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Scientific Article

Independent test of a model to predict
severe acute esophagitis
Ellen X. Huang PhD a, Clifford G. Robinson MD b,
Alerson Molotievschi MD b, Jeffrey D. Bradley MD b,
Joseph O. Deasy PhD c, Jung Hun Oh PhD c,*
a Department of Radiation Oncology and Molecular Sciences, Johns Hopkins University School of
Medicine, Baltimore, Maryland
b Department of Radiation Oncology, Washington University School of Medicine, Saint Louis,
Missouri
c Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York

Received 15 August 2016; received in revised form 28 October 2016; accepted 9 November 2016

Abstract
Purpose: Treatment planning factors are known to affect the risk of severe acute esophagitis during
thoracic radiation therapy. We tested a previously published model to predict the risk of severe
acute esophagitis on an independent data set.
Methods and materials: The data set consists of data from patients who had recoverable treatment
plans and received definitive radiation therapy for nonesmall cell carcinoma of the lung at a single
institution between November 2004 and January 2010. Complete esophagus dose-volume and
available clinical information was extracted using our in-house software. The previously published
model was a logistic function with a combination of mean esophageal dose and use of concurrent
chemotherapy. In addition to testing the previous model, we used a novel, machine learning-based
method to build a maximally predictive model.
Results: Ninety-four patients (81.7%) developed Common Terminology Criteria for Adverse
Events, Version 4, Grade 2 or more severe esophagitis (Grade 2: n Z 79 and Grade 3: n Z 15).
Univariate analysis revealed that the most statistically significant dose-volume parameters included
percentage of esophagus volume receiving �40 to 60 Gy, minimum dose to the highest 20% of
esophagus volume (D20) to D35, and mean dose. Other significant predictors included concurrent
chemotherapy and patient age. The previously published model predicted risk effectively with a
Spearman’s rank correlation coefficient (rs) of 0.43 (P < .001) with good calibration (Hosmer-
Lemeshow goodness of fit: P Z .537). A new model that was built from the current data set
found the same variables, yielding an rs of 0.43 (P < .001) with a logistic function of 0.0853 �
mean esophageal dose [Gy] þ 1.49 � concurrent chemotherapy [1/0] � 1.75 and Hosmer-

Sources of support: This research was supported by the National Institutes of Health (Grant number R01 CA85181) and in part through the National
Institutes of Health/National Cancer Institute Cancer Center Support Grant (Grant number P30 CA008748).

Conflicts of interest: None.
Supplementary material related to this article can be found at http://dx.doi.org/10.1016/j.adro.2016.11.003.

* Corresponding author. Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Ave., New York, NY 10065
E-mail address: ohj@mskcc.org (J.H. Oh)

http://dx.doi.org/10.1016/j.adro.2016.11.003
2452-1094/� 2016 the Authors. Published by Elsevier Inc. on behalf of the American Society for Radiation Oncology. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Advances in Radiation Oncology (2017) 2, 37-43

www.advancesradonc.org

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
http://dx.doi.org/10.1016/j.adro.2016.11.003
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.advancesradonc.org
mailto:ohj@mskcc.org
http://dx.doi.org/10.1016/j.adro.2016.11.003


Lemeshow P Z .659. A novel preconditioned least absolute shrinkage and selection operator
method yielded an average rs of 0.38 on 100 bootstrapped data sets.
Conclusions: The previously published model was validated on an independent data set and
determined to be nearly as predictive as the best possible two-parameter logistic model even though
it overpredicted risk systematically. A novel, machine learning-based model using a bootstrapping
approach showed reasonable predictive power.
ª 2016 the Authors. Published by Elsevier Inc. on behalf of the American Society for Radiation
Oncology. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Severe acute esophagitis (AE) is a common, dose-
limiting side effect of radiation therapy for patients with
nonesmall cell lung cancer. When it occurs, AE often
peaks in the first few weeks of a course of radiation ther-
apy.1-3 Patient-related, tumor-related, and treatment-related
risk factors3-8 that have been reported to be statistically
associated with the incidence or severity of AE include age,
tumor nodal stage, concurrent chemotherapy, and body
mass index. Two recent reviews9,10 summarized the dosi-
metric predictors. Rose et al9 systematically reviewed 18
published studies of patients with nonesmall cell lung
cancer who had radiation-induced esophagitis.3-7,11-23

Eleven studies specifically assessed AE, and the other
studies assessed acute and chronic radiation-induced
esophagitis together. Five dosimetric parameters were
identified as predictive of AE with or without chemo-
therapy: mean esophageal dose (MED), maximal esopha-
geal dose, percentage of esophagus volume receiving �20
Gy (V20), V35, and V60. In a QUANTEC review article,
Werner-Wasik et al10 noted disparities in the dosimetric
parameters that were identified as most predictive of AE.

Our recently published analysis24 of a large cohort of
single institution data suggested that a two-variable lo-
gistic model based on MED and use of concurrent
chemotherapy robustly predicts risk of AE in a combined
data set that includes data from patients at our institution
between 1991 and 2000 and from the Radiation Therapy
Oncology Group (RTOG) 93-11 trial. The main purpose
of this study is to test the published two-variable model
on a new, independent data set; update the model for
clinical use; and propose a novel machine learning-based
predictive model.

Methods and materials

Patient cohort

This study received approval from an institutional re-
view board, and all patients provided informed consent.
All patients who were treated at Washington University
School of Medicine in St. Louis between November 2004

and January 2010, who received a minimal target dose of
46.2 Gy, and whose dose distributions were computed
with modern dosimetry (ie, collapsed cone algorithm used
in the Pinnacle treatment planning system as opposed to
water-based methods) were included in this study. Gen-
eral patient characteristics are provided in Table 1.

Treatment characteristics

Patients were treated either with two-course radiation
therapy (73.9%) or a full course of image guided radiation
therapy (26.1%). Two-course radiation therapy consisted
of parallel opposed (anterior-posterior and posterior-
anterior) beams for a few weeks, followed by off-cord
oblique beams to spare part of the esophagus. Nine pa-
tients (7.8%) received neoadjuvant chemotherapy, 85
patients (73.9%) received concurrent chemotherapy, and
54 patients (47.0%) received adjuvant chemotherapy.
Five patients (4.4%) received both neoadjuvant and
concurrent chemotherapy, but 41 (35.7%) received
both concurrent and adjuvant chemotherapy. One
patient received neoadjuvant, concurrent, and adjuvant
chemotherapy.

Acute esophagitis events

Complications were defined as Common Terminology
Criteria for Adverse Events, Version 4 (CTCAE V4.0),
Grade �2 events (ie, events that required medical atten-
tion or care). Ninety-four patients (81.7%) developed
severe esophagitis, 79 of whom (68.7%) had Grade 2
complications and 15 of whom (13%) developed Grade 3
complications. No Grade 4 or 5 events were reported.

Dose-volume parameters

A wide range of esophagus dose-volume parameters
was extracted for modeling. The entire length of the
esophagus was contoured. Dx is defined as the minimum
dose to the x% volume of the esophagus receiving
the highest doses. Vx is the percentage volume of the
esophagus receiving at least x Gy. MOHx is defined as the
mean dose of the x% volume of the esophagus receiving
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the highest doses, and MOCx is similarly defined as the
mean dose of the coldest x% volume of the organ. MOHx

and MOCx were included in the model because they could
potentially be more robust predictors of dosimetric effect
than Dx and Vx due to their averaging characteristic
compared with focusing on a single dose-volume histo-
gram point. Thus, the dosimetric parameters of esophagus
that were analyzed included D5 to D100, V5 to V100,
MOH5 to MOH100, and MOC5 to MOC100 (in in-
crements of 5), mean dose, International Commission on
Radiation Units and Measurements maximum dose (ie,
highest mean dose to any cuboid volume at least 1.5 cm
on a side), and International Commission on Radiation
Units and Measurements minimum dose (ie, lowest mean
dose to any cuboid volume at least 1.5 cm on a side).
Clinical variables included age, sex, race, Karnofsky

performance status, weight loss, chemotherapy (neo-
adjuvant or concurrent), histology, and clinical stage.

Statistical analysis and modeling

Our first step was to test the previously published AE
model24 on the current cohort. To find a new model on the
current cohort, univariate logistic analysis was performed
for each available variable and rs was computed to assess
univariate correlation with risk of AE. Finally, multivar-
iate logistic regression modeling was conducted as
designed by Huang et al.24 In this approach, during leave-
one-out cross validation (LOOCV), the most frequently
generated model was chosen as a final predictive model,
and all samples were input into the model to calculate its
predictive power.

Table 1 Patient characteristics

Parameter All patients (n Z 115) Grade <2 (n Z 21) Grade �2 (n Z 94) P value

Age (years), mean (range) 64.2 (37-86) 69.9 62.9 .005
Gender, n (%) .950
Male 50/115 (43.5%) 9 41
Female 65/115 (56.5%) 12 53

Race, n (%) .771
White 76/115 (66.1%) 14 62
Black 36/115 (31.3%) 6 30
Other 3/115 (2.6%) 1 2

Performance status
(ECOG/ZUBROD SCORE), n (%)

.969

0 48/115 (41.7%) 8 40
1 50/115 (43.5%) 9 41
2 13/115 (11.3%) 2 11
Unknown 4/115 (3.5%) 2 2

Weight loss, n (%) .235
<10% 87/115 (75.6%) 18 69
>10% 28/115 (24.4%) 3 25

Tumor stage, n (%) .696
�2 86/115 (74.8%) 15 71
<2 29/115 (25.2%) 6 23

Primary histology, n (%) .272
Squamous cell 34/115 (29.6%) 7 27
Adenocarcinoma 73/115 (63.4%) 11 62
Nonesmall cell 8/115 (7.0%) 3 5

Treatment time (days), mean (range) 48.6 (31-68) 47.9 48.7 .836
Fraction size (Gy), median (range) 2.0 (1.8-2.5) 2 2 .296
Chemotherapy, n (%) 23 125 .062
Pre-radiation therapy 9/115 (7.8%) 0 9
Concurrent 85/115 (73.9%) 10 75
Post-radiation therapy 54/115 (47.0%) 13 41

Smoker, n (%) .488
Current 42/115 (36.5%) 7 35
Former 68/115 (59.1%) 14 54
Never 5/115 (4.4%) 0 5

Mode of radiation therapy, n (%)
IMRT 30/115 (26.1%) 5 25 .793
3DCRT 85/115 (73.9%) 16 69

The c2 test was used for categorical variables, and Wilcoxon rank-sum test was used for continuous variables.

Advances in Radiation Oncology: JanuaryeMarch 2017 Validating a predictive model of acute esophagitis 39



In addition, as described in the supplementary material,
we designed a novel two-step process to produce pre-
dictive models on the basis of machine learning methods.
In the first step, we filtered irrelevant variables (ie, those
with low univariate correlations) and reduced competing,
redundant variables, which left 12 variables (D10, D25,
D40, V20, V50, V65, MOH15, MOH45, age, grade,
concurrent chemo, and mean esophagus dose) for input
into the next step. A preconditioning step that was
inspired by a study by Debashis et al25 was applied next.
The goal of preconditioning is to introduce a more useful
response variable of outcomes than the observed binary
outcomes. This is useful if the model to generate pre-
conditioning has validity and is complementary to the
next modeling stage. Finally, filtered variables with pre-
conditioned outcomes were fed into a least absolute
shrinkage and selection operator (LASSO) modeling
process. We generated 100 bootstrapped data sets with
replacement. At each iteration, a logistic regression model
with forward variable selection was generated and its
outputs (normal tissue complication probability [NTCP])
were used as a response variable in the LASSO regression
modeling with 12 variables as independent variables.
Predictive LASSO outputs were used to assess correlation
with risk of AE. After completion of the entire process,
the predictive performance was averaged.

Results

Test of the previously published AE model

The previously published two-variable model to pre-
dict risk of AE24 that is shown below uses the variables of

mean esophagus dose and concurrent chemotherapy
(ConChemo Z 1 if given, and Z 0 if not given):

NTCPAEH012Z
1

1þ expð�xAEH012Þ ;

where
xAEH012Z0:0688�MEDþ 1:5� ConChemoe3:13.

The model performed well on the current cohort with
an rs of 0.43 (P < .001) and good calibration (Hosmer-
Lemeshow goodness of fit: P Z .537, degrees of freedom
Z 6). Figure 1 shows the estimated logistic regression
curves as a function of mean esophageal dose with and
without concurrent chemotherapy for the AEH012 model.
The model-predicted incidence of AE versus observed
incidence is displayed in Figure 2, with patients divided
into 6 equal bins and grouped in accordance with the
model-predicted risk.

Univariate logistic regression

Mean, median, and range values for representative Dx,
Vx, and MOHx variables for the esophagus are listed in
Table 2. Eighteen variables with rs >0.3 and significance
of P < .0005 are listed in Supplemental Table 1.

Multivariate risk modeling

A new two-variable model on the new cohort was
suggested with use of the model building process that was
employed by Huang et al24 on the basis of LOOCV.
Interestingly, the most frequently generated model during
LOOCV consisted of the same combination of MED and

Fig. 1 Estimated dose response curves according to the
AEH012 model (red lines) versus the new model (blue lines) for
Grade 2 or greater acute esophagitis with or without concurrent
chemotherapy.

Fig. 2 Mean predicted rates of acute esophagitis versus
observed rates for patients. The patients were binned in accor-
dance with the predicted risk of acute esophagitis by the
AEH012 two-variable model. The mean predicted and observed
event rates in each bin are (predicted risk; events/pts) (0.4590,
10/20), (0.6820, 14/19), (0.7843, 17/19), (0.8515, 18/19),
(0.9023, 18/19), (0.9463, 17/19).

40 E.X. Huang et al Advances in Radiation Oncology: JanuaryeMarch 2017



ConChemo as the previous model. The resulting fitted
risk of AE as a logistic function is given by:

NTCPZ
1

1þ expð�xÞ ;

where xZ0:0853�MEDþ 1:49� ConChemoe1:75.
The rs of this risk model on the current cohort was 0.43

(P < .001; note that it was not cross-validated). The
Hosmer-Lemeshow test showed a good fit in this model
(P Z .659, degrees of freedom Z 6). Figure 1 shows the
estimated logistic regression curves as a function of MED
with and without chemotherapy. Figure 3 compares the
model-predicted incidence of AE and the observed inci-
dence with patients divided into 6 equal bins and grouped
in accordance with the model-predicted risk. For Con-
Chemo and MED, the odds ratio of the observed AE rate
between the one-third of patients at high risk and the one-
third of patients at low risk was 3.59 (P Z .037) and 1.08
(P Z .003), respectively, which is another indicator that

the model usefully distinguishes high-risk patients from
low-risk patients.

Model-based preconditioning LASSO regression
model

After filtering out irrelevant and redundant variables, the
resulting 12 variables were entered in a logistic regression
model with forward variable selection on a bootstrapped data
set with replacement. Its output (ie, preconditioned out-
comes) was entered in a LASSO regression model. After
selecting a tuning parameter in LASSO using 10-fold cross
validation, the final model was tested with samples that were
not included in the bootstrapped data set. We iterated this
process 100 times. An example of the LASSO model fit is
shown inSupplementalFigure 1.Ourapproach, coupledwith
logistic regression and LASSO, performed better than a lo-
gistic regressionmodelwith forward variable selection alone,
which was used to find the best model as shown in the above
section with an average rs of 0.38 and 0.34, respectively.

Discussion

Similarity of current patient cohort to previous
cohort

When comparing the current cohort with the previous
AE study cohort, there was no difference in terms of age
(mean of 65.3 years in the current cohort vs 64.2 years in
the previous cohort) and fraction size (1.8-2.5 Gy). In
terms of sex, the current cohort included more female

Table 2 Summary of dosimetric statistics for the esoph-
agus, mean (SD)

Variable Grade <2 Grade �2 P-value

Dx (Gy) D10 49.1 (20.9) 64.4 (9.9) .0004
D20 41.1 (22.2) 59.3 (13.3) .0003
D30 33.8 (22.6) 52.6 (17.6) .0005
D40 25.2 (18.9) 41.5 (22.2) .0023
D50 16.3 (15.7) 29.2 (22.7) .0291
D60 11.0 (13.3) 17.9 (19.6) .1840
D70 7.3 (9.7) 9.1 (12.8) .7860
D80 2.9 (3.3) 4.0 (7.4) .9049

Vx (%) V10 48.3 (24.4) 57.6 (16.1) .1205
V20 40.1 (22.4) 52.6 (17.0) .0293
V30 30.6 (20.4) 48.3 (17.2) .0004
V40 24.8 (19.6) 43.7 (17.6) .0001
V50 18.7 (18.5) 37.7 (18.0) .0001
V60 12.3 (15.0) 28.5 (16.9) .0001
V70 2.8 (7.1) 8.0 (12.6) .0871

MOHx (Gy) MOH10 54.3 (19.0) 66.6 (8.6) .0018
MOH20 49.7 (19.8) 64.3 (9.5) .0004
MOH30 45.6 (20.3) 61.6 (10.9) .0003
MOH40 41.5 (20.1) 58.0 (12.5) .0003
MOH50 37.2 (18.9) 53.5 (13.8) .0003
MOH60 33.2 (17.3) 48.4 (14.2) .0005
MOH70 29.8 (16.0) 43.2 (13.8) .0008
MOH80 26.5 (14.5) 38.3 (12.9) .0013

Other (Gy) Mean
Dose

21.8 (11.6) 31.6 (10.4) .0011

Minimum
Dose

0.9 (1.6) 0.8 (1.4) .6263

Maximum
Dose

62.9 (15.3) 69.7 (8.0) .0767

Dx, minimum dose to the x% volume of the esophagus receiving the
highest doses; MOHx, mean dose of the x% volume of the esophagus
receiving the highest doses; Vx, percentage volume of the esophagus
receiving at least x Gy.

Fig. 3 Mean predicted rates of acute esophagitis versus
observed rates for patients. The patients were binned in accor-
dance with the predicted risk of acute esophagitis by the best fit
two-variable model. The mean predicted and observed event
rates in each bin are (predicted risk; events/pts): (0.5059, 10/20),
(0.7504, 14/19), (0.8465, 17/19), (0.9034, 18/19), (0.9419, 18/
19), (0.9715, 17/19).
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(56.5%) than male patients (43.5%), but the previous
cohort included an almost even number of male and fe-
male patients (51.9% vs 48.1%, respectively). With re-
gard to race, the current cohort was categorized as white
66.1%, black 31.3%, and other 2.6% compared with the
previous cohort, which had white 74.7%, black 24%, and
other 1.3%. As for chemotherapy, 73.9% of patients in the
current cohort received concurrent chemotherapy, but
only 36.7% of the previous cohort had concurrent
chemotherapy. The increase in use of concurrent
chemotherapy is the largest differentiator between the
cohorts. Despite this, the models explicitly account for
concurrent chemotherapy on a patient-by-patient basis;
therefore, the difference does not invalidate the test.

Acute esophagitis events

A difference between this study and the previous study
is that in the new cohort, AE events were scored on the
basis of CTCAE V4.0 whereas the previously studied
cohort was scored using RTOG AE criteria. Despite this
difference, RTOG Grades 1 and 2 combined (ie, com-
plications that do not require medical intervention) were
judged as comparable with CTCAE V4.0 Grade 2. This
correspondence has been used here.

Treatment characteristics

Patients in the previously studied cohort were treated
completely with two-course radiation therapy, which
included parallel opposed, anterior-posterior/posterior-
anterior beams, for the first few weeks, followed by off-
cord oblique beams to spare part of the esophagus and
spinal cord. In the previous cohort, 54% (128 of 237 pa-
tients) received sequential or concurrent chemotherapy.
Patients in the current cohort were treated with
3-dimensional conformal radiation therapy or image guided
radiation therapy techniques, and all patients received
chemotherapy before, during, or after radiation therapy.

Statistical analysis

In terms of univariate analysis, the percentage volume
of the esophagus receiving a range of doses including 60,

50, 40, and 30 Gy; mean dose; and concurrent chemo-
therapy was highly correlated with AE events for both
cohorts. The best two-variable model included mean dose
of the esophagus and concurrent chemotherapy.

Model comparison

To compare the performance of the best model derived
from the previously studied cohort and the best model
derived from the current cohort, each model was applied
to the current cohort. The predictive power for actual AE
events is shown in Table 3. The ability to predict AE
events with both models was almost identical in terms of
rs and the area under the receiver operating characteristic
curve. In addition, we designed a novel preconditioning
LASSO regression model to predict the risk of developing
AE. For an unbiased assessment of the model, a boot-
strapping approach was used, which resulted in a good
level of predictive power.

Conclusions

The previously published model to determine the risk
probability of severe AE (as indicated by medical man-
agement) was validated on a new, independent data set
and showed to be nearly as predictive as the best possible
two-variable logistic model derived from the new data set.
Although we judged the model to be validated and sta-
tistically significant, it is important to further test the
model with other institutions’ data.
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