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Amyloid Prions in Fungi
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Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA;
3Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO

ABSTRACT Prions are infectious protein polymers that have
been found to cause fatal diseases in mammals. Prions have
also been identified in fungi (yeast and filamentous fungi),
where they behave as cytoplasmic non-Mendelian genetic
elements. Fungal prions correspond in most cases to fibrillary
B-sheet-rich protein aggregates termed amyloids. Fungal prion
models and, in particular, yeast prions were instrumental in
the description of fundamental aspects of prion structure

and propagation. These models established the “protein-only”
nature of prions, the physical basis of strain variation,

and the role of a variety of chaperones in prion propagation
and amyloid aggregate handling. Yeast and fungal prions

do not necessarily correspond to harmful entities but can
have adaptive roles in these organisms.

INTRODUCTION

In 1994, a paper signed by a single author based on ge-
netic approaches opened a decisive breach leading to
a dramatic expansion of our perception of the biologi-
cal significance of the prion phenomenon (1). In the
following years, biochemical reconstitution and trans-
formation established that these biological entities, orig-
inally identified and defined in the context of mammalian
diseases such as Kuru or Creutzfeldt-Jacob disease, also
exist in yeast as “protein-based genes” and correspond
to previously described non-Mendelian genetic elements
(2, 3). It is now clear that in most known cases the
physical basis for prion propagation is the formation,
growth, and fragmentation of an amyloid aggregate.
Amyloids are ordered protein polymers with a so-called
cross-f structure (4). The original definition of prions as

“infectious proteinaceous particles” is imprecise enough
to still be operational today but as a consequence em-
braces a variety of biological phenomena and structural
features (35). Defining prions thus remains a nontrivial

task. While a more restrictive definition is perhaps nei-
ther possible nor desirable, this general term induces
some confusion and controversy. In an attempt to clarify
discourse, at some point investigators in the mammalian
disease-related field denied the fungal “infectious pro-
teinaceous particles” the name of prions and proposed
instead to term them “prionoids” (6). These semantic
battles should not be disregarded as sterile, but rather
should be taken as an indication of the variety of the
biological realities that the term covers.

Prions are not necessarily harmful entities, nor do
they necessarily correspond to amyloid structures (7).
By some definitions they do not need to correspond to
propagation of a specific conformational state (8). The
situation is further complicated by the description of so-
called prion domains; prion-forming domains (PFDs)
are protein domains that confer the ability to other
proteins to behave as prions in an ad hoc experimental
setting. However, this observation does not necessarily
imply that the native protein from which the domain is
isolated also behaves as a prion (9, 10). That said, this
chapter provides a description of prions and prion do-
mains in the fungal kingdom. Our minimal operational
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definition of a prion here will be a protein able to adopt
a transmissible conformation, this conformation being
transmitted vertically to mitotic (and often meiotic)
progeny and horizontally between strains through cyto-
duction (in yeast) or somatic anastomosis (in filamen-
tous fungi) (Fig. 1). We will more specifically focus on
models for which the amyloid nature of the prion par-
ticle is known or can be suspected.

The study of prions in fungi is largely that of prions
in the yeast Saccharomyces cerevisiae, but a prion and
several PFDs have also been identified in filamentous

fungi. Three historical prion models, [URE3], [PSI*] in
yeast, and [Het-s] in Podospora anserina, were identi-
fied and studied as non-Mendelian genetic elements be-
fore they were found to correspond to prions (11-13).
[PIN*], in turn, was identified in relation to prion curing
experiments carried out on [PSI*] strains (14). The list of
fungal prions now amounts to about a dozen (15). The
work on yeast prions dominates the literature in terms of
sheer amount, diversity of models, and level of detail. In
many aspects, yeast models and the [PSI*] system have
established the general paradigms and methods that are

FIGURE 1 Natural situations of prion propagation in fungi. (A) Prion propagation after
hyphal anastomosis in a filamentous fungus (for instance, [Het-s] in Podospora anserina).
The prion form is transmitted from a donor-infected strain (right) to a recipient strain (left).
The prion form then converts the entire mycelium to the prion state due to cytoplasmic
continuity throughout the thallus. Prion transmission also occurs in meiotic crosses with
maternal inheritance (not depicted here). (B) Prion propagation during mitotic cell divi-
sions in yeast. Prion seeds are transmitted from mother to daughter cells during budding.
(C) Prion transmission during sexual crosses. In a cross between a [PRION"] (left) and a
[prion~] strain (right), the resulting diploid is [PRION*] and there is non-Mendelian seg-
regation of the [PRION*] character (often, but not always, with 4:0 segregation as in the

example depicted here).
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used in the field. Prions from filamentous fungi (that is,
essentially the [Het-s] model), are considered by com-
parison to this paradigm, and in some aspects, but not
all, they conform to it. Yeast prion systems are also in-
tensively used to study the aggregation and toxicity and
prion behavior of proteins or protein domains derived
from other species. This approach has been used com-
monly, but not exclusively, for proteins relevant to hu-
man protein-deposition diseases (see references 16 and
17 for recent examples of this approach). This line of
research will not be specifically discussed here.

PHYSIOLOGY OF PRION FORMATION
AND PROPAGATION IN FUNGI

The initial discovery of prions in fungi, and immediate
follow-up work, focused on cells being in one of two
states: [PRION*] and [prion|. Because their inheritance
involves self-templating changes in protein conforma-
tion, [PRION"]-based traits have very different patterns
of inheritance in genetic crosses than DNA-based traits:
their phenotypes are dominant (denoted by capital letters)
and segregate to meiotic progeny in a non-Mendelian
fashion (denoted by brackets). The characterization of
[PRION"] and [prion”] states quickly moved beyond
phenotypic assessment and epigenetic inheritance of the
phenotype to focus on the aggregation of the prion pro-
tein itself. The aggregated state of the prion protein was
followed by microscopy with fusion proteins and by
sedimentation analyses that could discern soluble and
insoluble, or higher molecular weight species (2, 18-20).
Below we highlight specific examples that laid the foun-
dation for this burgeoning field.

[PSI']: The Most Studied Fungal Prion

The prion form of the translation termination factor
Sup35 (eRF3) results in inefficient termination and de-
tectable nonsense suppression (21). Strains harboring a
premature termination codon in either the ADET or
ADE?2 genes (the adel-14 or ade2-1 alleles) are unable
to synthesize adenine. The loss of either Adel or Ade2
proteins in an otherwise functional pathway results in
the buildup of a metabolic intermediate that gives the
colonies a red color. Read-through of the premature
termination codon (nonsense suppression) and comple-
tion of the pathway restores the colony color to white
when nonsense suppression is high or to pink when it is
not as high. Thus, adel-14 or ade2-1 colonies are red
when cells are [psi"] and Sup335 is soluble and translation
termination is efficient. They are white when cells are
[PSI*] and Sup35 is in the prion state.

Amyloid Prions in Fungi

Prion Variants and Prion-Forming Domains
The sensitive phenotype associated with the [PSI*] prion
enabled the discovery of distinct [PSI*] prion variants
(22). Different heritable states of [PSI*] were observed
without any genetic change. That is, they arose from
the same Sup35 protein sequence. These states were
termed prion “variants” and are analogous to mamma-
lian prion strains. These are thought to be different self-
propagating structures of the mammalian prion protein
PrP that are largely responsible for variation in pathol-
ogies in mammalian prion diseases (23). [PSI*] variants
are discernable phenotypically by stable and distinct
colony colors that range between red and white. How
white or pink the colony is correlates to how much
Sup3S5 is in the nonfunctional prion state. This can also
be assessed biochemically by the relative amount of in-
soluble Sup35 protein in [PSI*] variant lysates (21, 24—
26).

Prion variants are distinct self-propagating struc-
tures of a prion protein. They are derived from the same
polypeptide sequence. Thus, the stable phenotypic dif-
ferences are a consequence of these structural changes.
Proof of that concept was provided by the generation
of biophysically distinct amyloid structures in vitro with
purified recombinant Sup35 protein, which was then
used to infect [psi’] yeast and generate phenotypically
discernable [PSI*] variants (27). Such prion variants
are not unique to [PSI*] and have been observed with
[URE3] (28, 29) and [PIN*/RNQ"] (30-32) as well.
In addition, PrP has been suggested to replicate as over
30 prion strains. Many (perhaps all) amyloidogenic
proteins associated with human disease can form mul-
tiple self-replicating B-sheet-rich structures (33). In con-
trast to what has been described for several yeast prion
models, no prion variants have been reported for the
[Het-s| system. One may argue that the lack of a sensi-
tive detection assay has prevented identification of such
hypothetical variants. Yet the fact that HET-s prion
fibrils are characterized by the absence of structural poly-
morphism further supports the notion that there are no
[Het-s] variants (34).

Distinct amyloid structures formed by the same pro-
tein involve different primary structure elements. Thus,
changes in protein sequence can have differential effects
on the propagation of distinct prion variants. For ex-
ample, mutation of an amino acid residue that is buried
in the core (packed in the templating B-sheet structure)
of one amyloid structure but on the outside of the core
in another amyloid structure can prevent propagation
of one structure but have no effect on another (21, 35—
39).
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Although some mutants can prevent propagation of
a particular amyloid structure, the ability to establish a
prion state appears to be more dependent on the over-
all amino acid composition of the PFD (40, 41). For
most of the prion proteins identified (particularly those
in Saccharomyces), the PFD is a long stretch of amino
acids rich in glutamine and asparagine residues. These
domains are typically devoid of predictable secondary
structure and are thought to be intrinsically disordered.
Proteins with intrinsically disordered domains are not
uncommon and are generally thought to acquire a stable
structure upon interaction with a cofactor or complex
(42). Such domains may render the protein susceptible
to aggregation, however. Indeed, a wide spectrum of
human protein conformational disorders may be caused
by the aggregation of proteins with intrinsically dis-
ordered domains. Many of these harbor glutamine- and
asparagine-rich sequences. Initial structure/function
work to investigate regions of Sup3S5 required for prion
formation determined that the amino terminal PFD was
not only necessary, but also sufficient for prion propa-
gation (43). The prion-conferring activity was transfer-
able to a different protein by simply fusing the PFD to it
(43). This appeared to be true for other PFDs as well,
such as the Ure2 (44) and Rnq1 PFDs (45).

Chaperones Modulate Prion

Formation and Propagation

Yeast allowed the identification of Hsp104 as the first
chaperone to alter prion propagation (46). In fact, the
activity of Hsp104 is required for most prions to faith-
fully propagate and transmit from mother to daughter
cells. Hsp104 works in conjunction with Hsp70 and
Hsp40 cochaperones, primarily Ssal/2 and Sis1. Hsp70
and Hsp40 work together to recognize misfolded or ag-
gregated polypeptides and deliver them to Hsp104, which
then unfolds substrates by ATP-dependent threading
through a central pore in its hexameric structure (47-50).
This system is required for the propagation of amyloid-
based prions and is thought to generate smaller oligo-
meric amyloid seeds that not only increase the free ends
for efficient propagation, but also more readily transit
the mother-bud neck to maintain stable inheritance. The
prion variant-specific chaperone activity requirements
may stem from the ability of chaperones to recognize spe-
cific accessible sequence elements as well as the amount of
energy needed to break up the amyloid structure to gen-
erate oligomeric seeds. While many of these effects are
challenges that alter cellular chaperone balance in a spe-
cific, and possibly nonphysiologic, manner, one variant
of the [PSI*] prion can be cured by transient heat shock

(51). In this case, prion propagation is altered by a global
cellular reaction to stress that would mimic a naturally
occurring chaperone response.

Prion-specific effects of chaperones have been re-
ported as well. While Hsp104 has perhaps the most
general effect on different yeast prions (though it does
not affect all prions), its relationship to [PSI*] is unique
in that the overexpression of Hsp104 can cure cells of
[PSI*]. Most prions affected by Hsp104 are cured by its
inhibition or deletion and are not affected by its over-
expression. One plausible explanation for this relates to
the necessity for activity of Sup35 for viability. SUP35
cannot be deleted because some Sup35 activity is re-
quired for translation termination. This likely limits the
array of [PSI*] prion variants that can propagate and
maintain cell growth. If Sup35 were to form a very ef-
ficiently propagating prion structure, cell viability would
be compromised. Indeed, some data support this (52,
53). It is possible that the structural array of [PSI*] var-
iants and the requirement for a pool of soluble, func-
tional Sup335 results in less flexibility in the amount of
Hsp104 activity that can support [PSI*] maintenance.
There is some specificity in the Hsp70 involvement with
Hsp104 in prion maintenance as well. Ssal is the Hsp70
required for the propagation of [PSI*], while the nearly
identical Ssa2 is required for the propagation of [URE3].
In addition, the Hsp70 nucleotide exchange factor Ssel
is required for the propagation of [URE3] but for only
some variants of [PSI*] (54, 55). Furthermore, some
chaperones selectively impact the propagation of the
[URE3] prion. The Hsp90/Cpr7 chaperone system is
required for the propagation of [URE3] (56). Finally,
Hsp42 overexpression also cures [URE3] in a manner
that is dependent on a putative protein transport system
that also shows some variant-specific effects on [URE3]
propagation (57).

Prion-variant-specific effects of the chaperone ma-
chinery have also been reported. For instance, it was
reported that the PFD of the prion protein Rnq1 is suf-
ficient to propagate some [RNQ] variant structures, but
not all. This may be primarily because there is a chap-
erone binding site in the non-PFD domain of Rnq1, and
the binding of that chaperone, the Hsp40 Sis1, is re-
quired for the propagation of the [RNQ*] prion (39).
The reduction in Sis1 binding or activity cures the cells of
the [RNQ*] prion (58). Sis1 appears to interact tightly
with Rnq1, only in the [RNQ?] prion state (59), but in-
teracts with every [RNQ™] variant tested (31, 60). More-
over, Sis1 interacts with at least two regions of Rnql
(39, 61). The function of Sis1 in [RNQ*| propagation
is tied to the activity of the Hsp104 disaggregase. Sis1 is
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also essential for the propagation of other prions tested,
including [PSI"] (62), and different variants of [PSI*]
show different requirements for Sis1 activity to propa-
gate (62). The Hsp104 chaperone was also found to be
involved in the propagation of the [Het-s| prion, where
the propagation rate and the number of prion particles
per cell is reduced in a mutant background for Hsp104
(63). The [Het-s] prion can also be propagated in yeast
(64), indicating that the chaperone machinery is able to
replicate a totally alien prion. In this setting also, Hsp104
was required for prion propagation.

There is also evidence for the involvement of other
cellular machineries distinct from the chaperone net-
work in the maintenance of prions. For instance, over-
expression of the Btn2 protein involved in endosomal
protein sorting cures [URE3] (57), and autophagy pro-
tects against [PSI*] formation (65). In addition, the actin
cytoskeleton and the ubiquitination systems have also
been found to modulate prion propagation (reviewed in
reference 66).

FUNCTIONS AND TOXICITY

Because the prion concept was initially conceived to
explain a baffling pattern of disease transmission, the
term has long been associated with pathology. However,
in the intervening decades many examples of functional
amyloids have been reported in a wide variety of orga-
nisms. Although their evolutionary value has been con-
troversial (67, 68), multiple lines of evidence suggest
that many fungal prions can exert both positive and
negative phenotypic effects, depending on strain and
circumstance.

Functional versus Pathogenic Prions

Proteins with prion-like properties have been discovered
in organisms ranging from yeast to mammals (15, 69).
Their effects range from being necessary in non-self
recognition ([Het-s] in P. anserina; see reference 70) to
deadly (neurodegenerative diseases caused by PrP in hu-
mans, deer, and elk; see references 5 and 71). Compu-
tational analyses suggest that PFDs are ubiquitous in
fungal proteomes (10, 72). Molecular characterization
in S. cerevisiae indicates that some of these putative
prions do indeed have the capacity to adopt multiple
self-templating conformations under normal physiolog-
ical conditions (10, 73). Their ubiquity, and the obser-
vation that fungal prions result in diverse phenotypes,
some of which are adaptive (74-76), leads to a funda-
mental question about the biology of these epigenetic
elements: Are prions purely selfish replicating elements,

Amyloid Prions in Fungi

or can they provide some benefit to the organism? This
question has been the subject of vigorous debate. Some
argue that prions are often adaptive “bet-hedging” ele-
ments that can facilitate survival in fluctuating environ-
ments. Others have maintained that most fungal prions
are simply diseases.

The bet-hedging hypothesis (68, 75, 77-79) is based
on observations of phenotypic diversity imparted by
prion switching and on the fact that rates of [PRION"]
acquisition and loss are much higher than the rate of
spontaneous mutation. For example, within a [prion |
yeast colony, a few [PSI*] cells will appear sporadically,
expressing heritable new phenotypes. If the [PSI*] phe-
notype is detrimental, only a few individuals will be
lost from a genetically identical population. If it is ad-
vantageous in a stressful environment, however, those
few individuals might ensure survival of that genome
when it would otherwise have been lost. [PSI*] is also
lost sporadically, providing a complementary survival
advantage should the environment again change to
favor the [prion~| state. Thus, switching between the
[prion”| and the [PRION"] states could enhance phe-
notypic diversity and promote survival of genetic line-
ages in fluctuating environments where they might
otherwise have perished. Indeed, some have argued that
repeated cycles of prion gain and loss (and indeed even
spontaneous translation errors) may create a situation in
which variation in the 3’-untranscribed regions (3'-UTR)
of genes subject to [PSI*]-mediated read-through have
already experienced some selection (80).

Evidence supporting this hypothesis includes (i) the
abundance of PFDs in fungal genomes (10, 72) and their
common occurrence in regulatory proteins; (ii) prion
induction and loss in stressful conditions when pheno-
typic variation would be most beneficial (81, 82); (iii) the
existence of prion variants—akin to genic alleles (26,
30, 83-86); (iv) modular domain architecture (for ex-
ample, Sup35’s PFD does not appreciably affect trans-
lation termination but has been retained in fungi for
~500 million years [87]); (v) the recent appreciation
that prion-based traits are common in wild yeast popu-
lations and that some of these are strongly beneficial
(74); (vi) genetic assimilation of traits that are initially
dependent on [PSI*], which can be rendered independent
of the prion via meiotic recombination of the cryptic
genetic variation that initially drives them (74, 77)—this
provides a means to separate the beneficial phenotype
from the costs of the mechanism generating it; and fi-
nally (vii) because of their capacity to regulate transla-
tional fidelity throughout the transcriptome, the traits
produced by [PSI*] are genetically complex (75, 77) and
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would require far longer to achieve by mutation alone
(see below).

Others have argued that most fungal prions are selfish
elements, diseases, or even artifacts of laboratory culti-
vation (53, 67, 88) and that the rare beneficial pheno-
types they induce are a side effect of infection. This line
of thinking posits that the evolutionary retention of
prion proteins can be explained because selection has
been too weak to remove them (89). Evidence support-
ing this hypothesis includes (i) the fact that most indi-
vidual prions are present at low frequencies in natural
populations (74, 88); (ii) the occasional generation of
lethal [PSI*] variants in vivo when the prion and trans-
lation domains are separated (53); (iii) the observation
that population allele frequencies of some prions are
similar to those that would be expected for deleterious
elements in outcrossing populations (89); (iv) the exis-
tence of structural variants for most prions, which could
reflect an absence of positive selection because at least
one prion, [Het-s], shows no such variation; (v) some
PFDs having additional functions that could explain
their evolutionary conservation (67); and (vi) prion ac-
quisition leading to a stress response in some genetic
backgrounds (90).

These hypotheses are not mutually exclusive, and
most fungal prions show some degree of antagonistic
pleiotropy. That is, they are beneficial in some envi-
ronments and detrimental in others. Indeed, prions are
clearly not universally beneficial, or they would have
been fixed in natural populations of fungi. Standing
frequencies of [PSI*] and [MOT3"] in natural popu-
lations of yeast (74) are consistent with a modest (~1%)
fitness detriment on average for these elements (89).
These models necessarily make many assumptions about
rates of [PRION"] gain and loss and the frequency of
outcross mating. Alternative values for these param-
eters, which have been observed in other studies (91),
suggest a fitness benefit (69). Further investigation of
these questions in the appropriate physiological con-
text will be critical to resolve these questions. Compu-
tational modeling has also placed these arguments
within a theoretical framework grounded in popula-
tion genetics (79, 92, 93). These analyses suggest that
[PSI*]’s potential benefit as a bet-hedging element would
not likely be sufficient to explain its evolutionary re-
tention under nonstressed conditions. In contrast, bet-
hedging would be sufficient to motivate retention of
[PSI*] in stressful environments, even with realistic rates
of sex. The selective advantage calculated with these
models is even stronger for another prion, [GAR™] (see
below).

Yeast Prions in (Epi)Genetic Diversity

and Prions in Biotic Interactions

[PSI*] is formed by the translation-termination factor
Sup35, which ensures faithful termination by the ribo-
some at stop codons. The regions downstream of such
stop codons (i.e., in the 3'-UTR of genes) are compara-
tively free to accumulate mutations because they are not
under selective pressure to produce a protein (although
they often are subject to selection as regulatory se-
quences). Acquisition of [PSI*] causes translational read-
through of many stop codons throughout the tran-
scriptome (94) and consequently drives the emergence of
new heritable phenotypes. This process is conceptually
analogous to duplicated genes that are inactivated by a
premature stop codon and are retained as pseudogenes,
providing a source for the generation of new functional
gene products via mutation and eventual reactivation
(95).

This prion-dependent phenotypic diversification is
strongly dependent on genetic background. That is, a
phenotype elicited by [PSI*] in one strain background
might not be elicited in another. For example, in S. cere-
visiae strain 33G the acquisition of [PSI*] led to increased
resistance to bleomycin and sensitivity to benomyl. In
contrast, acquisition of [PSI*] led to sensitivity to bleo-
mycin and resistance to benomyl in S. cerevisiae strain
5G (75). Genetic dissection established that [PSI*]-
induced changes in translational fidelity produce new
phenotypes based on genetic variation that was previ-
ously silent or “cryptic” (75, 77). Most phenotypes pro-
duced by [PSI'] are driven by multiple polymorphisms.
[PST*] thus provides immediate access to traits that
otherwise require the serial acquisition of multiple rare
mutations. The degree to which this mechanism has con-
tributed to the evolution of biological novelty remains
to be established. However, the presence of [PSI] in wild
strains of S. cerevisiae (74) and its capacity to fuel strong
phenotypes in those backgrounds suggest that this prion
has exerted an important influence on the phenotypic
landscape of natural fungal isolates.

In the 2 decades since [PSI"] was recognized as a
prion, approximately 10 other fungal prions have been
discovered (15). Some, such as [OCT"], formed by the
Cyc8 transcriptional repressor (96), were found seren-
dipitously. Others, such as [MOT3"], formed by the
Mot3 transcription factor, were found in a systematic
screen to identify proteins with N/Q-rich sequences that
resembled three other prion proteins known at the time:
Sup35, Rnql, and Ure2 (10). Investigation of [MOT3"]
revealed that it governs the acquisition of facultative
multicellularity in S. cerevisiae, likely through both gains
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and losses of function (73). This phenotype is driven by
[MOT3"]-dependent transcription of FLO11, a major
determinant of cell-cell adhesion, in response to nutrient
deprivation. [MOT3"] can be regulated by the environ-
ment. It is induced in response to ethanol and lost in
response to hypoxia, providing some suggestion that it
may be engaged in a subpopulation of cells during nat-
ural respiro-fermentative cycles (73). These phenotypes
(in addition to others produced by the prion [see refer-
ence 74]) are highly strain-dependent. Thus, in addition
to [PSI*], [MOT3"] can exert a strong influence on the
phenotypic manifestation of natural genetic variation.

For decades, prions that create new traits (e.g., [PSI"]
and [MOT"]) had not been found in wild strains of
S. cerevisiae (88). Although these studies were limited in
scope, they led to the perception that prions could be
rare diseases or artifacts of laboratory cultivation. How-
ever, an examination of hundreds of wild S. cerevisiae
isolates revealed that ~1 to 2% harbored [PSI*] and
~6% harbored [MOT3*] (74). These elements con-
ferred many beneficial phenotypes under diverse selec-
tive conditions. Approximately one third of the wild
strains examined in this study had heritable phenotypes
that required the activity of Hsp104 to be propagated
from one generation to the next. Those that were tested
could also be transmitted from one strain to another
through cytoplasmic mixing without transferring nu-
clear material. That is, these traits had prion-like pat-
terns of propagation. Although the molecular origin of
these traits remains to be identified, these experiments
established that a potentially broad array of prion-like
elements can influence the phenotypes of wild strains.

Switching between [prion~] and [PRION"] states is
generally thought to be a rare event. For example,
although the rates of [MOT3"] acquisition are increased
in response to ethanol, most cells still do not switch
under these conditions (73). The [GAR*] prion provides
a striking exception to this paradigm. Discovered by
chance decades ago in a screen for mutants that reverse
glucose repression (97, 98), [GAR"] is a protein-based
element of inheritance that allows fungi (S. cerevisiae
and other related yeast species including Nauvozyma
castellii and Dekkera bruxellensis) to circumvent a
normal hallmark of their biology: extreme metabolic
specialization for glucose fermentation (7, 99, 100).
When glucose is present, even in trace quantities, yeast
will not metabolize other carbon sources. [GAR*] allows
cells to circumvent this “glucose repression,” and arises
at different frequencies in wild fungal isolates. These
parameters strongly correlate with the ecological niche
from which the strain was derived (100).

Amyloid Prions in Fungi

Through serendipitous contamination of a selective
plate it was discovered that switching to [GAR"] can
be induced in virtually all S. cerevisiae cells when they
are cocultured with certain species of bacteria (99). This
cross-kingdom communication proceeds through an as
yet unidentified small molecule secreted by the inducing
bacteria. The results of this communication benefit yeast
and bacteria alike. Providing an advantage for the bac-
teria, [GAR"] yeast cells produce less ethanol than [gar]
yeast cells. Providing an advantage for the yeast, [GAR"]
cells can readily metabolize complex carbohydrates and
survive better in late-stage fermentations. As expected
for a mechanism whose adaptive value originates from
the selective pressures of life in biological communities,
the ability of bacteria to induce [GAR*] and the ability
of yeast to respond to bacterial signals have been lost
repeatedly during the monoculture inherent to labora-
tory domestication. These data suggest that [GAR*] is a
broadly conserved and often adaptive strategy to link
environmental and social cues to heritable changes in
metabolism.

Prion Domains in Signal Transduction

in Filamentous Fungi

In the filamentous fungus P. anserina, the prion protein
HET-s is involved in a cell death process known as
heterokaryon incompatibility (70). Such incompatibil-
ity arises when a strain bearing the [Het-s| prion (in its
amyloid form) and a strain expressing a different allelic
variant of this protein (termed HET-S) come into con-
tact. The [Het-s] prion is common in natural isolates
of P. anserina, leading to the prevailing view that the
prion is adaptive (66, 101). HET-s and HET-S are two-
domain proteins with an N-terminal globular domain
and a C-terminal prion-forming domain. Interaction
with [Het-s] causes HET-S to relocalize from the cyto-
plasm to the cell periphery (102). Biochemical and
structural studies suggest that this interaction drives
conformational conversion of a HET-S PFD region into
a B-solenoid fold which in turn induces a refolding of
the globular HeLo domain (Het-s/LOP-B; see more on
structure in the next section) to expose an ~34-residue
transmembrane segment at the N-terminus of the pro-
tein. This converts HET-S into an integral membrane
protein. Once it is at the membrane, HET-S oligomerizes
and fuels the loss of membrane integrity in a manner
resembling pore-forming toxins (103). The role of this
type of conformational conversion in signaling intrinsic
programmed cell death is only beginning to be appreci-
ated. The P. anserina genome contains a gene encoding a
Nod-like receptor protein (NWD2) adjacent to the gene
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encoding HET-S (104). Strikingly, NWD2 contains an
N-terminal region that is homologous to the amyloid
motif of HET-s. When NWD2 binds its cognate ligand,
this interaction also drives conversion of HET-S into the
amyloid conformation (1035).

The paradigms established by the study of HET-s
appear to be echoed in programmed cell death in other
fungi. The short prion motif and globular HeLo domain
characteristic of HET-S are also associated with other
proteins such as lipases and regulatory Nod-like recep-
tors in other fungi. The functional and evolutionary
significance of this relationship has recently been exam-
ined in the saprophytic fungus Chaetomium globosum
(106). A cluster of genes harboring short prion motifs
was examined that included a protein known as HELLP
(because it contains a HeLo-like domain). HELLP also
has an N-terminal transmembrane helix that is homolo-
gous to that of HET-S. Despite the evolutionary distance
between this organism and P. anserina, HELLP behaves
as a HET-S analog, relocating to the membrane upon
interaction with the prion form of the short prion motif.
Moreover, the HeLo-like domain of HELLP bears ho-
mology to mammalian pore-forming domains involved
in necroptosis, suggesting the possibility of an ancient
evolutionary relationship between these processes.

Amyloid/Prion Toxicity in Yeast
The toxicity of prion amyloids in yeast has been the sub-
ject of intense debate. Most commonly studied variants
of [PSI*] have a slight fitness defect. However, over-
expression of the NM domain of Sup35 induces [PSI*]
variants with a wide spectrum of effects. Those that are
lethal are normally purged from the population but can
be maintained when the C-terminus of Sup35 (Sup35C,
which cannot be converted into [PSI*] but is competent
for translation termination) is expressed on a plasmid
(53). In these experiments ~8% of the induced [PSI*]
variants were lethal. The remaining variants were either
slow-growing or nontoxic. The slow-growing variants
were unstable upon loss of the Sup35C plasmid. In con-
trast, the nontoxic [PSI*] variants were stable. Analo-
gous results were seen with [URE3] in these experiments,
highlighting the fact that selection has already operated
on the ensemble of prion conformers typically studied in
the laboratory. The molecular interactions governing
prion loss remain to be fully elucidated but involve
multiple chaperone activities including Hsp104, Hsp42
Btn2, and Curl (57).

In other cases, prion proteins are toxic only when
overexpressed, and only in [PRIONT] cells. For exam-
ple, Rnq1 is profoundly toxic in [RNQ*] but not [rnq7]

cells (61). This toxicity is not caused by a general pro-
teotoxic stress. Rather, in these cells Rnq1 sequesters the
core spindle pole body component Spc42 in an insoluble
protein deposit, engaging the Mad2 cell cycle check-
point. The Hsp40 chaperone Sis1 suppresses this toxic-
ity, but rather than inhibiting aggregation of Rnql it
drives assembly of the protein. Interfering with this Sis1-
triggered aggregation exacerbates Rnq1 toxicity. These
data underscore the fact that amyloids are not always
the toxic species in prion-like aggregation pathways.
Molecular understanding of these distinctions, as well as
the structural differences between toxic and nontoxic
amyloid species stand as goalposts for future work.

FUNGAL PRION STRUCTURES

Structural characterization of amyloids, which consti-
tute the physical basis of many fungal prions, is a con-
siderable challenge, and one faced by the amyloid field
in general. The most adapted technique to gain access
to high-resolution structures of amyloid assemblies is
currently solid-state nuclear magnetic resonance (NMR)
(107). Other approaches include X-ray diffraction tech-
niques that so far can only inform on the overall fold
or fold modification. The Eisenberg group has also re-
ported high-resolution X-ray crystallography structures
of seven amino acid peptides derived from the Sup35
PFD assembled into nanocrystals (108), but this ap-
proach cannot be applied to the full-length PFD so far.
One of the central limitations hindering progress in the
structural determination of amyloids is structural het-
erogeneity. It appears that many amyloids, in particular
disease-related amyloids but also yeast prion models,
exist as mixtures of structural polymorphs displaying
subtle or large differences in their amyloid architecture
(109).

The [Het-s] prion is currently the only model for
which a high-resolution structure is available. Solid-
state NMR could be successfully applied here, because
HET-s PFD fibrils are not polymorphic and lead to
well-resolved solid-state NMR spectra. The HET-s PFD
adopts a so-called B-solenoid structure with two rungs
of B-strands per monomer. This structure resembles
other B-helical structures found in soluble proteins
(110). The HET-s PFD comprises two conserved 21-
amino acid residue imperfect repeats connected by a
poorly conserved 15-amino-acid-long loop (111). Each
of these repeats forms one 4.7-A layer of a stacked
B-sheet structure (111, 112). Each repeat comprises four
B-strands; the first three B-strands delimit a triangular
hydrophobic core, and the fourth protrudes from the
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core (34, 113) (Fig. 2). At the C-terminal end of the PFD,
an aromatic loop folds back into a groove delimited by
the third and fourth B-strands to form a semihydro-
phobic pocket (113). Two asparagine ladders, a frequent
motif in amyloids, occur at the beginning of the first and
fourth B-strands (N226/N262 and N243/279), and three
salt bridges (K229/E265, E234/K270, and R236/E272)
stabilize the stacking of the two rungs of B-strands. The
inner core is composed exclusively of hydrophobic resi-
dues, with the exception of two hydroxyl residues oc-
cupying different layers, that can form a hydrogen bond
inside the core (T233/5273). Glycine residues occupy the

Amyloid Prions in Fungi

B-arches between the third and the fourth B-strand in
both layers. A short C-terminal loop containing two
aromatic residues (F286 and W287) folds back onto the
fourth B-strand to form a semihydrophobic pocket.
The structure-function relationship in the HET-s PFD
was analyzed in detail with site-directed mutagenesis
approaches (111, 114, 115). The B-solenoid fold was
found to be robust. The majority of the sequence alter-
ations did not affect the global fold or the prion-forming
ability. Exceptions are the glycine residues of the B-
arches between the third and fourth strand of each rung,
whose mutation affects the overall fold and abolishes

FIGURE 2 Structure of HET-s prion-forming domain. (A) Lateral view of a trimer of HET-s
(218-289) in the prion amyloid conformation. Each monomer bears a different color,
after pdb 2KJ3. (B) View from the fibril axis of one HET-s(218-289) monomer; the N- and
C-terminal ends are marked, after pdb 2KJ3. (C) Structure of the two individual repeats
of HET-s(218-289) marked R1 (position 226 to 246) and R2 (position 262 to 282) as well
as the C-terminal semihydrophobic loop (position 283 to 289), after pdb 2KJ3. Amino
acids are coded by chemical property (G in light gray, polar in green, hydrophobic in
yellow, positively charged in red, negatively charged in blue, and aromatic in magenta).
The sequence of HET-s(218-289) is given below with the same color coding in R1, R2

(underlined), and the C-terminal loop.

KIDAIVGRNS/KDIRTEERARVQ! ©N'VVTAAALHGGIRISDQTTNSVET

R2 + C-terminal loop
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prion function (114). The different structural elements
mentioned above (N-ladders, salt bridges, hydrophobic
core, buried polar residues) contribute to various extents
to the prion function, B-solenoid fold, and fibril stability
and fibril formation rate. Importantly, the C-terminal
aromatic loop modulates the prion-forming ability, al-
though this region is not part of the rigid cross-p core of
the fold (114). In addition to the solid-state NMR struc-
ture, a cryo-electron microscopy structure of the HET-s
PFD has also been reported and largely agrees with the
solid-state NMR structure (116).

Although no high-resolution structure of a yeast
prion is yet available, valuable information on the over-
all fold of the prion amyloid state of Sup35, Ure2,
and Rnql was obtained. Several lines of evidence con-
verge to suggest that these yeast prions may adopt an
in-register parallel B-sheet structure. Prior to its experi-
mental validation, this organization was already hy-
pothesized based on the experiments mentioned above,
showing that shuffled Ure2 and Sup35 PFD sequences
(retaining the same amino acid composition) are still
able to form prions (41). It was argued that only a par-
allel in-register B-sheet architecture (and not alternate
B-helical or antiparallel or parallel out-of-register models)
could explain retention of prion formation with scram-
bled sequences. Using selectively labeled samples and
solid-state NMR, the parallel in-register architecture was
supported by dipole-dipole relaxation rates for all three
models (101, 117-119). Mass-per-length measurements
of prion filaments are also compatible with models in
which a single protein molecule occupies one layer of the
B-sheet structure (that is, 4.7 A) (85, 120, 121). Collec-
tively, these results are compatible with the structural
model proposed by Kajava and coworkers (122) and can
account for strain variation. They stand in contrast to an
alternative p-helical model for Sup35 based on chemical
cross-linking approaches (123). The highly degenerate
nature of Sup35 fibers complicates interpretation of these
data, and a full atomic-level understanding of yeast prion
structure will likely require the application of new tech-
nologies to the problem.

CONCLUSION

Our understanding of prion biology is built on the rich
curiosity of researchers investigating undefined epige-
netic phenotypes in fungi beginning over 50 years ago.
Their persistence has led to a wealth of knowledge that
now impacts our understanding of biological complexity
and human health in a multitude of ways. While many
incredible discoveries have been made thus far, these

systems lend themselves to additional advances relating
to epigenetics, the biology of complex phenotypes, prion
structure and replication, prion diversity, the effects of
intracellular and extracellular modulators, and the im-
pact of protein-based elements on organismal fitness and
survival.
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