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CHAPTER  1  

    Introduction 

1.1 Introduction to Nucleic Acids 

Nucleic acids play a vital role in biological systems. Nucleic acids, more 

specifically DNA and RNA, are present in all organisms. Though DNA and RNA 

have very few differences chemically, their three-dimensional structures and 

biological functions are very different. The presence of a 2'-OH group and uracil, 

instead of thymine, are the main chemical differences in RNA compared to DNA. 

In secondary structures, DNA is generally helical and double stranded, whereas 

RNA contains numerous tertiary structures and is quite diverse (5-7). With an 

increasing number and types of RNAs still being discovered, our understanding 

of RNA structure and function also has to increase greatly. Traditionally, there 

are three major classes of RNAs: messenger RNA (mRNA), transfer RNA 

(tRNA), and ribosomal RNA (rRNA), which are responsible for the conversion of 

genetic information in DNA to proteins (8). In the past, other cellular RNAs were 

considered as junk or degraded pieces of mRNA. Later, catalytic activities of 

these RNA molecules were identified (9-13). In 1989, Thomas Cech and Sidney 

Altman were awarded the Nobel Prize in chemistry for the discovery of catalytic 

properties of RNA. They discovered the catalytic activity of the group I intron (9) 

and ribonuclease P, respectively (11). These catalytic RNA, called ribozymes, 

are found to be involved in a number of cellular processes. In the last decade, 

the number of newly discovered small RNAs (sRNAs) in bacteria and non-coding 

RNAs (ncRNAs) in eukaryotes has increased dramatically (14). They have been 
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shown to carry out important regulatory functions such as transcriptional 

regulation, RNA processing and modification, as well as mRNA stability and 

translation (15-16). Although the overall function of known non-coding RNAs is 

similar, the mechanism of action and processing of these RNAs is very different 

(17-18). Riboswitches, upon binding to small molecules, refold and control 

expression (19-20), while double-stranded short interfering RNAs (siRNAs) 

suppress gene expression by cleaving target mRNA at specific sites (21). The 

discovery of RNA interference (RNAi) and its role in defending cells against 

parasitic genes has significantly increased its application in therapeutics (22-23). 

In addition, RNAi has been used as a genetic tool in molecular biology to 

suppress gene expression selectively. In 2006, Andrew Z. Fire and Craig C. 

Mello received the Nobel Prize in physiology or medicine for the discovery of 

RNA interference. With cutting-edge techniques and genome sequencing, more 

non-coding RNAs, along with their functions and applications, are expected to be 

uncovered in the future. 

1.2  Introduction to the Ribosome 

The ribosome is a large and complex organelle of living organisms, 

identified as a ribonucleoprotein particle by Palade (24). The E. coli ribosome is 

composed of 65% ribosomal RNA and 35% proteins, although the ratio varies a 

little from organism to organism. In bacteria, the size of the ribosome is about 20 

nm and it has a mass of more than 2 x 106 Daltons (25-26). The ribosome is an 

essential component of all living organisms because of its important role in 

protein synthesis. The cell uses a large amount of energy for its biogenesis.  
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1.2.1 Composition 

The ribosome of all organisms consists of two unequal subunits, each 

contains one third proteins and two thirds RNA. The unequal subunits of the 

ribosome are measured in terms of their sedimentation coefficient unit (Svedberg 

constant) rather than their size. In bacteria, the ribosome (70S) consists of a 

larger 50S subunit and smaller 30S subunit. The larger 50S subunit is composed 

of 23S ribosomal RNA with 2900 nucleotides and 5S ribosomal RNA with 120 

nucleotides. Along with RNA, the larger subunit also contains 34 different 

proteins. The smaller 30S subunit consists of 16S ribosomal RNA (1546 

nucleotides) and 21 different proteins (Figure 1.1). In eukaryotes, the 80S 

ribosome consists of a larger 60S subunit and a smaller 40S subunit. The large 

subunit is composed of 28S ribosomal RNA (4700 nucleotides), 5.8S rRNA (160 

nucleotides) and 49 proteins. The small subunit contains 18S ribosomal RNA 

(1800 nucleotides) and 33 proteins. Despite the differences in size and 

composition, the ribosome has common important functional regions such as the 

decoding region, peptidyl transferase center, and peptide exit tunnel. 

High-resolution X-ray crystal structures of the bacterial ribosome in 

bacteria reveal that the smaller 30S subunit consists of four distinct structural 

domains, previously referred to as the head, neck, body and platform based on 

EM images (Figure 1.2 A) (27). The 30S subunit of the ribosome is mainly 

involved in the formation of a pre-initiation complex and the selection of correct 

aminoacyl tRNAs during protein synthesis.  
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Figure 1.1. The composition of bacterial ribosomes is shown. The bacterial 70S ribosome 
is composed of 50S and 30S subunits, which are also composed of ribosomal RNA and 
proteins. This figure was created with Pymol using PDB: 3I1M and 3I1N (28). 
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Figure 1.2. Crystal structures of the E. coli 30S and 50S subunits as seen from the 
interface side are shown: (A) 30S crystal structure (PDB: 3I1M) and (B) 50S crystal 
structure (PDB: 3I1N) (28). 
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The larger 50S subunit consists of a body and three protuberances (Figure 1.2 

B). The central protuberance consists of 5S rRNA and associated proteins, while 

the other two arms that extend to the right and left are formed by L1 and L7/L12 

proteins. The catalytic center of the ribosome, or peptidyl transferase center 

(PTC), is located in the 50S subunit and catalyzes peptide-bond formation. 

Because of this property, the ribosome is also called a ribozyme (29). Another 

important component of the 50S subunit is the peptide exit tunnel, which provides 

a stable path for the growing polypeptide. The assembly and maturation 

processes of the ribosomal subunits consist of a complex series of events, 

including the processing of the ribosomal RNA, modification of nucleotides, 

binding of ribosomal proteins and metal ions, as well as conformational changes 

in sequential order (30-31). 

1.2.2 Structure 

The ribosome is organized into distinct three-dimensional structures (32). 

The folded RNA makes the ribosome very diverse in secondary and tertiary 

structures. The standard Watson-Crick base pairs found in RNA are G-C and A-

U; however, G-U and G-A non-canonical base pairs are also observed. Along 

with these, there are several modified nucleotides and mismatches, which further 

increase the diversity of the rRNA structure.  Some of the common secondary 

structures found in the ribosomal RNA, such as a hairpin loop, double-stranded 

region, bulge, internal loop, and junction are shown in Figure 1.3. The secondary 

structure of RNA is mainly composed of single- and double-stranded regions, but 

when they fold on themselves, they form various complex tertiary structural 
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Figure 1.3. Common secondary structures of RNA are shown: (A) single- and double-
stranded regions, (B) hairpin, (C) bulge, (D) internal loop, and (E) four-way junction. 
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motifs, such as the pseudoknot and A-minor motif. These tertiary structural motifs 

stabilize loop-loop interactions, contact between helices, and conformations of 

junctions (32). 

Phylogenetic sequence analysis was initially used to predict the rRNA 

secondary structure (33). Sequence comparison is a robust method to predict the 

secondary and tertiary structure of RNA. It is based on the principle that 

homologous RNA molecules, consisting of unique primary sequences, adopt the 

same secondary and tertiary structures (34). It identifies base pairing by finding 

sites of covariation between sequences in an alignment. Secondary structure 

predicted by this approach was initially validated by chemical and enzymatic 

probing. It was further confirmed when the crystal structure of tRNA was solved, 

and all of the predicted secondary interactions were shown to be accurate. After 

this, other RNA structures including 5S, 16S and 23S were also predicted based 

on covariation approach (35-36). With continuous improvements in the 

covariation algorithms and increase in the diversity of ribosomal RNA sequences, 

the secondary structure of 16S rRNA and 23S rRNA was further refined. This 

secondary map was validated initially with chemical probing, and afterwards with 

the subunit and later complete ribosome crystal structures. Approximately ~98% 

of the base pairs predicted by sequence comparison in 16S rRNA and 23S rRNA 

were found to be correct when the crystal structure was solved (34). The 

secondary structure of 16S rRNA is divided into four domains: the 5' domain 

(nucleotides 1-556), central domain (nucleotides 557-918), 3' major (nucleotides 

919-1396), and 3' minor domain (nucleotides1397-1542) (Figure 1.4) (37-38). 
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Similarly, the secondary structure of 23S has six domains (domains I-VI) 

(Figure1.5) (39). 

Secondary and tertiary structures found in the ribosome have very 

important roles in RNA stability and function. In ribosomal RNA, about 60% of the 

nucleotides are involved in Watson-Crick base pairing and 62% of adenosines 

are unpaired, while only about 30% of G, C and U are unpaired (34). However, 

the majority of nucleotides are involved in some kind of interaction within the 

folded RNA structure, and nucleotides that are not involved in any kind of 

interaction are very rare (40). The secondary structure of rRNA contains short 

helices that are connected by bulge or internal loops of unequal lengths. They 

have important roles in initiating RNA folding, stabilizing helical stems, making 

contacts with proteins, and participating in long-range tertiary interactions (40-

41). In all domains of life, the functional center of rRNA is highly conserved. 

Several studies have shown that the key functional part of the ribosome is in fact 

ribosomal RNA. Noller and coworkers treated 50S subunits of T. thermophilus 

with sodium dodecyl sulfate and proteinase K followed by phenol extraction, and 

found that 80% activity of the peptidyl transferase reaction was retained (42-43). 

In addition, these structural motifs are important target sites for a number of 

antibiotics. 
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Figure 1.4. The secondary structure of 16S rRNA of E. coli is shown (34). Domains are 
indicated and shown in different colors. (Figure taken from: http://rna.ucsc.edu/rnacenter). 
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1.2.3 Function 

The main function of the ribosome is protein synthesis. For this process to 

occur, the DNA sequence is first transcribed into mRNA by an RNA polymerase 

(44). In bacteria, the transcribed mRNA is directly used for translation and does 

not undergo post-transcriptional modifications. In eukaryotes, the transcribed 

mRNA from DNA is called the primary transcript and undergoes different 

maturation steps such as capping and splicing to produce mature mRNA (45). 

The process of capping adds a 7-methyl guanosine to the 5' end, and splicing 

removes non-coding sequences. 

Both ribosomal subunits have three tRNA binding sites: the A site 

(aminoacyl), which accepts the aminoacylated tRNA; the P site (peptidyl), which 

catalyzes peptide-bond formation; and the E site (exit), from which deacylated 

tRNAs leave during elongation. Protein synthesis begins with the binding of 

mature mRNA to the 30S subunit, guided by the Shine-Dalgarno sequence (46). 

Initiation factor 3 (IF3) prevents binding of the 50S, and initiation factor 1 (IF1) 

blocks initiator fMet-tRNA binding to the A site of the 30S subunit (47-48). After 

the f-Met-tRNA is correctly positioned, IF3 and IF1 are released and 50S binds to 

30S to form the 70S initiation complex. During this process GTP bound to IF2 is 

hydrolyzed. At this stage, all three initiation factors dissociate from the ribosome. 

This process leads to the formation of a functional 70S ribosome called the 

initiation complex (Figure 1.6) (49). 

The next step of protein synthesis is elongation, in which a new aminoacyl 

tRNA complex with GTP and EF-Tu (elongation factor thermo unstable) binds to  
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the A site (50). The decoding region present in the 16S rRNA of the small subunit 

selects the cognate tRNA according to the mRNA codon (51-52). Upon 

aminoacyl tRNA binding to the A site, GTP is hydrolyzed and EF-TU-GDP is 

released from the ribosome. After the correct aminoacyl tRNA is placed in the A 

site, peptide-bond formation occurs at the peptidyltransferase center (PTC) of the 

50S (50, 53). The amino acid f-Met from the initiator tRNA is then transferred to 

the aminoacid of the A-site tRNA. In the process of translocation, the deacylated 

tRNA and A-site tRNA, along with mRNA, move to the E site and P site, 

respectively. GTP hydrolysis and EF-G (elongation factor G) are the driving 

forces for this translocation step (54-55). This translocation process makes the 

ribosome ready for the next round of elongation, which continues until the 

ribosome reaches the stop codon on the mRNA (Figure 1.7). 

The final step of protein synthesis is termination and recycling of the 

ribosome. Termination occurs when the mRNA stop codon reaches the A site. 

The stop codon is recognized by release factors, RF1 and RF2 (56). Binding of 

release factor in the ribosome activates hydrolysis of the peptide chain from 

tRNA, and RF3 then promotes dissociation of RF1 and RF2. The ribosome is left 

with mRNA and deacylated tRNA in the P site after the peptide chain is released. 

This complex is dissociated by RRF (ribosome recycling factor) and EF-G with 

subsequent hydrolysis of GTP (57-59).  
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It is necessary to accurately match the correct aminoacyled-tRNA with the 

mRNA codon for protein translation. Before the sequence of 16S rRNA was 

known, it was observed that the modification of 16S rRNA by kethoxal abolished  

binding of tRNA to the ribosome (60). Afterward, footprinting techniques revealed 

that binding of the A-site tRNA strongly protected G529, G530, A1492, and 

A1493 against chemical modification (3). In further experiments, it was found that 

A1492 and A1493 of helix 44, as well as G530 of helix 18, are involved in the 

decoding process (48). This process selects the cognate tRNA and rejects the 

non-cognate or near-cognate tRNA. The accuracy of translation is 10-3 to 10-4  

per amino acid residue (61).  Similarly, two residues, A2451 and G2447, of the 

50S subunit in the PTC are crucial for peptide-bond formation. It has been shown 

that peptidyl transferase remains mildly active once many of the ribosomal 

proteins are removed, indicating this activity is largely catalyzed by rRNA (42). In 

addition, several structural and mutational studies have been carried out to 

establish the role of nucleotides in peptide-bond formation (62-64). To investigate 

the role of individual nucleotides in various regions of the ribosome, a number of 

mutational and structural studies have been carried out. From the random mutant 

library of 30S and 50S subunits, changes at 53 positions in 16S rRNA and 77 

positions in 23S rRNA displayed deleterious phenotypes (2, 65). In the decoding 

region, all 15 possible mutations were constructed at conserved nucleotides 

C1402 and A1500 of helix 44 of 16S rRNA. The results showed that most of the 

mutations lead to deleterious phenotypes showing the importance of these 

nucleotides for proper ribosome functioning (66).  
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1.3  Ribosome as a Drug Target and Antibiotic Resistance 

The ribosome is a well-validated drug target site because of its 

accessibility, structural diversity, and lack of known repair enzymes. Various 

classes of antibiotics bind within the functional centers of the ribosome and inhibit 

protein synthesis by different mechanisms. About 40% of the known drugs bind 

to the ribosome (67-68). The binding sites are found to be within a limited 

functional region of the ribosome, such as the decoding region, 

peptidyltransferase center, peptide exit tunnel, and intersubunit regions. The 

smaller subunit, 30S, is targeted by many antibiotics, including tetracycline, 

pactamycin and aminoglycosides (Figure 1.8 A, Table 1.1) (69-71). 

Aminoglycosides, such as neomycin, paromomycin, and geneticin, bind to the 

decoding region and cause bases 1492 and 1493 to flip out (70, 72). In addition, 

binding of these antibiotics to helix 44 of 16S rRNA causes a conformational 

change, which interferes with translational fidelity by increasing the 

misincorporation of aminoacylated tRNAs (73). Recent crystal structures of 30S 

complexed with aminoglycosides have greatly increased our understanding of 

antibiotic sites in the ribosome (69, 74). Before the success of crystallography, 

model systems of RNA were used to map the binding sites and interaction of 

antibiotics by chemical probing and NMR spectroscopy (70, 75-77). This early 

work in solution allowed researchers to compare and validate the results 

obtained from crystallography.  

Several important regions of the large subunit, 50S, are also targeted by 

antibiotics (Figure 1.8 B, Table 1.1). Several clinically important antibiotics such 

as macrolides, streptogramins, chloramphenicol, and oxazolidinones, bind to the  
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Figure 1.8. Various antibiotics bound to the ribosome are shown. A) Common antibiotics 
binding to the 30S subunit (PDB: 1FJG, 1HNX, 1HNJ, and 1HNW) are overlaid. B) Common 
antibiotics binding to the 50S subunit (PDB: 3CC4, 3CPW, 1K9M, 2ZJP 1NJI, and 1YJN) are 
shown.  
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Table 1.1. Common antibiotics targeting to the ribosome. Helix number and subunits are 
indicated. 

Antibiotics  Binding sites  Mechanism of action  

Aminoglycosides  

(neomycin, paromomycin, 

geneticin) (69, 78-79) 

A site  

(30S subunits)  

Decrease translational  

accuracy and inhibit 

ribosomal translocation  
   
Tetracycline (78, 80)  
 

helix 34/31 
 (30S) 

Inhibits A-site tRNA 
binding  

   

Peptides (viomycin, 

capreomycin, edeine) (80) 

30S subunits Inhibit translocation  

   
Spectinomycin (69)  helix 34 (30S) EF-G binding inhibitor  

   
Pactamycin (78) helix 24/P site (30S) Inhibits initiation factor  

   

Macrolides (erythromycin, 

azithromycin) (81-82) 

Peptide exit tunnel  

near PTC  

Block outlet of 

polypeptide 
   

Lincosamides (lincomycin, 

clindamycin) (82) 

Peptide exit tunnel  Interfere with peptide-

bond formation  
   
Chloramphenicol (82-83) A site, PTC  Inhibits peptide-bond 

formation 
Oxazolidinones (linezolid) 

(84-85) 

P site (50S) Compete with incoming  

aminoacyl-tRNA  

 

 



20 
 

 

large subunit near the PTC and inhibit protein synthesis (86). The macrolides are 

one of the important classes of ribosome-targeting antibiotics. Crystal structures 

of macrolides complexed with the 50S ribosomal subunit revealed that they block 

the ribosomal exit tunnel for the progress of nascent polypeptide (81). Similarly, 

streptogramins and chloramphenicol bind to the PTC and lock the conformation 

of the ribosome (83). Still, there are several antibiotics for which binding sites and 

mechanism of action have yet to be determined in detail. 

The enormous use of antibiotics and increasing antibiotic resistance of 

pathogens are the current challenges for scientists.  Bacteria may become 

resistance to antibiotics by various mechanisms, including target site 

modification, drug modification, and efflux (Figure 1.9) (87). To keep antibiotic 

concentrations low, drugs such as tetracyclines or erythromycins are pumped out 

through efflux mechanisms by bacteria (88). Penicillins were found to be 

destroyed by β-lactamases, while aminoglycosides such as kanamycin are 

chemically modified, which blocks binding to the recognition site (89). Mutations 

or nucleotide modifications such as methylation of the target residue have also 

been observed with several antibiotics targeting the ribosome. Modifications or 

mutations are found in both ribosomal proteins and ribosomal RNA. In 

spectinomycin resistance, mutation of a serine to proline at position 21 of the S5 

protein has been observed (90). Similarly, a lysine to arginine change at position 

42 of the S12 protein leads to streptomycin resistance (90). In RNA, modification 

of target residues has been found in several antibiotic resistance strains. 

Methylation of A1408 or G1405 leads to resistance to many aminoglycosides  
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Figure 1.9. Various mechanisms of antibiotic resistance in bacteria are shown.  
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(91-92). Similarly, N7 methylation of G1405 produces resistance to the geneticin 

class of aminoglycosides (93). Mutation of key residues in the decoding region, 

such as A1408G and C1409G, also causes resistance to most of the 

aminoglycosides (94-96). In the large subunit, methylation of A2058 at N6 leads 

to resistance of macrolide, clindamycin, lincosamide and spreptogramin, whereas 

methylation of C1920 makes bacteria resistant to capreomycin (97-100). In 

anisomycin resistance, mutations of U2500A and C2453U have been observed 

(101). Target-site mutation for ribosome-binding drugs is difficult because 

eubacteria carry multiple copies of ribosomal operons. E. coli has seven 

ribosomal operons, and at least half of them must be in the mutant form to confer 

antibiotic resistance (102-103). In addition, mutations often alter the ribosomal 

structure, which prevents binding without impairing the biological function. 

Mutations of certain nucleotides in the ribosome have been found to be lethal 

and several of them are essential for fidelity of protein synthesis (103). 

The antibiotic binding sites and resistance mechanisms determined from 

biochemical and genetic approaches are clarified by the high-resolution crystal 

structures (85, 104). High-resolution crystal structures can now be used to 

predict novel drug-binding sites as well as modified versions of existing drugs in 

order to overcome resistance. The binding sites of about half of the known 

antibiotics are found to be clustered in the central functional regions of the 

ribosome (71). A greater challenge is to identify and target unexploited sites in 

the ribosome. We do not know whether the known sites are the only ones for 

effective inhibition, or whether there are more possible target sites on the 
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ribosome. The ribosome is a complex and dynamic molecule that directs 

translation in several steps. For the purpose of identifying novel target sites or 

designing drugs on the basis of structure, a better understanding of the ribosome 

structure in solution, as well as functional importance of individual nucleotides, is 

needed.  

1.4  RNA Structural Studies 

There are a variety of methods for studying RNA structure. Cryo-electron 

microscopy (cryo-EM) X-ray crystallography and nuclear magnetic resonance 

(NMR) spectroscopy are the most popular methods for obtaining structural 

information of biomolecules. X-ray crystallography and cryo-EM are particularly 

well suited for large macromolecular complexes such as the ribosome. Solution 

studies such as NMR spectroscopy are typically limited to smaller systems.  

Other biophysical methods such as circular dichroism (CD) spectroscopy, UV 

melting, and fluorescence energy transfer (FRET) experiments are also very 

useful for understanding RNA structure and function (105-106). Another method 

to understand the RNA structure is chemical and enzymatic probing. The 

available probes are widely used to understand the environment of individual 

nucleotides at physiological conditions (e.g., solvent exposure, base pairing 

interactions, etc.) (107-108).  

1.4.1 Biophysical methods 

 Cryo-EM in combination with single-particle reconstruction has been 

utilized by Joachim Frank and coworkers to obtain pictures of the ribosome 
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during different stages of translation (109). In cryo-EM, molecules are rapidly 

frozen to maintain them in a nearly native state. Unlike crystallography, cryo-EM 

does not require highly ordered crystals (110). A 6.7 Å map of the E. coli 

ribosome was published in association with aminoacyl-tRNA (111). By this 

method, it is possible to analyze the motions and dynamic changes of the 

ribosome during translation. The resolution, however, is not as high as that 

obtained by X-ray crystallography.  

X-ray crystallography is the most powerful technique for studying larger 

RNA structures such as the ribosome. The first RNA structure determined by X-

ray crystallography was tRNAPhe (112). After that, the crystal structures of several 

small RNA were determined; however, the requirement of highly ordered crystals 

and solving the phase problem took a much longer time to solve in order to 

obtain crystal structures of the ribosome. In 1998, Tom Steitz and coworkers 

published the first crystal structure of the 50S ribosomes from Haloarcula 

marismortui at 9 Å (113). In 2000, Yonath’s, Steitz’s, and Ramakrishnan’s groups 

succeeded in determining the 30S or 50S subunit crystal structures at ~ 3 Å 

resolutions (69, 114-116). A considerable amount of effort has been made to 

obtain high-resolution structures of the ribosome, and for this groundbreaking 

work, the 2009 Nobel prize in chemistry was awarded to the three pioneers of 

ribosome crystallography, Thomas Steitz, Ada Yonath, and Venketash 

Ramakrishanan. Recent success in obtaining 70S ribosome structures in the 

presence of various antibiotics and initiation factors at highresolution has greatly 

increased our understanding of protein translation and the mechanism of 
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antibiotic action (104, 117). It has not only helped to understand ribosome 

function, but also increased information about antibiotic binding sites in various 

regions (118). For instance, neomycin binding was previously believed to occur 

only in the A site of the small subunit; however, a recent crystal structure showed 

that it also binds to helix 69 of 23S ribosomal RNA in the large subunit (119). 

Despite these successes from X-ray crystallography, detailed structural 

information in solution has not been obtained. 

NMR spectroscopy is a powerful tool for studying RNA structure in 

solution. This method gives high-resolution structural information of RNA in 

solution. The RNA folding and interactions with various ligands such as peptides, 

antibiotics, and proteins can also be determined by this method (120). However, 

the structure of a larger RNA structure such as rRNAs cannot be determined by 

this method. The current size limit is ~100 nucleotides (121). Another limitation of 

this method is the requirement for a large amount of highly pure sample and 

technical expertise. 

Several other biophysical methods are used extensively to obtain RNA 

structural information. Single-molecule spectroscopy and FRET measurements 

have been widely used to understand RNA folding, metal ion effects, and ligand 

binding. Notably, it was used to understand the movement of ribosomes at 

various stages of translation (106, 122). CD spectroscopy and UV melting are 

also helpful in determining the conformations and stabilities of small RNA 

constructs (105, 123). 
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1.4.2 Probing RNA Structure 

Structure probing carried out in solution is a popular method for RNA 

structure determination. It is based on the reactivity of RNA molecules with 

various chemicals or enzymes that target specific regions or nucleotides of the 

RNA (124). These probes can react with RNA in free form or in complex with 

ligands. Various chemical and enzymatic probes have been used to obtain RNA 

structural information (Figure 1.10). Though there are many advantages of using 

chemical and enzymatic probes, they also have their limitations. One advantage 

of this method is being able to test the reactivity of individual nucleotides in near 

physiological conditions. In addition, the effects of changing pH or salt 

concentrations can also be monitored (125). The RNA does not need to be highly 

pure, and any size of RNA molecule can be used. Due to their larger size, 

enzymes are not accessible to all small-molecule binding sites in the RNA. 

Similarly, chemical probes are limited to in vitro studies due to their inability to 

penetrate the cell due to size and/or charge. Only limited chemical probes such 

as dimethyl sulfate (DMS), Pb2+, and hydroxyl radicals have been utilized to gain 

structural information in vivo (108, 124). More recently, in-line probing (126) and 

selective 2’-hydroxyl acylation analyzed by primer extension (SHAPE) chemistry 

have been developed to determine RNA structure and to locate the binding sites 

of small molecules (127). For in-line probing, labeled RNA is incubated for 

extended periods of time (e.g., 40 hours) at higher pH (9.0), and spontaneous 

cleavage is detected. Small-molecule-binding sites can be observed as protected 

sites, whereas the other regions undergo strand scission. In SHAPE chemistry, 

reactivity of the 2'-OH groups with a bulky reagent is determined (128). Due to  
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Figure 1.10. Sites of RNA modification by base specific chemical probes and sequence 
independent probing methods are shown (129).  
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steric hindrance of the bulky group on the reagent, reverse transcriptase stop 

sites can be detected. The geometrical constraints of the 2'-OH group only allow 

the reaction to occur in the flexible regions, such as loop or bulges. Hence, this 

method is independent of the nucleotide type and measures the local dynamics 

of the nucleotide. This method is also useful for determining small-molecule-

binding sites and for acquiring information about secondary structure of RNA 

(129). 

1.4.2.1 Enzymatic probing  

RNases are structure or nucleotide specific and widely used for probing 

RNA structure (130). The commonly used nucleases with their specificity are 

listed in Table1.2. RNase V1 is specific to the double-stranded region (131). This 

ribonuclease cleaves in a sequence-independent manner, but requires at least 

two residues on either side of the cleavage site to be double stranded or stacked. 

Nucleotide-specific enzymes cleave after certain nucleotides. RNases A, T1, and 

T2 are the most common enzymes used to determine single-stranded regions 

(132). RNase T1 cleaves on the 3’ side of guanosine, whereas RNase A cuts 

single-stranded UpN and CpN containing sequences. RNase T2 cleaves all 

phosphodiester bonds in a single-stranded region, irrespective of the sequences 

(124, 132). RNases are useful for obtaining structural information and ligand 

binding sites in vitro. Unfortunately, RNases are bulky molecules and susceptible 

to steric hindrance, so in the folded RNA structure, the accessibility information 

obtained from enzymatic probing is less informative.  
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Table 1.2. Structure-specific enzymes for RNA structure probing. 

Nuclease  Specificity  Detection method  

RNase V1  Paired or stacked 
nucleotides  A and B            (131) 

Nuclease S1 Unpaired nucleotides  A and B            (108) 

RNase T1  Unpaired G  A and B            (133) 

RNase U2  Unpaired A>G>>C>U A and B            (134) 

RNase T2  Unpaired A>C, U, G A and B            (135) 

Mung bean 
nuclease  Single-strand specific  A and B            (136) 

RNase H  RNA only from DNA-RNA 
hybrids  A and B            (137) 

 

A: detection of cleavage on end-labeled RNA and B: detection by primer extension 
method.  
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1.4.2.2 Chemical probing 

Chemical reagents are smaller in comparision to enzymes and able to 

react with nucleotides of the RNA molecule (125). Chemical probes can react 

with nucleotide bases or the backbone of RNA. Their reactivity with nucleotide 

bases or the backbone is directly influenced by interactions present in the 

molecule. Base pairing or interactions with ligands strongly reduce reactivity 

towards the chemical probe. Chemical probes were developed based on specific 

criteria such as single-hit reactions per molecule of RNA, small size, and easy 

detection. Depending on the size of the RNA, identification of strand scission or 

modification sites is achieved by two different methods. For small RNA 

constructs, the RNA is directly radiolabeled on either the 3' or 5' end, and strand 

scission can be monitored by gel electrophoresis. This direct detection method 

works best for short RNAs containing less than 200 nucleotides (108). For larger 

RNAs, the strand scission or modification is detected by using primer extension. 

Reverse transcriptase shows pauses or stops before the 3' side of modified or 

cleaved nucleotides. The most commonly used chemical probes with their 

respective modification or cleavage sites and the methods for their detection are 

listed in Table 1.3.  

Chemical probes are basically of two types on the basis of their target 

sites; base-specific and backbone (ribose-phosphate) specific. The base-specific 

probes are the most widely used to gain information about the secondary 

structure of RNA. Dimethyl sulfate (DMS) methylates the N1 position of adenine, 

and N3 of cytosine, which are not involved in Watson-Crick base pairing. 

Similarly, kethoxal reacts with N1 and N2 of guanine, while CMCT (1-cyclohexyl 
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Table 1.3.  Structure-specific chemical probes for RNA. 

Probing agents  Specificity 
Detection method 

 

Nucleotide 

modifying 

agents 

(107, 124, 138) 

DMS 
A (N1), C (N3),  

G (N7) 

       A, B, C 

C 

DEPC A(N7) A, B, C 

Kethoxal G (N1-N2) B, D 

CMCT G (N1), U(N3) B 

Hydrazine U>>C A, B. C 

Radical 

generators/ 

metal 

complexes 

(139-141) 

 

Fe(EDTA)2- Solvent-exposed 
backbone (C1', C4') A, B 

Cu(phen)2
+ Accessible SS 

regions A, B 

Rh(DIP)3
3+ 

 
SS solvent exposed 
G & Ψ, 3' side of GU 
wobble pairs 

A, B 

CoCl2 SS solvent-
accessible G A, B 

Synchrotron X-rays (142) Solvent-exposed 
backbone (C1', C4') A, B, C 

Backbone 

modifying 

agent (124) 

Ethylnitrosourea Phosphate A, B 

 

A: detection of cleavage on end-labeled RNA; B: detection by primer extension; C: 
chemical treatment is necessary for strand scission prior to the detection; D: RNaseT1 
hydrolysis can be used after modification; SS: single stranded (108, 124-125). 
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-(2-morpholinoethyl)carbodiimide metho-p-toluene sulfonate) modifies N3 of 

uridine (138, 143). Based on the reactivity of these chemical probes, the folded 

structure of RNA can be determined. Since the modification occurs in the 

Watson-Crick base pair regions, these sites of modification can be detected by 

primer extension directly. However, DMS and diethyl pyrocarbonate (DEPC) can 

also methylate the N7 position of guanine and adenine, respectively. To detect 

these modifications, aniline treatment and strand scission are required (124). 

These chemical probes are not only used for smaller RNA structures, but also 

larger RNA structures such as 16S and 23S rRNA. Danesh Moazad and Harry 

Noller have mapped nucleotide reactivity in free rRNA, in intact subunits, and 

70S ribosomes (144-145). They have not only determined the higher-order 

structure of rRNA, but also explored protected and exposed nucleotides after 

ribosome assembly (145-147).  

Another class of probes attacks the ribose-phosphate backbone, resulting 

in strand scission. This type of chemical probe generates free radicals from a 

reaction between the reagents, such as the Fe•EDTA complex and H2O2 (148). 

The hydroxyl radical generated by the Fe•EDTA attacks the C1' and C4' 

hydrogens of the ribose sugar, which leads to strand scission. More recently, 

synchrotron X-ray beams were used to generate hydroxyl radicals in the 

millisecond range. This time-resolved probing method is very useful in 

determining the larger RNA folding pathway (149-150). Another reagent, 

ethylnitrosourea, ethylates phosphates, which become unstable and easily 

cleaved with mild alkaline treatment (151). 
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1.4.2.3 Probing RNA structure in vivo 

Structural features of RNA are significant for biological function. The use 

of X-ray crystallography, NMR spectroscopy, and other biochemical and 

biophysical approaches have enhanced the ability for determining RNA structure. 

Since the folding of RNA might be different in a more complex environment such 

as living cells, it is highly important to study RNA structures in vivo. Methods and 

probes that are useful for studying RNA structure in vivo are limited. The most 

commonly used are DMS, kethoxal, and lead (II) (152-153). DMS can cross the 

cell wall and membrane efficiently by diffusion, but other reagents need 

permeabilization of the cells. 

Chemical and enzymatic probes are very useful to test the reactivity of 

individual nucleotides and predict their accessibility, as well as function in RNA 

structures. Several chemical and enzymatic probes have been used to probe the 

RNA structure, but most of them are limited for in vitro study. Another limitation is 

that enzymes can induce conformational rearrangements, which generates 

possible new target sites and makes the results harder to interpret. In addition, 

these chemical and enzymatic probes cannot be utilized to monitor the kinetics of 

the reaction. Hence, a chemical probe that can be used for probing and 

monitoring kinetics would be very useful. The aquated platinum complex to be 

discussed is positively charged and can be utilized as a model to understand the 

kinetics of charged small molecules. Further, it has already been shown to have 

potential for probing the ribosome structure in vitro and in vivo. Another 

advantage of cisplatin is that its size and charge can be altered easily, and hence 

would be useful to gain more information of RNA structure.  
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1.5 Cisplatin  

Cisplatin, cis-diamminedichloridoplatinum (II), is an anticancer drug used 

to treat various cancers such as testicular, head and neck, and cervical (154-

156). The cure rate is over 90% in testicular cancer when tumors are diagnosed 

early (157). Despite its success, cisplatin is only active against limited cancers 

and causes several side effects such as nephrotoxicity, neurotoxicity, and 

hearing loss (158-159). The biological activity of cisplatin was first discovered in 

the 1960 by Rosenberg and co-workers at Michigan State University (160). While 

testing the effects of electric current in E. coli, they observed inhibition of cell 

growth. They observed that cells were unable to divide and the morphology 

changed. Cells were elongated 300 times longer than the normal cells (160). It 

was later found that this effect was not caused by the electric current, but rather 

the production of the cisplatin from platinum electrodes. This result led 

Rosenberg to test cisplatin in several mice with tumors, and subsequently 

anticancer activity was observed (161). After the successful treatment of several 

tumors in clinical trials, cisplatin was finally approved by the FDA in 1978.  

1.5.1  Biological targets of cisplatin  

 Cisplatin can enter the cell by passive diffusion or using by copper 

transporters (162-163). The low chloride concentration in the cell facilitates the 

exchange of a chlorido ligand with water to form the aquated species. The 

resulting species [PtCl(NH3)2(H2O)]+ is more reactive and subsequently attacks 

the N7 of purine bases. The primary target of cisplatin is found to be DNA, but it 

can also attack RNA, proteins, and sulfur-containing biomolecules (156, 163). 
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Cisplatin preferentially binds to G-rich sequences in DNA. The number of 

platinum molecules bound to these macromolecules has been determined in 

HeLa cells with a colony forming assay (164). This result showed that one DNA 

contained 22 platinum atoms, while only one platinum atom was found per 

mRNA. Similarly, one platinum atom was observed per 30 ribosomes and one 

per 1500 tRNA. Proteins contained a fewer number of platinum atoms; out of 

1500 protein molecules, only one equivalent cisplatin was observed. Another 

study was carried out with 195mPt-radiolabeled cisplatin to determine the 

number of platinum atoms that would bind to macromolecules in Hela cells (165). 

This study showed similar results, which indicated DNA as the main cellular 

target. These early studies showed that the most important cellular target of 

cisplatin was DNA, while its effects on RNA and other macromolecules was 

mostly overlooked. The binding of cisplatin to DNA has been discussed 

extensively in the literature (156, 163, 165-166), but only a handful of 

publications focus on RNA as a target. 

Recent studies showed that RNA is a competitive target for cisplatin under 

similar conditions as DNA reactions (167-169). When DNA and RNA molecules 

with similar structures and sizes were compared, RNA was found to be the 

kinetically preferred target over DNA (167). In addition, RNA showed a more 

pronounced salt dependence, indicating that electrostatic interactions are 

important (167). A similar result was published by DeRose and coworkers, in 

which the kinetic preference for cisplatin in the U2/U6 RNA compared well to its 

DNA counterpart (170). They have compared cisplatin binding to RNA with an 
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internal loop, double-stranded RNA, and a corresponding looped DNA. Among 

these constructs, the RNA with an internal loop had the highest reactivity, while 

DNA had the lowest. Another study was done with tRNA by Elmorth and 

coworkers (168). Mapping of the binding sites in tRNA and its corresponding 

microhelix revealed that cisplatin forms cross-links in a common site on the 

RNAs, despite the difference in their sizes (168). 

1.5.2 Types of platinum-DNA adducts and their effects 

The identification of major cisplatin cross-links formed with DNA was 

carried out by digestion of cisplatin-treated salmon sperm DNA (171). After 

enzymatic digestion, the products were separated by a chromatographic 

technique and analyzed by NMR spectroscopy (172). The most common cross-

links were the 1,2-intrastrand adducts with purine bases, mostly the 1,2-

intrastrand d(GpG) and d(ApG) adducts which constitute ~65% and ~25% of all 

adducts respectively. Less common was the 1,3-intrastrand d(GpXpG) adduct 

(Figure 1.11). Cisplatin also formed a small amount of interstrand and 

monofunctional adducts with guanine (171-172). 

The formation of cisplatin DNA cross-links leads to distortion of the DNA 

structure. Previous studies showed that cisplatin lesions cause bending, 

unwinding, and destabilization of the DNA double helix (173-174). The formation 

of cisplatin cross-links also inhibits DNA and RNA polymerases for replication 

and transcription processes (163). Bifunctional adducts inhibit polymerases more 

effectively than monofunctional adducts (175-177). In addition, the bending of 

DNA serves as a recognition site for a number of cellular proteins, such as high 
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mobility group proteins (HMG), histones, and transcriptional proteins (178-179). 

The binding of these proteins is believed to shield the platinum adducts from 

repair so that when the DNA repair machinery works to fix the cross-links, failed 

attempts activate apoptosis and cell death (166).  

 

 

Figure 1.11. The types of cisplatin DNA cross-links and their corresponding ratios are 
shown.  
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1.5.3 Cisplatin analogues    

Compared to cisplatin, its trans isomer, trans-DDP, is clinically ineffective. 

This might be due to its inability to form adducts similar to that of cisplatin. 

Although both of these isomers form bifunctional adducts through the N7 position 

of purine bases, trans-DDP is unable to form 1,2-intrastrand cross-links due to its 

stereochemistry. More than 3000 analogues of cisplatin have been synthesized 

to overcome cisplatin resistance (180); however, only less than 30 compounds 

have entered clinical trials and only one has been approved by the FDA (166).  

Hitherto, only four platinum compounds are listed as marketed drugs, namely, 

cisplatin, carboplatin, oxaliplatin, and nedaplatin (Figure 1.12) (166, 181). Among 

these, carboplatin is less toxic than cisplatin, but has the same spectrum of 

antitumor activity (182). Oxaliplatin is the only platinum compound that shows 

acitivity against cisplatin-resistant colorectal cancers (181). Most of the useful 

antitumor analogues are mostly associated with the property of labile group. 

Complexes with highly labile groups are very toxic and cannot be used as drugs. 

Those types of complexes react with almost all types of nucleophiles available in 

the cell. In contrast, strongly bound ligands produce kinetically inactive 

complexes (183). The second generation platinum drug, carboplatin, has lower 

reactivity due to the weaker labile carboxylate group. This effect causes a slower 

rate of conversion of carboplatin to aquated reactive species. Due to slower 

reactivity, higher doses can be tolerated and give fewer side effects. Carboplatin 

has been used for ovarian cancer, but shows cross resistance with cisplatin (166, 

184). Another analogue, oxaliplatin, is most effective against colon cancer (163). 

In this compound, both the ammine ligands and chlorido groups are altered from 
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those of cisplatin (166). Most recently, water-soluble platinum complexes and 

complexes that can be used orally, such as JM216, have been synthesized (166, 

185). 

 

 

Figure 1.12. Cisplatin and its analogues are shown.  

 

Several amino-acid and peptide-conjugated cisplatin analogues have 

been synthesized and tested against various tumor cell lines (Figure 1.13) (186-

187). Modifications include platinum complexes with charged, neutral, or 

hydrophobic amino acids coordinated to the platinum (188-189). Those 

modifications increase the charge or hydrophobicity of the complex, and could 

potentially alter the binding interactions with the target. Similarly, peptide-

tethered platinum conjugates were also synthesized and their interactions with  
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Figure 1.13. Structures of platinum(II) amino acid complexes are shown. 

 
DNA were studied; however, additional functionalities did not increase their 

reactivity (186, 190). The uncharged compounds have lower reactivity compared 

to cisplatin and positively charged compounds have higher reactivity than the 

negatively charged compounds, possibly due to electrostatic interactions (186). 

Although the overall reactivity of the amino-acid platinum complexes was lower 

than cisplatin in DNA, their interactions with RNA have not been discussed in the 

literature, to the best of my knowledge. 

1.6 Objective of Research  

With the continually expanding antibiotic resistance of pathogens it has 

been a challenge for researchers to design and develop new antibiotics. Out of 

the various drug target sites, the ribosome is an important target to which 

different classes of antibiotics bind at its key functional regions, such as the 
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decoding center, peptidyltransferase center, and peptide exit tunnel. Recent 

crystal structures have revealed a number of antibiotic-binding sites in the 

ribosome, and it is interesting to note that many of these sites are overlapping. 

Now, it is important to develop novel target sites and to design new drugs that 

can help to solve the ever-growing problem of resistance. To achieve this goal, 

the ideal target sites should not only be functionally important, but also 

accessible to various small molecules. A number of chemical and enzymatic 

probes have been used to gain structural information and to understand solvent 

accessibility of the ribosome, but most of them are limited to in vitro studies or 

they are difficult to detect in solution. Cisplatin has advantages due to its stable 

coordination chemistry, which makes its detection easier; thus, more information 

about structural accessibility can be gained. Further, the platinum complexes can 

be modified with various ligands to alter the charge and size. A number of 

antibiotics bind to the ribosome by electrostatic interactions and it is difficult to 

monitor the kinetics. Cisplatin and its charged analogues can be utilized as a 

model to understand how charged small molecules such as neomycin find their 

target sites out of the numerous possible sites on the ribosome. 
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CHAPTER  2  

Binding Studies and Adduct Characterization of Cisplatin in 16S 

Ribosomal RNA  

2.1 Abstract  

DNA is a well-validated target of cisplatin and various mechanisms leading 

to the anticancer activity have been extensively studied. In comparison to DNA, 

much less is known regarding the extent to which cisplatin interacts with cellular 

RNAs and whether that influences the activity and toxicity of the drug. Recently, 

cisplatin binding to small RNA constructs and tRNA has been studied. In this 

chapter, the binding sites of cisplatin on 16S rRNA, which were mapped by the 

primer extension method, are discussed. Most of the consecutive guanosines in 

free 16S rRNA were found to be reactive with cisplatin. In addition, the number, 

as well as types, of adducts formed with cisplatin on 16S rRNA were also 

characterized.  

2.2 Introduction  

Cis-diamminodichloridoplatinum(II), or cisplatin, is an antitumor drug that 

has been utilized effectively in the treatment of several types of cancers, such as 

testicular, breast, ovarian, lung, and head and neck (156, 163, 166). After the 

discovery of its antitumor activity, much research has focused on understanding 

the mode of action of this compound (160-161). The formation of several types of 

stable adducts with nucleic acids, such as 1,2-intrastrand and 1,3-intrastrand 

along with a lower number of interstrand, through coordination to the N7 position 
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of purines, is believed to contribute to its antitumor activity (172, 191). The 

formation of these adducts with DNA causes structural changes, which block 

replication and transcription processes (163). An X-ray crystal structure revealed 

that the 1,2-intrastrand adduct induces a bend in a DNA duplex by 35-40º and 

unwinds the DNA by ~25º; however, solution structures by NMR showed 60-70º 

bend angles (Figure 2.1) (192-194). Cellular proteins recognize these DNA 

lesions and undergo a series of events, eventually leading to cell death (163, 

166, 195). The reaction of cisplatin with DNA has been studied and discussed 

extensively in the literature (163, 166, 172, 191, 196-197); however, the effects of 

cisplatin on RNA function are poorly understood. Despite RNA’s chemical 

similarity to DNA and its greatly increased role in various cellular processes (198-

199), very little is known about cisplatin’s effects on cellular processes involving 

RNA.  

Previous reports suggested that the amount of cisplatin reacting with RNA 

is much less than with DNA (165, 200), which might be the reason why RNA has 

been overlooked as a target of cisplatin. However, there are several pieces of 

evidence that show RNA is a competitive target for cisplatin. Previously, cisplatin 

was found to cause disruption of translation and splicing in cell extracts (201-

203). This fact is further supported by recent in vitro studies showing disruptions 

in the activity of various enzymes (170, 204), so it can be expected that the 

binding of cisplatin to RNA may also contribute to the drug’s anticancer effect. In 

another study, when similar structures and sizes of DNA and RNA hairpins were 

compared for cisplatin reaction, RNA was found to be the kinetically preferred 
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target (167, 205). A similar result was reported by DeRose and coworkers in 

U2/U6 RNA; they have shown that platination of the U2/U6 RNA a has higher 

kinetic preference for RNA than the corresponding DNA construct (169).  

 

 

 

Figure 2.1. X-Ray crystal structures of double-stranded DNA containing the cisplatin 
adduct are shown: A) cisplatin 1,2-d(GpG) intrastrand cross-link (3LPV) (193) and B) 
cisplatin 1,3-d(GpTpG) intrastrand cross-link (1DA4) (206). 
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Cisplatin binds DNA in a structure specific manner and forms cross-links 

at specific sites despite the sizes of the nucleic acids (168, 207). Elmroth and co-

workers studied the rate of platination of 17-nucelotide DNA sequences with 

guanosines at different locations (﴾TnGT16-n﴿ DNA constructs) (207). The rate of 

adduct formation was found to be the highest when guanosine was in the middle 

of the sequence. In addition, they compared cisplatin reactions with tRNAAla and 

a corresponding micro-helix, which revealed similar platination sites at the G○U 

wobble pair in an acceptor stem of tRNA, despite the different RNA sizes (168). 

Furthermore, cisplatin binding to tRNAPhe observed in a crystal structure showed 

cross-links at certain GG and AG sites that caused a distortion in the tRNA 

structure (208-209). Hence, targeting RNAs such as tRNA, mRNA, and rRNA 

may provide another potential pathway for cisplatin and related drugs’ 

mechanism of action (210). Cisplatin effects in model RNA systems have been 

studied to some extent; however, the mechanistic details and binding sites in 

larger RNA have yet to be discovered.   

Although the primary structure of DNA and RNA are very similar, larger 

RNAs such as ribosomal RNAs have a tendency to fold into complex three-

dimensional structures (40). The folding of RNA creates local microenvironments 

with various properties in terms of solvent accessibility and metal coordination. 

Various metal complexes have been used to identify structural motifs or 

mismatches in DNA and RNA structure (139-140, 211-212). Metal complexes are 

capable of specific interactions with target sites in nucleic acids. Rhodium 

complexes such as Rh(byp)2(chrysi)3+ bind with high specificity and affinity to 
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single base mismatches (213). Similarly, Rh(DIP)3
3+ induces a strand scission in 

RNA near the G○U mismatches, as well as exposed Gs (211). Cisplatin has 

been found to react with G-rich sequences in DNA and small RNA constructs. 

Hence, metal complexes were found to have some specific interaction with 

nucleic acids. The study of cisplatin binding to the ribosome may increase our 

understanding of its interactions with much larger RNA structures. 

The number and types of cross-links formed with DNA by cisplatin and 

various analogues have been well characterized (171-172). Two research 

groups, Eastman and Fichtinger-Schepman et al., have determined various 

adducts formed with DNA (171-172, 191). Both of these research groups 

observed intrastrand bifunctional cross-links as the major adducts along with a 

small amount of monofunctional adducts with guanosine (171). In the context of 

RNA, the number of cisplatin binding sites and possible types of adducts have 

not been well documented.  

The overall goal of this chapter is to find the cisplatin binding sites in 16S 

rRNA and determine the types of adducts formed by using various methods 

(Figure 2.2). The results from these experiments will be significant to understand 

the mechanism of cisplatin action on large folded RNA structures. Due to 

structural differences, it was expected that the binding sites and types of adducts 

formed with RNA might be different than DNA. In this study, mapping of the 

cisplatin binding sites in 16S rRNA, as well as characterization of the cisplatin 

adducts was performed. 
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Figure 2.2. An overview of the cisplatin binding study in 16S rRNA is shown. Cisplatin, the 
corresponding monoaquated species, tertiary structure of 16S rRNA, and various methods 
used in this study are indicated. 

2.3 Materials and Methods 

2.3.1  Chemicals, solutions, and DNA  

  [5'-32P-γ]ATP was purchased from Perkin-Elmer Life Sciences, Inc. 

(Waltham, MA), and T4 polynucleotide kinase was obtained from New England 

Biolabs (Ipswich, MA). RNaseT1 and P1 nuclease were purchased from Sigma 

Chemicals. A reverse transcriptase kit (Improm_IITM Reverse Transcriptase) was 

purchased from Promega (Madison, WI). The remaining chemicals for buffers, 

and reagents such as DTT (dithiothreitol), EDTA (ethylenediaminetetraacetic 

acid), DMF (N, N-dimethyl formamide) were obtained from Sigma Chemicals or 

Fisher. RNase-free, distilled, deionized water (ddH2O) was used for all 

experiments. 
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 Cisplatin, cis-diamminedichloridoplatinum(II), was purchased from Alfa 

Aesar (MA, USA). The complexes cis-[PtCl(NH3)2X]+/0 or cis-[Pt(NH3)2X2]2
+/0, in 

which X was H2O, DMF, or NO3
-, were prepared by addition of 0.98 or 1.96 

equivalents of AgNO3 to a DMF solution of cis-[PtCl2(NH3)2], respectively. The 

reaction mixture was vortexed in the dark for 12 hours, the AgCl precipitate was 

removed by centrifugation, and the supernatant containing platinum complex was 

recovered. Platinum-DMF complex stock solutions were stored at -20 °C up to 1 

week and diluted as required just prior to use. 

 Single-stranded DNA primers were purchased from Sigma Genosys and 

purified by using polyacrylamide gel electrophoresis (20%, 19:1 

acrylamide:bisacrylamide, 7 M urea ) in 1X TBE (90 mM Tris·HCl, 90 mM boric 

acid, 2.5 mM  EDTA, pH 8.3) followed by electroelution in 0.5X TBE in an Amicon 

CentrilutorTM and desalted. Aqueous solutions of DNA were kept frozen at -20 °C 

and concentrations were determined spectrophotometrically at 260 nm. 

Sequences of the DNA primers were named according to the position of the 

transcribed nucleotides, and are as follows: 

1) 5'-CAC TCG TCA GCA AAG AAG-3 (p_86), 2) 5'-GCG ACG TTA TGC GGT 

AT-3' (p_171), 3) 5'-GTT ACC CCA CCT ACT AGC T-3 (p_245), 4) 5'-AGT CTG 

GAC CGT GTC TC-3'  (p_323), 5) 5'-CCC GCT GAA AGT ACT TT-3 6) (p_431), 

5'-GTG CTT CTT CTG CGG GTA-3' (p_485), 7) 5′-CGC TTT AGG CCC AGT 

AAT-3 (p_561), 8) 5′-GCC AGT ATC AGA TGC AGT-3 (p_631), 9) 5′-CTA CGC 

ATT TCA CCG CT-3′ (p_686), 10) 5'-CGC ACC TGA GCG TCA GTC T-3' 

(p_746), 11) 5′-ACC AAG TCG ACA TCG TTT-3′ (p_813), 12) 5′-CCG TCA ATT 
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CAT TTG AGT TT-3′ (p_906), 13) 5′-GTC AAG ACC AGG TAA GGT-3′ (p_982), 

14) 5′ GAG CTG ACG ACA GCC AT-3′ (p_1054)) 15) 5′-GCA ACA AAG GAT 

AAG GGT-3 (p_1110), 16) 5′-TCG TAA GGG CCA TGA TG -3′(p_1199), 17) 5′-

GCG AGG TCG CTT GTC TTT-3′ (p_1251), 18) 5′-CTC CAA TCC GGA CTA 

CG-3 (p_1296), 19) 5′-GAA CGT ATT CAC CGT GGC-3 (p_1365), 20) 5'-GTT 

AAGCTA CCT ACT TCT-3′ (P_1430), 21) 5'-TAC CTT GTT ACG ACT TC-3'  

(p_1490). 

 The primer hybridization sites on the secondary structure of 16S rRNA are 

shown in Figure 2.3, with primer numbers 1 to 21.  

2.3.2  Isolation of 16S rRNA 

The 70S ribosomes and 30S subunits were isolated from E. coli DH5 

strain by the sucrose gradient method (145, 214). E. coli was grown to 0.6 OD 

and cooled on ice for 20 min followed by centrifugation at 7,000 rpm for 15 min to 

pellet the cells. The pellet was resuspended in buffer A (50 mM Tris·HCl, 100 

mM ammonium chloride, 10 mM MgCl2 and 1 mM EDTA). The cells were lysed 

by using a French Press at 1800 psi. In the lysate, 5 U of DNase I was added 

and incubated on ice for 15min. The lysate was centrifuged at 15,000 rpm for 20 

min to remove the cellular debris and about 2/3 of the supernatant was 

transferred to a new tube. After a second centrifugation, the supernatant was 

transferred to a new tube and the ammonium chloride concentration was raised 

to 200 mM. To pellet the ribosome, centrifugation was carried out in an 

ultracentrifuge at 42,000 rpm for 4 hrs. The supernatant was discarded and the 

pellet was washed with buffer B (50 mM Tris·HCl, 100 mM ammonium chloride,  
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Figure 2.3. Secondary structure map of 16S rRNA with primer hybridization sites with 
primer numbers (1 to 21) is shown. 

 



51 
 

 

10 mM MgCl2). The 70S ribosome pellet was resuspended in buffer B by shaking 

overnight at 4 ºC. The dissolved ribosome was taken carefully and its 

concentration was measured spectrophotometrically. To get pure 70S ribosomes, 

50S subunits and 30S subunits, the crude ribosomes were layered in a 10% to 

30% sucrose gradient in buffer B with 5 mM MgCl2 and centrifuged in a swinging 

bucket rotor at 18,000 rpm for 16 hrs. Fractions corresponding to the 70S 

ribosomes, 50S subunits, and 30S subunits were pooled and the Mg2+ 

concentration was again raised to 10 mM. Sucrose was removed by 

centrifugation in an ultracentrifuge at 42,000 rpm for 18 hrs and the pellet was 

dissolved in buffer E (10 mM Tris·HCl, 60 mM ammonium chloride, 10 mM 

MgCl2). Naked 16S rRNA was isolated from 30S subunits by three extractions 

with phenol and two with chloroform in the presence of 6 mM EDTA. The 16S 

rRNA was precipitated by addition of 0.1 volumes of 3 M sodium acetate, pH 5.3, 

and 2.5 volumes of ethanol. The isolated 16S rRNA was renatured in 20 mM 

Tris·HCl (pH 7.5), 25 mM NaCl, and 10 mM MgCl2 by heating to 90 °C for 2 min 

and slowly cooling to room temperature.  

2.3.3  Platination reactions 

The platination reactions with naked 16S rRNA were performed with 

monoaquated cisplatin. Prior to platination, the 16S rRNA was renatured as 

stated above. Platination was carried out in 20 mM sodium phosphate buffer, pH 

6.5, 10 mM MgCl2 and 10 mM NaCl (buffer P) (215). Alternatively, 20 mM 

HEPES, pH 6.5, 10 mM MgSO4 and 10 mM Na2SO4 (buffer H) was used, which 

had a lower chloride concentration. The 16S rRNA was incubated at 37 °C with 
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aquated complex in 1:150, 1:75, and 1:30 ratios of metal complex to nucleotides 

(16S rRNA to metal complex is 1:10, 1:20, and 1:50). The reactions were 

quenched with 2 M NaCl followed by immediately freezing. A salt dependence 

study was carried out with the 1:75 ratio of complex to nucleotides in the same 

buffer (buffer H) with increasing concentration of Na+ using NaClO4.  

2.3.4 Primer labeling and primer extension 

Primers were labeled at the 5' end in T4 PNK buffer (50 mM Tris·HCl, pH 

7.6, 10 mM MgCl2, 5 mM DTT, 0.1 mM spermidine, 0.1 mM EDTA) with 10 µCi [γ 

-
32P] –ATP  and 10 units T4 polynucleotide kinase in a volume of 50 µl at 37 °C. 

RNA was ethanol precipitated after the reaction. The labeled primer was used for 

primer extension on the free 16S rRNA (216). Primer extension was carried out 

with 2 pmol of 16S rRNA after reaction with cisplatin. Next, 2 μl of the appropriate 

5'-end-labeled primer (200,000 cpm) and 2 μl of 1 pmol/μl 16S rRNA were mixed 

with 6 μl ddH2O and heated to 90 °C and then slowly cooled to room temperature 

for hybridization. The extension mix was prepared by mixing 4 μl of reverse 

transcriptase buffer (Promega), 2.4 μl of 25 mM MgCl2 and 1 μl of 10 mM dNTPs 

(10 mM each dATP, dCTP, dGTP, and dTTP), 5.6 μl H2O and 1 μl reverse 

transcriptase (Promega). For sequencing, 1 μl of the 10 mM dNTP mix and 1 μl 

of the appropriate 1 mM ddNTP were used. Unmodified RNA (no cisplatin 

treatment) was used as a template for sequencing and for control lanes to 

monitor artifacts of reverse transcriptase. Extension of the primer was carried out 

at 42 °C for one hour and terminated by heating at 80 °C for 15 minutes. To each 

sample, 2 μl of loading buffer (80% formamide, 1X TBE, 0.02% bromophenol 
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blue, and 0.02% xylene cyanol) was added and the products were denatured by 

heating to 95 °C for 2 min followed by rapid cooling on ice. To the sequencing gel 

(0.4 mm thick, 8% polyacrylamide, acrylamide:bisacrylamide 19:1, 1X TBE, 7 M 

urea), 60,000 cpm per sample was loaded. The gel was run at 1500 volts for 

approximately 2 hours until the bromophenol blue migrated off the gel. The 

products were identified by imaging on a Molecular Dynamics Phosphorimager 

and Image QuantTM Software. 

The gels were quantified using Image Quant software. The intensity was 

normalized by calculating the percentage intensity at the corresponding stop with 

respect to intensity of the whole lane. More than 1% intensity at the 

corresponding stops were considered as strong hits, 0.5 to 1.0% were moderate 

hits, and less than 0.5% were considered as weak stops. The reaction ratio 

cisplatin:nucleotide (1:75) and control were used for quantification.  

2.3.5 High performance liquid charomatography 

HPLC was carried out with a Waters system equipped with a C18 

Discovery column (250 x 4.6 mm, 0.5 µm). Separation was carried out by using 

buffer A (40 mM ammonium acetate) and B (40% acetonitrile) with a linear 

gradient in which the ratio of A to B changed from 95:5 to 70:30 over 30 minutes 

at a constant flow of 1 ml/min. The retention times of the standard nucleosides 

were confirmed by injection of known standard nucleosides. Control and 

platinated 16S rRNAs were digested with nuclease P1 to convert to nucleotides, 

and calf intestinal phosphatase (CIP) was used to remove phosphates and give 

free nucleosides. Nuclease P1 digestion was carried out in 50 µl of digestion 
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buffer (1 mM ZnCl2, 20 mM sodium acetate, pH 5.3), for both the control and the 

platinated 16S rRNAs with 10 µl (10 U) of nuclease P1 at 37 ºC overnight. The 

enzyme was then deactivated by heating at 75 ºC for 15 min. Five µl of 1.5 M 

Tris·HCl, pH 8.8, and 1 µl (10 U) of CIP was added to each sample, which were 

incubated for 4 hrs at 37 ºC. After 4 hrs of incubation, samples were again 

heated at 75 ºC for 15 min, vortexed, and centrifuged at 12,000 rpm for 5 min. 

Finally, samples were filtered through YM-3 microcon filters before injection into 

the HPLC or LC-MS.  

Samples were analyzed by HPLC and peaks areas were normalized to 

account for the differences in extinction coefficients at 260 nm (C = 9,100 M-1 cm-

1, U= 10,100 M-1 cm-1, G= 13,600 M-1 cm-1, A= 14,900 M-1 cm-1) (217) and then 

peak ratios were calculated relative to the cytidine peak. 

2.3.6 Liquid chromatography mass sectrometry 

LC-MS (Liquid Chromatography Mass Spectrometry) is a powerful 

technique to separate and analyze complex mixtures with high sensitivity. LC-MS 

was carried out on an AQUITY Ultra Performance LC chromatography (UPLC) 

system (Waters Corporation, MA USA) equipped with an HSST3 C18 column 

(2.1 X 100 mm 1.8 µm). The column was maintained at 50 ºC and elution was 

carried out with a linear gradient of acetonitrile and 100 mM ammonium acetate, 

pH 6.0. The gradient was run for 3 min with a flow rate 700 µl/min, starting at 

100% ammonium acetate and decreasing to 60% over the course of the gradient. 

The column eluent was analyzed by directing it to the mass spectrometer. Mass 

spectra were collected in the positive ion mode. The percentage of adducts were 
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calculated by normalizing the area with extinction coefficients followed by relative 

ratios of adduct present in sum of adducts.   

2.4 Results 

2.4.1 Mapping platination sites in 16S rRNA 

Cisplatin, after aquation, was used to probe 16S rRNA. The monoaquated 

complex was employed because it is cationic and has ideal reaction kinetics 

compared to the slowly reacting cisplatin. The binding sites of monoaquated 

cisplatin were mapped on free 16S rRNA by primer extension. In order to map 

the binding sites, 16S rRNA was first isolated from E. coli, renatured, and then 

incubated with monoaquated cisplatin (1:10, 1:20 and 1:50 molar ratios of 16S 

rRNA:cisplatin; or 1:150, 1:75, and 1:30 molar ratios of cisplatin:nucleotides) in 

20 mM HEPES buffer, pH 6.5, at 37 °C in the dark for 5 hrs. The binding sites of 

cisplatin were observed by reverse transcriptase pauses or stop one nucleotide 

prior to the coordination site. A set of 20 DNA primers were used, covering from 

nucleotides 1 to 1513 of the 16S rRNA. The 5'-32P-end-labeled primers were 

hybridized with the RNA and extended with reverse transcriptase in the presence 

of dNTPs. The transcripts were separated by 8% denaturing polyacrylamide gels. 

Coordination sites of cisplatin were then determined by comparing with dideoxy 

sequencing lanes on the same gel. Bands on the gel arising due to nicks in the 

RNA or strong secondary structures were distinguished from the cisplatin binding 

sites by comparing with a control treated in a similar manner, but lacking 

cisplatin.  
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The magnitudes of the reactivity were classified by the intensities of the 

bands on the autoradiograms. The intensities of bands could be measured up to 

approximately 100 nucleotides from the transcription start site. The reactive 

nucleotides were mostly found to be consecutive Gs, mismatched or present in 

loop regions. Since cisplatin was known to prefer Gs in DNA targets, it was not 

surprising that major hits on the 16S rRNA were consecutive Gs. There are 488 

guanosines in 16S rRNA and 103 sites with consecutive Gs, some of which 

include two or more guanosines (consecutive Gs are considered as one reactive 

site). Out of these 103 sites, strong reactivity was observed in 56 sites, 29 were 

moderate hits, and 3 showed very weak hits. In addition, several nonconsecutive 

Gs also showed strong or moderate reactivity. There were 11 consecutive Gs 

that were not reactive with cisplatin (excluding 4 sites with consecutive Gs in 

helix 45, which were not probed). Figures 2.4 to 2.6 show representative 

autoradiograms of the cisplatin probing experiments with free 16S rRNA. 

Additional gels are shown in the Appendix. The overall summary of results of 

cisplatin binding to naked 16S rRNA in Figure 2.7 show a secondary structure 

model of 16S rRNA with reactive sites in red (strong hits) and green (moderate 

hits). 
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Figure 2.4. Probing results of 16S rRNA at the 5' domain with primers 245 and 561 are 
shown. (A) The autoradiogram shows the reverse transcriptase pauses or stops by using 
primer 245. (B) The autoradiogram shows the reverse transcriptase pauses or stops by 
using primer 561. In both gels, C, U, A, G represent the sequencing lanes, 0 represents the 
control, and remaining 3 lanes are 16S rRNA treated with increasing concentrations of 
monoaquated cisplatin (cisplatin:nucleotide is 1:150, 1:75, and 1:30). The strong and 
moderate hits are indicated with arrows and corresponding nucleotides numbers (▲ 
﴾strong hits﴿ and Δ ﴾moderate hits﴿). 
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Figure 2.5. Probing results of 16S rRNA at the central domain with primers 825 and 910 are 
shown. (A) The autoradiogram shows the reverse transcriptase pauses or stops by using 
primer 825. (B) The autoradiogram shows the reverse transcriptase pauses or stops by 
using primer 910. In both gels, C, U, A, G represent the sequencing lanes, 0 represents the 
control, and remaining 3 lanes are 16S rRNA treated with increasing concentrations of 
monoaquated cisplatin (cisplatin:nucleotide is 1:150, 1:75, and 1:30). The strong and 
moderate hits are indicated with arrows and corresponding nucleotides numbers (▲ 
﴾strong hits﴿ and Δ ﴾moderate hits﴿). 
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Figure 2.6. Probing results of 16S rRNA at the 3' domain with primers 1110 and 1435 are 
shown. (A) The autoradiogram shows the reverse transcriptase pauses or stops by using 
primer 1110. (B) The autoradiogram shows the reverse transcriptase pauses or stops by 
using primer 1435. In both gels, C, U, A, G represent the sequencing lanes, 0 represents 
the control, and remaining 3 lanes are 16S rRNA treated with increasing concentrations of 
monoaquated cisplatin (cisplatin:nucleotide is 1:150, 1:75, and 1:30). The strong and 
moderate hits are indicated with arrows and corresponding nucleotides numbers (▲ 
﴾strong hits﴿ and Δ ﴾moderate hits﴿). 
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Figure 2.7. Secondary structure map of 16S rRNA (34) with probing results is shown. 
Strong hits (reactive nucleotides) are colored red (shown with ▲), moderate hits are 
colored green (shown with Δ), and very weak stops are colored blue (shown with ●). The 
helix numbers are also indicated (1-45).  
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The cisplatin binding sites are distributed throughout the bacterial 16S 

rRNA. Inspection of Figure 2.7 shows that in 16S rRNA, more than 50% Gs are 

reactive towards cisplatin (286/476), excluding helix 45. In the 5' domain 

(nucleotides 1-566), a number of prominent strong stops were observed, such as 

at G147, A160, U166, G203, G242, G260, and C352 (Figures 2.4 A, 2.8 and 

Appendix). All of these stops are on the 3' side of consecutive guanosines that 

contained at least one G○U pair or a mismatch, or resided next to a loop region. 

One of the very strong stops observed at G203 contain a G-C-rich sequence and 

G○U mismatch, similar to the binding sites observed previously in the tRNA 

acceptor stem (168). In addition to these sites, a number of minor and weak 

stops were also observed in this region, such as A129, C214, and A319, which 

were also before consecutive guanosines (Figures 2.4 and Appendix). Most of 

these weaker sites contain repeating G-C pairs without a mismatch. None of the 

single guanosines in this region showed strong stops, and not all of the 

consecutive Gs were targeted. Only moderate or weak stops were observed on 

the 3' side of non-consecutive guanosines or with guanosines adjacent to 

adenosines.  

In the upper part of the 5' domain, the stops at C379, C418, U426, A456, 

U463, and U543 (Figures 2.4 B, 2.8 and Appendix) were the strongest hits 

observed with cisplatin. Most of the strongest hits in this region were before 

consecutive guanosines, except for U463 which is on the 3' side of a single 

guanosine. In this region, several of the strong reactive sites contain either a 

mismatch, unpaired  
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Figure 2.8. The 5' domain secondary structure map of 16S rRNA with probing results is 
shown. Strong hits (reactive nucleotides) are colored red (shown with ▲), moderate hits 
are colored green (shown with Δ), and very weak stops are colored blue(shown with ●). 
The helix numbers are also indicated. 
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 bases in loop regions, or G○U wobble base pairs, indicating that cisplatin 

binding preferences are not simply limited to GG sites as was observed with 

DNA. 

In the central domain (nucleotides 567-915), which includes helices 19 to 

27, also showed a number of strong as well as moderate hits by cisplatin. The 

majority of the strong hits were observed in helices 22 and 24, such as at A743, 

A777, A792, U801, and U804 (Figure 2.5 A). These strong stops also appeared 

on the 3' side of the consecutive guanosines, except for U804, which occurred 

before the closing base-pair of the internal loop of helix 24. Most (22/28) 

consecutive guanosines in other helices with 16S rRNA also showed reactivity 

towards cisplatin. Strong stops occurred at C618 and A629 in helix 21 at two sets 

of GGG sites. Similarly, strong stops at U683 and A715 were observed on helix 

23. The functionally important helix 27 also contains a strong stop at A889 

(Figure 2.5 B) before a cluster of four consecutive Gs containing a G○U pair. In 

addition to these, several moderate and weak stops were observed, as shown in 

Figures 2.5 and 2.9.  

The 3' side of 16S rRNA contains two domains: 3' major (nucleotide 916-

1396) and 3' minor (nucleotide 1397-1542). Nucleotides in helix 45 of the 3' 

minor domain could not be mapped due to lack of appropriate nucleotides 

needed for primer hybridization. In the 3' major domain, C1059, G1187, C1208, 

and A1339 (Figures 2.6, 2.10 and Appendix) were a few of the very strong 

stops observed. The 3' minor domain contains two important helices: helix 44 

and 45. Helix 44 contains the decoding region, which has a key role in protein 
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synthesis. Several consecutive Gs in this helix are targeted by cisplatin and 

strong stops were observed at G1416, U1424, U1440, C1460, and G1488 

(Figures 2.6 B and Appendix), which are all located adjacent to consecutive 

guanosines. 

 

Figure 2.9. The central domain secondary structure map of 16S rRNA with probing results 
is shown. Strong hits (reactive nucleotides) are colored red (shown with ▲), moderate hits 
are colored green (shown with Δ), and very weak stops are colored blue(shown with ●). 
The helix numbers are also indicated. 
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Figure 2.10. The 3' domain secondary structure map of 16S rRNA with probing results is 
shown. Strong hits (reactive nucleotides) are colored red (shown with ▲), moderate hits 
are colored green (shown with Δ), and very weak stops are colored blue (shown with o). A) 
3' Major and B) 3' minor domains with helix numbers are represented. 
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2.4.2 Salt dependence binding study 

The interaction of charged metal complexes with oligomers is known to be 

strongly influenced by salt concentration (218). The salt dependence of the 

cisplatin reaction with 16S rRNA under various Na+ concentrations (10 to 300 

mM) was carried out. First, reactivity increased in the presence of 20 mM Na+, 

and then further increases of the salt concentration resulted in decreased 

platination (Figure 2.11), which suggests that electrostatic interactions play an 

important role in cisplatin binding to RNA. 

2.4.3 Quantification of the platinum adducts on 16S rRNA 

 The number of platinum atoms bound per molecule of 16S rRNA was 

determined by using atomic absorption spectrometry (AAS). Free 16S rRNA and 

monoaquated cisplatin were reacted at various ratios to determine the total 

number of possible adducts. After the reaction, excess platinum was removed by 

ethanol precipitation followed by dialysis for 12 hrs at 4 ºC. The 16S rRNA was 

then hydrolyzed with NaOH to obtain individual nucleotides. The absorbance of 

16S rRNA was measured spectrophotometrically in triplicate by using a 

NanoDrop UV visible spectrometer and the concentration was calculated by 

using the extinction coefficient of hydrolyzed 16S rRNA (ε = 17,588,970 M-1 cm-

1). The concentration of platinum was measured by AAS with a graphite furnace 

and hollow cathode platinum lamp. At lower reaction ratios, all of the platinum 

atoms were bound to the 16S rRNA. More specifically, at reaction ratios of 1:50 

and 1:100 (16S rRNA:Pt) the number of platinum atoms per rRNA molecule was 
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52±3 and 101±8, respectively (Figure 2.12), suggesting that all Pt complexes 

reacted with 16S rRNA. 

 
 

Figure 2.11. An autoradiogram illustrating salt dependence of the cisplatin reaction with 
16S rRNA and quantification of the gel is given. A) The autoradiogram shows a strong 
cisplatin stop site at U801 at various Na+ concentrations. B) Quantification of the reverse 
transctiptase stop site at U801 after cisplatin reaction is given. Quantification was 
performed using ImageQuant software. The gel data were normalized over the entire lane 
to account for loading differences and then compared at the level of intensity at U801. The 
relative intensity at U801 was calculated by percentage intensity at U801 with respect to 
the total intensity of that lane. The data represents an average of two independent 
experiments. 

 

 

Figure 2.12. The number of platinum atoms bound on each molecule of 16S rRNA at 
different reaction ratios determined by AAS is shown. The data represents an average of 
three independent experiments. 
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2.4.4 Identification of the platinum adducts on 16S rRNA 

 In DNA, cisplatin forms various types of adducts, such as 1,2-intrastrand 

and interstrand crosslinks; however, the types of adducts formed with RNA have 

not been well characterized previously. For this purpose, control 16S rRNA and 

RNA treated with cisplatin were digested with P1 nuclease and calf intestinal 

phosphatase (CIP) to generate free nucleosides or possibly dinucleotides. The 

products were separated and identified by HPLC and high-resolution LC-MS.  

In HPLC, four unknown peaks along with four standard nucleoside peaks 

were observed (Figure 2.13 A). The retention times of standard nucleosides 

were confirmed by injection of standard nucleosides separately. Quantification 

was carried out by Empower HPLC software and the peak areas were divided by 

the corresponding extinction coefficients to account for the differences in 

absorbance at 260 nm. Then, peak ratios were calculated relative to the cytidine 

peak. Quantification of the nucleosides revealed that free guanosine and 

adenosine levels decreased with increasing cisplatin concentrations (Figure 2.13 

B and C). To identify other unknown peaks, LC-MS was carried out with an 

Acquity UPLC system equipped with an HSST3 (2.1 × 100 mm, 1.8 µm) C18 

column. The chromatogram and mass of the corresponding peaks are shown in 

Figure 2.14. The observed and calculated masses with retention times are 

shown in Table 2.1. The major peak at retention time 0.96 min is assigned as the 

bifunctional adduct, GpGPt(NH3)2, with a molecular mass of 856.14 Da. Similarly, 

the peak at 1.61 min with mass 840.14 Da corresponds to ApGPt(NH3)2, and the 

peak at 1.69 min with mass 795.19 Da is assigned as GGPt(NH3)2. The peak at  
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Figure 2.13. HPLC chromatogram and the quantification of digested 16S after reaction with 
aquated cisplatin are shown. A) An overlay of HPLC chromatograms of control (digested 
16S rRNA) and platinated 16S rRNA after digestion is given. New peaks following 
platination of 16S rRNA are indicated by symbols (♦Δ●o).  B) The relative molar 
concentration of unreacted nucleosides vs. reaction ratios of 16S:cisplatin is plotted. C) 
The relative number of unreacted guanosines after the reaction in various ratios is shown 
graphically. The data represents an average of two independent experiments. 
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Figure 2.14. LC-MS data of digested 16S rRNA after reaction with cisplatin are shown. The 
chromatogram with retention times (upper) and mass spectra of the corresponding peaks 
(lower) are shown. 

 
Table 2.1. Masses, rentention time and % of various adducts of cisplatin with 16S rRNA.  

Types of 
adducts 

+1 charged state (Da) +2 charged state (Da) 
Retention 
time 

Relative 
% 

Calculated  Observed Calculated Observed

GpG[Pt(NH3)2] 857.13 856.14 428.56 428.57 0.96 min  63 ± 5 

ApG or 
GpA[Pt(NH3)2] 

841.15 840.14 420.57 420.57 1.61 min 20 ± 3 

GG[Pt(NH3)2] 796.20 795.19 398.1 397.60 1.70 min  6 ± 2 

AG or 
GA[Pt(NH3)2] 

780.21 778.19 390.1 389.60 2.10 min  11 ± 2 
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2.12 min with mass 778.19 Da is assigned as AGPt(NH3)2. The above assigned 

adducts are shown in Figure 2.15. These results show that cisplatin 

preferentially reacts with guanosine, forming bifunctional adducts as the major 

products. The coordination site is presumed to be N7 of the purine, but this has 

not been confirmed. 

 
 
Figure 2.15. Proposed structures of adducts obtained after digestion of 16S rRNA are 
shown.  

2.5 Discussion 

Probing data reveal strong and weak stops of reverse transcriptase due to 

cisplatin cross-links with RNA. Similar to DNA, a majority of the adducts formed 
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with RNA are observed at consecutive guanosines. On DNA, cisplatin prefers G-

rich regions and forms the major bifunctional adducts with purines (191). 

Therefore, it is not surprising that the preference for RNA reactivity is at GG sites. 

Most of the consecutive Gs that showed strong reactivity with cisplatin contained 

G-C-rich sequences with a G○U wobble pair. The structural distortion at this base 

pairing type in RNA might enhance the accessibility for reaction with platinum 

complex. There are several G-C-rich regions that do not contain G○U pairs or 

mismatches, and these showed relatively weaker reactivity towards cisplatin. The 

G○U pair has very important functional roles. For example, in E. coli tRNAAla, it 

serves as a recognition element for cognate synthetase (219-220). In addition, 

the G○U pair is also important for ribosomal protein recognition (221). Thus, the 

cisplatin complex may reveal preferred sites for protein binding on RNA that have 

ideal accessibility, electrostatics, and/or structural compatibility. Furthermore, it is 

possible that such RNA reactivity might be an alternate pathway leading to 

cisplatin toxicity.  

Upon examination of the crystal structure of the bacterial ribosome, the 

strong and weak cisplatin coordination sites do not display major structural 

differences. The distances between the N7 position of two consecutive Gs N7 

are 3-4 Å when they are stacked (Figure 2.16); however, several single 

guanosines that showed strong reactivity were observed to have their 

neighboring nucleotide flipped out. This conformational change may provide 

more space for cisplatin to form monofunctional adducts.  



73 
 

 

 

Figure 2.16. Structural features of cisplatin binding sites in 16S rRNA with nucleotide 
numbering are shown: A) strong binding sites observed in helix 24 with consecutive 
guanosines; B) strong binding sites observed in helix 17 with single guanosines; C) 
strong and no hits with consecutive guanosines in helix 44. Secondary structures of the 
corresponding helices are shown in the lower panel. Nucleotides with strong hits (red) and 
no hits (black) are represented. This figure is created with Pymol (2AVY) (222).  

 
The reactivity of monoaquated platinum species showed differences in 

reactivity with each of the guanosines in 16S rRNA. This result might be primarily 

due to the folding and tertiary interactions which change accessibility of the 

nucleotides within the RNA structure. In addition, RNA may contain preferred 

ligand-binding pockets that serve as unique recognition sites for small molecules 

(223). The negatively charged phosphodiester groups on the RNA could attract 

the positively charged platinum complexes, which increases the local 
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concentration of complex in the RNA environment. Hence, due to preassociation 

of the complexes, adduct formation at certain sites might be kinetically favored. 

Similarly, the binding of ligands in the reactive sites might alter the RNA 

structures, which makes other sites more or less accessible for the reaction. 

Cisplatin reactions with RNA can be greatly influenced by cation 

concentrations and reaction times (167-168). Reactivity of cisplatin can be based 

on oligonucleotide length, electronegativity, target site geometry, as well as 

secondary and tertiary structures (197, 224-225). An increase in cation 

concentration decreases cisplatin binding due to altered electrostatic interactions 

(167). Hence, it can be expected that larger RNA structures might have charged 

pockets that are preferable for metal coordination (226). The positively charged 

aquated cisplatin complex is known to associate with nucleic acid surfaces by an 

electrostatic-driven process prior to formation of the final adduct (218). It has 

been observed that the reactivity of platinum at G-N7 is influenced by the 

presence of Na+ concentration. The maximum reactivity was obtained at the 

middle of an oligonucleotide (17 mer DNA) at 34.5 mM Na+ concentration (218). 

With the increase in reactivity at the middle of the sequence, the reactivity 

towards 5' and 3' ends was decreased. Similar results were observed in this work 

with 16S rRNA, in which reactivity increased at U801 with increasing Na+, then 

decreased with higher salt concentrations. In this study, only helix 24 was 

monitored and changes in reactivity at other sites are not known.  

On DNA, adduct formation is more specific (at lower platinum 

concentrations); however, at higher concentrations adduct formation with 
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adenosines also increases (227). The monoaquated cisplatin derivative readily 

coordinated with the N7 position of purines to form a monofunctional adduct (t1/2 

= 0.1 hr) (Figure 2.17) (156, 228-229). The second chlorido ligand was aquated 

with a half-life of ~2 hr and finally a bifunctional adduct was formed (166, 229). 

Hence, the monoaquated species used for the reaction can ultimately result in 

formation of a stable bifunctional adducts. 

 

Figure 2.17. Schematic representation of proposed mechanism (229) for the binding of 
cisplatin to double-stranded DNA is shown. 

 
The types of adducts formed with RNA are similar to those found with 

DNA. The major peak observed in HPLC following cisplatin reaction and rRNA 

digestion was assigned as a 1,2-intrastrand bifunctional adduct with two 

neighboring guanosines. The molecular mass corresponding to GpG-Pt(NH3)2 

indicates a product that is not susceptible towards hydrolysis by P1 nuclease at 

the phosphodiester linkage between adjacent Gs, suggesting protection by the 

cisplatin coordination. In contrast, the product with a molecular mass 

corresponding to GG-Pt(NH3)2 could be either a 1,2-intrastrand, 1,3-intrastrand, 

or interstrand bifunctional adduct, since these nucleosides were linked by 



76 
 

 

cisplatin, but not by a phosphodiester bond. Along with these bifunctional 

adducts, adducts with adenosine and guanosine were also observed (i.e., 

AG(PtNH3)2 or GA(Pt(NH3)2). The higher reactivity with non-consecutive 

guanosines and formation of ApG adducts in RNA are unique compared to DNA. 

This result is likely because of structural difference between RNA and DNA. In 

RNA, the structure is more diverse and with a large number of unique secondary 

and tertiary structural motifs, which leads to different reactivity than DNA.  

If indeed cisplatin has a kinetic preference for RNA over DNA, then once it 

enters the cell, it could react with various cellular RNAs, including the ribosome. 

Previous studies have shown that modification of 16S rRNA by kethoxal greatly 

affected ribosome assembly (60); similar results might be expected with cisplatin. 

The binding of cisplatin to the spliceosome greatly inhibits its assembly and 

function (202). Several of the functionally important helices such as 18, 24, 28 

and 44 showed reactivity with cisplatin. In helix 18, G530 is a universally 

conserved residue and plays an important role in decoding (3). Similarly, helix 24 

is present in the subunit interface and has contact with tRNA and initiation factors 

(230-231). Helix 28 and 44 also contain several conserved nucleotides that are 

involved in decoding (232). A number of nucleotides that are universally 

conserved, such as G530 and G926, showed reactivity with cisplatin. The binding 

of cisplatin at these functionally important regions could impair its function of 

protein synthesis.  

The repair machinery for the ribosome is largely unknown; hence, the cell 

may be unable to remove cisplatin adducts from the ribosome. From the 
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abundance and lifetimes of RNAs, it is suggested that platinum binding may 

affect RNA function. The transport of cisplatin in the cell and possible 

intermediate binding with RNA and proteins is still largely unknown. With the 

increasing number of roles of cellular RNAs that are being identified, detailed 

binding studies of cisplatin and its effects in vivo will determine possible 

complementary modes of cisplatin action. 
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CHAPTER  3  

Exploring Novel Drug Target Sites in the Ribosome by Using 

Cisplatin as a Chemical Probe 

3.1 Abstract 

Knowledge of RNA structure and its relationship to function is fundamental 

to understanding the biological mechanisms of RNA. Large RNA molecules, such 

as those in the ribosome, have complex three-dimensional structures. Due to its 

diverse structure, the ribosome is an ideal target for antibiotics. A number of 

biophysical and biochemical methods have been utilized to understand its 

structure-function relationship. In this study, to gain knowledge about small-

molecule accessibility on the ribosome, cisplatin has been utilized as a chemical 

probe. Cisplatin forms stable adducts through coordination to the N7 position of 

purines and can be detected by primer extension. A number of guanosines in the 

structurally and functionally important helices are found to be accessible to 

cisplatin. 
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3.2 Introduction  

The ribosome, the molecular machine for protein synthesis, is a large, 

folded RNA assembled with proteins (27, 48, 222). The folded rRNA can form a 

number of different secondary and tertiary structural motifs and 

microenvironments that are solvent accessible (233). Due to its structural 

diversity, solvent accessibility, and general lack of repair enzymes, the bacterial 

ribosome has been a well-known target of antibiotics (71, 104). Various classes 

of antibiotics such as aminoglycosides and macrolides bind within the ribosome 

and inhibit protein synthesis (234-235). Unfortunately, many strains of bacteria 

have become resistant to antibiotics, and it is therefore important to design new 

drugs, as well as explore potential new target sites. Much of the current research 

is focused on the development of new antibiotics; however, fewer attempts have 

been made to explore new target sites (2, 103, 236).  

The first step towards the development of novel therapeutics or target 

sites is to carry out structure studies. In addition to high-resolution techniques, 

such as X-ray crystallography and NMR spectroscopy, there are several methods 

to elucidate the solution structure of nucleic acids, such as chemical or enzymatic 

probing (124, 130). Among these methods, RNA modification or cleavage, 

induced by a variety of structure-specific enzymes or chemicals, followed by 

various detection systems, such as reverse transcription or mass spectrometry 

have been widely used to gain structural information (108, 129-130). High-

resolution structural analyses of the 70S ribosomes and the 30S subunits have 

greatly expanded our understanding of the overall folding of the ribosomal RNA 

when assembled with proteins (237-238); however, cooperative interactions 
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between nucleotides and the formation of charged pockets might occur during 

the process of ribosome assembly, which have yet to be determined in detail. In 

addition, RNA structures might differ under various buffer concentrations, 

temperature, or levels of protein binding. 

Several probes have been used to obtain structural information of nucleic 

acids, but most of them are limited to in vitro studies because of their inability to 

penetrate the cell wall due to their size, structure, and/or charge (124). Only a 

few compounds have been used to probe RNA structure in vivo, such as DMS 

(152), kethoxal (239), and lead(II) (240); however, some of these compounds are 

toxic to the cell and the detection of their cleavage or reactive sites is also 

challenging. The various structural features of RNA will be important for 

biological function in vivo. The RNA structures obtained by various in vitro 

methods might be different than the corresponding RNAs present in the complex 

environment found in living cells; thus, methods to compare the in vitro and in 

vivo structures would be useful. 

Recent crystal structures have revealed a number of antibiotic binding 

sites in the ribosome, and it is interesting to know that many of these sites are 

overlapping (117). Now, it is important to develop novel target sites to design 

new drugs that can help to overcome the ever-growing problem of resistance. In 

this context, a chemical probe able to work both in vitro and in vivo can be 

utilized to explore structure accessibility in RNA. The accessible sites of the RNA 

can be compared with their functional importance, which might be useful to 

develop as a new drug target sites. Previously, we have shown that cisplatin can 
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be used to probe larger RNA structure, the ribosome, in vitro and in vivo (204). 

Cisplatin has several advantages, such as the formation of stable adducts and an 

easy detection system. Further extended studies to map the accessible regions 

in the 30S subunits and the 70S ribosomes with cisplatin in vitro and in vivo were 

carried out. 

3.3 Materials and Methods 

3.3.1 Chemicals, solutions, and DNA  

  [5'-32P-γ]ATP was purchased from Perkin-Elmer Life Sciences, Inc. and 

T4 polynucleotide kinase was obtained from New England Biolabs. A reverse 

transcriptase kit (Improm_IITM Reverse Transcriptase) was purchased from 

Promega. The remaining chemicals for buffers and reagents were obtained from 

Sigma Chemicals or Fisher. RNase-free, distilled, deionized water (ddH2O) was 

used for all experiments. 

 Cisplatin, cis-diamminedichloridoplatinum(II), was purchased from Alfa 

Aesar. The complexes cis-[PtCl(NH3)2X]+/0 or cis-[Pt(NH3)2X2]2
+/0, in which X was 

H2O, DMF, or NO3
-, were prepared as described in Chapter 2. Platinum-DMF 

complex stock solutions were stored at -20 °C for up to 1 week and diluted as 

required just prior to use. 

 Single-stranded DNA primers that were used to probe the free 16S rRNA 

were also used to probe the 30S subunits and the 70S ribosomes. Purification of 

primers was carried out as described in Chapter 2. Sequences of the DNA 

primers were named according to the beginning position of the transcribed 

nucleotides, and are same as those in Chapter 2. 



82 
 

 

3.3.2 Isolation of the 30S subunits and the 70S ribosomes  

The 70S ribosomes and 30S subunits were isolated from E. coli MRE600 

strain by the sucrose gradient method (145, 241) as described in Chapter 2. 

3.3.3 Platination reactions  

The platination reactions with the 30S subunits and the 70S ribosomes 

were performed with monoaquated cisplatin. Prior to platination, the 30S subunits 

and the 70S ribosomes, were activated by incubating in ribosome buffer (20 mM 

HEPES, pH 7.2, 50 mM KCl, and 10 mM MgCl2) at 40 ºC for 30 min (241). 

Platination was carried out in 20 mM HEPES, pH 6.5, 20 mM potassium acetate, 

and 10 mM MgSO4 (buffer H). The 30S subunits and the 70S ribosomes were 

incubated at 37 °C with aquated complex in 1:150 and 1:75 ratios of metal 

complex to nucleotides. After the reactions, samples were quenched with NaCl 

by raising the concentration to 200 mM, followed by immediate freezing. 

3.3.4 Primer extension  

  Samples for primer extension were prepared by three times extraction with 

an equal volume of phenol (phenol:chloroform:isoamyl alcohol; 25:24:1) followed 

by two times with chloroform in the presence of 6 mM EDTA. Finally, samples 

were ethanol precipitated with 0.1 volumes of 3.0 M sodium acetate, pH 5.3, and 

2.5 volumes of ethanol. Samples were dried in a speed vacuum and dissolved in 

ddH2O. The concentrations were measured spectrophotometrically at 260 nm 

using a Nano Drop spectrometer in triplicate. For primer extension, 1 µg 
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equivalent of 16S rRNA was used. Primer labeling and primer extension was 

carried out as described in Chapter 2. 

3.3.5  In vivo probing 

 E. coli cells MRE600 were streaked from a glycerol storage culture on 

Luria–Bertani (LB) agar and incubated at 37 °C overnight. A single colony was 

picked to inoculate a starter culture, which was grown at 37 °C overnight. The 

starter culture was used to seed 3 ml medium (1/100–1/250 dilution), which was 

grown with shaking to 0.2–0.3 OD600. Cisplatin dissolved in DMSO was added to 

0 to 200 µg/ ml and the cells were further incubated in a shaker at 37 °C for 2 hrs 

to an OD600 of 0.6 to 0.8. Cells were then chilled on an ice bath for 30 min and 

harvested in pre-chilled 15 ml tubes at 5,000 r.p.m. for 10 min at 4 °C. Cells 

pellet were washed 3 times with buffer A (50 mM Tris•HCl, pH 7.5 and 10 mM 

MgCl2 and 100 mM NH4Cl) and resuspended in 100 µl buffer A. Cell lysis was 

carried out with lysozyme (0.1 mg/ml) by freezing and thawing (242), and then 1 

unit of RNase-free DNase I (Promega) was added, and the mixture was 

incubated in ice for 15 min. The cell lysate was centrifuged at 5,000 r.p.m. for 10 

min at 4 °C. The supernatant was transferred to a new tube and extracted with 

an equal volume of phenol:chloroform:isoamyl alcohol (25:24:1).The aqueous 

phase was separated by centrifugation at 12,000 r.p.m. for 15 min at 4 °C and 

was extracted one more time with phenol:chloroform:isoamyl alcohol followed by 

3 times extraction with chloroform to remove all proteins. RNA was precipitated 

from the final aqueous phase with 3 M sodium acetate (pH 5.3) and 2.5 volumes 

of ethanol. The RNA was collected by centrifugation for 15 min at 12,000 g (4 
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°C), washed with 70% ethanol and resuspended in 20 μl RNase-free water. The 

RNA (2 µl) was analyzed on a 1.0% agarose gel prepared in 50 mM Tris–acetate 

and 1 mM EDTA. Primer extension was carried out as described for the in vitro 

method after isolation of RNA.   

3.4 Results 

3.4.1 Probing the 30S subunits and the 70S ribosomes in vitro 

The 30S subunits and the 70S ribosomes were isolated from E. coli MRE 

600 by the sucrose gradient method (145). The platination reaction was carried 

out similar to that with free 16S rRNA, as described in Chapter 2. Concentrations 

of the 30S subunits (1 A260 unit is equivalent to 69 pmol) and the 70S ribosomes 

(1 A260 unit is equivalent to 23 pmol) (241, 243) were determined 

spectrophotometrically. The reaction was carried out in 1:75 and 1:150 ratios of 

monoaquated species to nucleotides. Before the reaction, both the 30S subunits 

and the 70S ribosomes were activated by incubating in ribosome buffer at 42 ºC 

for 30 min. The reaction with monoaquated metal complex was carried out at 37 

ºC for 5 hours and quenched with NaCl, followed by freezing. Samples for the 

primer extension were prepared by removing proteins with phenol-chloroform 

extraction followed by ethanol precipitation.  

Primer extension was carried out as described in Chapter 2 with free 16S 

rRNA. The same primers that were used for free 16S rRNA was used to map 

the cisplatin coordination sites on 16S rRNA of the 30S subunits and the 70S 

ribosomes. Cisplatin coordination sites were then determined by pauses or 

stops of reverse transcriptase compare to a corresponding control in the same 
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gel. Bands on the gel arising due to nicks in the RNA or strong secondary 

structures were distinguished from the cisplatin binding sites by comparing with 

a control treated in a similar manner, but lacking aquated complex. The 

magnitudes of the reactivity were classified based by the intensities of the bands 

on the autoradiograms. Representative autoradiograms of the cisplatin probing 

experiments with the 30S subunit and the 70S ribosomes are shown in Figures 

3.1 to 3.3. Additional gels are shown in the Appendix. The gels were quantified 

by using ‘Image Quant’ software as described in Chapter 2. Similar to the free 

16S, the intensities of bands could be measured up to approximately 100 

nucleotides from the transcription start site. The reactive nucleotides were 

mostly found to be consecutive Gs, predominantly near mismatches or loop 

regions. Since cisplatin was known to prefer Gs in the DNA targets, it was not 

surprising that the major hits on the 16S rRNA from the 30S subunits, as well as 

70S ribosomes, were also consecutive Gs. Out of 103 sites with consecutive Gs 

(two or more Gs present are counted as one site), strong reactivity was 

observed in 38 sites, and 36 were moderate hits. In addition, several 

nonconsecutive Gs also showed strong or moderate reactivity. The overall 

results of cisplatin binding to 16S rRNA in the 30S subunits and the 70S 

ribosomes are shown in Figure 3.4 on a secondary structure model of 16S 

rRNA with reactive sites in red (strong hits) and green (moderate hits).   
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Figure 3.1. Probing results of 16S rRNA of the 30S subunits and the 70S ribosomes at the 
5' domain with primers 245 and 561 are shown. (A) The autoradiogram shows the reverse 
transcriptase pauses or stops by using primer 245. (B) The autoradiogram shows the 
reverse transcriptase pauses or stops by using primer 561. In both gels, C, U, A, G 
represent the sequencing lanes, 0 represents the control, and other lanes are 30S subunits 
and 70S ribosomes treated with increasing concentrations of monoaquated cisplatin 
(cisplatin:nucleotide is 1:150 and 1:75). The strong and moderate hits are indicated with 
arrows and corresponding nucleotides numbers (▲ ﴾strong hits﴿, Δ ﴾moderate hits﴿, and ● 
(minor hits)). 
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Figure 3.2. Probing results of 16S rRNA of the 30S subunits and the 70S ribosomes at the 
central domain with primers 831 and 906 are shown. (A) The autoradiogram shows the 
reverse transcriptase pauses or stops by using primer 831. (B) The autoradiogram shows 
the reverse transcriptase pauses or stops by using primer 906. In both gels, C, U, A, G 
represent the sequencing lanes, 0 represents the control, and other lanes are 30S subunits 
and 70S ribosomes treated with increasing concentrations of monoaquated cisplatin 
(cisplatin:nucleotide is 1:150 and 1:75). The strong and moderate hits are indicated with 
arrows and corresponding nucleotides numbers (▲ ﴾strong hits﴿, Δ ﴾moderate hits﴿, and ● 
(minor hits)). 
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Figure 3.3. Probing results of 16S rRNA of the 30S subunits and the 70S ribosomes at the 
3' domain with primers 1110 and 1435 are shown. (A) The autoradiogram shows the 
reverse transcriptase pauses or stops by using primer 1110. (B) The autoradiogram shows 
the reverse transcriptase pauses or stops by using primer 1435. In both gels, C, U, A, G 
represent the sequencing lanes, 0 represents the control, and other lanes are 30S subunits 
and 70S ribosomes treated with increasing concentrations of monoaquated cisplatin 
(cisplatin:nucleotide is 1:150 and 1:75). The strong and moderate hits are indicated with 
arrows and corresponding nucleotides numbers (▲ ﴾strong hits﴿, Δ ﴾moderate hits﴿, and ● 
(minor hits)). 
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Figure 3.4. Secondary structure map of 16S rRNA (244) with probing results from the 30S 
subunits and the 70S ribosomes is shown. Strong hits (reactive nucleotides) are colored 
red (shown with▲), moderate hits are colored green (shown with Δ), and weak hits are 
colored blue (shown with ●). The helix numbers are also indicated (1 to 45). 
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Figure 3.5. Secondary structure map of 16S rRNA (244) with probing results from the 30S 
subunits and the 70S ribosomes is shown. Strong hits (reactive nucleotides) are colored 
red (shown with▲), moderate hits are colored green (shown with Δ), and very weak hits 
are colored blue (shown with ●). Nucleotides with lower reactivity in 30S/70S compared to 
free 16S rRNA are indicated with green circles and with higher reactivity with red circles. 
The helix numbers are also indicated (1 to 45). 
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The 5' domain of 16S rRNA (nucleotides 1-566), which includes helices 1 

to 18, is the main body of the 30S subunit. This domain is mainly stabilized by 

RNA-RNA interactions (115, 222). Culver and coworkers found that modification 

of five nucleotides (G301, G302, G529, G530, and G558) in this domain of the 

ribosome were critical for the ribosome assembly (1). Previously, Moazed and 

Noller have shown that, upon A-site tRNA binding, G529 and G530 were strongly 

protected (3). Furthermore, Mankin and coworkers showed that mutations of 

several nucleotides in helix 18 were deleterious, including G529 and G530 (2). In 

cisplatin probing, moderate stops were observed before these consecutive Gs in 

the 30S subunits and the 70S ribosomes (Figure 3.1 B). Furthermore, G529 and 

G530 reacted strongly in free 16S, but were more protected in 30S/70S. Many of 

the sites in 5' domain of 16S rRNA were less reactive within the context of 

ribosomes. The significance of the result is that critical residues that are 

protected are also functionally important; therefore targeting of these sites might 

be feasible. 

 Mutation of G299A (helix 12) was found to increase both missense and 

nonsense errors during translation (4). Structure studies showed that in helix 12, 

G299 forms a Hoogsteen pair with G566 in helix 19, and the pair was found to 

involve Mg+2 coordination (245). This functionally important nucleotide G299 also 

showed a moderate reactivity with cisplatin, in which a reactivity difference was 

observed between free 16S and 30S/70S. In addition to these sites, a number of 

prominent stops were observed at G147, A160, U166, G201, G260, and G319 

(Figures 3.1 A and 3.6). All of these stops are on the 3' side of consecutive Gs.  
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Figure 3.6. Secondary structure map at the 5' domain of 16S rRNA with probing results 
from the 30S subunits and the 70S ribosomes is shown. Strong hits (reactive nucleotides) 
are colored red (shown with ▲), moderate hits are colored green (shown with Δ), and very 
weak hits are colored blue (shown with ●). A) The lower part of the 5' domain and B) the 
upper part of the 5' domain with probing results are given. Green circles represent 
nucleotides that showed strong hits on the free 16S rRNA, but are absent or very weak in 
the 30S subunits and the 70S ribosomes. The (*) indicates the difference in reactivity 
between 30S subunits and 70S ribosomes. 
 

a: role in ribosome assembly (1) 

b: antibiotic binding  

c: mutations are deleterious  

to RNA function (2) 

d: contact with tRNA (3) 

e: role in fidelity (4) 

f: Mg+2 coordination (4) 
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 In the upper part of the 5' domain, strong stops were observed at C418, G454, 

U462, C507, and U543 (Figure 3.1 B). Among these strong stops, all were 

before consecutive guanosines, except for U463, which is on the 3' side of a 

single guanosine. In addition to these, several other consecutive and single 

guanosines showed moderate to weak stops in this region (Figure 3.6). 

A majority of the nucleotides that showed reactivity with cisplatin in free 

16S rRNA also showed reactivity in the 30S subunits and the 70S ribosomes. 

However, numerous differences in reactivity were also observed, such as the 

strong stop observed at U426 in free 16S rRNA, which is not present in the 30S 

subunits and the 70S ribosomes.  Helix 16 forms a contact with protein S4, which 

might protect these nucleotides from cisplatin reaction in the 30S subunits and 

the 70S ribosomes (246). In addition, the reactive nucleotides (G416-417) 

contain a G○U pair compared to unreactive G-C pairs (G423-425); this cisplatin 

binding preference was observed on the free 16S rRNA as well. Similarly, a 

moderate hit at G446 was observed in 16S rRNA, but is not present in 30S or 

70S ribosome. In contrast, the stop at C507 is comparatively stronger in the 30S 

subunits and the 70S ribosomes (Figures 3.1 and 3.6). Helix 18 was shown 

previously to be dynamic in nature and several of its nucleotides are in contact 

with ribosomal protein S12 (246). Hence, in the 30S subunit and the 70S 

ribosome, the conformation and accessibility of nucleotides might be different 

than the naked 16S rRNA, which results in different reactivity with cisplatin. 

The central domain of 16S rRNA (nucleotides 567-915), which includes 

helices 19 to 27, folds to form the platform of the small subunit (115). Culver and 
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coworkers found six nucleotides in this region that are functionally important, and 

assembly was impaired when they were modified (1). Out of these six 

nucleotides, three are guanosines; G575, G791, and G818. Mankin and 

coworkers found clustering of moderately deleterious mutations in helix 24, and 

Cunningham and coworkers observed that none of the functional mutants in the 

790 loop of helix 24 involved G791 or U793 (2, 247). In addition, G791 is located 

on the functionally important 790 loop, which makes contact with initiation factor 

(IF3) and the P-site tRNA (248-249). In cisplatin probing, G575 in the 30S 

subunits and the 70S ribosomes showed strong reactivity. In contrast, G791 in 

the 30S subunit was a weak hit, but in the 70S ribosomes was a strong hit 

(Figures 3.2 A and 3.7), indicating that cisplatin reactivity is different in the 30S 

subunits and the 70S ribosomes.  

Several other strong cisplatin hits were observed on the 3' side of G799-

800, G773-776, and G741-742 (Figure 3.2 A and B). All of these consecutive Gs 

showed strong reactivity with the naked 16S rRNA, the 30S subunits and the 70S 

ribosomes. However, compared to the free 16S rRNA, reactivity at G799-G800 is 

stronger in the 30S subunits and the 70S ribosomes. G803 showed reactivity 

only in the naked 16S rRNA. Previously, G791 was found to be protected from 

kethoxal modification; however, this residue becomes more accessible when 30S 

subunits were converted from the active to inactive conformation (144).  

Similarly, in helices 22 and 23, several nucleotides showed differences in 

reactivity, such as G721-722, G730-731, and G733-734, which were not reactive 

in the 30S subunits and the 70S ribosomes but were in free 16S rRNA. 
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Previously, protection of G733, G734, and the 720 to 730 regions from kethoxal 

reactions has been observed due to S15 binding (145, 250), which is consistent 

these cisplatin probing results in which reactivity was reduced from free 16S 

rRNA to ribosome. 

 

 

 

Figure 3.7. Secondary structure map at the central domain of 16S rRNA with probing 
results from the 30S subunits and the 70S ribosomes is shown. Strong hits (reactive 
nucleotides) are colored red (shown with ▲), moderate hits are colored green (shown with 
Δ), and weak hits are colored blue (shown with ●). Red circles represent strong reactivity 
in the 70S ribosome compared to 30S and free 16S and green circles represent 
nucleotides that showed strong hits on the free 16S rRNA but are absent or weak in the 
30S/70S ribosomes. The (*) indicates the difference in reactivity between 30S subunits and 
70S ribosomes. 

a: role in ribosome assembly 

b: antibiotic binding  

c: mutations are deleterious  

to RNA function  

d: contact with tRNA 

e: role in fidelity  
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The 3' region of 16S rRNA, contains the 3' major (nucleotides 916-1396) 

and 3' minor (nucleotides 1397-1542) domains. The 3' major domain includes 

helices 28 to 43, and mainly constitutes the head of the small subunit, whereas 

the 3' minor domain extends from the body to head of the 30S subunit, which 

includes helices 44 and 45 (115).  Modifications of 30 nucleotides in the 3' major 

domain were found to affect ribosome assembly (1). Mutational studies showed a 

cluster of deleterious mutations in helices 34 to 37, which are located far from the 

known functional centers (2). G1058A and G1068A lead to a strong deleterious 

phenotype. In cisplatin probing, the consecutive Gs, G1057-G1058, showed 

strong reactivity only in free 16S rRNA, whereas in 30S subunits and 70S 

ribosomes, a strong stop appeared just before a single guanosine G1064 (Figure 

3.3 A and 3.8). In crystal structures of the ribosome, these consecutive Gs 

(G1057-1058) are in contact with ribosomal protein S3, which might protect them 

from cisplatin reactivity in 30S/70S ribosomes (246). Some other strong cisplatin 

stops were observed at G1185, C1267, and A1339. All of these stops are on the 

3' side of either single or consecutive guanosines.  

Modifications of 13 nucleotides on the 3’ minor domain were found to 

disrupt the assembly of the small subunit,t and a number of deleterious mutations 

were also located in this domain (1-2). However, due to limitations of cisplatin 

reactivity with guanosines, the accessibility of most of these functionally 

important nucleotides could not be monitored. The strong and moderate stops 

observed with cisplatin were at U1424, U1440, C1460, and U1490, which are all 

on the 3' side of the consecutive Gs (Figure 3.3 B). Due to the lack of 
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appropriate primer hybridization sites, a number of guanosines in the helix 45 

also could not be probed. 

 
 

 
 

Figure 3.8. Secondary structure map at the 3' domain of 16S rRNA with probing results 
from the 30S subunits and the 70S ribosomes is shown. Strong hits (reactive nucleotides) 
are colored red (shown with▲), moderate hits are colored green (shown with Δ), and very 
weak hits are colored blue (shown with ●). A) The 3' major domain, and B) the 3' minor 
domain are shown. Red circles represent strong reactivity in the 70S ribosome compared 
to 30S and free 16S and green circles represent nucleotides that showed strong hits on 
the free 16S rRNA but are absent or weak in the 30S/70S ribosomes. The (*) indicates the 
difference in reactivity between 30S subunits and 70S ribosomes. 

 

a: role in ribosome 
assembly 
 
b: antibiotic binding  

c: mutations are 
deleterious to RNA 
function  
 
d: contact with tRNA 
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3.4.2 In vivo probing  

Cisplatin is believed to enter cells by passive diffusion and undergoes 

hydration to form the aquated species due to low chloride concentration inside 

the cell (163). Therefore, it is hypothesized that cisplatin can be used to probe 

the bacterial ribosome in vivo. Cisplatin coordination sites can be mapped in a 

manner similar to in vitro studies by using reverse transcription. This type of 

probing could reveal new target sites for antibacterials on the ribosome. To probe 

the ribosome in vivo using cisplatin, E.coli DH5α was grown to ~ 0.2 to 0.3 OD600, 

100 to 200 µg/ml of cisplatin was added, and the cells were further incubated for 

two hours. After cooling on ice for 15 min, the cells were pelleted by 

centrifugation. The cells were washed three times with buffer (50 mM Tris·HCl, 

100 mM NH4Cl and 10 mM MgCl2) and total RNA was isolated. To carry out the 

primer extension analysis, total RNA was isolated by phenol-chloroform 

extraction followed by ethanol precipitation. A primer complementary to positions 

831 through 814 of 16S rRNA, as used for in vitro probing, was annealed, and 

then reverse transcription was carried out.  

Primer extension of 16S rRNA showed a prominent stop at U801, one 

nucleotide prior to the consecutive guanines G799 and G800 (Figure 3.9). This 

result is consistent with the strong stop observed with in vitro probing. Along with 

this, a minor stop also appeared before G791, which was seen only in the 70S 

ribosomes. This result demonstrates that cisplatin can be used to probe 

accessible guanosine residues in vitro and in vivo. Furthermore, the differences 

in nucleotide accessibility in free 16S rRNA vs. that in the ribosomes can be 

determined. It should be noted, however, that the in vivo results shown here 
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represent an average of all the ribosomes at various stages of protein synthesis 

in the cell. 

 

 

Figure 3.9. Probing results in 16S rRNA from in vivo studies are shown. A) An overview of 
the in vivo probing method, B) a partial secondary structure map of 16S rRNA h24 
(residues 769–820) with the primer-binding site, and C) an autoradiogram showing reverse 
transcription mapping of in vivo reactive sites (indicated by arrows; **major, *minor) of 
cisplatin on 16S rRNA/70S ribosomes (the concentrations of cisplatin are given for each 
lane, 0–200 µg/ml of cells) are shown. Dideoxy sequencing lanes are labeled as C, U, A, 
and G. Sites that are identical in the in vitro and in vivo probing experiments are indicated 
with symbols (▲,•). 
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3.4.3 Active and inactive conformations  

 Opposite reactivity of purines at the N1 and N7 positions has been 

observed previously in activated and inactivated ribosomes by chemical probing 

(249). Cisplatin showed similar reactivity as DMS in the 30S subunits and the 

70S ribosomes when used to probe the active form of the 30S subunit. For 

example, in helix 44, G1415-G1417 showed enhanced reactivity with DMS in the 

inactive form, and G1422-G1423 showed enhanced reactivity in the active 

conformation. Probing results with cisplatin showed similar reactivity with the 

activated 30S subunit, more specifically enhanced reactivity at G1422-G1423 

and no reactivity at G1415-G1417 in the 30S subunits and the 70S ribosomes. 

However, all of these Gs showed reactivity with naked 16S rRNA (Figure 3.10). 

These results demonstrate that cisplatin can be used to identify functionally 

important nucleotide and distinguish accessible nucleotide under active biological 

states. These results can be compared to accessible residues in inactive RNAs 

in the absence of protein factors. 

Another similarity of our probing results with DMS studies is observed at 

G926 and G1401. These nucleotides showed opposite reactivity at the N1 and 

N7 positions of guanosine when probed with DMS. In the active form, the 

reactivity of G926 at N1 was higher and there was no reactivity at N7. This result 

was opposite in an inactive ribosomal conformation (144). Cisplatin probing 

results showed reactivity of these nucleotides in free 16S rRNA and 

comparatively weaker reactivity in the 30S subunits or the 70S ribosomes; 

suggesting similar reactivity at the N7 of Gs. Since, both the 30S subunits and 

the 70S ribosomes were activated before the incubation with cisplatin, these 
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results indicate that the ribosome was in an active conformation during probing 

experiments.  

 
 

Figure 3.10. Secondary structure map at the 3' minor domain of 16S rRNA with probing 
results from free 16S rRNA and the 30S subunits and the 70S ribosomes are shown. 
Strong hits (reactive nucleotides) are colored red (shown with▲), moderate hits are 
colored green (shown with Δ), and weak hits are colored blue (shown with ●). A) Probing 
results from free 16S rRNA and B) results from 30S/70S are compared. 

3.5 Discussion  

 Although a number of chemical and enzymatic probes have been utilized 

to explore the accessibility of nucleotides in the ribosome, very little information is 

available regarding the reactivity of the N7 position of guanosines. Although DMS 

can react with the N7 position of guanosine, efficient strand scission is required 

for detection, which may be difficult to achieve. Cisplatin is believed to react with 
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the N7 position of guanosines and form a stable coordination complex; hence, it 

will be useful to provide information about the nucleotide accessibility and 

reactivity of the N7 position. 

The ribosome is a potential target for a number of antibiotics, and half of 

the known antibiotics already target the ribosome (104). However, pathogens 

become resistant to the common drugs by more than one mechanism. To 

overcome the problem of resistance, significant efforts have been made, mostly 

by modifying the existing antibiotics (251-252). Despite being a validated target, 

only a few attempts have been made to explore novel target sites in the ribosome 

(2, 103, 236). Cunningham and coworkers have carried out instant evolution 

experiments to investigate the nucleotides that do not undergo mutation, and if 

mutated are lethal. These nucleotides are found to be involved in interactions 

with tRNA, mRNA, or initiation factors, and are therefore functionally important. In 

the 790 and 690 loops of the small subunit, nucleotides such as G791, U793, 

and G691 were not mutated (247, 253). Previous probing experiments and now 

high-resolution crystal structures revealed that the 790 loop is in contact with 

tRNA and initiation factor 3 (238, 249). By targeting these functionally important 

nucleotides that cannot be mutated, we can be one step ahead of bacterial 

resistance involving target modification.  

To explore the potential drug target sites, in a similar manner, Mankin and 

coworkers carried out random mutagenesis in the small and the large subunits of 

the ribosome (2, 65). They observed 53 mutations in the small subunits and 54 in 

the larger subunits that were deleterious. These mutations either affect the 
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function of the ribosome or disrupt its structure leading to a deleterious 

phenotype. Deleterious mutations were clustered in certain functional regions 

that show >98% conservation in 16S rRNA (65). Hence, it can be expected that 

these nucleotides may be functionally important in other bacteria as well. Despite 

this information, more knowledge about the accessibility of these nucleotides will 

be needed to target these sites. Probing the 30S subunits and the 70S 

ribosomes with cisplatin revealed a number of strong and moderate hits. The 

binding sites of cisplatin in the ribosome are found to be distributed throughout 

the ribosome and a number of functionally important sites showed reactivity. The 

functionally important sites that are reactive towards cisplatin should be 

accessible to small molecules and, hence, could be exploited as novel target 

sites. 

Helix 17 and 18 are promising drug target sites in the ribosome because 

of their structural and functional importance. Helix 17 is structurally different in 

bacteria and eukaryotes (103). The internal loop is conserved in bacteria and 

absent in eukaryotes. Helix 18 is located on the surface of the small subunit at 

the interface that contacts the large subunit, and the 530 loop (nucleotides 515-

536) is highly conserved (244). The 530 loop is an essential component of 

ribosomal decoding and controls the accuracy of aminoacyl-tRNA selection (79). 

The lack of functional mutants in the 530 loop further indicates its functional 

importance (103). Another study showed that mutations of nine nucleotides in 

this loop are deleterious including G506, G521, and G527 (2). Cisplatin showed 

reactivity with several nucleotides in this region, including consecutive Gs in the 
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internal loop of helix 17 (G453-455), the pseudoknot region of helix 18 (G506-

507), and conserved nucleotides G529-530. These nucleotides are accessible to 

cisplatin and, hence, could be accessible to small molecules. Due to structural 

differences and the functional importance, these sites could be utilized as a novel 

target for antibiotics. Recently, a model system of helix 18 has been used as a 

target to find ligands by phase display (254). 

Helix 24 of 16S rRNA is very important because of its location near the 

decoding region, interactions with initiation factor (230, 248, 255), and key 

contacts with 50S subunit (231, 247, 249). In addition, the 790 loop in the small-

subunit platform and the nucleotides ridge (G1338-U1341 (helix 42)) in the head 

form a 13 Ǻ gap, which separates the anticodon stem-loop of the P-site tRNA 

from the E site (Figure 3.11 A) (222). The universally conserved residues G1338 

and A1339 also play a role in discrimination of initiator tRNAf-met by initiation 

factor (IF3) (256). Furthermore, helix 24 is located at the interface between the 

large and small subunits and is known to be exposed to solvent (231, 257). The 

antibiotic pactamycin is already known to bind to this helix (258). Hence, 

nucleotides in this helix need to be accessible to assist these numerous 

functional interactions, and blocking them could be an effective antibiotic 

strategy.  

All of the consecutive Gs present in helix 24 are accessible for cisplatin 

reactivity in free 16S, 30S subunits, and 70S ribosomes. However, specific 

residues such as G803 and G791 show different reactivity. G803 showed 

reactivity only with the naked 16S and G791 showed higher reactivity in the 70S 
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ribosomes. Instant evolution experiments with the 790 loop by Cunningham and 

coworkers showed that positions G791 and U789 do not allow for any viable 

mutations (103), indicating their functional importance. Nucleotides G773-776 are 

involved in forming bridge 7b and the mutation G775A is found to be lethal (2).   

 
 

 
Figure 3.11. Various functionally important helices of 16S rRNA in 70S ribosome crystal 
structures are shown. A) Helix 24 (790 loop) and helix 42 are in contact with tRNA and 
mRNA, B) the 790 loop and helix 28 are in close contact with tRNA and mRNA, C) the 790 
loop is in contact with functionally important 690 loop (helix 23), and D) helix 34 is in 
association with the antibiotic spectinomycin. Nucleotides that showed strong hits in 
cisplatin probing are shown in red color and moderate are shown in green color. This 
figure was created with Pymol using PDB: 2I2P and 2QOU (27, 74).  
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In addition, in the crystal structures, the 790 loop makes contacts with the 690 

loop through N1 and N6 of A696 and the 2'-OH of C797 (Figure 3.11 C) (78, 

253). The 690 loop is also found to be functionally important and involved in 

tRNA binding at the P site (3, 232, 249), initiation factor binding (230), and 

subunit association (147, 259). Further, mutational studies carried out on this 

loop also indicate its functional importance (253). Thus, due to its functional 

importance and extensive contacts with other helices, tRNA, and initiation factor, 

helix 24 is one of the most promising new drug target sites. All consecutive 

guanosines in this helix showed reactivity with cisplatin;  it is therefore expected 

that they will be accessible to other small molecules. Binding of small molecules 

even in the stem regions can disrupt the conformation or contacts of this helix 

with other helices, tRNA, and the initiation factor. 

 Similarly, helix 34 can also be exploited as a target site in the ribosome. 

This helix lies in the head region of the small subunit, and in the folded structure 

it is very close to the decoding region (74). Hence, it has been expected that it 

has an important role in the selection of the correct aminoacyl tRNA. The 

reactivity of nucleotides in this helix are different in free 16S rRNA, the 30S 

subunit, and the 70S ribosome. The consecutive Gs at positions 1058-1059 

showed strong reactivity within the free 16S rRNA and no reactivity in the 30S 

subunits, suggesting that these nucleotides become protected after the ribosome 

is assembled with proteins. The crystal structure of E. coli 70S revealed that 

ribosomal protein S3 binds to this helix and it contacts several nucleotides in this 

region (Figure 3.12) (246). Interestingly, a neighboring nucleotide, G1064, shows 
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higher reactivity towards cisplatin in 30S subunits and 70S ribosomes, but very 

weak reactivity in free 16S rRNA. Helix 34 is also a known binding site for the 

antibiotic spectinomycin, which contacts G1064 along with other nucleotides 

(Figure 3.11 D) (74). The lack of cisplatin reaction at the consecutive Gs may be 

due to protection or conformational changes that occur upon binding of protein 

S3, which conversely makes the neighboring G1064 accessible for small-

molecule interactions.  

 

Figure 3.12. Ribosomal protein S3 and part of 16S rRNA secondary structure 
corresponding to helix 34 are shown. A) The ribosomal protein S3 and helix 34 with 
cisplatin probing results are compared; nucleotides with strong hits on free 16S and 
protected in 30S/70S are shown in black, strong hits observed in 30S/70S are shown in 
red. B) The secondary structure of 16S rRNA shows the contacts of ribosomal protein S3. 
The nucleotides in contact with S3 are circled with: blue (backbone only), red (base only), 
and green (both backbone and base). Figure A was created with Pymol (PDB: 2AVY) and B 
was reprinted with permission (Brodersen et al.) (246).  

 
Thus, these results demonstrate the ability to discover potential antibiotic 

sites of both structure accessibility and functional importance. The platinum 

complex is sensitive to variations in the ribosome structure, and thus could be 
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employed to examine ribosomes at various stages of protein synthesis, or 

complexed with various factors, mRNA, or tRNAs. Most importantly, it is revealed 

that a positively charged platinum complex is useful for targeting rRNA, and has 

the ability to provide key information about helix or loop accessibility in the 

ribosomes. Sites that differ in platinum reactivity between 30S subunits and the 

70S ribosomes could reveal compelling regions for mechanism-based drug 

design. Furthermore, the fact that the platinum complex generates stable adducts 

is significant because the kinetics of the reaction can be monitored, which will 

allow the determination of how positively charged compounds such as 

aminoglycosides identify target sites with favorable electrostatic contributions 

from a number of possible reactive sites on the ribosome (204). 
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CHAPTER  4  

Study of Cisplatin Binding to a Small RNA Construct 

Representing the 790 Loop of 16S Ribosomal RNA  

4.1 Abstract 

DNA has been considered to be the major target of cisplatin, while RNA 

has been essentially overlooked. Previous studies in our laboratory 

demonstrated that RNA is the kinetically preferred target over DNA when similar 

sizes and structures of nucleic acids are compared. In the present study, we are 

extending our understanding of cisplatin binding to the 790 loop of E. coli 16S 

ribosomal RNA (rRNA). On the model RNA constructs, the number of platinum 

adducts were determined by using enzymatic digestion in conjunction with HPLC 

and atomic absorption spectroscopy. In addition, the binding sites, number, and 

types of adducts formed with RNA constructs were identified by using MALDI-

TOF mass spectrometry and LC-MS spectroscopy. The aquated platinum 

complex formed a variety of adducts with the 790 RNA hairpins. This information 

may be helpful towards understanding the usefulness of cisplatin as a probe of 

RNA structure and function, or to consider rRNA as a potential target of the 

antitumor drug. 

4.2 Introduction  

The ribosome is composed of rRNA and proteins, which are organized 

into the large and small subunits (48, 222). For the 70S ribosome of E. coli, the 

large subunit (50S subunit) is composed of 5S and 23S rRNAs and 34 ribosomal 
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proteins and the small subunit (30S subunit) is composed of 16S rRNA and 21 

proteins (222, 260). The ribosome is important because it catalyzes protein 

synthesis in all forms of life. The majority of ribosomal functions rely on the rRNA 

structure (222). 

This dependence of ribosome function on RNA is only possible because of 

the large variety of secondary and tertiary structures formed by RNA (34). Single-

stranded RNAs fold upon themselves to form well-defined structures that are of 

great functional importance (35). An example of this, which is found in, but not 

exclusive to, the ribosome is the structural motif called the stem-loop or hairpin 

(41, 244). Although most hairpins rely heavily on hydrogen bonding in the so-

called stem region, mismatch base pairing can also occur.  

Aside from studying RNA structural regions to understand their functions, 

such work may also lead to the discovery of new antibiotic binding sites (119, 

261). It has been reported that human pathogens from infections in patients from 

various sources have been growing more resistant to commonly used antibiotics 

(262). Since nearly half of the currently used antibiotics target the ribosome, it is 

important to find new regions for novel antibiotics to bind (86). Combined with 

genetic approaches, biophysical methods and chemical probing may be used as 

a discovery tools for new antibiotic binding sites (2, 103, 236). 

The work reported here focuses on a model structure of the 790 loop of E. 

coli 16S rRNA. This loop contains residues 783 to 799 and has been shown to be 

important for ribosomal function, due to its presence in the inter-subunit region 

(231) and its binding to protein IF3 (230). The 790 loop is exposed to solvent in 
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the small subunit, and it is present in the small subunit rRNAs of all organisms. It 

has also been shown to have decreased ribosomal function following mutations 

(247). So, not only is it accessible, but information pertaining to molecular binding 

to the 790 loop is useful for other organisms.  

While cisplatin is commonly used as a chemotherapeutic drug for several 

forms of cancer (163, 166), it has also been reported to be a probe for accessible 

residues of ribosomal RNA (204). In DNA, the aquated cisplatin coordinates to 

the N7 positions of adjacent purine bases to form primarily 1,2-intrastrand 

crosslinks, but the formation of interstrand and monofunctional adducts is known 

as well (172, 197, 263). The types of adducts formed with RNA have not yet 

been verified, but are presumed to be the same as DNA. The advantages that 

cisplatin probing has over other chemical probes is its ability for active or passive 

cellular uptake, activation within the cell, and stability of the adduct formation with 

nucleic acids (163, 264). Following passive diffusion, this square-planar complex 

is activated by the replacement of one chlorido ligand by hydrolysis in an 

aqueous environment because of the decreased chloride ion concentration in the 

cell (156). This reaction produces the mono-aquated form of cisplatin 

[Pt(NH3)2ClH2O]+ and following coordination, the remaining chlorido ligand is 

displaced by hydrolysis to produce the bis-aquated form of cisplatin, thus 

allowing the platinum to more easily coordinate to a second purine base (229). In 

vitro, hydrolysis products of cisplatin can be generated by using silver nitrate in 

order to precipitate the chloride ions out of solution as silver chloride.  
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Probing the RNA structure with cisplatin provides information concerning 

the environment of individual nucleotides that can be compared to RNA structural 

models and hypotheses about RNA function. This is important because a limited 

number of studies have revealed further details concerning interactions of 

cisplatin with RNA (169). In order to determine the location of cisplatin binding on 

the 790 RNA hairpin constructs and quantify the number of adducts, matrix-

assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass 

spectrometry, atomic absorption spectroscopy (AAS), high-performance liquid 

chromatography (HPLC), and liquid chromatography-mass spectrometry (LC-

MS) were employed (Figure 4.1).  

4.3 Materials and Methods  

4.3.1 General 

Cisplatin (cis-diamminedichloridoplatinum (II)) was obtained from Alfa 

Aesar (Ward Hill, MA). Silver nitrate and ammonium acetate were obtained from 

Fisher Scientific. DMF (dimethylformamide) from Acros Organics was used for 

the preparation of the monoaquated and bioaquated cisplatin species. TBAF 

(tetrabutylammonium fluoride) was obtained from Aldrich, CIP (calf intestinal 

alkaline phosphatase) was obtained from Promega Corp (Madison, WI). P1 

nuclease was purchased from Sigma Chemicals. The remaining chemicals for 

buffers and reagents were obtained from Sigma Chemicals or Fisher. RNase-

free, distilled, deionized (ddH2O) was used for all experiments.  
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Figure 4.1. The basic outline of cisplatin activation, secondary structure of 16S rRNA, 
close-up to show 790 RNA constructs, and summary of various techniques used for study 
of cisplatin binding in RNA model system are shown. Three different RNA constructs used 
in this study (790 A○C wt, 790 A○C and 790 G○U hairpins) are indicated in the box.  

4.3.2 Preparation of aquated complexes  

For monoaquated cisplatin, molar equivalents (116 µmol) of cisplatin (35 

mg) and silver nitrate (18 mg) were added to 1 ml dH2O or DMF and dissolved by 

agitation in the dark overnight. Silver nitrate was introduced in order to precipitate 

out chloride ions. The solution was centrifuged at 12,000 RPM for 15 minutes to 

remove the silver chloride precipitate, and the monoaquated cisplatin 

supernatant was removed. An additional 5 minutes of centrifugation at 12,000 

RPM ensured that all of the silver chloride had been removed. The supernatant 
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was transferred to a new tube. The aquated samples of cisplatin in DMF were 

stored at -20 °C and kept no longer than one week.  

4.3.3 RNA preparation and purification 

Three RNA constructs 5'-GGCGAUUAGAUACCGCC-3' (790 A○C) 5'-

GGCGGUUAGAUAUCGCC-3' (790 G○U), and 5'-GCAGGAUUAGAUACCC 

UGC-3' (790 A○C wt) were chemically synthesized at the Keck Foundation, 

School of Medicine, Yale University. These RNAs were received as the 2'-

protected species and deprotected by dissolving in TBAF, followed by incubation 

at 35 ºC overnight. The RNA was then desalted with a Sep-Pak Light C18 

cartridge (Waters), dried in a speed-vac evaporator, and reconstituted in ddH2O. 

The RNA then underwent HPLC purification. Solvents were as follows: buffer A 

was 25 mM triethyl ammonium acetate, pH 6.5; buffer B was 40% acetonitrile in 

water. The column was pre-equilibrated with 80% buffer A and 20% buffer B with 

a flow rate 1 ml/min. RNA purification was achieved using the following elution 

gradient: 80% A and 20% of B to 50% A and 50% of B over 30 min at room 

temperature. The RNA fractions were detected at 260 nm and collected 

manually. Following HPLC purification, RNA were ethanol precipitated with 

sodium acetate and renatured in 20 mM Tris·HCl and 50 mM NaCl by heating to 

90 °C for 2 min followed by slow cooling. 

4.3.4 Cisplatin reaction with 790 RNA 

All cisplatin reactions were carried out with monoaquated complexes in 

1:1 or 1:20 ratios of RNA:complex. Prior to platination, RNA was renatured as 
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stated above. Platination was carried out in 20 mM sodium phosphate buffer, pH 

6.5, 10 mM MgCl2 and 10 mM NaCl (buffer P) at 37 °C for 5 hours. The reactions 

were quenched with 2 M NaCl followed by immediate freezing. 

4.3.5 MALDI-TOF mass spectrometry  

MALDI-TOF (Matrix Assisted Laser Desorption Ionisation Time of Flight) 

mass spectrometry analyses were carried out with a Bruker Daltonics TOF-300 

MALDI Ultraflex. After platination reaction, RNA oligos were separated by 20% 

polyacrylamide gel electrophoresis in order to separate bound and unbound RNA 

samples. The bands were cut out of the gel and electro-eluted. Following 

desalting with the Sep-Pak Light C18 cartridge, the samples were prepared for 

MALDI-TOF by mixing 1 µl (25 pmol) of platinated or unplatinated RNA with 3 µl 

of freshly prepared matrix solution (3-hydroxypicolinic acid in 50% acetonitrile). 

One μl of this mixture was placed on the MALDI plate and allowed to dry at room 

temperature. For RNase T1 digestion, 1 μl (1 unit) of RNase T1 was added to the 

sample and it was incubated at room temperature for 15 min. Then, one μl was 

spotted on the MALDI plate and allowed to dry at room temperature. The spectra 

of intact RNA molecules were acquired in positive-ion reflector mode using 

method RP-3147.par.  

4.3.6 Atomic absorption spectroscopy  

Atomic absorption spectroscopy (AAS) was used to analyze the amount of 

platinum bound to the 790 RNA constructs. The instrument used for this study 

was equipped with a graphite furnace with hollow cathode platinum lamp (Perkin-
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Elmer AAnalyst 700). The AAS has adjustable slit width wavelength and direct 

concentration readout capabilities. All 790 samples underwent 30 hours of 

dialysis with Spectra/Por 7 dialysis tubing, 3.5 KDa molecular weight cut off 

membrane to remove any excess platinum present in the reaction. The AAS was 

optimized and calibrated using calibration standards prior to each analysis. The 

platinum calibration standards were prepared from commercial standards of 

platinum (High-Purity Standards, Charleston, SC) in 5% HCl. The data were 

obtained by using the instrument protocol and the previously described methods 

in the literature (265-266). 

4.3.7 High performance liquid chromatography 

HPLC was carried out with a Waters system equipped with a C18 

Discovery column (250 x 4.6 mm, 0.5 µm). Separation was carried out by using 

buffer A (40 mM ammonium acetate) and B (40% acetonitrile) with a linear 

gradient in which the ratio of A to B changed from 95:5 to 70:30 over 30 minutes 

at a constant flow of 1 ml/min. The retention times of the standard nucleosides 

were confirmed by injection of known standard nucleosides. Control and 

platinated RNAs were digested with nuclease P1 to convert to nucleotides, and 

the CIP was used to remove phosphates and give free nucleosides. Nuclease P1 

digestion was carried out in 50 µl of digestion buffer (1 mM ZnCl2, 20 mM sodium 

acetate, pH 5.3), for both the control and the platinated RNAs with 10 µl (10 U) of 

nuclease P1 at 37 ºC overnight. The enzyme was then deactivated by heating at 

75 ºC for 15 min. Five µl of 1.5 M Tris·HCl, pH 8.8, and 1 µl (10 U) of calf 

intestinal phosphatase (CIP) was added to each sample and incubated for 4 hrs 



117 
 

 

at 37 ºC. After 4 hrs of incubation, samples were again heated at 75 ºC for 15 

min, vortexed, and centrifuged at 12,000 rpm for 5 min. Finally, samples were 

filtered through YM-3 microcon filters before injection into the HPLC or LC-MS.  

Samples were analyzed by HPLC and peaks areas were normalized to 

account for the differences in extinction coefficients at 260 nm, (C = 9,100 M-1 

cm-1, U= 10,100 M-1 cm-1, G= 13,600 M-1 cm-1, A= 14,900 M-1 cm-1) (217) and 

then peak ratios were calculated relative to the cytidine peak. 

4.3.8 Liquid chromatography mass spectrometry 

LC-MS (Liquid Chromatography Mass Spectrometry) is a powerful 

technique to separate and analyze complex mixtures with high sensitivity. LC-MS 

was carried out on an AQUITY Ultra Performance LC chromatography (UPLC) 

system (Waters Corporation, MA USA) equipped with an HSST3 C18 column 

(2.1 x 100 mm 1.8 µm). The column was maintained at 50 ºC and elution was 

carried out with a linear gradient of acetonitrile and 100 mM ammonium acetate, 

pH 6.0. The gradient was run for 3 min with a flow rate 700 µl/min, starting at 

100% ammonium acetate and decreasing to 60% over the course of the gradient. 

The column eluent was analyzed by directing it to the mass spectrometer. Mass 

spectra were collected in the positive ion mode. The percentage of adducts were 

calculated by normalizing the area with extinction coefficients followed by relative 

ratios of adduct present in sum of adducts. 
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4.4 Results 

4.4.1 Cisplatin binding studies in 790 RNA constructs 

Initially, two model systems of the 790 hairpin, 790 A○C and 790 G○U 

(mutant) were selected to study cisplatin binding (Figure 4.1). This 790 loop is 

part of helix 24 of 16S rRNA and is functionally important (249). In addition, 

extensive mutational and structural studies have been carried out previously in 

this helix (247, 258). MALDI mass spectrometry was used to check adduct 

formation with small RNA constructs. RNAs were reacted with one equivalent of 

monoaquated cisplatin for 5 hrs at 37 °C. The products were separated on 15% 

denaturing gels and visualized by UV shadowing. For the 790 A○C model, two 

bands were observed with cisplatin, whereas three bands were observed in the 

case of the G○U variant.  

The product bands A○C1, with higher mobility, and A○C2, with slower 

mobility, were isolated by electro-elution and subjected to MALDI-TOF mass 

spectrometry (Figure 4.2). The higher mobility product, A○C1, has a mass of 

5426.53 Da, which corresponds to free RNA. The slower mobility product, A○C2, 

has a mass 5653.2 Da, which is increased by 227 mass units [Pt(NH3)2] relative 

to the free RNA, and corresponds to the formation of a bifunctional adduct. 

Similarly, three products from the 790 G○U variant; G○U1 (higher mobility), 

G○U2 (intermediate mobility), and G○U3 (slowest mobility) were also isolated 

and analyzed by MALDI-TOF (Figure 4.2). In 790 G○U, the slower mobility 

product, G○U1, corresponds to unmodified 790 G○U with a mass 5443.2 Da. The 

other two products, G○U2 and G○U3, correspond to masses 5670.7 Da and 
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5670.2 Da, respectively, increased by of 227 mass units relative to the free RNA, 

equivalent to [(Pt(NH3)2] (Table 4.1). This result also indicates formation of 

bifunctional adducts. 

 

 

Figure 4.2. MALDI-mass spectrometry data show the masses of various products formed 
with 790 hairpin loops after the reaction with monoaquated cisplatin. 790 model constructs 
A○C and G○U with their sequence and calculated mass are also shown. 
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Table 4.1. Observed molecular mass and predicted species of various cisplatin adducts 
with 790 RNA model system. 

Molecular Ion  Observed mass (Da) 
(M+H)+ Predicted species 

790 A○C1 5426.53 790 A○C (RNA only) 

790 A○C2 5653.20        (+227) 790 A○C + Pt(NH3)2 

790 A○C2 5880.27        (+2*227) 790 A○C + 2[Pt(NH3)2] 

790 G○U1  5443.25     790 G○U (RNA only) 

790 G○U2 5670.72        (+227) 790 G○U + Pt(NH3)2 

790 G○U3 5670.20        (+227) 790 G○U + Pt(NH3)2 

 

4.4.2 Mapping binding sites by RNase T1 cleavage 

For further confirmation and mapping of the exact cisplatin-binding sites in 

these model systems, the products were partially digested with RNase T1, and 

the fragments were analyzed by MALDI-TOF mass spectrometry (Figure 4.3). 

RNase T1 fragments show that A○C1 has no platination in any fragments of 

RNase T1; however, in A○C2, the fragments corresponding to 3185.1 Da, 

[GGCGAUUAG>p+Pt(NH3)2], and 1568.2 Da, [GGCG>p+Pt(NH3)2], suggested 

platination at the 5' consecutive guanines (Figure 4.3 and Table 4.2). In the case 

of 790 G○U, the highest mobility band has no platination in any fragments of 

RNase T1 digestion; whereas, the other two slower mobility products, G○U2 and 

G○U3, had fragments corresponding to formation of bifunctional adducts (Figure 

4.4 and Table 4.3). The fragment corresponding to 1568.9 Da, [GGCG>p+ 

Pt(NH3)2], in G○U2, suggested a bifunctional adduct at the 5' consecutive  
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Figure 4.3. MALDI-mass spectrometry data after digestion of 790 A•C construct with RNase 
T1 are shown. RNA hairpin, platinated (♦) and corresponding unplatinated (◊) fragments, 
and +2 charge states (▪) are also indicated. The platinated site is shown on A○C2 at 
positions G1 and G2, which is consistant with the mass data.  

 
Table 4.2. RNase  T1 fragments of 790 A○C1 and A○C2 with calculated and observed mass. 

RNA fragments (5' to 3') 
Calculated 
mass  (Da) 
[M+H]+ 

Observed mass 
A○C1 (Da) [M+H]+ 

Observed mass A○C2 
(Da) [M+H]+ 

GGCGp 1341.81 1341.55 1568.27 [+ Pt(NH3)2] 

AUACCGp 1921.16 - 1920.74 

AUACCGCC 2469.56 2469.93 2469.68 

GGCGAUUAGp 2957.77 2957.83 3185.19 [+ Pt(NH3)2] 

AUUAGAUACCGCC 4085.53 4086.55 4086.28 

CGAUUAGAUACCGCC 4734.92 4734.31 - 

(M+H)+ 5425.3 5425.25 5653.27 [+ Pt(NH3)2] 
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Figure 4.4. MALDI-mass spectrometry data after digestion of 790 G○U construct gel 
fractions (G○U1, G○U2, and G○U3) with RNase T1 are shown. 790 G○U hairpin, platinated 
(♦) and corresponding unplatinated (◊) fragments of RNA are also indicated. The platinated 
site is shown on G○U2 at positions G1 and G2, and on G○U3 at positions G4 and G5, 
which is consistent with the mass data. 

 
guanines, and fragment with 2511.4 Da, [CGGUUAG>p+Pt(NH3)2], in G○U3 

indicated formation of an adduct at the G○U mismatch region. The fragment 

1568.9 Da is not significant in G○U3; but compared to G○U2, the mass 

corresponding to 2511.4 Da had higher intensity. The result is opposite in G○U2, 

which confirms adduct formation at two different sites. 
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Since the cisplatin was shown to bind preferably to the 5' consecutive 

guanosines on the modified construct, which were not the part of wild-type 16S 

rRNA, we made another construct with an A○C mismatch (wild type), but lacking 

the 5' consecutive guanosines. The rest of the binding studies in this chapter 

focus on the 790 A○C wild-type (wt) construct. 

 
 
Table 4.3. RNase T1 fragments of 790 G○U1, G○U2, and G○U3 with calculated and 
observed mass. 

RNA fragments 
(5' to 3') 

Calculated 
mass (Da) 
[M+H]+ 

Observed with 
G○U1 (Da) 
[M+H]+ 

Observed with 
G○U2 (Da) 
[M+H]+ 

Observed with 
G○U3 (Da) 
[M+H]+ 

UUAGp 1287.75 1287.58 1287.45 1287.40 

GGCGp 1341.81 1341.84 1568.95        
[+ Pt (NH3)2] 

1568.7          
[+ Pt (NH3)2] 

GGCGGp 1687.02 1686.10 - - 

AUAUCGp 1922.14 1922.22 1922.42 1922.19 

CGGUUAGp 2283.35 2283.42 - 2511.42        
[+ Pt (NH3)2] 

AUAUCGCC 2470.55 2471.60 2471.36 2471.26 

GGCGGUUAGp 2973.77 2973.67 3202.13        
[+ Pt (NH3)2] 

3202.32        
[+ Pt (NH3)2] 

 

4.4.3 Binding studies in model system 790 A○C wild type 

The new 790 model RNA (790 A○C wt) was reacted with monoaquated 

cisplatin in an equimolar ratio with monoaquated platinum complex similar to the 

other constructs and the products were separated by gel electrophoresis. 

Separated products after desalting were examined by Ultraflex MALDI-TOF mass 
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spectrometry in the positive-ion mode (Figure 4.5). The band with the faster 

mobility was unplatinated RNA and the band with slower mobility contained a 

mixture of various adducts. The expected and observed mass of the possible 

adducts are summarized in Table 4.4. The reaction of cis-[PtCl(H2O)(NH3)2]+ 

resulted in the formation of what we believe to be a bifunctional adduct, RNA-

Pt(NH3)2, which was identified through an observed molecular mass of 6288.53 

Da. Two other products were observed in the MALDI spectrum with less 

intensity, corresponding to two and three platinum complexes bound to the 790 

RNA construct. 

 

Figure 4.5. MALDI-TOF spectra of undigested control (bottom) and platinated 790 A○C wt 
model (top) with aquated platinum complexes (stoichiometry of 1:1, 1:2, and 1:3 RNA:Pt 
adduct) are shown.  
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Table 4.4. Calculated and observed molecular mass of various cisplatin adducts with 790 
RNA model system. 

Molecular ion  Calculated mass (Da) 
[M+H]+ 

Observed mass (Da) 
[M+H]+ 

790 A○C wt control  6061.72 6061.70 

790 A○C wt + Pt(NH3)2 6290.74 6288.53     (+227) 

790 A○C wt + 2[Pt(NH3)2] 6519.76 6515.71     (+(2*227)) 

790 A○C wt + 3[Pt(NH3)2] 6748.78 6742.85     (+(3*227)) 

 

4.4.4 Mapping the binding site with RNase T1 cleavage 

In order to determine the location of the cisplatin-binding sites, both RNA 

samples (control and platinated) were partially digested with RNase T1. This 

digestion was performed to produce fragments of various lengths and molecular 

mass. The location of cisplatin-binding could then be localized to a specific 

fragment for closer analysis. Following a five-hour incubation at 37 °C of 

equimolar amounts of 790 RNA (A○C wt) and cis-[PtCl(H2O)(NH3)2]+, the 

products and control were subjected to RNase T1 cleavage. Figure 4.6 and 

Table 4.5 compare the mass spectra for the digested control and platinated 790 

loop.   

Three major fragments were observed in both samples and a fourth 

fragment was only observed in the product. The three fragments that are 

common to both spectra were the result of the RNase T1 digestion. The first 

fragment, CAGp, was identified with an observed molecular mass of 979.4 Da. 

whereas the second fragment, corresponding to AUUAGp, was identified with an 

observed molecular mass of 1615.5 Da, and the third fragment, AUACCCUGp, 
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contained the observed molecular mass of 2530.7 Da. The fourth fragment was 

observed only on the platinated sample, which corresponds to CAGGAUUAGp+ 

Pt(NH3)2. This is because the RNase T1 cleavage at the 3' end of guanine 

residues was likely blocked by a bifunctional platinum adduct at consecutive 

guanosine residues (residues 785 and 786). This is further supported by the fact 

that there is a mass peak with lower intensity at 1541.92 Da on the platinated 

sample, which corresponds to formation of bifunctional adduct on CAGGp. 

 

 

Figure 4.6. MALDI-TOF mass spectra of digested control and platinated 790 loop model 
(790 A○C wt) are shown. The model RNA construct, platinated (♦) and corresponding 
unplatinated (◊) fragments with RNA sequence are also indicated. The platinated site is 
shown on A○C wt (platinated) at positions G4 and G5, which is consistant with the mass 
data. 
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Table 4.5. RNA fragments, calculated and observed m/z values of 790 A○C wt are listed for 
the digested control RNA and platinated RNA. 

RNA fragments       
(5' to 3')   

Calculated 
mass (Da) 
[M+H]+ 

Observed mass 
control RNA 
(Da) [M+H]+ 

Observed mass 
platinated RNA (Da) 
[M+H]+ 

CAGp 979.6 979.68 979.05 

CAGGp 1324.81 1324.98 1541.42 [+ Pt (NH3)2] 

AUUAGp 1615.96 1616.25 1615.31 

AUACCCUGp 2531.51 2531.79 2530.65 

CAGGAUUAGp 2940.77 - 3167.63 [+ Pt (NH3)2] 

AUUAGAUACCCUGp 4147.48 4147.28 4147.00 

 

4.4.5 Determination of number of adducts formed with 790 A○C wt hairpin  

The 790 RNA (A○C wt) was reacted with a 20x excess amount of 

monoaquated platinum complex, cis-[PtCl(H2O)(NH3)2]+, in 10 mm phosphate 

buffer at 37 ºC for 5 hours. A control reaction was also prepared with a volume of 

H2O equivalent to that of the cisplatin added to the other reactions. After 5 hours, 

the reactions were quenched with NaCl followed by freezing. Next, all reaction 

mixtures were dialyzed with a tubing of a MW cut off of 3.5 kDa for 30 hours in 

order to remove any excess unbound platinum. The concentration of dialyzed 

RNA samples were measured spectrophotometrically (ε = 188,800 mol-1cm-1) 

and 0.1 OD was used for atomic absorption spectroscopy (AAS) to determine the 

number of platinum atoms bound to RNA. A calibration curve prepared from 

known concentrations of platinum was created and platinum concentrations of 

the sample volumes were determined in triplicate. These values were used to 
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determine the number of moles of platinum present in the sample and a ratio to 

the number of moles of 790 RNA in the sample were calculated. When a 20x 

excess of aquated platinum (80 nmol) was reacted with 790 RNA (4 nmol) nearly 

three moles of platinum were bound to every mole of 790 model RNA construct 

(Figure 4.7A). 

 

Figure 4.7. The molar ratio of the bound platinum to 790 RNA with 20x excess platinum is 
shown. A) Number of platinum atoms bound to each molecule of 790 construct (average of 
triplicate data) and B) MALDI mass spectra showing various adducts formed with excess 
aquated platinum complex are shown. 

 
Further, MALDI mass spectrometry was employed to elaborate on the 

findings of the excess platinum reaction previously analyzed with AAS. The 

MALDI spectrum of the analyzed reaction with 20x excess cisplatin showed three 

different products as shown in Figure 4.7B. The major molecular ion peak at 

6741.9 Da corresponds to the three platinum adducts associated with 790 

construct, while the other two peaks with lower intensities, 6514.9 Da and 6969.5 
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Da, correspond to two and four cisplatin adducts bound to the RNA molecule. 

This data supports the average three platinum complexes present in 790 RNA 

construct determined from AAS.  

4.4.6 Types of adducts 

 Five reactions of 790 RNA (A○C wt) with different molar amounts (1:1 to 

1:5) of cis-[PtCl(H2O)(NH3)2]+ in 10 mm phosphate buffer were incubated at 37 

ºC. After five hours, reactions were quenched with 2 M NaCl raising the 

concentration to 200 mM of NaCl and stored in the freezer. For comparison, a 

control reaction was also treated in a similar manner. All six reactions were 

treated with P1 nuclease to separate nucleotides and then CIP to remove 

phosphates. The concentrations of the sample volumes were determined by a 

UV-vis spectrophotometer and a volume corresponding to 0.1 OD was injected 

into the HPLC. An overlay of the resulting chromatograms showed that 

concentration of guanosine is decreased as the reaction ratio increases. The 

second major change is observed with adenosine, while the other two nucleotide 

concentrations remain fairly constant (Figure 4.8A). Quantification was carried 

out by Empower HPLC software and the peak areas were divided by the 

corresponding extinction coefficients to account for the differences in absorbance 

at 260 nm. The peak ratios were then normalized to the cytidine peak (Figure 

4.8B). 

 



130 
 

 

 

 

Figure 4.8. HPLC chromatograms (A) and quantification (B) of the digested 790 RNA after 
reaction with cisplatin is shown. A) An overlay of the HPLC chromatograms of control 
(digested 790 RNA) and platinated 790 RNA of different reaction ratios is shown. New 
peaks following platination of 790 RNA are indicated by symbols (Δ o ♦ ●). B) Relative 
molar concentrations of unreacted nucleosides to reaction ratios vs. relative moles are 
plotted (this data was collected by Christopher Lajeunesse). 
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Along with four standard nucleosides, several other peaks were observed 

in the HPLC traces. These peaks were observed to increase in intensity as the 

ratio of cisplain was increased in the reaction mixture. To characterize these 

unknown peaks, LC-MS characterization was carried out.  

To identify other unknown peaks, LC-MS was carried out with an Acquity 

UPLC system equipped with an HSST3 (2.1 × 100 mm, 1.8 µm) C18 column. 

The chromatogram and mass of the corresponding peaks are shown in Figure 

4.9. The observed and calculated masses with retention times are shown in 

Table 4.6. The major peak at retention time 0.90 min is assigned as the 

bifunctional adduct, GpGPt(NH3)2, with a molecular mass of 856.16 Da. Similarly, 

the peak at 1.60 min with mass 840.16 Da corresponds to ApGPt(NH3)2, and the 

peak at 1.68 min with mass 794.20 Da is assigned as GGPt(NH3)2. The peak at 

2.12 min with mass 778.22 Da is assigned as AGPt(NH3)2. Along with these, two 

monofunctional adducts were also assigned. The peak at 1.49 min with mass 

547.09 Da is GPt(NH3)2Cl and at 1.81 min with mass 531.08 Da is 

GPt(NH3)2H2O. These results show that cisplatin preferentially reacts with 

guanosine, forming both bifunctional and monofunctional adducts. 

Further, the ratio of these adduct-formations was calculated and found to 

be in favor of the GpG platinum adduct. The UV chromatogram from the LC-MS 

analysis of the 5:1 (Pt:RNA) molar ratio reaction was quantified using Mass Lynx 

software and Table 4.6 shows the relative percentage of adducts present in 

solution. The GpGPt(NH3)2 adduct was the most prevalent adduct found in the 

reaction volume accounting for 35% of the total adducts found. The bifunctional 
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ApGPt(NH3)2 adduct contributed to the second most preferred product with 24%. 

This was followed by the GGPt(NH3)2 and AGPt(NH3)2 adducts with values 12% 

and 11%, respectively. The monofunctional adducts were not as prevailing as the 

bifunctional adducts, but still provided 17% of the products with GPt(NH3)2Cl 

accounting for 9% and GPt(NH3)2H2O, 8%. The formation of the bifunctional 

adducts was the more preferred product by a factor of almost 4:1 in comparison 

to the monofunctional adducts. 

 

Figure 4.9. LC-MS data of digested 16S rRNA after reaction with cisplatin are shown. The 
chromatograms with retention times (upper) and mass spectra of the corresponding peaks 
(lower) are shown. 
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Table 4.6. Masses, retention times, and % of various adducts of cisplatin with model RNA 
construct. 

Types of 
adducts 

+1 charged state (Da) 
[M+H]+ 

+2 charged state (Da) 
[M+H]+ Retention 

time 
Relative 

% 
Calculated  Observed Calculated Observed

GpG[Pt(NH3)2] 857.15 856.14 428.57 428.59 0.96 min  35 

G[Pt(NH3)2Cl] 548.08 547.09 - - 1.49 min 9 

ApG or 
GpA[Pt(NH3)2] 

841.15 840.14 420.57 420.57 1.60 min 24 

GG[Pt(NH3)2] 796.20 794.20 398.1 397.60 1.68 min  12 

G[Pt(NH3)2H2O] 531.12 531.08 - - 1.81 8 

AG or 
GA[Pt(NH3)2] 

780.21 778.19 390.1 389.60 2.11 min  11 

 

4.5 Discussion 

 The binding study with small RNA constructs has shown that cis-

[PtCl(H2O)(NH3)2]+ coordinates with the 790 RNA loop preferentially at 

consecutive guanosines. MALDI and LC-MS data revealed that the aquated 

complex is capable of forming bifunctional adducts with consecutive guanine 

residues, as well as mono-functional adducts with single guanine residues. 

Results from MALDI-TOF and AAS have uncovered that more than three 

cisplatin molecules can bind to 790 RNA constructs, though there is only one 

consecutive guanosine. HPLC can be utilized to identify various types of adducts 

formed with RNA constructs; however, due to lack of authentic platinated 

standards, LC-MS was used for further confirmation. 
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 Our work has shown that MALDI-TOF, AAS, HPLC, and LC-MS are useful 

for characterizing and mapping the interactions between cisplatin and the 19-

nucleotide 790 RNA loop. Though HPLC has demonstrated to be effective in 

determining whether a reaction has occurred between cisplatin and the RNA, the 

information gained from this technique is limited. A high-resolution mass 

spectrometry technique is needed for product identification. MADLI-TOF allows 

for the detection of bound complexes, before or after digestion. In addition, the 

relative number of bound species can be obtained from the mass spectra.  

In MALDI-TOF, the platinated RNA showed masses with 227 Da 

increments compared to the parent RNA, which is two mass units (Hs) less than 

would be expected from the coordination of Pt(NH3)2 (229 Da). This is due to the 

proton necessary to compensate for the charge of Pt2+ and still produce singly 

charged molecular ions (267). However, it is still uncertain whether the products 

are mono- or bifunctional adducts, because of less number of purines and high 

laser intensity used for ionization. Previously, it has been suggested that the 

lower mass observed with platinated-RNA complex in MALDI-TOF was the result 

of possible ligand loss (chlorido) during the ionization process rather than 

formation of a bifunctional adduct (170). Using the relatively soft ionization 

method (LC-MS), both mono- and bifunctional adducts were detected. The 

monofunctional adduct includes both the chlorido and aqua ligand. In LC-MS, the 

monofunctional adduct with one chlorido ligand was detected with a mass one 

Da less than calculated. In bifunctional adducts, loss of two protons was 
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observed with GG-Pt(NH3)2 and AG-Pt(NH3)2, whereas only one proton loss was 

observed with the GpG and ApG adducts. 

In 16S rRNA and 790 model constructs, the preferable binding sites of 

aquated platinum complex were similar; mostly targeting the consecutives Gs. 

The similarity in type of adducts obtained from HPLC and LC-MS indicates that 

the 790 construct is a good model to understand the mechanism of cisplatin 

binding and kinetic studies. Due to the larger structure of 16S rRNA and 

numerous binding sites, kinetics studies are challenging; hence, the information 

obtained from a model system would be very useful. 

The 790 loop is an ideal site for small-molecule binding studies because it 

is highly conserved, and extensive genetic and NMR information are also 

available (247-248). Mutational studies showed that a number of nucleotides in 

this loop are functionally important, and cisplatin probing study revealed this loop 

is accessible for small molecules. Thus, 790 loop is a promising target for 

antibiotic development. The kinetics and chemical probing studies in 790 model 

system can help us to understand the mechanism of small-molecule interactions 

with RNA.  
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CHAPTER  5  

Synthesis of Amino-acid-linked Analogues of Cisplatin for 

Probing the Ribosome Structure 

5.1 Abstract 

Cisplatin has several advantages as a chemical probe to determine 

nucleotide accessibility in RNA structure. One advantage is the ease with which 

its ligands can be modified. Ammine ligands of cisplatin can be modified with 

various reagents to alter the size and charge of the complex. Several amino-acid-

linked platinum complexes were synthesized and a binding study was carried out 

with a model RNA system as well as 16S rRNA. Amino-acid-linked complexes 

alter the reactivity with RNA by increasing the charge, size, and H-bonding 

potential of the ligand. Lysine- and ornithine-linked platinum complexes showed 

higher reactivity with AG-rich sequences and the arginine-linked complex showed 

reactivity mostly in the bulge and loop regions of 16S rRNA.  

5.2 Introduction 

Cis-diamminedichloridoplatinum (II), cisplatin, is a clinically used antitumor 

drug that has long been believed to react preferentially with DNA (156, 163). The 

cross-links at GG sequences are considered to be crucial for its biological activity 

(156, 175). The main coordination site of cisplatin with DNA is the N7 of guanine, 

and the complex forms adducts mainly at runs of consecutive Gs, with less 

damage at AG or GA sequences (191, 197). The acquired and intrinsic 

resistance of tumor cells to the drug has lead researchers to look for other 
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platinum complexes that have better chemotherapeutic applications (268-269). 

Various platinum coordination compounds are currently used as clinical 

anticancer drugs (166) and lot of effort has been made to improve the therapeutic 

effectiveness of platinum compounds (181, 270). One of the strategies to 

improve the effectiveness of the drug is to design complexes that interact with 

the target DNA in a different manner. For this purpose, numerous cisplatin 

analogues composed of ligands that have high affinity with DNA, such as 

intercalators, have been synthesized (183, 271). A cisplatin analogue with a 

tethered 9-aminoacridine-4-carboxamide showed an altered DNA sequence 

specificity (272). This compound has a higher reactivity with purines (GA 

sequences). The biological activity of this and related compounds was similar 

compare to cisplatin, and they also exhibited activity against cisplatin-resistant 

cell lines (273).  

Several amino-acid-linked platinum complexes were synthesized and their 

activity was compared with cisplatin in various cell lines (187-189, 274). Other 

modifications include platinum complexes with charged, neutral, or hydrophobic 

amino acids coordinated to the platinum. These modifications increase the 

charge or hydrophobicity of the complex and potentially alter the binding 

interactions with the target. Similarly, peptide-tethered platinum conjugates were 

also synthesized and their interactions with DNA were studied; however, the 

additional functionalities in those cases did not lead to increased reactivity (186, 

190). The uncharged compounds had lower reactivity than cisplatin and the 

positively charged compounds had higher reactivity than the negatively charged 
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compounds, which may be due to electrostatic interactions (186). The overall 

reactivity of the amino-acid platinum complexes was lower than the parental 

compound cisplatin; however, their interactions with RNA were not discussed in 

the literature, to the best of my knowledge (186, 189-190).  

One of the advantages of using cisplatin as a probing agent is the ease 

with which its size and charge can be altered. Cisplatin is relatively small in size 

and numerous binding sites in 16S rRNA have been observed (Chapters 2 and 

3). In order to reduce or alter the number of binding sites to gain more 

information about accessibility of the RNA structure towards various ligands, the 

platinum complex can be modified to contain different functionalities. Introducing 

charged ligands such as lysine, arginine, and aspartic acid alters the net charge 

of the complex; whereas, the addition of glycine or alanine would change the 

bulkiness and hydrophobicity of the complex compared to the cationic amino 

acids. Electrostatic interactions play an important role in ligand binding with RNA 

(223), and it is expected that the introduction of positive charges or 

hydrophobicity alters the binding site preference and reactivity. Similarly, the 

presence of bulky groups may reduce the number of binding sites due to 

inaccessibility of the target nucleotides in the folded RNA structure. Having 

different functionalities tethered to the platinum complex could be useful in order 

to probe the ribosome and discover charged pockets and/or accessibility of RNA 

structural motifs as potential drug target sites. In this chapter, the interaction of 

amino-acid-linked platinum complexes (Figure 5.1) with the model RNA system 
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and their potential as chemical probes to study the ribosome structure will be 

explored.  

 

 

 

Figure 5.1. Structures of monoaquated amino-acid-linked platinum complexes used in this 
study are shown. Note that only one possible isomer is shown. 

 

5.3 Materials and Methods  

5.3.1 General 

Potassium tetrachloroplatinate (K2PtCl4) was purchased from Strem 

Chemicals, Inc. (Newburyport, MA). L-Ornithine hydrochloride, L-lysine, L-

arginine and L-aspartic acid were purchased from Alfa-Asear (Ward Hill, MA). All 

other chemicals and reagents were purchased from Sigma-Aldrich or Fisher, 

unless otherwise stated. RNase-free, distilled, deionized ddH2O (Millipore water) 

was used throughout the experiments.  
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5.3.2 Synthesis of amino-acid-linked complexes  

Amino-acid-linked complexes were synthesized as previously described in 

the literature (187, 189). For the synthesis of [cis-PtCl2(N,O-Lys)], (Kplatin), 

K2PtCl4 (0.21 g, 0.50 mmol) was dissolved in 500 µl of ddH2O in a centrifuge 

tube, and the solution was vortexed until the crystals were completely dissolved. 

In a separate tube, L-lysine monohydrochloride (0.18 g, 1.0 mmol), was 

dissolved in 500 µl of ddH2O and vortexed. The pH of the amino-acid solution 

was measured to ensure that it was between 5.0 and 6.0. Then, both solutions 

were combined in a dry 10 ml round bottom flask and stirred, which produced a 

reddish-colored solution. The flask was attached to a reflux condenser and 

heated at 80 ºC for two hours, until the solution had turned a yellowish color. The 

solution was allowed to cool and filtered by using gravity filtration. The filtrate was 

transferred to a beaker and kept in dark. The crystals started to appear after 12 

hours at room temperature. Yellow crystals formed over a period of 1-3 days. 

The crystals were collected and washed with cold ddH2O, ethanol, and ether. 

The yellowish-orange crystals, [cis-PtCl2(N,O-Lys)] (0.11 g, 46% yield), were 

dried thoroughly using a pressurized vacuum pump and the final product was 

confirmed and characterized by mass spectrometry and NMR spectroscopy. 

Electrospray MS (H2O/methanol, positive ion): m/z found 433.99 (M+Na)+. 1H 

NMR (δ, DMSO): 7.6, 5.6, 4.9, 3.0, 2.5, 1.8, 1.7 ppm.  

To synthesize the L-ornithine and L-arginine-linked platinum complexes, 

the procedure was the same as above, except 0.091 g (0.5 mmol) of L-ornithine 

and 0.087 g (0.5 mmol) of L-arginine were used instead of L-lysine. Oplation was 

precipitated as yellow crystals with a yield of 56%. Electrospray MS 
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(H2O/methanol, positive ion): m/z found 419.98 (M+Na)+. 1H NMR (δ, DMSO): 

7.67, 5.68, 4.91, 3.0, 2.4, 1.72, 1.6 ppm. Rplatin was obtained as light yellowish 

crystals with a yield of 38%. Electrospray MS (H2O/methanol, positive ion): m/z 

found 462.00 (M+Na)+. 1H NMR (δ, DMSO): 7.5, 5.6, 4.8, 3.0, 2.4, 1.7, 1.5 ppm.  

5.3.3 RNA and DNA  

RNA corresponding to the 790 loop (5'-GCAGGAUUAGAUACCCUGC-3') 

of 16S rRNA was purchaged from the Keck Oligo facility (Yale University). This 

RNA was received with 2' protection and was deprotected by dissolving in TBAF 

(tetrabutylammonium fluoride), followed by incubation at 35 ºC overnight. The 

RNA was then desalted with a Poly-pack cartridge (Glen Research) according to 

the company protocol, and dried in a speed-vac evaporator. The dried RNA was 

reconstituted in TE buffer (10 mM Tris·HCl and 1 mM EDTA) and gel purified. 

DNA primers were purchased from Sigma Genosis, purified, and labelled as 

described in Chapter 2. The 16S rRNA was isolated from E. coli MRE600 and 

renatured as described in Chapter 2. 

5.3.4 Platination reaction and primer extension 

All amino-acid-linked complexes were converted to the mono-aquated 

form by reaction with 1:1 molar ratios of complex:AgNO3, in dimethylformamide 

(DMF). Platinum-DMF complex stock solutions were stored at -20 °C for up to 1 

week and diluted as required just prior to use. The platination reaction with model 

RNA and 16S rRNA were performed with monoaquated complexes. Prior to 

platination, model RNA and 16S rRNA was renatured as described before. The 
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reaction was carried out in 20 mM HEPES, pH 6.5, 20 mM K2SO4 and 10 mM 

MgSO4 (buffer H) and incubated at 37 °C for 5 hours. In the model system, the 

molar reaction ratio was 1:1 (RNA:metal complex) and in 16S rRNA, the ratio 

was 1:20 (16S rRNA: complex) or 1:75 (complex: nucleotides). After the reaction, 

unreacted complex was removed by ethanol precipitation. To map the binding 

sites in 16S rRNA, primer extension was carried out as described in Chapter 2.  

5.3.5 MALDI-mass spectrometry 

MALDI-TOF mass spectrometry was carried out on a Bruker Daltonics in 

the Central Instrument Facility of the Chemistry department. The samples were 

reacted with cisplatin or amino-acid platinum complexes as described in section 

5.3.4 and the unreacted complex was removed by ethanol precipitation. A 

second ethanol precipitation with ammonium acetate was carried out, and the 

resulting pellet was washed with 70% ethanol and dried in a speed vaccum. 

Finally, the samples were resuspened in ddH2O. The concentration was 

measured spectrophotometrically and about 2 μl of RNA (20 pmol) was mixed 

with 3 μl of saturated hydroxypicolinic acid (HPA) matrix in 50% acetonitrile, and 

0.5 μl of 100 mM ammonium citrate. On the MALDI plate, 1 μl of the HPA:RNA 

mixture was spotted. For RNase T1 digestion, 1 unit of RNase T1 was added to 

the remaining RNA sample and incubated at room temperature for 30 min. One 

μl of the digested sample was spotted on the MALDI plate. All samples were 

checked in the positive ion mode using method RP-3147.par. 
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5.4 Results 

5.4.1 Synthesis of amino-acid-linked complexes 

Amino-acid-linked platinum complexes were synthesized in order to react 

and determine the number of binding sites on RNA. Positively charged amino-

acids such as ornithine, lysine, and arginine were linked to the platinum to 

determine the effects of altered electrostatics and bulkiness. Similarly, the 

platinum complex with the negatively charged amino acid, aspartic acid, was 

synthesized (the net charge of this complex is neutral). Amino-acid-linked 

platinum complexes were synthesized from potassium tetrachloroplatinate, and 

formations of the products were confirmed by NMR spectroscopy and mass 

spectrometry as described previously in the literature (188-189). 

5.4.2 Binding studies in small RNA constructs 

Amino-acid-linked complexes were converted to the corresponding 

monoaquated species by reacting them with AgNO3 overnight. Small RNA 

constructs (790 A○C loop) (Figure 5.2) and aquated amino-acid analogues were 

reacted in a 1:1 molar ratio at 37 °C for 5 hrs. The reaction was quenched with 

NaCl and followed by freezing. The samples were ethanol precipitated to desalt 

and adduct formation was checked by MALDI-mass spectrometry. Mass data 

showed the formation of bifunctional adducts with their corresponding amino-

acid-linked complexes (Figure 5.2 and Table 5.1). Oplatin showed a major peak 

with molecular mass of 6385.1 Da, which corresponds to the +1 adduct 

(increased in mass of RNA by 325 Da corresponding to the control RNA) and a  
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Figure 5.2. Mass spectral data of products after the reaction of amino-acid complexes with 
790 A○C construct are shown. Model RNA construct (790 A○C loop) with its molecular 
mass is also shown.  
 

 
Table 5.1. M/z values of the various adducts for RNA-Pt complexes are listed. 

Complexes  

RNA + Pt(amino-acid)  
[M+H]+ 

RNA +2 [Pt(amino-
acid)]    [M+H]+ 

RNA + 3 [Pt(amino-
acid)]     [M+H]+ 

Calculated  Observed Calculated Observed Caluclated  Observed 

Oplatin  6388.7  6386.5 6715.8 6712.1 7042.8 - 

Kplatin  6402.7 6400.3 6743.8 6739.2 7084.9 7078.4 

Rplatin  6430.74 6428.3 6799.8 6795.6 7168.8 7162.4 
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minor peak at 6710.7 Da, which corresponds to the +2 adduct formation 

(increased in mass by 2 x 325 Da) (Figure 5.2). Kplatin and Rplatin showed the 

formation of +1 adducts with masses corresponding to 6401.6 Da (RNA + 339 

Da) and 6428.0 Da (RNA + 367 Da), respectively. These complexes also showed 

molecular masses corresponding to +2 and +3 adduct formation with RNA 

(Figure 5.2 and Table 5.1). Although there is only one set of consecutive 

guanosines in this small RNA construct, more than one bifunctional adduct was 

detected. Hence, other binding sites such as guanosine and/or adenosine in the 

loop region had to be considered. This result is consistent with an increase in 

mass of RNA that is equivalent to the formation of a bifunctional adduct (Table 

5.1). Monofunctional adducts were not detected by MALDI-mass spectrometry 

with any of these complexes. In the MALDI spectrum, peaks of RNA showed 

masses corresponding to the parent RNA plus platinum complexes, with two less 

H’s than would be expected from the attachment of a Pt(amino-acid) fragment for 

each adduct. This result is due to a proton transfer necessary to counterbalance 

the binding of a charged complex and still produce singly charged molecular ions 

(267). This result is consistent with other adduct formation such as, 4 Da less in 

[RNA+2(Pt-amino-acid)] and 6 Da lower in case of [RNA+3(Pt-amino-acid)].  

Hence, the observed mass is 2 Da less than the calculated for each adduct 

formed with 790 RNA construct. 

5.4.3 RNase T1 cleavage study in small RNA construct  

To locate the binding site of amino-acid-linked complexes in the model 

RNA system, all reaction samples and controls were partially digested with 
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RNase T1. The fragments were analyzed by MALDI-TOF mass spectrometry 

(Figure 5.3) and compared to the control. Platinated RNA with Oplatin showed a 

fragment with a mass of 3266.3 Da, which corresponds to 

[CAGGAUUAG>p+Pt(ornithine)]. The increase in mass (325 Da) on the 

platinated fragment corresponds to the formation of a bifunctional adduct with 

Oplatin. Similarly, Kplatin and Rplatin also showed a fragment of RNA with 

complexes. The mass peak at 3624.9 Da with Kplatin suggested complex 

formation with the GCAGGAUUAG>p fragment of RNA (increase in mass by 339 

Da). Rplatin also showed RNA-complex formation with a mass of 3653.7 Da 

(increase in mass by 367 Da) corresponding to the same fragment of RNA. No 

other fragments of RNA shown in Table 5.2 contained platinum complexes. This 

result suggests platination somewhere on the 5' half of the 790 RNA.  

The complex-bound RNA fragment contains a pair of Gs and two AG 

sites; hence, the exact location of the binding sites could not be identified. 

Several RNA fragments were observed with these complexes; however, they 

were slightly different than those with the parental compound cisplatin. For 

example, cleavage occurred at the site of consecutive Gs with RNase T1 after 

reaction with the Oplatin and Rplatin complexes. This result indicates a possible 

alternation of sequence preference by the amino-acid-linked complexes 

compared to cisplatin. For example, with Kplatin and Rplatin, the RNA fragment 

GCAGG>p does not contain a platinum complex; however, GCAGGAUUAG>p was 

detected with the complex, which is evidence for adduct formation in the loop 

region. With cisplatin and Oplatin treated samples, the RNA fragment AUUAG>p  
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Figure 5.3. MALDI-mass spectrometry data showing the mass after digestion of 790 
constructs with RNaseT1. Platinated fragments are indicated with (♦). 

 
Table 5.2.The masses of RNase T1 fragments of 790 RNA after reaction with cisplatin and 
its analogues. 

Fragments 
Calculated 

mass (Da) 

Observed mass of RNase T1 fragments of 790 RNA 
following platination (Da) 

Control Cisplatin Oplatin Kplatin Rplatin  

GCAG>p 1324.81 1324.98 - 1324.48 1324.32 1324.42 

AUUAG>p 1615.96 1616.25 1615.31 1615.73 - - 

GCAGG>p 1670.02 - - - 1669.51 1669.63 

AUACCCUG>p 2531.51 2531.79 2530.65 2531.15 - - 

CAGGAUUAG>p 2940.76 - 
3167.63 

(+227) 

3266.31 

(+325) 
- - 

GCAGGAUUAG>p 3285.98 - - - 
3624.97 

(+339) 

3653.72 

(+367) 
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did not contain a platinum complex, and the platinated CAGGAUUAG>p was 

obtained with both complexes, suggesting adduct formation at the consecutive 

guanosines (Figure 5.4). 

 
 

 
 

 
Figure 5.4. Some of the possible adducts with cisplatin and amino-acid-linked complexes 
with 790 RNA model system are shown. The expected and observed mass of the RNA-Pt 
complexes are indicated. The observed masses are 2 Da less than the expected for the 
bifunctional adducts, because proton transfer necessary to compensate for the positive 
charges.  
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5.4.4 Mapping binding sites in 16S rRNA by primer extension 

Cisplatin and amino-acid-linked platinum complexes, after mono-aquation, 

were used to probe 16S rRNA. The monoaquated species contain positive 

charges that are different than the parental compound cisplatin, and hence, a 

change in reactivity was expected. The binding sites of monoaquated complexes 

were mapped on free 16S rRNA by using primer extension. The 16S rRNA was 

isolated from E. coli and renatured as described in Chapter 2. The reaction was 

carried out in 1:20 molar ratios of 16S rRNA:complex (or 1:75 molar ratios of 

complex:nucleotides) in 20 mM HEPES buffer, pH 6.5, at 37 °C in the dark for 5 

hours. The reaction was quenched by increasing the concentration of NaCl to 

200 mM, followed by freezing. The unreacted complex was removed by ethanol 

precipitation or dialysis. To compare the binding sites with the parental 

compound, several functionally important helices such as h18, h24, h27, and h28 

were selected for the probing studies. Primers corresponding to these helices of 

16S rRNA were used to map the coordination sites of complexes. 

The magnitudes of the reactivity were classified by the intensities of the 

bands on the autoradiograms. The intensities of bands could be measured up to 

approximately 100 nucleotides from the transcription start site. Coordination sites 

of cisplatin and analogues were determined by comparing with a control treated 

in a similar manner, but lacking metal complex. The positions of the stops due to 

coordination of the complexes were identified by comparing with dideoxy 

sequencing lanes on the same gel.  

The results showed clear differences in the binding sites of amino-acid-

linked complexes and cisplatin (Figure 5.5). Cisplatin showed reactivity mostly 
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with consecutive Gs, or Gs in mismatched or loop regions; however, several of 

the consecutive Gs that showed strong reactivity with cisplatin were not reactive 

towards the amino-acid-linked complexes. These complexes showed quite 

different patterns of reactivity, mostly with the ApG sequences and in the loop 

regions. 

 

 
 

Figure 5.5. Autoradiogram of probing results with amino-acid-linked complexes 
corresponding to the helix 24 of 16S rRNA is shown. A) The secondary structure of 16S 
rRNA corresponding to helix 24 is shown. Nucleotides with strong and moderate cisplatin 
hits are shown with red and green, respectively. B) The autoradiogram showing the 
reverse transcriptase pauses or stops is presented. In the gel, C, U, A, G represent the 
sequencing lanes; the control is 16S rRNA lacking treatment with complexes; and other 
lanes contain 16S rRNA treated with corresponding complexes Orn-Pt, Lys-Pt, Arg-Pt, or 
Asp-Pt (complex:nucleotide is 1:75). The strong and moderate hits are indicated with 
arrows and corresponding nucleotide numbers. Strong hits with: cisplatin (▲), Oplatin and 
Kplatin (**), Rplatin (♦); moderate stops with: cisplatin (Δ), Oplatin and Kplatin (*), and 
Rplatin (◊).  



151 
 

 

In helix 24, the strong cisplatin-binding site observed at U801 was not 

present with any of the amino-acid-linked complexes; however, a number of 

binding sites were observed in the loop region with Oplatin and Kplatin 

monoaquated complexes (Figure 5.5). The strong stops occurred at C795, 

G791, and U788, which were all on the 3' side of the adenosines on the loop 

region. Some additional minor stops were also observed, such as at U804 and 

G778, which had shown strong reactivity with cisplatin. Rplatin showed strong 

binding site on the three-nucleotide asymmetric bulge region of helix 24. Only 

minor reactivity with Rplatin was observed on the sites that showed strong 

reactivity with Kplatin and Oplatin. The preference for adenosine residues by 

these complexes is highly unusual, and being explored currently in more depth 

by another student in the laboratory. There were no such strong stops observed 

with the Dplatin complex. This result indicates that electrostatics and structure 

are likely to be important factors for platinum complexes to interact with RNA. 

The strong stop that appeared at the consecutive Gs on the stem region at A787 

with Oplatin and Kplatin might be the structural distortation caused by the A◦C 

mismatch close to it. Various other bands are observed in all lanes, including the 

control lane, possibly due to strong secondary structures in the RNA template 

that block reverse transcriptase. 

Helix 18 contains several universally conserved residues and showed 

reactivity with the parental compound cisplatin, such as consecutive Gs at 

residues 540-542 and 529-530; however, the amino-acid metal complexes 

showed different sequence selectivity (Figure 5.6). Instead of a strong hit  
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Figure 5.6. Autoradiogram of probing results with amino-acid-linked complexes at helix 17 
and 18 of 16S rRNA are shown. A) The secondary structure of 16S rRNA corresponding to 
helix 17 and 18 is shown. Nucleotides with strong and moderate cisplatin hits are shown 
with red and green, respectively. B) The autoradiogram showing the reverse transcriptase 
pauses or stops is presented. In the gel, C, U, A, G represent the sequencing lanes; the 
control is 16S rRNA lacking treatment with complexes; and other lanes contain 16S rRNA 
treated with corresponding complexes Orn-Pt, Lys-Pt, Arg-Pt, or Asp-Pt 
(complex:nucleotide is 1:75). The strong and moderate hits are indicated with arrows and 
corresponding nucleotide numbers. Strong hits with: cisplatin (▲), Oplatin and Kplatin 
(**), Rplatin (♦); moderate stops with: cisplatin (Δ), Oplatin and Kplatin (*), and Rplatin (◊).  
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present at U543 before the consecutive Gs, it appeared on the 3' side of A539, 

which is present between the two sets of consecutive Gs, indicating possible 

cross-links at the ApG sequence. Interestingly, this stop was strong with Oplatin 

and Kplatin, although the intensity was shifted by one nucleotide, and did not 

show strong reactivity with Rplatin. Another strong stop appeared at A533, which 

was also found one nucleotide prior to the cisplatin stop site. A number of other 

strong stops appeared at A510, G500, and A452, which were all different than 

the stops observed with the parental compound cisplatin. These stops are on the 

3' side of an ApG sequence on the RNA. From 490 to 500, there are three pairs 

of consecutive ApG, which all showed strong reactivity with the cationic amino-

acid complexes. 

The binding sites of amino-acid platinum complexes were also mapped on 

helices 27 to 31 (Figure 5.7). As observed in other regions, the stop sites were 

mostly at ApG sequences. A number of sites with consecutive Gs did not show 

reactivity with the amino-acid complexes, such as G953, G942, G927, and U904 

(stops with cisplatin). Residue A946, before the consecutive Gs, showed 

moderate reactivity with these analogues. One similarity with the parental 

compound was observed at G885, which was a strong hit on free 16S rRNA, 30S 

subunits, and the 70S ribosomes. Several sites with consecutive adenosines 

were also not reactive towards these complexes indicating that a neighboring 

guanosine is required for the adduct formation at these sites. 
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Figure 5.7. Autoradiograms of probing results with amino-acid-linked complexes and 
helices 27 to 31 of 16S rRNA are shown. A) The secondary structure of 16S rRNA 
corresponding to helix 27 to 31 is shown. Nucleotides with strong and moderate cisplatin 
hits are shown with red and green, respectively. B) The autoradiogram showing the 
reverse transcriptase pauses or stops is presented. In the gel, C, U, A, G represent the 
sequencing lanes; the control is 16S rRNA lacking treatment with complexes; and other 
lanes contain 16S rRNA treated with corresponding complexes Orn-Pt, Lys-Pt, Arg-Pt, or 
Asp-Pt (complex:nucleotide is 1:75). The strong and moderate hits are indicated with 
arrows and corresponding nucleotide numbers. Strong hits with: cisplatin (▲), Oplatin and 
Kplatin (**), Rplatin (♦); moderate stops with: cisplatin (Δ), Oplatin and Kplatin (*), and 
Rplatin (◊).  

5.5 Discussion  

The amino-acid-linked platinum complexes were synthesized and a 

binding study was carried out with a short RNA model system, as well as full 

length 16S rRNA. In both RNAs, differences in reactivity and binding-site 

preference of these complexes compared to the parent compound cisplatin were 

observed. The amino-acid-linked complexes in the model RNA system (790 
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RNA) showed the formation of more than one adduct indicating possible 

coordination at sites other than Gs. The model RNA contained only one site with 

consecutive Gs; hence, the strong mass signal with bis-adducts indicates the 

altered binding preferences of the cationic amino-acid complexes. The RNase T1 

cleavage experiments could not be used to locate the exact binding sites, but 

showed evidence that an adduct might have formed on a sequence containing 

many Gs. Probing studies on 16S rRNA showed that the binding-site preferences 

for Oplatin and Kplatin complexes were quite similar, mostly at AG sequence in 

the loop or bulge regions. This result was not surprising, because these two 

amino-acid complexes differ only by a CH2 group and each contains a single 

positive charge. Rplatin showed differences in reactivity compared to the other 

two cationic analogues, such as a stronger binding preference for nucleotides in 

the bulge or loop regions. The presence of the amino-acid ligand on these 

complexes leads to increased bulkiness of the cis-ligand and introduced an 

additional positive charge to the complex relative to the cisplatin; which, in turn, 

altered the interactions with the negatively charged RNA. The negatively charged 

amino-acid complex, Dplatin, did not show any significant reactivity compared to 

the cationic complexes at the same reaction ratio, leading to the likelihood that 

electrostatic repulsions prevented a favorable reaction with RNA.  

Previously, the binding sites of Kplatin were mapped on an 82-bp DNA 

fragment by exonuclease (274). This mapping study revealed that Kplatin 

induced a significant stops at all d(ApG) and d(GpG) sites in DNA. It had no 

apparent preference for d(GpG) over d(ApG)sequences. The authors of that 
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study also observed stops at other polypurine sequences, which were presumed 

to be monofunctional adducts. In this study, a similar result was observed with 

RNA. Most of the ApG sequences showed strong reactivity with Oplatin and 

Kplatin, whereas a number of GpG sequences did not show any reactivity. In 

contrast, Rplatin reactivity was different from the other complexes. Rather than 

being sequence selective, it showed a structural preference for reactivity, such as 

three nucleotide bulges or in the loop regions. This might be the result of the 

charge and larger size when compared to Oplatin and Kplatin. The reactivity of 

Rplatin at the internal bulge on helix 24 is quite similar to the TAR-Tat interaction 

in which the three-nucleotide bulge of TAR RNA is recognized by the arginine-

rich Tat protein (275). Arginine is an ideal RNA-binding molecule because of its 

positive charges, planar hydrogen-bonding patterns, and stacking interactions 

with the bases (223). It has been observed that molecular contacts with RNA 

occur at the bulge sites because they are more accessible to the ligand (223, 

276). In crystal structures of the ribosome, it is not as obvious as in the case of 

TAR RNA, but this interaction might be favorable due to a structural distortion 

caused by the presence of the asymmetric bulge in 16S rRNA. 

Another factor for coordination is the charge present in these complexes. 

Electrostatic interactions and local accumulation of cationic concentration 

determines the product formation. The amino-acid-linked complexes might 

increase the local concentration differently than the parental compound due to 

charge and hence, the binding sites are also different. The number of binding 

sites of amino-acid-linked complexes is higher than parental compound cisplatin; 
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however, Rplatin showed less number of hits in helix 24. In addition, the binding 

sites are also altered, which indicates that more factors must be involved than 

just electrostatic interaction. Previous studies showed that cisplatin preference 

for guanine is due to a strong hydrogen bond between the amine-hydrogen of 

cisplatin and the O=C6 moiety (Figure 5.8) (196) . In adenine, comparatively 

weaker hydrogen bond forms between amine-hydrogen of cisplatin and the H2N-

C6 group. In addition, significantly stronger molecular orbital interaction was also 

observed for guanine compared to adenine (196). The alternation of binding 

preference for amino-acid-linked complex is not very clear; however, the 

presence of NH2 group in adenosine might influence hydrogen bonding in the 

transition state, which results in preference for coordination with amino-acid-

linked complexes over cisplatin.  

 

Figure 5.8. Possible transition state for the formation of cisplatin adducts with guanosine 
and adenosine is shown. 



158 
 

 

The altered binding preferences of these complexes are highly unusual 

and further studies will be needed to understand the sites of interaction and types 

of adducts formed. Previously, several platinum complexes have been made in 

an attempt to alter the sequence specificity of cisplatin on DNA (269, 277). The 

minor groove binder distamycin was linked with cisplatin with the expectation that 

it would change the binding mode, but this approach was unsuccessful (277). 

One successful alteration of cisplatin binding sites was made by Bierbach and 

coworkers with the monofunctional platinum-acridinylthiourea conjugate, or Pt-

ACRAMTU, intercalators (278). They were able to increase sufficiently the 

product formation with AT-rich regions in the DNA sequence. However, these 

complexes were not studied with RNA to the best of my knowledge.  

Small molecules that bind to DNA or RNA in a sequence-specific manner 

have potential applications in cancer chemotherapy. In DNA, purine nitrogens are 

susceptible to covalent modifications both in the major and minor grooves. In the 

major groove, the most reactive site is guanine N7, while the N3 positions of 

adenine and guanine are mainly attacked by nucleophiles in the minor groove 

(279). The sugar edge of RNA is comparatively wider and shallower than the 

Hoogsteen edge; hence, ligands can interact through the sugar edge in RNA. 

The amino-acid-linked platinum complexes, due to their larger size compared to 

the parental compound, may be able to access RNA through the sugar edge, 

hence the preference would be for adenosine.  

In conclusion, amino-acid-linked complexes cross-link to RNA with 

different sequence specificity than cisplatin, preferably to ApG; therefore, the 
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accessibility of adenosine in the 16S rRNA could be monitored. The higher 

reactivity of Rplatin to the bulge or loop can give more information about 

accessibility to RNA motifs for ligand binding. In addition, the charge present in 

these complexes would be useful for monitoring the kinetics and interpreting how 

small charged molecules find their target sites. To understand the mechanism of 

action, however, further studies will be needed. 
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CHAPTER  6  

Targeting non-Hodgkin’s Lymphoma with siRNA Mediated 

through Liposomes  

6.1 Abstract 

Non-Hodgkin’s lymphoma (NHL) is a cancer of the lymphocytes, which is 

a significant cause of mortality in the United States. As a treatment for NHL, we 

propose reducing expression of the associated protooncogene c-myc using 

siRNAs. We first incorporated siRNAs into liposomes to improve drug delivery. 

Then, we attempted to purify an antibody fragment (scFv) that specifically 

recognizes CD20-positive NHL cancer cells. Our preliminary data suggest that 

this is a promising strategy.  

6.2 Introduction 

Non-Hodgkin’s lymphoma (NHL) is a cancer that starts in lymphocytes 

and can occur at any age. There are various types of non-Hodgkin lymphomas, 

but they are mainly divided into two types: aggressive (fast growing) and indolent 

(slow growing) (280). Out of various types of lymphomas, B-cell lymphoma is the 

most common in the United States (281). The National Cancer Institute 

estimated 65,540 new cases and 20,210 deaths from non-Hodgkin’s lymphoma 

in the United States in 2010 (282).  
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6.2.1 Non-Hodgkin’s lymphoma and c-myc 

 MYC regulates over 15% of all cellular gene expression and is involved in 

almost every aspect of cell biology (283). MYC contributes to the regulation of 

various genes including those involved in cell-cycle progression, protein 

biosynthesis, cell growth, and metabolism (283-284). The c-myc proto-oncogene 

is activated in a number of human tumors (283). In a normal cell, expression of 

the c-myc gene is under exquisitely fine control, and translocations in the B cell 

activate the c-myc gene and promote lymphoid malignancies (285). In cells 

affected by aggressive B-cell lymphomas, known as Burkitt lymphoma (BL), there 

is an arrangement of the c-myc oncogene, usually associated with a t(8;14) 

translocation (286). In addition, point mutations in the coding sequences of c-myc 

have been observed (287). The consequence of mutations is a negative 

regulation of c-Myc activity. In composite lymphoma, both the low (not 

aggressive) and high-grade (aggressive) components have an identical 

rearrangement of bcl-2; however, only the high-grade component has a c-myc 

oncogene rearrangement (288).  

6.2.2 Targeting non-Hodgkin’s lymphoma with siRNA 

Small-interfering RNAs (siRNA) suppress gene expression by a process 

called RNA interference (RNAi) (22, 289). RNAi is a highly regulated enzyme-

mediated process by which sequence-specific siRNA selectively targets and 

cleaves complementary mRNA (290). Long pieces of double-stranded RNA are 

cleaved by Dicer into small fragments of RNA (21 nucleotides), called siRNAs 

(291). Small-interfering RNAs can be directly introduced into the cell, thus 
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bypassing the Dicer mechanism (Figure 6.1) (292). In the cytoplasm, siRNA is 

incorporated into a protein complex called the RNA-induced silencing complex 

(RISC) (293). Argonaute 2, present in the RISC complex, unwinds the siRNA and 

cleaves the sense  

 

Figure 6.1. The mechanism of RNA interference is shown (292). Long double-stranded 
RNA (dsRNA) is cleaved by the enzyme Dicer into small-interfering RNA (siRNA). siRNA 
can be directly introduced into the cell by various methods. The siRNA is incorporated 
into the RNA-induced silencing complex (RISC), which results in cleavage of the sense 
strand and activation of siRNA-RISC complex. This activated complex binds to the 
targeted mRNA and degrades it, which causes silencing of the gene and reactivation of the 
siRNA-RISC complex. 
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strand (294). The activated RISC containing the antisense strand selectively 

degrades the complementary mRNA (295). After cleaving one mRNA strand, the 

activated RISC complex can then move on to destroy additional mRNA targets 

until siRNAs are diluted below the threshold concentration or degraded within the 

cell (292, 296). In theory, appropriately designed siRNAs can be used to silence 

any gene in the body. It has been shown that siRNA can be used to knock down 

targets in a number of diseases in vivo, such as liver cirrhosis (297), hepatitis B 

virus (298), human papillomavirus (299), ovarian cancer (300), and bone cancer 

(301). Since higher expression of c-Myc has been observed in non-Hodgkin’s 

lymphoma, siRNA specifically designed to target c-myc mRNA in NHL cells 

would be useful. For clinical purposes, however, a safe and effective delivery 

system is essential.  

The major challenge of siRNA therapy is to find an efficient delivery 

method to the intended target to minimize side effects. This approach is 

challenging due to off-target effects, aggregation with serum proteins, poor 

cellular uptake, and enzymatic degradation by nucleases (292, 302). To 

overcome these difficulties, a number of drug-delivery vehicles have been used, 

including liposomes, nanoparticles, synthetic polymers, carbon nanotubes, 

dendrimers, and polypeptides (303-305). Out of these, liposomes are used quite 

often because of their low toxicity and efficient cellular uptake.  

6.2.3 Drug delivery vehicles   

Liposomes are small, spherical, artificially prepared vesicles consisting of 

a lipid bilayer with an internal aqueous compartment (304). When phospholipids 
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are hydrated, they spontaneously form an internal aqueous environment 

surrounded by a phospholipid bilayer membrane. Liposomes, which can be 

prepared from cholesterols, glycolipids, sphingolipids,  and long chain fatty acids, 

are good carriers for a variety of molecules such as drugs, nucleic acids, and 

proteins (306). The work of Bangham and coworkers about 40 years ago 

revealed that phospholipids can form liposomes in aqueous solution (307), and 

this versatile method has been applied to biology, biochemistry, and medicine. 

This discovery is very important because liposomes are excellent carriers for 

delivering specific compounds to targets of interest. Preferred site targeting with 

liposomes can be achieved by the attachment of an antibody or appropriate 

fragments that specifically recognize the receptors present on the cells (308-

309). Liposomal drug delivery has several advantages such as enhanced drug 

solubilization, protection of sensitive drugs, enhanced uptake, and altered bio-

distribution (309).  

Liposomes are of many different sizes and shapes (310). Small-sized 

liposomes called small unilamellar vesicales (SUVs) are usually 100 nm in 

diameter. Larger-sized liposomes (200-800 nm) are classified as large 

unilamellar vesicles (LUVs), and multilamellar (MLVs) range in sizes from 500-

5000 nm and consist of several concentric bilayers (309-310). There are several 

methods for synthesizing liposomes including sonication, detergent dialysis, 

mechanical mixing, freeze-thaw, and solvent evaporation (309-310). Unequal 

vesicle sizes, low yields, uneven size distribution, and inconsistent encapsulation 

efficiencies are the major problems associated with these methods. It is essential 



165 
 

 

to generate liposomes with uniform size and distribution for therapeutic 

applications and to overcome these problems, a high pressure technique was 

used to prepare them (311). Liposome extruders use high pressures, 

approximately 200-800 lb/in2, and small-pore-size (~100 nm) membranes to 

generate relatively uniform vesicles. Membranes with different pore sizes can be 

utilized to generate liposomes of various sizes (310-311). Hence, the extruder 

can be utilized to generate either SUVs or LUVs. The advantages of this method 

include relatively rapid liposome preparation and potentially high encapsulation 

efficiencies.  

The application of liposomes has considerably expanded over the years. It 

is now possible to engineer a wide range of liposomes with various sizes, 

phospholipid compositions, and surface morphologies for increased therapeutic 

potential (304). In addition, biocompatibility and targeted delivery are important 

advantages of liposomes (312). Liposome encapsulation can also be used to 

increase delivery of hydrophilic drugs or oligonucleotides that often have difficulty 

crossing the cellular membrane. After entrapment, the drug does not interact with 

the lipid bilayer of a cell. In contrast, the liposome interacts favorably with the 

natural lipid and is embedded into the cellular membrane. A liposome can 

release the entrapped drug after its integration into the cellular membrane or by 

the mechanism of endocytosis (304, 312). Liposomes constitute an effective 

carrier of siRNA for in vivo delivery; when incorporated into a liposome, they are 

protected from nuclease degradation, which increases the half life and potency of 

RNA (313).  
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To increase the target specificity, at least three criteria need to be 

considered (313). First, the drug-delivery vehicle, such as a liposome, should 

reach and deliver theraupetic agents to the target cells. Second, the targeted 

mRNA should be preferentially expressed in tumor cells. Third, the carrier and 

siRNA should both eventually degrade. Targeting and selectively delivering 

siRNA to tumor cells in liposomes is an attractive therapeutic strategy. Cancer 

cells can be specifically targeted because many express unique antigens that are 

not available in normal cells. 

To study non-Hodgkin’s lymphoma, a human B-cell line (WSU-FSCCL) 

was used, which was established from peripheral blood of a patient (314). B cells 

express a wide variety of cell-surface antigens, such as CD20, throughout their 

development. B-cell-specific, cell-surface antigen CD20 is an appropriate target 

for therapeutic monoclonal antibodies (315). It is expressed at most stages of B-

cell development. Our collaborators (Ayad Al-Katib and coworkers) have 

engineered an antibody fragment (scFv) and GPI (glycosylphosphatidylinositol)-

tagged scFv by cloning VH and Vn regions from a widely available mouse 

hybridoma (HB-9645) directed against human CD20 (308). Previous studies 

showed that when this GPI-tagged scFv has been loaded onto the surface of 

sheep erythrocytes (Esh), it specifically forms rosettes with CD20-bearing tumor 

cells (308). In this study, we are extending this study to target specifically the 

CD20-positive cancer cells with siRNA.  
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6.3 Objectives 

siRNA has been widely used for silencing the oncogenic genes; however, 

the major challenge with siRNA is selective delivery to specific target cells (292). 

To achieve this we will use the newly engineered antibody fragment (scFv) to 

deliver liposome-encapsulated cytocidal agents to specific cancer cells. This 

antibody fragment can also be utilized for cell imaging using quantum dots or 

fluorescent tags packed into liposomes. Hence, the main goal is to generate a 

complex with siRNA, liposome, and antibody that would specifically target c-myc 

mRNA in NHL cells (Figure 6.2).  

 

 

Figure 6.2. Overview of targeting CD20-positive cancer cells by siRNA-GPI-scFv-liposome 
complex is shown.  

6.4 Materials and Methods  

6.4.1 General  

Lipids were purchased from Avanti Polar Lipids, Alabaster, AL. The 

extruder was obtained from LipexTM Extruder, Vancouver, BC, Canada. 
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Polycarbonate filters (0.1 μm) were purchased from Osmonics, Inc., Minnetonka, 

Minnesota. Sepharose 4B was purchased from Sigma. siRNAs were purchased 

from the Keck Foundation, School of Medicine, Yale University, CT. γ-32P-CTP 

was obtained from Perkin Elmer Life Sciences, Inc. Boston, MA. RPMI and 

Express Five SFM culture media were obtained from Invitrogen Corp. Primary 

antibody (HA.11 MoAb) was purchased from Covance, Princeton, NJ and 

seconday antibody (goat anti-mouse HRP conjugate) was obtained from Santa 

Cruz Biotechnology, Santa Cruz, CA. Other chemicals and buffers were 

purchased from Sigma Chemical or Fisher. Sterilized ddH2O was used for all 

experiments.  

6.4.2 RNA purification and labeling   

The siRNA obtained from Keck Foundation was deprotected, desalted and 

purified by polyacrylamide gel electrophoresis. Deprotection was carried out in 

TBAF (tetrabutylammonium fluoride) at 35 °C overnight. After deprotection, the 

RNA was desalted using poly pack (II) cartridges using 100 mM TEAA (triethyl 

amine acetate), pH 7.4. For the labeling and cell growth inhibition study, RNA 

was purified by polyacrylamide gel electrophoresis followed by ethanol 

precipitation. The trace amounts of organic reagents that may have been present 

in RNA were removed by ether extraction. In order to monitor the stability of RNA 

in buffer and media, the 3' end of the RNA was labeled with γ-32P-CTP. The 

PAGE-purified siRNA, 2 μl (25 pmol/μl), 5 μl of T4 RNA ligase buffer, and 41 μl of 

ddH2O were added to a centrifuge tube. The solution was mixed gently and 

centrifuged, 1 μl of γ-32P-CTP and 1 μl of T4 RNA ligase (10 units) was added. 
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The solution was incubated for 4 hours in ice. After the incubation, the contents 

of the labeling tube was quenched with ammonium acetate, added to a 

Sephadex G-25 column, and centrifuged for 2 min at 3,000 rpm to remove 

excess CTP. The radioactivity of the sample was measured using a scintillation 

counter. 

6.4.3 Lipid mixture preparation  

Lipids were brought to room temperature in desiccators just prior to 

weighing. First, 11 mg of cholesterol (294.1 g/mol, 28.4 μmol), 26.2 mg of DPPC 

(734 g/mol, 35.6 μmol), 10.4 mg of DODAP (684.5 g/mol, 16.2 μmol), and 0.6 mg 

of DPPE (692 g/mol, 0.8 μmol) were weighed and transferred to a tube. After 

that, 500 μl of CHCl3 was added to the lipid mixture, and the solution was 

vortexed to suspend the lipids. Aliquots containing 42 μl (6.5 μmol total lipids) of 

lipid mixture was transferred to several tubes. These aliquots were dried under 

reduced pressure and kept in the freezer until further use.  

6.4.4 Liposome size determination 

Dynamic light scattering (DLS), was performed on a Malvern Zetasizer 

Nano-ZS instrument. DLS analyzes the particle size by measuring dynamic 

fluctuations of light scattering caused by the particle. Liposomes were prepared 

by resuspending the lipid mixture in 500 µl ddH2O and passed through the 

extruder ten times by using a 0.1 µm polycarbonate membrane. In a low volume 

plastic cuvette, the measurements were carried out at a temperature of 25 °C. In 

order to eliminate dust particles, the samples were filtered through syringe filters 
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with 0.2 µm pore size membrane. At least three repeat measurements on each 

sample were taken. The intensity size distributions were obtained from analysis 

of the correlation functions in the instrument software.  

6.4.5 RNA incorporation and stability test  

The lipid mixture was hydrated by resuspending a dried sample of 6.5 

μmol mixed lipids with 200 μl of 300 mM sodium citrate (pH 4.0) and then 

vortexed to yield a white suspension. After that, 300 μl of 300 mM sodium citrate 

was added to approximately ~ 50 μg of unlabeled siRNA and a small amount of 

32P-labeled siRNA (~10,000-20,000 cpm) in another tube. Both solutions were 

vortexed and the lipid-containing solution was heated at 65 °C for five minutes. 

The clear siRNA solution was added drop-wise to the lipid suspension and the 

500 μl mixture was then passed ten times through 0.1 μm polycarbonate filters at 

200-300 psi using an extruder. The liposome was collected in a glass container 

and the extruded solution was dialyzed against 1 L of 25 mM HEPES and 50 mM 

NaCl buffer (pH 7.4) for 24 hours at 4 °C to raise the pH from 4.0 to 7.4. The 

unbound RNA from the complexes was separated by gel-exclusion 

chromatography with Sepharose 4B. The radioactivity present in various fractions 

was measured with a Beckman scintillation counter. 

To test the stability of the RNA, the RNA was labeled at the 3' end and 

renatured with unlabelled RNA by heating to 90 °C for 2 min followed by a slow 

cooling. For double-stranded RNA, the sense strand was labeled. Equimolar 

amount of both strands with trace amounts of labeled strand were annealed by 

heating to 90 °C for 2 min followed by slow cooling. The renatured RNA was 
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incubated with RPMI culture media (containing 5% serum) at 37 °C for various 

time intervals.    

6.4.6 Transfection of plasmid to Hi Five cells 

Plasmid (GPI-scFv) obtained from the Al-Katib laboratory was transfected 

in High Five cabbage looper cells using cellfectin according to the manufacturer’s 

protocols (InsectSelect system, Invitrogen). The pIZT/V5-His plasmid was used 

to clone the engineered scFv containing GFP-Zeocin fused in-frame for selection. 

The transfected insect cells express the GFP-Zeo and scFv with similar 

efficiencies; hence, GFP can be used to estimate the transfection efficiencies 

and Zeocin as a selection marker. Selection of stable transfectants was carried 

out using 200 μg/ml of Zeocin until the control cells completely died after which 

the concentration of Zeocin was lowered to 50 μg/ml. Approximately 15 μl of 

transfected and control High Five cells were spotted on microscope slides for 

checking GFP expression with an Olympus 1X71 microscope, equipped with a 

TH4 100 Olympus lamp and an Olympus UCMAD 3 camera. The magnification 

used was 60X, and images were taken in bright field and fluorescence mode for 

200 ms exposure times. 

6.4.7 Isolation and purification of protein  

For isolation of protein (GPI-scFv), stable transfected cells were grown to 

confluent in T-75 flasks in serum-free media at 27 °C. The cells were scraped out 

and spun down to remove the media. Cells were lysed in lysis buffer (300 mM 

NaCl, 50 mM Tris HCl pH 7.6, 0.5% Triton X-100, 10 mM PMSF, and EDTA free 
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cocktail protease inhibitor) using a French Press. After lysis, centrifugation was 

carried out at 13,000 rpm for 15 min at 4 °C to remove cellular debris. The 

clarified supernatant was transferred into the new tube and protein was purified 

using a Ni+2 affinity column (HisTrap, Amersham Biosciences) according to the 

manufacturer’s protocol.  

The crude cell lysate (10 μl) and aliquots from various stages of protein 

purification (10 μl each) were electrophoresed on a 12% SDS polyacrylamide gel 

at 170 V until the bromophenol blue migrated off the gel. The gel was transferred 

to a nitrocellulose membrane (Hybond- C Extra, Amersham Biosciences) at 300 

mA for one hour. After the proteins were transferred to the membrane, it was 

washed two times with TBST buffer for 15 min. The membrane was blocked with 

5% skim milk for one hour in TBST buffer and incubated with primary antibody 

(HA.11 MoAb) overnight at 4 °C. The membrane was again washed twice with 

TBST buffer for 15 min and incubated with secondary antibody (goat anti-mouse) 

coupled to horseradish peroxidase for one hour. After washing with TBST, the 

protein bands were visualized with the ECL Advance Western Blot detection 

system. The chemiluminescense was scanned by a Typhoon and analyzed by 

Image QuantTM software. 

6.5 Results 

Human cancers frequently show altered expression of c-Myc emphasizing 

the importance of this gene in cancer (287). The c-Myc protein or the c-myc gene 

is overexpressed in a wide variety of human cancers. To check our system, we 

are specifically targeting expression of c-Myc in lymphoma cells (WSU-FSCCL) 
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using siRNA. These cells express CD20 antigens that can be specifically 

recognized by an antibody fragment (scFv) (308). CD20 is a highly 

phosphorylated, non-glycosylated 33-37 kDa membrane protein found on both 

normal and neoplastic B-cells. CD20 is an excellent target for therapeutic 

purposes, because it is neither shed from the cell nor internalized upon binding 

with antibodies (316).   

6.5.1 Designing siRNA for targeting c-myc mRNA 

Humans have evolved a number of mechanisms to fight against viral 

infections, which also work against siRNA. Hence, siRNA is degraded before 

reaching the target by several mechanisms (317). To increase the stability of 

siRNA, a number of methods are currently in use such as RNA modification and 

encapsulation using various carrier molecules (292). Several modifications have 

been used in siRNA to increase its stability and efficiency. 2'-O-methyl 

modifications are resistant to endonucleases and also abolish off-target effects 

when incorporated into nucleotides 2-8 on the antisense strand (318). Similarly, 

introduction of phosphorothioate backbone linkages at the 3' end of the RNA 

reduces susceptibility to exonucleases, and a substitution of fluorine at the 2'–

position increases resistance to endonucleases (302). 

Initially, single-stranded RNA 5’-AAG CUA ACG UUG AGG GGC AU-3’, 

which is complementary to the c-Myc mRNA at positions 1 to 20 from the start 

codon, and the scrambled version 5’-GAU CGA UCG AGC GAU GAU AG-3’, 

were used to check the incorporation efficiency, stability, and effect on cell 
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growth. These RNAs contained 2'–OCH3 groups on the first three nucleotides at 

the 5'-end, which is the optimal site of modification.  

The second RNA is a double-stranded construct in which all pyrimidines 

have a 2'-F group and the 3' ends contain phophorothiorates to increase stability. 

To design this RNA, the following four rules were considered, as described in the 

literature (319) : i) A/U at the 5' end of the antisense strand; ii) G/C at the 5' end 

of the sense strand; iii) AU-richness on the 5' terminal one-third of the antisense 

strand; and iv)  absence of any GC stretch over nine base-pairs in length. The 

double-stranded siRNA targeting the c-Myc mRNA and a schematic 

representation of four rules used to designed siRNA are shown in Figure 6.3. 

 

Figure 6.3. An overview of the four rules to design siRNA and siRNA targeting c-Myc 
mRNA is shown. A) A schematic representation of siRNA with four rules is indicated. B) 
The siRNA designed according to the rules for targeting c-Myc mRNA in NHL cells is 
shown.  

6.5.2 Encapsulation of siRNA into the liposomes 

For efficient encapsulation of oligonucleotides into the liposomes, many 

variables have to be considered, such as lipid types and buffer pH. Currently, all 

types of phospholipids are available for liposome preparation: neutral, cationic, 

and anionic. Among them, cationic lipids are most commonly used to prepare 

encapsulated oligonucleotides. The positively charged lipids can interact with 
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negatively charged oligos through electrostatic interactions, which are considered 

an initial driving force for encapsulation. Previously, it has been shown that 

cationic liposomes are useful to efficiently encapsulate and deliver nucleic acids 

to the target. In this study, the protocol for liposome formulation was based on a 

previous study conducted in our lab (320), which was a modified protocol of 

Zelphati et al. (321). This composition contains four lipids: 1,2-dioleoyl-3- 

dimethylammoniumpropane (DODAP), dipalmitoylphosphotidyl choline (DPPC), 

cholesterol, and dipalmitoylphosphotidyl ethanolamine (DPPE). They were used 

in the ratio of 20:44:35:1 of DODAP:DPPE:cholesterol:DPPC to prepare 

liposomes (Figure 6.4). DODAP has improved encapsulation efficiencies 

because of an ionizable aminolipid with a tertiary amine (pKa 6.6), which 

becomes positively charged at low pH. Hence, pH 4.0 was used to encapsulate 

the siRNA into the liposomes. Furthermore, backbone modification with 

phosphorothiorates and the presence of a methyl group at 2'-positions also 

increases encapsulation efficiency and stability of the RNA.  

To check encapsulation efficiency, single-stranded RNA was labeled at 

the 3'-end with 32P in order to track the amount of RNA incorporated into the 

liposomes. A small amount of RNA (50 μg) and a trace amount of labeled RNA 

(5,000 cpm) was mixed with a hydrated lipid mixture and passed through the 

extruder at ~ 200 psi. The mixture was prepared in sodium citrate buffer at pH 

4.0, and after extrusion, the liposomal mixture was dialyzed against HEPES 

buffer at pH 7.5 for 12 hrs. Separation of unincorporated RNA from liposome-

RNA was done by using a Sepharose 4B column.  
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The level of encapsulation was determined by measuring the radioactivity 

of all fractions. The level of RNA encapsulation was found to be more than 30% 

by using the following equation (Figure 6.5 A); 

 

                                                 Cpm (liposome fraction) 
Encapsulation effenciency = ---------------------------------------------- X 100  % 
        Cpm (liposome fraction + void fraction)  

 

 

Figure 6.4. A liposome-siRNA complex is shown. Four different lipids; cholesterol, 
DODAP, DPPC, and DPPE were mixed at low pH with siRNA to generate the complexes. 

 
Particle sizes of liposomes were measured by using a dynamic light 

scattering (DLS) instrument. From the time-correlation function, the size of the 

particles were determined by the instrument software. The output can be used to 
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plot as a number or intensity percentage vs. size of the particles. Larger particles 

scattered more light compared to small particles and the plot of intensity vs. size 

may not reflect the actual distribution of the particles size. Thus, a histogram with 

number percentage vs. size of the liposome particles was plotted. The majority of 

liposomal particle size was found to be ~100 nm (Figure 6.5 B).   

 
 

 

Figure 6.5. Incorporation efficiencies and liposomal particle size are shown A) the % 
incorporation of single-stranded RNA into the liposomes; fractions 2 and 3 from column 
contain liposomes with RNA, whereas fractions 4 and 5 show the presence of 
unincorporated RNA. The data represents an average of three independent experiments. 
B) Particle size distribution of liposomes measured by DLS is represented.  

 

6.5.3 siRNA stability 

The single-stranded RNAs (modified and scrambled) were labeled at the 

3' end to test stability. After labeling, trace amounts of labeled RNA and 20 μg of 

unlabelled RNA were renatured in 25 mM HEPES and 50 mM NaCl. Fifty μl 

culture media or an equivalent amount of buffer were added to the renatured 

RNA (50 μl) and incubated at 37 °C for various time intervals. In the presence of 

media, both the modified and scrambled versions of single-stranded RNA were 
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degraded in less than 30 min (Figure 6.6 A). Similarly, to check the stability of 

double-stranded RNA, both strands of RNA (20 μg each) were annealed with 

trace amounts of 3' labeled sense strand. Fifty μl of annealed siRNA and 50 μl of 

the culture media was combined and incubated at 37 °C for various time 

intervals. After each time interval, the samples were quenched on dry ice and run 

on a polyacrylamide gel. The double-stranded RNA with modifications was found 

to be stable for more than 18 hours in RPMI media with serum (Figure 6.6 B). 

The presence of 2'-F and phosphorothiorate modifications makes the double-

stranded RNA less susceptible to the nucleases present in the medium.  

 

Figure 6.6. Autoradiogram of modified single- and double-stranded siRNA stability test in 
RPMI culture media at different time intervals is shown. A) Single-stranded RNA and the 
scrambled version with different buffers and media and B) double-stranded RNA with 
media at various time intervals are shown (autoradiogram B was done by Gayani Dedduwa 
Mudalige). 
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6.5.4 Transfection of GPI-scFv and protein purification  

The GPI-scFv expression plasmid (obtained from Al-Katib’s lab) (Figure 

6.7) was stably transfected into High FiveTM cells. After 4 rounds of selection with 

Zeocin (200 μg/ml), control cells died and green fluorescence from GFP was 

readily visible in transfected cells using fluorescence microscope (Figure 6.8). 

The presence of fluorescence compared to untransfected High FiveTM insect cells 

confirms the generation of stably transfected cells. Plasmid concentration (2-5 

µg), number of High Five cells (~ 1*106), and viability (> 90%) are important 

factors to generate the stable transfection. To avoid the contamination often 

found with the use petri dishes (as described in protocol), T75 flasks were used.  

 

 

Figure 6.7. A schematic diagram of the pIZT-GPI-anti-CD20 scFv expression construct 
obtained from Al-Katib laboratory (upper) and GPI-tagged SKLH6FG (lower) cloned in 
multiple cloning site are shown: The abbreviations are S: secretory signal, K: light chain 
variable region, L: linker, H: heavy chain variable region, 6: six histidine residues, F: Flu 
tag HA, and G: GPI (glycosylphosphatidyl inositol) signal. Modified with permission from 
Hamdy et al. (308). 
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Figure 6.8. GPI anchored scFv after stable transfection to the Hi Five cells are shown. The 
left panel represents the bright field and right panel represents the corresponding GFP 
fluorescence at 200 ms exposure time. Control (no transfection) cells do not show any 
fluorescence and most of the transfected cells showed fluorescence. 

 
GFP fluorescence and Zeocin resistance indicated the formation of stably 

transfected High Five cells. Protein purification was carried out from stably 

transfected cells using a Ni2+ column, and the presence of protein at various 

stages was detected by Western blotting. Western blotting showed presence of 

the desired protein in the crude lysate and in purified fractions of ~32 KDa, 

corresponding to the protein GPI-scFv (Figure 6.9). 
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Figure 6.9. A 12% SDS-polyacrylamide gel and immunobloting analysis of GPI-anchored 
scFv proteins at different stages of purification are shown: A) before protein purification 
showing lysate (control) from untransfected High Five cells; pellet and lysate from 
transfected cells; and B) fractions from different stages of protein purification from 
transfected cells.  

6.6 Conclusions and Future Directions  

The double-stranded siRNA with specific modifications was found to be 

stable long periods of time (> 20 h), even in the culture media.  We have 

successfully stably transfected High Five cells with a GPI-scFv expression 

plasmid and purified small amounts of the expressed protein. The stably 

transfected cells can be used to purify larger quantities of the GPI-anchored scFv 

for further experiments. Liposomes, siRNA, and the GPI-scFv complex can be 

used to deliver siRNA to CD20-positive cells. This can be confirmed by 

measuring the level of c-Myc expression in CD20-positive WSU-FSCCL cells. 

Further, instead of siRNA, quantum dots can be used to check the targeted 

delivery by scFv. Quantum dots can be incorporated into the liposomes and 

complexes with GPI-scFv can be generated. When this complex is incubated 

with cells, it is expected that QDs will be delivered to the cells. As QDs are highly 
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luminescent, they can be detected by fluorescence microscopy. This method will 

have the advantage of simultaneous cell imaging and targeted delivery of 

cytocidal agents to cancer cells. 
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CHAPTER  7  

Conclusions and Future Directions 

7.1 General Conclusions 

The ribosome is the protein synthesis machinery and serves as an ideal 

target for various classes of antibiotics because of its accessibility and structural 

diversity (68, 71). In the last decade, the growth of multiple-drug-resistance 

bacterial pathogens is rapidly evolving, while the development of new 

antibacterials is lagging behind.  To overcome the ever-growing problem of 

resistance, we can either design new drugs for traditional target sites, or explore 

novel target sites. Despite the existence of validated antibiotic binding sites, very 

few attempts have been made to explore novel drug target sites in the ribosome 

(2, 103). The ideal target sites should not only be functionally important, but also 

accessible to various small molecules. In this thesis, a new role for cisplatin as a 

discovery tool for potential new drug target sites on the ribosome was explored. 

Cisplatin has several advantages over other chemical probes due easy detection 

of its target sites and the possibility to use it in vitro as well as in vivo. In addition, 

the positive charge in aquated complex and stable adduct formation are useful to 

monitor binding and kinetics of the reaction. 

The first objective of this thesis was to understand the binding interaction 

of cisplatin with model RNA constructs and 16S rRNA. A number of methods 

were employed to obtain information about the binding sites, number of adducts, 

and types of cross-links formed with RNA. The binding studies showed that 

cisplatin interacts preferably with guanosine-rich RNA sequences. Many of the 
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consecutives Gs on the 16S rRNA that showed reactivity with cisplatin were 

involved in G○U wobble base pairs. Since G○U pairs are known to be 

functionally important for RNA-protein interactions (219, 221), the cisplatin 

complex may reveal preferential sites for protein binding on RNA that have ideal 

accessibility and structural compatibility. The various adduct profiles obtained 

from the small RNA construct and 16S rRNA also showed that RNA is a viable 

target and may be part of an alternate pathway for cisplatin anticancer activity. 

Cisplatin mainly forms bifunctional adducts with purine bases; however, it 

showed a unique adduct profile with RNA compared to that of DNA. In DNA, the 

most common cross-links are the 1,2-intrastrand with purine bases, mainly the 

1,2-intrastrand d(GpG) adduct (~65%) and the 1,2-intrastrand d(ApG) (~25%), 

and less common 1,3-intrastrand d(GpXpG) adducts (172, 191). In 16S rRNA, 

the adduct distribution is 63% GpG, ~20% ApG, 6% GG, and 11% AG. Strong 

reactivity with nonconsecutive Gs such as G462 and G791 may be the result of 

structural differences between DNA and RNA. RNA contains several secondary 

structural motifs, such as hairpins, internal loops and bulges, which cause 

distortion of the RNA structure and therefore change accessibility of the 

nucleotides.  

The second objective of this thesis was to map on the ribosome accessible 

binding sites that could possibly be used as a novel target sites for new 

antibiotics. This study showed that several helices of the ribosome are clearly 

accessible to platinum complexes, such as helix 18, 24, 27, and 34, and thus 

could also be accessible to small molecules and serve as targets for novel drug 
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leads. Several nucleotides in these helices that are functionally important, such 

as G530-531, G791, and G1058, were found to be highly reactive towards 

cisplatin. Mutational studies showed that these cisplatin reactive sites when 

mutated lead to deleterious phenotypic effects (2). A number of these mutations 

has impaired assembly of the ribosome and growth of the bacteria (1).  

Several sites in the 16S rRNA showed different platinum reactivity 

between 30S subunits and 70S ribosomes, which could be exploited for 

structure-based or mechanism-based drug design. Recently, a model system of 

helix 18 was used as a target to find ligands by phage display (254). Hence, 

phage display or SELEX could be carried out to find the ligands targeting the 

sites that showed different reactivity in 16S rRNA, 30S subunits and 70S 

ribosomes. 

The fact that the platinum complex generates stable adducts that can be 

quantified is significant, because the kinetics of the reaction can be monitored. 

This will allow determination of how positively charged compounds such as 

aminoglycosides identify their target sites from a number of possible reactive 

sites on the ribosome. In RNA, we do not know whether the known sites are the 

only ones for effective inhibition, or whether there are more possible target sites 

on the ribosome. Hence, it will be important understand the kinetic preference for 

charged small molecules binding to the functionally important sites on the 

ribosome. 

The third objective of this thesis was to exploit another aspect of cisplatin, 

namely, the ease with which its charge and size can be altered. Unlike other 
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probing agents, aquated cisplatin has a positive charge; thus, accessibility and 

kinetic information can be obtained simultaneously. For this purpose, a number 

of platinum complexes with various charges and sizes were synthesized by 

tethering amino acids. The binding studies with amino-acid-linked complexes 

with 16S rRNA showed a clear alteration of the binding sites compared to 

cisplatin. The positively charged Kplatin and Oplatin showed a preference for AG 

over GG sites on 16S rRNA. Similarly, Rplatin showed a preference for loop and 

bulge regions. The negatively charged amino-acid-linked complex Dplatin did not 

show any reactivity under similar reaction conditions. These results indicate that 

an electrostatic interaction is likely a primary driving force for charged small 

molecules to react with the negatively charged nucleic acids, although H-bonding 

might also play a role. 

In a different aspect of my thesis work, the use of siRNA to target non-

Hodgkin’s lymphoma was explored. siRNA has great therapeutic applications, 

including those related to anticancer approaches; however, it has been often 

difficult to achieve selective targeting, efficient delivery, and appropriate stability 

of the siRNA, while at the same time minimizing toxic side effects. A newly 

engineered antibody fragment (scFv) in conjugation with liposomes was 

proposed for this purpose. An scFv plasmid obtained from Al-Katib’s lab was 

successfully transfected to High Five insect cells to generate stably transfected 

cell lines. This step of the project presented a number of challenges that were 

overcome, and now with stably transfected cell lines, sufficient quantities of 

protein can be generated for future studies. siRNA stability in cell-growth media 
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and its incorporation into liposomes were also optimized. The siRNA with 2'-F, 

phopshorothiate, and 2'-OMe modifications were found to be stable in culture 

media for extended periods of time (24 hours), and gave ~30% incorporation 

efficiency into the liposome.    

7.2 Future Directions 

Future experiments include the use of these probing techniques to monitor 

the accessibility of purines in 23S rRNA, functional ribosomes in the presence of 

mRNA and tRNA, as well as polysomes. Mapping of cisplatin binding sites in 23S 

rRNA in vitro and in vivo will greatly increase accessibility information for various 

functionally important regions, such as the peptidyl-transferase center, helix 69, 

and the peptide exit tunnel. In addition, in vitro probing of the ribosome in 

presence of mRNA and/or tRNA can generate information about nucleotide 

accessibility in fully functional ribosomes. This work could be further expanded to 

the polysomes. Previous studies showed that a number of nucleotides were 

protected when mRNA, tRNA or initiation factors were assembled on the 

ribosome. Thus, cisplatin probing result can be compared with previously 

obtained results from biophysical and biochemical methods to find novel target 

site for antibiotics on the ribosome.  

The binding studies with amino-acid-linked cisplatin analogues and the 

790 region of 16S rRNA revealed an alteration of binding sites relative to the 

parent cisplatin; thus, the adduct profiles on 16S rRNA are expected to be 

different. The binding sites of cisplatin analogues on the 30S subunits and 70S 

ribosomes can be obtained by primer extension and in small constructs by 
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MALDI (TOP-DOWN sequencing or RNase cleavage) and chemical probing. The 

types and number of adducts formed with cisplatin analogues with varying 

ligands will further increase our understanding of RNA-platinum complex 

interaction. HPLC and LC-MS can be used for this purpose, as described in 

Chapter 2. In addition, NMR analysis of various products obtained with individual 

nucleosides or nucleotides could be useful to find the exact coordination site of 

platinum on the nucleotide base, which has not yet been verified on RNA. As 

charge and size of cisplatin can be altered easily, various analogues with bulkier 

groups, higher charge, or varying hydrophobic or H-bonding moieties can be 

synthesized. These compounds could be exploited to gain information about 

nucleotide or helix accessibility on the ribosome, as well as map the interaction 

modes.  

Cisplatin and its analogues were demonstrated as probing tools to gain 

information about nucleotide accessibility in the RNA tertiary or higher-order 

structure. Probing the ribosome from other organisms will have the great 

advantage of predicting accessibility and assisting with the design of selective 

structure-based drug targeting agents for pathogenic bacteria. It has been of 

great interest to know how charged small molecules such as aminoglycosides 

find their target sites out of the numerous possible sites in the ribosome. Cisplatin 

and analogues, due to their stable coordination and charges present in the 

aquated species, can be used as a model to understand how charged molecules 

find their target sites. This kinetic interaction combined with thermodynamic 

preferences will also aid in future drug design. 
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Small interfering RNAs (siRNA) were designed to specifically target the c-

Myc mRNA in non-Hodgkin’s lymphoma cells. High Five cells with stable 

transfection of GPI-scFv have been generated, which showed expression of the 

desired protein. The stably transfected cells can be used to purify larger 

quantities of the GPI-anchored scFv for further experiments. Liposome, siRNA, 

and the GPI-scFv can be combined to generate a complex that can be used to 

deliver siRNA to CD20-positive cells. This targeting can be confirmed by 

examining the levels of c-Myc expression in CD20-positive WSU-FSCCL cells or 

related cancer-cell lines. Further, instead of siRNA, quantum dots can be used to 

monitor the targeted delivery by scFv. Quantum dots can be incorporated into the 

liposomes, and complexes with GPI-scFv can be generated. When this complex 

is incubated with cells, it is expected that QDs will also be delivered to the cells 

and can be utilized for imaging purposes. As QDs are highly luminescent, they 

can be detected by fluorescence microscopy. This method will have the 

advantage of simultaneous cell imaging and targeted delivery of cytocidal agents 

to cancer cells. These projects taken together provide the basis for new 

applications directed towards novel drug discovery or selective targeting as 

antibacterial or anticancer agents. 
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APPENDIX 
 
 Figures in this appendix are additional autoradiograms for Chapters 2 and 3. The 

primer and RNA used for probing are mentioned in figure captions. 

  

 
 

Figure.  Probing results of 16S rRNA at the 3' domain with primers 171 and 323 are 
shown. (A) Autoradiogram showing the reverse transcriptase pauses or stops by 
using primer 171. (B) Autoradiogram showing the reverse transcriptase pauses or 
stops by using primer 323. In both gels, C, U, A, G represent the sequencing 
lanes, 0 represents the control, and other 3 lanes are 16S rRNA treated with 
increasing concentrations of monoaquated cisplatin (cisplatin:nucleotide is 1:150, 
1:75, and 1:30). The strong and moderate hits are indicated with arrows and 
corresponding nucleotides numbers (▲ ﴾strong hits﴿ and Δ ﴾moderate hits﴿). 
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Figure. Probing results of 16S rRNA with primers 485 and 686 are shown. (A) 
Autoradiogram showing the reverse transcriptase pauses or stops by using 
primer 485. (B) Autoradiogram showing the reverse transcriptase pauses or stops 
by using primer 686. In both gels, C, U, A, G represent the sequencing lanes, 0 
represents the control, and other 3 lanes are 16S rRNA treated with increasing 
concentrations of monoaquated cisplatin (cisplatin:nucleotide is 1:150, 1:75, and 
1:30). The strong and moderate hits are indicated with arrows and corresponding 
nucleotides numbers (▲ ﴾strong hits﴿ and Δ ﴾moderate hits﴿). 
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Figure. Probing results of 16S rRNA with primers 746 and 982 are shown. (A) 
Autoradiogram showing the reverse transcriptase pauses or stops by using 
primer 746. (B) Autoradiogram showing the reverse transcriptase pauses or stops 
by using primer 982. In both gels, C, U, A, G represent the sequencing lanes, 0 
represents the control, and other 3 lanes are 16S rRNA treated with increasing 
concentrations of monoaquated cisplatin (cisplatin:nucleotide is 1:150, 1:75, and 
1:30). The strong and moderate hits are indicated with arrows and corresponding 
nucleotides numbers (▲ ﴾strong hits﴿ and Δ ﴾moderate hits﴿). 
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Figure. Probing results of 16S rRNA with primers 1199 and 1296 are shown. (A) 
Autoradiogram showing the reverse transcriptase pauses or stops by using 
primer 1199. (B) Autoradiogram showing the reverse transcriptase pauses or 
stops by using primer 1296. In both gels, C, U, A, G represent the sequencing 
lanes, 0 represents the control, and other 3 lanes are 16S rRNA treated with 
increasing concentrations of monoaquated cisplatin (cisplatin:nucleotide is 1:150, 
1:75, and 1:30). The strong and moderate hits are indicated with arrows and 
corresponding nucleotides numbers (▲ ﴾strong hits﴿ and Δ ﴾moderate hits﴿). 
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Figure. Crystal structures and secondary structure regions of 16S rRNA 
corresponding to helix 15 and 42 are shown with reactive nucleotide (colored).  
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Figure. Probing results of 16S rRNA of the 30S subunits and the 70S ribosomes at the 5' 
domain with primers 171 and 323 are shown. (A) Autoradiogram showing the reverse 
transcriptase pauses or stops by using primer 171. (B) Autoradiogram showing the 
reverse transcriptase pauses or stops by using primer 323. In both gels, C, U, A, G 
represent the sequencing lanes, 0 represents the control, and other lanes are 30S subunits 
and 70S ribosomes treated with increasing concentrations of monoaquated cisplatin 
(cisplatin:nucleotide is 1:150 and 1:75). The strong and moderate hits are indicated with 
arrows and corresponding nucleotides numbers (▲ ﴾strong hits﴿ and Δ ﴾moderate hits﴿ and 
● (minor hits)). 
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Figure. Probing results of 16S rRNA of the 30S subunits and the 70S ribosomes at the 5' 
and central domain with primers 485 and 687 are shown. (A) Autoradiogram showing the 
reverse transcriptase pauses or stops by using primer 485. (B) Autoradiogram showing 
the reverse transcriptase pauses or stops by using primer 687. In both gels, C, U, A, G 
represent the sequencing lanes, 0 represents the control, and other lanes are 30S subunits 
and 70S ribosomes treated with increasing concentrations of monoaquated cisplatin 
(cisplatin:nucleotide is 1:150 and 1:75). The strong and moderate hits are indicated with 
arrows and corresponding nucleotides numbers (▲ ﴾strong hits﴿ and Δ ﴾moderate hits﴿ and 
● (minor hits)). 
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Figure. Probing results of 16S rRNA of the 30S subunits and the 70S ribosomes at the 
central and 3' major domain with primers 748 and 978 are shown. (A) Autoradiogram 
showing the reverse transcriptase pauses or stops by using primer 748. (B) 
Autoradiogram showing the reverse transcriptase pauses or stops by using primer 978. In 
both gels, C, U, A, G represent the sequencing lanes, 0 represents the control, and other 
lanes are 30S subunits and 70S ribosomes treated with increasing concentrations of 
monoaquated cisplatin (cisplatin:nucleotide is 1:150 and 1:75). The strong and moderate 
hits are indicated with arrows and corresponding nucleotides numbers (▲  ﴾strong hits﴿ 
and Δ ﴾moderate hits﴿ and ● (minor hits)). 
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Figure. Probing results of 16S rRNA of the 30S subunits and the 70S ribosomes at the 3' 
domain with primers 1199 and 1296 are shown. (A) Autoradiogram showing the reverse 
transcriptase pauses or stops by using primer 1199. (B) Autoradiogram showing the 
reverse transcriptase pauses or stops by using primer 1296. In both gels, C, U, A, G 
represent the sequencing lanes, 0 represents the control, and other lanes are 30S subunits 
and 70S ribosomes treated with increasing concentrations of monoaquated cisplatin 
(cisplatin:nucleotide is 1:150 and 1:75). The strong and moderate hits are indicated with 
arrows and corresponding nucleotides numbers (▲ ﴾strong hits﴿ and Δ ﴾moderate hits﴿ and 
● (minor hits)). 
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Cis-diamminodichloridoplatinum (II), cisplatin, is an antitumor drug that 

has been used to treat several types of cancers. The reaction of cisplatin with 

DNA has been studied and discussed extensively in the literature; however, the 

effects of cisplatin on RNA function are poorly understood. In this thesis, two 

aspects of cisplatin, its preferred sites of interaction with RNA and its use as a 

chemical probe to gain accessibility information, were explored. 

To understand the site-selectivity of cisplatin with RNA, model RNA 

constructs and full-length 16S rRNA were employed. The binding studies 

revealed a cisplatin preference for guanosine-rich sequences. Primer extensions 

in 16S rRNA and MALDI-TOF in model constructs were used to locate the 

binding sites of cisplatin. HPLC and LC-MS were useful to determine the types 

and ratios of various adducts formed. Cisplatin and its analogues were employed 

to probe the accessibility of nucleotides on 16S rRNA, 30S subunits and 70S 

ribosomes in vitro as well as in vivo. This study revealed that many functionally 
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important sites, such as helix 18, 24, 27, and 34 are accessible to the aquated 

platinum complex. Thus, these accessible sites can potentially be utilized as a 

new target sites in the design of structure-based antibiotics. When charge and 

size of the complex were changed, the binding preference was altered. In 

addition to the expected consecutive Gs, cisplatin analogues preferentially 

targeted AG sites on loop or bulge regions. Thus, several new complexes could 

be synthesized and utilized to gain more information about drug accessibility on 

the ribosome. 

The last part of the research focused on the application of siRNA to target 

non-Hodgkin’s lymphoma (NHL). Small interfering RNAs were designed to 

downregulate the c-Myc expression in NHL cells. Stabilities of designed siRNAs 

in media and their incorporation into liposomes were studied. Complexes of 

siRNA, liposomes, and antibody fragments (scFv) could be utilized in future 

applications to target specifically the c-Myc expression in NHL cells.  

Overall, this thesis work explored cisplatin binding to RNA and a number 

of possible new antibiotic target sites on the ribosome were identified. In the long 

term, further studies with fully functional ribosomes and comparisons with other 

organisms will have a greater impact on identifying novel drug target sites in 

pathogenic bacteria. 
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