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CHAPTER I 

THE ROLE OF p53 AND HDM2 IN LYMHPHOMA 

Introduction to Lymphoma 

 Lymphoma, a complex, heterogeneous set of lymphocyte malignancies, is the 

most common hematological malignancy in the United States.  Lymphomas are 

classified into one of two major groups: Hodgkin lymphoma (HL) and non-Hodgkin’s 

lymphoma (NHL), the former being less common than the latter (Table 1.1).  Both HL 

and NHL display variable behavioral characteristics and respond differently to 

treatment.  It is estimated that over 660,000 people in the United States are currently 

living with, or are in remission from, lymphoma. 

Table 1.1 Projected New Cases and Estimated Deaths from Lymphoma in the U.S. 
2012. 

Type 
New Cases Deaths 

Total Male Female Total Male Female 
Hodgkin  
Lymphoma 

9,060 4,960 4,100 1,190 670 520 

Non-Hodgkin’s 
Lymphoma 

70,130 38,160 31,970 18,940 10,320 8,620 

Total 79,190 43,120 36,070 20,130 10,990 9,140 
Source: Cancer Facts and Figures, 2012. American Cancer Society: 2012. 

Non-Hodgkin lymphoma 

 Over 70,000 new cases of NHL will afflict individuals in the U.S. in 2012, 5% of 

all cancer cases and 3% of all cancer related deaths (1). The incidence of NHL in the 

U.S. has risen more than 82.5% from 1975-2008, an average of 3% annually (2). 

Cancer rates increase with age of the population but age is not the only factor 

contributing to these increases (Figure 1.1) (2). Despite the alarmingly high incidence, 

mortality rates have decreased dramatically since the turn of the century (Figure 1.1) 

(2). This could be attributed to detection of differences in the biology of the tumor as a 
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result of scientific advancements, and more personalized therapy.  

 
Figure 1.1 Age-adjusted SEER (Surveillance Epidemiology and End Results) incidence 
and mortality rates of NHL by sex (2). 

 Since NHL comprises many disease subtypes each with different biological 

characteristics and prognosis, classifying lymphomas is essential to diagnosis and 

subsequent treatment strategy.  NHL was initially classified based on histopathologic 

appearance and placed into 1 of 3 subtypes in 1966 (3, 4).  More sophisticated 

diagnostic tests have been implemented as research has progressed resulting in 

frequent modification of classification systems.  Currently, the World Heath Organization 

(WHO) has classified more than 60 subtypes based on a combination of morphology, 

immunophenotype, genetic and clinical features (5).  Approximately 85% derive from B 

lymphoctyes where the origin of disease can be located at a certain stage of B cell 
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differentiation within precursor or peripheral cells.  The rest comprise T cell and natural 

killer (NK) cell lymphomas. This study focused primarily on B cell NHL. 

 NHL cells contain antigenic markers that are identified by immunohistochemistry 

(IHC) and flow cytometry. Genetic abnormalities are often associated with lymphomas, 

particularly chromosomal translocations, insertions, or deletions detected by karyotyping 

or fluorescent in situ hybridization (FISH).  These abnormalities may play a role in the 

pathogenesis of specific subtypes of NHL and some are currently important prognostic 

factors. 

 The stage, or extent of the spread of disease, is established after diagnosis and 

determines the prognosis and treatment. In 1966, lymphoma was the first disease for 

which a tumor staging system was recommended, as exemplified by the Rye staging 

(6).  The Cotswolds modified Ann Arbor staging system is in use at the current time (7, 

8) Table 1.2 (9, 10). 

Table 1.2. Cotswolds modified Ann Arbor staging system for NHL. (7) 
Stage Definition 

I The tumor is located to a single region, usually 1 lymph node and the 
surrounding area. 

II The tumor is located in multiple regions on the same side of the 
diaphragm. 

III The disease has spread to the lymph nodes on both sides of the 
diaphragm (III1) or the disease has spread into an area or organ next to 
the lymph node (III2). 

IV Diffuse involvement of extranodal sites beyond those designated in E, 
including bone marrow, liver, brain, or pleura. 

Suffixes: 
E, involvement of one extranodal site, contiguous or proximal to identified nodal site of disease. 
X, presence of bulky disease >10 cm. 
Stage followed by A or B where: 
A- no disease symptoms 
B- presence of disease symptoms; >10% body mass reduction in 6 month period, fevers of ≥ 38ºC 
for 3 consecutive days or more, recurrent drenching night sweats. 

 The behavior of NHL may be characterized as indolent, aggressive or very 

aggressive. Aggressive lymphomas are fast growing and high grade, but are potentially 
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curable.  The cure rate depends on a number of prognostic factors as outlined in the 

International Prognostic Index (IPI) and can vary from 26% to 73% (11).  Diffuse large 

B-cell lymphoma (DLBCL) accounts for 31% of all NHL (12) and serves as a paradigm 

for the treatment of aggressive lymphomas whereas very aggressive lymphomas are 

exemplified by Burkitt’s lymphoma (BL).  These are some of the most curable forms and 

are expected to be more responsive since current chemotherapies target actively 

dividing cells (13). Indolent lymphomas are slow growing and relatively low grade, and 

are currently incurable with existing treatment regimens. Follicular lymphoma (FL) 

constitutes 30-35% of all NHL and is considered to be the prototypical indolent type 

(14).  Because of their slow growing nature, it is difficult to predict treatment outcome for 

indolent NHL.  The Follicular Lymphoma International Prognostic Index (FLIPI) has 

established 5 factors that assist in outcome prediction and is a modification of the IPI for 

less aggressive NHL (15).  These prognostic factors are age, stage III or IV, low 

hemoglobin levels (<12 gm/dL), greater than 4 lymph node sites affected, and elevated 

LDH levels. Other indolent subtypes include chronic lymphocytic leukemia/small 

lymphocytic lymphoma (CLL/SLL), marginal zone lymphoma (MZL), and Waldenstrom’s 

macroglobulinemia (WM) which is a lymphoplasmacytic lymphoma.  

Hodgkin lymphoma (HL) 

 Over 9,000 new cases of HL are predicted to occur in the U.S. in 2012 resulting 

in an estimated 1,000 deaths (1) (Table 1).  Overall incidence rates of HL have 

decreased, but there has been a slight increase in young adults (16).  As with NHL, 

mortality rates in the U.S. have decreased from 1975-2009 (Figure 1.2).  
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Figure 1.2. Age-adjusted SEER incidence and mortality rates in HL in both males and 
females (2). 

 HL was initially described by Thomas Hodgkin in 1832 and the disease was later 

named after him (17).  Giant, multinucleated Reed-Sternberg (RS) cells are a 

characteristic feature of HL. RS cells typically contain two nuclei but can be 

multinucleated or mononuclear and are thought to be of B cell origin. Infiltration of 

reactive cell types with the RS cells defines specific HL subtypes.  HL is broadly divided 

into two categories: 1.) nodular lymphocyte-predominant HL (approximately 5% of all HL 

cases) (18) and 2.) classical HL (cHL) (the remaining 95%) consisting of nodular 

sclerosis, mixed cellularity, lymphocyte-rich, and lymphocyte depleted types.  
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Treatment of lymphomas 

 Treatment for lymphomas is generally based on stage of disease and histologic 

subtype and varies from NL to NHL.  Therapeutic options for B-cell lymphomas consist 

of conventional cytotoxic chemotherapeutics, radiation therapy, immunotherapy or stem 

cell transplantation (SCT).  Since the 1970’s, a combination of cyclophosphamide, 

doxorubicin, vincristine and prednisone (CHOP) has been the standard form of cytotoxic 

therapy for NHL.  Indolent lymphomas frequently undergo initial ‘watch and wait’ 

approach since they are incurable.  Although very aggressive lymphomas are curable 

with intensive chemotherapy, there is no standard treatment.  Alternative chemotherapy 

regimens incorporating higher doses of additional cytotoxic agents like methotrexate 

and cytosine arabinoside (Ara-C) were shown to improve therapeutic efficacy.  The cure 

rate with chemotherapy alone has reached a plateau of approximately 40% for 

aggressive NHL subtypes (19).  Radiation can be used in conjunction with 

chemotherapy or at relapse, with or without SCT.  Despite the initial activity of these 

regimens, overall efficacy is limited due to high toxicity or disease resistance.  

 A combination of doxorubicin, bleomycin, vinblastine, and decarbazine (ABVD) 

has been the standard chemotherapy regimen for HL with or without radiotherapy, 

depending on stage and histological grade.  In use since the mid-1970’s, this regimen 

has been shown to provide patients with the highest efficacy and the lowest toxicity (20-

22).  Although the majority of HL patients are cured with current treatment modalities, 

relapse can, and does, occur with a worse outcome (23, 24).  Long-term toxicity such as 

infertility, development of secondary tumors, premature menopause, and 

cardiopulmonary complications are also major concerns and a challenge to overcome. 

Extensive recent research efforts have paved the way to a better understanding 
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of the molecular pathobiology of lymphomas.  This has provided new clues on how to 

exploit the underlying pathogenesis for therapeutic intervention.  One such approach is 

the development of a monoclonal antibody, rituximab, specifically targeting the CD20 

antigen expressed on B-cell neoplasms.  When added to CHOP (i.e. R-CHOP), the 

event free survival (EFS) in patients with aggressive NHL was increased approximately 

16% (25), and 18% in patients with indolent NHL (26).  However, the overall survival of 

indolent lymphoma has not significantly improved even with the success of rituximab as 

a targeted therapy (26, 27), suggesting that the underlying biology of the disease largely 

dictates outcome.  

As in the majority of human cancers, levels and activation of tumor suppressors 

and proto-oncogenes are deregulated in lymphomas (28).  However, in contrast to most 

solid tumors, the course of proto-oncogene activation, at least in NHL, is via 

chromosomal translocations. Regardless, presence of a translocation alone is not 

sufficient to drive lymphomagenesis as they are infrequently found in HL (29).  Indeed, a 

number of different genetic lesions and alterations to signal transduction pathways 

appear to be important in defining events implicated in the pathogenesis of lymphomas 

(28).  Many of these alterations are becoming more and more useful as prognostic 

predictors in both NHL and HL, particularly the p53 pathway, which is part of the 

ubiquitin proteasome system (UPS), and an important focus of this study.  

Most importantly, identification of molecular defects has led to the development 

of novel targeting agents.  This is reflected by the numerous preclinical and clinical trials 

investigating targeted therapeutics to several different molecular targets.  The challenge 

is to identify highly selective agents that will complement conventional chemotherapy to 

reduce toxicity and improve survival rates when managing both HL and NHL.  
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Of particular interest and primary focus of this study is the p53-HDM2 protein-

protein interaction, a pathway within the ubiquitin proteasome system (UPS), and the 

preclinical assessment of novel anti-cancer agents to target p53-HDM2 disruption in 

lymphoma cells. 

Role of the ubiquitin-proteasome system 

The ubiquitin-proteasome system (UPS) is perhaps the most important pathway 

for monitoring eukaryotic cell proteolytic activity.  An estimated 80-90% of protein 

degradation is thought to be regulated by the UPS.  Both short- and long-lived proteins 

are continually destroyed at variable half-lives and restored by de novo synthesis (30, 

31).  The UPS causes rapid substrate proteolysis which inactivates and eliminates 

damaged, oxidized, or misfolded proteins before they aggregate (32), serving an 

essential role in the maintenance of physiologic function of intracellular proteins. 

 Because the UPS serves to sustain cellular homeostasis and critical mechanisms 

exist to regulate its function precisely and with high specificity, it should come as no 

surprise that alterations to components of the UPS have been associated to a variety of 

human diseases, including cancer.  Many deregulated signaling pathways in cancer 

cross-talk with the UPS by undergoing ubiquitination and proteasomal degradation. 

Some of the proteins targeted for degradation include transcription factors, cell cycle 

regulators, and signal transducers that are involved in numerous signaling pathways 

and biological processes such as cell division, apoptosis, DNA repair, cell cycle arrest, 

transcriptional regulation, differentiation and endocytosis (33, 34). In fact, p53 is heavily 

regulated by various components of the UPS, particularly by its predominant negative 

regulator, HDM2. 
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p53: Guardian of the genome 

In 1979, the T-antigen of simian virus 40 (SV40) was found to be associated with 

a 53 kilodalton (kDa) protein (35). Protein 53 (p53, protein product of the TP53 gene), 

was initially identified as an oncogene (36). However, extensive studies determined that 

the T-antigen of SV40, a viral oncogene, was blocking p53 activity and not vice versa 

since wt-p53 was unable to transform cells in culture. It later became clear that the 

function of p53 was tumor suppressive rather than oncogenic (37-39), a paradigm shift 

that occurred more than a decade after its discovery. Today, p53 is cited in over 62,000 

literature publications and is viewed as the ‘guardian of the genome’ due to its role in 

conservation of genomic stability and its involvement in development, aging, and 

numerous diseases, particularly cancer. Furthermore, it is found in all cells, although 

p53 expression and activity is both cell type and context specific. 

 More genetic errors arise with the loss of p53 function, leading to a higher 

susceptibility to cancer. This was demonstrated in genetically engineered p53 null mice 

(40). These mice developed spontaneous tumors at an early age and had a significantly 

shorter life-span compared to heterozygous or wild-type p53 mice (40). Interestingly, 

45-70% of these spontaneous tumors were lymphomas in p53 null mice from two 

different strains. This highlighted the possibility that there may be underlying 

predisposing cell- or tissue-specific factors in lymphoma and other cancers. Therefore, 

the integrity of functional p53 activity is vital to the development and protection of 

normal cells from cancer development. 

 Detection of p53 mutations and their alteration of tumor suppressor function were 

initially discovered in most colon cancers in 1989 (38). Today, the importance of p53’s 

function is underscored by its frequent mutation rate found in at least 50% of all cancers 
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(41, 42). Interestingly, however, p53 mutations are far less prevalent in hematological 

malignancies compared to solid tumors suggesting that p53 loss-of-function is important 

to the course of cancer progression. 

Structure and function 

 The human TP53 gene is located on the short arm of chromosome band 

17p13.1, encoding a pleiotropic transcription factor (43). The predominant p53 mRNA 

transcript consists of 11 exons, although the coding sequence lacks the 1st exon. The 

resulting p53 protein product is composed of 393 amino acids (a.a) in length, divided 

into five evolutionarily conserved domains that reflect a specific function (Figure 1.3).  

 
Figure 1.3 Secondary structure of p53 tumor suppressor protein. Human p53 protein is 
composed of five domains, each corresponding to specific functions. 

 

These domains and their residues include: the transactivational domain (1-42 

a.a), a proline-rich domain (63-97 a.a), a DNA-binding domain (DBD) (98-292 a.a), a 

tetramerization domain (324-355 a.a), and a C-terminal regulatory domain (363-393 a.a) 

(44). Additionally, p53 contains a nuclear localization signal sequence (NLS) and three 

nuclear export signal sequences (NES) located within the tetramerization domain (44). 

The transactivation domain is located at the N-terminus which interacts with co-

transcription factors that aid in modulating gene expression. The proline-rich domain is 
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also located at the N-terminus. Its function, which once was poorly characterized, has 

been shown to be critical for a complete p53 apoptotic response to genotoxic DNA-

damaging agents (45). The DBD is located at the central core and binds to consensus 

sequences of DNA often in the promoter region of p53 target genes. Mutations in the 

DBD account for 90-95% of all p53 mutations, and encompass exons 5-9 (46, 47). Most 

of these are single a.a. substitution point mutations and are quite often located at ‘hot 

spots’, or frequently mutated spots in p53. Codons 248, 273, and 175 are some of the 

most frequently mutated, corresponding to the distribution pattern in other cancers (48). 

Transcription of p53 target genes is abrogated 81% of the time by the inability of p53 to 

bind to DNA (49). Interestingly, not all p53 mutations are considered to be equal and 

depending on their location, some have been shown to possess partial transcriptional 

activity (49). Less than 5% of all p53 mutations takes place outside of the DBD and 

occurs very rarely in lymphomas (50). Lastly, the C-terminal domain binds to DNA non-

specifically and acts as a sensor to numerous posttranslational modifications. Of note, 

additional p53 isoforms do exist and are generated by alternative splicing of transcript 

variants. 

 p53 becomes activated in response to various cellular stresses to elicit multiple 

biological responses. Upon activation, p53 primarily acts in a transcription-dependent 

manner, forming a tetrameric complex that binds to DNA using its DNA-binding domain 

in the nucleus. This transactivates a plethora of target genes that regulate biological 

outcomes such as cell cycle, DNA damage and repair, apoptosis, senescence, and 

differentiation (51-54). Recent studies have also demonstrated p53 involvement in the 

regulation of autophogy, glycolysis, and metastasis (55-57). It can also act in a p53-

transcription-independent manner in the cytosol to facilitate biological responses such 
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as apoptosis via direct action at the level of the mitochondria and autophagy.    

 Levels of active p53 are tightly regulated, although the precise mechanisms of 

this regulation are not entirely understood. Regulatory pathways involving 

posttranslational modifications are thought to predominantly mediate control over p53 

activity and stabilization, some of which are shown in Figure 1.4 (58).  

 p53 posttranslational modifications determine biological outcome (59, 60). DNA 

damage or genotoxic stress can stabilize p53 by inhibiting HDM2 (MDM2 or E3 ubiquitin 

ligase)-directed p53 ubiquitination (reviewed below) (61). A variety of DNA-damaging 

agents, including UV and ionizing radiation, induce   phosphorylation of p53   residues 

 
Figure 1.4 The p53–HDM2 feedback loop. p53 is maintained at low levels by its 
negative regulator, HDM2. p53 becomes activated upon various stress signals that 
release it from HDM2-mediated inhibition and results in elevated protein levels. Once 
released and depending on the severity of stress, p53 is subjected to interaction with 
other proteins and posttranslational modifications that can influence the p53-dependent 
response. p53 can act in a transcription-dependent manner upregulating target genes to 
carry out cellular response or in a transcritption-independent way by acting as a 
cytosolic pro-apoptotic facilitator at the mitochondria. Reprinted by permission from 
Macmillan Publishers Ltd: Nature Reviews Cancer. (62) Copyright 2009. 
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within its N-terminal domain. Phosphorylation reduces p53 affinity for HDM2 and inhibits 

the ubiquitination and degradation of p53. ATM (ataxia-telangiectasia mutated kinase) is 

also capable of reducing ubiquitination and degradation of p53 by phosphorylating 

HDM2 (63). The most studied mode of regulating p53 ubiquitination is that of the p14 

tumor suppressor that also to binds to HDM2, preventing HDM2-mediated degradation 

of p53 (64). Thus, p53-HDM2 binding is central to the regulation of p53 activity (Figure 

1.4). 

Clinical significance 

 Inactivation of p53 promotes lymphomagenesis, although how it functions to 

prevent lymphoma remains unclear. Evidence suggests that p53-dependent apoptosis 

is required for cellular homeostasis of B cells (65, 66). Moreover, p53 has been shown 

to play a role in B cell differentiation. A recent in vivo study demonstrated that wt-p53 

was capable of preventing the accumulation of incorrectly differentiating B cells, thereby 

suppressing the development of lymphoma (67). More recently, Mcl-1 ubiquitin ligase 

E3 (Mule), was shown to be crucial for B lymphocyte development, proliferation, 

immune response and homeostasis through a feedback loop with p53 in both normal 

and stressful conditions, adding an additional layer of complexity to p53 function in B 

cells.  

The incidence of p53 mutations varies depending on the lymphoma type, subtype 

and stage of disease. Considering that the frequency of p53 mutations in hematological 

malignancies as a whole ranges from 5-20 percent (47, 68), lymphomas must share 

similar features that are cell-type specific. The p53 pathway is often compromised by 

alternative mechanisms. Defects upstream or downstream in the p53 pathway are 

typically observed in lymphoma and greatly contribute to the loss of wt-p53 functional 
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activity. 

 Response to radiation and chemotherapeutics is typically mediated through the 

induction of apoptosis, which is heavily governed by transcription of pro-apoptotic genes 

by p53. Therefore, p53 activation is considered to be favorable to the success of these 

treatments. Consequently, inactivation of p53 is often associated with a poor prognosis, 

relapse, and chemoresistance (65, 69).  

Deletion of 17p, the short arm of chromosome 17, is currently used as an 

independent prognostic factor in patients diagnosed with NHL, particularly CLL (70). In 

many cases, heterozygous deletion of 17p is thought to correspond with p53 mutations, 

although this is now starting to become a topic of debate. 

The presence of wt-p53 usually signifies a more favorable prognosis. However, 

the biological mechanisms activated by wt-p53 can actually hinder the apoptotic 

response and protect the cell, enhancing antioxidant activity or facilitating DNA repair 

(66, 71). In wt-p53 lymphocytes where downstream effectors are deregulated, p53 

activation has been shown to slow lymphoma progression by prolonged or permanent 

cell cycle arrest or senescence rather than apoptosis (72). Recent evidence suggests 

that autophagy also contributes to inconsistencies in prognosis in wt-p53 tumors, 

although it remains to be determined how exactly p53 functions in autophagy. 

Autophagy has just been reported to be cytotoxic as well as cytoprotective and to be 

associated with resistance to chemotherapeutic agents in various lymphoma subtypes 

(73, 74). It is possible that induction of autophagy by wt-p53 contributes to lymphoma 

cell survival contrary to the popular belief that it acts as a precursor- or in a coordinated 

effort to induce apoptotic cellular death. 
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Therapeutic targeting 

 The prolific tumor suppressor activity of p53, particularly its apoptotic function, 

has gained considerable interest as a potential therapeutic strategy. Although there are 

numerous ways to reactivate wt-p53 or restore function to mt-p53, such methods have 

not made it far enough into the drug development process to become FDA approved. 

 Considering the importance of the p53 pathway in the pathogenesis of nearly 

every lymphoma subtype, there is a crucial need to expand our understanding of the 

role of p53 activation in lymphoma cells. The functional role of activated p53 is variable 

and has yet to be fully elucidated. Cell type, posttranslational modifications, as well as 

other survival factors may influence the extent of p53 activation. Thus, understanding 

the role of p53 in lymphoma will enable enhanced targeting of this ‘guardian of the 

genome’ in future therapies. 

Proteasomal degradation of targeted substrates 

 In normal, unstressed cells, p53 protein is present at low levels and has a short 

half-life (75). HDM2 (human double minute 2, homolog of murine double minute, or 

MDM2) is a RING finger E3-ubiquitin ligase that acts as the predominant negative 

regulator of p53. HDM2 is also a transcriptional target gene of p53, creating an 

autoregulatory feedback loop that regulates p53 activity and stability (Figure 1.3) (76). 

One of the most important functions of HDM2 is its ability to target p53 for proteasomal 

degradation by a process called ubiquitination.  

 Ubiquitin is a highly conserved 8.5 kDa protein composed of 76 amino acids  that 

is ubiquitously found in all cells in the human body (77). The process of ubiquitination 

entails covalent attachment of ubiquitin to any one of seven lysine residues within the 

target protein, forming mono- or polyubiquitinated polypeptide chains (78). 
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Ubiquitination not only provides a specific signal for protein degradation, but also 

functions in a degradation-independent manner as well, illustrating that this process is 

intricately complex.  This three-step procedure is ATP-dependent and mediated by 

enzyme family members E1, E2, and E3 (Figure 1.5).  First, ubiquitin is activated in the 

presence of ATP and E1 ubiquitin-activating enzyme.  The C-terminal carboxy group of 

ubiquitin and sulfhydryl group of an E1 cysteine residue form a thioester bond upon 

release of AMP (79).  Second, ubiquitin is transferred to a cysteine residue of an E2 

ubiquitin-conjugating enzyme (Ubc).  Third, the ubiquitin-bound E2 Ubc binds to an E3  

Figure 1.5 Ubiquitination is an enzymatic 
process that plays a role in the ubiquitin-
proteasome system. Ubiquitin is 
catalytically conjugated to proteins by 
means of an E3 ubiquitin ligase. HDM2 is 
used as an example of a RING finger E3 
ubiquitin ligase. (i) Ubiquitin-activating 
enzyme, E1, initiates ATP-dependent 
catalysis of ubiquitin. (ii) Activated 
ubiquitin is transferred to ubiquitin-
conjugating enzyme, E2. E2 binds to 
HDM2 and transfers the ubiquitin moiety 
directly to a Lysine residue within the 
substrate (in this case, p53) that is also 
bound to the HDM2 (iii). The conjugated 
substrate is degraded to small amino 
acid residues by the 26S proteasome 
(iv). Ubiquitin is released and free to be 
reused by DUBs (v). Figure and figure 
legend are modified and reprinted with 
permission from Macmillan Publishers 
Ltd: Cell Death and Differentiation (80) 
Copyright 2011. 
 

 

ubiquitin ligase, in this case, HDM2, capable of recognizing specific target proteins. E2 

Ubc transfers the activated ubiquitin to the HDM2: target protein (p53) complex, where 
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E3 ligase forms an isopeptide bond between glycine 76 of ubiquitin and a lysine residue 

of the p53.  This process is repeated, in most cases, adding ubiquitin monomers to the 

first ubiquitin to form polyubiquitinated chains.  Typically, polyubiquitination is 

associated with degradation and the target protein is escorted to the proteasome for 

degradation.  Far less frequently ubiquitinated proteins are trafficked to the lysosome for 

degradation (81).  The 26S proteasome is an intracellular protease complex consisting 

of a 20S catalytic core and two 19S regulatory subunits and is present in the nucleus 

and cytosol of eukaryotic cells (82).  Here, the proteasome unfolds and degrades the 

protein into various-sized peptide fragments.  Ubiquitin monomer units that have been 

released are recycled for future use.  

 Ubiquitination can also be reversed by de-ubiquitinating enzymes (DUB), which 

facilitate the removal of ubiquitin from their substrates (83).  The balance of 

ubiquitination and deubiquitination modifies enzymatic activity, stabilization, and sub-

cellular localization of signaling proteins (84). One such example is HAUSP/USP7 

(herpesvirus-associated ubiquitin-specific protease), which has been shown to de-

ubiquitinate p53 and HDM2 in a concentration-dependent manner (85) and is yet 

another critical modulator of p53 stability.  

The E3 ubiquitin ligase HDM2 

Structure and function of HDM2 

 The hdm2 gene spans approximately 33kb of genomic DNA and consists of 12 

exons.  Exons 3-12 encode the coding sequence of full-length HDM2, which display 

both tumor suppressive and oncogenic properties. mRNA transcripts can arise from two 

different promoters.  Transcripts from the P1 promoter in normal, unstressed cells lack 

exon 2, whereas the p53-inducible promoter generates transcripts lacking exon 1 (86).  
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The predominant HDM2 transcript encodes a protein 491 a.a. in length and is 

comprised of an N-terminal domain containing a hydrophobic binding pocket for p53, a 

central acidic domain, a putative zinc finger domain, and the C-terminal RING finger 

domain (Figure 1.6) HDM2 also contains a NLS, NES, and nucleolar localization signal 

(NoLS) (87).  Over 40 alternatively spliced transcript variants of HDM2 mRNA have 

been identified in a variety of cancers, including lymphoma, and are often found 

together with full-length HDM2 transcripts.  Many are also found in normal tissues, 

indicating that spliced forms may have normal physiological functions.  Little is known  

 

Figure 1.6 Secondary structure of 
HDM2, its domains, and its E3 
ligase activity. A, Interaction of p53 
and HDM2 occurs at the N-
terminus where p53 binds to a 
pocket within the p53 binding 
domain. Also shown is the 
ubiquitination process and 
proteasomal degradation of p53. 
B, Autoubiquitination and self-
degratory activity of HDM2. 
Addition of ubiquitin moieties 
occurs at Lysine residue 466 within 
the RING finger domain at the C-
terminus.     
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about the functions of alternatively spliced HDM2 transcripts and whether they are 

translated into protein, since the propensity for alternative splicing could differ from each 

promoter as well as their translatability.  Some studies indicate that splice variants 

encode proteins that display transforming ability in vitro and in vivo.  However, in 

different model systems, these splice variants have been shown to release p53 from 

full-length HDM2, acting as tumor suppressors by inducing wt-p53 activity.  Alternatively 

spliced isoforms may regulate the activity of full-length HDM2 and p53.  The 

implications of these isoforms and how their functions are controlled are not well-known 

(88-90). 

 Increased HDM2 protein levels attenuate p53 activity and stability by: 1.) blocking 

transcriptional activity of p53 by physically associating with its N-terminal domain; 2.) 

exporting p53 out of the nucleus, thereby modulating subcellular localization; and 3.) 

ubiquitinating p53, marking it for proteasomal degradation (87, 91, 92). Other negative 

regulators of p53 exist, including Cop1, Pirh2, and ARF-BP1, but they are unable to 

compensate for the loss of HDM2 (93). 

 HDM2 is capable of ubiquitinating its own lysine residue 466 and is thought to 

degrade itself by means of the proteasome (94, 95).  Although this self-regulatory 

function of HDM2 is well-documented, the control and activation of this function still 

remains highly elusive.  Importantly, HDM2 destabilization is required for proper p53 

response.  In fact, an early step in the accumulation of p53 in response to stress, DNA 

damage in particular, is an associated increase in HDM2 autoubiquitination and 

degradation (96, 97).  

 There is mounting evidence supporting the notion that p53-independent functions 

of HDM2 exist through the interaction of HDM2 with additional proteins, which can have 
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therapeutic implications.  Their function and significance are not fully understood, 

although they have been shown to play a role in cellular responses such as 

transcriptional regulation, apoptosis and cell cycle (98, 99).   

Expression in lymphoma and clinical significance 

 Overexpression of HDM2 has been shown to facilitate cancer development and 

progression in several tumor types and is often noted in hematological malignancies. 

Haploinsufficiency, or a single copy due to deletion or loss of the HDM2 allele inhibits 

lymphomagenesis, further supporting the role of its contributing to the development of 

lymphoma. In fact, HDM2 was found to be overexpressed in CLL and NHL. Its 

expression was found more frequently in low grade NHL (56.5%) compared with 

aggressive NHL (10.8%) and more in patients with advanced clinical stage (100). 

Abnormal expression of HDM2 has also been shown in HL (101).  Little is known about 

the prognostic value of HDM2 in lymphomas.  

Targeting the UPS for cancer therapy 

There is considerable interest in members of the UPS as potential targets for 

therapeutic intervention in the treatment of cancer (102-105). The validity of exploiting 

the UPS for therapy has been demonstrated by the discovery of the proteasomea34 as 

an anticancer target and the development of proteasome inhibitors. Proteasome 

inhibitors prevent degradation of polyubiquitinated proteins by inhibiting the proteolytic 

activity of the proteasome (106). Considering the ubiquity and essential role of the 

proteasome to all cells, it would appear that its inhibition would have profound adverse 

side effects. However, increased proteasomal activity is found in highly proliferative 

cancer cells compared to normal cells (107, 108), suggesting that these inhibitors may 

promote antitumor activity by targeting fast-growing cancer cells. The reason for 
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enhanced proteasomal activity in cancer is not understood. 

Limitations of Bortezomib 

 As a single agent, the proteasomal inhibitor bortezomib has demonstrated 

preclinical cytotoxic activity in human tumor xenograft models and primary cultures of a 

broad spectrum of cancer types (109, 110). It elicits numerous effects on tumor cells 

although its predominant mechanism of action is thought to be via interference of the 

nuclear translocation of NF-kB and its transcriptional activation (111). However, 

proteasomal inhibition also attenuates the degradation of substrates (i.e. p53) that 

disrupts the cell cycle and initiates cell death by multiple pathways. Hematological 

malignancies, such as lymphomas, appear to be particularly sensitive to the pro-

apoptotic effects of bortezomib.  

 Several clinical trials have shown promising therapeutic merit in hematological 

malignancies. Currently, bortezomib is approved for treatment in multiple myeloma and 

mantle cell lymphoma patients (112, 113). Interestingly, not all subtypes of lymphoma 

respond to bortezomib. It is plausible that different mechanisms contribute to this 

subtype-specific activity of proteasomal inhibition, although the precise mechanisms 

underlying this activity are unknown (114, 115). 

 Bortezomib cannot be considered a targeted therapeutic agent due to its broad 

activity. Although the drug was shown to be well-tolerated in many clinical trials while 

producing clinical responses, it was still associated with side effects, most commonly 

nausea, chronic fatigue, and diarrhea but neutropenia, lymphopenia, hyponatremia, 

thrombocytopenia and peripheral neuropathy were also observed (116, 117). Although 

many patients do not respond to bortezomib, those that do, eventually develop 

resistance, suggesting that there is considerable room for improvement. Targeting 
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components of the UPS involved in deregulation of a subset of cellular proteins in a 

signaling pathway may offer tumor selectivity while achieving anti-tumor response with 

limited toxicity. 

Design of SMIs to disrupt p53-HDM2 

Physical interaction between HDM2 and p53 occurs at the N-terminal 

transactivation domain of p53 and the N-terminal domain of HDM2 (118). More 

specifically, 4 key residues (Phe 19, Leu 22, Trp 23, Leu 26) of p53 bind to the 

hydrophobic binding pocket of HDM2. This interaction induces a conformational change 

in both proteins which may allow other proteins to interact with the structural domains of 

either HDM2 or p53 under physiological conditions. Stressful conditions add additional 

levels of complexity to HDM2-p53 interactions (99).     

 The UPS provides additional targets for possible therapeutic intervention 

upstream of the proteasome. The importance of the E3 ligase HDM2 in the regulation of 

cellular processes, suggests that targeting the UPS to treat lymphomas warrants 

investigation. Exploiting the HDM2-p53 interaction in an attempt to restore wt-p53 

activity is an attractive therapeutic strategy. Antisense oligonucleotides, peptide 

inhibitors, ribozymes and RNA interference have all been used to target cancer cells 

(119-122). HDM2 inhibition by antisense oligonucleotides was previously shown to 

stimulate p53 and to reduce tumor growth in mouse xenograft models (123, 124). 

Unfortunately, it is difficult to utilize such strategies for therapeutic intervention in the 

clinic. As a result, nongenotoxic p53 reactivating small-molecule inhibitors (SMIs) have 

been developed. SMIs are designed to penetrate the cell membrane and disrupt the 

physical interaction of proteins associated with deregulated signaling pathways. They 

work by sequestering and blocking overexpressed molecules, or by allowing negatively 
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regulated proteins to regain their functional activity. Theoretically, such SMIs should be 

highly potent, specific, cell permeable and possess pharmacokinetically feasible profiles 

(125). HDM2 SMIs should provide optimal tumor selectivity and target specificity while 

limiting toxicity.  

 Considerable effort has been expended into the development of therapeutic 

strategies to disrupt the HDM2-p53 protein-protein interaction to reactivate the 

functional activity of wt-p53. Nutlins were the first class of SMI to HDM2 to be reported 

(126). They were discovered in a high throughput screening of synthetic chemical 

libraries and possess a cis-imidazoline structure. Newer improved generations have 

now been formulated. Spiro-oxindoles were discovered using a structure-based de novo 

computational design (127). Both classes specifically bind to the p53 binding pocket of 

HDM2 by mimicking four key hydrophobic peptide residues in wt-p53. Crystal structure 

studies indicate that Trp 23 seems to be the most important residue for the binding of 

p53 to HDM2 since it is buried deep inside the hydrophobic binding cleft (128). 

However, spiro-oxindoles possess a greater affinity and specificity for HDM2 than cis-

imidazolines, perhaps due to the differences in the chemical structure that binds to the 

HDM2 hydrophobic pocket. Where Nutlins bind to this region using a bromophenol 

moiety, spiro-oxindoles mimic the bulky Trp 23 by an indole ring. Homologs of HDM2, 

such as HDMX and proteins containing deep hydrophobic pockets, such as Bcl-2 and 

Bcl-xl, bind with much weaker affinity to these SMIs, indicating specificity for HDM2. 

Along with high potency and specificity, these two classes of SMIs also exhibit 

outstanding cell permeability and pharmacokinetic properties (118, 125, 126). Studies 

using HDM2 SMIs have generated sufficient data to demonstrate that these inhibitors 

can effectively be used to elicit antitumor response. However, the precise mechanisms 
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of susceptibility to HDM2 SMI induced cancer cell death are not completely understood. 

The extent that HDM2 SMIs influence p53-independent functions of HDM2 remains to 

be determined.  

Although inhibition of HDM2 acts in a p53 dependent manner, the regulatory 

mechanisms mediating this effect are still uncertain. For example, it was initially thought 

that HDM2 inhibition completely abrogated all functionality of the protein after release of 

p53. HDM2 appears to be capable of retaining its p53-independent functions in the 

presence of Nutlin-3, even when p53-dependent activity is the primary effect seen. Of 

importance is the E3 ubiquitin ligase activity of HDM2. The effects of HDM2 inhibition on 

HDM2 auto-ubiquitination and p53 ubiquitination are currently unknown. Further, the 

precise mechanisms regulating the balance of ubiquitination and de-ubiquitination on 

protein-protein interactions such as p53 and HDM2 are not entirely well-defined in the 

presence of HDM2 SMIs. Elucidating some of these mechanisms can enhance our 

understanding of the therapeutic potential and limitations of HDM2 inhibitors in B-cell 

lymphoma. 

Although preclinical assessment of many HDM2 SMIs has demonstrated great 

promise, it is becoming clearer that multiple distinct molecular mechanisms influence 

anticancer activity of each agent. Inadequate mechanistic studies will continue to 

prevent their successful utilization for therapy. More importantly, novel HDM2 SMIs are 

currently under clinical evaluation in phase I studies, demonstrating the significant 

impact and clinical relevance of these agents (129). 

The UPS, p53 and lymphoma 

Deregulation of the UPS is likely to contribute to the pathogenesis of lymphoma. 

Inactivating mutations or deletions in the TP53 gene are found in approximately 50% of 
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all cancers. However, this frequency is much lower in hematological malignancies, 

particularly indolent lymphomas, accounting for less than 10% of cases at diagnosis 

(130). p53 mutations become more prevalent as the disease progresses, indicate poor 

prognosis, and predict aggressive disease that is likely to develop chemoresistance 

(131, 132). Therefore, tumor cells containing a wt-p53 are typically more sensitive than 

those bearing mt-p53. Overall, mutations in p53 are not a common molecular 

characteristic driving lymphomagenesis with the exception of disease progression. 

 The p53 pathway is often compromised by alternative mechanisms. Aberrant 

signaling by other defects upstream or downstream in the pathway, such as HDM2 

overexpression, is typically observed in lymphoma and greatly contributes to the loss of 

wt-p53 functional activity. Targeting components of the UPS, such as HDM2 using 

small-molecule inhibitors, to reactivate p53 is as an attractive therapeutic strategy and 

lymphomas are an ideal disease model to test this approach.  

Specific aims of the study 

Aim 1:  To determine the biological effect of spiro-oxindole HDM2 inhibitors on B-cell 

lymphoma with WT & mutant p53 in vitro & ex vivo. 

Aim 2:  To examine the involvement of p53-dependent molecular mechanisms upon 

inhibition of HDM2 in B-cell lymphoma. 

Aim 3:  To investigate additional molecular effects of spiro-oxindole HDM2 SMIs on 

HDM2 upon physical disruption of HDM2-p53. 
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CHAPTER II 

MATERIALS AND METHODS 

Experimental design 

The use of cell lines as a drug screening model is a valuable tool for assessing 

preclinical activity of newly developed anticancer agents. However, successful 

translation into phase I clinical studies are frequently marred by their questionable 

relevance to patient outcomes. Immortalized cell lines may undergo alterations and lose 

authenticity of cell and tissue-specific characteristics which complicates the validation of 

drug treatments. An advantage of using cell lines is the convenience they provide to 

researchers. Cell lines offer a continuous source of cells where multiple independent 

experiments can be repeated to verify results. They also provide an opportunity for in-

depth investigations that could lead to novel mechanistic findings. 

 Primary cells obtained from patients provide the most physiological relevance 

possible. Therefore, access to malignant B lymphocytes derived from lymphoma 

patients was of particular importance to this study. This would allow us to compare and 

validate results from patient derived cells with those obtained in cell lines. Furthermore, 

patient samples also validate the clinical relevance of the cell lines if results are 

consistent, particularly when determining mechanisms of action or performing 

investigations that cannot be logistically conducted on patient samples. We reasoned 

that results from the in vitro cell line data would be similar to the results obtained using 

patient samples. However, we are certainly aware of the existence of differences that 

may occur between each cell model which must be taken into consideration as well. 

Cell lines and culture conditions 

 WSU-FSCCL, WSU-DLCL2 and WSU-WM were established in our laboratory as 
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described previously (133-135). WSU-FSCCL is a human B cell follicular small cleaved 

cell line; WSU-DLCL2 is a human diffuse large B cell line, WSU-WM is a human 

Waldenstrom’s macroglobulinemia cell line. The human Hodgkin lymphoma cell lines 

KM-H2, L-540, and L-591 were obtained from DSMZ (Germany). The human diffuse 

lymphoma cell lines RL and Toledo were purchased from the American Type Culture 

Collection (Rockville, MD). None of the lymphoma cell lines used was virally 

transformed. All cell lines and primary cells were cultured in suspension in RPMI 1640 

medium supplemented with 10% fetal bovine serum (Denville) and 1% Penicillin 

Streptomycin (Invitrogen) at 37oC and 5% CO2 in a humidified incubator. Cells were 

seeded at a density of 2 x105 cells per mL prior to use in functional assays. 

Human Investigation Committee (HIC) approval 

 Prior to conducting research on patient samples, it was mandatory to meet 

University and Federal guidelines. Extensive knowledge of protocols for working with 

human subjects was required for all personnel involved in the research proposal, and 

instruction on this was completed through the Collaborative Institutional Training 

Initiatives (CITI) online training module system. Documentation for the proposed 

research project was submitted by Angela Sosin to the Wayne State University 

Institutional Review Board (IRB) for expedited review and she designated the Principal 

Investigator (PI) of the approved study. Patients cells were obtained from the 

Lymphoma Clinic at the St. John Hospital Van Elslander Cancer Center under the 

direction of Dr. Ayad Al-Katib in accordance with an IRB approved protocol and all 

patients had signed informed consent prior to sample procurement. This project was 

also reviewed and approved by the IRB at St. John Hospital Van Elslander Cancer 

Center as well as the Human Investigation Committee (HIC) at Wayne State University 
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School of Medicine (see Appendix A). 

Isolation and purification of patient-derived B lymphocytes 

 Lymphoma tissue was obtained from untreated patients diagnosed with B cell 

NHL. Peripheral blood was collected from patients with circulating lymphoma cells, (i.e. 

leukemic phase). In both cases, the samples were the remainder of blood or tumor 

tissue that have already been drawn or biopsied and had already undergone clinical 

testing at St. John Van Elslander Cancer Center. Cells from normal, healthy anonymous 

donors were extracted from discarded apheresis cones and/or filters obtained from the 

Red Cross and were kindly provided by Dr. Martin Bluth, Associate Director of Detroit 

Medical Center Transfusion Services.  

 The methodology described in this section explains a detailed, highly modified 

protocol for the isolation and purification of primary B lymphocytes that produced 

consistent results. 

 Samples collected from the St. John Van Elslander Cancer Center were properly 

documented using a coded identifier. Patient-derived and normal donor peripheral blood 

mononuclear cells (PBMCs) were isolated using LymphoPrep (ProGen Biotechnik) 

density gradient centrifugation (Figure 2.1A). The PBMC fraction contains a mixture of T 

cells, B cells, NK cells, basophils, macrophages, monocytes and dendritic cells. Tissue 

was minced using steel mesh in a petri dish and the cells resuspended in RPMI media, 

and subjected to isolation of mononuclear cells. Peripheral blood drawn from lymphoma 

patients was diluted with RPMI media in a ratio of 1:4 (Figure 2.1B). Contents of 

apheresis cones from normal donors (Figure 2.2A) were collected in a 15 mL tube 

(Figure 2.2B) and diluted 1:9 with RPMI media. Diluted blood was carefully layered in a 

1:1 ratio on top of LymphoPrep (Figure 2.1C) to prevent red blood cell (RBC) lysis and 
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centrifuged at 500 x g for 20 minutes. Four distinct layers are present after 

centrifugation: the erythrocytes and granulocytes are located at the bottom; the buffy 

coat or PBMCs are layered thinly on top of the LymphoPrep layer (Figure 2.1D); and the 

top layer is the media containing plasma and platelets. The PBMCs were carefully 

collected and transferred to a new 50 mL conical tube (Figure 2.1E), centrifuged at 500 

x g for 5 minutes (Figure 2.1E) and, washed with 5 mL of 1X PBS, twice to ensure that 

the cells are free of any residual, cytotoxic LymphoPrep.  

 
Figure 2.1. Isolation of PBMCs from a lymphoma patient in leukemic phase. A, 
Collection of peripheral blood in a heparin-coated tube. B, Peripheral blood transferred 
to a 50 mL conical tube and diluted with RPMI media without FBS. C, Diluted contents 
were carefully overlayed in a 1:1 ratio onto LymphoPrep. D, PBMC buffy coat layer after 
centrifugation (shown with arrow). E, Removal of PBMC layer and transfer to a new 50 
mL conical tube. F, Resultant cell pellet following centrifugation of PBMC buffy coat.  
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Figure 2.2 Isolation of normal donor B-lymphocytes from post-leukoreduction apheresis 
cones. A, Picture of a discarded apheresis cone. B, Contents were eluted by gravity 
flow through prior to dilution and LymphoPrep separation of PBMC’s. 
 

Monocyte Depletion 

 Cells were resuspended in media and counted on a hemacytometer using 

Trypan blue exclusion dye to determine cell number and viability. About 40% of the 

isolated mononuclear cells are monocytes and macrophages and adhere to plastic 

surfaces, whereas lymphocytes do not. Therefore, resuspended cells were dispensed 

into T75 flasks and placed in a 37º incubator for approximately 1-2 hours to allow cells 

to adhere to the plastic surface. Cells devoid of monocytes were then collected and 

centrifuged at 400 x g for 5 minutes, then resuspended in 1X PBS. An aliquot was 

analyzed by FACS. 

T Cell Depletion 

 T cells were depleted from the cell suspension lacking monocytes using 100 µl 

pan CD2+ Dynabeads (Dynal), which is necessary for negative selection (depletion) for 
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up to ~ 5 x 108 cells. Cells were incubated with prewashed beads for 30 minutes at 4ºC 

while rotating. After the T cells were removed using the DynaMag as a magnetic device, 

the unbound, negatively selected, highly pure B cell population was removed by 

aspiration and an analyzed using FACS to confirm T cell depletion (Children’s Hospital 

Flow Cytometry Facility, Detroit, MI). The enhanced, purified B lymphocytes were 

subsequently used for functional assays. 

Chemical synthesis, reagents, drug treatment, and competitive binding assay  

 MI-219 (Ascenta Therapeutics) was synthesized using methods published 

previously (118, 127). Disulfiram, Nutlin-3 (Sigma Aldrich), its 150-times less active 

enantiomer (+)-Nutlin-3b (Cayman Chemical), and MI-319 were dissolved in 100% 

DMSO as 10 mM stock solutions. MG132 (Cayman Chemical) and cycloheximide 

(Sigma) were dissolved in 100% DMSO as 100 mM stock solutions. Reagents were 

diluted to working solutions using sterile water. Fluorescence polarization-based 

competitive binding assays were performed to determine the binding affinity of MI-319 

and MI-219 with a recombinant His-tagged HDM2 protein. The assays were carried out 

as described previously (136). 

Cell viability assays 

 Cells were seeded at a density of 2 x 105 /ml and allowed to adapt overnight 

before exposure to increasing concentrations of Nutlin-3, MI-319, or MI-219. Control 

cells were treated with equal volume of DMSO for a final concentration of 0.1%. 3-(4, 5-

dimethylthiazol-2-yl)-2, 5-diphenyl-tetrazolium bromide (MTT) reagent (Sigma) was 

added 24, 48 or 72 hours later to halt reactions.  Purple formazan crystals were 

solubilized in DMSO and absorbance was read in a plate reader at 540 nM. Cell viability 

was also determined by a Trypan blue dye exclusion assay using 0.4% Trypan blue 
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(Sigma). IC50 was assessed as 50% inhibitory concentration as compared to vehicle 

treatment. Data are representative of at least three independent experiments.   

Morphology 

Cells were exposed to 10 μM Nutlin-3 and MI-219 for 48 hours. For light 

microscopic examination, KM-H2 cells were seeded as described above. Briefly, 

aliquots from untreated cells (control) and treated cells were cytocentrifuged in a 

Cytospin II centrifuge (Shandon Southern Instruments). Cell smears were air-dried, 

stained with tetrachrome at full concentration for 5 minutes and then at 50% dilution with 

distilled water for another 5 minutes. Slides were analyzed under light microscopy 

(Nikon). Features of apoptosis looked for included nuclear chromatin condensation, 

formation of membrane blebs, and apoptotic bodies. 

p53 sequencing 

 To sequence the p53 coding region, RNA was extracted from approximately 1 

million cells of each patient sample or cell line using a ZR-Duet™ DNA/RNA MiniPrep 

kit (Zymogen). The amount of RNA was determined by UV absorption at 260 nm. 1 µg 

of each sample was reverse-transcribed using the SuperScript® VILO™ cDNA 

synthesis kit per manufacturer's instructions (Invitrogen). 200 ng was used in each 

reaction of p53 PCR amplification. Two primer sets were designed and used to amplify 

p53 exons 5-9, which encode the DNA-binding region that contains greater than 90% of 

all p53 mutations (47). The sequence and characteristics of each primer is listed in 

Table 2.1 and have been previously published by our lab (137).  

 
 
 
 
 



33 

 

Table 2.1. p53 primers used for sequencing. 

Primer Strand 
Sequence of Primer 

(5` to 3`) 
Start 

Codon 
Stop 

Codon 

Melting 
Temperatur
e (Tm in ºC) 

% GC 
Conte

nt 

p53-F1  Sense  AAG TCT AGA GCC ACC GTC CA  61 80 54.33 55 

p53-R1 Anti-sense CAT AGG GCA CCA CCA CAC TA  858 839 53.20 55 

p53-F2 Sense GTG GAA GGA AAT TTG CGT GT  786 805 51.49 45 

p53-R2 Anti-sense GTG GGG AAC AAG AAG TGG AG  1403 1384 52.23 55 

The location of these primers in relation to the p53 coding sequence is depicted 

in Figure 2.3 along with the primer sets and PCR conditions used to amplify p53 cDNA 

in Table 2.2.  

 
Figure 2.3. Location of p53 primers on p53 cDNA. 

 

Table 2.2.p53 primer sets and PCR conditions. 

Primer Set 
Denaturation 

(ºC) 
Annealing 

(ºC) 
Extension 

(ºC) 
# of Cycles 

Product Length 
(in bp) 

p53-F1/p53-R1  94 52 72 35 798 
p53-F2/p53-R2 94 52 72 35 618 

 

Amplified PCR products were analyzed by agarose gel electrophoresis. PCR 

products were then cut and purified using Wizard SV Gel/PCR Cleanup kit (Promega). 

Two primers, one from each primer set, and 200 ng of PCR product was sequenced by 

GeneWiz, Inc. Sequencing was performed on the Applied Biosystems ABI Prism 3730xl 
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DNA Analyzer using fluorescent dye terminator detection (Applied Biosystems, CA). 

DNA sequences were screened for mutations using BLAST to the p53 coding 

sequence: NCBI Reference Sequence: NM_000546.4.  

RNA extraction, cDNA preparation and real-time quantitative PCR (qRT-PCR) 

 Total RNA was extracted from treated lymphoma cells using the PureLink™ RNA 

Mini Kit (Invitrogen). Total RNA was quantified by NanoDrop and 1 µg of each sample 

was reverse-transcribed using the SuperScript® VILO™ cDNA synthesis kit per 

manufacturer's instructions (Invitrogen). The resulting cDNA preparations were then 

cleaned of excess enzyme with Wizard SV Gel/PCR Cleanup kit (Promega). qRT-PCR 

amplification was conducted in a 10 μl reaction using the Roche LightCycler® 480 

SYBR Green I Master (Roche) according to manufacturer’s protocol. 100 ng total RNA 

was used for each reaction and mixed with Quanti Tect Primers (Qiagen) to p53, HDM2, 

p21, p53AIP1, TIGAR and GAPDH. Reactions were carried out in a 384-well plate using 

the LightCycler® 480 System (Roche).  

Flow cytometric analysis 

Apoptosis  

 For analysis of drug-induced apoptosis, cells were stained with FITC-conjugated 

Annexin V and propidium iodine using the Annexin V/PI kit according to manufacturer’s 

protocol (BioVision). Apoptosis was also measured using the TUNEL-based 

ApoDIRECT DNA Fragmentation Assay Kit (BioVision). The percentage of apoptotic 

cells was quantified using a Coulter EPICS 753 flow cytometer. 

Cell cycle  

 Cell cycle analysis was conducted using flow cytometry of propidium idodide (PI)-

stained cells. Following exposure of cells to either Nutlin-3 or MI-219 for the specified 
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time, cells were harvested, washed and fixed with 75% ice-cold ethanol overnight. Cells 

were then stained with PI at a final concentration of 50µg/ml and analyzed on Coulter 

EPICS 753 flow cytometer. All in vitro flow cytometric experiments were performed 

three independent times.  The percentage of cells in G0/G1, S, or G2/M was determined 

using a ModFit 5.2 computer program. 

Western blots 

 Cultured cells  were collected by centrifugation, washed twice with 1X PBS, and 

solubilized in M-PER lysis buffer (ThermoScientific) containing a cocktail of protease 

and phosphatase inhibitors (ThermoScientific). The concentration of total cell lysate was 

quantified by BCA protein method. 50 µg of total cell lysate proteins were fractionated 

onto 14% or 4-20% Tris-Glycine SDS-PAGE gels, transferred onto PVDF membrane, 

and probed with primary antibody. Secondary antibodies were anti-mouse or anti-rabbit 

conjugated to HRP (Jackson Immuno). Proteins were visualized using 

chemiluminescence substrate reagent. A list of the antibodies used in this study is 

located below in Table 2.3. 

Table 2.3 List of antibodies 
Antibody Company Host Clonality 

p53 (DO-1) Santa Cruz Mouse Monoclonal 
HDM2 (AF1244) R & D Systems Rabbit Polyclonal 

p21 (2974) Cell Signaling Mouse Monoclonal 
Cleaved PARP (5625) Cell Signaling Rabbit Polyclonal 

Cleaved Caspase-3 (9664) Cell Signaling Rabbit Polyclonal 
Ubiquitin (3936) Cell Signaling Mouse Monoclonal 
His-Tag (27E8) Cell Signaling Mouse Monoclonal 

GAPDH Trevigen Rabbit Polyclonal 
p53 PAb421 Calbiochem Mouse Monoclonal 
HDM2 (D-12) Santa Cruz Mouse Monoclonal 

Caspase-9 (H-170) Santa Cruz Rabbit Polyclonal 
HDM2 (SMP-14) Santa Cruz Mouse Monoclonal 
CyclinD1 (HD11) Santa Cruz Mouse Monoclonal 
LC3A/B (4108) Cell Signaling Rabbit Polyclonal 

Caspase-3 (H-60) Santa Cruz Rabbit Polyclonal 
Caspase-8 (H-134) Santa Cruz Rabbit Polyclonal 

MDR1 (D-11) Santa Cruz Mouse Monoclonal 
Rb (C-2) Santa Cruz Mouse  Monoclonal 
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Immunoprecipitation and co-immunoprecipitation 

 WSU-FSCCL or KM-H2 cells were treated with Nutlin-3 or MI-219 for specified 

periods of time and collected as described above. 1 mg of total cell lysate was 

incubated with 5 µg primary antibody overnight (a 1: 1 ratio of HDM2 antibodies SMP-14 

and D-12, Santa Cruz) rotating at 4ºC. 30 µl Protein G agarose beads (Millipore) were 

added to each sample and incubated at 4ºC for 4 hours. Antibody: antigen complexes 

were washed 3 times with PBS prior to the addition of 30 µl SDS-PAGE buffer, 

denatured at 95ºC for 5 min, and centrifuged briefly. Immunoprecipitates were then 

subjected to SDS-PAGE and probed for protein of interest. 

HDM2 autoubiquitination assay 

 Autoubiquitination assays were performed using 200 ng of recombinant His-

HDM2 in the presence or absence of E2-conjugatng enzyme, UbcH5b, recombinant 

human E1 (Boston Biochem), and with or without HDM2 SMI. Final concentration of the 

drug was IC50 or 50 µM for Nutlin-3, MI-219, and MI-319 diluted in 30 µL reaction 

volume. Disulfiram (10 µM) was used as a control. Samples were incubated for 1.5 

hours at 30ºC. The reaction was stopped with the addition of 10 µl of 3X SDS loading 

dye, boiled for 5 minutes, separated on a 4-20% Tris-Glycine gradient gel (Invitrogen), 

and subjected to immunoblotting. 

Gel band quantification 

 ImageJ densitometry software (Version 1.45, US National Institutes of Health; 

http://rsbweb.nih.gov/ij/index.html) was used for quantification of Western blot bands from 

treated patient samples. Selected bands were quantified based on their relative 

integrated intensities, calculated as the product of the selected pixel area and the mean 

gray value for those pixels normalized to internal control (GAPDH). Fold increase or 
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decrease was calculated by standardizing each treatment as a ratio to the control. 

Data and statistical analyses 

 Statistical analyses were performed by two-way ANOVA unpaired two-tailed 

GraphPad Prism v. 4.0 or unpaired two-tailed t test using Microsoft Excel. P<0.05 was 

considered significant. Biostatistical guidance and analyses was performed by Dr. 

Judith Abrams to verify assumptions, locate outliers, and determine associations. 

Relative quantification of mRNA from lymphoma cell lines 

 Two independent drug treatments per sample were performed in triplicate and 

each reaction was repeated once to ensure accuracy. The PCR cycle number at 

threshold (CT) was used for the comparison. Baseline gene expression and that after 

treatment were quantified by qRT-PCR relative to GAPDH using the Ct method and 

expressed as fold induction of gene expression relative to that in the untreated control 

(138). Error bars plotted represent mean values ± SE. 

Biostatistical analyses of Western blots from patient samples 

 Relative density was selected as the endpoint. It is defined as the ratio of the 

absolute density for a given protein treated with a given drug, at a given concentration, 

for a specific time, for a specific patient to the absolute density of GAPDH under the 

same conditions. Evaluation of the shape of the frequency distribution of relative density 

indicated that a natural log transformation was required to meet the assumptions of the 

statistical tests. Fixed effects linear models were used with drugs, Nutlin-3 and MI-219 

concentrations, proteins, and time as fixed effects and patient as the random effect. 

Holm’s procedure was used to adjust for multiple comparisons. 

Biostatistical analyses of tumor cell viability from patient samples 

 Samples from each patient were treated with Nutlin-3 or MI-219, at 3 different 
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concentrations (2.5, 5, and 10µM) for up to 72 hours. There were a minimum of 2 and a 

maximum of 6 replications for each patient at each drug, dose, and time point. Cell 

survival ranged from 0% to 100%. The quantile-quantile plot indicated that the observed 

data had a longer right tail than would be expected if the data were normally distributed. 

Nonetheless, a mixed effects analysis of variance was used because the violation was 

not outrageously extreme and because no better alternative could be found given the 

experimental design. In the mixed effects model drug, concentration and time were 

defined as fixed effects; patient and replication were defined as random effects. Holm’s 

procedure was used to adjust for multiple comparisons. 
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CHAPTER III 

BIOLOGICAL EFFECTS OF HDM2 SMIs IN LYMPHOMA CELLS 

Introduction 

Preclinical assessment of disrupting the p53-HDM2 interaction with Nutlin-3, the 

proto-typical HDM2 SMI, has shown promise in a variety of cancer types retaining wt-

p53 with minimal effects in normal cells. HDM2 SMI inhibition would primarily result in a 

p53-dependent response and upregulation of its target genes. Previous studies with 

Nutlin-3 have shown that the anti-tumor response is the result of the upregulation of 

p53-dependent target genes primarily affecting cell cycle arrest and apoptosis (126). 

The precise mechanisms of susceptibility to HDM2 SMI induced cancer cell death are 

not completely understood despite extensive data supporting antitumor activity. 

Although Nutlins demonstrate ideal characteristics of a nongenotoxic, targeted 

therapeutic agent, preliminary data from clinical trials are proving to be less fruitful. 

Thus, research on design of additional SMIs and elucidation of molecular mechanisms 

has continued. SMIs are believed to penetrate hematological cells such as lymphoma 

cells with greater ease than solid tumors. This dissertation seeks to expand upon 

existing observations using the novel spiro-oxindole compounds, MI-319 and MI-219, 

and lymphoma as a disease model. In particular, lymphomas are an ideal tumor type for 

HDM2 inhibition considering the high frequency of wt-p53 and HDM2 overexpression 

found in this disease. Further, p53 signaling and its functional consequences are not 

fully elucidated in the presence of SMIs in lymphoma cells. 

 Studies in this chapter were designed to determine the biological effect of MI-319 

(initially) and MI-219 on lymphoma cells with wt- and mt-p53 status in vitro and isolated 

primary B-lymphocytes ex vivo. These studies also address the involvement of p53-



40 

 

dependent molecular mechanisms upon HDM2 inhibition with HDM2 SMIs. Since 

apoptosis and cell cycle arrest are the predominant biological responses of p53 

activation, it was important to assess well-known key regulators of these processes 

upon treatment with HDM2 SMIs, with emphasis on apoptosis. The initial hypotheses for 

this portion of the study are as follows: 1) HDM2 inhibition in wt-p53 B-lymphoma cells 

will lead to apoptosis and cell-cycle arrest; 2) MI-319 (MI-219) will induce apoptosis in 

fresh wt-p53 lymphoma patient samples ex vivo; 3) MI-319 (MI-219) mediates its key 

cellular effects by activating the p53 pathway. Results of preclinical assessment of 

spiro-oxindoles were compared to Nutlin-3, a cis-imidiazole, as a standard and with the 

rationale that both classes of HDM2 SMI would produce parallel observations. These 

experiments were designed to delineate p53-dependent responses to HDM2 inhibition 

in lymphoma cells with the anticipation of translating HDM2 SMIs to the clinic as a 

potentially new therapeutic intervention strategy. 

Results 

Spiro-oxindole compounds bind to HDM2 protein with high affinity 

MI-319 is a laboratory grade spiro-oxindole HDM2 SMI initially used and the 

backbone of this study. Some of the growth inhibitory data obtained from this portion of 

the study were published in Molecular Cancer in 2009. In this report, the MDM2 

appellation of HDM2 was used. The following was taken from: ‘An MDM2 antagonist 

(MI-319) restores p53 functions and increases the life span of orally treated follicular 

lymphoma bearing animals.’ (Note: this dissertation did not use animals, however, there 

was an approved animal protocol in place for using these HDM2 SMIs under the 

supervision of Dr. Ramzi Mohammad, one of the co-authors on the publication). The 

chemical structure of MI-319 has the same spiro-oxindole structure as MI-219 with the 
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addition of a Fluoride group, which enhances the solubility and may increase the affinity 

of the compound (Figure 3.1A). The fluorescence polarization-based competitive 

binding assay determined that MI-319 binds to recombinant human MDM2 protein with 

a Ki value of 9.6 + 3.9 nmol/L, which is lower than the Ki values of 13.3 + 1.8 nmol/L 

and 36.0 + 9.0 nmol/L determined for MI-219 (Figure 3.1B) and Nutlin-3 (139), 

respectively. Therefore, MI-319 binds to human MDM2 protein with an affinity slightly 

higher than that of MI-219 and Nutlin-3. It appeared that both MI-319 and MI-219 were 

more than 500 times more potent than the p53 peptide in binding to MDM2 (Figure 

3.1B). 

Figure 3.1 Chemical 
structure of MI-319 and 
MI-219 and MDM2 protein 
binding assay. A, 
Chemical structure of MI-
319 and MI-219. B, MI-319 
and MI-219 binding 
affinities (Ki values) as 
determined by a 
competitive fluorescence 
polarization-based binding 
assay using recombinant 
His-tagged MDM2 (amino 
acids 1-118) and PMDM6-
F (5-FAM-βAla-βAla-Phe-

Met-Aib-pTyr-(6-Cl-LTrp)-
Glu-Ac3c-Leu-Asn-NH2), a 
fluorescently labeled high-
affinity p53-based peptide. 
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Detection of p53 mutations in lymphoma cell lines 

Since wt-p53, but not mt-p53, cells are responsive to HDM2 SMIs, assessment of 

the mutational status of TP53 was necessary prior to the preclinical screening of these 

agents. Using the primers listed in Table 2.1, the established lymphoma cell lines WSU-

FSCCL, WSU-DLCL2 and WSU-WM from our lab were first screened for p53 mutations. 

Since WSU-FSCCL was the only wt-p53 cell line, a literature search was performed in 

pursuit of wt-p53 NHL and mt-p53 cell lines not immortalized by viral transduction. 

Toledo and RL were documented to be wt- and mt-p53, respectively; the HL cell lines 

KM-H2, L-540 and L-591 were purchased subsequently. Figure 3.2A shows the 

amplification of the p53 coding sequence run on a 1% agarose gel from four of the 

lymphoma cell lines screened. Primers p53-F1 and p53-R1 produced a PCR product of 

798 bps while product size with primers p53-F2 and p53-R2 was 618 bps; the location 

of each primer is shown in Figure 3.2B. Bands were excised from the gel, purified and 

sequenced in separate reactions using primers p53-F1 and p53-R2. DNA sequencing 

and subsequent BLAST to the p53 coding sequence revealed that four lymphoma cell 

lines contained p53 point mutations: WSU-DLCL2 had an Arginine (R) to Glutamine (Q) 

mutation at codon 248; WSU-WM had an Arginine (R) to Glutamine (Q) mutation at 

codon 213; RL had an Alanine (A) to Proline (P) mutation at codon 138; and Toledo had 

a mutation at codon 72. What appeared to be a mutation at codon 72 for Toledo, Proline 

(P) to Arginine (R), ended up being a single nucleotide polymorphism (SNP). Since 

codon 72 SNPs can vary with the degree of apoptotic induction, as was seen in the 

growth inhibition assay in the following section, we chose to exclude it for the rest of the 

project. Table 3 shows a summary of the lymphoma cell lines and their corresponding 

p53 status.     
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Figure 3.2 Amplification of p53 in four of the lymphoma cell lines used. 
A, The entire coding region of p53 was amplified using two different primer sets. Primer 
set F1-R1 amplified a 798 bp product and set F2-R2 produced a size of 618 bp. B, 
Location of p53 primers on p53 cDNA. 
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Table 3.1. Status of p53 in lymphoma cell lines. 

 

Assessment of the growth inhibitory effect of MI-319 on lymphoma cell lines 

The following was published in: ‘An MDM2 antagonist (MI-319) restores p53 

functions and increases the life span of orally treated follicular lymphoma bearing 

animals.’ Four lymphoma cell lines WSU-FSCCL [representing follicular low grade non-

Hodgkin’s lymphoma type that is wt-p53]; (b) WSU-WM [representing plasmacytoid type 

that is mt-p53]; (c) RL representing diffuse large B-cell lymphoma, mt-p53; (d) WSU-

DLCL2 [representing diffuse, Intermediate grade non-Hodgkin’s lymphoma mt-p53]; 

were used since they represent a wide spectrum of B-cell lineage tumors. MTT assay 

was used to monitor cell growth upon exposure to HDM2 SMIs. MI-319, MI-219, and 

Nutlin-3 inhibited the growth of WSU-FSCCL cells in a dose-dependent manner after 48 

hours where the IC50 of each of the SMIs is estimated to be 2.5 µM. The IC50 cannot be 

determined in each of the three mt-p53 lymphoma cell lines even up to concentrations 

of 20 µM, and demonstrate approximately a 10-fold greater selectivity in wt- over mt-p53 
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cells. Interestingly, each of the mt-p53 cell lines responded somewhat differently to 

HDM2 SMIs where WSU-DLCL2 appeared to exhibit the weakest response (Figure 3.3). 

(Note: I cannot be certain whether or not the WM treated cells display statistical 

significance since this was the one cell line that I did not run a MTT assay on and I do 

not have access to the raw data to perform statistical analyses. This was run by one of 

the co-authors of the manuscript.) 

 
Figure 3.3 Effect of MI-319 on cell viability in vitro. Cells were grown for 48 hours. The 
number of viable cells from established tumor cell lines was determined by MTT assay. 
Statistical analysis was done using the t test (two tailed) with 95% confidence intervals 
between treated and untreated samples. P < 0.05 was used to indicate statistical 
significance. Bars, ± SEM. 

Additionally, Toledo (p53 P72R) was exposed to increasing concentrations of 

Nutlin-3 and MI-319 for 24, 48, and 72 hours. Results were not published in the 

aforementioned manuscript. MTT assay was used to measure the growth inhibitory 
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effect of HDM2 SMIs on this lymphoma cell line. As in the other mt-p53 cell lines, an 

IC50 could not be determined for either Nutlin-3 or MI-319 at doses up to 10 µM, even 

though increasing concentrations showed significance compared to control (Figure 3.4). 

Data are represented as a line graph for each time point (Figure 3.4A) as well as 

graphed in linear scale for both Nutlin-3 and MI-319 (Figure 3.4B). MI-219 was not 

assessed in the Toledo cell line because the decision was made to exclude it before MI-

219 became available. 

 
Figure 3.4 Effect of MI-319 on Toledo cell viability does not show a typical wt-p53 
response.   The number of viable cells from the Toledo cell line was determined by MTT 
assay after exposure to increasing concentration of Nutlin-3 and MI-319 for 24, 48, and 
72 hours. Growth inhibition is expressed as a percentage of the control. Data represent 
mean ± SE of three independent experiments, each run in duplicate. P < 0.05 was used 
to indicate statistical significance which was done using a two-tailed Student t-test 
between treated and untreated sample. A, line graphs B, Linear scale graphs. 
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HDM2 inhibition reduces cell numbers in wt-p53 lymphoma cell lines  

Shortly after initial preclinical screening of MI-319 and publication of the 

manuscript, clinical grade MI-219 became readily available. We inferred that the effects 

seen after treatment with MI-219 would be similar to those seen with MI-319. The rest of 

this dissertation describes the use of MI-219, with the aim of performing a more 

comprehensive analysis to elucidate the consequences of p53 reactivation by HDM2 

SMIs in lymphoma cells. 

 
Figure 3.5 HDM2 inhibitors reduce cell viability of wt-p53 lymphoma cells. Wt-p53 
(WSU-FSCCL; KM-H2) and mt-p53 (WSU-DLCL2; RL) lymphoma cells were treated 
with a range of concentrations of MI-219 (top) or Nutlin-3 (bottom) for 24, 48, and 72 
hours. Cell viability was measured by MTT assay as a percentage of controls. Data 
represent mean ± SE of three independent experiments, each run in duplicate. 

Using the effect of HDM2 SMI on cell count in culture as the endpoint, MI-219 

(Figure 3.5, top) was more effective in reducing cell numbers compared with Nutlin-3 

(Figure 3.5, bottom) in the wt-p53 cell lines, WSU-FSCCL and KM-H2.  Statistical 

analysis was performed for each of the cell lines and at each individual time point but is 

not shown.  An example of statistical significance is shown in Figure 3.6 after a 24 hour 

treatment in WSU-FSCCL (A) and KM-H2 cells (B).  Although the IC50 at 48 h was  
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Figure 3.6 Statistical significance of the ability of HDM2 inhibitors to inhibit wt-p53 
lymphoma cellular growth. The same wt-p53 data as in Figure 3.5 graphed at a single 
time point for WSU-FSCCL A. Data represented as line graphs. B. The same data is 
represented in a linear graph. C. WSU-FSCCL cells were exposed to HDM2 SMIs and 
cell viability was measured by Trypan blue exclusion assay. p < 0.05 was used to 
indicate statistical significance which was done using a two-tailed Student t-test 
between treated and untreated sample. Bars, ± SEM. 

similar for both agents in wt-p53 WSU-FSCCL cells (2.5 and 3 µM, respectively), unlike 

Nutlin-3 MI-219 treatment led to complete cell elimination by 72 hours at the 5 µM and 

10 µM.  The IC50 was significantly different in wt-p53 KM-H2 cells (8 µM for Nutlin-3 vs. 

3 µM for MI-219) suggesting that Hodgkin lymphoma may be less sensitive to this 

treatment modality.  There was no significant effect for either agent, however, in the mt-

p53 cell lines, WSU-DLCL2 and RL, at the concentrations used.  Similar results were 

obtained using Trypan blue dye exclusion assays and representative graphs are shown 
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in Figure 3.6C. Additionally, we were able to conclude that the IC50’s at 48h were 

comparable in each of these two assays to monitor cellular growth inhibition. The 

inactive enantiomer Nutlin-3b did not exhibit comparable reduction in cell growth, even 

at 20 µM, as detected by MTT assay (Figure 3.7). This demonstrates the selectivity of 

active HDM2 SMIs in contrast to the inactive Nutlin-3b. 

 
Figure 3.7 Inactive entantiomer of HDM2 
inhibitor on lymphoma cell viability.  
Treatment with 20 µM of inactive Nutlin-
3b has no growth inhibitory effects, 
demonstrating the selectivity of active 
HDM2 SMIs binding to the p53 binding 
pocket of HDM2.  Bars, ± SEM.  
 

 

 

 

Characteristics of lymphoma patient samples 

To extend the findings in lymphoma cell lines, the effects of HDM2 inhibition in a 

number of lymphoma patient samples ex vivo was studied. Analyzable tumor samples 

obtained from peripheral blood of 13 patients with B-cell lymphoma in leukemic phase 

were enriched for peripheral B lymphocytes and exposed to MI-219 or Nutlin-3. Cells 

were then analyzed for cell viability, p53 status and selected protein expression. Patient 

characteristics are shown in Table 3.2. Eight patients had small lymphocytic lymphoma 

(SLL)/chronic lymphocytic leukemia (CLL), 3 had marginal zone lymphoma (MZL), 1 

had Follicular lymphoma, and 1 had diffuse large B cell lymphoma (DLBCL). Male: 

female ratio was 5: 8; median age was 69 years (range 62-86). Of the 8 SLL/CLL 

patients, 6 had 13q- and the remaining 2 had trisomy 12. All patients, except one 
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(patient #9) exhibited wt- p53. Patient # 9, with 17p- chromosomal abnormality detected 

in 9% of cells also contained a p53 mutation (Lys132Arg). None of the patients were on 

active therapy at the time of study although several patients had been previously 

treated. 

Table 3.2 Comprehensive list of lymphoma patients. 

 
 

Optimization of patient-derived B lymphocytes 

 As a starting point ex vivo, the IC25, IC50 and IC100 of each HDM2 SMI determined 

in the cell lines was used for the first two patient samples; doses were optimized further 

in subsequent samples. Primary lymphoma cells from patient #2, RC102609, show a 

time- and concentration-dependent decrease in cell viability (Figure 3.8A) upon 

exposure to HDM2 SMIs. Annexin V/PI assay was performed on the remaining primary 
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cells from patient #2 to monitor apoptotic cell death and show only a slight increase in 

Annexin V positively stained cells compared to untreated cells after a 24 hour treatment 

with Nutlin-3 and MI-219. This did not correspond to the growth inhibitory data as we 

had expected since there was not a great difference in treated versus untreated cells 

(Figure 3.8B). An unusual number of untreated cells stained positively for Annexin V 

whereas Trypan blue did not show similar results for apoptotic cells (data not shown). 

Drug concentrations were standardized (2.5, 5, and 10 µM) shortly thereafter for the rest 

of the B cells isolated from lymphoma patients.  

Figure 3.8 Optimization of 
HDM2 inhibitors in primary 
lymphoma cells. A, B-
lymphocytes from patient 
RC102609 were treated with 
increasing concentrations of 
Nutlin-3 or MI-219 for 24, 48, 
or 72 hours. Cell counts were 
performed in triplicate and 
cell viability was determined 
by the Trypan blue exclusion 
assay as a percentage of the 
controls. B, Annexin V/PI 
assay was performed on the 
remaining cells to test for 
apoptosis after 24 h of 
treatment. There are no error 
bars or statistical analysis as 
only one independent 
experiment is illustrated. 
Bars, Mean ± SE. 
 
 
 
 
 
 

 The high number of Annexin V positive cells in the control in patient #2, 

RC102609, seemed unusual, so the assay was used once again in B lymphocytes 
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isolated from patient #3, FH032310 after exposure to HDM2 SMIs for 48 hours (Figure 

3.9A). Again, total number of Annexin V positively stained cells was quite high in the 

untreated control and dose-dependent increases in the number of apoptotic cells was 

more difficult to assess. The percentage of early (Figure 3.9D) and late (Figure 3.9C) 

apoptotic cells were graphed separately and indicate that MI-219 treated cells appear to 

have completed or have just about completed apoptosis at this particular time point. 

Only PI-stained cells, indicative of dead cells, were seen after 10 µM MI-219 treatment, 

which may explain the reduction of total cells staining positively for Annexin V at the 

higher concentrations. 

 
Figure 3.9 Annexin V/PI is not an appropriate assay to represent apoptosis after 
exposure of primary lymphoma cells to HDM2 inhibitors. A, B-lymphocytes from patient 
FH032310 were treated with increasing standardized concentrations of Nutlin-3 or MI-
219 for 48 h. B, Total percentage of Annexin V/PI positive cells, including early (D) and 
late apoptotic (C) cells detected in the lower right and upper right quadrants of the flow 
cytometric results. Data are representative of one independent experiment. 
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Figure 3.10 TUNEL/PI 
positive cells after exposure 
of primary lymphoma cells 
to HDM2 SMIs. A, TdT+ B 
lymphocytes from patient 
#3, FH032310 (MZL), were 
treated with increasing 
concentrations of Nutlin-3 
or MI-219 for 48 h. B, Cell 
cycle analysis extrapolated 
from the TUNEL/PI data for 
patient #3, FH032310. C, 
TdT+ B lymphocytes from 
patient #4, CS052010 
(CLL/SLL), were treated 
with increasing 
concentrations of Nutlin-3 
or MI-219 for 24 h. Data are 
representative of one 
independent experiment.  
 

 

 

 

 

 

 

 

 Primary lymphoma cells from patient #3, FH032310 (MZL), show a 

concentration-dependent increase in TdT positive cells (Figure 3.10A) upon exposure to 

HDM2 SMIs for 48 hours. Apoptosis results, in terms of number of cells differ between 

the Annexin V/PI assay and the TUNEL/PI assay.  Primary B lymphoma cells show very 

little differences in cell cycle arrest between cells treated with HDM2 SMIs and control 

(Figure 3.10B), due to the lack of active cell proliferation.  Primary lymphoma cells 
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isolated from patient #4, CS052010 (CLL/SLL), also show a dose-dependent increase in 

TdT positive cells (Figure 3.10A) after treatment with HDM2 SMIs for 24 hours (Figure 

3.10C). TUNEL/PI may be a more appropriate assay to use when assessing apoptosis 

in patient samples.   

FACS analysis in patient-derived B lymphoma cells 

 In a normal human being, B lymphocytes typically comprise up to 25% and T-

cells upwards of 75% of the PBMC cell population. Patient-derived B lymphocytes levels 

may be extremely elevated due to the clonal expansion of B-cells driving the disease. 

Considering the high percentage of T-cells typical in an individual without lymphoma, it 

was postulated that the biological response of primary lymphoma cells may occur from 

T, rather than B lymphocytes. At the very least, residual T cells could affect the results 

or interpretation of the data. To eliminate this possibility, a T-cell depletion step was 

implemented to ascertain that the patient-derived B lymphocyte population is truly as 

enriched as it can be. The enhancement of B lymphocytes from two different patient 

samples was tested by flow cytometry. Patient #6, VF011311 (SLL/CLL), went from 

87.7% CD19+, CD2- B lymphocytes (Figure 3.11A, right) in the non-depleted PBL 

(peripheral blood lymphocyte) cellular fraction to 98.7% after T-cell depletion (Figure 

3.11A, left). Patient #10, HH110111 (SLL/CLL), went from coexpressing CD19+ CD5+ 

(CD5+ is abnormally found on SLL/CLL) on 96.3% of non-depleted PBL cells (Figure 

3.11B, left) to 99.8% CD19+ CD5+ post T-cell depletion (Figure 3.11B, right). The use 

of two different T-cell markers, CD2+ and CD5+, was used to confirm that the depletion 

was not specific to a particular T-cell subset fraction.  
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Figure 3.11 Flow cytometric assessment 
of the purity of patient-derived B 
lymphocytes. A, CD19+ primary B 
lymphoma cells isolated from patient #6, 
VF011311, were enhanced from 87.7% 
to 98.7%. B, Pan CD2+ depletion 
enhanced CD19+CD5+ coexpressing 
cells from 96.3% to 99.8% in patient #10, 
HH110111. 
 

 

 

 

 

 

 

 

 

FACS analysis in B lymphocytes from normal donors 

 Consistent T-cell depletion was achieved in normal donors using the optimized 

protocol described Chapter II (Figure 3.12). The enhancement of B lymphocytes from 

three different normal donors was confirmed by flow cytometric analysis. T cell depletion 

in the donors was detected by overall reductions in T cell subsets CD4 and CD8 (Figure 

3.12, 1st and 3rd columns). In each of these three normal donors, CD19+ B lymphocytes 

were enhanced a minimum of 4 to 6-fold (Figure 3.12, 2nd and 4th columns). 
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Figure 3.12 FACS analysis of B lymphocyte purity after pan CD2+ T cell depletion in 
normal blood donors. CD19+ primary B lymphocytes isolated from donor #1 were 
enhanced more than 4-fold; donors #2 and #3 were enhanced more than 5-fold. 
 

Growth inhibition in primary lymphoma cells 

Enriched primary B lymphocytes were analyzed for cell viability and selected 

protein expression. To show individual responses to HDM2 SMIs, three patient samples 

representing two different types of lymphomas: AN052510 and FH032510 (mantle zone 

lymphomas (MZL)) and VF011211 (small lymphocytic lymphoma/chronic lymphocytic 

leukemia (SLL/CLL)) were used. Treatment of each patient sample with Nutlin-3 or MI-

219 caused a time- and dose-dependent growth inhibition as determined by Trypan blue 

exclusion (Figure 3.13A). Trypan blue was also used to determine the percentage of 
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apoptosis. Apoptosis in patient samples showed time- and dose-dependent increases in 

Trypan blue positively stained cells (Figure 3.13B). MI-219 appeared to have a slightly 

greater potency in the induction of apoptosis in primary lymphoma cells compared to 

Nutlin-3.  

Overall, HDM2 SMIs reduce the cell viability of patient lymphoma cells. 

Cumulative cell viability results from n=11 patients for each drug, concentration, and 

time point is shown in Figure 3.14. Since there were so many variables involved, a 

comprehensive biostatistical analysis was performed by Dr. Judith Abrams on 10 of the 

11 patient samples to determine whether there were differences between Nutlin-3 and 

MI-219 and their effect on cell viability. The mean cell survival along with standard 

errors, for each combination of drug, concentration and time is shown in Figure 3.15 

and Table 3.3 demonstrating that MI-219 is significantly more effective (p<0.001) at 

reducing the cell viability of primary lymphoma cells than Nutlin-3. Of note, the statistics 

performed did not allow the control to fit into each of the combinations (below) resulting 

in percent survival of less than 100%.  

MI-219 versus Control 

The percent survival of patient cells treated with MI-219 is significantly lower at 

each concentration used compared to untreated control (p<0.001 for 2.5, 5 and 10 µM). 

Cell survival averaged 16% lower at 2.5 µM than for control, 32% at 5 µM, and 49% at 

10 µM. 

Nutlin-3 versus Control 

The percent survival of patient cells treated with Nutlin-3 is significantly lower at 

each concentration used compared to untreated control (p<0.001 for 2.5, 5 and 10 µM). 

Cell survival averaged 10% lower at 2.5 µM than for control, 21% at 5 µM, and 36% at 
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10 µM. 

MI-219 versus Nutlin-3: Simple Mode 

In this type of analysis, the main effects are only of drug and concentration. This 

model fits time as a continuous factor and drug and concentration as nominal factors. It 

shows that there is a significant difference between each of the drugs (p<0.001) and 

that the percent survival of patient cells averaged 10% lower with MI-219 than with 

Nutlin-3. During each 24 hour interval, the survival decreases significantly (p<0.001) by 

14%.  

MI-219 versus Nutlin-3: Complex Mode 

In this type of analysis, the main effects are of each drug by concentration tested 

against each of the other drug by concentration. During each 24 hour interval, the 

survival decreases significantly (p<0.001) by 14%, similar to the simple mode. 

Compared to a concentration of MI-219 of 2.5 µM, cell survival at a concentration of 5 

µM averages 16% lower and at a concentration of 10 µM averages 33% (both p<0.001).  

Cell survival at a concentration of 10 µM is significantly lower (p<0.001) than at a 

concentration of 5 µM. Survival with Nutlin-3 averages 12% lower at a concentration of 

5 µM and 26% lower at concentration of 10 µM compared to survival at a concentration 

of 2.5 µM (both p<0.001). The difference in cell survival between concentrations of 5 µM 

and 10 µM is significant (p<0.001). Regardless of concentration, survival is significantly 

lower with MI-219 than with Nutlin-3 (p<0.001 for 2.5, 5 and 10 µM). 
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Figure 3.13 HDM2 inhibition dose-dependently reduced cell viability and increased 
apoptosis in wt-p53 lymphoma patient cells. A, B. B-lymphocytes from patient samples 
AN052510, FH032510, and VF011211 were treated with increasing concentrations of 
Nutlin-3 or MI-219 for 24, 48, or 72 hours. Cell viability and apoptosis was determined 
by the Trypan blue exclusion assay as a percentage of the controls. Cell counts were 
performed at minimum in triplicate. 
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Figure 3.14 Cumulative time- and dose-dependent reduction of cell viability of primary 
B lymphoma cells after HDM2 inhibition. Pooled data from (n=11) patient samples after 
24, 48, and 72 hr treatment (n=37 replicates per time point) with increasing 
concentrations of MI-219 and Nutlin-3. A, Mean (cumulative) of the raw number of 
viable cells. B, Cell viability was measured as a percentage of untreated controls at 
each time point. C, Statistical analysis was performed using two-way ANOVA, followed 
by Bonferroni and the differences were considered significant when p < 0.05. All results 
are expressed as the mean ± S.D.  
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Figure 3.15 HDM2 inhibition reduces cell survival in patient-derived lymphoma cells. 
Box plots show the percent survival found in primary lymphoma cells isolated from 
lymphoma patients (n=11) after increasing concentrations of MI-219 and Nutlin-3 
treatment compared to control at the indicated time point as detected by Trypan blue 
exclusion assay. There were replicates (n=37) for each patient using each drug, dose, 
and time point. Survival is expressed as a percentage of live cells relative to the total 
number of cells detected. The horizontal white line in the box represents the median 
while the upper and lower lines of the box endorse the 25th and 75th interquartile range 
(IQR). The upper- and lower-most lines extend to cover points within 1.5 times the IQR 
and circles outside of the lines indicate outliers. A mixed effects analysis of variance 
was used where drug, concentration and time were defined as fixed effects; patient and 
replication were defined as random effects. Holm’s procedure was used to adjust for 
multiple comparisons. MI-219 is statistically more effective at reducing primary 
lymphoma cell viability than Nutlin-3 (p<0.001).  
 
 
Table 3.3 Biostatistical analyses of lymphoma patient samples. 
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 A dose dependent increase in p53 was seen in patient lymphoma cells after 

HDM2 inhibition. Both Nutlin-3 and MI-219 activated p53 resulting in the upregulation of 

p53, selected p53 target proteins, and apoptosis markers as visualized by Western blot 

(Figure 3.16). Additional proteins were probed for such as Cyclin D1, Rb, and Mdr1 and 

these preliminary results will be discussed and further interpreted in Chapter V. Later 

time points (48 hours) showed decreased expression presumably due to degradation, 

which will be further discussed in Chapter IV (Figure 3.16 A, B). Effects were best 

captured after 24 hour exposure of cells to the agents (Figure 3.16 C-F). Exposure to 

MI-219 treatment resulted in enhanced expression of p53 protein compared to that 

observed with Nutlin-3 at equivalent concentrations in all wt-p53 cells.  

ImageJ was used for densitometry and quantification of patient sample Western 

blot bands. Relative density was selected as the endpoint for biostatistical analyses that 

was performed by Dr. Judith Abrams (Figure 3.17).  It is defined as the ratio of the 

absolute density, a unitless measure, for a given protein treated with a given drug, at a 

given concentration, for a specific time, for a specific patient to the absolute density of 

GAPDH under the same conditions.  Evaluation of the shape of the frequency 

distribution of relative density indicated that a natural log transformation was required to 

meet the assumptions of the statistical tests. When cumulative data for HDM2, p53, and 

p21 were pooled together from the each of the patient samples, the relative density of 

proteins in MI-219-exposed cells was significantly greater than that of Nutlin-3 (p=0.001) 

(Figure 3.17A).  Differences in relative density between each of the proteins HDM2, p21 

and p53 at both time points were statistically significant at p<0.001 with both p21 and 

p53 having lower density than HDM2, and p21 having significantly lower density than 

p53 (Figure 3.17C). For p53 protein expression at 24 hours (Figure 3.17C), relative 
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density of cells treated with MI-219 is marginally higher than that of cells treated with 

Nutlin-3 at a concentration of 2.5 µM (p=0.05), significantly higher at a concentration of 

5 µM (p=0.02) and significantly higher at a concentration of 10 µM (p=0.03). Of special 

interest is the observation that MI-219, but not Nutlin-3 induced both higher and lower 

HDM2 species which were of greater intensity than that observed in wt-p53 cell lines 

(discussed below) at the same time period and equal drug concentration 

 
Figure 3.16 HDM2 antagonists activate the p53 pathway and MI-219, but not Nutlin-3, 
stimulates HDM2 self-ubiquitination and degradation in primary B lymphocytes. Shown 
are Western blots from six out of ten representative patients that had enough cells for 
this type of analysis. B lymphocytes were isolated from whole blood, purified, and 
treated with increasing concentrations of HDM2 SMIs for 24 or 48 hours. Purified B 
lymphocytes isolated from patients #3 (A) and #4 (B) were exposed to HDM2 SMIs for 
48 hours. p53 target proteins showed an unexpected reduction in protein expressive 
levels at this time point. C-F, Treatment for 24 hours (patients #3-13; #5 did not have 
enough cells for protein analysis) was found to be the optimal exposure time to HDM2 
SMIs for patient samples. 
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Figure 3.17 Upregulation of p53 protein predicts efficacy and biological response to MI-
219 in primary lymphoma cells. Box plots show the cumulative biostatistical analyses of 
p53 target protein expression levels to estimate response predictors to HDM2 
antagonists in primary B lymphocytes isolated from lymphoma patients (n=10). Western 
blots for each patient (n=10) for each drug, dose, and time point for each protein 
detected. Quantification of Western blot bands (relative density) was calculated using 
ImageJ and normalized to internal control (GAPDH). A, MI-219 is statistically more 
effective than Nutlin-3 (p=0.001) overall regardless of p53 target protein or time point. B, 
Differences in the upregulation of protein expression as a function of relative density 
between each of the proteins HDM2, p21 and p53 at both time points combined. HDM2 
protein expression is significantly higher than both p21 (p<0.001) and p53 (p<0.001). 
p53 protein expression is significantly higher than p21 (p<0.001). C, For p53 protein 
expression at 24 hours, relative density of cells treated with MI-219 is marginally higher 
than that of cells treated with Nutlin-3 at a concentration of 2.5 µM  (p=0.05), 
significantly higher at a concentration of 5 µM (p=0.02) and significantly higher at a 
concentration of 10 µM (p=0.03). The differences between drugs under all other 
combinations of experimental conditions are not statistically significant (all p>0.50). The 
horizontal white line in the box represents the median while the upper and lower lines of 
the box endorse the 25th and 75th interquartile range (IQR). The upper- and lower-most 
lines extend to cover points within 1.5 times the IQR and circles outside of the lines 
indicate outliers. Fixed effects linear models were used to monitor relative density as an 
endpoint where HDM2 SMIs, concentrations, proteins, and time were defined as fixed 
effects; patient was defined as the random effect. Holm’s procedure was used to adjust 
for multiple comparisons. 
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 Similarly, there was also no significant effect on normal peripheral blood 

lymphocytes (PBL) isolated from healthy donors (Figure 3.18A). Furthermore, Western 

blot analysis showed that HDM2 SMIs have little effect on p53 protein and its targets in 

normal B lymphocytes after 24 hours of treatment (Figure 3.18B). Induction of apoptosis 

was detected only upon exposure to 500 nM of Doxorubicin. The biological responses 

observed post-drug treatment can be attributed to B lymphocytes as flow cytometry 

confirmed the enhancement of the CD19+ B lymphocyte population, minimizing the 

chance of response occurring from the T cells. 

 
Figure 3.18 Lack of effect of HDM2 SMIs on the cell viability of peripheral B 
lymphocytes from normal blood donors. A, Normal B lymphocytes derived from three 
(n=3) different donors were exposed to increasing concentrations of Nutlin-3 or MI-219 
for 24 and 48 hours. Cell viability was measured by Trypan Blue exclusion assay as a 
percentage of controls. Data represent three independent treatments with duplicate 
readings. No detection of significance as determined by unpaired Student t-test. B, 
Primary B lymphocytes from two of the normal donors were exposed to HDM2 SMIs for 
24 hours. Western blot was used to detect p53 target proteins. Bars, Mean ± SE. 
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Evaluation of the induction of p53-dependent apoptosis and cell cycle arrest 

To clarify the mechanisms of growth inhibition upon HDM2 antagonism, a series 

of experiments examining key apoptotic and cell cycle regulators was performed. 

Annexin V/PI and TUNEL/PI staining were used to assess drug-induced apoptosis in 

each cell line. Wt-p53 WSU-FSCCL cells demonstrated a dose-dependent increase in 

Annexin V positively stained cells (Figure 3.19A). Apoptosis primarily occurred after the 

first 24h of treatment, as the percentage of Annexin V positive cells did not drastically 

increase over time. Interestingly, however, the percentage of Annexin V stained cells 

varied dramatically between Nutlin-3 and MI-219 at the same dose, where Nutlin-3 

induced far less apoptosis than MI-219. Wt-p53 KM-H2 cells showed a similar pattern of 

dose-dependent increases in Annexin V positive cells, although to a lesser extent than 

WSU-FSCCL. Mt-p53 WSU-DLCL2 cells did not demonstrate an increase in Annexin V 

positively stained cells at any time point with either Nutlin-3 or MI-219, even at the 

highest concentration (Figure 3.19B). Due to technical difficulties, we were not able to 

analyze Annexin V/PI in RL cells but apoptotic TdT+ cells were detected by the 

TUNEL/PI assay. 

Cell cycle analysis after 24 h treatment demonstrates that Nutlin-3 treatment 

arrests wt-p53 WSU-FSCCL and KM-H2 cells at G0/G1 and G2/M (Figure 3.19C, top). 

There is a greater proportion of G0/G1 cells with MI-219 treatment, but this is likely due 

to apoptotic cells falling off into G0 and indicates that MI-219 induces cell cycle arrest as 

well as apoptosis. Cell cycle arrest is not affected in mt-p53 WSU-DLCL2 or RL cells 

(Figure 3.19C, bottom). Taken together, these results demonstrate that both Nutlin-3 

and MI-219 induce a cell cycle arrest, but Nutlin-3 to a lesser extent than MI-219, and 

the accumulation of G0/G1 arrest is most likely apoptotic cells. TdT+ cells would be the 



67 

 

best way to help distinguish between true cell cycle arrest and accumulation of cells in 

this phase due to apoptosis.  

 
Figure 3.19 Biological response of lymphoma cell lines to HDM2 SMIs.  The percentage 
of Annexin V positive cells is measured upon exposure to HDM2 SMIs after 12, 24, and 
48 hours in wt-p53 (A.) and mt-p53 (B.) lymphoma cell lines. C. Cell-cycle analysis in 
wt- and mt-p53 lymphoma cells after 24 hours of HDM2 inhibition. Results are the mean 
of at least three independent experiments. Statistical analysis for Annexin V/PI was 
performed using two-tailed Student t-test between treated and untreated sample per 
time point and the differences were considered significant when p < 0.05. Bars, SEM.  
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Table 3.4 Cell cycle arrest p values. 

 
 

TUNEL/PI was also used to as another experimental method to confirm the 

Annexin V/PI results after a 24 hour treatment. Weak TdT positive staining was 

detected at all concentrations of Nutlin-3 in wt-p53 WSU-FSCCL cells (Figure 3.20). In 

contrast, dose dependent TdT positive cells were seen upon treatment with MI-219, 

indicative of cells undergoing drug-induced apoptosis, Nutlin-3 to a lesser extent. The 

levels of apoptotic cells appeared to vary between each of the assays although the 

difference between each of the two HDM2 SMIs was still apparent. Mt-p53 WSU-DLCL2 

and RL cells did not display TdT positive staining with either SMI at any concentration. 
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Figure 3.20 Assessment of apoptosis after HDM2 inhibition in lymphoma cell lines. 
HDM2 inhibitors activate the apoptotic pathway in WSU-FSCCL, but not WSU-DLCL2 or 
RL cells. The percentage of TdT+ positive cells is measured upon exposure to HDM2 
SMIs after 24 hours. No statistical significance in mt-p53 lymphoma cell lines WSU-
DLCL2 and RL. Results are the mean of three independent experiments. Bars, SEM. 
 

To clarify the discordance between apoptosis assays, levels of caspase-3 and 

PARP cleavage, indicators of apoptosis, were further tested. Cleavage of caspase-3 

and PARP was detected in a dose-dependent manner at each of the time points in wt-

p53 WSU-FSCCL with evidence of greater induction of apoptosis with MI-219 treatment 

than with Nutlin-3 (Figure 3.21). Moreover, caspase-3 and PARP cleavage corresponds 

with the results obtained from TdT positive staining more than results from Annexin V/PI 

staining. The requirement for functional p53 activity is further confirmed by the lack of 

activity seen in mt-p53 lymphoma cells. Overall, these data indicate that HDM2 

antagonists promote the reactivity of wt-, but not mt-, p53 in lymphoma cells. 

 
Figure 3.21 MI-219 induces greater apoptosis than Nutlin-3 in wt-p53 WSU-FSCCL 
cells. Cleavage of PARP and caspase-3, two indicators of apoptosis, was detected by 
Western blot analysis after 12, 24, and 48 hours of exposure to HDM2 SMIs. GAPDH 
was used as a loading control. 



70 

 

Evaluation of p53 protein and p53 target proteins  

Activation of the p53 pathway results in upregulation of p53-target proteins and 

genes. In order to characterize p53 activation, p53 protein levels and its selected targets 

were analyzed. Wt-p53 WSU-FSCCL and KM-H2 cells (Figure 3.22, top half) showed 

dose-dependent increases in p53 as well as its targets HDM2 and p21 in treated cells 

compared to vehicle control treated cells. Differences in the kinetics of protein 

expression between Nutlin-3 and MI-219 were observed. Effects were evident 12 to 48 

hours after exposure to HDM2 SMIs. Upregulation of protein expression was greatest 

with MI-219 treatment, compared to Nutlin-3 treated cells. Interestingly, HDM2 

expression in WSU-FSCCL at 48 hours appeared to Mt-p53 RL and WSU-DLCL2 cells 

(Figure 3.22, bottom half) showed slightly elevated levels in HDM2 and p53 protein 

levels upon HDM2 inhibition. However, levels of p21 protein were barely detectable 

upon HDM2 inhibition. This suggests that the slight increase is likely p53-independent. 

These data indicate that wt-p53 lymphoma cells, but not mt-p53, are sensitive to HDM2 

SMIs.  
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Figure 3.22 Kinetics of p53 reactivation upregulates p53 and its targets upon HDM2 
inhibition in lymphoma cell lines. Wt- and mt-p53 lymphoma cell lines were treated with 
increasing concentrations of Nutlin-3 or MI-219 for 12, 24, and 48 hours and the levels 
of p53-target proteins were assessed by Western blot analysis. 
 
 
HDM2 inhibition upregulates p53-dependent genes in wt-p53 lymphoma cell lines  

 To investigate the effects of HDM2 inhibition on p53 transcriptional regulation, we 

assessed the effect of SMI-mediated reactivity of p53 to enhance target gene 

expression levels (Figure 3.23). Wt-p53 WSU-FSCCL cells exhibited increases in p53-

target genes HDM2, p21, p53AIP1 and TIGAR (TP53-induced glycolysis and apoptosis 

regulator) upon HDM2 inhibition compared to control cells albeit with variable kinetics 

(Figure 3.23). Overall, MI-219 treatment demonstrated a surprisingly greater induction 

of p53-target genes compared to Nutlin-3. There was much higher and more sustained 
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induction of HDM2 mRNA by MI-219 compared with Nutlin-3. Effect on HDM2 transcript 

peaked at 12 hours but was still remarkable at 24 hour in MI-219-treated cells. Both 

agents induced upregulation of p21 mRNA in WSU-FSCCL cells with overall higher 

induction by Nutlin-3 compared with MI-219. However, MI-219 effect was more evident 

at the earlier time points (12 and 24 hours) and at lower concentrations (2.5 and 5µM) 

compared with Nutlin-3. The later induced a delayed induction (48 hours) of p21mRNA. 

MI-219 was more effective than Nutlin-3 in inducing p53AIP1 mRNA. Induction of 

TIGAR was relatively unaffected by MI-219, except transiently by high concentration 

(10µM) at 12 hour, whereas Nutlin-3 induced delayed (48 hour) but significant increase 

in TIGAR Taken together, these findings indicate MI-219 is more effective in inducing 

apoptosis than Nutlin-3 and Nutlin-3 treated cells may cause cells to go into senescence 

with the upregulation of TIGAR. There were no significant changes induced by either 

agent on any of the genes tested in the mt-p53 RL cells. The data are comparable with 

the upregulation in p53-dependent target protein levels in Figure 3.22, with the 

exception of p21, which may be degraded by HDM2, but was not tested in this study. 
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Figure 3.23 Effect of HDM2 inhibition on p53-dependent gene expression. mRNA 
expression levels upon exposure to HDM2 SMIs in WSU-FSCCL and RL cells for the 
times indicated. Baseline gene expression and that after treatment were quantified by 
qRT-PCR relative to GAPDH using the Ct method and expressed as fold induction of 
gene expression relative to that in the untreated control. Error bars plotted represent 
mean values ± SE performed in triplicate from two independently treated experiments. 
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HDM2 inhibition enhances p53 stability at the posttranslational level 

 HDM2 inhibition is hypothesized to increase p53 stability by reducing HDM2-

mediated degradation. However, p53 stability could also be the result of enhanced p53 

protein translation. To demonstrate that upregulation of p53 protein expression shown in 

the Western blots were the result of HDM2 inhibition by SMIs, the half-life of p53 was 

monitored. The inhibition of protein synthesis by treatment with 50 µM cycloheximide 

alone led to a marked decrease of p53 protein expression over time (Figure 3.24A). 

Furthermore, addition of 10 µM of the proteasome inhibitor MG132 alone (Figure 3.24B) 

ameliorates the degradation of p53, thereby enhancing its stabilization. Whether p53 

stability is related to HDM2 inhibition was evaluated by pre-incubation of 10 µM Nutlin-3 

or MI-219 for 24 hours in wt-p53 WSU-FSCCL cells followed by treatment with 50 µM 

CHX at the indicated time points. Blocking protein synthesis while concurrently treating 

with HDM2 SMI led to an overall increase in p53 protein expression (Figure 3.24C, D). 

Intriguingly, MI-219 treatment was more effective in enhancing p53 stability than that of 

Nutlin-3. Furthermore, these results indicate that the increase of p53 protein is not due 

to an upregulation of p53 mRNA (Figure 3.24E) at earlier time points. Although we did 

not test for a drug washout, it appears that the HDM2 SMIs, particularly MI-219, may be 

bound to HDM2 for somewhere between 24-48 hours. p53 mRNA after 48h of treatment 

appears to begin transcription of itself suggesting that the HDM2-p53 feedback loop has 

normalized.   
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Figure 3.24 MI-219 enhances the stability of p53 to a greater extent than Nutlin-3. A, B. 
Treatment of wt-p53 WSU-FSCCL cells with 50 µM cycloheximide decreases the half-
life of endogenous p53 over time. Similarly, blocking the proteasome by treatment with 
10 µM MG132 increased p53 protein stability. Relative density of each band was 
measured and normalized to GAPDH. C, D. WSU-FSCCL cells were treated with 10 µM 
of Nutlin-3 or MI-219 for 24 hours prior to the addition of 50 µM cycloheximide for the 
indicated time points. p53 protein levels were detected by Western blot. E, p53 protein 
stability is not a result of mRNA translation into protein at early time points. 

 Next, we studied the direct effect of HDM2 inhibition on the disruption of the 

endogenous HDM2-p53 interaction in WSU-FSCCL cells, since this may be important to 

our understanding of the biological outcome.  In WSU-FSCCL cells treated for 4 h, the 

amount of HDM2 associated with p53 is reduced with increasing drug concentration. 

However, it is interesting to note that MI-219 appeared to prevent the association of 

HDM2-p53 greater than Nutlin-3. 10 µM MG132 was used as a positive control, as it 

does not prevent dissociation, and normal mouse IgG used as a negative control. 

Furthermore, whole cell lysate (WCL) input indicates that the presence of p53 is 
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Figure 3.25 HDM2 inhibition results in disruption of the HDM2-p53 protein-protein 
interaction. A, B WSU-FSCCL and KM-H2 cells were treated for 4 hours with increasing 
concentrations of Nutlin-3 or MI-219. Addition of 10 µM MG132 to cells was used as a 
positive control. Cell lysates were immunoprecipitated with anti-p53 (DO-1 for WSU-
FSCCL), anti-p53 (pAb421 for KM-H2), or normal mouse serum (IgG). The 
immunoprecipitates were analyzed by immunoblotting against antibodies to HDM2 
(AF1244). 10% of WSU-FSCCL total cell lysate was used for input. C, D WSU-FSCCL 
cells were treated for 12 hours with increasing concentrations of Nutlin-3 and MI-219. 
The blots were probed for the protein that was immunoprecipitated.  

detectable in the control. Increasing levels of both HDM2 and p53 are seen, indicative of 

enhanced p53 stabilization in the presence of HDM2 SMI. The WSU-FSCCL co-IP 

caused a few issues because of the antibody used. p53 DO-1 binds to the N-terminus 

where HDM2 also binds and making it difficult to pulldown endogenous p53, let alone 

bound to HDM2 as shown in Figure 3.25C. The KM-H2 co-IP uses a different p53 

antibody that recognizes the C-terminus of p53 and this blot demonstrates clearly that 

p53 and HDM2 are physically interacting in control and MG132 treated cells as 

indicated by the proteins located at the molecular weights of HDM2 and p53, but are 

absent in the Nutlin-3 and MI-219 treated cells (Figure 3.25B). 
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HDM2 SMIs demonstrate differential effects on wt-p53 lymphoma cells  

A comprehensive profile of the kinetics of wt-p53 lymphoma cells over the course 

of 72 h treatment with HDM2 SMIs shows that both agents arrest wt-p53 WSU-FSCCL 

and KM-H2 cells at G0/G1 in a time- and dose-dependent manner (Figure 3.26). 

However, KM-H2 appears to arrest some cells in G2/M as well, albeit to a lesser extent. 

 
Figure 3.26 HDM2 inhibition causes cell cycle arrest in wt-p53 lymphoma cell lines.  
WSU-FSCCL and KM-H2 demonstrate time- and dose-dependent cell cycle arrest in 
G0/G1, and to a lesser extent, in G2/M. Error bars represent SEM of three independent 
experiments. 
 

Considering the growth of both wt-p53 cell lines was inhibited and showed cell 

cycle arrest, it was surprising to detect apoptosis in WSU-FSCCL, but not in KM-H2. 

Particularly when the Annexin V/PI data indicate increases in Annexin V+ cells in a time- 

and dose-dependent manner (Figure 3.27A). When the TUNEL/PI assay was 

implemented, KM-H2 cells did not demonstrate time- or dose-dependent increases in 

TdT+ cells (Figure 3.27B), suggesting a lack of apoptosis. p53-dependent target genes 

were assessed after exposure to 10 µM MI-219 and Nutlin-3 for 12, 24, and 48 hours 
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(Figure 3.27C). Interestingly, the kinetics of upregulation varied between WSU-FSCCL 

and KM-H2, but more importantly, HDM2 SMIs did not upregulate p53AIP1 mRNA, also 

indicating that KM-H2 cells were not undergoing cell death upon treatment.   

 
Figure 3.27 HDM2 inhibition induces apoptosis in WSU-FSCCL, but not KM-H2 
lymphoma cells. A., B. The percentage of Annexin V and TdT positive cells is measured 
upon exposure to MDM2 SMIs over time. Results are the mean of at least two 
independent experiments. Bars, SEM. C. mRNA expression levels in response to HDM2 
SMIs in WSU-FSCCL and KM-H2 cells for the times indicated. Baseline gene 
expression and that after treatment were quantified by qRT-PCR relative to GAPDH 
using the Ct method and expressed as fold induction of gene expression relative to 
that in the untreated control. Error bars plotted represent mean values ± SE performed 
in triplicate from two independently treated experiments.  
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When KM-H2 cells were immunoblot for apoptosis proteins, there was no PARP, 

caspase-3, or even caspase-9 cleavage after 24 hours of exposure to HDM2 SMIs 

compared to WSU-FSCCL wt-p53 lymphoma cells (Fgure 3.28A, B). Tetrachrome 

staining of KM-H2 cells after 48 hours after treatment with 10 µM Nutlin-3 and MI-219 

showed indicators of apoptosis such as membrane blebbing, but no chromatin 

fragmentation or breakdown of nuclear membrane (Figure 3.28C). Visually, KM-H2 cells 

are not apoptotic and the membrane blebbing indicates that the Annexin V/PI assay 

detected false positive apoptotic cells and that Annexin V bound to phosphatidylserine 

of the membrane simply because the membrane was compromised. 

 

 
Figure 3.28 KM-H2 does not undergo apoptosis upon exposure to HDM2 SMIs. A., B. 
Cleavage of PARP, caspase-3, and caspase-9, three indicators of apoptosis, were 
evaluated by Western blot analysis after 24 hours of exposure to HDM2 SMIs. GAPDH 
was used as a loading control. C, Tetrachrome staining of KM-H2 cells as visualized by 
light microscopy after a 48 hour treatment. 
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It is not clear from these data whether lack of apoptosis in KM-H2 is cell line 

specific or applicable to all Hodgkin lymphomas. The discrepancy that was noted 

between the wt-p53 lymphoma cell lines prompted screening of Nutlin-3 and MI-219 in 

additional HL cell lines, L-540 and L-591. Such analyses would allow for distinguishing 

whether or not our observations is specific to the KM-H2 cell line or whether this is 

disease specific.  

HDM2 SMIs reduce the growth of wt-p53 HL cell lines, albeit at higher concentrations  

HL cell lines L-540 and L-591 (both wt-p53) were exposed to increasing 

concentrations of Nutlin-3 and MI-319 for 24, 48, and 72 hours as previously discussed. 

Trypan blue exclusion assay was used to measure the growth inhibitory effect of HDM2 

SMIs. Similar to the other wt-p53 cell lines, L-540 and L-591 were responsive to HDM2 

inhibition and IC50 for Nutlin-3 and MI-219. However, whereas each HDM2 inhibitor 

showed different IC50’s in KM-H2, they show similar IC50’s in L-540 and L-591 after 48 

hours (Figure 3.29, middle pannels). Data are represented as a line graph for each time 

point (Figure 3.4A) as well as graphed in linear scale for both Nutlin-3 and MI-319 

(Figure 3.4B). The IC50’s in each of the three wt-p53 HL cell lines is much higher than 

the IC50 in WSU-FSCCL, suggesting that HL cells may be inherently more resistant to 

HDM2 inhibition than NHL cells. 

The biological effects of HL cells were investigated upon exposure to HDM2 

SMIs. Similar to WSU-FSCCL wt-p53 cells, both L-540 and L-591 showed increases in 

Annexin V+ and TdT+ cells upon exposure to MI-219 (Figure 3.30). Nutlin-3 also 

showed dose-dependent increases in apoptotic cells, except it was much less 

compared to MI-219.  

To ensure that HL cells, particularly KM-H2, were capable of undergoing 
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conventional apoptosis, they were exposed to proteasome inhibitor and doxorubicin, a 

DNA-damaging agent along with HDM2 SMIs and probed for apoptosis markers. MI-219 

showed higher molecular weight forms of HDM2 similar to that seen in WSU-FSCCL 

and in patient samples. Also, HL cell lines appeared to be more resistant to HDM2 

inhibition compared to wt-p53 cell line WSU-FSCCL. KM-H2 was able to undergo 

conventional apoptosis with exposure to doxorubicin and MG132, as detected by PARP 

cleavage (Figure 3.31). 

 
Figure 3.29 HDM2 SMIs reduce cell growth of wt-p53 HL cells. Wt-p53 (L-540, top; L-
591, bottom) HL cells were treated with a range of concentrations of MI-219 and Nutlin-
3 for 24, 48, and 72 hours. Cell viability was measured by Trypan blue exclusion assay 
as a percentage of controls. Data represent three independent experiments, with 
quadruplicate readings. Bars, ± SEM. 
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Figure 3.30 Biological effects of HL cell lines to HDM2 SMIs after a 24 hour treatment.  
The percentage of Annexin V positive cells is measured upon exposure to HDM2 SMIs 
after 12, 24, and 48 hours in wt-p53 (A.) and mt-p53 (B.) lymphoma cell lines. C. Cell-
cycle analysis in wt- and mt-p53 lymphoma cells after 24 hours of HDM2 inhibition. 
Results are the mean of at least three independent experiments. Statistical analysis for 
Annexin V/PI was performed using two-tailed Student t-test between treated and 
untreated sample per time point and the differences were considered significant 
when p < 0.05. Bars, SEM.  
 
 
 
 
 

 
Figure 3.31 HDM2 antagonism in HL cell lines reactivates wt-p53, but are resistant to 
p53-induced apoptosis. p53, p53-dependent targets, and apoptosis mediators were 
detected by Western blot analysis after 24 hours of exposure to HDM2 SMIs in wt-p53 
KM-H2 (A), L-591 (B), and L-540 (C) HL cells. GAPDH was used as a loading control. 
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Summary 

 The following data in Chapter III demonstrates that exposure of lymphoma cells 

to HDM2 SMIs results in the restoration of wt-p53 tumor suppressor activity by 

disrupting the HDM2-p53 interaction. By means of an in vitro and ex vivo approach, 

HDM2 inhibition was shown to reduce cell growth and result primarily in biological 

responses of cell cycle arrest and apoptosis. Both agents disrupted the HDM2-p53 

protein-protein interaction and stabilized p53 protein by minimizing HDM2-mediated 

degradation. Furthermore, the data unexpectedly reveals that MI-219 elicits a 

statistically significant difference in potency compared to the well-studied Nutlin-3.  The 

results from the primary lymphoma cells are consistent with the results from the wt-p53 

lymphoma cell lines. This suggests that Nutlin-3 primarily induces a cell cycle arrest, 

whereas MI-219 induces apoptosis, as the primary growth inhibitory effect in lymphoma 

cells. The surprising existence of significant quantitative and qualitative differences 

between effects of two different classes of HDM2 SMIs: Nutlin-3 and MI-219 indicates 

that the p53-HDM2 interaction and methods of its disruption are more complex than is 

currently realized.  

 HDM2 antagonism produces distinct biological responses in wt-p53 lymphoma 

cells, adding to the complexity of the expected outcome from a wt-p53 response. 

Although HDM2 SMIs demonstrate activity in wt-p53 Hodgkin lymphoma (HL) cells, p53 

activation alone does not appear to be sufficient for the induction of apoptosis. These 

results demonstrate that HL cells may be inherently more resistant to apoptosis 

compared to NHL cells. Differences in sensitivity between HL and NHL are not currently 

known. The data prompts speculation that the mechanisms underlying drug-induced 

apoptosis involve additional molecular determinants which need to be further studied. 
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More in-depth understanding of the consequences of HDM2-p53 disruption by SMIs will 

aid in maximizing their therapeutic exploitation.    
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CHAPTER IV 

NOVEL MECHANISM OF ACTION FOR MI-219 

Introduction 

Ubiquitination is one process that can impact the functional activity of wt-p53 

once it is released from HDM2, and the blocking of the p53-HDM2 interaction is thought 

to be the mechanism of action of Nutlin-3. Although HDM2 inhibition demonstrates 

efficacy in tumor cells in a p53-dependent manner, the regulatory mechanisms 

mediating this effect are still relatively uncertain. The mechanism of action of Nutlins is 

thought to block the p53-HDM2 interaction but may not interfere with other functions of 

HDM2, such as its ubiquitin ligase activity (140). Studies using HDM2 SMIs have 

generated sufficient data to demonstrate that these inhibitors can effectively be used to 

elicit antitumor response. However, the precise mechanisms of susceptibility to HDM2 

SMI induced cancer cell death are not completely understood. The extent that HDM2 

SMIs influence p53-independent functions of HDM2 remains to be determined.  

 For example, it was initially thought that HDM2 inhibition completely abrogated all 

functionality of the protein after release of p53.  Studies using Nutlins show that HDM2 

is capable of retaining its p53-independent functions, even when p53-dependent activity 

is the primary effect seen.  Of importance is the E3 ubiquitin ligase activity of HDM2.  

The regulation of HDM2 auto-ubiquitination and ubiquitination of p53 in the presence of 

an HDM2 inhibitor to the p53 binding domain are currently unknown.  The precise 

mechanisms regulating the balance of ubiquitination and de-ubiquitination on protein-

protein interactions such as p53 and HDM2 are not entirely well-defined.  Elucidating 

some of these mechanisms can enhance our understanding of the therapeutic potential 

and limitations HDM2 inhibitors in B-cell lymphoma. Results from this chapter were in 
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part to investigate additional molecular effects of MI-319 (MI-219) on HDM2 upon 

physical disruption of HDM2-p53. In addition, they aid in the development of a 

retrospective hypothesis when parts of data from Chapter 3 were re-analyzed. 

Results 

The functionality of HDM2 E3 ubiquitin ligase activity in the presence of HDM2 SMIs 

One of the pitfalls to HDM2 SMIs is the upregulation of HDM2 since it is a direct 

target of p53 due to the negative feedback loop. Our data shows a tremendous amount 

of HDM2 mRNA being produced, especially in the presence of MI-219 (Figure 3.23). 

One of the caveats to using HDM2 SMIs is that the high HDM2 levels can negate 

effects of newly released p53. This can happen in one of two ways: if HDM2 SMIs 

hinder the E3 ligase activity of HDM2, the protein product remains high and stabilized. 

On the other hand, if HDM2 retains its HDM2 E3 ligase activity, degradation of itself is 

possible, although it may also be possible that HDM2 still ubiquitinates p53 (or 

additional proteins) even in the presence of HDM2 SMIs, reducing the stability of 

reactivated p53.  

To determine if HDM2 retains its autoubiquitination in the presence of HDM2 

SMIs, a cell free autoubiquitination assay was performed using recombinant proteins.   

Neither class of agents inhibits the E3 ligase function of HDM2 (Figure 4.1A). 

Autoubiquitination of recombinant His-tagged HDM2 was not inhibited by the addition of 

Nutlin-3, MI-319 or MI-219 at IC50 or even much higher (50 µM) concentrations after 1.5 

hours incubation and subsequent separation onto a 4-20% SDS-PAGE gel. Disulfiram, 

on the other hand, completely abrogated autoubiquitination at 10 µM, and was included 

as a control.  

The importance of this assay was not realized right away. It was not until some 



87 

 

unusual observations were re-analyzed and interpreted that allowed for the 

development of a retrospective hypothesis: that HDM2 inhibition by MI-219 alters the 

functional activity of HDM2 and that it may correspond to biological activity. A key piece 

of data that aided in such interpretation is shown in Figure 4.2. D24 treatment at 10 µM 

showed autoubiquitination and degradation of recombinant HDM2 when immunoblot 

with His-tagged antibody. The 60 kDa degratory fragment of HDM2 is clearly shown on 

the blot. Since this was a cell free autoubiquitination assay, there were no indicators 

that additional proteins could have enhanced HDM2 autoubiquitination and degradation. 

Results supporting this hypothesis may help to explain the unexpected differences that 

were noted in between each class of HDM2 SMI in Chapter 3.  

Figure 4.1 HDM2 SMIs do not inhibit E3 
ligase function of HDM2. Recombinant 
His-tagged HDM2 was used in a cell free 
autoubiquitination reaction. IC50 or 50 µM 
of Nutlin-3, MI-219, or another spiro-
oxindole compound, MI-319 was added to 
the reaction for 1.5 hours. Lack of E2 
enzyme, ubiquitin alone, disulfiram (DSF), 
and DMSO vehicle were all included as 
controls. Immunoblot using anti-ubiquitin 
antibody was used to assess HDM2 
autoubiquitination. 
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Figure 4.2 A higher concentration of 
zinc ejector D24 induces 
autoubiquitination and degradation 
HDM2. His-tagged HDM2 was 
incubated in the presence or 
absence of increasing 
concentrations of zinc ejectors for 
1.5 h in a cell free autoubiquitination 
assay. Immunoblot was probed for 
using anti-His tag antibody and 
clearly detects the 60 kDa degratory 
fragment of HDM2. Removal of zinc 
from E3 ligases is supposed to 
render them nonfunctional.  

 

Based on this finding we hypothesized that these agents should induce HDM2 

ubiquitination and degradation in cell based assays. We, therefore, re-examined the 

effects of HDM2 SMIs on HDM2 protein expression in the WSU-FSCCL cells.  Initial 

experiments used 14% SDS-PAGE gels to separate whole cell lysates which are not 

optimal for detecting posttranslationally modified proteins which prompted us to switch 

to the 4-20% SDS-PAGE gels for further examination and confirmation of HDM2 

modification upon HDM2 inhibition.  Both full length and smaller size bands consistent 

with degraded HDM2 were evident in MI-219-treated cells as early as 12 hours and 

peaked at 24 hours (Figure 4.3A, B). Higher exposure also detected larger size band 

consistent with autoubiquitinated HDM2 which occurred at the early time point (12 

hours). HDM2 expression pattern in Nutlin-3-treated cells was similar to control with the 

exception of a faint degraded band detected at 48 hours in the highest concentration 

(10 µM). Similar effects were also observed in the wt-p53 KM-H2 and the L-591 

Hodgkin lymphoma cell lines (Figure 4.3B, C). Interestingly, the higher molecular weight 

species appeared to correspond to biological activity, as increased apoptotic cells were 

apparent in the MI-219, but not the Nutlin-3, treated HL cells for 24 hours (Figure 4.3C). 
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Figure 4.3 HDM2 autoubiquitination and degradation is detected in whole cell lysates 
from treated wt-p53 WSU-FSCCL (A) and KM-H2 cells (B). Autoubiquitination appears 
to occur at earlier time points, which then degrades full-length HDM2. C, HL cell line L-
591 also demonstrates higher molecular weight bands indicative of HDM2 
autoubiquitination after a 24 hour exposure to HDM2 SMIs. This also appears to 
correspond with increased apoptotic cells at the same time point. 
 
 

To confirm the nature of the smaller molecular weight bands, we conducted an 

immunoprecipitation (IP) experiment using WSU-FSCCL. After exposure to MI-219 or 

Nutlin-3 for 12 hours, HDM2 protein was immunoprecipitated using 1:1 ratio of SMP-14: 

D-12 antibodies (the former is known to detect degraded HDM2). Immunoblotting (IB) 

with HDM2 polyclonal antibody (AF1244) revealed the full length HDM2 in addition to 
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higher molecular weight species (likely autoubiquitinated HDM2) and ~60kDa band, the 

major degraded species of HDM2 (Figure 4.4A). The intensity of this band was 

concentration-dependent in MI-219-treated cells but was not seen in Nutlin-3-treated 

cells. These findings suggest that MI-219 but not Nutlin-3 posttranslationally regulates 

HDM2 protein by inducing autoubiquitination and degradation of itself as a way of 

compensating for the high levels of HDM2 mRNA produced.    

 
Figure 4.4 MI-219 enhances endogenous HDM2 self-ubiquitination and degradation. A, 
WSU-FSCCL cells were treated with increasing concentration of HDM2 SMIs for 12h. 
Cells were collected and subject to immunoprecipitation with a 1:1 ratio of mouse 
monoclonal HDM2 antibodies (SMP-14: D-12) and blot using rabbit polyclonal HDM2 
antibody AF1244. SMP-14 is known to detect the 60 kDa degraded fragment of HDM2. 
B, WSU-FSCCL cells were treated with increasing concentration of HDM2 SMIs for 16h. 
Prior to cell collection, cells were exposed to 10 µM of MG132 for 15 minutes to 
preserve ubiquitinated proteins and were subject to immunoprecipitation as in B, but 
blot with anti-ubiquitin monoclonal antibody.  
 

Summary 

 The results from Chapter 4 strongly imply that MI-219, but not Nutlin-3, regulates 

HDM2 destruction via autoubiquitination. Later time points (48 h) results in a reduction 

of HDM2 protein, suggesting that enhancement of HDM2 E3 ligase activity occurs at 

earlier time points to reduce the high levels of mRNA and protein produced from the 
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p53-HDM2 autoregulatory loop. Therefore, p53 may be contributing to regulate its own 

activity since this was not seen in mt-p53 lymphoma cells. Furthermore, it may also 

correspond with biological activity since there appeared to be an association between 

HDM2 destabilization and p53-dependent apoptotic response. The results show that 

HDM2 retains its E3 ligase activity in the presence of Nutlin-3 and both MI compounds. 

Various higher and lower molecular weight species were detected endogenously in 

various lymphoma cell lines and primary lymphoma patient samples when treated with 

increasing concentrations of MI-219, but not Nutlin-3.  This supports our proposed 

mechanism of action for MI-219 that posttranslationally regulates or modifies HDM2 by 

autoubiquitination and degrades itself as a way of compensating for the high levels of 

HDM2 produced. 
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CHAPTER V 

CONCLUSIONS, SIGNIFICANCE AND FUTURE DIRECTIONS 

 Although the vast majority of lymphomas have high rates of remission induction 

and survival with the current chemotherapy regimens, many patients still do not respond 

well to therapy. Failure to respond to initial treatment or relapse following a brief 

remission is typically the case.  A majority of lymphomas retain wt-p53 status and have 

developed mechanisms to compromise p53 signaling, such as HDM2 overexpression, 

deletions in p14ARF, and viral oncogenes (141-143). It is clear that HDM2 plays an 

important role in lymphoma tumorigenesis. HDM2 inhibitors R7112 (Nutlin-3 analog) 

and JNJ-26854165 (a tryptamine derivative) are currently under clinical evaluation in 

Phase I studies (NCT00623870, NCT00559533, NCT00676910) and the first results 

have recently been published (129, 144). We previously investigated MI-319 in FL 

(137), and have gained access to MI-219, the clinical grade spiro-oxindole and selective 

activator of the p53 pathway in tumor cells, not in normal cells (139). Therefore, we 

further examined the effects of targeting HDM2 in lymphoma cells in order to 

understand the molecular mechanisms required to translate lab findings into clinically 

relevant outcomes. 

Limitations of primary lymphoma cells 

 Results produced from the cell lines were expected to be similar to those 

obtained in the patient samples. Unfortunately this may not have entirely been the case 

due to heterogeneity of the primary cell population. Although the protocol that was 

performed for the majority of the lymphoma patient samples was optimized immensely 

to enhance a purified B lymphocyte cell population, we cannot rule out potential 

carryover of other cell types that may not have been excluded entirely in the process. 
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However, we are confident that the biological responses observed post drug treatment 

are predominantly due to B lymphocytes as flow cytometry confirmed the enhancement 

of the CD19+ B lymphocyte population (Figure 3.7). 

 Whereas cell lines are relatively homogenous cell populations and have distinct 

growth rates, primary derived B lymphocytes do not actively grow once they are 

resuspended in media. Therefore, isolation, purification and drug treatment must be 

performed right away otherwise cells will die off naturally, making it difficult to collect 

enough cells for experimental analyses such as immunoblotting. A major limitation when 

using patient derived B lymphocytes is the number of cells obtained. First, they do not 

actively grow in RPMI media. The cells remain dormant or die off. Second, blood draws 

vary in white blood cell count numbers from patient to patient and also depends on the 

diagnosis and extent of disease. Third, cells are lost during the isolation and purification 

process from multiple washes and from the monocyte and CD2+ T cell depletion steps. 

Approximately 20-30 million B lymphocytes are lost from the initial extraction of PBMCs 

to the resuspension of the final pellet of purified B cells. Yet another limiting factor is the 

duplicity of experimental procedures. More often than not, there is only one opportunity 

to process, set up, and analyze primary lymphoma patient samples. Therefore, it is of 

utmost importance to use extra caution at each and every step up to and including data 

analyses in order to make the most of the data obtained. There may be no chance to 

redo an experiment if something goes awry due to that particular patient undergoing 

chemotherapy, regression of disease with a possible reduction in that individual 

patient’s cell counts the subsequent doctor visit, and progression may lead to a change 

from the initial diagnosis (FL transforming into DLBCL).  

 The number of Annexin V positive cells in the untreated control was surprisingly 
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high. Also, retrospectively looking back at this data, if one were to use flow cytometry to 

monitor apoptosis for future patient samples, the TUNEL/PI kit may be the more suitable 

choice, since both PI and FITC-labeled TdT enzyme must enter the nucleus after 

fixation and do not rely on the integrity of the plasma membrane. Primary B 

lymphocytes are much smaller and less robust than that of their cell line counterparts. 

Consequently, this renders the plasma membrane much more susceptible to Annexin V 

binding. Additionally, non-specific Annexin V binding causing issues (i.e. 

megakaryocytes, platelets, some myeloid lineage cells) as well as Annexin V binding 

buffers being proapoptotic (Ca2++) which sensitizes the delicate B lymphocytes and 

may create false positives by exposing phosphatidylserine (145). PI can create false 

positive by binding to cytosolic RNA, but these effects were minimized by treating each 

sample with 1ug/ul of RNase prior to the addition of PI. 

 The molecular events upon HDM2 antagonism elicit stress responses through 

nongenotoxic activation of p53. A number of lymphoma cell lines were used along with 

a panel of primary B-cell lymphoma patient samples. The results indicate that HDM2 

inhibition restored functional activity to wt-p53, but not mt-p53 lymphoma cells. We 

performed a time-course analysis to achieve a better understanding of the 

consequences of HDM2 inhibition on lymphoma cells. We showed that HDM2 SMIs 

demonstrate growth inhibitory effects in a time- and dose-dependent manner with 

increased sensitivity in wt-p53 lymphoma cells. Furthermore, molecular changes were 

induced in the p53 pathway resulting in cell cycle arrest and apoptosis as the primary 

consequences of growth inhibition.  

 The p53 regulated target genes p21, HDM2 and p53AIP1 were activated 

following treatment in wt-p53 WSU-FSCCL cells, although the degree of activation 
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varied depending on time point, dose, and HDM2 SMI selected for treatment. Mt-p53 RL 

did not show significant activation of p53-target genes, confirming that HDM2 SMIs 

primarily require wt-p53 in order to mediate its antitumor response (146). We noted that 

the degree of induction of p53 and its transcriptional targets following treatment 

corresponded to a concurrent upregulation in p53-target protein expression. One 

perplexing finding was that of the significantly high levels of HDM2 mRNA associated 

with upregulated HDM2 protein that was induced upon MI-219, but far less with Nutlin-3, 

treatment (Figures 3.22 and 3.23). This was surprising to us since restoration of the 

p53-HDM2 autoregulatory loop is known to decrease p53 protein levels and activity 

(76). How then, does p53 remain activated in the presence of such high levels of 

HDM2? HDM2 destabilization has previously been reported to correlate with p53 

transcriptional activity and has been suggested to play an important role in determining 

p53 response (96, 97). Additionally, we observed that HDM2 inhibitors do not inhibit the 

ubiquitin E3 ligase activity of HDM2 (Figure 4.1). Interference with HDM2 self-

degradation could negate effects seen from p53 reactivation and potentially be 

detrimental for the advancement of HDM2 SMIs into the clinic. Therefore, we postulate 

that HDM2 may undergo rapid turnover due to forced autoubiquitination and 

degradation in the presence of MI-219. Further studies are necessary to determine is 

this is important in shaping p53 responses to HDM2 SMIs. 

 The results suggest that the molecular mechanism of p53 reactivation involves 

disruption of the HDM2-p53 interaction which occurs posttranslationally. Treatment of 

lymphoma cells with HDM2 SMIs caused p53 stabilization due to increased half-life and 

decreased proteasomal degradation by HDM2. Therefore, accumulation of p53 protein 

levels is due to release of p53 from HDM2 and not because of de novo protein 
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synthesis or due to a reduction in proteasome activity. The results indicate that the 

transcriptional activity could be attributed to HDM2-p53 disruption by HDM2 SMIs. 

Here, we provide experimental evidence that MI-219 effectively reactivates functional 

activity of wt-p53 in lymphoma cells by inducing apoptosis as the primary growth 

inhibitory effect. The marked difference in biological response is more pronounced when 

exposed to MI-219 than Nutlin-3. This was unexpected considering the low frequency of 

p53 mutations and the amount of previous studies reporting on the relative sensitivity of 

hematological malignancies to Nutlin-3 induced cell death. Instead, Nutlin-3 seemed to 

elicit a strong cell cycle arrest as the primary growth inhibitory effect. This was not an 

artifact of cell culture conditions as similar results were found in lymphoma cells isolated 

from patient samples (Figure 3.16). However, considerable variability has been 

demonstrated to affect cellular response upon Nutlin-3 treatment in wt-p53 cancer cells 

as well. Certain cancer cell lines have been reported to possess Nutlin-sensitivity over 

others (147-151). Whereas cancer cells typically undergo cell cycle arrest and 

apoptosis, senescence, differentiation, and endoreduplication have also been described 

(152). Furthermore, cell lines with MDM4 overexpression have been shown to confer 

enhanced sensitivity to Nutlin-3 treatment (149, 153). Whether or not MDM4 

overexpression is the cause of increased potency in our model system remains to be 

determined.  

 It would be interesting to compare gene expression profiles to assess the 

genome-wide involvement of Nutlin-3 and MI-219 treatment on lymphoma cells. By 

comparing each individual treatment to control and each individual treatment to each 

other, such data would provide insight as to what may be causing the different biological 

responses. Additionally, proteomic analysis may also help to identify crucial cofactors 



97 

 

that may be necessary for the induction of growth arrest compared to apoptosis.    

 Our data indicate that restoration of p53 activity is clearly diverse between each 

class of HDM2 SMI in the context of human lymphoma cells. This difference was 

particularly evident in the transcriptional activity of p53 target genes as well as the 

degree of apoptosis seen in WSU-FSCCL cells. A recent study also noted a more 

pronounced biological effect induced upon RITA treatment than after Nutlin-3A 

treatment (154). They postulated that RITA enhanced p53 transcriptional activity for 

numerous proapoptotic genes as the key difference in response. Although this could 

also be true of MI-219, p53AIP1 was the only p53-dependent target gene tested in this 

study.  It would be interesting to monitor the consequences of p53 reactivation between 

MI-219 and RITA in our cell lines, considering the distinct modes of p53 activation of 

each. The dynamics of tight p53 regulation can be greatly attributed to the numerous 

upstream and downstream molecules known to interact with and posttranscriptionally 

modify p53 activity.  

 Additional functions of HDM2 exist besides downregulation of p53. For example, 

HDM2 has been shown to interact with and regulate other proteins such as E2F1, p73, 

Rb, etc. Although this study did not investigate these proteins, it is highly likely that one 

explanation to the difference in drug susceptibility is due to modulation of HDM2 

interacting proteins upon HDM2 inhibition. Previous studies observed disruption 

between some of these proteins and HDM2 in the presence of Nutlin-3 in mt-p53 cells. 

This may explain the p53-independent effects seen at higher concentrations in WSU-

DLCL2 and RL that were observed. Recent studies have suggested that specific p53-

interacting proteins can regulate the selectivity of p53 target gene activation (155). The 

dynamics of tight p53 regulation can be greatly attributed to the numerous upstream 
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and downstream molecules known to interact with and posttranscriptionally modify p53 

activity.  

 It is plausible that each class of HDM2 SMI induced a conformational change in 

HDM2 that may also explain the different biological effects seen. Accumulated 

experimental evidence suggests that changes in the N-terminus can affect HDM2 

folding. The Selivanova group (154) hypothesized that RITA binds to the N-terminal 

region of p53 with fast kinetics, and then undergoes a slow conformational change that 

prevents HDM2 binding. Krajewski et al (156) reported that RITA may not block the p53-

HDM2 interaction in vitro (using NMR) and that these changes propagate to the p53 

core domain. More recently, HDM2 was found to bind to the C-terminal domain of p53 

at its acid domain. This supports the co-immunoprecipitation results and indicates that 

HDM2 can bind to p53 in the newly changed conformation upon treatment with MI-219. 

However, these results remain puzzling considering that increasing concentrations of 

MI-219 led to an increase in interaction. Further investigation is necessary to determine 

whether scaffolding proteins or HDM2 isoforms are the cause of enhanced p53-HDM2 

interaction. Since additional proteins interact with HDM2 at the region besides p53, it is 

unclear how SMIs affect the interaction of these molecules and whether or not they may 

play a role in antitumor response upon treatment.  

 Therefore, further investigation is necessary to understand the precise 

mechanisms regulating modifications of reactivated p53 in the presence of HDM2 SMIs 

and how to utilize such agents for combinational therapy. Moreover, future studies will 

offer solutions to the therapeutic potential and shortcomings of HDM2 SMIs in not only 

lymphoma, but in other cancer types as well. Altogether, these results provide 

experimental evidence that p53 reactivation, particularly by MI-219, may prove to be 
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therapeutically beneficial in lymphoma patients that retain wt-p53 status.  

MI-219 is a selective activator of the p53 pathway. We compared four cell lines: 

two wt-p53 and two mt-p53. Our results, which were consistent with those obtained for 

other types of cancer, show that HDM2 inhibition restored functional activity to p53 in 

WSU-FSCCL and KM-H2 lymphoma cells. We performed a time-course analysis to 

achieve a better understanding of the consequences of HDM2 inhibition on lymphoma 

cells. We show that HDM2 SMI demonstrate growth inhibitory effects in a time- and 

dose-dependent manner with increased sensitivity in wt-p53 lymphoma cells. 

The p53 regulated target genes p21, HDM2 and p53AIP1 were activated 

following treatment, although the degree of activation varied from case to case. We 

noted that the degree of induction of p53 and its transcriptional targets following 

treatment correlated with the level of its protein product at designated time point.  

Here, we provide conclusive experimental evidence that MI-219 effectively 

reactivates functional activity of wt-p53 in lymphoma cells. The marked difference in 

biological response is more pronounced upon MI-219 treatment than Nutlin-3 treatment. 

This was unexpected considering the low frequency of p53 mutations and the amount of 

previous studies reporting on the relative sensitivity of hematological malignancies to 

Nutlin-3 induced cell death (157, 158). However, considerable variability has been 

demonstrated to affect cellular response upon Nutlin-3 treatment in wt-p53 cancer cells 

as well. Certain cancer cell lines have been reported to possess Nutlin-sensitivity over 

others (159, 160).  

Despite the promise of restoring wt-p53 activity by HDM2 SMIs, the successful 

translation into the clinical has proven rather modest results. Clearly, researchers are 

only scratching the surface in terms of the overall complexity of p53, HDM2 and their 
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independent functions from each other. The question now becomes: how is it possible 

to fully harness p53 reactivation to eliminate cancer cells?  
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ABSTRACT 
 
HDM2 SMALL-MOLECULE INHIBITORS FOR THERAPEUTIC INTERVENTION IN B-

CELL LYMPHOMA 

by 

ANGELA M. SOSIN 

December 2012 

Advisor: Ayad M. Al-Katib, M.D. 

Major:  Cancer Biology 

Degree: Doctor of Philosophy 

Lymphomas frequently retain wild-type (wt) p53 function but overexpress HDM2, 

compromising p53 activity.  Therefore, lymphoma is a suitable model for studying 

therapeutic value of disrupting HDM2-p53 association by small-molecule inhibitors 

(SMIs).  HDM2 SMIs have been developed and are currently under various stages of 

preclinical and clinical investigation.  This study examined various molecular 

mechanisms associated and biological effects of two different classes of HDM2 SMIs: 

the spiro-oxindoles (MI-219) and cis-imidazoline (Nutlin-3) in lymphoma cell lines and 

patient-derived B-lymphoma cells.  Surprisingly, results revealed significant quantitative 

and qualitative differences between these two agents.  At the molecular level, effect of 

Nutlin-3 was generally more delayed (48h) and was notable for inducing cell cycle 

arrest.  These findings indicate a response to a low level cellular stress and are 

supported by lower levels of p53 expression in Nutlin-3-treated cells. In contrast, MI-219 

triggered an earlier response (12-24h), predominantly in the form of cell death 

associated with higher levels of p53 expression.  Neither agent interfered with the E3 

ligase function of HDM2, as confirmed in a cell-free autoubiquitination assay. 
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Interestingly, these results report for the first time a novel mechanism of HDM2 

antagonism by MI-219 in wt-p53 lymphoma cells that stimulates HDM2 self-

ubiquitination. Additionally, it corresponds with biological response of anti-lymphoma 

activity and may provide an explanation for the differences in efficacy between MI-219 

and Nutlin-3. This study indicates that p53-HDM2 interaction and methods of its 

disruption are more complex than is currently realized and suggests that stimulation of 

HDM2 self-ubiquitinating activity may be a novel treatment strategy for lymphoma. 
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