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ABSTRACT

In yeast, dNTP pools expand drastically during DNA
damage response. We show that similar dNTP ele-
vation occurs in strains, in which intrinsic replisome
defects promote the participation of error-prone DNA
polymerase � (Pol� ) in replication of undamaged
DNA. To understand the significance of dNTP pools
increase for Pol� function, we studied the activity and
fidelity of four-subunit Pol� (Pol� 4) and Pol� 4-Rev1
(Pol� 5) complexes in vitro at ‘normal S-phase’ and
‘damage-response’ dNTP concentrations. The pres-
ence of Rev1 inhibited the activity of Pol� and greatly
increased the rate of all three ‘X-dCTP’ mispairs,
which Pol� 4 alone made extremely inefficiently. Both
Pol� 4 and Pol� 5 were most promiscuous at G nu-
cleotides and frequently generated multiple closely
spaced sequence changes. Surprisingly, the shift
from ‘S-phase’ to ‘damage-response’ dNTP levels
only minimally affected the activity, fidelity and er-
ror specificity of Pol� complexes. Moreover, Pol� -
dependent mutagenesis triggered by replisome de-
fects or UV irradiation in vivo was not decreased
when dNTP synthesis was suppressed by hydrox-
yurea, indicating that Pol� function does not re-
quire high dNTP levels. The results support a model
wherein dNTP elevation is needed to facilitate non-
mutagenic tolerance pathways, while Pol� synthesis
represents a unique mechanism of rescuing stalled
replication when dNTP supply is low.

INTRODUCTION

Balanced deoxynucleoside triphosphate (dNTP) pools are
critical for maintaining the fidelity of DNA replication. In
yeast, the size of dNTP pools is strictly controlled during
the cell cycle and expands just enough in the S-phase to al-
low efficient DNA replication (1). This is achieved through
a tight regulation of the expression and activity of ribonu-
cleotide reductase (RNR), the enzyme that catalyzes the
rate-limiting step in de novo synthesis of dNTPs (2–4). Im-
balanced, constantly high or low dNTP concentrations pro-
mote genome instability by affecting either the fidelity of
DNA polymerases or by slowing down fork progression (5–
13). On the other hand, the levels of dNTPs rise approx-
imately 6- to 8-fold after treatment with DNA-damaging
agents, such as ultraviolet (UV) light, methyl methane-
sulfonate and 4-nitroquinoline 1-oxide (4). In response
to DNA damage, Mec1/Rad53/Dun1-mediated damage
checkpoint activates RNR via degradation of its inhibitor
Sml1 and by inducing the expression of genes encoding the
RNR subunits (3,14–15). The expansion of dNTP pools is
essential for cell survival during DNA damage (4), and it
is thought to facilitate lesion bypass by replicative DNA
polymerases, as well as specialized translesion synthesis
(TLS) DNA polymerases (4,16). In agreement with this
view, higher dNTP concentrations improve the efficiency of
nucleotide insertion opposite lesions and extension of the
resulting aberrant primer termini by various DNA poly-
merases in vitro (16–21). While facilitating lesion bypass,
high dNTP levels could conceivably further reduce the fi-
delity of TLS DNA polymerases leading to accumulation
of more mutations in the genome.
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DNA polymerase � (Pol� ) is a key player in mutagenic
TLS in eukaryotic cells. Yeast Pol� is comprised of four
subunits encoded by the REV3, REV7, POL31 and POL32
genes (22,23). Despite being a member of the B family DNA
polymerases (24,25), Pol� lacks exonuclease activity and
is at least two orders of magnitude less accurate than the
replicative polymerases Polε and Pol� (26). It is essential
for the bypass of most lesions acting predominately as an
extender of aberrant primer termini formed at the lesion
site (19–20,27). Pol� -deficient cells are unable to undergo
DNA damage-induced mutagenesis and show substantially
reduced spontaneous mutagenesis (28,29). In addition to
its four subunits, the function of Pol� in TLS also requires
Rev1, a protein that interacts with both replicative and TLS
polymerases (30–36) and possesses deoxycytidyl transferase
activity (37). The essential role of Rev1 is structural and
likely involves recruiting Pol� to the lesion site and enhanc-
ing its lesion bypass capability (38). The catalytic activity
of Rev1, although not important for the overall efficiency
of TLS, is utilized during the bypass of some lesions and
helps shape the mutagenic specificity of bypass (39–44). For
example, the Rev1 deoxycytidyl transferase is responsible
for the high frequency of C incorporation observed in vivo
during the bypass of abasic sites, one of the most common
DNA lesions (40,44).

In addition to the important role in TLS, Pol� and Rev1
contribute to copying of undamaged cellular DNA in a va-
riety of circumstances. They are recruited to undamaged
templates when the normal replisome malfunctions because
of a mutation affecting one of the replication proteins (45–
47). We have shown that this recruitment is triggered by the
replicative polymerase stalling at short hairpin DNA struc-
tures, which Rev1 and Pol� help to bypass (46). Because of
the low fidelity of Pol� , its increased participation in the
replication of undamaged DNA elevates the rate of sponta-
neous mutation leading to a phenomenon called defective-
replisome-induced mutagenesis (DRIM). While originally
discovered as a response to mutations in the replicative
DNA polymerases �, � and ε (45,48–49), DRIM can also
be promoted by defects in non-catalytic replisome compo-
nents (45,50–54) or replication-coupled chromatin remod-
elling (55), as well as by exposure of wild-type cells to the
replication inhibitor hydroxyurea (HU) (47). Most recently,
DRIM has been observed in yeast strains, in which repli-
cation deficiency was caused by a replacement of the cat-
alytic domain of Pol� with that of bacteriophage RB69
DNA polymerase (56), providing further evidence that the
recruitment of Pol� is a general response to replication
impediment. Like DNA damage-induced mutagenesis, the
DRIM phenotype is completely dependent on monoubiq-
uitylation of proliferating cell nuclear antigen (PCNA) by
Rad6/Rad18 (45), suggesting that the recruitment of Pol� -
Rev1 to undamaged DNA is regulated similarly to the DNA
damage response. However, it remained unknown whether
replication defects that trigger DRIM also induce the ex-
pansion of dNTP pools, and, if so, whether this expansion
is needed to facilitate Pol� -dependent mutagenesis.

We and others have recently shown that the mutagenic
potential of many replicative DNA polymerase variants is
greatly affected by changes in the intracellular dNTP lev-
els (5,8). Inspired by this finding, we set out to determine

how natural increases in dNTP levels, such as those oc-
curring during DNA damage response, affect the muta-
genic properties of Pol� . We found that yeast strains show-
ing the DRIM phenotype have expanded dNTP pools, in
accord with the view that TLS enzymes must function at
high dNTP levels. Surprisingly, the activity, fidelity or er-
ror specificity of purified Pol� 4 and Pol� 5 complexes in
vitro were not greatly affected by the switch from ‘normal
S-phase’ to ‘damage-response’ dNTP concentrations. Fur-
thermore, we provide evidence that Pol� -dependent lesion
bypass and Pol� -dependent mutagenesis during copying of
undamaged DNA in vivo do not require high dNTP levels.
These results argue that Pol� is less sensitive to fluctuations
in the size of dNTP pools than the replicative DNA poly-
merases and, thus, Pol� may be uniquely capable of bypass-
ing lesions or other impediments when dNTP pools are low.
This finding explains why Pol� is involved in the generation
of spontaneous mutations (57,58), which presumably arise
during the normal S-phase in cells with unexpanded dNTP
pools.

MATERIALS AND METHODS

Saccharomyces cerevisiae strains and plasmids

The haploid S. cerevisiae strain E134 (MATα ade5-1
lys2::InsEA14 trp1-289 his7-2 leu2-3,112 ura3-52) and its iso-
genic derivative PS446 (same, but rev3�::LEU2) used for
in vivo mutagenesis studies have been described previously
(45,59). The pol3-Y708A mutants were constructed by using
HpaI-cut p170 plasmid as described earlier (48). The pres-
ence of the mutation was confirmed by sensitivity to 100
mM HU. The haploid strain PY330 (MATa can1 his3 leu2
trp1 ura3 pep4::HIS3GAL nam7�::KanMX4 rev1�::HYG)
was used to overproduce Pol� 4 and Pol� 5. The plasmids
used for the overproduction were pBL818 (same as pB813
(22) but the GST tag on REV3 was replaced with the IgG
binding domain ZZ tag), pBL347 (22) and pBL825 (TRP1,
GAL1-GST-REV1).

Proteins

Preparations of S. cerevisiae PCNA and replication pro-
tein A (RPA) used in the fidelity assays have been de-
scribed previously (8). S. cerevisiae replication factor C
(RFC), as well as PCNA and RPA used in the repli-
cation assays, were overproduced and purified from Es-
cherichia coli as described (45,60–63). Rev1 was produced
in yeast and purified as described (64). To produce Pol� 4,
the REV3, REV7, POL31 and POL32 genes were over-
expressed from galactose-inducible promoters as described
previously (22) except that an IgG-purification cassette
(in plasmid pBL818) was used instead of the GST tag.
Strains for overproduction of Pol� 5 also contained plasmid
pBL825. Strains were grown, galactose induction was car-
ried out for 16 h and extracts were made through the am-
monium sulfate precipitation step as described previously
(22). Pol� 4 and Pol� 5 were purified from approximately 100
g of cells. Argon de-gassed buffers were used throughout the
purification procedure. Ammonium sulfate pellets were re-
suspended in buffer A1 (50 mM Hepes (pH 8.0), 500 mM
NaCl, 30 mM Na2HPO4/NaH2PO4 (rN 8.0), 8% glycerol,
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0.05% Tween 20, 0.01% E10C12, 5 mM 2-mercaptoethanol,
10 �M pepstatin A, 10 �M leupeptin, 2.5 mM benzamidine,
0.5 mM phenylmethylsulfonyl fluoride) and gently agitated
with 2 ml of IgG sepharose beads (GE Healthcare) for 2
h. The beads were packed into a disposable 20-ml BioRad
column and washed with 20 bed volumes of buffer A1, fol-
lowed by 50 bed volumes of A2 (A1 plus 5 mM MgCl2 and
1 mM ATP). The beads were washed with additional 20 bed
volumes of buffer A1, re-suspended in four bed volumes of
buffer A1 and digested overnight at 4◦C with PreScission
protease by gentle rotation of the capped column. After col-
lection of the eluent, the beads were washed with additional
four bed volumes of buffer A1. Fractions were combined
and agitated with 0.5 ml Ni-NTA beads (QIAGEN) for 1
h to enrich for stoichiometric complexes containing Pol31-
His7Pol32 in addition to Rev3-Rev7. The beads were packed
into a disposable BioRad column and washed with 40 bed
volumes of buffer B1 (50 mM Hepes (pH 8.0), 500 mM
NaCl, 30 mM Na2HPO4/NaH2PO4 (rN 8.0), 8% glycerol,
0.05% Tween, 0.01% E10C12, 5 mM 2-mercaptoethanol, 20
mM imidiazole, 10 �M pepstatin A, 10 �M leupeptin, 2.5
mM benzamidine and 0.5 mM phenylmethylsulfonyl flu-
oride). The proteins were eluted with three bed volumes
of buffer B2 (50 mM Hepes (pH 8.0), 500 mM NaCl, 30
mM Na2HPO4/NaH2PO4 (rN 8.0), 8% glycerol, 0.01%
E10C12, 5 mM 2-mercaptoethanol, 300 mM imidiazole, 10
�M pepstatin A, 10 �M leupeptin, 2.5 mM benzamidine
and 0.5 mM phenylmethylsulfonyl fluoride). All final prepa-
rations were dialyzed against buffer D (30 mM Hepes (pH
8.0), 200 mM NaCl, 8% glycerol, 0.01% E10C12 and 5 mM
2-mercaptoethanol).

Measurement of intracellular dNTP levels

Yeast cells were cultured in either YPDA (1% yeast ex-
tract, 2% bacto-peptone, 2% glucose and 0.002% adenine)
or YPDA with 20 mM HU at 30◦C and 180 rpm. The dNTP
pools were measured in asynchronous cultures at OD600 of
0.3 or indicated time points as described in (65). Briefly,
3.7 × 107 cells were harvested by filtration, and nucleotides
were extracted with trichloroacetic acid and MgCl2, fol-
lowed by neutralization with a Freon-trioctylamine mix.
The dNTPs were separated from NTPs using boronate
columns and analyzed by high pressure (or high perfor-
mance) liquid chromatography. Flow cytometry analysis
was performed as described in (16).

DNA polymerase activity assays

Oligonucleotides SKII-682 (5′-TATCGATAAG
CTTGATATCGAATTCC-3′), pr100mer (5′-Cy3-
GGTATCGATAAGCTTGATATCGAATT-3′) and
100mer (5′-AACAAAAGCTGGAGCTCCACCGCGGT
GGCGGCCGCTCTAGAACTAGTGGATCCCCCGG
GCTGCAGGAATTCGATATCAAGCTTATCGATA
CCGTCGACCT-3′) were obtained from Integrated DNA
Technologies and purified by either PAGE or high-pressure
liquid chromatography before use. SKII-682 annealed to
the 3-kb circular Bluescript ssSKII DNA. The 100mer was
circularized using a bridging primer and T4 ligase (NEB)
and purified on urea-PAGE, and the pr100mer Cy3-labeled

primer was annealed. All standard 10-�l assays contained
40 mM Tris-HCl pH 7.8, 1 mM dithiothreitol, 0.2 mg/ml
bovine serum albumin, 8 mM MgAc2, 125 mM NaCl,
0.5 mM ATP and either S-phase or damage-response
concentrations of dNTPs (39 �M dCTP, 66 �M dTTP, 22
�M dATP and 11 �M dGTP for S-phase or 195 �M dCTP,
383 �M dTTP, 194 �M dATP and 49.5 �M dGTP for
damage-response concentrations (4,16)). Primed templates
were coated with RPA, PCNA was loaded by RFC for 30
s at 30◦C, and replication reactions were initiated by the
addition of the indicated DNA polymerases. The complex
of Pol� 4 and Rev1 was pre-formed on ice for 30 min.
Replication assays on the 3-kb circular DNA contained 2
nM primed ssDNA template, 200 nM RPA, 30 nM PCNA,
6 nM RFC and 30 nM of the indicated polymerase(s).
The �-32P-dGTP was added as the radioactive tracer,
and reactions were incubated at 30◦C for 30 and 60 min.
Reactions were stopped with 50 mM ethylenediaminete-
traacetic acid (EDTA) and 0.2% sodium dodecyl sulphate
and analyzed on a 1.2% alkaline agarose gel. Primer
extension assays on the 100-mer ssDNA contained 10 nM
5′-Cy3-labeled DNA substrate, 40 nM RPA, 30 nM PCNA,
6 nM RFC and 30 nM of the indicated polymerase(s).
Reactions were incubated at 30◦C for 0.5, 1 and 2 min.
Reactions were stopped with 50% formamide, 10 mM
EDTA and 0.1% sodium dodecyl sulphate and analyzed
on 12% polyacrylamide-7 M urea gel. Quantification was
done by either phosphorimaging of the dried gel (32P) or
fluorescence imaging on a Typhoon system.

Measurement of DNA polymerase fidelity in vitro

M13mp2 gapped substrate was prepared and gel-purified
as described previously (8,66). DNA synthesis reactions (25
�l) contained 40 mM Tris-HCl (pH 7.8), 60 mM NaCl, 8
mM MgAc2, 0.5 mM ATP, 1 mM dithiothreitol, 0.2 mg/ml
bovine serum albumin, 20 nM PCNA, 8 nM RFC, 200 nM
RPA, 1 nM gapped substrate and 40 nM Pol� 4 or 50 nM
Pol� 5. The reactions were performed at either equimolar
dNTP concentrations (100 �M each) or at the intracellu-
lar concentrations (S-phase or damage-response). The re-
actions were incubated at 30◦C for 1 h and stopped by plac-
ing the reactions on ice and adding 1.5 �l of 0.5 M EDTA.
The efficiency of gap filling was determined by agarose gel
electrophoresis (Supplementary Figure S1). Aliquots of the
reactions were used for transformation of E. coli to deter-
mine the frequency of mutant plaques. The purification of
mutant M13mp2 plaques and isolation of ssDNA were per-
formed as described previously (66). Error rates for indi-
vidual types of mutations were calculated by using the fol-
lowing equation: ER = [(Ni/N) × MF]/(D × 0.6) where
Ni – the number of mutations of a specific type, N – the
total number of analyzed mutant M13mp2 plaques, MF
– frequency of mutant M13mp2 plaques, D – the number
of sites in the lacZ reporter gene where this type of muta-
tion can be detected and 0.6 is the probability that a mu-
tant allele of the lacZ gene will be expressed in E. coli (66).
Multiple mutations in a single mutant lacZ sequence were
considered independent events and included separately in
the error rate calculations if the distance between mutations
was >10 nucleotides. Multiple mutations separated by ten
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Figure 1. Analysis of deoxynucleoside triphosphate (dNTP) pools and cell
cycle in a DNA replication mutant that displays constitutively elevated
Pol� -dependent mutagenesis. (A) Intracellular dNTP levels normalized to
total NTP in wild-type and pol3-Y708A strains. Data are presented as
mean ± SD (n = 3 for wild-type strains and n = 4 for pol3-Y708A mutants)
with the numbers above the bars indicating the fold increase compared to
the wild-type strain. (B) Fluorescence-activated cell sorter (FACS) anal-
ysis of asynchronous logarithmically growing wild-type and pol3-Y708A
cultures that were used for dNTP pool measurements in (A).

or fewer nucleotides were classified as complex mutations
and excluded from the calculation of error rates for individ-
ual mispairs. The frequency of complex mutations, as well
as the frequency of deletions of more than one nucleotide
and large rearrangements, was calculated as the total num-
ber of these types of mutations divided by the total number
of detectable mutations. All data are based on analysis of
lacZ mutants from at least two independent gap-filling re-
actions. The statistical significance of differences in the rate
of individual errors was assessed by Fisher’s exact test by
comparing proportions of plaques with a specific nucleotide
change among all plaques (mutant and non-mutant) ana-
lyzed for that reaction. For example, in order to evaluate
the significance of the increase in the rate of C-dCTP mi-
spair in Pol� 5 versus Pol� 4 reactions at damage-response
dNTPs, seven plaques with the C→G substitution found
among the total of 7562 plaques analyzed for Pol� 5 reaction
were compared to one mutant plaque found among 11120
plaques analyzed for Pol� 4 reaction (P = 0.0092, Supple-
mentary Figure S2B).

Measurement of mutant frequency in vivo

To determine the effect of HU treatment on DRIM, at
least nine independent cultures were started for each strain
(wild-type, pol3-Y708A and pol3-Y708A rev3�) from sin-
gle colonies and grown overnight at 30◦C in liquid YPDAU
medium (1% yeast extract, 2% bacto-peptone, 2% glucose,
0.006% adenine, 0.00625% uracil) containing HU at con-

centrations indicated in Figure 5A. Appropriate dilutions of
the overnight cultures were plated onto synthetic complete
medium containing L-canavanine (60 mg/l) and lacking
arginine (SC –CAN) for selection of Canr colonies and onto
synthetic complete (SC) medium for viability count. Canr

mutant frequency was calculated by dividing the number of
Canr mutants by the number of colonies on SC medium.
The median frequency of Canr mutants was used to com-
pare mutagenesis in different strains and at different HU
doses. The significance of the differences between mutation
frequencies was estimated by using the Wilcoxon–Mann–
Whitney non-parametric criterion.

To determine the effect of HU treatment on UV-induced
mutagenesis, appropriate dilutions of overnight cultures of
E134 and PS446 strains were plated onto SC and SC –CAN
media containing HU at the concentrations indicated in
Figure 5E and Supplementary Figure S3A. The cells were
irradiated with 10 J/m2 of 254-nm UV light within 15 min
after plating and incubated at 30◦C. The mutant frequency
was calculated as described above. To study the effect of HU
pre-treatment on UV-induced mutagenesis, overnight cul-
tures of E134 strain were diluted 10-fold and grown for 4
h in the presence of 100 mM HU. Appropriate dilutions of
the logarithmic cultures were plated onto SC and SC –CAN
media containing 100 mM HU and irradiated with UV light
at the doses indicated in Supplementary Figure S3B. The
mutant frequency was calculated as described above.

RESULTS

A replisome defect that triggers DRIM also induces the ex-
pansion of dNTP pools

Various defects in the catalytic and accessory subunits
of yeast replicative DNA polymerases impede the pro-
gression of the replication fork and cause DRIM (45,48–
50,52,54,56). Among these, the pol3-Y708A mutation has
been used most commonly for the mechanistic studies of
DRIM (45–47) because of its rather strong mutator phe-
notype that is almost entirely Pol� -dependent. The muta-
tion leads to an alanine substitution for Tyr708 at the active
site of Pol� (48). It causes a moderate replication deficiency
(as manifested by a reduced growth rate and HU sensitiv-
ity) and constitutive PCNA monoubiquitylation, a prereq-
uisite for the TLS polymerase recruitment. Here, we use the
pol3-Y708A mutant to test the hypothesis that replication
stalling in mutants experiencing DRIM leads to an increase
in dNTP levels. Measurement of the size of dNTP pools in
logarithmically growing wild-type and pol3-Y708A strains
showed a 7-fold increase in the total dNTP level in the pol3-
Y708A mutant (Figure 1A). The increases for individual
dNTPs ranged from approximately 6- to 9-fold and were
similar to those observed during DNA damage response
(4). Flow cytometry analysis of the logarithmically growing
wild-type and pol3-Y708A cultures revealed that the pol3-
Y708A strain had an abnormal cell cycle distribution, with
a larger proportion of cells in the G2/M phase (Figure 1B).
The prolonged G2/M phase may be a sign of checkpoint
activation, which is likely responsible for the expansion of
dNTP pools.
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Figure 2. Pol� -dependent DNA synthesis at S-phase and damage-response dNTP concentrations. (A) Analysis of Rev1, Pol� 4 and Pol� 5 by electrophoresis
in 10% sodium dodecyl sulphate-polyacrylamide gel. *, Ssa1 chaperone co-purifies with overproduced Rev1 alone. (B) Schematic of the replication assays
in (C) and (D), as described in Materials and Methods. (C) Alkaline agarose gel (1.2%) electrophoresis of replication products on primed Bluescript SKII
ssDNA with the indicated DNA polymerases, and either S-phase or damage-response dNTPs. The tracer was [�-32P]-dGTP. (D) Urea-PAGE (12%) analysis
of primer extension reactions on a 100-mer circular ssDNA with either S-phase or damage-response dNTPs. The 26-mer primer was labeled with Cy3. (E)
Quantification of data in (D). The percentage of long products (≥60 nt) among all extension products is plotted.

The effect of dNTP levels on the catalytic activities of Pol� 4
and Pol� 5

We have previously shown that Rev1 associates with the
four-subunit form of Pol� (22). In order to obtain a sto-
ichiometric Pol� 5 complex, we overproduced all five sub-
units (Rev3-Rev7-Pol31-Pol32-Rev1) in yeast and purified
the complex by tandem affinity chromatography (Figure
2A). As controls, Pol� 4 was purified from a rev1� strain and
the single Rev1 protein was also purified from yeast.

The activities of the various complexes were tested on two
primed circular ssDNA substrates, one 3 kb in length (SKII,
Figure 2C), and the other 100 nt in length (100mer, Figure
2D and E), in the presence of dNTP concentrations that
mimic intracellular S-phase or damage-response levels. The
S-phase concentrations were 39 �M dCTP, 66 �M dTTP,
22 �M dATP and 11 �M dGTP, and damage-response

concentrations were 195 �M dCTP, 383 �M dTTP, 194
�M dATP and 49.5 �M dGTP, as described elsewhere
(16). These concentrations were calculated based on the re-
ported amount of dNTPs per cell in logarithmically grow-
ing yeast cultures or in cultures treated with 0.2 mg/l 4-
nitroquinoline 1-oxide for 150 min (4) using a haploid yeast
cell volume estimate of 45 �m3. Both SKII and 100mer
DNA substrates allow stable loading of PCNA, which is
an essential processivity factor for Pol� (67). PCNA was
loaded by RFC, and replication of either template was ini-
tiated by the addition of the relevant DNA polymerases
(Figure 2B). Analysis of replication of the 3-kb template
showed that the activity of Pol� 4 was inhibited upon the
addition of Rev1 (Figure 2C, compare lanes 6, 7 with 2,
3 and 13, 14 with 9, 10). Furthermore, Pol� 5 purified as
a complex rather than reconstituted from Pol� 4 and Rev1
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showed a similar low activity (lanes 4, 5 and 11, 12). The
increase in dNTP concentrations from the S-phase levels
to the damage-response levels resulted in a significant in-
crease in activity, which was only noticeable in reactions
with Pol� 4.

In the replication assay on the 3-kb template, metabolic
labeling with 32P-dNTPs results in longer products being
more radioactive. This amplifies the actual differences in the
polymerase activity and complicates quantitative compari-
son. In order to obtain a more accurate assessment of the
activities of Pol� complexes and the effects of dNTP levels,
we carried out DNA synthesis assays using the 100mer tem-
plate and a Cy3-labeled primer, and analyzed the replication
products by urea-PAGE (Figure 2D). As a measure of repli-
cation activity, we determined the ratio of long extension
products (60–100 nt) to short extension products (27–59 nt)
(Figure 2E). Analogous to the results in Figure 2C, Rev1
inhibited DNA synthesis by Pol� 4, and the isolated Pol� 5
complex had a low activity similar to the complex recon-
stituted from Pol� 4 and Rev1. The several-fold increase in
dNTP concentrations (from S-phase to damage-response)
resulted in only a minor increase in Pol� 4 activity and no
detectable increase in Pol� 5 activity. It is worth noting that
the effect of increasing the dNTP levels on Pol� 4 was more
pronounced on the 3-kb template (Figure 2C) compared to
the 100mer template (Figure 2E), even after we take into ac-
count the amplification of differences due to the metabolic
labeling in the former assay. One possible explanation is that
a subtle increase in processivity at higher dNTP concen-
trations reduces the number of cycles of dissociation and
re-association required to fully replicate the 3-kb template,
thus resulting in a greater apparent increase in activity.

The fidelity and error specificity of Pol� 4 and Pol� 5 at S-
phase and damage-response dNTP levels

Next, we aimed to understand the effects of DNA damage-
induced expansion of dNTP pools on the fidelity and error
specificity of Pol� . To this end, we performed the M13mp2
lacZ forward mutation assay (66) with purified Pol� 4 and
Pol� 5 using the S-phase and damage-response dNTP con-
centrations. In this assay, a 407-nt single-stranded gap in
a double-stranded M13mp2 DNA is filled by DNA poly-
merases in vitro and nucleotide changes introduced dur-
ing the gap-filling synthesis are detected by genetic selec-
tion in E. coli. All reactions were performed in the pres-
ence of the polymerase accessory proteins PCNA, RFC
and RPA. Analysis of the reaction products by agarose gel
electrophoresis showed that, under the conditions used (see
Materials and Methods), the 407-nucleotide gap was filled
completely by Pol� 4 (Supplementary Figure S1). Consistent
with the inhibitory effect of Rev1 described previously ((64)
and Figure 2), synthesis by Pol� 5 was less efficient. Nev-
ertheless, using a higher concentration of the five-subunit
complex (50 nM instead of 40 nM), we were able to achieve
a nearly complete gap filling (Supplementary Figure S1).

The frequency of lacZ mutants obtained upon transfect-
ing E. coli with Pol� 4 gap-filling reactions was only slightly
elevated (1.3-fold) when damage-response dNTP concen-
trations were used instead of the S-phase dNTPs (Table 1).
As suggested by this minimal change, the increase in dNTP

concentrations also did not greatly affect the overall error
rate, and, notably, did not affect the error specificity of Pol� 4
(Table 1 and Figure 3A). The mutational spectra of Pol� 4 at
both dNTP levels were dominated by single-base substitu-
tions that occurred at rates of 7.5 × 10−4 and 9.2 × 10−4

at S-phase and damage-response dNTPs, respectively (Ta-
ble 1). The rate of single-base insertions/deletions (indels)
was relatively low (1.7 × 10−5 and 2.9 × 10−5 for S-phase
and damage-response dNTPs, respectively; Table 1). Pol� 4
was predominantly promiscuous at G template nucleotides
at both dNTP levels. Interestingly, Pol� 4 was very ineffi-
cient at generating all three types of X-dCTP mismatches,
with the C-dCTP mismatch being the least frequent among
all 12 possible mispairs (<0.54 × 10−5 at S-phase dNTPs
and 0.89 × 10−5 at damage-response dNTPs; Table 1 and
Figure 3A). At both dNTP levels, Pol� 4 showed notable
propensity to create multiple sequence changes (Tables 1
and 2). Their frequency was unaffected by the increase in
dNTP concentrations. Approximately 5% of lacZ mutants
contained multiple changes within short (≤10 nucleotides)
stretches of DNA, which we classified as complex mutations
and which Pol� is notorious for generating during TLS and
copying of undamaged DNA in vivo (47,68). An additional
10% contained multiple mutations separated by larger dis-
tances (Table 2).

Because Rev1 is indispensable for Pol� -dependent muta-
genesis in vivo, we examined how the presence of Rev1 mod-
ulates the fidelity of Pol� . We found that the five-subunit
complex was slightly more error-prone than Pol� 4. The
frequencies of lacZ mutants determined upon transfect-
ing E. coli with the products of Pol� 5 gap-filling reactions
were increased approximately 1.5-fold at both S-phase and
damage-response dNTP concentrations in comparison to
reactions with Pol� 4 (Table 1). As in the case of Pol� 4, the
switch from S-phase to damage-response dNTP concentra-
tions did not greatly affect the lacZ mutant frequency, the
overall error rate or the error specificity of Pol� 5 complex
(Table 1 and Figure 3B). Like Pol� 4, the five-subunit com-
plex was the most promiscuous at G nucleotides, with G-
dATP being the most frequently generated mispair. Gen-
erally, the error spectra produced by Pol� 5 were remark-
ably similar to those of Pol� 4, with one important excep-
tion: the presence of Rev1 significantly increased the rates
of all three X-dCTP mispairs (Table 1, Figure 3B and Sup-
plementary Figure S2B). This increase accounted for most
of the difference in the overall error rate between Pol� 4 and
Pol� 5. The dCTP misincorporation is likely due to the de-
oxycytidyl transferase activity of Rev1, and it indicates that
Pol� and Rev1 can exchange at the primer terminus during
DNA synthesis in vitro. In comparison to Pol� 4, a some-
what higher proportion of lacZ mutations from Pol� 5 reac-
tions constituted complex changes (9% and 15% at S-phase
and damage-response dNTP concentrations, respectively).
This is consistent with the important role of Rev1 in the
generation of Pol� -dependent complex mutations in vivo
(46). An additional 7% and 15% of lacZ mutants from re-
actions with S-phase and damage-response dNTPs, respec-
tively, contained multiple mutations separated by more than
10 nucleotides (Table 3). Interestingly, Pol� 5 reactions pro-
duced a new class of large rearrangements, which involved
substitutions of a large stretch of DNA (>30 nucleotides)
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Table 2. Complex and multiple mutations induced by Pol� 4in vitro

dNTPs Mutation type Sequence change Location in lacZ

S-phase Complex TC → CA 80–81
CCC → TC −45 to −43
GTG → TTT 82–84
TCG → TTCA 139–141
TGGCC → GGC (2X) 61–65
TAATAG → CAATAA 152–157
GTTTTAC → TTTTTA 69–75
CCCTTCCCA → TCCTTCCCT 179– 87
ATTACGAATTCACTG → CGAATTCAC 48–62
ATTACGAATTCACTGGCC → CGAATTCACGC 48–65

Multiple A → G; T → G 91; 103
C → A; T → A 134; 147
G →T; �G 102; 123
G → C; �G 148; 169
A → G; T → G 48; 70
G → T; C → A 53; 81
G → T; T → C −68; −36
C → A; G → C 81; 118
T → A; +T 98; 139
�C; �C 143; 189
C → A; G → T 37; 88
G → T; A → G 102; 153
T → C; �G 104; 159
C → A; A → T −55; 1
T → A; T → C 67; 138
C → T; G → T 58; 148
C → A; T → A −16; 87
T → C; T → A −58; 49
T → A; C → T −50; 58
T → A; T → C −2; 121
G → A; A → T −66; 59
G → A; A → C 9; 171
G → T; G → T −68; 102
G → T; +T −38; 139
G → C; G → T −84; 102
T → C; G → C −22; 169
T → A; GTAA → GTTTT −54; 151–154
G → T; G → C −84; 148
GA → TG; G → T −66 to −67; 149
T → A; G → C; �G −67; 100; 126

Damage-response Complex GTG → TTTG −6 to −4
GTG → TTT 82–84
TGC → CC 122–124
CGCAC → T 168–172
TGGCC → GGC (2X) 61–65
AGCTGC → TGCGCA 190–195
CGTCGTG → GTCGTT 78–84
TCCCCCTTT → ACCCCCTTTT (4X) 131–139

Multiple G → A; T → C 99; 112
A → G; G → T 130; 145
G → C; A → C 99; 130
G → T; G → T 53; 84
G → T; G → A 118; 157
T → C; G → T −36; 11
G → C; C → T 118; 180
G → T; G → A −1; 66
G → T; A → C 123; 190
G → T; A → C −66; 28
C → A; A → T −55; 39
G → T; A → G 88; 188
T → C; G → T −21; 84
G → T; �G 12; 123
T → A; G → C 56; 141
G → T; G → C 53; 169
A → T; �A −26; 94
T → G; T → C −63; 61
G → C; G → C −68; 79
G → A; G → T −68; 84
G → A; +T −77; 139
G → A; +T −84; 139
�G; G → C −47; 178

Sequence changes are listed in the order of increasing distance between two nucleotide changes. Mutations with the distance between them of 10 nucleotides or fewer were
considered complex mutations and counted as a single event. All other detectable nucleotide changes were included into calculation of error-rates for individual mutation types
in Table 1. �, deletion; +, insertion.
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Figure 3. Rates of individual single-base errors generated by Pol� in vitro at intracellular and equimolar dNTP concentrations. The diagrams show rates
of single-base mispairs and insertion/deletion mismatches observed in reactions with (A and C) Pol� 4 and (B and D) Pol� 5 at (A and B) S-phase and
damage-response dNTP concentrations and at (C and D) standard 100 �M dNTPs. Data in panels (A) and (B) are from Table 1. Data for Pol� 4 and Pol� 5
at 100 �M dNTP are based on the analysis of 53 and 80 mutant plaques, respectively. In panels (A) and (B), ‘X·dCTP’ mispairs are shown as open bars.

with a different, typically much shorter, sequence (Table 3).
At damage-response dNTP concentrations, these large re-
arrangements were observed in 5% of lacZ mutants. Unlike
complex mutations affecting short stretches of DNA, such
large rearrangements are not usually seen in the spectra of
Pol� -dependent mutations in vivo. It is possible that they
result from the inhibitory effect of Rev1 on Pol� -dependent
synthesis in vitro and may not be relevant to in vivo situa-
tions.

Prior to this work, the error specificity of Pol� has been
studied using equimolar (100 �M) dNTP concentrations
and enzyme preparations containing mostly Rev3–Rev7
subassembly (26). Although the mutational spectrum ob-
served in that earlier study similarly showed a predomi-
nance of base substitutions and a high frequency of com-
plex mutations, the spectrum of base substitutions was dras-
tically different from the one shown in Figure 3A. To de-
termine if the proper dNTP balance was the key in shap-
ing the error signature of Pol� , we performed gap-filling

reactions with Pol� 4 and Pol� 5 using 100 �M concentra-
tion of each dNTP. The average lacZ mutant frequency for
Pol� 4 reactions (0.018) and the overall error rate for single-
nucleotide changes (8.7 × 10−4) were similar to those ob-
served at the intracellular dNTP levels. However, the error
specificity of Pol� 4 in reactions with equimolar dNTPs was
profoundly different (Figure 3C). The dGTP misincorpo-
ration became the predominant source of mutations, with
the G-dGTP mispair being the single most frequent error.
The use of equimolar dNTP concentrations also elevated
the rate of C-dCTP mispair more than 7-fold in compari-
son to reactions with intracellular dNTPs (Figure 3A and
C and Supplementary Figure S2C). At the same time, the
use of 100 �M dNTPs significantly lowered the ability of
Pol� 4 to misincorporate dTTP: the rates of all three pos-
sible X-dTTP mispairs were drastically decreased (Figure
3A and C and Supplementary Figure S2C). The changes
in the base substitution pattern were consistent with the
dNTP imbalance introduced by the use of equimolar con-
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Table 3. Complex mutations, multiple mutations and large rearrangements induced by Pol� 5in vitro

dNTPs Mutation type Sequence change Location in lacZ

S-phase Complex TA → G −50 to −49
GC →T −38 to −37
TA → AGC 38–39
TA → AG 38–39
GG → TC 89–90
GC → AT 145–146
ATG → TTT −11 to −9
GTG → CTT 82–84
GCG → TCC 100–102
CTG → ATT 146–148
GCA → CCC 169–171
TGCA → G 122–125
GCTG → CCTA 145–148
AATAG → AT 153–157
GTAATAG → T 151–157
TTAATGT → ATAAAGA −73 to −67
AAGAGGCCC → GGGGGCC 160–168

Multiple C → G; �C 146; 158
�T; C → A 113; 129
�A; C → A −45; −23
�A; C → A 94; 146
T → C; G → T −58; 7
C → T; CCCCC → TCCCT 68; 132–136
�G; G → T; G → T −38; 41; 53
C → G; T → G; G → T −55; 3; 47
G → T; �T 12; 122
�C; A → T; T → C 10; 31; 121
G → T; G → T; G → C 63; 149; 178
C → A; C → G −59; 60
del(90); T → C; G → A −167 to −77; −34; 84
T → C; G → A −10; 191

Large rearrangements TGTGTGGAATTGTGAGCGGATAACAATTTCAC → CGT −7 to 25
Damage-response Complex TA → CT 38 – 39

TG → CT 87–88
GG → TC 88–89
GC → CT 149–150
GG → CT 148–149
CCC → GCCT 134–136
TCG → CA 176–178
GCAC → TC −47 to −44
CGTG → TGTA 81–84
AAAA → GAAC 91–94
TTA → GTC 103–105
ATGTT → TAGTTT −11 to −7
TCGTG → GTGTA 80–84
TCGTG → GGGGGG 80–84
CGCAC → GGCA 168–172
CCGTCG → ACGTCC 64–69
GCACCG → CCACCT 169–174
TCCCAA → AT 183–188
ATCCCCC → TTCCCCT 130–136
AGAGGC → GGAGGGGG 161–167
GTGTGGAAT → TTTGAAAG −6 to 3
TCCCCCTTT → CCCCCCTTTTAT 131–140
AGCACATCCCCC → TCC 125–136
ACCCTGGCGTTA → CCCCTGGCGTTC 94–105
ATTACGAATTCACTGG → CGAATTCACTG 48–63

Multiple CCCAGGCTTTACAC → �; C → T −43 to −30; −20
G → T; C → G 89; 101
TG → AA; �G –69 to −68; 47
C → T; A → T −14; 24
+T; C → G 139; 177
G → A; A → G 149; 188
A → T; �C 128; 168
G → T; A → T 88; 130
A → T; C → A 24; 68
C → T; G → T; G → C 134; 151; 178
G → T; A → G 84; 130
A → C; TCCCCC → TTCCCCT 94; 131–136
T → G; GCG → CCT 104; 149–151
G → T; C → A 84; 136
T → A; +T 80; 139
GTCGTTTTACAACG → TTTTTTAA; TCCCCC → TTCCCCT 66–76; 131–136
G → C; A → G 79; 161
C → A; C → G 65; 146
A → C; GGC → AGG 85; 164–166
G → T; AACAATTT → GACAATTTT; CGTTTTACAACG →
TGTTTTACAACA

−4; 15–23; 68 – 79

G → C; G → C; G → T −9; 11; 88
G → T; G → C −18; 88
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Table 3. Continued

dNTPs Mutation type Sequence change Location in lacZ

C → G; C → G 10; 142
G → T; G → T −47; 88
C → A; A → T 10; 160
C → T; +T −30; 139
+T; GGCGTTA → TTCGGTC −71; 99–105
G → A; �A; G → T −24; 94; 157
T → A; C → T −2; 189
T → C; G → T; G → A −36; 149; 164
A → T; C → T −74; 136

Large rearrangements GTTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTTC
→ TTTTA

102–140

GTTGTGTGGAATTGTGAGCGGATAACAATTTCACACAG
GA → AC

−9 to 31

CGTATGTTGTGTGGAATTGTGAGCGGATAACAATTTCA
CACAGG → TGTATT

−14 to 31

GACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAA
CGCAATTAATGTGAGTTAGCTCACTCA → TTTTTTT

−150 to −52

CAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCA
GTGAGCGCAACGCAATTAATGTG → ATTAGTA

−127 to −66

CTTCCGGCTCGTATGTTGTGTGGAATTGTGAGCGGATA
ACAATTTCACACAGGAAACAGCTATGAC → AA

−23 to 43

GTTGTGTGGAATTGTGAGCGGATAACAATTTCACAC → A;
A→C

−9 to 27; 59

TGTTGTGTGGAATTGTGAGCGGATAACAATTTCACACA
GG → AG

−10 to 30

GACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGT
GAGTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTT
ATG → TTTT

−105 to −24

CTCGTATGTTGTGTGGAATTGTGAGCGGATAACAATTT
CACACAGGAAACAGCTATGACCATGATTACGAATTCAC
TGGCCGTCGTTTT →
TCTGGTTCGCTTTGAAGCTCGAATTAAAACGCGATATTTG
AAGTCTTTCGGGCTTCCTCTTAATCTT

−16 to 73

See Table 2 legend for detailed explanation of symbol and data representation.

centrations (relatively higher dGTP and dCTP levels, and
a lower dTTP level). Interestingly, the percentage of lacZ
mutants resulting from complex mutations was greater at
100 �M dNTPs and constituted 13% (compared to 5% with
intracellular dNTPs). Similar results were observed with
Pol� 5: its overall error rate at 100 �M dNTPs (1.7 × 10−3)
was comparable to that at the intracellular dNTPs (Table
1), but the spectrum of single-base changes was dramati-
cally different (Figure 3B and D and Supplementary Figure
S2D). As in the case of Pol� 4, the majority of mutations
produced by Pol� 5 at 100 �M dNTPs resulted from dGTP
and dCTP incorporation, with the G-dGTP being the single
most frequent error (Figure 3D). Again, this is consistent
with the non-physiological high levels of dGTP and dCTP
in the reactions with equimolar dNTPs. Taken together,
these data provide evidence that, although the shift from S-
phase to damage-response dNTP concentrations does not
affect the fidelity and error specificity of Pol� 4 or Pol� 5,
a non-physiological dNTP ratio, as in the case of 100 �M
dNTPs, can dramatically change the error signature of these
polymerases.

Figure 4 shows the distribution in the lacZ sequence
of single-nucleotide changes made by Pol� 4 and Pol� 5 at
the intracellular dNTP concentrations. The overall distri-
bution of mutations appears to be quite uniform in all four
spectra, with the exception of several mild hotspots. The
strongest hotspot was observed in the Pol� 4 spectra for a
+1 frameshift in the TTT homonucleotide run at position
137–139 where almost all +1 frameshifts occurred (Figure
4A and B). Although we could not discern any specific
nucleotide context for generating particular types of mu-

tations by Pol� 4, it could be noted that most of the sites
with frequent G misincorporation are followed by a tem-
plate C, such as at positions −36, 121, 169, 171, 178 in
the ‘S-phase’ mutational spectrum and 79, 121, 141 in the
‘damage-response’ mutational spectrum. This might point
to primer-template misalignment as a possible mechanism
for generating these types of mutations at these particular
sites. The presence of Rev1 in the complex with Pol� 4 did
not change the distribution of mutations (Figure 4C and
D), suggesting that Rev1 does not stimulate misincorpora-
tion of nucleotides at any particular sequence context.

Pol� -dependent mutagenesis in vivo does not require high
dNTP levels

The in vitro data described in the previous subsections in-
dicate that the switch from the S-phase to the damage-
response dNTP concentrations could facilitate copying of
long DNA stretches by Pol� . At the same time, Pol� ac-
tivity on shorter templates, fidelity and error specificity are
only minimally affected by dNTP levels. In yeast cells, Pol� -
dependent mutagenesis is mostly observed when dNTP
pools are expanded. We, therefore, aimed to determine
whether high dNTP levels are essential for Pol� function
in vivo. We first tested whether depletion of dNTP pools
by treatment with HU, an inhibitor of RNR (69), would
decrease Pol� -dependent spontaneous mutagenesis in the
pol3-Y708A strain. Because the pol3-Y708A mutant can-
not tolerate high HU concentrations (48), we used a range
of lower concentrations (10–20 mM) that did not cause
growth arrest in this strain. At 20 mM HU, dNTP pools in
the pol3-Y708A mutant were reproducibly decreased by ap-
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Figure 4. Spectra of single-base substitutions and insertion/deletion mutations generated by Pol� complexes in the lacZ gene at cellular dNTP concentra-
tions. (A) Pol� 4, S-phase dNTPs. (B) Pol� 4, damage-response dNTPs. (C) Pol� 5, S-phase dNTPs. (D) Pol� 5, damage-response dNTPs. In addition to the
mutations shown, one lacZ mutant contained a large deletion spanning nucleotides −119 to 150. Base substitutions are displayed above the lacZ sequence,
insertions and deletions are below the lacZ sequence. Single-base deletions and insertions are shown as triangles and letters with a ‘+’ symbol, respectively.
Deletions of more than one nucleotide are indicated by a line below the sequence with a number of deleted nucleotides next to it. Detectable mutations are
in black, bold text. Silent mutations are in grey. Data are summarized in Table 1 and Figure 3.

proximately 25% within 2 h after the addition of the drug to
logarithmically growing cultures (Figure 5B). An isogenic
wild-type strain also showed decreased average dNTP levels
in the first 30 min of treatment with 20 mM HU (Figure 5B),
although at least some of it could be attributed to the chang-
ing cell cycle distribution. Particularly, the proportion of G1
cells, which have approximately 2-fold lower dNTP pools
(4), varied between the time points (Figure 5C). In contrast,
the cell cycle distribution in the pol3-Y708A strain did not

change significantly during the 2 h in 20 mM HU (Figure
5C), so the dNTP measurements shown in Figure 5B reflect
the actual decrease in intracellular levels. Remarkably, the
frequency of mutation to canavanine resistance (Canr) in
the pol3-Y708A strain was not reduced in the presence of
HU, but was in fact slightly elevated (up to 2-fold at 20 mM
HU; Figure 5A). The mutator effect of pol3-Y708A in the
presence of HU remained completely dependent on Pol� :
the mutant frequency in the pol3-Y708A rev3� strain was
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similar to that in the wild-type strain. These data indicate
that the participation of Pol� in replication of undamaged
DNA in vivo does not depend on high dNTP levels, and that
it is stimulated rather than suppressed by the decrease in
dNTP pools. It is, therefore, likely that the high dNTP pools
in the pol3-Y708A strain are required for efficient replica-
tion by Pol� rather than Pol� . In support of this idea, we
found that the moderate decrease in dNTP concentrations
induced by low doses of HU in our experiments led to a
dramatic reduction in the survival of the pol3-Y708A strain
(Figure 5D). Replication problems caused by the Pol� de-
fect are likely exacerbated by dNTP depletion, increasing
the need for the recruitment Pol� , whose function is unaf-
fected by the reduced dNTP levels.

Next, we examined whether high dNTP pools are re-
quired for Pol� -dependent mutagenesis during lesion by-
pass. While Pol� is predominately an extender polymerase
during TLS across from most DNA lesions, previous stud-
ies showed that it might be a major polymerase involved
in the bypass of UV-induced lesions at low doses of UVC
light (70,71). To study whether Pol� -dependent mutagene-
sis at low UV doses is affected by changes in dNTP pools, we
measured UV-induced Canr mutant frequency in the pres-
ence of HU, such that the bypass of UV lesions would hap-
pen in cells with reduced dNTP levels. Overnight cultures
were plated on complete and selective media containing HU
at the concentrations indicated in Figure 5E and irradiated
with 10 J/m2 of 254 nm UV light within 15 min after plating.
These experiments were done with wild-type yeast strains,
so we could use higher HU concentrations (up to 100 mM),
which deplete dNTP pools more efficiently. UV-induced
mutagenesis was only marginally decreased (approximately
1.5-fold) at the highest dose of HU, while still remaining
an order of magnitude higher than the level of spontaneous
mutagenesis (Figure 5E). Notably, UV-induced mutagene-
sis observed in the presence of HU was completely depen-
dent on Pol� : no induced mutagenesis was seen in the rev3Δ
strain with or without HU (Figure 5E). These data indicate
that, like copying of undamaged DNA, lesion bypass by
Pol� in vivo does not require high dNTP pools. Mutagenesis
at higher UV doses, however, was significantly suppressed
by the HU treatment (Supplementary Figure S3A), consis-
tent with the idea that high dNTP levels are required for the
activity of other DNA polymerases that become important
for TLS at these doses.

To strengthen the conclusion that Pol� function in TLS
and damage-induced mutagenesis does not require high
dNTP pools, we measured UV-induced Canr mutant fre-
quency in cells that were pre-treated with 100 mM HU for
4 h before UV irradiation. We reasoned that dNTP pools
in this case could be more severely reduced by the time
DNA replication machinery encounters lesions. We found
that the frequency of mutation induced by lower doses of
UV (up to 30 J/m2) was, in fact, significantly elevated in
HU-treated cells in comparison to cells not treated with
HU (Supplementary Figure S3B). Similar to the experiment
shown in Supplementary Figure S3A, mutagenesis at higher
UV doses was reduced in cells pre-treated with HU. The in-
crease in Pol� mutagenesis at lower UV doses could poten-
tially result from the inhibition of error-free mechanisms of
lesion bypass under conditions of severely reduced dNTP

pools, or from altered fidelity of nucleotide incorporation
opposite lesions by Pol� . In either case, the results clearly
demonstrate that the capacity of Pol� to bypass lesions in
vivo does not require expanded dNTP pools. High dNTP
levels, however, might be essential for lesion bypass by other
DNA polymerases and for repair under DNA-damaging
conditions.

DISCUSSION

Accumulating in vivo and in vitro data suggest that intra-
cellular dNTP levels play an important role in determining
the fidelity of DNA replication, and mimicking physiologi-
cally relevant dNTP concentrations is important for deduc-
ing DNA polymerase signatures from in vitro experiments
(5,7–8,13,72). High or imbalanced dNTP pools increase the
probability of nucleotide misinsertion, mismatched primer
extension and strand misalignment by replicative DNA
polymerases. For example, mutations in the yeast RNR1
gene encoding a subunit of RNR lead to alterations in
dNTP pools and, as a result, to a dramatic increase in
genome instability (6). The mutational specificity observed
in these strains correlates well with misincorporation of nu-
cleotides that are in excess. Higher dNTP concentrations
may reduce proofreading by replicative DNA polymerases,
contributing to the increased error rate (6,9,13,72). Recent
work by Mertz et al. demonstrated that the use of equimo-
lar dNTP concentrations to determine error specificity of a
mutator Pol� variant in the M13mp2 assay drastically un-
derestimated the actual error rates for individual mispairs
and significantly altered the mutational signature (8). In-
creasing dNTP concentrations also decreased the fidelity of
exonuclease-deficient Polε in the M13mp2 assay and altered
the specificity of nucleotide misincorporation (73). While
the expansion of cellular dNTP pools is an integral part of
DNA damage response, the effects of dNTP levels on the
function of TLS polymerases are poorly understood. A pre-
vious study suggested that high dNTP levels stimulate TLS
in E. coli by attenuating the proofreading activity of replica-
tive DNA polymerase III (13). However, it has not been es-
tablished whether elevated dNTP pools also stimulate the
activity of TLS polymerases. In this work, we determined
how the physiological shift from the S-phase to the damage-
response dNTP concentrations affects the activity, fidelity
and error specificity of yeast Pol� . We provide evidence that,
unlike replicative DNA polymerases, Pol� is remarkably in-
sensitive to proportional increases and decreases in dNTP
concentrations and does not require high dNTP levels for
its in vivo functions. Thus, Pol� -dependent synthesis might
represent a unique cellular mechanism for tolerating low
dNTP levels. The ability of Pol� to work at low dNTP lev-
els also explains the long-known involvement of this poly-
merase in the generation of spontaneous mutations (57,58),
which presumably arise during the normal S-phase when
checkpoints are not activated and dNTP pools are not ex-
panded.

One of the important insights from this work is that the
error signature of Pol� at the physiological dNTP levels
(Figure 3A) is drastically different from its previously re-
ported signature observed at equimolar (100 �M) dNTP
concentrations (26). This finding further emphasizes the
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Figure 5. Pol� -dependent mutagenesis in vivo does not require high dNTP levels. (A) The effect of hydroxyurea (HU) treatment on the Pol� -dependent
mutator phenotype of the pol3-Y708A yeast strain. Wild-type, pol3-Y708A and pol3-Y708A rev3� strains were grown overnight in the presence of indicated
HU concentrations and then plated onto selective and complete media. Mutant frequencies are medians and 95% confidence intervals for at least 18
independent cultures. (B) Time course analysis of intracellular dNTP levels in wild-type and pol3-Y708A strains treated with 20 mM HU. Time after
the addition of HU is indicated on the X-axis. The dNTP levels are normalized to total NTPs. Data are presented as the mean for two independent
measurements. Error bars represent the range of values. (C) FACS analysis of HU-treated cultures of wild-type and pol3-Y708A strains that were used
for dNTP pool measurements in B. Time after the addition of HU is indicated on the left. (D) The effect of HU treatment on survival of the pol3-Y708A
and wild-type strains. The strains were grown overnight in the presence of indicated HU concentrations, and appropriate dilutions were then plated on SC
medium. Survival was determined by dividing the number of colonies from HU-treated cultures by the number of colonies from untreated cultures. Data
are means for 18 independent cultures. Standard errors are shown unless the size of the error bar is smaller than the size of the plot symbol. (E) The effect
of HU treatment on Pol� -dependent mutagenesis induced by 10 J/m2 UV irradiation. Overnight cultures of the wild-type and rev3� strains were plated
onto selective and complete media with indicated HU concentrations and then irradiated with 10 J/m2 of UV light. Data are the average frequencies and
standard errors for three independent determinations.

need to mimic absolute and relative in vivo dNTP levels in
order to deduce DNA polymerase signatures from in vitro
studies. It is also interesting that, in addition to using a non-
physiological dNTP ratio, the study by Zhong et al. was
performed at a time when Pol� was thought to be a two-
subunit enzyme. Although low levels of four-subunit en-
zyme in those Pol� preparations are now thought to be pre-
dominately responsible for the observed polymerase activ-
ity (22), the abundance of two-subunit Rev3-Rev7 complex
and the variable content of Pol31–Pol32 subunits could have
contributed to the differences in error signature. Curiously,
while we could not recapitulate the error spectrum reported
by Zhong et al. even when we used 100 �M dNTPs with
Pol� 4, we saw a rather close similarity when we used Pol� 5
and 100 �M dNTPs (see Figure 3D and the error specificity
of Pol� in the presence of accessory proteins in (26). The
only major difference was a higher rate of A-dCTP errors

in the study by Zhong et al. that might have resulted from
a bias introduced by strong hotspots that we did not ob-
serve. This profound spectra similarity suggests that the er-
ror spectrum reported by Zhong et al. might have, in fact,
resulted from the activity of Pol� 5.

In line with the previous report (64), we observed that
Rev1 drastically inhibits the activity of Pol� 4 in vitro (Figure
2C–E). Although the mechanism of this inhibition remains
enigmatic and requires further investigation, we speculate
that the competition of Rev1 and Pol� for the primer termi-
nus could negatively affect the rate of DNA synthesis. The
strong increase in C misincorporation in Pol� 5 reactions in
comparison to Pol� 4 (Table 1, Figure 3A and B and Sup-
plementary Figure S2A and B) is consistent with Pol� and
Rev1 switching at the primer terminus. However, presum-
ably lower processivity and a slower rate of dNTP incor-
poration by Rev1, as well as the delays associated with the
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physical exchange of the polymerases, could decrease the
overall rate of synthesis. While it is an intriguing possibil-
ity that Rev1 restricts the activity of Pol� on undamaged
DNA, thus preventing excessive mutagenesis, it is also pos-
sible that the inhibitory effect of Rev1 is related to a missing
regulatory component in our in vitro assays. In particular,
monoubiquitination of PCNA or phosphorylation of Rev1
might be necessary for the stimulation of Pol� by Rev1. In
agreement with the latter idea, we have recently identified
a mutant form of Rev1 with a deletion of the highly con-
served M1 motif (Rev1-(135–150)). This Rev1 variant en-
hances TLS and processive replication by Pol� and possi-
bly phenocopies a required post-translational modification
of Rev1 (64).

This study also reveals that Pol� does not require high
dNTP pools for the replication of undamaged DNA or
the bypass of DNA lesions in vivo. DRIM was not de-
creased in the pol3-Y708A strain, but on the contrary, was
even further elevated when dNTP pools were brought down
by treatment with HU (Figure 5A). Similarly, mutagene-
sis induced by low doses of UV light was increased rather
than decreased when cells were treated with HU prior to
UV irradiation (Supplementary Figure S3B). In line with
these observations, using damage-response dNTP concen-
trations for TLS by Pol� in vitro only slightly improved nu-
cleotide incorporation opposite cis-syn cyclobutane pyrimi-
dine dimer and (6–4)-photoproduct and the bypass of these
lesions (17). Furthermore, we observed only a minor differ-
ence in the activity, fidelity and error specificity of Pol� 4 and
Pol� 5 when damage-response dNTP concentrations were
used instead of S-phase concentrations (Figure 2, Table 1
and Figure 3A and B). These findings are consistent with
an earlier observation that Km for the insertion of a prop-
erly base-paired nucleotide by Pol� is much lower than the
calculated S-phase dNTP levels even when a rather inac-
tive two-subunit Pol� without PCNA is used (74). Thus,
the rise in dNTP levels in response to DNA damage or
replication perturbations may be primarily needed to fa-
cilitate other, non-mutagenic tolerance mechanisms. High
dNTP levels could improve the activity of replicative DNA
polymerases, as well as the TLS capacity of Pol�, which, at
least in the case of UV-induced lesions, would contribute to
mutation avoidance. Expanded dNTP pools could also po-
tentially promote DNA repair and high-fidelity template-
switching mechanisms of damage tolerance, where synthesis
by replicative DNA polymerases might be required. Indeed,
up-regulation of the RNR activity has been shown to pro-
mote the rate of fork progression during normal replication
and under conditions of replication stress (75). Recent bio-
chemical studies showed that the rate of DNA synthesis by
Pol� is not optimal at physiological dNTP concentrations
and can be substantially improved by increasing dNTP lev-
els (76). Increased dNTP concentrations are also known to
facilitate the bypass of certain lesions by replicative DNA
polymerases in vitro and in vivo (16,77).

Previous studies of the UV sensitivity of yeast strains de-
ficient in TLS revealed a differential involvement of TLS
polymerases in the bypass of UV lesions at low and high
doses of irradiation. Pol� -deficient strains show higher sen-
sitivity to low doses of UV light than Pol� mutants, while
Pol�-deficient strains are more sensitive to higher doses

(>30 J/m2; (70)). These data imply that the bypass of UV-
induced lesions at lower doses relies predominantly on Pol� ,
while other polymerases become important at higher doses.
The lack of effect of HU treatment on UV-induced mutage-
nesis at the low UV dose and the clear inhibition of mutage-
nesis by HU at higher UV doses (Figure 5E and Supplemen-
tary Figure S3) further proves that, unlike other DNA poly-
merases, Pol� does not require high dNTP levels for TLS in
vivo. On the contrary, expanded dNTP pools become vital
for lesion bypass at higher doses of UV irradiation when
other DNA polymerases must be involved, such as Pol� or
replicative polymerases. The importance of high dNTP con-
centrations at high doses of UV light has been noted previ-
ously, and it has been suggested that elevated dNTP pools
promote lesion bypass by Pol� (77). In addition, upregula-
tion of dNTPs improves DNA damage tolerance of yeast
strains deficient in all three TLS polymerases, presumably
by stimulating synthesis by replicative polymerases (16).
While the extent of dNTP pool expansion in cells treated
with low and high UV doses has not been compared, ex-
periments with chemical mutagens showed that lower doses
result in a less pronounced increase in dNTP levels (4). It is
tempting to speculate that the crucial role of Pol� in dam-
age tolerance at lower UV doses is due to dNTP levels not
being high enough at these doses for the other polymerases
to bypass lesions.

In summary, it appears possible that Pol� evolved toward
decreasing the dependence of its DNA synthesis activity on
the levels of intracellular dNTPs, providing cells with a res-
cue tool when normal DNA replication is perturbed due to
low dNTP supply. This hypothesis is further reinforced by
our earlier finding that treatment of wild-type yeast strains
with HU causes a Pol� -dependent increase in mutagene-
sis (47). Interestingly, it has been reported that depletion of
dNTP pools can contribute to early stages of tumorigenesis
by promoting replication stress and genome instability (78–
80). The yeast and mammalian Pol� have the same subunit
composition, show high amino acid sequence homology,
and perform similar functions in TLS and DNA damage-
induced mutagenesis (81–87). If human Pol� is similarly in-
sensitive to decreases in dNTP levels, it is likely that the
genome instability induced by depletion of dNTP pools in
human cells results, at least in part, from error-prone DNA
synthesis by Pol� recruited to the stalled replication forks.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

The authors thank Tony Mertz for the preparations of
PCNA and RPA used in the fidelity assays, Tom Kunkel and
Kasia Bebenek for E. coli CSH50 strain used in these assays,
and Elizabeth Moore and Krista Brown for technical assis-
tance.

FUNDING

National Institutes of Health [ES015869 to P.V.S.,
GM032431 and GM118129 to P.M.B.]; Swedish Can-
cer Society, the Knut and Alice Wallenberg Foundation



1216 Nucleic Acids Research, 2017, Vol. 45, No. 3

and the Swedish Research Council grants to A.C.; Uni-
versity of Nebraska Medical Center Graduate Studies
Assistantship/Fellowship (to O.V.K.). Funding for open
access charge: NIH [ES015869].
Conflict of interest statement. None declared.

REFERENCES
1. Labib,K. and De Piccoli,G. (2011) Surviving chromosome

replication: the many roles of the S-phase checkpoint pathway.
Philos. Trans. R. Soc. Lond. B Biol. Sci., 366, 3554–3561.

2. Reichard,P. (1988) Interactions between deoxyribonucleotide and
DNA synthesis. Annu. Rev. Biochem., 57, 349–374.

3. Andreson,B.L., Gupta,A., Georgieva,B.P. and Rothstein,R. (2010)
The ribonucleotide reductase inhibitor, Sml1, is sequentially
phosphorylated, ubiquitylated and degraded in response to DNA
damage. Nucleic Acids Res., 38, 6490–6501.

4. Chabes,A., Georgieva,B., Domkin,V., Zhao,X., Rothstein,R. and
Thelander,L. (2003) Survival of DNA damage in yeast directly
depends on increased dNTP levels allowed by relaxed feedback
inhibition of ribonucleotide reductase. Cell, 112, 391–401.

5. Williams,L.N., Marjavaara,L., Knowels,G.M., Schultz,E.M.,
Fox,E.J., Chabes,A. and Herr,A.J. (2015) dNTP pool levels modulate
mutator phenotypes of error-prone DNA polymerase ε variants.
Proc. Natl. Acad. Sci. U.S.A., 112, E2457–E2466.

6. Kumar,D., Abdulovic,A.L., Viberg,J., Nilsson,A.K., Kunkel,T.A.
and Chabes,A. (2011) Mechanisms of mutagenesis in vivo due to
imbalanced dNTP pools. Nucleic Acids Res., 39, 1360–1371.

7. Kumar,D., Viberg,J., Nilsson,A.K. and Chabes,A. (2010) Highly
mutagenic and severely imbalanced dNTP pools can escape detection
by the S-phase checkpoint. Nucleic Acids Res., 38, 3975–3983.

8. Mertz,T.M., Sharma,S., Chabes,A. and Shcherbakova,P.V. (2015)
Colon cancer-associated mutator DNA polymerase � variant causes
expansion of dNTP pools increasing its own infidelity. Proc. Natl.
Acad. Sci. U.S.A., 112, E2467–E2476.

9. Watt,D.L., Buckland,R.J., Lujan,S.A., Kunkel,T.A. and Chabes,A.
(2016) Genome-wide analysis of the specificity and mechanisms of
replication infidelity driven by imbalanced dNTP pools. Nucleic Acids
Res., 44, 1669–1680.

10. Ahluwalia,D. and Schaaper,R.M. (2013) Hypermutability and error
catastrophe due to defects in ribonucleotide reductase. Proc. Natl.
Acad. Sci. U.S.A., 110, 18596–18601.

11. Tse,L., Kang,T.M., Yuan,J., Mihora,D., Becket,E., Maslowska,K.H.,
Schaaper,R.M. and Miller,J.H. (2016) Extreme dNTP pool changes
and hypermutability in dcd ndk strains. Mutat. Res., 784-785, 16–24.

12. Schaaper,R.M. and Mathews,C.K. (2013) Mutational consequences
of dNTP pool imbalances in E. coli. DNA Repair (Amst), 12, 73–79.

13. Gon,S., Napolitano,R., Rocha,W., Coulon,S. and Fuchs,R.P. (2011)
Increase in dNTP pool size during the DNA damage response plays a
key role in spontaneous and induced-mutagenesis in Escherichia coli.
Proc. Natl. Acad. Sci. U.S.A., 108, 19311–19316.

14. Huang,M., Zhou,Z. and Elledge,S.J. (1998) The DNA replication and
damage checkpoint pathways induce transcription by inhibition of
the Crt1 repressor. Cell, 94, 595–605.

15. Zhao,X., Chabes,A., Domkin,V., Thelander,L. and Rothstein,R.
(2001) The ribonucleotide reductase inhibitor Sml1 is a new target of
the Mec1/Rad53 kinase cascade during growth and in response to
DNA damage. EMBO J., 20, 3544–3553.

16. Sabouri,N., Viberg,J., Goyal,D.K., Johansson,E. and Chabes,A.
(2008) Evidence for lesion bypass by yeast replicative DNA
polymerases during DNA damage. Nucleic Acids Res., 36, 5660–5667.

17. Stone,J.E., Kumar,D., Binz,S.K., Inase,A., Iwai,S., Chabes,A.,
Burgers,P.M. and Kunkel,T.A. (2011) Lesion bypass by S. cerevisiae
Pol � alone. DNA Repair, 10, 826–834.

18. Haracska,L., Prakash,S. and Prakash,L. (2000) Replication past
O(6)-methylguanine by yeast and human DNA polymerase �. Mol.
Cell. Biol., 20, 8001–8007.

19. Haracska,L., Unk,I., Johnson,R.E., Johansson,E., Burgers,P.M.,
Prakash,S. and Prakash,L. (2001) Roles of yeast DNA polymerases �
and � and of Rev1 in the bypass of abasic sites. Genes Dev., 15,
945–954.

20. Johnson,R.E., Washington,M.T., Haracska,L., Prakash,S. and
Prakash,L. (2000) Eukaryotic polymerases � and � act sequentially to
bypass DNA lesions. Nature, 406, 1015–1019.

21. Johnson,R.E., Haracska,L., Prakash,S. and Prakash,L. (2001) Role
of DNA polymerase � in the bypass of a (6-4) TT photoproduct. Mol.
Cell. Biol., 21, 3558–3563.

22. Makarova,A.V., Stodola,J.L. and Burgers,P.M. (2012) A four-subunit
DNA polymerase � complex containing Pol � accessory subunits is
essential for PCNA-mediated mutagenesis. Nucleic Acids Res., 40,
11618–11626.

23. Johnson,R.E., Prakash,L. and Prakash,S. (2012) Pol31 and Pol32
subunits of yeast DNA polymerase � are also essential subunits of
DNA polymerase � . Proc. Natl. Acad. Sci. U.S.A., 109, 12455–12460.

24. Braithwaite,D.K. and Ito,J. (1993) Compilation, alignment, and
phylogenetic relationships of DNA polymerases. Nucleic Acids Res.,
21, 787–802.

25. Ito,J. and Braithwaite,D.K. (1991) Compilation and alignment of
DNA polymerase sequences. Nucleic Acids Res., 19, 4045–4057.

26. Zhong,X., Garg,P., Stith,C.M., Nick McElhinny,S.A., Kissling,G.E.,
Burgers,P.M. and Kunkel,T.A. (2006) The fidelity of DNA synthesis
by yeast DNA polymerase � alone and with accessory proteins.
Nucleic Acids Res., 34, 4731–4742.

27. Guo,D., Wu,X., Rajpal,D.K., Taylor,J.S. and Wang,Z. (2001)
Translesion synthesis by yeast DNA polymerase � from templates
containing lesions of ultraviolet radiation and acetylaminofluorene.
Nucleic Acids Res., 29, 2875–2883.

28. Lawrence,C.W. (2004) Cellular functions of DNA polymerase � and
Rev1 protein. Adv. Protein Chem., 69, 167–203.

29. Makarova,A.V. and Burgers,P.M. (2015) Eukaryotic DNA
polymerase � . DNA Repair (Amst), 29, 47–55.

30. D’Souza,S. and Walker,G.C. (2006) Novel role for the C terminus of
Saccharomyces cerevisiae Rev1 in mediating protein-protein
interactions. Mol. Cell. Biol., 26, 8173–8182.

31. Guo,C., Fischhaber,P.L., Luk-Paszyc,M.J., Masuda,Y., Zhou,J.,
Kamiya,K., Kisker,C. and Friedberg,E.C. (2003) Mouse Rev1 protein
interacts with multiple DNA polymerases involved in translesion
DNA synthesis. EMBO J., 22, 6621–6630.

32. Murakumo,Y., Ogura,Y., Ishii,H., Numata,S., Ichihara,M.,
Croce,C.M., Fishel,R. and Takahashi,M. (2001) Interactions in the
error-prone postreplication repair proteins hREV1, hREV3, and
hREV7. J. Biol. Chem., 276, 35644–35651.

33. Ohashi,E., Murakumo,Y., Kanjo,N., Akagi,J., Masutani,C.,
Hanaoka,F. and Ohmori,H. (2004) Interaction of hREV1 with three
human Y-family DNA polymerases. Genes Cells, 9, 523–531.

34. Acharya,N., Haracska,L., Johnson,R.E., Unk,I., Prakash,S. and
Prakash,L. (2005) Complex formation of yeast Rev1 and Rev7
proteins: a novel role for the polymerase-associated domain. Mol.
Cell. Biol., 25, 9734–9740.

35. Acharya,N., Johnson,R.E., Pages,V., Prakash,L. and Prakash,S.
(2009) Yeast Rev1 protein promotes complex formation of DNA
polymerase � with Pol32 subunit of DNA polymerase �. Proc. Natl.
Acad. Sci. U.S.A., 106, 9631–9636.

36. Tissier,A., Kannouche,P., Reck,M.P., Lehmann,A.R., Fuchs,R.P. and
Cordonnier,A. (2004) Co-localization in replication foci and
interaction of human Y-family members, DNA polymerase pol � and
REV1 protein. DNA Repair (Amst), 3, 1503–1514.

37. Nelson,J.R., Lawrence,C.W. and Hinkle,D.C. (1996) Deoxycytidyl
transferase activity of yeast REV1 protein. Nature, 382, 729–731.

38. Waters,L.S., Minesinger,B.K., Wiltrout,M.E., D’Souza,S.,
Woodruff,R.V. and Walker,G.C. (2009) Eukaryotic translesion
polymerases and their roles and regulation in DNA damage
tolerance. Microbiol. Mol. Biol. Rev., 73, 134–154.

39. Pagès,V., Johnson,R.E., Prakash,L. and Prakash,S. (2008)
Mutational specificity and genetic control of replicative bypass of an
abasic site in yeast. Proc. Natl. Acad. Sci. U.S.A., 105, 1170–1175.

40. Kim,N., Mudrak,S.V. and Jinks-Robertson,S. (2011) The dCMP
transferase activity of yeast Rev1 is biologically relevant during the
bypass of endogenously generated AP sites. DNA Repair (Amst), 10,
1262–1271.

41. Otsuka,C., Kunitomi,N., Iwai,S., Loakes,D. and Negishi,K. (2005)
Roles of the polymerase and BRCT domains of Rev1 protein in
translesion DNA synthesis in yeast in vivo. Mutat. Res., 578, 79–87.



Nucleic Acids Research, 2017, Vol. 45, No. 3 1217

42. Wiltrout,M.E. and Walker,G.C. (2011) The DNA polymerase activity
of Saccharomyces cerevisiae Rev1 is biologically significant. Genetics,
187, 21–35.

43. Zhou,Y., Wang,J., Zhang,Y. and Wang,Z. (2010) The catalytic
function of the Rev1 dCMP transferase is required in a lesion-specific
manner for translesion synthesis and base damage-induced
mutagenesis. Nucleic Acids Res., 38, 5036–5046.

44. Chan,K., Resnick,M.A. and Gordenin,D.A. (2013) The choice of
nucleotide inserted opposite abasic sites formed within chromosomal
DNA reveals the polymerase activities participating in translesion
DNA synthesis. DNA Repair (Amst), 12, 878–889.

45. Northam,M.R., Garg,P., Baitin,D.M., Burgers,P.M. and
Shcherbakova,P.V. (2006) A novel function of DNA polymerase �
regulated by PCNA. EMBO J., 25, 4316–4325.

46. Northam,M.R., Moore,E.A., Mertz,T.M., Binz,S.K., Stith,C.M.,
Stepchenkova,E.I., Wendt,K.L., Burgers,P.M. and Shcherbakova,P.V.
(2014) DNA polymerases � and Rev1 mediate error-prone bypass of
non-B DNA structures. Nucleic Acids Res., 42, 290–306.

47. Northam,M.R., Robinson,H.A., Kochenova,O.V. and
Shcherbakova,P.V. (2010) Participation of DNA polymerase � in
replication of undamaged DNA in Saccharomyces cerevisiae.
Genetics, 184, 27–42.

48. Pavlov,Y.I., Shcherbakova,P.V. and Kunkel,T.A. (2001) In vivo
consequences of putative active site mutations in yeast DNA
polymerases �, ε, �, and � . Genetics, 159, 47–64.

49. Shcherbakova,P.V., Noskov,V.N., Pshenichnov,M.R. and Pavlov,Y.I.
(1996) Base analog 6-N-hydroxylaminopurine mutagenesis in the
yeast S. cerevisiae is controlled by replicative DNA polymerases.
Mutat. Res., 369, 33–44.

50. Aksenova,A., Volkov,K., Maceluch,J., Pursell,Z.F., Rogozin,I.B.,
Kunkel,T.A., Pavlov,Y.I. and Johansson,E. (2010) Mismatch
repair-independent increase in spontaneous mutagenesis in yeast
lacking non-essential subunits of DNA polymerase ε. PLoS Genet., 6,
e1001209.

51. Becker,J.R., Nguyen,H.D., Wang,X. and Bielinsky,A.K. (2014)
Mcm10 deficiency causes defective-replisome-induced mutagenesis
and a dependency on error-free postreplicative repair. Cell Cycle, 13,
1737–1748.

52. Garbacz,M., Araki,H., Flis,K., Bebenek,A., Zawada,A.E.,
Jonczyk,P., Makiela-Dzbenska,K. and Fijalkowska,I.J. (2015)
Fidelity consequences of the impaired interaction between DNA
polymerase ε and the GINS complex. DNA Repair (Amst), 29, 23–35.

53. Grabowska,E., Wronska,U., Denkiewicz,M., Jaszczur,M.,
Respondek,A., Alabrudzinska,M., Suski,C., Makiela-Dzbenska,K.,
Jonczyk,P. and Fijalkowska,I.J. (2014) Proper functioning of the
GINS complex is important for the fidelity of DNA replication in
yeast. Mol. Microbiol., 92, 659–680.

54. Kraszewska,J., Garbacz,M., Jonczyk,P., Fijalkowska,I.J. and
Jaszczur,M. (2012) Defect of Dpb2p, a noncatalytic subunit of DNA
polymerase ε, promotes error prone replication of undamaged
chromosomal DNA in Saccharomyces cerevisiae. Mutat. Res., 737,
34–42.

55. Kadyrova,L.Y., Mertz,T.M., Zhang,Y., Northam,M.R., Sheng,Z.,
Lobachev,K.S., Shcherbakova,P.V. and Kadyrov,F.A. (2013) A
reversible histone H3 acetylation cooperates with mismatch repair
and replicative polymerases in maintaining genome stability. PLoS
Genet., 9, e1003899.

56. Stodola,J.L., Stith,C.M. and Burgers,P.M. (2016) Proficient
replication of the yeast genome by a viral DNA polymerase. J. Biol.
Chem., 291, 11698–11705.

57. Cassier,C., Chanet,R., Henriques,J.A. and Moustacchi,E. (1980) The
effects of three PSO genes on induced mutagenesis : a novel class of
mutationally defective yeast. Genetics, 96, 841–857.

58. Quah,S.K., von Borstel,R.C. and Hastings,P.J. (1980) The origin of
spontaneous mutation in Saccharomyces cerevisiae. Genetics, 96,
819–839.

59. Shcherbakova,P.V. and Kunkel,T.A. (1999) Mutator phenotypes
conferred by MLH1 overexpression and by heterozygosity for mlh1
mutations. Mol. Cell. Biol., 19, 3177–3183.

60. Henricksen,L.A., Umbricht,C.B. and Wold,M.S. (1994) Recombinant
replication protein A: expression, complex formation, and functional
characterization. J. Biol. Chem., 269, 11121–11132.

61. Eissenberg,J.C., Ayyagari,R., Gomes,X.V. and Burgers,P.M. (1997)
Mutations in yeast proliferating cell nuclear antigen define distinct

sites for interaction with DNA polymerase � and DNA polymerase ε.
Mol. Cell. Biol., 17, 6367–6378.

62. Fortune,J.M., Stith,C.M., Kissling,G.E., Burgers,P.M. and
Kunkel,T.A. (2006) RPA and PCNA suppress formation of large
deletion errors by yeast DNA polymerase �. Nucleic Acids Res., 34,
4335–4341.

63. Gomes,X.V., Gary,S.L. and Burgers,P.M. (2000) Overproduction in
Escherichia coli and characterization of yeast replication factor C
lacking the ligase homology domain. J. Biol. Chem., 275,
14541–14549.

64. Makarova,A.V., Nick McElhinny,S.A., Watts,B.E., Kunkel,T.A. and
Burgers,P.M. (2014) Ribonucleotide incorporation by yeast DNA
polymerase � . DNA Repair (Amst), 18, 63–67.

65. Jia,S., Marjavaara,L., Buckland,R., Sharma,S. and Chabes,A. (2015)
Determination of deoxyribonucleoside triphosphate concentrations
in yeast cells by strong anion-exchange high-performance liquid
chromatography coupled with ultraviolet detection. Methods Mol.
Biol., 1300, 113–121.

66. Bebenek,K. and Kunkel,T.A. (1995) Analyzing fidelity of DNA
polymerases. Methods Enzymol., 262, 217–232.

67. Garg,P., Stith,C.M., Majka,J. and Burgers,P.M. (2005) Proliferating
cell nuclear antigen promotes translesion synthesis by DNA
polymerase � . J. Biol. Chem., 280, 23446–23450.

68. Harfe,B.D. and Jinks-Robertson,S. (2000) DNA polymerase �
introduces multiple mutations when bypassing spontaneous DNA
damage in Saccharomyces cerevisiae. Mol. Cell, 6, 1491–1499.

69. Krakoff,I.H., Brown,N.C. and Reichard,P. (1968) Inhibition of
ribonucleoside diphosphate reductase by hydroxyurea. Cancer Res.,
28, 1559–1565.

70. Abdulovic,A.L. and Jinks-Robertson,S. (2006) The in vivo
characterization of translesion synthesis across UV-induced lesions in
Saccharomyces cerevisiae: insights into Pol � - and Pol �-dependent
frameshift mutagenesis. Genetics, 172, 1487–1498.

71. Sharma,N.M., Kochenova,O.V. and Shcherbakova,P.V. (2011) The
non-canonical protein binding site at the monomer-monomer
interface of yeast proliferating cell nuclear antigen (PCNA) regulates
the Rev1-PCNA interaction and Pol�/Rev1-dependent translesion
DNA synthesis. J. Biol. Chem., 286, 33557–33566.

72. Buckland,R.J., Watt,D.L., Chittoor,B., Nilsson,A.K., Kunkel,T.A.
and Chabes,A. (2014) Increased and imbalanced dNTP pools
symmetrically promote both leading and lagging strand replication
infidelity. PLoS Genet., 10, e1004846.

73. Shcherbakova,P.V., Pavlov,Y.I., Chilkova,O., Rogozin,I.B.,
Johansson,E. and Kunkel,T.A. (2003) Unique error signature of the
four-subunit yeast DNA polymerase ε. J. Biol. Chem., 278,
43770–43780.

74. Haracska,L., Prakash,S. and Prakash,L. (2003) Yeast DNA
polymerase � is an efficient extender of primer ends opposite from
7,8-dihydro-8-Oxoguanine and O6-methylguanine. Mol. Cell. Biol.,
23, 1453–1459.

75. Poli,J., Tsaponina,O., Crabbe,L., Keszthelyi,A., Pantesco,V.,
Chabes,A., Lengronne,A. and Pasero,P. (2012) dNTP pools
determine fork progression and origin usage under replication stress.
EMBO J., 31, 883–894.

76. Stodola,J.L. and Burgers,P.M. (2016) Resolving individual steps of
Okazaki-fragment maturation at a millisecond timescale. Nat. Struct.
Mol. Biol., 23, 402–408.

77. Lis,E.T., O’Neill,B.M., Gil-Lamaignere,C., Chin,J.K. and
Romesberg,F.E. (2008) Identification of pathways controlling DNA
damage induced mutation in Saccharomyces cerevisiae. DNA Repair
(Amst), 7, 801–810.

78. Bester,A.C., Roniger,M., Oren,Y.S., Im,M.M., Sarni,D., Chaoat,M.,
Bensimon,A., Zamir,G., Shewach,D.S. and Kerem,B. (2011)
Nucleotide deficiency promotes genomic instability in early stages of
cancer development. Cell, 145, 435–446.

79. Gorrini,C., Squatrito,M., Luise,C., Syed,N., Perna,D., Wark,L.,
Martinato,F., Sardella,D., Verrecchia,A., Bennett,S. et al. (2007)
Tip60 is a haplo-insufficient tumour suppressor required for an
oncogene-induced DNA damage response. Nature, 448, 1063–1067.

80. Niida,H., Shimada,M., Murakami,H. and Nakanishi,M. (2010)
Mechanisms of dNTP supply that play an essential role in
maintaining genome integrity in eukaryotic cells. Cancer Sci., 101,
2505–2509.



1218 Nucleic Acids Research, 2017, Vol. 45, No. 3

81. Baranovskiy,A.G., Lada,A.G., Siebler,H.M., Zhang,Y., Pavlov,Y.I.
and Tahirov,T.H. (2012) DNA polymerase � and � switch by sharing
accessory subunits of DNA polymerase �. J. Biol. Chem., 287,
17281–17287.

82. Van Sloun,P.P., Varlet,I., Sonneveld,E., Boei,J.J., Romeijn,R.J.,
Eeken,J.C. and De Wind,N. (2002) Involvement of mouse Rev3 in
tolerance of endogenous and exogenous DNA damage. Mol. Cell.
Biol., 22, 2159–2169.

83. Gibbs,P.E., McGregor,W.G., Maher,V.M., Nisson,P. and
Lawrence,C.W. (1998) A human homolog of the Saccharomyces
cerevisiae REV3 gene, which encodes the catalytic subunit of DNA
polymerase � . Proc. Natl. Acad. Sci. U.S.A., 95, 6876–6880.

84. Van Sloun,P.P., Romeijn,R.J. and Eeken,J.C. (1999) Molecular
cloning, expression and chromosomal localisation of the mouse Rev3l

gene, encoding the catalytic subunit of polymerase � . Mutat. Res.,
433, 109–116.

85. Li,Z., Zhang,H., McManus,T.P., McCormick,J.J., Lawrence,C.W. and
Maher,V.M. (2002) hREV3 is essential for error-prone translesion
synthesis past UV or benzo[a]pyrene diol epoxide-induced DNA
lesions in human fibroblasts. Mutat. Res., 510, 71–80.

86. Wu,F., Lin,X., Okuda,T. and Howell,S.B. (2004) DNA polymerase �
regulates cisplatin cytotoxicity, mutagenicity, and the rate of
development of cisplatin resistance. Cancer Res., 64, 8029–8035.

87. Lee,Y.S., Gregory,M.T. and Yang,W. (2014) Human Pol � purified
with accessory subunits is active in translesion DNA synthesis and
complements Pol � in cisplatin bypass. Proc. Natl. Acad. Sci. U.S.A.,
111, 2954–2959.


	Washington University School of Medicine
	Digital Commons@Becker
	2016

	Yeast DNA polymerase ζ maintains consistent activity and mutagenicity across a wide range of physiological dNTP concentrations
	Olga V. Kochenova
	Rachel Bezalel-Buch
	Phong Tran
	Alena V. Makarova
	Andrei Chabes
	See next page for additional authors
	Recommended Citation
	Authors


	tmp.1487098713.pdf.EjMBC

