x̄, ȳ, ū), and

one of the mappings ∂xψ0 and −∂xψ is SNC at (x̄, ȳ, ū).

(ii) Suppose that ∂xψ0 ∩
(
− ∂xψ

)
is inner semicompact at (x̄, ȳ) and that the assumptions

of (i) are fulfilled whenever ū ∈ ∂xψ0(x̄, ȳ) ∩
(
− ∂xψ(x̄, ȳ)

)
. Then for all x∗ ∈ X∗ we have

D∗NS(ȳ, x̄)(x∗) ⊂
{
y∗ ∈ Y ∗

∣∣∣ ∃ū ∈ ∂xψ0(x̄, ȳ) ∩
(
− ∂xψ(x̄, ȳ)

)
, w ∈ X∗∗ with

(−x∗, y∗) ∈ ∂2
N,xψ0(x̄, ȳ, ū)(w) + ∂2

N,xψ(x̄, ȳ,−ū)(w)
}
. (3.14)

Corollary 3.14 If in addition to the assumptions made in Proposition 3.13, suppose that

ψ0 and ψ satisfy the assumptions given in Corollary 3.11. Then we can respectively replace

(3.13) and (3.14) with

D∗NS(ȳ, x̄)(x∗) ⊂
{
y∗ ∈ Y ∗

∣∣∣ (−x∗, y∗) ∈
⋃

(ū,v)∈∂ψ0(x̄,ȳ)

∂2
Nψ0(x̄, ȳ, ū, v)(w, 0)

+
⋃

(−ū,v′)∈∂ψ(x̄,ȳ)

∂2
Nψ(x̄, ȳ,−ū, v′)(w, 0), w ∈ X∗∗

}
, (3.15)
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and

D∗NS(ȳ, x̄)(x∗) ⊂
{
y∗ ∈ Y ∗

∣∣∣ ∃ū ∈ ∂xψ0(x̄, ȳ) ∩
(
− ∂xψ(x̄, ȳ)

)
, w ∈ X∗∗ with

(−x∗, y∗) ∈
⋃

(ū,v)∈∂ψ0(x̄,ȳ)

∂2
Nψ0(x̄, ȳ, ū, v)(w, 0) +

⋃
(−ū,v′)∈∂ψ(x̄,ȳ)

∂2
Nψ(x̄, ȳ,−ū, v′)(w, 0)

}
.

(3.16)

Remark 3.15 It is easy to see that the limiting QC for the pair {∂xψ0,−∂xψ} at (x̄, ȳ, ū)

is implied by the normal qualification condition

N
(
(x̄, ȳ, ū); gph (∂xψ0)

)
∩
[
−N

(
(x̄, ȳ, ū); gph (−∂xψ)

)]
= {0},

which is equivalent to the qualification condition: (x∗, y∗, w) = (0, 0, 0) is the only triple

satisfying the inclusion

(x∗, y∗) ∈ ∂2
N,xψ0(x̄, ȳ, ū)(w)

⋂[
− ∂2

N,xψ(x̄, ȳ,−ū)(w)
]
. (3.17)

Furthermore, if ψ0 is C2 around (x̄, ȳ) then the latter is simplified to:

[
0 ∈ ∇2ψ0(x̄, ȳ)∗(w, 0) + ∂2

N,xψ
(
x̄, ȳ,−∇xψ0(x̄, ȳ)

)
(w)
]

=⇒ w = 0. (3.18)

Now we focus our attention to the case when X, Y are arbitrary Asplund spaces and

the cost function ψ0 : X × Y → IR is C2. The stationary point multifunction to the param-

eterized minimization problem (3.3) becomes (3.2), which has the following coderivative

estimate:

Corollary 3.16 Let the cost function ψ0 : X × Y → IR be C2 and x̄ ∈ S(ȳ) for the sta-

tionary point multifunction S given in (3.2). Assume that the graph of ∂xψ is norm-closed

around (x̄, ȳ,−∇xψ0(x̄, ȳ)), and that either dimX < ∞ or (∂xψ)−1 is strongly PSNC at
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(
−∇xψ0(x̄, ȳ), x̄, ȳ

)
. Assume also that the constraint qualification condition (3.18) is sat-

isfied. Then for all x∗ ∈ X∗ the normal coderivative of S has each image D∗NS(ȳ, x̄)(x∗)

contained in the set of all y∗ ∈ Y ∗ for which there exists w ∈ X∗∗ such that

(−x∗, y∗)−∇2ψ0(x̄, ȳ)∗(w, 0) ∈ ∂2
N,xψ

(
x̄, ȳ,−∇xψ0(x̄, ȳ)

)
(w). (3.19)

Proof. Taking Remark 3.15 and Proposition 2.12 into account, the result follows from

Proposition 3.13. 4

We can combine the pointbased characterization of Lipschitz-like property for set-valued

mappings in Apslund space settings given in [34, Theorem 4.10] with the coderivative

estimate in Corollary 3.16 to deduce the following sufficient condition for the Lipschitz-like

property of the general stationary point multifuction (3.2).

Corollary 3.17 Let S be the stationary point multifunction (3.2) with cost function ψ0 is

C2, and let x̄ ∈ S(ȳ). Assume that the graph of ∂xψ is norm-closed around
(
x̄, ȳ,−∇xψ0(x̄, ȳ)

)
and SNC at this point. If the following qualification conditions

[
(0, y∗)−∇2ψ0(x̄, ȳ)∗(w, 0) ∈ ∂2

N,xψ
(
x̄, ȳ,−∇xψ0(x̄, ȳ)

)
(w)
]

=⇒ y∗ = 0, (3.20)

[
(0, 0) ∈ ∇2ψ0(x̄, ȳ)∗(w, 0) + ∂2

N,xψ
(
x̄, ȳ,−∇xψ0(x̄, ȳ)

)
(w)
]

=⇒ w = 0 (3.21)

are satisfied then S is Lipschitz-like around (ȳ, x̄).

Proof. It is clear that all assumptions in Corollary 3.16 are satisfied. Thus, the normal

coderivative of S is estimated by (3.19). Using the QC (3.20), we obtain

D∗NS(ȳ, x̄)(0) =
{

0
}
,

which implies

D∗MS(ȳ, x̄)(0) =
{

0
}
.



51

To show that S is Lipschitz-like around (ȳ, x̄), it remains to verify that S is PSNC at this

point. Indeed, we will show that S is SNC under the assumptions made. Observe that

(y, x) ∈ gphS ⇐⇒ (x, y) ∈ ker (∇xψ0 + ∂xψ) = dom
(
∇xψ0 ∩ (−∂xψ)

)
.

Thus, due to [32, Proposition 4.1], the set gphS is SNC at (ȳ, x̄) if the intersection mapping

∇xψ0 ∩ (−∂xψ) is PSNC at (x̄, ȳ). The latter means that the intersection set

gph
(
∇xψ0 ∩ (−∂xψ)

)
= gph (∇xψ) ∩ gph (−∂xψ) ⊂ X × Y ×X∗

is PSNC at
(
x̄, ȳ,∇xψ0(x̄, ȳ)

)
with respect to X × Y . Employing [34, Corollary 3.80] on

PSNC property of set intersections in product spaces, the PSNC property of ∇xψ0∩(−∂xψ)

is ensured if ∂xψ is SNC around
(
x̄, ȳ,−∇ψ0(x̄, ȳ)

)
, and the pair

{
gph∇xψ0, gph (−∂xψ)

}
satisfies the mixed qualification condition at

(
x̄, ȳ,∇xψ0(x̄, ȳ)

)
relative to X∗. It is easy to

derive directly from definitions that the mixed qualification condition for the set systems

∇xψ0 ∩ (−∂xψ) is implied by the qualification condition (3.21). This completes the proof

of the corollary. 4

Example 3.18 Consider the problem

Minimize
1

2

∞∑
k=1

x2
k −

∞∑
k=1

yk−1

(k − 1)!
xk

over x = {xk} ∈ `2 satisfying x1 ≤ 0,

which conforms to our model by defining

ψ0(x, y) : =
1

2

∞∑
k=1

x2
k −

∞∑
k=1

yk−1

(k − 1)!
xk,

ψ(x, y) : =


0 if x1 ≤ 0,

∞ otherwise.



52

Then ψ0 is C2, and

∇xψ0(x, y) = (x1 − 1, x2 − y, x3 −
y2

2!
, x4 −

y3

3!
, · · · ),

∇2ψ0(x, y)∗(w, 0) =
(
w,−

∞∑
k=2

yk−2

(k − 2)!
wk

)
, for any w ∈ `2.

Also,

∂ψ(x, y) = ∂∞ψ(x, y) = N(x1; IR−)×
{

(0, 0, 0, · · · )
}
.

The stationary point multifunction is given by

S(y) =
{
x = (x1, x2, x3, · · · ) ∈ `2

∣∣∣ 0 ∈ ∇xψ0(x, y) + ∂xψ(x, y)
}

=
{
x = (x1, x2, x3, · · · ) ∈ `2

∣∣∣ x1 ∈ 1−N(x1; IR−), xk =
yk−1

(k − 1)!
for k ≥ 2

}
.

It is easy to see that

N(x1, IR−) =



∅ if x1 > 0,

[0,∞) if x1 = 0,

0 if x1 < 0.

Thus, x1 ∈ 1−N(x1; IR−) implies x1 = 0 (and hence ∂ψ(x, y) = ∂∞ψ(x, y) is the singleton

{(1, 0, 0, · · · ) ∈ `2}). The mapping S : IR→ `2 is single-valued, which is given by

S(y) = (0, y,
y2

2!
,
y3

3!
, · · · ).

Take any ȳ ∈ IR and x̄ = (0, ȳ,
ȳ2

2!
,
ȳ3

3!
, · · · ) ∈ S(ȳ), it follows directly from formula of S

that

D∗NS(ȳ, x̄)(x∗) =
{ ∞∑
k=2

ȳk−2

(k − 2)!
x∗k

}
, for any x∗ ∈ `2.

On the other hand, it is easy to see that gph (∂xψ) is normed-closed in `2 × IR× `2 around(
x̄, ȳ, (1, 0, 0, 0, · · · )

)
and ∂xψ is strongly PSNC at this point. We can also check that
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(∇xψ0)−1 is PSNC at
(
∇xψ0(x̄, ȳ), x̄, ȳ

)
. It remains to justify that the qualification in

Corollary 3.16 is satisfied. In fact, for x̄ ∈ S(ȳ) we have

−∇xψ0(x̄, ȳ) = (1, 0, 0, · · · ),

and

∂2
N,xψ

(
x̄, ȳ,−∇xψ0(x̄, ȳ)

)
(w) = D∗NN(·; IR−)(0, 1)(w1)× {(0, 0, 0, · · · )}

for w = {wk} ∈ `2. Thus, the inclusion

0 ∈ ∇2ψ0(x̄, ȳ)∗(w, 0) + ∂2
N,xψ

(
x̄, ȳ,−∇xψ(x̄, ȳ)

)
(w)

implies wk = 0 for all k ≥ 2, and −w1 ∈ D∗NN(·, IR−)(0, 1)(w1). The latter inclusion

results in w1 = 0, since

D∗NN(·, IR−)(0, 1)(w1) =


IR if w1 = 0,

∅ if w1 6= 0.

Therefore, Corollary 3.16 claims that D∗NS(ȳ, x̄)(x∗) is contained in the set

{
y∗ ∈ Y ∗

∣∣ ∃w ∈ `2 such that
(
− x∗ −∇2

xxψo(x̄, ȳ)∗(w), y∗ −∇2
xyψo(x̄, ȳ)∗(w)

)
∈

∂2
N,xψ

(
x̄, ȳ,−∇xψ0(x̄, ȳ)

)
(w)
}
.

In fact, the latter set also reduces to single point
{∑∞

k=2

ȳk−2

(k − 2)!
x∗k

}
. Thus, in this case

we actually have the exact formula for the coderivative of stationary point multifunction.

3.2 Coderivative Analysis of Composite Constraint Functions

In this section, we consider further the case when the constraint function ψ is strongly

amenable in x at x̄ with compatible parameterization in y at ȳ. The following result holds:
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Corollary 3.19 For the stationary point multifunction (3.2) with (ȳ, x̄) ∈ gphS, assume

that the constraint function ψ is strongly amenable in x at x̄ with compatible parame-

terization in y at ȳ, and that the second-order qualification condition (2.20) holds with

mappings ϕ : IRm → IR, g : X × Y → IRm from the composite representation of ψ and

ū = −∇xψ0(x̄, ȳ). If w = 0 is the only solution to the inclusion

0 ∈ ∇2ψ0(x̄, ȳ)∗(w, 0) +
⋃

p̄∈∂ϕ(g(x̄,ȳ))
∇xg(x̄,ȳ)∗p̄=−∇xψ0(x̄,ȳ)

[
∇2〈p̄, g〉(x̄, ȳ)∗(w, 0)

+∇g(x̄, ȳ)∗∂2ϕ(g(x̄, ȳ), p̄)(∇xg(x̄, ȳ)∗∗w)
]
,

then the normal coderivative of S has each image D∗NS(ȳ, x̄)(x∗) contained in the set of

y∗ ∈ Y ∗ for which there exists w ∈ X∗∗ such that

(−x∗, y∗)−∇2ψ0(x̄, ȳ)∗(w, 0) ∈
⋃

p̄∈∂ϕ(g(x̄,ȳ))
∇xg(x̄,ȳ)∗p̄=−∇xψ0(x̄,ȳ)

[
∇2〈p̄, g〉(x̄, ȳ)∗(w, 0)

+∇g(x̄, ȳ)∗∂2ϕ(g(x̄, ȳ), p̄)(∇xg(x̄, ȳ)∗∗w)
]
, (3.22)

provided that either ∇ψ0 is SNC at
(
x̄, ȳ,∇ψ0(x̄, ȳ)

)
(which holds, in particular, when

dimX <∞) or (∂xψ)−1 is strongly PSNC at
(
−∇xψ0(x̄, ȳ), x̄, ȳ

)
.

Proof. We check that the graph of ∂xψ is norm-closed around
(
x̄, ȳ,−∇xψ0(x̄, ȳ)

)
. Indeed,

since ψ is strongly amenable in x at x̄ we have the following representation

∂xψ(x, y) = ∇xg(x, y)∗∂ϕ
(
g(x, y)

)
for all (x, y) near (x̄, ȳ). Therefore, the closedness of gph ∂xψ around

(
x̄, ȳ,−∇xψ0(x̄, ȳ)

)
follows from the twice differentiability of g and the closedness of gph ∂ϕ, which is implied

by the convexity of ϕ. Employing Proposition 3.13 together with Theorem 2.22 under the

assumptions made, we obtain the result. 4



55

On the other hand, we can incorporate multipliers into our analysis of stationary points

in the following way: A multiplier associated with the stationary point x ∈ X is any

vector p ∈ ∂ϕ(g(x, y)) for which 0 = ∇xψ0(x, y) + ∇xg(x, y)∗p. The sets of stationary

point-multiplier pairs associated with each parameter define the stationary point-multipler

multifunction

SM(y) :=
{

(x, p) ∈ X × IRm
∣∣∣ p ∈ ∂ϕ(g(x, y)) and 0 = ∇xψ0(x, y) +∇xg(x, y)∗p

}
.

This multifunction can be rewritten in the form

SM(y) :=
{

(x, p) ∈ X × IRm
∣∣∣ 0 ∈ (∇xψ0(x, y) +∇xg(x, y)∗p,−g(x, y)

)
+{0} × (∂ϕ)−1(p)

}
, (3.23)

which is exactly the kind of multifunction covered by [32, Corollary 4.3] with

F (x, p, y) :=
(
∇xψ0(x, y) +∇xg(x, y)∗p,−g(x, y)

)
(3.24)

and

Q(x, p, y) := {0} × (∂ϕ)−1(p). (3.25)

As a result, we have the following corollary.

Corollary 3.20 For the stationary point-multiplier mapping (3.23) with (x̄, p̄) ∈ SM(ȳ),

if the constraint qualification holds that (w, v) = (0, 0) is the only solution to
0 = ∇2ψ0(x̄, ȳ)∗(w, 0) +∇2〈p̄, g〉(x̄, ȳ)∗(w, 0) +∇g(x̄, ȳ)∗v

v ∈ ∂2ϕ
(
g(x̄, ȳ), p̄

)(
∇xg(x̄, ȳ)∗∗w

)
then the coderivative has each image D∗SM(ȳ, x̄, p̄)(x∗, q) contained in the set of all y∗ ∈ Y ∗

for which there exists w ∈ X∗∗ with

(−x∗, y∗)−∇2ψ0(x̄, ȳ)∗(w, 0) ∈ ∇2〈p̄, g〉(x̄, ȳ)∗(w, 0)

+ ∇g(x̄, ȳ)∗∂2ϕ
(
g(x̄, ȳ), p̄

)(
∇xg(x̄, ȳ)∗∗w + q

)
.
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provided that (∂ϕ)−1 is closed graph around p̄ and the set-valued mapping F defined by

(3.24) is SNC at (x̄, p̄, ȳ).

Proof. Employing [32, Corollary 4.3], the coderivative of the stationary point-multiplier

mapping (3.23) has each image D∗SM(ȳ, x̄, p̄)(x∗, q) contained in the set of all y∗ ∈ Y ∗ for

which there exists (w, v) ∈ X∗∗ × IRm with

(−x∗,−q, y∗) ∈ D∗NF (x̄, p̄, ȳ)(w, v) +D∗NQ
(
x̄, p̄, ȳ, 0, g(x̄, ȳ)

)
(w, v).

Since F : X × IRm × Y → X∗ × IRm is C1, and thus strictly differentiable at (x̄, p̄, ȳ), its

normal coderivative has each image given by

D∗NF (x̄, p̄, ȳ)(w, v) =
{
∇F (x̄, p̄, ȳ)∗(w, v)

}

=




∇2
xxψ0(x̄, ȳ)∗w +∇2

xx〈p̄, g〉(x̄, ȳ)∗(w)−∇xg(x̄, ȳ)∗v

∇xg(x̄, ȳ)∗∗w

∇2
xyψ0(x̄, ȳ)∗w +∇2

xy〈p̄, g〉(x̄, ȳ)∗(w)−∇yg(x̄, ȳ)∗v


 .

Also, the coderivative of the multifunction Q in this case satisfies

D∗NQ(x̄, p̄, ȳ, 0, g(x̄, ȳ))(w, v) =


0

D∗N(∂ϕ)−1
(
p̄, g(x̄, ȳ)

)
(v)

0

 .
Taking into account the fact that

−q −∇xg(x̄, ȳ)∗∗w ∈ D∗N(∂ϕ)−1
(
p̄, g(x̄, ȳ)

)
(v)⇐⇒

−v ∈ ∂2ϕ
(
g(x̄, ȳ), p̄

)(
q +∇xg(x̄, ȳ)w

)
,

the result follows. 4

3.3 Sensitivity Analysis under Canonical Perturbations

Our sensitivity analysis applies only when certain important constraint qualifications are

satisfied. In this section, we focus our attention on a broad and important model when the
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constraint qualifications are automatic. Everything revolves around the following result

that covers implicit mappings defined by canonical perturbations z̃.

Corollary 3.21 Let S : Y × Z → X be an implicit multifunction of the form

S(y, z̃) :=
{
x ∈ X

∣∣ z̃ ∈ f(x, y) +Q(x, y)
}

(3.26)

with f : X×Y → Z a C1 mapping and Q : X×Y →→ Z a multifuction with closed graph, and

let (ȳ, z̄, x̄) ∈ gphS. Suppose that either f is SNC at (x̄, ȳ, z̄) (which holds, in particular,

when dimZ <∞) or Q−1 is strongly PSNC at
(
z̄− f(x̄, ȳ), x̄, ȳ

)
. Then the coderivative of

S at (ȳ, z̄, x̄) has each image D∗NS(ȳ, z̄, x̄)(x∗) contained in the set

{
(y∗,−z∗) ∈ Y ∗ × Z∗

∣∣ (−x∗, y∗) ∈ ∇f(x̄, ȳ)∗z∗ +D∗NQ(x̄, ȳ, z̄ − f(x̄, ȳ))(z∗)
}
.

Proof. Putting ỹ := (y, z̃), and

f̃(x, ỹ) := f(x, y)− z̃,

Q̃(x, ỹ) := Q(x, y),

the result follows directly from [32, Corollary 4.3] applied to f̃ and Q̃ since the coderivatives

of these mappings satisfy

∇f̃(x̄, ȳ, z̄)∗p =
(
∇f(x̄, ȳ)∗p,−p

)
,

D∗NQ̃(x̄, ȳ, z̄, z̄ − f(x̄, ȳ))(p) =
(
D∗NQ

(
x̄, ȳ, z̄ − f(x̄, ȳ)

)
(p), 0

)
,

for any p ∈ Z∗. 4

Canonical perturbations arise in our optimization model as a linear ”tilt” term (param-

eterized by u ∈ X∗) in the object function and a constant shift (v ∈ IR) in the constraint

function as follows:

Minimize ψ0(x, y)− 〈u, x〉+ ϕ(g(x, y) + v) over x ∈ X, (3.27)
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where ψ0 is C2 as before, and ϕ ◦ g is a corresponding composite representation of the con-

straint function ψ, which is strongly amenable in x at x̄ with compatible parameterization

in y at ȳ. With the parameterization thus enriched by the canonical perturbations, the

corresponding stationary point-multiplier multifunction becomes

SM(y, u, v) :=
{

(x, p) ∈ X × IRm
∣∣∣ p ∈ ∂ϕ(g(x, y) + v

)
,

u = ∇xψ0(x, y) +∇xg(x, y)∗p},

which can be rewritten in the form

SM(y, u, v) :=
{

(x, p) ∈ X × IRm
∣∣∣ (u, v) ∈

(
∇xψ0(x, y) +∇xg(x, y)∗p,−g(x, y)

)
+ {0} × (∂ϕ)−1(p)

}
. (3.28)

Thus, the following results are implied from Corollary 3.21.

Corollary 3.22 Let (x̄, p̄) ∈ SM(ȳ, ū, v̄) with the stationary point-multiplier mapping SM

(3.28) associated with the canonically perturbed optimization problem (3.27). Assume that

dimX <∞ and that (∂ϕ)−1 is closed-graph near
(
p̄, g(x̄, ȳ)+v̄

)
. The normal coderivative of

SM has each image D∗NSM
(
(ȳ, ū, v̄), (x̄, p̄)

)
(u∗, v′) contained in the set of all (y∗,−u∗, v′) ∈

Y ∗ ×X∗∗ × IRm such that

v′ ∈ ∂2ϕ
(
v̄ + g(x̄, ȳ), p̄

)(
p′ +∇xg(x̄, ȳ)∗u∗

)
, p′ ∈ IRm,

and for which

(−x∗, y∗)−∇2ψ0(x̄, ȳ)∗(u∗, 0) = ∇2〈p̄, g〉(x̄, ȳ)∗(u∗, 0) +∇g(x̄, ȳ)∗v′.

Proof. The result follows directly from Corollary 3.21 with

f(x, p, y) =
(
∇xψ0(x, y) +∇xg(x, y)∗p, −g(x, y)

)
,

Q(x, p, y) = {0} × (∂ϕ)−1(p),
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and hence,

∇f(x̄, p̄, ȳ)∗(u∗,−v′) =


∇2
xxψ0(x̄, ȳ)∗u∗ +∇2

xx〈p̄, g〉(x̄, ȳ)∗u∗ +∇xg(x̄, ȳ)∗v′

∇xg(x̄, ȳ)∗u∗

∇2
xyψ0(x̄, ȳ)∗u∗ +∇2

xy〈p̄, g〉(x̄, ȳ)∗u∗ +∇yg(x̄, ȳ)∗v′

 ,

D∗NQ
(
(x̄, p̄, ȳ), (ū, v̄)

)
(u∗,−v′) =


0

D∗N(∂ϕ)−1
(
p̄, v̄ + g(x̄, ȳ)

)
(−v′)

0

 ,

where the coderivative of (∂g)−1 is related to the second-order subdifferential of g by

−p′ −∇xg(x̄, ȳ)∗u∗ ∈D∗N(∂ϕ)−1
(
p̄, v̄ + g(x̄, ȳ)

)
(−v′)

⇐⇒ v′ ∈ ∂2ϕ
(
v̄ + g(x̄, ȳ), p̄

)(
p′ +∇xg(x̄, ȳ)∗u∗

)
.

4
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Chapter 4

Coderivative Analysis of Quasi-Variational Inequalities in Asplund Spaces

In this chapter, we consider the so-called parameterized quasi-variational inequalities (QVIs)

of the following type: Given a parameter y ∈ Y , find a decision vector x ∈ Γ(x, y) ⊂ X

such that

〈g(x, y), u− x〉 ≥ 0 for all u ∈ Γ(x, y) (4.1)

where g : X × Y → X∗ is a single-valued continuously differentiable function, while Γ :

X×Y →→ X is a set-valued mapping. We always assume that the spaces under consideration

are Asplund spaces, and that the mapping Γ is of closed graph and take convex values

Γ(x, y). The solution map to (4.1) is defined by

S(y) :=
{
x ∈ X

∣∣ 〈g(x, y), u− x〉 ≥ 0 whenever u ∈ Γ(x, y)
}
, y ∈ Y.

Using the standard definition of the normal cone to convex sets, we can rewrite the QVI

(4.1) in Robinson’s form of the generalized equation (GE):

0 ∈ g(x, y) +NΓ(x,y)(x), x ∈ Γ(x, y). (4.2)

The solution map to the QVI (4.1) written in the GE form (4.2) is given by

S(y) =
{
x ∈ X

∣∣ 0 ∈ g(x, y) +NΓ(x,y)(x)
}
. (4.3)

4.1 New Rules of Coderivative Calculus

Throughout this section, we assume that the set-valued mapping Γ generating the QVI in

(4.1) admits the representation

Γ(x, y) :=
{
u ∈ X

∣∣ q(x, y, u) ∈ Θ
}

(4.4)

where q : X×Y ×X → Z is twice continuously differentiable around the points in question,

and where Θ is a closed convex subset of Z such that intΘ 6= ∅. In addition, q and Θ have

to satisfy certain requirements ensuring that Γ in (4.4) is convex-valued, which is essential
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to ensure the strong amenable structure in the representation of NΓ(x,y)(z). The convex-

valuedness property of Γ(x, y) holds, e.g., if Θ is a convex cone with vertex at 0, and if

q(x, y, ·) is Θ-convex for all (x, y) ∈ X × Y . Furthermore, we impose the basic constraint

qualification (CQ) condition[
∇q(x̄, ȳ, x̄)∗z∗ = 0 and z∗ ∈ NΘ

(
q(x̄, ȳ, x̄)

)]
=⇒ z∗ = 0. (4.5)

We will study the coderivative of the set-valued mapping (x, y) →→ NΓ(x,y)(x) in the

generalized equation form (4.2) of the QVI under consideration.

It follows from the structure of Γ in (4.4) that NΓ(x,y) admits the composite subdiffer-

ential representation

NΓ(x,y)(u) = ∂uψ(x, y, u) with ψ := δΘ ◦ q.

Since Θ is convex and q is smooth, the multifunction (x, y, u)→→ NΘ

(
q(x, y, u)

)
is closed-

graph in norm×weak∗ topology of (X×Y ×X)×Z∗. Thus, the basic CQ (4.5) is persistent

in a neighborhood of (x̄, ȳ, x̄) and the composite function ψ is strongly amenable around

(x̄, ȳ, x̄). It then follows from Theorem 2.9 that

NΓ(x,y)(u) = ∂uψ(x, y, u) = ∇uq(x, y, u)∗NΘ

(
q(x, y, u)

)
.

Therefore, we can replace the GE (4.2) by

0 ∈ g(x, y) +∇3q(x, y, x)∗NΘ

(
q(x, y, x)

)
(4.6)

considered for all (x, y, u) around (x̄, ȳ, x̄).

We will focus our attention on the multivalued term in (4.6) denoted by

Q(x, y) := ∇3q(x, y, x)∗NΘ

(
q(x, y, x)

)
. (4.7)

This set-valued mapping Q : X × Y →→ X∗ is closed-graph in norm×weak∗ topology of

(X × Y ) × X∗ due to the robustness of the normal cone NΘ when Θ is convex and the

continuity of q.

Let us present an upper estimate for the basic normal cones of a special form of sets,

which is essential to establish a coderivative calculus for set-valued mappings of type (4.7).
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Theorem 4.1 Let M : Y →→ X be the set-valued mapping given by

M(y) =
{
x ∈ C

∣∣ g(x) + y ∈ D
}

where C and D are closed subsets of X and Y , respectively, and g : X → Y is strictly

differentiable at x̄. Assume that either dimY < ∞ or D is SNC at g(x̄), and that M is

calm at (0, x̄). Then we have the following inclusion

NM(0)(x̄) ⊂
⋃

y∗∈ND(g(x̄))

∇g(x̄)∗(y∗) +NC(x̄). (4.8)

Proof. Letting f : Y × X → Y be the function given by f(y, x) := g(x) + y, then f is

PSNC at (0, x̄). In addition, f is SNC at this point if dimY <∞. We rewrite M as

M(y) =
{
x ∈ X

∣∣ f(y, x) ∈ D, (y, x) ∈ Y × C
}
.

It is easy to see that for function f defined above we have kerD∗Nf(0, x̄) = {0}. Thus, the

coderivative estimate for constraint systems in [34, Theorem 4.32] gives

D∗NM(0, x̄)(x∗) ⊂
{
y∗ ∈ Y ∗

∣∣ (y∗,−x∗) ∈ D∗Nf(0, x̄) ◦ND(g(x̄)) +NY×C(0, x̄)
}

=
{
y∗ ∈ ND

(
g(x̄)

)∣∣− x∗ ∈ ∇g(x̄)∗y∗ +NC(x̄)
}
. (4.9)

Take any u∗ ∈ NM(0)(x̄). Since M(0) = C ∩ g−1(D) is closed, there exist, by [34,

Theoem 1.97], λ > 0 and x∗ ∈ ∂dM(0)(x̄) such that u∗ = λx∗. Then, for εk ↓ 0, there are

sequences xk ∈M(0), x∗k ∈ ∂̂dM(0)(xk) and rk ↓ 0 satisfying xk → x̄, x∗n → x∗, and

dM(0)(x)− 〈x∗k, x− xk〉 ≥ −εk‖x− xk‖, for all x ∈ B(xk, rk).

Let L be the modulus of calmness of M at (0, x̄). We find r > 0 and η > 0 satisfying

dM(0)(x) ≤ L‖y‖ whenever x ∈ B(x̄, r) ∩M(y), for y ∈ B(0, η).

Thus, for k sufficiently large we have

L‖y‖+ εk‖x− xk‖ − 〈x∗k, x− xk〉 ≥ ‖x− xk‖ for all x ∈ B(xk, rk) ∩M(y), y ∈ B(0, η).
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This yields

L‖y‖+ εk‖x− xk‖ − 〈x∗k, x− xk〉+ δ
(
(y, x); gphM

)
≥ 0 for all x ∈ B(xk, rk), y ∈ B(0, η).

Therefore, (0, xk) is a local minimum of the function

ϕ(y, x) := L‖y‖+ εk‖x− xk‖ − 〈x∗k, x− xk〉+ δ
(
(y, x); gphM

)
.

Hence, by the non-smooth version of Fermat’s rule in [34, Proposition 1.114], we get

0 ∈ ∂̂ϕ(0, xk).

Evoking the semi-Lipschitzian sum rule for Fréchet subdifferentials in [34, Theorem 2.33]

we find for each k a point (yk, uk) ∈ gphM such that ‖yk‖+ ‖uk − xk‖ < 1
k

and

∂̂ϕ(0, xk) ⊂ LIBY ∗ × {0}+ {0} × εkIBX∗ − (0, x∗k) + N̂gphM
(yk, uk) +

2

k

(
IBY ∗ × IBX∗

)
.

It follows that (
Ly∗k −

2

k
v∗k, u

∗
k − εnx∗k −

2

k
w∗k
)
∈ N̂gphM

(yk, uk),

for some y∗k, v
∗
k ∈ IBY ∗ and some x∗k, w

∗
k ∈ IBX∗ . Since BY ∗ is sequentially weak∗-compact,

we can assume (by taking a subsequence if necessary) that Ly∗
w∗→ y∗ ∈ LIB∗Y as k → ∞.

Letting k →∞ in the latest inclusion we get

(y∗, x∗) ∈ NgphM
(0, x̄),

which means y∗ ∈ D∗NM(0, x̄)(−x∗). Taking (4.9) into account we obtain

y ∈ ND

(
g(x̄)

)
and x∗ ∈ ∇g(x̄)∗y∗ +NC(x̄).

Thus, u∗ = λx∗ ∈ ∇g(x̄)∗(λy∗) +NC(x̄) for λy∗ ∈ ND

(
g(x̄)

)
. Inclusion (4.8) follows. 4

We are now ready to establish coderivative calculus for multifunction of the special type

(4.7). For simplicity, we use the notations

r(x, y) := q(x, y, x) and p(x, y) := ∇3q(x, y, x).
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Theorem 4.2 Under the standing assumptions above, suppose that the basic CQ (4.5) is

strengthened as [
p(x̄, ȳ)∗z∗ = 0 and z∗ ∈ NΘ

(
r(x̄, ȳ)

)]
=⇒ z∗ = 0 (4.10)

and let x̄∗ ∈ Q(x̄, ȳ). Then the following assertions hold:

(i) For all x∗∗ ∈ X∗∗ we have the coderivative upper estimate

D∗NQ(x̄, ȳ, x̄∗) ⊂
⋃

z∗∈NΘ(r(x̄,ȳ))
p(x̄,ȳ)∗z∗=x̄∗

[(
∇(x,y)p(x̄, ȳ)∗z∗

)∗
x∗∗

+D∗N(NΘ ◦ r)(x̄, ȳ, z∗)
(
p(x̄, ȳ)∗∗x∗∗

)]
.

(ii) Define the set-valued mapping M : Z × Z∗ →→ X × Y × Z∗ by

M(ν, ν∗) :=
{

(x, y, z∗) ∈ X × Y × Z∗
∣∣ (r(x, y) + ν, z∗ + ν∗

)
∈ gphNΘ

}
, (4.11)

and assume that it is calm at the points (0, 0, x̄, ȳ, z∗) satisfying

z∗ ∈ NΘ

(
r(x̄, ȳ)

)
and p(x̄, ȳ)∗z∗ = x̄∗. (4.12)

Assume further that either dimZ < ∞ or NΘ is SNC at all points
(
r(x̄, ȳ), z∗

)
satisfying

(4.12). Then for all x∗∗ ∈ X∗∗ we have the following inclusion

D∗NQ(x̄, ȳ, x̄∗)(x∗∗) ⊂
⋃

z∗∈NΘ(r(x̄,ȳ))
p(x̄,ȳ)∗z∗=x̄∗

[(
∇(x,y)p(x̄, ȳ)∗z∗

)∗
x∗∗

+∇r(x̄, ȳ)∗D∗NNΘ(r(x̄, ȳ), z∗)
(
p(x̄, ȳ)∗∗x∗∗

)]
. (4.13)

Proof. (i) We represent the multifunction Q under consideration in (4.7) as the composi-

tion

Q(x, y) = (f ◦ F )(x, y) (4.14)
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of a single-valued mapping f : X × Y × Z∗ → X∗ defined by

f(x, y, z∗) = p(x, y)∗z∗ (4.15)

and a set-valued mapping F : X × Y → X × Y × Z∗ defined by

F (x, y) =
(
x, y,NΘ(r(x, y))

)
. (4.16)

Put

G(x, y, x∗) : = F (x, y) ∩ f−1(x∗)

=
{

(x, y, z∗) ∈ X × Y × Z∗
∣∣ z∗ ∈ NΘ

(
r(x, y)

)
, and p(x, y)∗z∗ = x∗

}
.

In order to employ the coderivative chain rule in [34, Theorem 1.65] for the composition

f ◦F , the only assumption that needs checking is that G is inner semicompact at (x̄, ȳ, x̄∗).

In fact, suppose the contrary, there exists a sequence (xk, yk, x
∗
k) → (x̄, ȳ, x̄∗) such that

for each k there is z∗k ∈ NΘ

(
r(xk, yk)

)
satisfying p(xk, yk)

∗z∗k = x∗k and ‖z∗k‖ ≥ k. Put

d∗k =
z∗k
‖z∗k‖

, then ‖d∗k‖ = 1. By passing to a subsequence if necessary, we find d∗ ∈ Z∗ such

that d∗k
w∗→ d∗. The continuity of r and p and the robustness of the normal cone NΘ(·) yield

d∗ ∈ NΘ

(
r(x̄, ȳ)

)
and p(x̄, ȳ)∗d∗ = 0.

This implies, by the constraint qualification condition (4.10), that d∗ = 0, which means

d∗k
w∗→ 0. On the other hand, since Θ is convex with intΘ 6= ∅ it is BSNC at r(x̄, ȳ). Hence,

‖d∗k‖ → 0. This is a contradiction as ‖d∗k‖ = 1.

Employing the aforementioned chain rule in [34, Theorem 1.65], we obtain

D∗N(f ◦ F )(x̄, ȳ, x̄∗)(x∗∗) ⊂
⋃

z∗∈NΘ(r(x̄,ȳ))
p(x̄,ȳ)∗z∗=x̄∗

D∗NF
(
(x̄, ȳ), (x̄, ȳ, z∗)

)
◦ ∇f(x̄, ȳ, x̄∗)∗(x∗∗).

Furthermore, since p is smooth around (x̄, ȳ) due to the twice continuously differentiability

of q, we get

∇f(x̄, ȳ, z∗)∗(x∗∗) =
(
∇x,y

(
p(x̄, ȳ)∗z∗

)∗
x∗∗, p(x̄, ȳ)∗∗x∗∗

)
.
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To justify the coderivative upper estimate in (i), it remains to observe that for any (u∗, v∗, z∗∗)

in X∗ × Y ∗ × Z∗∗ we have the equality

D∗NF
(
(x̄, ȳ), (x̄, ȳ, z∗)

)
(u∗, v∗, z∗∗) = (u∗, v∗) +D∗N(NΘ ◦ r)(x̄, ȳ, z∗)(z∗∗)

due to the coderivative sum rule from [34, Theorem 1.62].

(ii) Next, we show that the coderivative upper estimate in (ii) follows from the one in (i)

under additional calmness assumption made. The difference between these two estimates

is that instead of the normal coderivative of the composition (NΘ ◦ f) in (i) we obtain the

estimate in (ii) via the gradient of r and the coderivative of NΘ separately, which is much

more convenient for further applications. To proceed, consider the set-valued mapping

NΘ ◦ r and observe that

gph (NΘ ◦ r) =
{

(x, y, z∗) ∈ X × Y × Z∗
∣∣ (r(x̄, ȳ), z∗

)
∈ gphNΘ

}
.

Since gph (NΘ ◦ r) = M(0, 0) for the mapping M in (4.11), employing Theorem 4.1 under

the calmness assumption for M and the SNC assumption for gphNΘ, we get

Ngph(NΘ◦r)(x̄, ȳ, z
∗) ⊂

∇r(x̄, ȳ)∗ 0

0 E

 ◦NgphNΘ

(
r(x̄, ȳ), z∗

)
,

which is equivalent to the inclusion

D∗N(NΘ ◦ r)(x̄, ȳ, z∗) ⊂ ∇r(x̄, ȳ)∗D∗NNΘ

(
r(x̄, ȳ), z∗

)
(z∗∗)

for all z∗∗ ∈ Z∗∗. Substituting this in to the coderivative upper estimate for Q in (i) we

arrive at the one in (ii) and complete the proof of the theorem. 4

Observing that D∗NNΘ = D∗N(∂δΘ) is the second-order subdifferential of the indicator

function of Θ, the final upper estimate of Theorem (4.2) contains second-order information

on the data involved. Moreover, the calmness assumption in the second part of that theorem

automatically holds under the surjectivity of ∇r(x̄, ȳ)∗ imposed in the following corollary:

Corollary 4.3 In addition to the first-order CQ (4.5), assume that NΘ is SNC at all points(
r(x̄, ȳ), z∗

)
for z∗ satisfying (4.12), and that ∇r(x̄, ȳ) is surjective. Then the coderivative

upper estimate (4.13) is satisfied.
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Proof. We need to check that the surjectivity of ∇r(x̄, ȳ) implies the calmness requirement

of Theorem 4.2.

As mentioned previously, the calmness property of a set-valued mapping at a reference

point is automatic when the mapping is Lipschitz-like around the point. The latter prop-

erty is characterized via the coderivative criterion in [34, Theorem 4.10]. Employing that

criterion, we need to check that for all z∗ satisfying (4.12) the set-valued mapping M in

(4.11) is PSNC at the points (0, 0, x̄, ȳ, z∗) and

D∗M(0, x̄, ȳ, z∗)(0) = {0}.

Putting

h(ν, ν∗, x, y, z∗) :=
(
r(x, y) + ν, z∗ + ν∗

)
for (ν, ν∗, x, y, z∗) ∈ Z × Z∗ ×X × Y × Z∗, we have the representation

gphM = h−1(gphNΘ).

For any z∗ satisfying (4.12), gphNΘ is SNC at
(
r(x̄, ȳ), z∗

)
and h is C1 around (0, 0, x̄, ȳ, z∗)

with surjective derivative ∇h(0, 0, x̄, ȳ, z∗) due to the surjectivity of ∇r(x̄, ȳ), which implies

kerD∗Nh(0, 0, x̄, ȳ, z∗) = ker∇h(0, 0, x̄, ȳ, z∗)∗ = {(0, 0)}.

Thus, the SNC property of inverse images in [34, Theorem 3.84] implies the SNC property

of gphM at (0, 0, x̄, ȳ, z∗) for all z∗ satisfying (4.12).

It remains to show that D∗M(0, 0, x̄, ȳ, z∗)(0, 0, 0) =
{

(0, 0)
}
. Indeed, the construction

of M in (4.11) is covered in [34, Theorem 4.31] on computing coderivatives of constraint

systems. Employing the result of this theorem, we obtain

D∗NM(0, 0, x̄, ȳ, z∗)(0, 0, 0) =
{

(s1, s2) ∈ Z∗ × Z∗∗
∣∣ ∃(t1, t2) ∈ NgphNΘ

(
r(x̄, ȳ), z∗

)
such that (s1, s2, 0, 0, 0) ∈ ∇h(0, 0, x̄, ȳ, z∗)∗(t1, t2)

}
,

which reduces to
{

(0, 0)
}

. We complete the proof of the corollary. 4
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4.2 Coderivatives of Solution Maps to QVIs

The main goal of this section is to derive upper estimates for the coderivative of the solution

map (4.3) to the initial QVI (4.1) with Γ(x, y) given in (4.4). The results obtained in what

follows are largely based on the coderivative estimates for the multivalued term (4.7) of

this QVI established in previous section via coderivative calculus.

To begin, we consider the parameter-dependent GE

0 ∈ g(x, y) +Q(x, y) (4.17)

with both single-valued term g : X × Y → X∗ and set-valued term Q : X × Y →→ X∗

depending on the parameter y ∈ Y , where g is smooth as in section one, while Q is an

arbitrarily set-valued mapping, which may not be in the special form (4.7). The following

proposition provides a coderivative upper estimate for the solution map to the parameter-

dependent GE (4.17) via the adjoint Jacobian of g and the coderivative of Q under the

appropriate calmness assumption.

Proposition 4.4 (coderivative of solution maps to parameter-dependent GEs)

Let (x̄, ȳ) satisfy the GE (4.17), and let

S(y) =
{
x ∈ X| 0 ∈ g(x, y) +Q(x, y)

}
be the solution map to this GE. Assume that g is continuously differentiable around (x̄, ȳ),

that Q is locally closed-graph around (x̄, ȳ) and SNC at this point, and that the set-valued

mapping Ξ : X × Y ×X∗ →→ X × Y defined by

Ξ(u, v, u∗) =
{

(x, y) ∈ X × Y
∣∣ (x+ u, y + v,−g(x, y) + u∗

)
∈ gphQ

}
(4.18)

is calm at (0, 0, 0, x̄, ȳ). Then for all x∗ ∈ X∗ one has the estimate

D∗NS(ȳ, x̄)(x∗) ⊂
{
y∗ ∈ Y ∗

∣∣∃x∗∗ ∈ X∗∗ with (−x∗, y∗) ∈ ∇g(x̄, ȳ)∗x∗∗

+D∗NQ
(
x̄, ȳ,−g(x̄, ȳ)

)
(x∗∗)

}
(4.19)
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Proof. Under the calmness assumption, it holds by Theorem 4.1 that

NΞ(0,0,0)(x̄, ȳ) ⊂

E 0 −∇xg(x̄, ȳ)∗

0 E −∇yg(x̄, ȳ)∗

 ◦NgphQ

(
x̄, ȳ,−g(x̄, ȳ)

)
.

Observing that for the solution map S to the GE (4.17) we have

(y, x) ∈ gphS ⇐⇒ (x, y) ∈ Ξ(0, 0, 0),

which implies

y∗ ∈ D∗NS(ȳ, x̄)(x∗) ⇐⇒ (−x∗, y∗) ∈ NΞ(0,0,0)(x̄, ȳ)

for any x∗ ∈ X∗. Hence, there is (u∗, v∗,−x∗∗) ∈ NgphQ

(
x̄, ȳ,−g(x̄, ȳ)

)
such that

(−x∗, y∗) =
(
u∗ +∇xg(x̄, ȳ)∗x∗∗, v∗ +∇yg(x̄, ȳ)∗x∗∗

)
= (u∗, v∗) +∇g(x̄, ȳ)∗x∗∗.

Taking into account that (u∗, v∗) ∈ D∗NQ
(
x̄, ȳ,−g(x̄, ȳ)

)
(x∗∗), we arrive at the coderivative

estimate for S in the proposition. 4

Now we proceed by studying the solution map (4.3) to the QVI (4.1) generated by the

parameterized set Γ from (4.4). To simplify formulas of type (4.19) in what follows, we

introduce the Lagrangian mapping L : X × Y × Z∗ → X∗ defined by

L(x, y, z∗) := g(x, y) + p(x, y)∗z∗. (4.20)

Therefore, the adjoint Lagrange partial derivative is represented as

∇x,yL(x, y, z∗)∗ = ∇g(x, y)∗ +
(
∇x,yp(x, y)∗z∗

)∗
.

To formulate the main result of this section, we define the mapping Λ : X × Y →→ Z∗ by

Λ(x, y) :=
{
z∗ ∈ Z∗

∣∣ L(x, y, z∗) = 0
}
.

Theorem 4.5 (coderivative estimate for solution maps to QVIs) Let S : Y →→ X

be the solution map (4.3) to the original QVI represented by (4.6) around the reference

point (ȳ, x̄) ∈ gphS with the Lagrangian L defined by (4.20). Assume that the CQ (4.10)
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holds and the multifunction M given by (4.11) is calm at all the points (0, 0, x̄, ȳ, z∗) with

z∗ ∈ Λ(x̄, ȳ). We suppose also that NΘ is SNC at all points
(
r(x̄, ȳ), z∗

)
with z∗ ∈ Λ(x̄, ȳ),

and that the mapping Q in (4.7) is SNC at
(
x̄, ȳ,−g(x̄, ȳ)

)
. If in addition the multifunction

P : X∗ × Z × Z∗ →→ X × Y × Z∗ defined by

P (x∗, ν, ν∗) =
{

(x, y, z∗) ∈ X × Y × Z∗
∣∣ L(x, y, z∗) + x∗ = 0

}
∩M(ν, ν∗)

is calm at the points (0, 0, 0, x̄, ȳ, z∗) with z∗ ∈ Λ(x̄, ȳ) then for all x∗ ∈ X∗ we have

D∗NS(ȳ, x̄)(x∗) ⊂
⋃

z∗∈Λ(x̄,ȳ)

{
∇yL(x̄, ȳ, z∗)∗x∗∗ +∇yr(x̄, ȳ)∗z∗∗

∣∣∣ ∃x∗∗ ∈ X∗∗
such that z∗∗ ∈ D∗NNΘ

(
r(x̄, ȳ), z∗

)(
p(x̄, ȳ)∗∗x∗∗

)
and 0 = x∗ +∇xL(x̄, ȳ, z∗)∗x∗∗ +∇xr(x̄, ȳ)∗z∗∗

}
. (4.21)

Proof. We can easily see that the coderivative estimate for S follows from assertion (ii)

of Theorem 4.2 and Proposition 4.4 provided that the multifunction Ξ from (4.18) with

Q given by (4.7) is calm at (0, 0, 0, x̄, ȳ). We will show that the calmness property of

P at the points (0, 0, 0, x̄, ȳ, z∗) with z∗ ∈ Λ(x̄, ȳ) implies the calmness property of Ξ at

(0, 0, 0, x̄, ȳ, z∗). Indeed, since the set-valued mapping

P (x∗, ν, ν∗) =
{

(x, y, z∗) ∈ X × Y × Z∗
∣∣ L(x, y, z∗) + x∗ = 0

}
∩M(ν, ν∗)

=
{

(x, y, z∗) ∈ X × Y × Z∗
∣∣ g(x, y) + p(x, y)∗z∗ + x∗ = 0 and(
r(x, y) + ν, z∗ + ν∗

)
∈ gphNΘ

}
is calm at the points (0, 0, 0, x̄, ȳ, z∗) with z∗ ∈ Λ(x̄, ȳ), it follows by the result of [17,

Lemma 1] that the (only canonically perturbed) mapping P̄ : X × Y ×X∗ →→ X × Y ×Z∗

defined by

P̄ (u, v, u∗) :=
{

(x, y, z∗) ∈ X × Y × Z∗
∣∣ − g(x, y) + u∗ = p(x+ u, y + v)∗z∗,

z∗ ∈ NΘ

(
r(x+ u, y + v)

)}
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is calm at all the points (0, 0, 0, x̄, ȳ, z∗) with z∗ ∈ Λ(x̄, ȳ).

On the other hand, in the case under consideration the following representation holds:

Ξ(u, v, u∗) =
{

(x, y) ∈ X × Y
∣∣ (x+ u, y + v,−g(x, y) + u∗) ∈ gphQ

}
=
{

(x, y) ∈ X × Y
∣∣− g(x, y) + u∗ ∈ p(x+ u, y + v)∗NΘ

(
r(x+ u, y + v)

)}
,

=
{

(x, y) ∈ X × Y
∣∣ ∃z∗ ∈ NΘ

(
r(x+ u, y + v)

)
such that

−g(x, y) + u∗ ∈ p(x+ u, y + v)∗z∗
}
,

which implies the relationship

Ξ(u, v, u∗) = proju,vP̄ (u, v, u∗).

Therefore, Ξ is calm at all points (0, 0, 0, x̄, ȳ). This completes the proof of the theorem. 4

Remark 4.6 The assumption on SNC property of Q in Theorem 4.5 is satisfied if p(x̄, ȳ)∗

is surjective and the second-order QC

D∗NNΘ

(
r(x̄, ȳ), z∗

)
(0) ∩ ker

(
∇r(x̄, ȳ)∗

)
= {0} (4.22)

is satisfied for all z∗ ∈ Λ(x̄, ȳ) ∩NΘ

(
r(x̄, ȳ)

)
.

Indeed, we have the representation Q(x, y) = (f ◦ F )(x, y) with f and F are given in

(4.15) and (4.16), respectively, and recall that the set-valued mapping f−1∩F is inner semi-

compact at
(
x̄, ȳ,−g(x̄, ȳ)

)
when the basic CQ (4.10) is satisfied. Due to the result on SNC

property of compositions in [34, Theorem 3.98], the SNC assumption on NΘ combined with

the second-order CQ (4.22) implies the SNC property of NΘ ◦ r at all points (x̄, ȳ, z∗), and

hence the SNC property of F at (x̄, ȳ, x̄, ȳ, z∗) whenever z∗ ∈ Λ(x̄, ȳ) ∩ NΘ

(
r(x̄, ȳ)

)
. Also

note that under the assumptions made, f−1 is PSNC at
(
− g(x̄, ȳ), x̄, ȳ, z∗

)
if ∇f(x̄, ȳ, z∗)

is surjective, which is implied by the surjectivity of p(x̄, ȳ)∗. Therefore, Q is SNC at(
x̄, ȳ,−g(x̄, ȳ)

)
by the aforementioned [34, Theorem 3.98].
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Taking Remark 4.6 into account, we arrive at a corollary of Theorem 4.5:

Corollary 4.7 For the solution map S considered in Theorem 4.5 and x̄ ∈ S(ȳ), assume

that p(x̄, ȳ)∗ is surjective and the first-order CQ (4.10) holds. Assume also that for all z∗ ∈

Λ(x̄, ȳ)∩NΘ

(
r(x̄, ȳ)

)
the second-order CQ (4.22) holds and gphNΘ is SNC at

(
r(x̄, ȳ), z∗

)
.

If in addition the set-valued mapping M is calm at (0, 0, x̄, ȳ, z∗) and the set valued mapping

P is calm at (0, 0, 0, x̄, ȳ, z∗) then we have the coderivative estimate (4.21).

4.3 Robust Lipschitzian Stability of QVIs

By robust Lipschitzian stability of QVIs we understand in this section the fulfillment of the

Lipschitz-like property of the solution map (4.3) to the QVI (4.2) with the generating sets

Γ(x, y) given by (4.4) around the reference point (ȳ, x̄). This type of Lipschitz behavior

has been recognized as an appropriate stability property of local sensitivity analysis, which

is robust (i.e., preserved) under small parameter perturbations.

To derive efficient conditions for robust Lipschitzian stability of the QVIs under consid-

eration, we utilize in what follows the pointbased characterization of Lipschitz-like property

in [34, Theorem 4.10] combined with the constructive derivative estimate for solution map

(4.3) established in the previous section. Furthermore, the coderivative results developed

above allows us to conduct not only qualitative but also quantitative analysis of robust

Lipschitzian stability for QVIs by providing an estimate of the exact Lipschitzian bound.

Theorem 4.8 Let S : Y →→ X be the solution map (4.3) to the original QVI represented

by (4.6) around the reference point (ȳ, x̄) ∈ gphS with the Lagrangian L defined by (4.20).

Suppose that all the assumptions of Corollary 4.7 are satisfied. Then the solution map S

is Lipschitz-like around (ȳ, x̄) if and only if the following condition holds:
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

0 = ∇xL(x̄, ȳ, z∗)∗x∗∗ +∇xr(x̄, ȳ)∗z∗∗

z∗ ∈ Λ(x̄, ȳ)

z∗∗ ∈ D∗NNΘ

(
r(x̄, ȳ), z∗

)(
p(x̄, ȳ)∗∗x∗∗

)
=⇒ ∇yL(x̄, ȳ, z∗)∗x∗∗ +∇yr(x̄, ȳ)∗z∗∗.

Furthermore, if dimY <∞ we have the upper estimate

lipS(ȳ, x̄) ≤ sup
{∥∥∇yL(x̄, ȳ, z∗)∗x∗∗ +∇yr(x̄, ȳ)∗z∗∗

∥∥ ∣∣∣ z∗ ∈ Λ(x̄, ȳ) ∈ X∗∗

0 = x∗ +∇xL(x̄, ȳ, z∗)∗x∗∗ +∇xr(x̄, ȳ)∗z∗∗

z∗∗ ∈ D∗NNΘ

(
r(x̄, ȳ), z∗

)(
p(x̄, ȳ)∗∗x∗∗

)
, ‖x‖ ≤ 1

}
.

for the exact Lipschitzian bound of S around (ȳ, x̄).

Proof. Under the assumptions of Corollary 4.7 we have the coderivative estimate (4.21).

The new imposed condition in this theorem implies

D∗NS(ȳ, x̄)(0) = {0},

and thus D∗MS(ȳ, x̄)(0) = {0}. Due to the coderivative criterion in [34, Theorem 4.10], it

remains to verify that S is PSNC at that point.

Let us show that S is actually SNC at (ȳ, x̄) under the assumptions made. Introducing

the mapping h(x, y) =
(
x, y,−g(x, y)

)
, we have

(y, x) ∈ gphS ⇐⇒ (x, y) ∈ h−1(gphQ).

Thus, gphS is SNC at (x̄, ȳ) if and only if h−1(gphQ) is SNC at (x̄, ȳ). The latter follows

from the SNC property of inverse images in [34, Theorem 3.84].

The estimate for the exact Lipschitz bound of S follows from the aforementioned [34,

Theorem 4.10] as we have

lipS(ȳ, x̄) ≤ ‖D∗NS(ȳ, x̄)‖

when dimY <∞. 4
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The dissertation is devoted to the development of variational analysis and general-

ized differentiation in infinite dimensions. We derive new calculus rules for both first-

order partial subdifferentials and second-order partial subdifferentials in the framework

of general Banach spaces as well as more developed rules in the framework of Asplund

spaces. This calculus is applied in the study of sensitivity analysis for solution maps to the

parameterized generalized equations in Asplund spaces, where both bases and fields are

parameter-dependent set-valued mappings. We analyze the parametric sensitivity of either

stationary points or stationary point-multiplier multifunctions associated with parameter-

ized optimization problems under consideration. The dissertation also focus on a family

of parameterized quasi-variational inequalities and conduct a sensitivity analysis for their

solution maps.
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